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Abstract : In this report, we use a variety of tools from differential geometry
to propose a nonlinear extension of the principal components analysis (PCA)
into manifolds setting. This extension, that we shall call principal geodesics
analysis (PGA), attempts to find analogs of the principal components by
introducing the principal geodesic components. We then construct the
shape space of triangles 33 and find a convenient parametrization of it.
Finally, we apply the PGA procedure previously designed to analyze the
variability of a sample of shapes, randomly chosen onto the shape space of
triangles.
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I Introduction

The statistical shape theory is a mathematical theory aiming to design tools to efficiently
analyze shapes of objects. This theory, introduced by D.G. Kendall in 1984, has known
a considerable growth in interest from the scientific community with the advances in
technology of the last decades. In fact, shape analysis appears to be of great interest
in a wide range of disciplines, such as biology, medicine, image analysis, archaeology,
geology, agriculture or even genetics (see Small [1] et Dryden [3]]).

The word “shape’ is very commonly used in everyday language and usually refers
to the appearance of an object. However, such a vague description isn’t satisfactory
for mathematical purposes. Therefore, the definition of shape that we consider is the
intuitive one proposed by Kendall :

Definition 0.1 (Shape)

The shape of an object can be define as the total of all information that is invariant un-
der translations, rotations and rescaling (invariance under similarity transformations).

Roughly speaking, we remove all information concerning location, scale and orientation.
Thus, two objects can be said to have the same shape if they are similar in the sense of
Euclidean geometry. With this definition, shape really is a geometrical invariant property
of an object, and topological considerations aren’t enough information to determine its
shape. In practice, objects rarely have the same shape, due to measurement errors. In
such cases, the variation in shape can often be the subject of statistical analysis.

Then, a primary goal of shape theory is to describe the variability of a population of
geometric objects. An efficient tool to perform such an analysis would be the principal
components analysis (PCA). However, this descriptive technique is linear in essence,
and requires the data to be analyzed to lie in an Euclidean space. Unfortunately, complex
representations of shape do not fulfill such a requirement, forcing us to re-design the tech-
nique for nonlinear situations. In fact, we will see that we can associate to a population
of shapes a shape space, which can be seen in general as a Riemannian manifold.

This legitimates our interest for manifolds in Chapter 1, where we review some
background concepts from differential geometry and briefly introduce topological and
differentiable manifolds. In Chapter 2, we first recall the theory of principal components
analysis, before investigating a possible extension of this tool into manifold setting : the
principal geodesics analysis. Finally, we present in Chapter 3 the construction of the
shape space of triangles 33, and apply to this example the tools previously designed for
manifolds.
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1

Introduction to Manifolds

In this chapter we review some background concepts and basic
tools from differential geometry, in order to shortly introduce
topological and differentiable manifolds, which will play a key
role in the context of shape analysis.

1. Background concepts of differential geometry

1.1. Differentiability of a multivariate function

Let U and V be two open sets U C RP, V' C RY. We first begin by generalizing the con-
cepts of derivative and differentiability of univariate analysis to multivariate functions.
Definition 1.1 (Differentiability)

A function f : U — V is said to be differentiable at a point xy € U if there exists a
linear map df,, : RP — RY (called the derivative of f in xy) such that :

lim J(wo +h) — f(wo) — dfuy(h)
h—0 Al

=0

Therefore, it f is differentiable in xo, f admits a first order taylor expansion which is,
for h in the neighborhood of 0 :

f(@o+h) = f(xo) + dfwy (h) + o([|R]])

Remarks: e fis differentiable in 2o <= f admits a first order taylor expansion in z.
o if f is alinear map from U to V, then f is differentiable and Vz, € U, df,, = f.
e ifp=1,29 € Rand f differentiable in z, then we have f'(z¢) = df,(1).

The first remark allow us to formulate a first result about differentiable functions, making
the link between differentiability and continuity.

Proposition 1.1

f:U — Vand xq € U. If f is differentiable in x( then f is continuous in x.

Proof: As f is differentiable, f admits a first order taylor expansion. Therefore, f(xz¢ + h) =
f(xo) + dfz, (h) + o(]|h]]). Letting h tend to 0 we obtain :

}llig}) f(zo +h) = f(x0),
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which achieves the proof. Note that we've used the continuity of the derivative df,, to state the
result, which is indeed continuous, as a linear function between two finite dimensional spaces
and therefore lipschitz and so continuous. |

Definition [1.1) doesn’t provide us any systematic way to calculate the derivative of a
multivariate function. This wish to find a general expression for the derivative of a
multivariate function make us introduce the concepts of directional derivative and
partial derivative.

Definition 1.2 (Directional Derivative | Giteaux differential)

Let f be a mapping from U toV, zp € U and v € RP. If it exists, we define the
directional derivative (or Gateaux differential) of f at x( in the direction v provided
that :

f(zo+ tv) — f(ﬂco)_
t

Ve € RP, D,f(xp) =lim
t—0

Looking at definition [1.2] make us guess the underlying link between directional deriva-
tive and derivative of a multivariate function. Intuitively, we can think of the directional
derivative as a radial information on the variations of f, while the derivative of f is
carrying the whole information on the variations on f, not only along a direction. The
following proposition formally states the link between these two quantities :

Proposition 1.2

Let f : U — V and xo € U. If f is differentiable in xo then Vv € RP, f admits a
directional derivative in the direction v and we have :

va(xO) = dfﬂﬁo (U)

Proof: f is differentiable so :

f(@o +tv) = f(2o) + dfz, (tv) + o(t[|v]])
= f(xo) + tdfz, (v) + o(t).
So

D, f (o) = lim flzo + tz;) — f(ao)

= dfaro (U) [}

Remark: /\ The converse is not true : the existence of all directional derivatives do not imply
differentiability. In fact if we consider the following function :

v ife #£0
RZ SR, (z,y)—< = ;
f a2 {O ifz=0

then all the directional derivatives exist in 0, but it’s not a differentiable function, as it’s not even
continuous (lim f(e2,e) =1#0).
e—

We now introduce partial derivatives as special case of directional derivatives.
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Definition 1.3 (Partial derivative)

Letf:U—V,zgeU,e={e1,...,ep} abasis of R? and j € N. If it exists, we call jth
partial derivative the directional derivative of f at x( in the direction of v. We have :

D;f (o) = g;;(m = Do, f(20) = dfso(ey).

Partial derivatives allow us to calculate derivative of a multivariate function, as states
the following proposition :

Proposition 1.3

Letf:U — V,xq € U, f differentiable in x¢. Then, all partial derivatives exist and

P
for every h = 21 hje;, we have :
]:

p P (9f
dfuo(h) = hjdfug(e;) =D by 9, (o).
j=1 j=1

We can rewrite this proposition using matrix notation. To this aim, we introduce the
Jacobian matrix defined as follows.

Definition 1.4 (Jacobian Matrix)

Letxzo € U. If f : U — V is a smooth function (i.e. all first order partial derivatives
exist) then we define the Jacobian matrix J;(xo) € RP*? provided that :

Jf(aso)=<a ‘(I0)> L l<i<ql<i<p
j i

When p=q the Jacobian matrix is a square matrix and we call the determinant of this
matrix the Jacobian.

Remarks: e a function doesn’t need to be differentiable for the Jacobian matrix to exist, since
only the partial derivatives are required to exist.

e the Jacobian matrix generalizes the gradient of a scalar valued function of multiple variables
(the gradient can be regarded as a special case of the Jacobian matrix).

o Geometric interpretation : the Jacobian measures the rate of change of volume induced by
the transformation = — f(x) locally around z (the reader can convince itself about it by
looking at the substitution formula for multiple variables functions).

Therefore, using the definition 1.4} proposition [1.3|becomes :

dfeo(h) = J¢(z0) X h,

which gives us a coordinate representation of the derivative of f.
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» Geometric Interpretation

As dfmo is the best linear approximation of f, we can see the linear space
Vect{ =(@0); -+, 8‘1’0 (x0) }generated by the columns of f as the best linear subspace
to approxnnate the graph of f.

More precisely, it can be shown that J¢(z) gives the orientation of the tangent
space to the graph of f in xg. In fact, as we’ve seen, each tangent vector D, f(zo) to
the graph in z( can be written as a linear combination of the columns of the Jacobian
matrix :

|@

D f(-rO — dfzo

To conclude this subsection, we present a result allowing us to characterize the notion of
differentiability :

Theorem 1.1
Let f:U — V and g € U. If f isC' then f is differentiable.

St

1.2. C"-functions

We define here the class of C"-functions for multivariate functions.
Definition 1.5
Wessay that f : U — V isaC"-function on U for anyr € N if f hasC" partial derivatives

Gty f
oxit - Oz’

for all non negative integers r1,rs, ..., r, such thatr; +---+r, <r.

Clearly, a C"-function on U is also C* for all s < r. If f is a C"-function Vr > 1, than we
say that f is a C>*-function.

+44

1.3. Homeomorphisms and Diffeormorphisms

One of the last concept we need in order to be able to fully describe a manifold, is
the concept of homeomorphism. Roughly speaking, we can see homeomorphisms as
isomorphisms between topological spaces : they are mappings which preserves the
topological properties of the spaces they put in correspondence.
For now, we will suppose that U and V' are two open sets of RP.
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Definition 1.6 (Homeomorphisms)

Let f a bijective mapping from U to V. Then, f is said to be a homeomorphism from
U toV provided that both f and f~! are continuous.

When an homeomorphism can be established between U and V then we say that U
and V are homeomorphic.

There exists a very convenient result allowing us to characterize homeomorphisms
without using the topological definition of continuity which can be a little cumbersome
to work with. We provide this result without any proof :

Proposition 1.4 (Characterization of homeomorphisms)

A function f : U — V is an homeomorphism iif it’s a continuous, open (i.e the image
of an open set of U is an open set of V') and bijective function.

We now introduce a special class of homeomorphisms, called diffeomorphisms. These
are basically homeomorphisms with some additional constraints on the smoothness of f
and f~1.

Definition 1.7 (C"-diffeomorphism)

A homeomorphism f is called a C"-diffeomorphism between U and V if both f and
f~! are C"-functions.

We will refer to a C*°-diffeomorphism simply as a diffeormorphism. When a ditfeo-
morphism can be established between U and V , we say that they are diffeomorphic.

The apparent symmetry in f and f~! of the above definition motivates the following
proposition :

Proposition 1.5

If f: U — V isaC" diffeomorphism then f~! isa C" diffeomorphism and we have :
Va € U, Ji-1(f(a)) = Jt(a).

We terminate this section by a pretty convenient theorem, allowing us to characterize
diffeomorphisms.

Theorem 1.2 (Global Inversion)

Let f : U — R? an injective C!-function. f is a C'-diffeomorphism from U — f(U) if :

Va e U, det(J¢(a)) # 0.

Proof (Idea): We won't discuss the detailed proof of this theorem here, but we will only give to
the reader some intuition about this result, focusing on the one-dimensional case. Let f be a real
valued function as in the previous theorem. Looking at the following differentiation formula :
(7Y = W, we notice that the only thing we need for the derivative of f~! to be continuous
is that f’(a) # 0, Vt € U. In multivariate analysis, the derivative becomes the Jacobian matrix,
which allow us to make an analogy with the one dimensional case.
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2. Introduction to topological and differential manifolds

A differential manifold is a generalization of our
basic understanding of a curved surface of the Eu-
clidean space R?. An informal definition of this
mathematical object, could be the following : a
manifold is a space that locally resembles the Euclidean
space. This local similarity with the Euclidean
space will appear to be very convenient, as it will
allow us to extend all the tools and constructions of
multivariate calculus we previously introduced for
the Euclidean space to any di.fferential manifold. 7 .~ fully describe the surface of
Therefore, we will focus on this local resemblance ;0 earth (stereographic projections).
to define and describe manifolds. © Wikipédia.

The first thing we need to do is to precise in a

mathematical way what we mean by “local resemblance”. To this end, we will introduce
the notion of atlas, a collection of charts which will help us to describe a manifold.
This designation is inspired from our own description of the earth (which is indeed a
manifold) : being a sphere, the earth isn’t an Euclidean space, but still can be locally
charted trough projective maps (the Mercator projection is the most famous projection of
the earth).

Figure 1.1.: At least two charts are

However, in order to include every point of the earth in
this description, one map isn’t enough (see fig. . The
reader can convince itself about this fact by tempting
to cover a sphere by a sheet : it is impossible to cover
the whole sphere under this sheet without wrapping the
sheet, and therefore destroying is Euclidean structure
(see fig.[1.2). Analogously, we might use several charts
Figure 1.2.: It’s impossible to regrouped in an atlas to describe a manifold. As these
cover a sphere with a sheet charts are covering the whole manifold, it might occurs
without wrapping it. that they overlap in some places. In this case, we’d like
that the different descriptions provided by the charts on
the region of overlap be coherent : they might not be identical, but at least compatible. This
notion of compatibility will be precised using homeomorphisms and diffeormorphisms,
which will provide a way to pass from one description to the other.
Most of the results presented below, are adapted from the chapter 2 of Small [1]].
-

2.1. Topological and differential manifolds

Let MP be a topological spaceﬂ with a collection of open subsets {U, : @ € A} such thaiﬂ
UaUq = MP.

'We don’t recall here the definition of a topology. Nevertheless, any reader not familiar with the subject
should familiarize himself with these notions in the literature before continuing the reading of this
report.

“Note that the collection isn’t necessarily the whole topology.
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We also assume the existence of a collection of functions :
Co : Uy — RP,

that are all homeomorphisms onto the open subsets ¢, (U,) C RP.
Definition 2.1 (Charts)
We say that the functions c,, are charts on MP? provided that :

cgocyt i calUaNUg) = cs(Ua NU), (1.1)

is a homeomorphism from c, (U, N Ug) to c3(U, N Up), Vo, B € A.

» Interpretation (see also fig.

e We can think of the charts {c, }nc4 as providing local coordinate systems on
MP. This a formal translation of the assertion : a manifold locally resembles
the Euclidean space. The charts provide this local Euclidean structure we wish
to work with.

e The patching criterion eq. provides a formal characterization of what we
ingeniously called compatibility of two charts on the region of overlapping :
the coordinate systems provided by the two different charts can be mapped
together in a topologically consistent way (c,(Us N Up) and cg(U, N Ug) are
homeomorphic).

RP

Cq © cgl

Figure 1.3.: Charts provide local coordinate systems on M. The patching criterion eq. (1.1)
ensures the compatibility of two coordinate systems on a region of overlapping.
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Definition 2.2 (Atlas and Topological Manifold)

The collection of subsets {(Uy, o) }aca is said to form an atlas on MP. The set MP
together with its atlas is called a topological manifold of dimension p.

Remark (augmenting the Atlas): Asin R? it's common to change coordinates for convenience of
calculations, the same is true for topological manifolds. Here, a change of coordinates correspond
of a change of charts. Therefore, we can add charts to the original atlas under the condition that
they respect the patching criterion eq. (I.T).

The next proposition offers us a different interpretation of our basic understanding that
a topological manifold is locally homeomorphic to the Euclidean space. Here, we forget
the geometric identification through coordinate systems provided by charts and focus on
the topologies of the two spaces. The following result allow us to characterize elements
of the topology of MP? through elements of the topology of R? :

Proposition 2.1 (Characterization of open subsets of MP)

If co(V NU,) is an open subset of R?, Vo € A, then V' is an open subset of MP.

