Statistics on Manifolds applied to Shape Theory

Author : Matthieu Simeoni

Supervisor : Pr. Victor Panaretos

June 26, 2013

Contents

(9) Introduction to Shape Theory
(2) Introduction to differential manifolds
(3) Principal Components Analysis

4 Nonlinear statistics on manifolds
(5) Shape space of triads

6 Conclusion

Introduction to Shape Theory

We'd like to propose a mathematical definition of shape of objects and design statistical tools to analyze those shapes.

Definition

The shape of an object can be define as the total of all information that is invariant under translations, rotations and rescaling (invariance under similarity transformations).

Roughly speaking, we remove all information concerning location, scale and orientation. The obtained space is generally a differential manifold, called space of shapes.
Manifolds can have non null curvature, so we have to re-design all our classic linear statistics tools (means, PCA...).

In practice (Kendall school)

In shape theory we focus on special points called landmarks : they are points of special interest for the considered object, which are meant to provide a partial geometric description of it (see fig. 1).

Figure: Landmarks of human skulls (Neanderthal and australopithecine).

Topological and differential manifolds

Let M^{p} be a topological space and $\left\{U_{\alpha}\right\}_{\alpha \in A}$ s.t $\cup_{\alpha} U_{\alpha}=M^{p}$. We also assume the existence of functions :

$$
c_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{p},
$$

that are all homeomorphisms onto the open subsets $c_{\alpha}\left(U_{\alpha}\right) \subset \mathbb{R}^{p}$.

Definition (Charts)

We say that the functions c_{α} are charts on M^{p} provided that :

$$
\begin{equation*}
c_{\beta} \circ c_{\alpha}^{-1}: c_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow c_{\beta}\left(U_{\alpha} \cap U_{\beta}\right), \tag{1}
\end{equation*}
$$

is a homeomorphism from $c_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ to $c_{\beta}\left(U_{\alpha} \cap U_{\beta}\right), \forall \alpha, \beta \in A$.

Definition (Atlas and topological manifold)

The collection $\left\{\left(U_{\alpha}, c_{\alpha}\right)\right\}_{\alpha \in A}$ forms an atlas on M^{p}. The set M^{p} together with its atlas is called a topological manifold of dimension p. If $c_{\beta} \circ c_{\alpha}^{-1}$ are \mathcal{C}^{r}-diffeormorphisms then M^{p} is said to be a

Figure: Charts provide local coordinate systems on M^{P}. The patching criterion eq. (1) ensures the compatibility of two coordinate systems on a region of overlapping. \mathcal{C}^{r}-differential manifold.

Tangent vectors and tangent spaces

We define tangent vectors through equivalence classes of paths onto the manifold : two paths $x(t), y(t)$ passing through $x_{0} \in M^{p}$ at $t=0$ are said to be equivalent if they are tangent in x_{0}.

Definition (Tangent vectors)

We define the tangent vector \dot{x} to the path $x(t)$ at the point $x_{0}=x(0)$ to be the equivalence class of $x(t)$ under the above equivalence relationship.

Definition (Tangent space)

The set of all tangent vectors to the manifold M^{p} at x_{0} is called tangent space at x_{0} and is denoted by $T_{x_{0}}\left(M^{p}\right)$.

Figure: Tangent vector \dot{x} at x_{0}, seen as the equivalence class of all smooth paths tangent in x_{0}.

We can provide a linear structure to our tangent space, by defining an addition and scalar multiplication on the above tangent vectors. We will exploit this linear structure to re-design our classic statistic tools for manifolds.

Geodesics

Provided the existence of a metric tensor $\forall x \in M^{p}$, one can define an inner product on $T_{x}\left(M^{p}\right)$. This metric structure on the tangent space allow us to define the length of a path $x(t)$:

$$
L=\int_{t_{0}}^{t_{1}}\|\dot{x}(t)\| d t
$$

Definition (Geodesics)

A geodesic, is a smooth path $x(t)$ in a manifold which is locally the shortest.

