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Introduction to Shape Theory

We’d like to propose a mathematical definition
of shape of objects and design statistical
tools to analyze those shapes.

Definition

The shape of an object can be define as the total
of all information that is invariant under
translations, rotations and rescaling (invariance
under similarity transformations).

Roughly speaking, we remove all information
concerning location, scale and orientation. The
obtained space is generally a differential
manifold, called space of shapes.
Manifolds can have non null curvature, so we
have to re-design all our classic linear statistics
tools (means, PCA...).

In practice (Kendall school)

In shape theory we focus on
special points called landmarks :
they are points of special
interest for the considered
object, which are meant to
provide a partial geometric
description of it (see fig. 1).

Figure: Landmarks of human skulls
(Neanderthal and australopithecine).
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Topological and differential manifolds

Let Mp be a topological space and {Uα}α∈A s.t ∪αUα = Mp . We also assume the
existence of functions :

cα : Uα → Rp,

that are all homeomorphisms onto the open subsets cα(Uα) ⊂ Rp .

Definition (Charts)

We say that the functions cα are charts on Mp

provided that :

cβ ◦ c−1
α : cα(Uα ∩ Uβ)→ cβ(Uα ∩ Uβ), (1)

is a homeomorphism from cα(Uα ∩ Uβ) to
cβ(Uα ∩ Uβ), ∀α, β ∈ A.

Definition (Atlas and topological manifold)

The collection {(Uα, cα)}α∈A forms an atlas on
Mp . The set Mp together with its atlas is called a
topological manifold of dimension p. If cβ ◦ c−1

α

are Cr -diffeormorphisms then Mp is said to be a
Cr -differential manifold.

Figure: Charts provide local coordinate systems
on Mp . The patching criterion eq. (1) ensures

the compatibility of two coordinate systems on a
region of overlapping.
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Tangent vectors and tangent spaces

We define tangent vectors through equivalence classes of paths onto the manifold : two
paths x(t), y(t) passing through x0 ∈ Mp at t = 0 are said to be equivalent if they are
tangent in x0.

Definition (Tangent vectors)

We define the tangent vector ẋ to the path x(t) at
the point x0 = x(0) to be the equivalence class
of x(t) under the above equivalence relationship.

Definition (Tangent space)

The set of all tangent vectors to the manifold Mp

at x0 is called tangent space at x0 and is denoted
by Tx0 (Mp).

Figure: Tangent vector ẋ at x0 , seen as the
equivalence class of all smooth paths

tangent in x0.

We can provide a linear structure to our tangent space, by defining an addition and
scalar multiplication on the above tangent vectors. We will exploit this linear structure to
re-design our classic statistic tools for manifolds.
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Geodesics

Provided the existence of a metric tensor ∀x ∈ Mp , one can define an inner product on
Tx (Mp). This metric structure on the tangent space allow us to define the length of a
path x(t):

L =

∫ t1

t0
‖ẋ(t)‖dt .

Definition (Geodesics)

A geodesic, is a smooth path x(t) in a manifold
which is locally the shortest.

Euler-Lagrange equations (characterization
of geodesics) :

∂F
∂γi

(t , γi , γ̇i )−
d
dt

(
∂F
∂γ̇i

(t , γi , γ̇i )

)
= 0, (2)

with F (t , γi , γ̇i ) = ‖γ̇(t)‖.

Figure: Example of a geodesic path on a
torus.

The above equation can be re-written as a second order ODE, ensuring existence and
unicity of geodesics with prescribed initial conditions (Picard-Lindelöf theorem).
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The Exponential Map

We now wish to define a map from the tangent plane to the manifold.

Definition (Exponential Map)

Let Mp be a Riemannian manifold, x ∈ Mp , v ∈ Tx (Mp) and γv (t) the unique geodesic
such that γ(0) = x and γ̇(0) = v . Then, we define the exponential map as :

Expx (v) = γv (1).