Proof: c, is a homeomorphism so it’s bijective and ¢! is continuous so, by the topological
definition of continuity, Vo € A:

e (ca(VNUL)) =V NU,

is an open subset of MP?. Thus, we have Uoc 4V NU, open subset of M* as union of opens subsets
of M? and UyeaU, = MP, which givesus: V N MP = V open subset of M”. |

By strengthening the smoothness of the patching criterion we obtain a special class of
topological manifolds, called differential manifolds.

Definition 2.3 (C"-differential Manifold)

If the functions cgoc, ! are also required to be C" -diffeormorphisms then the topological
manifold MP? is said to be a C"-differential manifold.
We shall refer to C*°-differential manifolds simply as differential manifolds.

Now let MP and N9 be two differential manifolds of dimension p and ¢q. We wish to
extend the notion of differentiability introduced in multivariate analysis to a function
between two manifolds. Let see how we can exploit the local resemblance of manifolds
with the Euclidean space to do so.

Definition 2.4 (Differentiability on Manifolds)

A continuous function

h: MP — N1

is said to be differentiable if for every = € MP there exists a chart (U,, ¢,) on M? and
a chart (V3,cg) on N? such that: « € U,, h(x) € V3, and the mapping :

cgohocy i ca(h (V) NU,) — RY

is differentiable.
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» Idea

The idea here is to define the notion of differentiability of a function between two
manifolds using the knowledge we already have of the Euclidean case, and the local
resemblance between a manifold and the Euclidean space (see fig. [1.4).

Figure 1.4.: Defining differentiability of functions on manifolds through the local resemblance
with the Euclidean space. The plain-line arrows show how we get back to the euclidean case.
The dotted-line arrows show the steps of the mapping cz o ho c;!.

Similarly, we say that h is a C"-function provided that c5 o h o ¢! is a C"-function. If
p = q and h a 1-1 map, then h is called C"-diffeomorphism if both h and h~! are C".
When C"-diffeomorphismcan be established between two manifolds M? and N? then
they are said to be C"-diffeomorphic.

Notation: the charts provide a system of coordinates for the manifold. For convenience, we
will say that z has coordinates (x1, z2, . . ., x,) rather than the more precise statement that these
coordinates belongs to ¢, ().

Definition 2.5 (Intrinsic/extrinsic properties)

We say that a property of a manifold is intrinsic if it’s invariant under a change of
coordinates compatible with the differential structure. Respectively, a property is said
extrinsic if it depends on the coordinate system.

S
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2.2. Tangent vectors and tangent spaces

We now wish to generalize the definition of tangent vectors and tangent spaces for
surfaces in R? to any differential manifold. One first attempt could be to try to generalize
these notions trough the Jacobian matrix. In fact, if we consider a surface ¥ C R3
implicitly defined by ¥ = {(z,y, 2) € R3 : h(z,y,2) = 0} with h : R3 — R sufficiently
smooth, one could define the tangent space to the surface in (z, 0, 20) € X through the
gradient Vh(xo, yo, 20) : v € R3 is a tangent vector to X at (o, Yo, z0) if (v, Vh(z0, Yo, 20) >=
0. Therefore, a natural choice should be to try to generalize tangent vectors through the
generalization of the gradient itself, which is the Jacobian matrix. But unfortunately, this
approach isn’t satisfactory. First of all, we’d like a definition which doesn’t require any
parametrization for the manifold : the fact that a vector is tangent to a manifold shouldn’t
depend on the existence or not of a parametrization for this manifold. Secondly, we’d like
a definition that doesn’t depend on the embedding of the manifold in a greater Euclidean
spaceﬁ the property of tangency to a manifold is an intrinsic property of this manifold.
The definition we propose here fulfills both of

these criteria, defining tangent vectors through

equivalence classes. Let M? be a differential man-

ifold. Let z(¢) and y(¢) be two smooth pathsf_fl in

MP passing through a common point zg at t = 0.

Let us suppose that we have a coordinate system N,
through a chart (U,, ¢o) around z such that the N\
paths have the coordinates : z

z(t) = (21(t), ..., 2p(1)),
y(t) = (W), - - -, yp(t)),

zo = (zo1, ..., Top)- Figure 1.5.: Tangent vector i at o,
seen as the equivalence class of all
Then, the paths z(t) and y(¢) are said to be tangent smooth paths tangent in x.
at zg if :
dz; dy;
—1(0) = =2(0 Vi=1,..p. 1.2
o 0 =—7(0), ¥ji=1..p (1.2)

If we call S the set of all smooth paths passing through zy at ¢ = 0, we are able to define
an equivalence relation R C S x S : two paths z(t), y(t) € S are said to be equivalent
if they are tangent, in the sense of eq. (1.2). We write z(t) ~r y(t). It's easy to show
that this relation is indeed an equivalence relation. This equivalence relation allow us to
define tangent vectors as equivalence classes :

Definition 2.6 (Tangent Vector)

We define the tangent vector @ to the path x(t) at the point zo = z(0) to be the
equivalence class of z(t) :

& ={y(t) € S:x(t) ~ry(t)}-

*the scalar product between v and V' is a property of the Euclidean space R? in which ¥ is embedded.
*2(t) and y(t) are said to be smooth if their coordinates are differentiable functions of ¢.
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Then, the tangent space will simply be defined as the set of all tangent vectors :

Definition 2.7 (Tangent Space)

The set of all tangent vectors to the manifold M? at x is called tangent space at x
and is denoted by T, (MP).

Remark: In term of the equivalence relation R, we have : T, (M?) = S/ .. Infact, S/, is the
set of all equivalence classes which is exactly the same as the set of all tangent vectors.

At this point, we have formally defined tangent vectors and tangent space at a point zo €
MP, through equivalence classes. During this process, we used meaningful mathematical
terminology such as vector to designate equivalence classes, which can seem a little
peculiar at first glance. Thus, we’d like to show that those equivalence classes deserve
this designation, and can be equipped with a linear space structure.

To do so, we must define an addition between two vectors and a multiplication of a
vector by a scalar. Once those basic operations defined, proving that the tangent space is
indeed a linear space is straightforward.

Definition 2.8 (Addition of two tangent vectors)

We define the vector sum & + % to be the tangent vector at z( to the path whose
coordinates are :

(.751 (t) + Zl(t) — X001y .-, xp(t) + Zp(t) - xop),

which passes through z att = 0.

Remark: /\ We can add tangent vectors at the same point z,, but we cannot add tangent vectors
to the manifold at different points.

To be well-defined, this sum must be independent of the system of coordinates and of
the choice of the representatives paths of the equivalence classes. This is not obvious.
To show that this sum is well independent of the system of coordinates, it’s sufficient to
notice that the diffeomorphic images of two tangent paths in R? will also be tangent. Let
now show that this sum is independent of equivalence classes representative :

Let z(t),y(t),z(t) and w(t) be four smooth paths passing trough z( at ¢ = 0 and such
that £ = g, 2 = w. If we call y(t) = (x1(t) + 21(t) — zo1, ..., 2p(t) + 2p(t) — zop) and
p(t) = (y1(t) +wi(t) — zo1, - .., Yp(t) + wp(t) — xop) then, showing that & + 2 =y + w is
equivalent to show that v(¢) and p(t) are tangentin¢ = 0:

dzj
dt

dw;
dt

di; .
0)="30), vji=1,...p,

() = %i(0)+ “

dry; dx;
(o) =G0 -

dt Cdt

and therefore y(t) and ~(t) are tangent.
Similarly, we define the multiplication by a scalar A € R.
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Definition 2.9 (Multiplication by a scalar)

Let i be a tangent vector, A € R, then \# is defined as the tangent vector at x to the
following path :

(A(@1(t) — 2o1) + To1, - - -, A(@p(t) — Top) + Top),

which passes through zg att = 0.

One more time, it can be shown that this definition is well-defined.

Having defined these two basic operations on our tangent vectors, we provided our
tangent space a linear structureﬁ. It can be shown that the tangent space T}, (MP?) has
the same dimension as MP? EI Therefore, T, (MP) is linearly isomorphic to R?, and we
can construct a set of basis vectors for this linear space B = {01 (zo), . .., 0p(x0)}, defined
as tangent vectors to the paths :

Vi=1,...,p: t’—)($01,...,$0j—|—t,...,$0p),

defined in a neighborhood of xy around ¢ = 0. Since the cardinality of the basis is equal
to the dimension of T},(M?), to show that this is well a basis it is sufficient to show
linear independence between the elements of the basis. Let suppose that there exist
a,...,0p € Rsuch that:

P
> idi(x0) =0,
i=1

with 0 the null tangent vector, defined as the tangent vector to the constant path :
c(t) : t = (zo1,...,x0p). Thus, if we call 3(t) one possible representative of the vector

P
> a;0i(xo), then B(t) and ¢(t) are tangent at 2o and we have :
i=1

g .. dc
E(O)_%(O)a
p
=Y 0,...,1,...,0) = (0,...,0),
=1

which implies that all the a; must be null, and therefore B is indeed a basis.
This basis allow us to give a coordinate representation of tangent vectors :

p
Vo € Ty (MP),  w(z0) = Y 0tili(ao).
i=1

5To be more accurate, the definition of the two basic operations aren’t enough to provide linear structure,
and we should check all the other properties, but here they are all verified as we use the standard
multiplication and addition laws to define the paths.

®This is reassuring, at least intuitively : we tried to build definition of tangent vectors and tangent space
as intrinsic objects to the manifold, i.e objects which do not require the manifold to be embedded in
a greater space to exist. Therefore, it would have been peculiar if the resulting tangent space of our
construction were of greater dimension than the manifold itself.
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Therefore, we can write, for each given time :

p

B(t) =Y #i0i(x(t)), (1.3)

i=1

where z; = défj (t) (by unicity of the representation in the considered basis).
It should be noted that the definition of the basis vector depends on the coordinate
system used : for a different coordinate system we obtain different bases, but they both

span T, (MP).

S

2.3. Metric tensors and Riemannian Manifolds

In the previous section, we showed that we could provide our tangent space a linear
structure. Here we investigate wether we can provide it a metric structure, through the
definition of an inner product between tangent vectors.

Suppose that :

gu(@) - gip(e)

g(x) = P

gp1(z) - gpp()

is a positive definite matrix for all z € MP. We additionally suppose that the functions

9i; are smooth functions on M?, Vi, j. If a(z) = 3_ a;(2)0;(z) and b(z) = 3_b;()0;(z),
J J

then ¢(z) defines an inner product on 7, (M?) :

(a(),b(x) >= a(x)"g()b(z) = D > gin()a;(2)by().

j=1 k=1

It’s easy to show that this is well an inner product. Therefore, the existence of g(x)
allowed us to provide our tangent space a metric structure (more precisely it’s a pre-
hilbertian space). This gives us a new class of differential manifolds :

Definition 2.10 (Metric tensor and Riemannian Manifold)

The inner product ., .) defined on the tangent space T;,(MP?) is said to be a Rieman-
nian metric tensor, or simply a metric tensor on MP?. A differential manifold endowed
with a smooth metric tensor is said to be a Riemannian manifold.

ot

2.4. Geodesic paths and geodesic distance

In this section, we use the metric structure we just provided to our tangent space to
locally extend it to the differential manifold itself, by defining length of paths on it.
Consider a smooth path z(¢) on a Riemannian manifold M?. Then, using eq. (1.3), we
can write the tangent vector to the path at a time ¢ as :



2 Introduction to topological and differential manifolds 21

where z;(t) is the i-th coordinate of x(t
norm induced by the inner product (., .) :

where g (x(t)) is the value of the metric tensor at z(¢). Then, analogously with the
Euclidean case, the length ds of the path from z(t) to z(¢ + dt) will be defined as :

ds = v(t)dt.
Therefore, the length of z(.) from t to ¢; is :

L= /ttl ds — /ttlv(t)dt. (1.4)

Remark: metric tensor determine length of arcs and it’s also itself determined by the arc length.
In fact, it can be shown that if we are able to determine that if we are able to calculate ds for any
increment of a smooth path from z(t) to (¢t + dt) then there exists at most one metric tensor
compatible with this definition.

Having defined lengths of arcs on a differential manifold, a natural problem would be
the seek of shortest paths between two points of the manifold. This investigation leads
us to the notion of geodesics paths which are a generalization of straight lines in the
Euclidean space :

Definition 2.11 (Geodesic path)

A geodesic path, or simply geodesic, is a smooth path x(t) in a Riemannian manifold
which is locally the shortest.

» Geometric Characterization

Geometrically speaking, a geodesic is a path which can be broken up into pieces
such that the paths connecting the endpoints of the pieces are all the shortest paths.
Therefore, the property of being a geodesic can be investigated locally.

The geometric characterization above gives us good intuition about geodesics, but isn’t
very convenient in practice and we would prefer an analytic characterization, such as
a differential equation verified by such a path. Tus, let v : [a,b] — MP be a geodesic
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path. Using the definition 7(t) is locally the shortest path. This means we can find a
small enough open subset |t, t1] of [a, b] such that v(¢) is the path minimizing the length
eq. among all possible smooth paths from ¢ to ¢;. Therefore, looking for a geodesic
path is equivalent to look for extrema of the following function :

b= [ vt = [ F oo

to to

with g.(t) = v(t) + en(t) for any smooth path n(t) vanishing on the boundaries ( n(tp) =

n(t1) = 0) and F(t, ge, §e) = /(Ge(t), ge(t)). If we want () to be the shortest path on
Jto, t1[ then we must have :

dL

A (€) = 0, for all smooth path 7(t) vanishing on the boundaries. (1.5)
€

e=0

The above condition is in fact the directional derivative (see definition[1.2) of L (consid-
ered as a function of ) at « in the direction 7. If v is well an extremum, then we should
have all the directional derivatives null at this point.

This yields :

t1 d )
/ E(F(tngage))dt = Oa
€

to

b/ og \L OF 26 \T oF
o (G) Gyt () g oo =0
t 7 OF oF

& t (n(t)) 39, (t, ge, Ge) + ()" 3. (t, ge, ge)dt = 0.

Futhermore, when ¢ = 0, we have g.(t) = v(t) and ge(t) = 7(t), which gives us :

/ (n(t))" ?;;”(t,% 5 + (i) gj@, N

P
Asn(t) = > dd? (t)0;(n(t)) we can integrate by parts on each component which yields :

=1

[ T G + )T G e =0,

t1

o [ o) G jo0) G| - [an” g (Gean)a=o

= [ |G - 4 (5 )] a=o

to

as 7)(tp) = n(t1) = 0. This equality being verified for all path 7(¢) vanishing on the
boundaries we must have :
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OF . d [0F .
%(t,%v) o <%(t,7,7)) =0,

which is equivalent to

oOF d (OF
iy Vi isYi) | =0, ,=1,...,p.
ot = 5 (Gtin) =0, ¥i=1p

This provides us the following characterization :

» Analytic Characterization (Euler-Lagrange equations)

A smooth path 7(¢) is a geodesic provided the Euler-Lagrange equations are satis-
tied, namely that

oF oF
1y I 2y 17 — ¥ ‘:17"'77 .
a,y(m Vi) = dt<8 (t, i 7)) 0, Vi p (1.6)

with F(t, %, %) = [I7(£)].

The above Euler-Lagrange equations can be exploited to derive the following existence
and uniqueness theorem on geodesics, which will be very useful later in the definition of

the exponential map, providing local diffeomorphism between the tangent space and
the manifold (see section [2.5).

Theorem 2.1 (Existence and uniqueness of geodesics)

Geodesics on a Riemannian manifold exist and are unique. More precisely, for all
x € MP,v € T,(MP), there exists a unique geodesic y : I — M such that :

{7(0) =z
o) =v

Proof (Idea): Expliciting F'(t,;, ;) in eq. (1.6) we obtain, using Einstein summation convention :

with0 € I C R.

0 o d (0 o
o (waW") - — (a7 (V%Wv")) =0,

1 dgj;c ik d ( 1 )
YA == girY 0,
2H”Y|| dv; (1]
1dg;i . js d
ZIIk i 0
<5 dvvv dt(gm)

1dgjk ik dgzk
S =4 - i 0
Qd,yi’Y’Y v, ’Y’)’ + gy

ldg]k‘ . dgzk "Yj’.}/k.
2dy;  dy

@gilﬂk = (
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Thus the Euler-Lagrange equations can be rewritten as a second order differential equation
and the existence and uniqueness come from the Picard-Lindel6f theorem for solutions of differ-
ential equations with prescribed initial conditions. Moreover, the same theorem tells us that
depends smoothly on both z and v. |

Having define the concept of a geodesic path in a Rieman-
nian manifold, we are now ready to define the concept of
geodesic distance between two points in the manifold.

Definition 2.12 (Geodesic distance) M
Suppose that a Riemannian manifold MP? is pathwise ”
connected, in the sense that for any two points z,y MP? m

there exists a smooth path xz(t) such that z(ty) = x and

x(t1) = y.
We detine the geodesic distance from x to y to be the Figure 1.6.: v, and 7, are
length of the shortest path from x to y. both geodesic paths from x

toy but only v, is the

With this definition, a pathwise connected Riemannian man- shortest path from x to y.

ifold MP becomes a metric space.

It can be shown that the shortest path from x to y is a geodesic. However, the converse is
not true and there exists geodesics between two points such that their length is strictly
greater to the length of the shortest path (see fig. [1.6).

S

2.5. The Exponential Map

Geodesics and the metric structure they induce on a path wise connected Riemannian
manifold will allow us to define a diffeomorphic map between the manifold and the
tangent plane. This map is called the exponential map and is defined as follows :

Definition 2.13 (Exponential Map)

Let M? be a Riemannian manifold, z € M?, v € T,(MP) and ~,(t) the unique geodesic
such that v(0) = x and ¥(0) = v. Then, we define the exponential map as :

Exp, (v) = 7u(1).

Terminology: The designation "exponential map" can be better understood by looking at one of
the most famous property of the classic exponential function : exp(z + y) = exp(x)exp(y). Thus,
the exponential function is mapping a linear space with a non linear space, as the exponential
map is mapping the tangent space with the manifold.

Thanks to theorem the exponential map is well defined, as we have existence and
uniqueness of the geodesic 7,(t). Intuitively, given « € M? and v € T, (MP), the
exponential map runs along a geodesic with constant velocity v, for one unit of time.
Thus, the distance traveled on the geodesic depends on the velocity v, and we have the
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following property :
Exp, (tv) = 71 (1) = 7 (t),

fort € I C R, such that 7,(t) is defined on I. If I = R, then the manifold is said
geodesically complete (which means we can maximally extend each geodesic to R).
Moreover, we have the following property on the exponential map :

Proposition 2.2 (Local diffeomorphism)

For any x € MP there exist a neighborhood U of 0 in T,(MP?) and a neighborhood V' of
x in MP such that Exp, : U — V is a diffeomorphism.

Proof: The exponential map is mapping the prescribed initial conditions (x,v) € MP x T, (MP)
with the corresponding solution ,(t) of the Euler-Lagrange equations which can be re-
expressed as second order differential equations as seen in the proof of theorem Thus, the
Picard-Lindelof theorem ensures that the solution v, (¢) smoothly depends on the data (z,v) and
therefore the exponential map is a smooth map.

As T,(MP) is a linear space, we can identify Ty(T,(MP)) with T, (MP). Then, for any v €
To(T,(MP)) = T, (MP), we have :
d
= 'Yv(t))
L (a

Therefore, we have d(Exp,)o = Id,, which is a bicontinuous isomorphism. Then, using the local
inverse theorem, there exists an open neighborhood U of 0 € T,,(M?) and a neighborhood V' of
x € MP? such that Exp_ : U — V, is a diffeomorphism. |

d(Exp,)o(v) = % (Exp, (tv))

t=0

This local diffeomorphism between the tangent
space and the manifold allow us to define the loga-
rithmic map, as the local inverse of the exponential
map :

Definition 2.14 (Logarithmic Map)

LetU C T,(MP) and V C MP the biggest neigh-
borhood such that Exp, : U — V defines a diffe-
ormorphism (the radius of U is called the injec-
tivity radius). Then, we define the logarithmic
map as the inverse of the exponential map :

Figure 1.7.: The exponential map
Log. : V. =0, allow us to locally carry the Euclidean
T ly - Expm’1 (y) =, structure of the tangent plane to the

differential manifold.
with ~,(t) the unique geodesic passing through

x att = 0 such thatv,(1) = y and ¥(0) = v.

The logarithmic map provides a very efficient way to compute geodesic distance. In
fact, if we assume that geodesics are parametrized in such a way that they have constant
Velocityﬂ then we have :

’which we can always achieve through the arc-lenght parametrization
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Vo € MP,Yv € Tp(M?), d(x,Exp,(v)) = |v],

with || - || the norm on the tangent plane induced by the metric tensor.
Thus, Vz,y € U, with U as in definition definition we have :

d(z,y) = |[Log, (y)|- (1.7)

This result shows that the metric structure provided to the manifold by the geodesic
distance is directly inherited from the tangent space metric structure.

G\



CHAPTER

2

Nonlinear Extension of Principal
Components Analysis

In this chapter, we first recall the theory of principal components
analysis, a powerful statistical tool aiming to de-correlate and
re-express data sets in an optimal way. Then, we investigate a

possible extension of this tool to nonlinear situation, which will
provide us an efficient way to compare shapes one another.

1. Introduction to the Principal Components Analysis

The origins of principal components analysis (PCA) lies in multivariate data analysis,
where it became crucial to provide the analyst efficient ways to deal with huge amounts
of data varying among multiple possibly correlated variables. To this end, the principal
component analysis seeks to de-correlate the original data by finding independent
directions, called principal components, in which the variance is maximized. By doing so,
principal components analysis re-express the data as a sum of uncorrelated components.
This is exactly the same philosophy as Fourier analysi{], which aims to represent periodic
functions as the sum of simpler trigonometric functions. Such a decomposition is (among
other things) widely used in signal processing, as it can help to identify main frequencies
composing the signal. By focusing on this main frequencies, the analyst removes possible
noise and therefore reduces the dimensionality of his problem, simplifying the analyze
(see the Fourirer analysis of the FTSE index, fig.[2.1]).

The same is true for PCA : by projecting the data on the main directions maximizing
the variance, one may reduce the dimension of the problem, interpreting the data with
less but more relevant variables (the principal components). Then, identifying trends,
patterns or outliers in the data can be performed far more easily than with the original
variables. Therefore, PCA is a purely descriptive technique, allowing us to perform
efficient exploratory analysis of large data sets. PCA also has a wide range of other
possible applications, in particular in linear regression or in image compressing.

The introduction on principal components analysis that we present here is inspired from
the work of Joliffe in [4].

Yn fact, the philosophy of PCA and Fourier analysis are so similar, that one could even wonder why
performing a PCA rather than a Fourier transform of the data. Putting aside the technical differences of
the two approaches, there still remains a fundamental difference between PCA and Fourier analysis. In
fact, in some situation, it’s embarrassingly weird to perform a Fourier analysis. Let’s take the example of
cars features data. One could number each features and then take the Fourier transform of the numbered
features but this just seems crazy ! There is no legitimate reason of performing such an analysis. We will
see that there is no such embarrassment for PCA.
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Figure 2.1.: Fourier analysis of the Financial Times Stock Exchange (FTSE) index from 1985 to
nowadays. The spectral analysis of the signal allow us to perform a decomposition of the signal
in main frequencies (here we only took in considerations the first nine greatest frequencies). By

summing the corresponding trigonometric functions, we obtain a de-noised version of the
original signal, allowing us a better analysis (for example, we can easily detect financial crisis).

1.1. Principal Components for a known covariance matrix >

Suppose we have a vector of random variables X = (X,...,X,) € RP with EX =0
(without loss of generality) and known covariance matrix 3. As we have seen previously
the aim of principal components analysis is to find a new basis that re-express the random
vector optimally. Algebraically speaking, we are seeking for a matrix of a change of basis
P such that :

Y = PX,

with Y the random vector expressed in the new basis. Then, the rows of P are simply
the principal components.

To find these principal components, we now need to address the issue of what this new
basis should be, indeed what is the best way to re-express the random vector X. The
principal component analysis pretends that such an optimal basis can be obtained by
reducing the correlation between random variables and maximizing individual variances.
Let see how we could achieve such a thing.

We start by defining the first component w; as :
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wy = argmax Var(w? X) = argmax w” Var(X)w = argmax w? Yw.
[[wll=1 [[wll=1 [[wll=1
We additionally imposed ||w|| = 1 in order to obtain unicity of the basis. A simple way to
obtain de-correlated variables in the new basis is to construct an orthogonal basis : this
ensures the new variables to be linearly independent, an therefore with null covariance
(as the covariance is only catching linear dependencies between two variables). Thus, we
subtract to X all linear dependency with the first component :

XQ =X — (wlTX)wl,
and ws will be defined as :
wy = argmax Var(w’ X5). (2.1)
[lw]=1

As X, € span(w;)" we necessarily have wy € span(w;)™" (as ws is maximizing eq. 1}
and therefore the basis we are building is indeed orthogonal. We can extend this proce-
dure to all principal components :

Definition 1.1 (Principal Components)

Let X € RP a random vector with known covariance matrix ¥. We define the p
principal components as :

e First principal component :

wy = argmax Var(w? X).
lwll=1

e k-th principal component, 2 < k < p:
wy, = argmax Var(w? X},),
flw][=1

N k—1
with X = X — 3 (w; T X)w;.
=1

T
w1y
Thus, our matrix of change of basis P will be P = : . As the basis {w1, ..., wp}
wy,”
is orthonormal, P is an orthogonal matrix. The expression of X in the new basis is :

p
Y =PX =) (w'X)w.
=1

The covariance matrix A in the new basis is given by :

A = PxpPT,
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as P~! = PT. Therefore, ¥ and A are similar. Moreover, in the new basis all the random
variables are linearly independent (by construction), and therefore the covariance matrix
A is diagonal. By the spectral theorenﬂ there exists a unique orthonormal basis in which
¥ is diagonal, and thus principal components are simply the eigenvectors of the matrix
¥, sorted in order of decreasing eigenvalues.

Thus, to compute principal components, one should simply find an orthonormal
basis in which ¥ is diagonal, and sort the eigenvectors in order of decreasing eigen-
values. Existence and unicity of such a basis are guaranteed by the spectral theorem
applied to the covariance matrix ¥, which is indeed a symmetric matrix.

The following property provides a better understanding of the above statement, as it
reformulate the problem in a geometrical point of view :

Proposition 1.1 (Ellipsoids and Principal Components)

Let X be a random vector of known covariance matrix ¥.. Consider the family of
p-dimensional ellipsoids :

XTy=1x =, (2.2)

with c a constant. Then, the principal components define the directions of the principal
axes of these ellipsoids.

Proof: the expression of X in the basis defined by the principal components is Y = PX, with P
defined as before. As P is orthogonal, we have X = PTY. Substituting in eq. (2.2) we obtain :

(PTY)Ts=Y(PTY) =,
—=YT(PoPT) 'y =,

= YTAYY =¢,

P y_Q
7
‘:’ZT,» -6
i=1

- yi2
— =1, 2.3
=Ly 29

and eq. (2.3) is the equation for an ellipsoid referred to its principal axes. Equation also
implies that the half-lengths of the principal axes are, from the greatest to the smallest axis,

\/CA17...,\/C)\p,ifA1Z)\QZ"'ZAP. [ |

One way to understand this property, is to consider the random vector X as a "distor-
tion" of the Euclidean space R? : all the points haven’t got the same probability, and
therefore, if we draw a series of observations from this random vector, the spread of
the resulting scatter plot won’t be the same in all directions. However, this spread is
entirely determined by the covariance matrix X, which contains the average information
about the dispersiond joint dispersion of each random variable composing X. Thus,

*that we can invoke as the covariance matrix ¥ is symmetric positive semi-definite .
%*n all that follows, dispersion should be understood as dispersion in term of second order momentum
(variance)
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one could be interested in creating a measurement of dispersion, using the information
contained in 3. But how could we achieve such a thing ? As usual, let’s get back to the
well known univariate case, when X is simply a random variable in R with null mean
and variance o2. Then, given an observation z of this random variable, one possible
way to measure the dispersion of this observation could be to evaluate the quotient
22 /0%, Then, if 22 /0? > 1, we would say that the observation is more dispersive than the
average dispersion o2, and respectively less dispersive if 22/0? < 1.

Analogously with the univariate case, we can now generalize this measurement to
multivariate statistics, through a quadratic form defined on R?, using the inverse of the
covariance matrix ¥ : |w| = w? ¥~ tw, Vw € RP. Then, all the w € R? on the ellipsoids
wT¥71w = este will have the same relative dispersion around the mean. Through this
measure of dispersion, we can quantify the distortion of the space R? induced by the
distribution of X : the ellipsoids will be shaped according to this distortion (see fig.[2.2),
and as stated by proposition the greatest axis of the ellipsoids will correspond to
the first principal component, the second greatest principal axis to the second principal
component and so on...

712 = 50, 052 = 40, p = 0.45

— c=1
c=2
— ¢=3
--- 1stPC
-=-- 2dPC

c=1
c=2
c=3
- 1stPC
- 2dPC
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30

10 20 30

v
0
-10 0 10 20 30

-10

-30
-30

(c) (d)

Figure 2.2.: [llustration of the concept of dispersion ellipsoids for a bivariate normal distribution
2
with mean p = ( 0 ) and covariance matrix ¥ = oL ”1‘73” ) . We drawn 300 points
0 01020 g2
from this bivariate normal distribution for different values of 01,02 and p and plotted three
ellipsoids for ¢ = 1,2, 3 and the first and second principal components. We can see that the shape
of the ellipsoids are determined by the covariance matrix: the width depends on ¢, the height

depends on o3 and the inclination on the parameter p (the correlation).
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» PCA vs Linear Regression

One could wonder how different is PCA from linear regression. Despite the fact
that they obviously don’t have the same purpose, they appear to be conceptually
different : while linear regression is trying to explain one variable through multiple
explicative variables, PCA doesn’t impose such an asymmetry among variables,
and tries to optimally re-express the whole data. However, when we only have two
variables, one could wonder if the direction of the regression line could be the same
as the one provided by the first component. We investigated this issue on fig. To
understand the results, we must remember the definition of the first component :

w; = argmax Var(w! X) = argmax [(wTX)z] —(E [wTX])Q = argmax E [(wTX)Q} ,
[lw||=1 ||w||=1 — flwl||=1

as we imposed EX = 0. From this expression, we can deduce that PCA is minimizing
the sum of square of orthogonal errors to the first component linef] (see fig.[2.3d). On
the opposite, we know that for Gaussian linear models the best estimator of j3 is
the least square estimator which itself minimizes the square vertical distances to the
regression line (see fig. and fig.[2.3b). Therefore, except for some rare case, there
is no theoretical reason that the first component and the line regression have same
direction.