We have : Expx (tv) = γtv (1) = γv (t)

The exponential map is a local
diffeomorphism between Tx (Mp) and
Mp (local inverse theorem).

In the injectivity radius , we call the
inverse of the exponential map the
logarithmic map that we shall note Logx .

Computing geodesic distance :

d(x ,Expx (v)) = ‖v‖ ⇒ d(x , y) = ‖Logx (y)‖ Figure: The exponential and logarithm maps
between a differential manifold ant the tangent

plane at one point.
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Principal Components Analysis

PCA is a purely descriptive technique, aiming to re-express the data in an optimal way,
as a sum of "independent" variables (same philosophy as Fourier Analysis). This allow to
perform efficient exploratory analysis on large data sets, by reducing dimensionality.

Definition (PCA)

Let X ∈ Rp a random vector with known
covariance matrix Σ. We define the p
principal components as :

First principal component :

w1 = argmax
‖w‖=1

Var(wT X).

k -th principal component,
2 ≤ k ≤ p :

wk = argmax
‖w‖=1

Var(wT X̂k ),

with X̂k = X −
k−1∑
i=1

(wi
T X)wi .

Figure: Fourier decomposition of the FTSE from 1986 to nowadays.
As PCA, Fourier Analysis aims to re-express the data, but this time as

sum of independents trigonometric functions.
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PCA and Spectral Decomposition

We can show that the obtain wi are the eigenvectors of Σ. De-correlating the data is the
same as diagonalizing Σ.

Proposition (Ellipsoids and
Principal Components)

Let X and Σ as above. Consider
the family of p-dimensional
ellipsoids :

X T Σ−1X = c, (3)

with c a constant. Then, the
principal components define the
directions of the principal axes
of these ellipsoids.

The ellipsoids can be used as a
measurement of the dispersion
in term of variance of the data
around the mean.

(a) (b)

(c) (d)

Figure: Dispersion ellipsoids for a bivariate normal distribution with mean

µ =

(
0
0

)
and covariance matrix Σ =

(
σ1

2 σ1σ2ρ

σ1σ2ρ σ2
2

)
.
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PCA sensitivity

PCA can be very sensitive to units of measurement, so it could be wise to use the
correlation matrix (covariance matrix of the standardized version of X ) instead of
the covariance matrix.

(a) x measured in centimeters (b) x measured in millimeters

Figure: Sensitivity of the PCs and the dispersion ellipsoids to the units of measurement.

When we don’t know Σ, we must use a proxy of it : the sample covariance matrix
(or sample correlation matrix to avoid sensibility issues).
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Means on Manifolds

Given x1, . . . , xN ∈ Rd , the mean x̄ = 1
N

N∑
i=1

xi is minimizing : x̄ = argmin
x∈Rd

N∑
i=1
‖x − xi‖2.

This inspires the following extension :

Definition (Extrinsic mean )

For every x1, . . . , xN ∈ Mp , we define
the extrinsic mean as :

µΦ = argmin
x∈Mp

N∑
i=1

‖Φ(x)− Φ(xi )‖2,

with ‖ · ‖ the Euclidean norm on Rp , and
Φ : Mp → Rd an embedding.

Can be computed with a gradient
descent algorithm.

Computationally convenient but
extrinsic definition (requires an
embedding).

Figure: Computing the extrinsic mean with the gradient
descent algorithm. In this example we computed the extrinsic

mean µΦ of the withe dots on the manifold M2 embedded in R3 .
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Means on Manifolds (continues)

We prefer the more natural definition :

Definition (Intrinsic Mean)

Let Mp be a Riemannian manifold and d(·, ·) the geodesic distance. Then, the intrinsic
mean of x1, . . . , xN ∈ Mp is :

µ = argmin
x∈Mp

N∑
i=1

d(x , xi )
2.

Existence and unicity if data well-localized.