"we can show that this is also true for all principal components.
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(a) Linear regressiony ~ x. The (b) Linear regression x ~ y. This  (c) First principal component
sum of square of vertical distances time, y is the explanatory variables, direction. The sum of square of
to the regression line are so the horizontal distances to the orthogonal errors are minimized.
minimized. regression line are minimized.

Figure 2.3.: Differences between linear regression and PCA. In this example, x and y are linked
by the following relationship : y = 20 + 3z + € with e ~ N'(0,60). We then drawn a hundred
values of y for x varying in [1,100], and performed linear regressions y ~ z, x ~ y and PCA.

S
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1.2. Principal Components Analysis using correlation matrix

The above derivation of principal components is based on the eigenvectors and eigenval-
ues of the covariance matrix X. However, this approach has some limitation, the main
one being its huge sensitivity to the units of measurement used for each elements of the
vector X, as illustrated in the following artificial example. Let say we only have two
variables x and y, x being a length, which can be measured either in centimeters or in
millimeters. The second variable y is a weight, in grams for example. The covariance
matrices in the two cases are respectivelyE]:

70 30 7000 300
El(30 70)’ and 22<300 70)'

In the first situation the first principal component is 0.7072+4-0.707y, with approximatively
71.43 % of the total variation E} In the second situation the change of unit results in a
radically different first principal component : 0.999z 4 0.043y, with 99.19% of the total
variation ! While in the first situation the first PC gives equal weight to z and y, in the
second situation the first PC is almost entirely dominated by the variable =. This can
also be seen through the shape of the respective dispersion ellipsoids (see fig.[2.4). This
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(a) PCs and dispersion ellipsoids for the (b) PCs and dispersion ellipsoids for the
covariance matrix 1. The two variables x covariance matrix YX.o. Here, the variable x is
and y have the same weight in the first PC, dominating y in the first PC, and the

and the dispersion ellipsoid is equally dispersion ellipsoid is stretched in this
shaped. direction.

Figure 2.4.: Sensitivity of the PCs and the dispersion ellipsoids to the units of measurement, in
the context of the above example. For the simulation, we supposed a bivariate normal
distribution for the joint distribution of x and y.

example illustrates the problematic behavior of PCA in case of wide differences between
the variances of each variable. One remedy to this huge sensitivity could be to use the
correlation matrix ¥* instead of the covariance matrix ¥. The correlation matrix ¥* is

*using the fact that Var(10z) = 100 x Var(z) and cov(10z,y) = 10 x cov(z, ).
>to compute the percentage of total variation accounted to the first component, one must evaluate the ratio
: A1/ (A1 + Az2), with \; the eigenvalues of ¥, sorted in decreasing order.
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the covariance matrix of a standardized version of the vector X:

xl/al
X' = : ,

Tp/op

with z; the i-th random variable composing the random vector X, and o7 its correspond-
ing variance, i-th term of the diagonal of . Then, all the standardized random variables
of X* are dimensionless, preventing us from the possible issues of scale dependency of
the PCA. However, this normalization is arbitrary, and one could decide to re-weight the
variables by weights w; different from ¢;, corresponding to the analyst intuition of the
relative importance of each variables. But in practice, it is rare that obvious re-weighting
suggests itself, explaining our preference for the correlation matrix.

Finally, it must be noted that there is no simple relationship between the PCs obtained
by the covariance matrix and the correlation matrix : in fact, it can be shown that the PCs
are preserved under orthogonal transformation, and the normalization of X in X* isn’t
an orthogonal transformation.

ot

1.3. Principal Components for an unknown covariance matrix (Sample
Principal Components)

The derivation of principal components is based on the assumed knowledge of the co-
variance (or correlation) matrix of the random vector X. But in practice, this assumption
is pretty unrealistic, and we could have to deal with data from an unknown distribution
and therefore unknown theoretical covariance matrix. Thus, we would have to use a
proxy of the covariance matrix, called the sample covariance matrix.

Let X € R? be a random vector and {(z1,. .. ,acp,i)T :1=1,...n} n observations from
this random vector. We store these observations in a so-called design matrix W € RP*" :

r11 .- Tin W1
w=| o =],
Ip1 --- Tpn Wp
where W; = (21,22, ...,%in) € R", is a vector composed by the n occurrences of the
random variable X;, for i = 1,...,p. As we have seen before, in order to perform a

proper PCA, we must have EX = 0. Here, as we don’t have direct access to the mean,
we center the design matrix in order to ensure that all sample means of the new variables
W; be null :

W1 — jix 441
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n
with fi; = % > xip fori=1,...,p. Then, the sample varianceﬁ of the series W; will be :
k=1

1 1
6’12 = WZWZT = m Zwi7k2.
k=1

n—1

Similarly, the sample covariance between W; and W is :

Uz’j =

1 n
7_ 1WZWJT = Zwi,kwj,k.
=1

n—1
k=

More generally, we can define a sample covariance matrix gathering all sample covari-
ances and variances :

Definition 1.2 (Sample Covariance matrix)

Let X € RP be arandom vectoran W € RP*" the centered design matrix defined above
of n observations from X. Then we define the sample covariance matrix Yy, € RP*P
as:

. wawi . W1WpT 62 o 6y

wwT = : : = Do

n—1 n—1 - - U )
WoWi - W Gp1

- 1
Yw o=

e

This unbiased estimator of the covariance matrix will help us to re-express the data
optimally, in PCA fashion. This time, the aim is to find a matrix P such that :

V = PW,

with V' the design matrix of the re-expressed data, with null sample correlations and
maximized individual sample variances. Having noticed that

Sy = (PW) (PW)T = PWWTPT = Py, PT,

we see that we can still find principal components through the spectral decomposition
of Y. Then, the procedure is exactly the same as discussed in the previous sections.
The principal components obtained trough PCA on sample covariance matrix are called
sample principal components. Moreover, all the properties previously derived for a
known covariance matrix remains true when using the sample covariance matrix to
perform PCA.

Finally, to avoid issues of sensitivity to the units of measurement developed in section[1.2}
one can also define a sample correlation matrix by taking the sample covariance matrix
of the standardized version of W :

W1 /61 Wi
we=| =
W, /6, Wy

%we choose here the unbiased estimator of the variance as we divide byn—1
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1.4. Example : Web ranking of Universities in Mathematics

In this example, we ranked 23 top world universities in mathematics using PCA.

Each university has been evaluated in 19 different domains in mathematics (analysis,
algebra, statistics, probability...), using the Google data base. The score in each domain is
simply the number of pages referencing both the considered domain and university. A
university is therefore associated with a vector in R'?, containing all those scores.
Considering this high number of criteria, a full and accurate comparison of the universi-
ties seems impossible. A solution to this issue would be to reduce the dimensionality
of the problem, by agglomerating the scores into one scale. To do so, we perform PCA
with unknown variance matrix as described in the previous section, and project the data
onto the first PC, representing 47 % of total variability. Table [2.1| presents the ranking
obtained this way.

Universities Score
1 | MIT 2.67
2 | Harvard 2.23
3 | Columbia University 0.46
4 | University College London 0.42
5 | Johns Hopkins University 0.28
6 | Cornell University 0.27
7 | Princeton University 0.20
8 | Stanford University 0.09
9 | Brown University 0.01
10 | University of Michigan -0.12
11 | Imperial College -0.16
12 | ETH -0.17
13 | California institute of technology -0.23
14 | University of Oxford -0.23
15 | EPFL -0.25
16 | Kyoto University -0.27
17 | University of Toronto -0.30
18 | Ecole normale superieure -0.30
19 | University of Cambridge -0.31
20 | University of California Los Angeles | -0.32
21 | Mcgill university -0.35
22 | The university of Melbourne -0.37
23 | University of Hong Kong -0.39

Table 2.1.: Web ranking of top universities in Mathematics

bt
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2. Nonlinear Statistics on Manifolds

A primary goal of shape theory is to describe the variability of a population of geometric
objects. An efficient tool to perform such an analysis would be the principal component
analysis, described above (see section . However, this technique is linear in essence,
as it involves various results of linear algebra. Thus, to perform PCA, the data must lie
in an Euclidean space. Unfortunately, complex representations of shape do not fulfill
such a requirement, forcing us to re-design the technique to nonlinear situations. More
precisely, we will consider the data to lie in a Riemannian manifold and present the
method of principal geodesics analysis to analyze its variability , in PCA fashion. The
first step in generalizing statistical tools to manifolds is to define the notion of mean. The
methodology presented here is based on the work of Fletcher in [5]], that we modified
and adapted to our purpose.

2.1. Means on Manifolds

As usual, to generalize means to manifolds, we will wisely borrow the knowledge we

already have about the Euclidean case.
N

Given a set of points z1,...,zn € R<, the mean 7 = % > x; is the point minimizing the
i=1

sum-of-squared Euclidean distance to the data :

N
z= argminz |2 — 2.

zeRd T4
This is a widely known result from M-Estimation theory, which generalizes this approach
by providing a whole family of means estimator depending on the considered distance.
Since the manifold may not form a linear space, we may not be able to compute additive
means. A possible solution to this issue could be the use of the above characterization as a
natural extension of the mean to nonlinear situations. However, such a definition strongly
depends on the definition of the distance, which should be consequently carefully chosen
to obtain the most natural way of extending means to manifolds.
A naive approach would consist in embedding the manifold in a greater Euclidean space
and use the inherited metric structure to define the distance. Such an approach leads to
the so-called extrinsic mean.

The Extrinsic Mean

Given an embedding ¢ : M? — RY we define :

Definition 2.1 (Extrinsic mean)

For every set of points x1, ...,zn € MP, we define the extrinsic mean as :
N
pa = axgmin 3 [[9(z) — ()| 24)
reMP i—1
with || - || the Euclidean norm on RP.




38 Nonlinear Extension of Principal Components Analysis

This is equivalent to computing the classic arithmetic mean of the embedded points
®(z;) and then project this mean onto the manifold M?”. To see this, one must define a
projection mapping 7 : RY — M? in the following way :

7(z) = argmin || ®(y) — z||?, Vz € RP,
yeMp

and then we have :

| N

prp =T (N Z‘D(ﬂ%)) )
i=1

which is indeed the projection of the arithmetic mean of the data onto the manifold.
On fig. 2.5 we present one example of computation of the extrinsic mean, using the
gradient descent algorithm to minimize the sum-of-square distance function (2.4).
However, such a definition of the mean isn’t totally satisfactory, as it requires the manifold
to be embedded in a greater Euclidean space. Such a requirement is embarrassing as the
manifold exists wether it is embedded in an Euclidean space or not, and so an extrinsic
definition of the mean depending on an additional embedding of the manifold doesn’t
seem to be the most natural definition of the mean. This concern leads us to consider a
more appropriate distance to define the mean, providing us an intrinsic definition of the
mean.

Figure 2.5.: Computing the extrinsic mean with the gradient descent algorithm. In this
example we computed the extrinsic mean g of the withe dots on the manifold M? embedded
inR3. The embedding is: ® : M? — R3, wurs ®(u) = (az, y,x - e~ (@), Starting from an
arbitrary estimate of the extrinsic mean o, we minimize the sum-of-square distance function
[2:9), by taking successive steps (in orange on the graphic) in the negative gradient direction of
the function at the current estimate of the mean. We additionally draw (dotted lines on the
graphic) the equipotential levels of the objective function (from red to blue on the graphic as the
intensity decreases).
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The Intrinsic Mean

To obtain a natural definition of means on Riemannian manifolds, one must exploit the
natural distance provided by the existence of a metric tensor on it. Such a distance is the
geodesic distance defined in which depends only on the intrinsic geometry of the
manifold.

Definition 2.2 (Intrinsic Mean)

Let MP be a pathwise connected Riemannian manifold and d(-, -) the natural geodesic
distance defined on it. Then, the intrinsic mean of a set of points z1,...,xny € MP is
defined by :

N
(@ = argmin Z d(zx, x;)%
zeMP T

Remark: Since the intrinsic mean is defined as an optimization problem, its existence and
uniqueness aren’t ensured. However, Kendall has shown that the intrinsic mean exists and is
unique if the data is well-localized (i.e. localized in a sufficiently small neighborhood).

Computing the intrinsic mean is then equivalent to minimizing the sum-of-square
distance function :

N
_ )2
f(z) = N ; d(z,z;)”, (2.5)
with z1, ..., z, € MP lying in a sufficiently small neighborhood such that existence and

unicity of the solution to the problem is guaranteed.

To solve the above optimization problem, we will use the widely-known gradient de-
scent algorithm. This algorithm, also known as the steepest descent algorithm, finds
local minimum of a given function by taking successive steps in the negative gradi-
ent direction of the function at the current point (see fig. for one application of the
gradient descent algorithm to the computation of the extrinsic mean). In our case, it’s
possible to express the gradient of the function f(x) through the logarithmic map (see
definition[2.14).

Proposition 2.1 (Expression of the gradient)

Let x € M? and z1,...,xzy € MP lie in a sufficiently small neighborhood U of x,
such that the exponential map is a diffeomorphism on it. Then, the gradient of the
sum-of-square distance function (2.5) is :

1 N
=1

with Log, (-) the logarithmic map at x.

Proof (Heuristic): We won't discuss here the detailed proof of this result provided by Karcher
in [6]], as it implies some additional background concepts from manifolds theory, that we didn’t
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introduce in this report. Thus, we only provide here some intuition about the result. Then, we
proceed heuristically in the following.

If 21, ...,z lie in a neighborhood U such that the exponential map is a diffeomorphism on it,
then we can re-express the geodesic distance through the logarithmic map (see eq. (1.7)). We
have, Vx,y € U :

d(z,y) = ||Log, (y)l|-

This gives us a new expression of f, Vo € M? :

1 N
F@) = 550 > ILog, ()]
i=1

Let p € MP be sufficiently close to x. Then, we can approximate the above expression as follows :

N N
~ L _ NZ = ST F - 72 = 73
)= 5y D Lok, &)~ Log, (@)l = 57 D 12— @il = @), 26)
with @ = Log () and z; = Log ().

Then, as T),(MP?) is linearly isomorphic to R?, we know that the arithmetic mean fi € T),(MP?) is
minimizing the right-hand side :

1 N 1N
~ . _ =~ . ~ = 2
b= ; 1 Logp(xz) =N ; 1 Ti= a;gemgn N ; 1 |z — & ||°

Then, one could exploit the approximation (2.11) and use /i as a direction from p to the minimum
of the function f. Then, to obtain V f(z), we take the oppositeﬂ of the parallel transport of i along
the minimal geodesic linking p and «.

1 N
Vi) = -V, (N ;Logpm)) 7

with V,, denoting the parallel transportﬂ of ji along the minimal geodesic linking x and p.

Finally, as p is close enough to =, we can make the following approximation :

1 1
Vi(z)=-V, <N ;Logp(xi)> ~ - ;Logw(mi).

Then, given a current estimate 1; for the extrinsic mean, the equation for updating the
mean by taking one step in the negative direction is (see also fig. [2.6):

N
-
pj+1 = Exp, (N > Log,, (M) ;
=1

“the vector i is pointing in the direction of the minimum of the scalar field f, while the gradient is pointing
to the greatest rate of increase of it, thus we must take the opposite of fi.
8for more information on parallel transport of vectors along geodesics, see affine connexion.
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Figure 2.6.: One step of the gradient descent algorithm in the computation of the intrinsic
mean. Given a current estimate yi; of the mean, the algorithm compute the gradient at this point
and runs along the geodesic with opposed velocity for T unit of time.

where 7 is the step size. Since the gradient descent algorithm only converges locally,
one must choose carefully the initial estimate y for the intrinsic mean and the step size
parameter 7. As the data is supposed to be well-localized, a reasonable choice for the
initial estimate yi is one of the data point, say ;. The choice of 7 is somewhat harder
and depends on the manifold.

In summary, the algorithm to compute the intrinsic mean is the following :

Algorithm 1: Intrinsic mean

Data: A set of points z1,...,xn € MP, a step parameter 7 and a precision e.
Result: The intrinsic mean p € M? of these points.
n =21,

while ||Ap|| > edo
N
Ap = % ;Logu(l‘i);

p=Exp, (7-Ap);
end

On the choice of 7: In some cases, it’s possible to improve the convergence of the gradient
descent algorithm by optimally choosing the step size parameter 7 at each step. We present here
an example of such a case and try to see if we could extend this approach to accelerate the
computation of the intrinsic mean.

Let 2,b € R? and A € RP*?. We want to solve the linear system Az = b, using the gradient
descent algorithm. We associate to this linear system the energy scalar field ®:

1
D(x) = QxTA:c —z7b. (2.7)

Then, the gradient descent algorithm will indeed return the solution to the linear system, as
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the minimum of the energy function (2.7) is such that: V®(z) = Az — b = 0. Given a current
estimate 27) of the solution, the equation for updating the estimate is :

20D = 20) 2 v (a),

with 7; the step size parameter, which this time isn’t chosen uniformly on j and can vary at
each step. More precisely, we wish to choose 7; optimally at each step such that the function
®(xU+); 7;) is minimized with respect to 7;. Differenciating with respect to 7; and equalling to 0
leads to :

o Vo (20N)TVD(2())
T Vo) TAVS(20))

In the same fashion, one could try to modify the algorithm I|by optimally chosing the step size
parameter 7 at each step. In this case, the energy scalar function becomes :

and the equation for updating the mean is :

N
.
i+ =Exp, (AJZ > Log,, (»’51')) :
i=1

Then, the optimal 7; is such that :

d

e (f(kj+1)) =0,

’T:’T]‘

N N
— vy (Ep (]V > ltos,, (xnn)) L [Ep (]V > ltos,, <:ci>||>]

=0.

T=T;

N
Ifwecallv =+ |Log,, (zi)|l, we obtain, using proposition:
i=1 !

1 & d
<_N ZLogExpum)(%)) * g ()
i=1 !

N
1 .
=l|-5 ZLogEXp V(ij)(xi) X Ay (15) = 0.
i=1 Hi

Thus, as geodesics are paths with constant velocity we have 4, (7;) = v # 0, and then the optimal
7; is such that :

N
1
N ZLOgExp“_(m)(xi) = Vf(Bxp, (mv)) = V(1) = 0.
i=1 J

In other words, such an optimal 7; would make you run along the geodesic with initial velocity v,
until you reach a point 1 = Exp (1jv) such that the gradient is null at this point. But then, the
algorithm[T|would converge in exactly one step ! In fact, at step j 4 1 we would have Ay =0 < ¢
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which would end the while loop. Thus, finding an optimal 7; at each step is computationally as
difficult as computing the intrinsic mean itself.

This explains our choice of an uniform step size parameter 7 in algorithm I, However, our
incapacity of finding an optimal 7 makes the choice of it difficult in general, and strongly
dependent on the considered manifold. For example, if M? is a linear space, a choice of 7 = 1 is
equivalent to linear averaging and would make the algorithm converge in one step. Finally, Buss
and Fillmore have shown in [7] that for data lying on spheres, a value of 7 = 1 is sufficient.

ot

2.2. Variance on Manifolds

Another important concept from PCA that we need to extend into manifold setting is the
concept of variance. It measures the expected dispersion of the data around the mean.
For a real-valued random variable x with mean p we have :

0 =E[(z - n)?],

which naturally extend to the covariance matrix ¥ € RP*? for a real-valued random
vector v € R :

S =E[(z—p)(z—p']. (2.8)

Obviously, this definition is not valid for general manifolds since vector space operations
do not exist for such spaces. However, this lack of linear structure can be compensated
by the existence of a metric structure on general Riemannian manifolds. Thus, one idea
might be to re-express the above expression (2.8) only in term of metric, which would
ensure a better tractability of the concept to Riemannian manifolds.

To achieve it, let’s get back to the one-dimensional case and see if it can give us some
insight about this problem. If € R is a random variable, then we can show that the
variance can be re-expressed as :

Var(z) = E[z?] — (E[z])?.
Then, for z € RP one can show that the analog formula is :
trace (Var(z)) = E [xTx] — E[z]TE[z].
As, Var(z — p) = Var(z), we obtain, if E[z] = p:

=0
trace (Var(z)) = E [(z — )" (¢ — p)] — Elz — p] "Elz — 4],
< trace (Var(z)) =E [||z — ,u||2] )
< trace (Var(z)) = E [d(z, n)*] (2.9)

with d(-, -) the Euclidean distance.

The above expression seems really interesting for our purpose, as it links the trace of the
variance with the distance function. But what exactly does eq. captures about the
dispersion of the data around the mean ? In fact, we went from a p x p covariance matrix
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describing the spread of the data around the mean to the trace of this same matrix, which
lies in R. Surely we lost some information during this process but does it still remain
enough information to legitimate the use of eq. as an inspiration for the variance
extension into the manifold setting ? To answer this question, one must remark that :

trace(Var(z)) = Z i

with ); the eigenvalues of the covariance matrix, which, in the eigenvectors basis, repre-
sent the dispersion of the data in each direction. In this sense, we can say that eq. is
capturing the total variation of the data, as the sum of the eigenvalues of Var(z).

Then, it seems legit to propose the following definition of the variance on manifolds,
which has been first proposed by Fréchet :

Definition 2.3 (Variance)

Let MP be a pathwise connected Riemannian manifold and d(-, -) the natural geodesic
distance defined on it. Then, the variance of a random variable x € MP with mean p
is defined by :

o?=E [d(x,,u)Q] .

Remark: More generally, this definition could be used to define the variance of a random
variable in any metric space.

Finally, given a set of points z1,...,xx € M? we define the sample variance of the data
as:

Definition 2.4 (Sample variance)

Let MP be a pathwise connected Riemannian manifold and d(-, -) the natural geodesic
distance defined on it. Then, for any set of points x1, . ..,xy € MP? well-localized we
define the sample variance of the data as :

1 & 1 &
2 N2 12
ot = g d(p, z;)* = N ZE:I |Log,, (x|

i=1

S

2.3. Geodesic submanifolds

The next step in generalizing PCA to manifolds is to define the notion of linear subspace.
In fact, PCA aims to optimally re-express the data as a sum of uncorrelated components,
which are one-dimensional linear subspaces. Then, we need to find analogs of those
one-dimensional linear subspaces into manifold setting.

Geodesic curves seem to be the perfect candidates for such a purpose. In fact, we
know that, as locally shortest paths between two points, they are natural extensions of
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straight lines in Euclidean spaces, and thus natural extensions of one-dimensional linear
subspaces.

Moreover, geodesics are clearly preserving the metric structure of M? provided by the
geodesic distance. This is an important feature as the principal components of PCA are
maximizing the variance, which we extended into manifold setting as the average square
distance to the intrinsic mean.

More generally, we will call a geodesic submanifold a submanifold # C MP which
preserves the Riemannian distance :

Definition 2.5 (Geodesic Submanifolds)

Let M? be a Riemannian manifold. A submanifold H of MP is said to be geodesic at
x € H if all geodesics of H passing through x are also geodesics of MP.

Then, for any points (z,y) € H x M? with H a geodesic submanifold, we will have, with
dg(-,-) the Riemannian distance on H:

dp(x,y) = min{lengths of geodesics of H linking = and y}
= min{lengths of geodesics of MP linking x and y}

= d(x,y),

and the Riemannian distance d(-, -) is indeed preserved.
Thus, geodesic submanifolds containing the intrinsic mean will be the generalization of
the linear subspaces of PCA.

o<

2.4. Projection operator

In PCA the data is orthogonally projected onto linear subspaces. We define here an
orthogonal projection operator for geodesic submanifolds and show how it may be
efficiently approximated.

Inspired from a classic result of linear algebra on orthogonal projectionf], we will define
the projection of a point z € MP onto a geodesic submanifold H C M? as the point on H
minimizing the Riemannian distance from z to any point of H :

Definition 2.6 (Projection operator)

Let MP? be a Riemannian manifold, x € M? and H C MP? a geodesic submanifold of
MP. Then, we define the projection operator  : MP — H as:

Vo € MP, my(z) = argmind(z,y)?, (2.10)
yeH

with d(-, -) the Riemannian distance.

°The Pythagorean theorem allow us to alternatively characterize the orthogonal projection of a point
x € R? onto a linear subspace V' C RP? as the point minimizing the distance from « to any point of V.
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Remark: One more time, since projection of = onto H is defined as an optimization problem,
existence and uniqueness of it are not guaranteed. However, under the supposition that the data
is well-localized, we can show that problem (2.10) admits a unique solution.

To solve the above optimization problem, one could use a gradient descent algorithm,
as previously done for the computation of the intrinsic mean. However, in this very
particular case, we can save a lot of computation time by considering the approximation
of the projection operator in the tangent plane of MP.
Let x € MP, H C MP be a geodesic submanifold and p € H. In a sufficiently small
neighborhood of z and p, we can approximate :

mg(x) = argmin d(z, y)?
yeH
= argmin |Log, (y)]*
yeH

~ argmin |Log () — Logp(y)HQ. (2.11)
yeH

Notice that Log (y) is simply a vector in T},(H) and thus we can rewrite (2.11) in terms
of tangent vectors :

Log, (mu(x)) ~ argmin |[Log (z) — vl (2.12)
veTyH(H)
But then, as 7),(H) is a linear space, we know that the solution of the right hand side of
eq. (2.12) is simply the orthogonal projection of Log () onto T,(H). Then, if vy, - - -, vy
is an orthogonal basis of T),(H ), we have the following approximation formula :

k
Log, (7 (x)) ~ » (Log,(z), v:). (2.13)
=1

S

2.5. Principal Geodesics Analysis

We are now ready to define the Pincipal Geodesics Analysis (PGA), analog of the
principal components analysis for manifolds. Given a set of points z1,--- ,zy € MP, we
wish to find two sequences of geodesic submanifolds :

¢ A sequence of nested geodesic submanifolds Hy C Hy C --- C H, = MP. Those
nested geodesic submanifolds, called principal geodesic submanifolds, will help
us to efficiently analyze the variability of the data, by looking at the projection of
the data on each of them.

e A sequence of one-dimensional geodesic submanifolds Vi,---,V,, C MP.Those
geodesic submanifolds, that we will call the principal geodesic components, must
be interpreted as an attempt to re-express the data as a sequence of "independent"
components, analogously with PCA (they are analog of principal components).
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Let z1,--- ,xy € MP be well-localized such that we can compute the intrinsic mean
of the data p. Let U C T,(MP) be a neighborhood of 0 such that projection is well-
defined (existence and unicity) for all geodesic submanifolds of Exp , (U), and such that
Exp, : U — Exp,(U) is a local diffeomorphism.

Then, the first principal geodesic submanifold 7; must be such that the variance of
the data projected on it is maximized. Using the diffeomorphism provided by the
exponential map and the fact that the projection must be well-defined, we have H; =
Exp , (span{vi} NU), and then vy € T),(M?) must be chosen such that :

v = aﬂgﬁnalxxf 5 ILog, (s (:)) %

with H = Exp (span{v} N U). We additionally impose |v|| = 1 in order to obtain
unicity of the solution. The first principal geodesic component will be defined as
Vi = Hi = Exp ,(span{v1 } NU). We postpone the interpretation of the principal geodesic
components.

Then, given the first principal geodesic submanifold H, = Exp (span{vi} N U), the
second principal geodesic submanifold H; = Exp ,(span{vi, v} N U) will be such that
the tangent vector vy € T),(MP) is maximizing the variance of the data projected onto
the bi-dimensional geodesic submanifold 1/ = Exp ,(span{vi,v} NU) :

vy = aﬂgﬁnax— Z ILog,,( (e ()2 (2.14)
v||=1

The second principal geodesic component is defined as : V2 = Exp , (span{vz} N U).
Roughly speaking, H» is the best bi-dimensional geodesic submanifold to describe the
data, in the sense that it maximizes the projected variance of the data on it, and thus the
neglected variability of the data about H> is minimized.

However, the choice of vy provided by surely isn’t unique as multiple vs can
generate the same submanifold H». Then, to obtain unicity of the definition of v, we will
additionally impose that vo € span{v; }*. Even if this choice can seem rather arbitrary,
we can legitimate it as an attempt to "de-correlate" the data, analogously with PCA. Of
course, as the correlation is meant to capture linear dependencies between two variables,
there is no proper way to generalize this notion for variables lying into a manifold, which
doesn’t even possess such a linear structure in general. However, we’d like to meet at
least a weak form of de-correlation, by retrieving a property of two linearly independent
variables X, Y € R:

Var(X +Y) = Var(X) + Var(Y).

Transposed into manifold setting, and applied to the particular case of the first two
principal geodesic components V; and V5, this property becomes :

N N
1
~ 2 Log,, (ma, (z:))* = Z ILog,, (mva ()1 + E ILog,, (mv, ()%, (215)

=1 =1
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with Hy = Exp  (span{vi, v2}NU), Vi = Exp ,(span{v1}NU), and V2 = Exp  (span{vz} N
U). If we could constrain vy in - ) to Verlfy this condition, and extend this con-
struction to all principal geodesic submanifolds, then we could say that PGA is analo-
gously with PCA, "re-expressing the data as a sum of independent components": for
every pairs of principal geodesic components V; = Exp, (span{v;} N U) and V, =
Exp ,(span{v} NU) , the variance of the data projected onto the bi-dimensional manifold
Hi, = Exp ,(span{v;, vg } N U) is equal to the sum of the variances of the data projected
respectively onto the two geodesic submanifolds V; and V;. In this sense, the principal
geodesic components are analog to the principal components in PCA (see fig.[2.7).

Let now show that v2 € span{v;}* is a sufficient condition to approximately verify
[@15). If vy € span{vy}+, then {v1, v2} is an orthonormal basis of 7, (H>), and thus we
can exploit approximation (2.13). Under this approximation we have :

N N
~ 2 [ILog,, (mr, (i) |* =~ NZ (v1,Log,, (1)) + (v2, Log,,(2:))?)

- v N
= NZ(vl,Log“ x;)) Z vg,Logu x;)) 2
v T
~ > ILog, (mv; (2)|* + + Z ILog,, (v, ()%,

=1 zl

and thus we almost fulfilled (2.15).

Therefore, taking vs € span{uv; }L to obtain unicity of the definition seems reasonable in
the light of the above discussion.