Can be computed by the gradient descent

algorithm : ∇f (x) = − 1
N

N∑
i=1

Logx (xi ),

Update equation :

µj+1 = Expµj

(
τ

N

N∑
i=1

Logµj
(xi )

)
,

No optimal step size τ :

∇f (Expµj
(τj v)) = ∇f (µj+1) = 0.

Figure: One step of the gradient descent algorithm in
the computation of the intrinsic mean.
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Variance, Geodesics submanifolds and Projection operator

Variance :
For x ∈ Rp one can show that :

trace (Var(x)) = E
[
xT x

]
− E[x ]TE[x ].

which may be rewritten as :

trace (Var(x)) = E
[
d(x , µ)2

]
.

This inspires the natural definition :

Definition (Variance)

Let d(·, ·) the geodesic distance on Mp .
Then, the variance of a r.v. x ∈ Mp with
mean µ is :

σ2 = E
[
d(x , µ)2

]
.

Sample variance of x1, . . . , xN ∈ Mp :

σ2 = 1
N

N∑
i=1

d(µ, xi )
2 = 1

N

N∑
i=1
‖Logµ(xi )‖2.

Geodesic submanifolds :

Definition (Geodesic Submanifolds)

A submanifold H of Mp is said to be
geodesic at x ∈ H if all geodesics of H
passing through x are also geodesics of Mp .

A geodesic submanifold preserves the
Riemannian distance : crucial for PGA !
Projection operator :

Definition (Projection operator)

Let H ⊂ Mp a geodesic submanifold of Mp .
Then, the projection operator
πH : Mp → H is :

∀x ∈ Mp, πH (x) = argmin
y∈H

d(x , y)2,

Approximation formula (tangent plane) :

Logp (πH (x)) '
k∑

i=1
〈Logp(x), vi 〉.
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Principal Geodesics Analysis

Goal

Given a set x1, · · · , xN ∈ Mp , find :

A sequence of nested geodesic submanifolds H1 ( H2 ( · · · ( Hp = Mp : the
principal geodesic submanifolds (PGS).
A sequence of one-dimensional geodesic submanifolds V1, · · · ,Vp ⊂ Mp : the
principal geodesic components (PGC).

Construction :
Let v1 ∈ Tµ(Mp) be s.t. :

v1 = argmax
‖v‖=1

1
N

N∑
i=1

‖Logµ(πH (xi ))‖2,

with H = Expµ(span{v} ∩ U). The variance
of the projected data is maximized.
We define :

H1 = Expµ(span{v1} ∩ U),

V1 = Expµ(span{v1} ∩ U).

Then, choose v2 ∈ Tµ(Mp) s.t. :

v2 = argmax
‖v‖=1

1
N

N∑
i=1

‖Logµ(πH (xi ))‖2,

with H = Expµ(span{v1, v} ∩ U). We
define :

H2 = Expµ(span{v1, v2} ∩ U),

V2 = Expµ(span{v2} ∩ U).

→ Problem : the choice of v2 isn’t unique !
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Principal geodesics Analysis (continues)

For unicity, we impose v2 ∈ span{v1}⊥. This is not an arbitrary choice : attempt to
de-correlate the data (analogously with PCA).
Weak de-correlation for two r.v. in R : Var(X + Y ) = Var(X) + Var(Y ). Into manifold
setting :

1
N

N∑
i=1

‖Logµ(πH2 (xi ))‖2 =
1
N

N∑
i=1

‖Logµ(πV1 (xi ))‖2 +
1
N

N∑
i=1

‖Logµ(πV2 (xi ))‖2. (4)

With v2 ∈ span{v1}⊥ we have :

1
N

N∑
i=1

‖Logµ(πH2 (xi ))‖2 '
1
N

N∑
i=1

(〈v1, Logµ(xi )〉2 + 〈v2, Logµ(xi )〉2)

'
1
N

N∑
i=1

‖Logµ(πV1 (xi ))‖2 +
1
N

N∑
i=1

‖Logµ(πV2 (xi ))‖2.