—VFirst principal geodesic component
—Second principal geodesic component

Figure 2.7.: Example of a principal geodesic analysis. The first principal geodesic submanifold
is Hy = V3, the second Hy is the manifold itself. The principal geodesic components V;, V, are
analog of the principal components in PCA.
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We can extend this construction to all principal geodesic submanifolds and principal
geodesic components to obtain :

Definition 2.7 (Principal geodesic submanifolds/components)

Let MP be a Riemannian manifold, x1,--- ,xny € MP and u be the intrinsic mean of
those points. Let U C T,,(M?) be a neighborhood of 0 such that projection is well-
defined for all geodesic submanifolds of Exp,,(U), and such that Exp,, : U — Exp,,(U)
is a local ditffeomorphism. Then, we define the p principal geodesic submanifolds /
components as :

e First principal geodesic submanifold / component :
Let vy € T,,(MP) be such that :

N

1

V1 = argmax Z ||L0g“(7TH(-Ti))H27
lvfl=1 i=1

with H = Exp,(span{v} N U).

Then, the first principal geodesic submanifold is :
Hy = Exp, (span{vi} NU),
and the first principal geodesic component is :
Vi = Exp,(span{vi} NU).

e k-th principal geodesic submanifold / component :
Let vy, € T,,(MP) be such that :

N
1
v = argmax — Log (7 (x:)|?.
A gmas 3 Log, (mi(a:)]

=1
vespan{vi, - ,vg_1}

with H = Expﬂ(span{vl, s g1, v N U0).
Then, the k-th principal geodesic submanifold is :

Hy, = Exp, (span{vy, -+, vp—1, v} NU),
and the k-th principal geodesic component is :

Vi, = Exp,,(span{uv,} N U).

Remark: As we didn’t exactly verified (2.15), the principal geodesic components are not strictly
speaking the analogs of principal components in PCA. However, we will consider in this study
that the approximation we made is good enough to make such an analogy.
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Computing PGA

Let see now how we could efficiently compute PGA. The first thing we need to notice is
that the geodesic Hj, and V}, are entirely determined as soon as we know v, € T),(M?).
thus, we will only focus on the computation of v;. Let say we already computed
U1, .., V-1 € T,(MP) and we want to compute v;. We have :

N
1
ve=  amax g Z ILog,, (ma(x:))lI?,
vespan{vy,-- ,vk_1 =1
with H = Expu(span{vl, <oy vp—1,v}NU). As {vy,- -+ ,v,_1,v} is an orthogonal basis,
we can one more time exploit the approximation (2.13). This yields :

N k—1
1
e amgmax 03 | S (Log, (e, vy)? + (Log, (5i),0)? |
llvll=1 i=1 jZl
vespan{vy,,vgp_1}+
1 N
& v argmax N E (Log,,(xi), v)". (2.16)

[[lv]l=1
vespan{vy, - ,vg_1 }+

As T),(MP) is a liner space, + SN (Log,,(zi), v)? is simply the classic sample variance of
the data Log , (x;) projected onto the one-dimensional linear subspace span{v}. Thus, we
can translate as follows : find vy, € span{vy,--- ,vy_1}* such that Var((Log,,(%:), vk))
is maximized.

But, this is simply classic principal component analysis computed on the data Log , (x;),
under the assumption that vy, - - - , v;_; are the k — 1 first principal components ! Thus,
we could show by induction that a good approximation for the v;s are the principal
components of the PCA computed on the data Log, (z;).

This leads to the following algorithm to approximately compute PGA :

Algorithm 2: PGA computation

Data: A set of points z1,...,xn € MP, with intrinsic mean .
Result: Principal directions vy, € T),(M?)
U; = Logu(:ci);

N
o 1 T,
Y= D uy;
i=1

{vi} = eigenvectors of ¥, sorted in order of decreasing eigenvalues;

G\
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3

The Shape Space of Triangles

In this chapter, we construct the shape space 33 of triads of labelled

planar points , and show that it's homeomorphic to the sphere S2.
We then apply some of the statistic tools we previously designed for
manifolds on the particular example of the shape space of triangles.

1. The shape space of triangles

Shape theory tries to capture shapes of objects by looking at the total of all information
that is invariant under translations, rotations and rescaling (invariance under similarity
transformations). Roughly speaking, we remove all superfluous information concerning
location, scale and orientation of the object, by taking the quotient of our Euclidean space
under similarity transformations. Then, we define the remaining information as the
shape of the object.

However, this cannot be achieved without a parametriza-
tion of the object, allowing us to manipulate it in a mathe-
matical way. As a perfect mathematical description of an
object is often impossible, we will only focus on special
points called landmarks : they are points of special interest
for the considered object, which are meant to provide a par-
tial geometric description of it (see fig. [3.1). This approach
has been first introduced by Kendall in 1977.

In the following developments, we will consider the simple
case (but yet interesting), where we only have three land-
marks 1, 22, z3 € R? (as in fig. . Those triads of labelled
planar points can be seen as triangles in the plane, which
legitimate our study of the shape space of triangles. The
construction we propose here is inspired both on the works
of Small [1] and Stoyan [2].

Figure 3.1.: Landmarks of
human skulls (Neanderthal
and australopithecine).

1.1. Construction of the shape space

Let 21, x2, z3 lie in R2. In the following, we will identify R? with the complex plane, so
that similarity transformations can be easily interpreted of basic operations of complex
multiplication and addition.

In language of group theory, the shape of a given triad (z1, z2, z3) € C3 is its orbit under
the symmetry group generated by :
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1. the addition of a same complex number z to each point z;. This operation corre-
sponds to a translation of the triad in the complex plane.

2. the multiplication of each point z; by the same non-null complex number w. This
operation corresponds to an homothetic transformation of the triad, or a combination
of a rotation and a dilatation.

Thus, this orbit is the following set :

O(z1, 22, 23) = {(wx1 + z,wre + 2z, wr3+2) : 2€ C, w e C*}.

Then, the space shape X3 is simply the set of all orbits of triads in C? under the symmetry
group :

25 = {O(x1,m9,23) C C: (w1, 22, 23) € C*}.

However, a more explicit description of the shape space is required for practical pur-
poses. In the following, we will try to characterize topologically and geometrically the
shape space by successively removing superfluous information about location, scale and
orientation of the landmarks.

First, the location of a triad (z1,72,23) € C? can be described through its uniquely
defined centroid 7 :

T+ 22 + 23
s

Then, any triad can be translated to a centered triad (z1 — Z, 22 — Z,23 — T) € C3 so that
((r1 — %) + (z2 — T) + (x3 — &))/3 = 0. To remove the scale information in the centered
triad, we simply divide it by its norm. The resultant vector 7 € C? is called the pre-shape
of the landmarks :

xr =

. r1—T To — T xr3 — T
- ) )
VEL Nz =22 /5L, 22 (/3L e — 2

In order for this representation to be well-defined, we must exclude the totally coincident
triads 1 = z2 = x3. Such triads are degenerate in shape and will be said to have an
indeterminate shape. For the following, we shall assume that all triads are non totally
coincident.

The pre-shape 7 lies in a constrained subset of the original Euclidean space C3, intersec-
tion of the linear subspace :

T

3
F' = {(21,29,23) € C*: > _w; =0},
i=1

with the unit sphere :

3
S5 = {(w1, 2, 23) € C*: Y [|la||* = 0}.

=1
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The intersection S = F* N S5, is a 1-dimensional sphere within the ambient Euclidean
space C? and a 3-dimensional sphere within the ambient Euclidean space R®. We shall
refer to this sphere as the pre-shape space.

Finally, we remove the remaining information about orientation by defining an equiv-
alence relationship onto the pre-shape space. Two pre-shapes «a, 8 € S? are said to be
equivalent if there exists w € C, ||w|| = 1 such that:

(a1, 02, a3) = (whi, wh2, wh3).

We'd like to say that two triads have the same shape if their pre-shape can be transformed
one into the other through a rotation, or a multiplication by a complex w. Then, those
two pre-shapes would be equivalent in the sense of the above equivalence relationship,
which leads us to define the shape of a triad as the orbit of its pre-shape under this very
same equivalence relationship :

O(1) = {(wr, wro,wr3) : w € C, ||w| =1} S5

Exploiting the identification of C* with R®, one can rewrite wr as cos(#)u + sin(6)v, with
w = (711, T21, T31, T12, T22, T32), ¥ = (—T12, —T22, —T32, 711, T21, T31) and 7; = 7j1 + i7jo, for
Jj = 1,...,3 Therefore, those orbits are non intersecting great circles partitioning the
3-dimensional sphere S3. The collection of those orbits is called the shape space Y3 :

23 ={0(r), 7 € $°}.
One can show that this set of great circles can be naturally identified with the complex
projective plane CP! = {(wry, wre,wr3) : w € C}, with (71,72, 73) € C3 distinct from
the origin. Then, a famous result of topology states that this complex projective plane is

topologically equivalent (homeomorphic) to the sphere S2. This leads to the following
theorem, introduced by Kendall in 1984 :

Theorem 1.1 (D.G. Kendall, 1984)
The shape space of triads of planar points is given by :

»3 = CP.
Moreover, we have the following identification :

D

Remark: This theorem can be extended for the shape space of k-ads of planar points : ¥5§ =
CP*~2 (see [2].

The above construction surely isn’t the most straightforward one to establish this result,
who could have been obtained much more easily. However, this construction has the
advantage to provide us a natural metric on the shape space, that we shall discuss in the
following section.

S
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1.2. The Procrustean metric onto the shape space 3

The theorem .1 provides us a topological characterization of the shape space. However,
for statistical purposes, topological considerations aren’t enough, and we need some
additional structure on the shape space. More precisely, we need to define a metric on
the shape space, so we could apply the statistic tools previously designed for non linear
situations. Rather that beginning at the local level by constructing a metric tensor, we will
exploit the geodesic metric provided on the pre-shape space and the quotient structure
of the shape space.

As we have seen previously, the pre-shape space is the 3-dimensional sphere S3. Thus, it
is a Riemannian manifold on which a natural metric is the geodesic distance d(-, -). Then,
exploiting the quotient structure of the shape space we can naturally define a metric on
IR

Definition 1.1 (Procrustean distance)

Letr,m € S3 be two pre-shapes of non-trivial planar triads. Then, the Procrustean
distance d(-, -) between the two shapes O(11), O(12) € 33 is :

d(0(m),0(r)) = inf{d(z,y) : 7 € O(m1),y € O(r2)}, (3.1)
with d(-, ) the geodesic distance defined on the pre-shape space S°.

The usual geodesic distance between two points of S? is the shorter of the two arcs of
the great circle joining the two points. This is simply the angle made between the two
vectors 71, 75 € S3. Thus, the geodesic distance from 7 to 7 is given by :

d(11,12) = arccos((71,72)),

with (-, -) the Hermitian inner product on C3: (11, 72) = R (Z?Zl T1j Ty j>. More generally,

on the sphere S3(r), the geodesic distance from 7 to 7 is :
d(i,m) = r x arccos(r (11, T2)). (3.2)

Then, if o1 and o are two shapes in E%, and 7; and 7 are two representative pre-shapes
so that o; = O(7;) for j = 1,2, we can show that the minimum in (3.1) is :

3

d(o1,03) = arccos | | Y mym5ll | - (3.3)
j=1

An interesting thing to note about is that, as the argument of arccos(-) is always non-
negative, the maximum Procrustean distance between two shapes in X3 is 5. Moreover,
it is reassuring to see that the Procrustean distance do not depend on the orientation of
the chosen representative pre-shapes 71 and 7». In fact, rotating 7| and 7, is equivalent to
multiplying each 7;,; by a complex w of the unit sphere, which can be factored out of the
summation and has modulus one, so the argument in the arccos function is unchanged.

S
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1.3. Shape coordinates

To complete our description of the shape space 33, we now wish to define a system of
coordinates on it. We could simply exploit its structure of Riemannian manifold and
use a compatible system of charts on it, to provide local coordinate systems. However,
such a parametrization isn’t convenient for graphical representations and computations.
Therefore, we wish to design a single coordinate system to parametrize the whole shape
space. Unfortunatetely, being homeomorphic to the sphere S?, the shape space cannot be
fully describe through one single system of coordinates. Thus, the system of coordinate
that we propose here is degenerate, in the sense that it fails to describe some shapes
(namely the shapes of triads such that 21 = x5 # z3).

» About the degeneracy

It's important to specify that this degeneracy forbids us to strictly speaking identify
a shape with its coordinates, and we shall always remember that the appropri-
ate setting to represent shapes is through their orbit under the symmetry group.
However, mathematically elegant as this representation might be, it has some limita-
tions, the main one being its lack of conveniency for graphical representations and
computations, which is cured, somewhat, by the description we propose here.

Let consider a triad (z1,22,73) € C? such that x; # 1z and its associated shape
O(z1,22,23) = {(wz1 + z,wzrs + z,wx3 + 2) : 2z € C, w € C*}, orbit of the triads
under the symmetry group. For any such triad, we will choose as a representant of the
equivalence class the normalized triad, image of the original triad under the similarity
transformation moving z; to —1, 2 to 1 and x3 to a complex z to determine (see fig. ).
Then, the shape of the triangle is entirely deter-
mined by the position of z, and we will call the
real and imaginary coordinates of z the Book-
stein coordinates.

To find the coordinates of z we just have to find
a, 8 € Csuch that :

ary+p =-1,
aro+ 5 =1.
Solving this linear system leads us to : a =
2/($2—I1),ﬂ: —(:El +:1:2)/(x2—m1),andthus 1 I "
2x3 — (21 + x2) Figure 3.2.: Bookstein coordinates for
z = .

three planar points. The original triad is

xro — X
S 2 ) ! ) ) _ mapped by a similarity transformation to
Such a coordinatization is not without its defi-  the standardized triad (-1,1,2) € C3.
ciencies, as the representation breaks down if © G. Small

x1 = 2 # =3, which are totally well-defined

shapes whereas their Bookstein coordinates are not. In such case, the shape of these triads
is most naturally interpreted as z = oo. Then, one attempt of curing the degeneracy of
the above representation, could be to add to it the point z = co. However, the extended
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Figure 3.3.: The stereographic projection. The stereographic projection is a 1-1 correspondence
between C U {oc} and the sphere S%(1/2). On the complex plane a sphere sits so that its
equatorial plane merges with the complex plane. For any point z € C we draw a line from the
north pole of the sphere N to z. Then, the intersection point s of this line with the sphere 5%(1/2)
is the image of z under the stereographic projection.

complex plane C U {oo} obtained this way looses its Euclidean structure, as we can put
it in 1-1 correspondence with the sphere S? through the stereographic projection.

Proposition 1.1 (Stereographic projection)

The 1-1 correspondence between the extended complex plane C U {oo} and the sphere
S?(1/2) of radius r = 1/2 is called the stereographic projection and is given by :

(3, arg(z), m — 2arctan(2[z])) if z # o0

. 2 ;z =
g.CU{OO}ﬁS(l/2)7 = s {(57070) ifz=00'

where the result is expressed in spherical coordinates (r, 0, ¢) (see fig.[3.3).

Remark: In the above proposition, we imposed the radius of the sphere to be equal to 1/2 so
the maximum geodesic distance between two points on this sphere is /2 (according to (3.2)).
This way, we can show that the geodesic distance on this sphere is equivalent with the natural
Procrustean distance on the shape space 33 defined in (3.3).

This proposition allow the representation of the shape of a triad as a point of the sphere
S2%(1/2) by the spherical coordinates :

&(z) = <;,9, ¢> ,  where 6 € [0,27] and ¢ € [0, 7].
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Moreover, we note the following useful relation :

z=¢"1(s) = %tan (W ; ¢> e

In figure we exploited this representation to find the location on the sphere of various
classes of triads.

(a) On this perspective, we can clearly (b) Isosceles triads remains isocele
see the degeneracy of the while moving on the meridian from
representation on the North pole. north to pole, only their height is

dilated or shrunk.

(c) The effect of crossing the collinear (d) Rear view.
triads great circle while moving on a
parallel line.

Figure 3.4.: Different views of the shape space of planar triads. For 400 points on the sphere,
we computed the associated Bookstein shape coordinates through the inverse of the
stereographic projection and reconstructed the associated shape. We also drawn some important
classes of shapes. The blue great circle corresponds to the great circle of collinear triads, while
the red one corresponds to one of the great circles of isosceles triads. The green line is the
equatorial line. On each view, we can see the effect of moving along a meridian line or a parallel
line. See appendixﬁ for the Matlab code used to produce these figures.
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2. Nonlinear statistics on the shape space of triangles

We finish this chapter by applying the principal geodesics analysis procedure to a sample
of shapes chosen in 33 (see fig. .
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Figure 3.5.: A sample of 49 shapes randomly chosen in ¥3.

We wish to compute a principal geodesic analysis to efficiently describe the variability of
the above sample of shapes. To do so, we apply the algorithm 2} which assumes that we
already computed the intrinsic mean p of the sample. In this case, we approximate the in-
trinsic mean p by the extrinsic mean .4, computed by the gradient descent algorithm (see
fig.[3.6a). This approximation is good enough (at 14, we have V f (1) = (0.03,0.01) ~ 0,
thus g ~ ), and allow us to save computation time.

The results of the PGA can be seen on fig. where we drawn the two principal
geodesic components (PGC) Vi and V,. The first principal geodesic Vi, which is re-
sponsible for approximately 63.2% of the total Variabilityﬂ , helps us to reduce the
dimensionality of the problem : fig. shows how we can efficiently describe the
variability of the sample by focusing only on the first principal geodesic.

Finally, we drawn on fig. the Bookstein coordinates of the shapes in C U {oo} and
the image of the PGCs by the inverse of the stereographic projection. On this figure, we
can clearly see that the principal geodesic analysis performed on the shapes in X3 is not
at all equivalent with a classic PCA performed on the Bookstein coordinates. Moreover,
we computed the mean of the 49 Bookstein coordinates of the shapes and we can see that
this mean slightly differs with the Bookstein coordinates of the intrinsic mean. Those
two remarks emphasizes the fact that classic statistical tools do not stand anymore in
nonlinear situations, forcing us to redesign them for such cases.

6\

!the way we defined the principal geodesic components legitimates such a decomposition of the variability,

see eq.



2 Nonlinear statistics on the shape space of triangles 59

o PRSI
,/ - 0 ~
/ e N
f /e W N
- NN
i IR NN
\ YRR GEIRRN N e
]
O R ‘\\\\\_Olll\gl \
L [N 1 ®
Y SN e, e
\ SR Ed ’
\ e

(a) Computing the extrinsic mean of the shapes in
Y3 with the gradient descent algorithm. This
provides a good approximation of the intrinsic mean
and saves computation time.

(b) Computing a principal geodesic analysis on
the sample of shapes. PGC1 and PGC2
respectively correspond to Vi and V>, the
principal geodesic components.

7 L —PGC1

—PGC 2
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(c) Bookstein coordinates of the shapes and the
PGCs in C U {oo} obtained by the inverse of the
stereographic projection.
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(d) Variation of the shape along the first geodesic
component.

Figure 3.6.: Principal geodesic analysis of 49 shapes randomly chosen in 3. See appendixlz
for the Matlab code used to produce these figures.



I Conclusion

In conclusion, our knowledge of Riemannian manifolds from chapter 1 allowed us to
successfully extend principal components analysis into manifold setting. While exist-
ing works on the subject mostly focus on the principal geodesics submanifolds, best
n-dimensional submanifolds to describe the data, we additionally tried to provide a gen-
eralization of principal components through principal geodesics components, allowing
us to re-express the data as a sequence of "independent” components. However, our
construction is based on the approximation (2.13), which might not be good enough
in some cases. Thus, an interesting future work would be to look for a construction
independent from such an approximation.

Moreover, the construction of the shape space of triads 3 could be pursued in greater
generality for any k-ads of planar landmarks. This would allow us to handle more
complex shape representations.

Finally, an interesting goal could be to extend new statistical tools onto manifold setting,
to allow a better analysis of objects lying in nonlinear spaces.

S
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Matlab and R code

1. Figure 2.1

FTSE<-read.table ("FTSE.csv", header=FALSE, sep=";",dec=",")
FTSE.ts<-ts (FTSE$V2, frequency=12, start=c(1986,1))
#Partitioning graphic

layout (matrix(1:4, 2, 2))

#Variance stabilization

FTSE.ts<-1log (FTSE.ts)

#Removing trend

#Using linear regression (detrended):
FTSE.1Im<-1Im(FTSE.ts~time (FTSE.ts))

abline (FTSE.1m)
FTSE.notrend<-FTSE.ts-fitted (FTSE.1lm)

plot.ts (FTSE.notrend,main="Detrended (linear reqg)")
abline (0, 0)

#Cyclic behavior (seasonality)

#Periodogram

I=abs (fft (FTSE.notrend))"2/length (FTSE.notrend)
P=(4/length (FTSE.notrend))+I[1l: (length (FTSE.notrend) /2) ]
f=0: (length (FTSE.notrend) /2-1) /length (FTSE.notrend)
plot (£,P,type="1", xlab="Frequency",

+ ylab="Scaled periodogram")
P.freg<-data.frame (f,P)

P.freg<-P.freq[ order (-P.freqgql,2]), 1

#n linear regression

plot (1:length (FTSE.notrend),FTSE.notrend,
+main="Detrended FTSE", type="1")

cosine<-cos (2xpixP.freq[l,1l]*x1l:1length(FTSE.notrend))
sine<-sin (2+xpixP.freq[l,1l]1*1l:1length(FTSE.notrend))
phase.lm<-1m(FTSE.notrend~0+cosine+sine)
summary.phase<—-summary (phase.lm)

phi=atan (-summary.phase$coefficients([2,1]
+/summary.phase$Scoefficients[1,1]) +pi
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lines(l:length(FTSE.notrend),

sgrt (P.freqll,2]) xcos (2xpi*P.freqll,1l]x1l:1length (FTSE.notrend)
+phi),col="red")

FTSE.notrend.lm<-FTSE.notrend

sum=sqgrt (P.freqg[l,2]) *

+ cos (2xpixP.freqgll,l]*x1l:1length(FTSE.notrend) +phi)
color<-c("blue", "green", "purple", "orange", "red", "blue",
"green", "purple")

for (1 in 2:((length(FTSE.notrend)-1)/2)) {
FTSE.notrend.lm<-FTSE.notrend.lm-fitted (phase.lm)
cosine<-cos (2+xpixP.freq[i,1]1*1l:1length (FTSE.notrend))
sine<-sin (2+pixP.freqg[i,l]*1l:1length(FTSE.notrend))

phase.lm<-1m(FTSE.notrend.lm~0+cosine+sine)

summary .phase<-summary (phase.lm)

phi=2xatan (summary.phase$Scoefficients[2,1]/
(summary.phase$coefficients([1,1]+

sgrt (summary.phase$Scoefficients[1l,1]"2+
summary.phase$coefficients[2,1]72)))

x=sqgrt (summary.phaseS$Scoefficients[1,1] "2+
summary.phase$coefficients([2,1]72)

cos (2xpixP.freqf[i,1]* (1:1length (FTSE.notrend) ) +phi)
sum=sum+x

if (i<9) {lines (length (FTSE.notrend) :1,sum,col=color[i-1])}
if (1i==9) {lines(length (FTSE.notrend) :1,sum,col="red", lwd=2)
}

}

}

2. Figures|2.2 and 2.4

mu<-c (0, 0)

sigma<-matrix(c(7,3,3,7),2,2)
draws<-mvrnorm (n=300, mu, sigma)

plot (draws, asp=1,pch=20, xlab="x",ylab="y")

ellipse (mu, sigma, 3,col="blue")
ellipse(mu, sigma, 2, col="green")

ellipse (mu, sigma,1l,col="red")

rm(spectral)

spectral<-eigen (sigma, symmetric=TRUE)
pentel=spectralS$Svectors([2,1]/spectralSvectors[l, 1]
pente2=spectral$vectors([2,2]/spectral$vectors[l, 2]
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abline (0, pentel, 1lwd=2, 1ty="dashed", col="red")

abline (0, pente2, 1lwd=2, lty="dashed", col="blue")

legend ("topright" ,c("c=1","c=2","c=3","1st PC","2d PC"),
lty=c(1,1,1,2,2),col=c("red", "green", "blue", "red", "blue"),
lwd=c(2,2,2,2,2),bty="n")

3. Example 1.4

universities_scores<-read.table ("ranking.csv", header=TRUE, sep=";")
universities.names<—-as.vector (universities_scores$X)
universities_scores<-read.table ("ranking2.csv", header=TRUE, sep=";")
row.names (universities_scores)<-universities.names
universities_scores=t (universities_scores)
#funiversities_scores=log(universities_scores)

#Centering the data

for (i in 1:19) {universities_scores[i, ]<-universities_scores[i, ]
-mean (universities_scores[i, ])}

#Re-weighting the data

for (1 in 1:19) {universities_scores[i, ]<-universities_scores[i, ]/
sqrt (var (universities_scores[i, ])) }

#Building sample cov matrix
#sample_cov<—(1/(27))+ (as.matrix (universities_scores)
sample_cov<-cor (t (universities_scores))
spectral_decomp<-eigen (sample_cov, symmetric=TRUE)

spectral_decomp
spectral_decompS$values|[1l]/sum(spectral_decompS$Svalues)
PC_scores<-c ()

spectral_decomp$vectors<-—-spectral_decomp$Svectors

for (1 in 1:29) {

sum=0

for (3 in 1:19) { sum=sum + universities_scores[],1]x*
spectral_decomp$vectors[j,1] }

PC_scores[i]<-sum/sum (spectral_decompS$Svectors[,1])

}

Ranking<-data.frame (Universities=universities.names, Score=PC_scores)
#row.names (Ranking) <-universities.names

Ranking<-Ranking[ order (-Rankingl[,2]), ]

#2d PC

PC_scores_2<-c ()

for (i in 1:28) {
sum=0
for (j in 1:19) { sum=sum + universities_scores[],i]~*
spectral_decomp$Svectors[],2] }
PC_scores_2[1]<-sum/sum(spectral_decompS$vectors[,2])
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}

plot (PC_scores,PC_scores_2,pch=16)

abline (h=0)

abline (v=0)
Partial_Sigma=matrix (c (spectral_decompS$Svalues[1],0,0,
spectral_decompS$values[2]),2,2)
ellipse(c(0,0),Partial_Sigma,1l,col="red")
ellipse(c(0,0),Partial_Sigma,2,col="green")
ellipse(c(0,0),Partial_Sigma, 3,col="blue")

(spectral_decompS$Svalues|[l]+spectral_decompSvalues[2])/
sum (spectral_decompS$values)

Cumulative_PC_scores<- (spectral_decompS$Svalues[1l]/

(spectral_decomps$values[l]+spectral_decomp$values[2])) *
PC_scores+ (spectral_decomp$values[2]/ (spectral_decomp$Svalues[1]+
spectral_decompS$values[2])) *PC_scores_2

rm (Ranking)

Ranking<-data.frame (Universities=universities.names,
Score=Cumulative_PC_scores)

Ranking<-Ranking[ order (-Ranking[,2]), ]

4. Figure|2.5

[x,y] = meshgrid([-2:.2:21);
Z = x.xexp(-x.%2-y."2);
syms u v
NORM= (u—x) . "2+ (v-y) . "2+ (u.* exp(-u.”"2-v."2)-2) ."2;
g=(1/ (2*length (NORM) ) ) *sum (sum (NORM, 1), 2) ;
grad_g=gradient (g, [u,Vv]);
colormap (gray)
surf (x,vy,2,’EdgeColor’,’none’)
hold on
plot3(x,vy,%,’0o’, " MarkerEdgeColor’, "k’ ,"MarkerFaceColor’,’'w’,
"MarkerSize’,5);
mu=[x(340),vy(340)1;
MU_1(1)=mu(l);
MU_2 (1)=mu(2);
tau=0.002;
for 1i=1:400
evaluate=subs (grad_g, [u,v], [mu(l), mu(2)1]1);
r=—evaluate;
mu=mut+taux*r’;
MU_1 (i+1)=mu (1) ;
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MU_2 (i+1)=mu(2) ;
end
MU_Z= MU_1.*exp (-MU_1."2-MU_2."2);
plot3(MU_1,MU_2,MU_Z,"Color’,[1 .5 0],’Linewidth’, 3);
plot3(MU_1(1),MU_2(1),MU_Z(1l),’0o’, " MarkerEdgeColor’,"k’,
"MarkerFaceColor’,’w’,’MarkerSize’,10)
plot3(MU_1 (length(MU_1)),MU_2 (length(MU_1)),MU_Z (length (MU_Z)),
"o’ ,"MarkerEdgeColor’, [1 .5 0],’MarkerFaceColor’,’w’,’MarkerSize’

Color=jet (11);
t=linspace (0, 2xpi, 30);
j=0;
for i=0:0.2:2
X=ixcos (t);
Y=ixsin(t);
Z_cont=X.*exp (-X."2-Y."2);
J=3+1;
plot3(X,Y,Z_cont,’”--","’Color’,Color(j,1:3)," " LineWidth’,1);
end

axis vis3d

axis auto

axis off
camlight (" headlight’);
lighting gouraud;

set (gcf,’Color’, w’)

5. Figure 2.7

[x,y] = meshgrid([-3:.1:31);

Z = sin(2*x) .xsin(y) .xsqrt (x."2+y."2);
surf (x,y, 2, " EdgeColor’,’none’)
hold on

%$shading flat
colormap (gray)

mu = [0;07];
Sigma = [0.3 .1; .2 0.3]; R = chol(Sigma);

for 1=1:100
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r = mu + R+randn(2,1);
M(:,1)=r;

plot3(r(l),r(2),sin(2xr (1)) .xsin(r(2)) .xsqrt (r(l) ."2+r(2) .%2),"0o’,

"MarkerEdgeColor’,’k’,"MarkerFaceColor’,’'w’, " MarkerSize’, 8);
end

for i=1:2
M(i, :)=M(i,:)— mean(M(i, :));
end

SIGMA=(1/99) xMxM’;

[V,D]=eig (SIGMA) ;
tl=linspace(-3,3,100);
t2=linspace(-1.5,1.5,100);

plot3(tl,(V(Z,l)/V(l,l)).*tl,sin(2*tl) *sin ((V(2,1)/V(1,1)) .*tl)
Lxsgrt (tl.72+ ((V(2,1)/V(1,1)).xtl)."2), -z’ 'Llnerdth' 3);
plot3(t2,(V(2,2)/V(l,2)).*t2,sin(2*t2) *Sln(( (2,2)/V(1,2)) .%t2)
Lxsgro (£2.7°2+((V(2,2)/V(1,2)) .*xt2) .72),"-b’, ’LlneW1dth’ 3);