→We almost fulfilled (4) !
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PGA : Interpretation

Interpretation

Best n-dimensional
geodesic submanifold to
describe the data : the
variance of the projected
data is maximized.

Attempt to re-express the
data as a sequence of
"independent" components
(PCs analogs).

Figure: Example of a principal geodesic analysis. The first
principal geodesic submanifold is H1 = V1 , the second H2 is the
manifold itself. The principal geodesic components V1, V2 are

analog of the principal components in PCA.
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PGA : definition

Definition (Principal geodesic submanifolds/components)

Let Mp be a Riemannian manifold, x1, · · · , xN ∈ Mp and µ be the intrinsic mean of those
points. Then, we define the p principal geodesic submanifolds / components as :

k -th principal geodesic submanifold / component :
Let vk ∈ Tµ(Mp) be such that :

vk = argmax
‖v‖=1

v∈span{v1,··· ,vk−1}⊥

1
N

N∑
i=1

‖Logµ(πH (xi ))‖2,

with H = Expµ(span{v1, · · · , vk−1, v} ∩ U).
Then, the k -th principal geodesic submanifold is :

Hk = Expµ(span{v1, · · · , vk−1, vk} ∩ U),

and the k -th principal geodesic component is :

Vk = Expµ(span{vk} ∩ U).
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The shape space of triads

Let consider a triad (x1, x2, x3) ∈ C3 such that x1 6= x2. Its associated shape is the orbit
of the triad under the symmetry group of translations, rotations and dilatations :

O(x1, x2, x3) = {(wx1 + z,wx2 + z,wx3 + z) : z ∈ C, w ∈ C∗}.

We define the shape space of triads as : Σ3
2 = {O(x1, x2, x3) ⊂ C3 : (x1, x2, x3) ∈ C3}.

Parametrization :
Each triad is mapped to a point z ∈ C :

z =
2x3 − (x1 + x2)

x2 − x1
.

B : Degenerate representation ! We need to
add z =∞ to complete it.

Spherical coordinates :
The stereographic projection (see figure), is a 1-1
correspondence between C ∪ {∞} and S2(1/2).
A shape of a triad is then mapped to a point on
the sphere :

ξ(z) =

(
1
2
, θ, φ

)
, θ ∈ [0, 2π] , φ ∈ [0, π].

Figure: The stereographic projection. The
stereographic projection is a 1-1 correspondence

between C ∪ {∞} and the sphere S2(1/2).
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The shape space of triads : representation

(a) (b)

(c) (d)

Figure: Different views of the shape space of planar triads. The blue great circle corresponds to the great circle
of collinear triads, while the red one corresponds to one of the great circles of isosceles triads. The green line is the

equatorial line.
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PGA on the shape space of triads

Figure: A sample of 49 shapes randomly chosen in Σ3
2.

We wish to compute a principal geodesic analysis to efficiently describe the variability of
the above sample of shapes.
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Results of the PGA

Numerical results

Approximation of the
intrinsic mean :
∇f (µφ) = (0.03, 0.01),
thus µφ ' µ.

Variability along V1 :
63.2%.

→The analysis of variability
is much more easier along
the first geodesic
component V1.

(a) Computing extrinsic mean. (b) PGCs V1 and V2.

(c) PGCs in C ∪ {∞} (d) Variation along V1.

Figure: Principal geodesic analysis of 49 shapes randomly chosen in Σ3
2.
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Conclusion

We successfully extended principal components analysis into manifold setting.

We additionally tried to provide a generalization of principal components through
principal geodesics components, allowing us to re-express the data as a sequence
of "independent" components.

However, our construction is based on an approximation.

Future work :

Look for a construction independent from such an approximation.

Pursue the construction of the shape space of triads Σ3
2 in greater generality.

Extend new statistical tools into manifold setting.
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