14

%$axis vis3d

axis off
camlight (" headlight’);
lighting phong;

set (gcf, "Coloxr’,’'w’)

6. Figure 3.4

[x,v,z]=sphere(100);
colormap (gray)
surf ((1/2)+*x, (1/2)*y, (1/2) *z,’EdgeColor’, ' none’)
hold on
axis vis3d
axis auto
axis off
%$camlight (" headlight’);
%$lighting gouraud;
set (gcft,"Coloxr’, " w’)

[x1,y1,z1]=sphere(20);
surf ((1/2+0.023) xx1, (1/2+40.023) xyl, (1/2+0.023) xz1,’EdgeColor’, [1
"FaceColor’,’'none’,’LineWidth’,1,’'Linestyle’,’~")

.5

01,
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k=0;
ratio=1/1

2;

plot3((1/2+0.023)*x1(:,1), (1/2+0.023)xy1(:,1),
(1/2+0.023)*z1(:,1),"-b’,’LineWidth’, 3)
plot3((1/2+0.023) *x1(:,11), (1/2+0.023)xy1(:,11),
(1/2+0.023)*z1(:,11),’-b’,’LineWidth’, 3)
plot3((1/2+0.023)*x1(:,6), (1/2+0.023)xyl(:,6),
(1/2+0.023) *z1(:,6), " -r",’LineWidth’, 3)
plot3((1/2+0.023)*x1(:,16), (1/2+0.023)xyl(:,16),
(1/2+0.023)*z1(:,16),’-r’,’LineWidth’, 3)
t=linspace (0, 2xpi, 100);

el=(1/2+0.023) xcos (t);

e2=(1/2+40.023) *sin(t);

e3=zeros (length(t));
plot3(el,e2,e3,’-g’,"LineWidth’, 3)

for j=l:size(x1,2)

for i=l:size(x1,1)
k=k+1;
r=1;
phi= acos(zl (i, J)/r);
if y1(i,j)>=0
theta=acos (x1 (i, j)/sqgrt (x1 (i, J)"2+y1l (i, 3)"2));
else
theta=2+pi-acos(x1l(i, j)/sgrt(x1(i, ) 2+yl (i, 3)"2));
end
zx=(1/2)*tan ((pi-phi) /2) *cos (theta) ;
zy=(1/2)*tan ((pi-phi)/2)+sin(theta);

%¥new basis

X=-sin(theta)*[1;0;0]+cos (theta)~[0;1;07;
Z2=[x1(1,3);y1(i,3);21(1,3)1;

Z=7/norm(Z) ;

Y=cross (X, Z2) ;

triad_x1=(1/240.023)*[x1(i,J);vy1(i,3);2z1(i,])]l-ratioxX;
triad_x2=(1/2+0.023) % [x1(i,J);v1(i,3);21(1i,])]l+ratiox*X;

triad_x3=(1/2+0.023)*[x1(i,3);y1(i,3);2z1(i,3) 1+
ratioxzxxX+ratioxzyx*Y;

%$subplot (11,11, k)
% fill(triad_new(l,:),triad_new(2,:),’'green’);

fill3([triad_x1(1),triad_x2(1),triad_x3(1)], [triad_x1(2),
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triad_x2(2),triad_x3(2)], [triad_x1(3),triad_x2(3),
triad_x3(3)1,'yellow’);

end
end

7. Figures|3.5/and 3.6

figure (1)
[x,y,2z]=sphere (100);
colormap (gray)
surf ((1/2)*x, (1/2) *y, (1/2) 2z, "EdgeColor’,’'none’)
hold on
axis vis3d
axis auto
axis off
$camlight (" headlight’);
%$lighting gouraud;
set (gcf,"Coloxr’,’'w’)

mu = [1/4;1/6]1;
Sigma = [0.009 .0003; .0006 0.009]; R = chol (Sigma);
Color=hsv(49);

for i=1:49
r = mu + Rxrandn(2,1);

if r(1l)"24r(2)"2<1/4
M(:,1)=[r;sqgrt (1/4-r(1)"2-r(2)"2)1;

plot3(r(l),r(2),sqrt(1/4-r(1)"2-r(2)"2+0.01),"0o’, ' MarkerEdgeColor’
"k’ ,’MarkerFaceColor’,Color (i, :),"MarkerSize’, 8);

end

end

%Visualization

figure (2)

set (gcft,"Coloxr’, " w’)

for 3=1:49
$k=mod (3, 5)+1;
r=1/2;
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phi= acos (M(3, ]J)/r);

if M(2,5)>=0

theta=acos (M(1, j) /sgrt (M(1, J)"2+M (2, J)"2));

else
theta=2+pi-acos (M(1, j)/sgrt (M(1, J)"2+M(2, J)"2));
end

zx=(1/2)*tan ((pi-phi) /2) *cos (theta) ;
zy=(1/2)*tan ((pi-phi)/2)+sin(theta);

subplot (7,7, 3)
£i11([-1,1,2x],10,0,zy],Color(3,:));

axis square
axis off

end
figure (4)
set (gcf,"Coloxr’,’"w’)
sumx=0;
sumy=0;
Max_x=0;
Min_x=0;
Max_y=0;
Min_y=0;
for 3=1:49
%k=mod (3, 5)+1;
r=1/2;

phi= acos(M(3,3)/r);

if M(2,3)>=0

theta=acos (M(1, J)/sgrt (M(1, J) "2+M(2, ) "2));

else
theta=2+pi-acos (M (1, j)/sqrt (M (1, J) " 2+M(2,3)"2));
end

zx=(1/2)*tan ((pi-phi) /2) xcos (theta);
zy=(1/2)*tan ((pi-phi)/2)+sin(theta);
SUMX=SUMX+zX;

sumy=sumy+zy;

plot (zx,zy,’o’, " MarkerEdgeColor’,

"k’ ,"MarkerFaceColor’,Color(j,:), " MarkerSize’, 8);
hold on

axis square

Max_x=max (Max_x, zx) ;

Min_x=min (Min_x, zX) ;
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Max_y=max (Max_vy, zy) ;
Min_y=min (Min_y, zvy);

end

sumx=(1/49) xsumx;

sumy=(1/49) xsumy;

plot (sumx, sumy, "o’ ,’MarkerEdgeColor’,

"k’ ,’MarkerFaceColor’,’w’, " MarkerSize’,15);

$Extrinsic mean

syms u v
NORM= (u-M (1, :)) . "2+ (v-M(2, :)) .2+ (sqrt (1/4-u.""2-v."2)-M(3,:)) ."2;
g=(1/ (2*length (NORM) ) ) *sum (sum (NORM, 1), 2) ;
grad_g=gradient (g, [u,Vv]);

figure (6)
colormap (gray)

surf ((1/2)*x, (1/2)*y, (1/2) *z, "EdgeColor’,’'none’)
hold on
axis vis3d
axis auto
axis off

set (gcf,"Coloxr’,’'w’)

for i=1:49
plot3(M(1,1),M(2,1),sgrt(1/4-M(1,1)"2-M(2,1)"2+0.02),"0",
"MarkerEdgeColor’,’'b’,"MarkerFaceColor’,Color (i, :), " MarkerSize’, 8);
end

[C,I]=max (-M(2,:));

MU_1(1)=M(1,10);
MU_2 (1)=M(2,10);
mu=[M(1,10);M(2,10)1];
tau=0.02;
for i=1:100
evaluate=subs (grad_g, [u,v], [mu(l), mu(2)]);
r=—evaluate;
mu=muttaux*r;
MU_1 (i+1)=mu (1) ;
MU_2 (i+1)=mu (2) ;
end
MU_Z= sqgrt (1/4-MU_1.72-MU_2."2+0.02);
plot3(MU_1,MU_2,MU_Z,"Color’,[1 .5 0],’Linewidth’, 3);
plot3(MU_1(1),MU_2(1),MU_Z(1),"’0o’, " MarkerEdgeColor’,"k’,
"MarkerFaceColor’,’w’,’MarkerSize’,15)
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plot3 (MU_1(length(MU_1)),MU_2 (length(MU_1)),MU_Z (length(MU_Z)),"0o’,
"MarkerEdgeColor’, [1 .5 0],’MarkerFaceColor’,’w’,’MarkerSize’,15)
Color2=jet (11);
t=linspace (0, 2xpi, 30);
J=0;
for i=0:0.02:0.2
X=i*cos (t)+mu (1) ;
Y=ixsin (t)+mu(2);
Z_cont=sqrt (1/4-X."2-Y."2+0.02);
J=3+1;
plot3(X,Y,Z_cont,’”--","’Color’,Color2(j,:),’'Linewidth’,2);
end

figure (1)
plot3(mu(l),mu(2),sqrt(l/4-mu(l)*2-mu(2)"2+0.01),’0o’,
"MarkerEdgeColor’, [1 .5 0],’MarkerFaceColor’,’w’,’MarkerSize’,15)

%New basis
r=1/2;
phi= acos (sqrt(1/4-mu(l)"2-mu(2)"2)/r);
if mu(2)>=0
theta=acos (mu(l) /sgrt (mu(l) ~"2+mu(2)"2));

else
theta=2+pi-acos (mu(l)/sqgrt (mu(l) 24+mu(2)"2));
end
figure (4)

zx=(1/2)*tan ((pi-phi) /2) xcos (theta);
zy=(1/2)*tan ((pi-phi) /2) *sin(theta);
plot (zx, zy,’o’,"MarkerEdgeColor’, [1 .5 0],'MarkerFaceColor’,
"w’ ,’MarkerSize’,15);

er=cos (theta)*[1;0;0]+sin(theta)+[0;1;017;
etheta=-sin(theta)*[1;0;0]+cos (theta)*[0;1;01];
P=[er etheta [0;0;1]71;
Rot=[cos (-phi) 0 sin(-phi); 0 1 0; -sin(-phi) 0 cos(-phi)];
figure (3)
[x,V,z]=sphere (100);
colormap (gray)
surf ((1/2)#*x, (1/2)*y, (1/2) xz,’EdgeColor’, " none’)
hold on
axis vis3d
axis auto
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axis off
%$camlight (" headlight’);
%$lighting gouraud;
set (gcft,"Coloxr’, " w’)
for i=1:49
N(:,i)=P*Rot*P’ +M(:,1);

plot3(N(1,i),N(2,i),N(3,1i),’0o’,"MarkerEdgeColor’,’k’,
"MarkerFaceColor’,Color (i, :), " MarkerSize’,8);

end

for i=1:2
N(i,:)=N(i,:)- mean(N(i, :));
end

SIGMA= (1/48) *N(1:2, :)*N(1:2,:)"';

[V,D]=eig (SIGMA) ;
[V,D]=sortem(V,D);

tl=linspace(-1/4,1/4,100);
t2=linspace(-1/4,1/4,100);

plot3(tl, (V(2,1)/V(1,1)).xtl,

sgqrt (1/4-t1.72-((V(2,1)/V(1,1)).%tl)
plot3(t2, (V(2,2)/V(1,2)).xt2,

sgqrt (1/4-t1.72-((V(2,2)/V(1,2)) .%t2)
figure (1)

PGAl=[tl’, (V(2,1)/V(1,1)).xtl1",

sqrt (1/4-t1’ .72-((V(2,1)/

PGA2=[t2', (V(2,2)/V(1,2)) .xt2",

sgqrt (1/4-tl" ."2-((V(2,2)/

.*2),’-r’",’LineWidth’, 3);

."2),"-b’","LineWidth’, 3);

V(1,1)+0.01).xt1l").%2)1;

V(1,2)+0.01) .xt2").72)]1;

Rot2=[cos (phi) 0 sin(phi); 0 1 0; -sin(phi) 0 cos(phi)];

for i=l:length(tl)

PGALl (i, :)=P+xRot2+P’ xPGALl (i, :)';
PGA2 (1, :)=PxRot2xP’' xPGA2 (1, :)';
end

plot3(PGA1(:,1),PGA1(:,2),PGAl(:,3), " -r’,’LineWidth’,3);
plot3(PGA2(:,1),PGA2(:,2),PGA2(:,3), " -b’",’LineWidth’, 3);
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figure (4)
for j=l:size (PGA1l,1)

r=1/2;

phi= acos (PGA1(3,3)/r);

if PGAl(j,2)>=0

theta=acos (PGA1 (j, 1) /sqgrt (PGALl (J,1) "2+PGA1 (j,2)"2));

else
theta=2*pi-acos (PGAL (j,1)/sqrt (PGAL (j, 1) “2+PGAL (J,2)"2));
end

Zx (j)=(1/2)*tan ((pi-phi) /2) xcos (theta);

Zy (3)=(1/2)+tan ((pi-phi) /2) *sin (theta);

end

plot (Zx, 2y, '’ -xr’,’LineWidth’,2);
x1lim([Min_x-0.3;Max_x+0.31);
ylim([Min_y-0.3;Max_y+0.3]);

hold on
axis square
for j=l:size(PGAZ2,1)

r=1/2;

phi= acos (PGA2(3,3)/r);

if PGA2(7,2)>=0

theta=acos (PGA2 (j, 1) /sqrt (PGA2 (J,1) "24+PGA2(],2)"2));

else
theta=2+pi-acos (PGA2 (j, 1) /sqgrt (PGA2 (3, 1) "24+4PGA2 (], 2)"2));
end

Zx1(J)=(1/2)+tan ((pi-phi) /2) *cos (theta) ;
Zyl(3)=(1/2)+tan((pi-phi) /2) *sin(theta);

end
plot (zx1,2yl,’-b’,’LineWidth’, 2);

figure (5)
plot (Zx,Z2y,’-xr’,’'LineWidth’,2);
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x1lim([Min_x-0.3;Max_x+0.3]);
ylim([Min_y-0.3;Max_y+0.3]1);
hold on
axis square
axis on
set (gcf,’Color’,"w’)

for j=1:5:1length (Zx)/2

phi= acos (PGAl(]j,3)/r);

if PGAl (3, 2)>=0

theta=acos (PGALl (J,1) /sqrt (PGALl (j,1) "2+PGAl (J,2)"2));

else
theta=2+pi-acos (PGALl (j,1)/sqgrt (PGALl (J, 1) "2+PGALl (J,2)"2));
end

zx=(1/2)*tan ((pi-phi) /2) xcos (theta) ;
zy=(1/2)*tan ((pi-phi) /2) *sin(theta);

£il11([-1/6+2x(3),1/6+2x(3), (1/6) vzx+Zx(3) 1,
(+2y (3),+2y (3), (1/6) xzy+Zy (J) ],Color (mod (j, 49)+1,:));
axis square

end
for j=length(Zx)/2+5:10:1ength (Zx)

phi= acos (PGA1(3,3)/r);

if PGAlL(j,2)>=0

theta=acos (PGA1l (j, 1) /sqrt (PGALl (j,1) "24+4PGAL (J,2)"2));

else
theta=2+pi-acos (PGALl (j,1)/sqgrt (PGALl (j, 1) "2+PGAL (]J,2)"2));
end

zx=(1/2)+tan ((pi-phi) /2) xcos (theta);

zy=(1/2)*tan ((pi-phi)/2)*sin (theta);

fi11([-1/6+2x(J),1/6+Zx (), (1/6) »zx+2x(]) ],
[+2y (3),+2y (3), (1/6) xzy+Zy (3) ], Color (mod (], 49)+1,:));

axis square

end
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