Euler-Lagrange equations (characterization of geodesics) :

$$
\begin{equation*}
\frac{\partial F}{\partial \gamma_{i}}\left(t, \gamma_{i}, \dot{\gamma}_{i}\right)-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{\gamma}_{i}}\left(t, \gamma_{i}, \dot{\gamma}_{i}\right)\right)=0, \tag{2}
\end{equation*}
$$

Figure: Example of a geodesic path on a torus.
with $F\left(t, \gamma_{i}, \dot{\gamma}_{i}\right)=\|\dot{\gamma}(t)\|$.
The above equation can be re-written as a second order ODE, ensuring existence and unicity of geodesics with prescribed initial conditions (Picard-Lindelöf theorem).

The Exponential Map

We now wish to define a map from the tangent plane to the manifold.

Definition (Exponential Map)

Let M^{p} be a Riemannian manifold, $x \in M^{p}, v \in T_{x}\left(M^{p}\right)$ and $\gamma_{v}(t)$ the unique geodesic such that $\gamma(0)=x$ and $\dot{\gamma}(0)=v$. Then, we define the exponential map as :

$$
\operatorname{Exp}_{x}(v)=\gamma_{v}(1)
$$

- We have : $\operatorname{Exp}_{x}(t v)=\gamma_{t v}(1)=\gamma_{v}(t)$
- The exponential map is a local diffeomorphism between $T_{x}\left(M^{p}\right)$ and M^{p} (local inverse theorem).
- In the injectivity radius, we call the inverse of the exponential map the logarithmic map that we shall note $\log _{x}$.
- Computing geodesic distance :

$$
d\left(x, \operatorname{Exp}_{x}(v)\right)=\|v\| \Rightarrow d(x, y)=\left\|\log _{x}(y)\right\|
$$

Figure: The exponential and logarithm maps between a differential manifold ant the tangent plane at one point.

Principal Components Analysis

PCA is a purely descriptive technique, aiming to re-express the data in an optimal way, as a sum of "independent" variables (same philosophy as Fourier Analysis). This allow to perform efficient exploratory analysis on large data sets, by reducing dimensionality.

Definition (PCA)

Let $X \in \mathbb{R}^{p}$ a random vector with known covariance matrix Σ. We define the p principal components as :

- First principal component :

$$
w_{1}=\underset{\|w\|=1}{\operatorname{argmax}} \operatorname{Var}\left(w^{\top} X\right) .
$$

- k-th principal component,

$$
2 \leq k \leq p:
$$

$$
w_{k}=\underset{\|w\|=1}{\operatorname{argmax}} \operatorname{Var}\left(w^{\top} \hat{X}_{k}\right),
$$

with $\hat{X}_{k}=X-\sum_{i=1}^{k-1}\left(w_{i}^{T} X\right) w_{i}$.

Figure: Fourier decomposition of the FTSE from 1986 to nowadays. As PCA, Fourier Analysis aims to re-express the data, but this time as sum of independents trigonometric functions.

PCA and Spectral Decomposition

We can show that the obtain w_{i} are the eigenvectors of Σ. De-correlating the data is the same as diagonalizing Σ.

Proposition (Ellipsoids and Principal Components)

Let X and Σ as above. Consider the family of p-dimensional ellipsoids :

$$
\begin{equation*}
X^{\top} \Sigma^{-1} X=c, \tag{3}
\end{equation*}
$$

with c a constant. Then, the principal components define the directions of the principal axes of these ellipsoids.

The ellipsoids can be used as a measurement of the dispersion in term of variance of the data around the mean.

Figure: Dispersion ellipsoids for a bivariate normal distribution with mean

$$
\mu=\binom{0}{0} \text { and covariance matrix } \Sigma=\left(\begin{array}{cc}
\sigma_{1}{ }^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}{ }^{2}
\end{array}\right) \text {. }
$$

PCA sensitivity

- PCA can be very sensitive to units of measurement, so it could be wise to use the correlation matrix (covariance matrix of the standardized version of X) instead of the covariance matrix.

Figure: Sensitivity of the PCs and the dispersion ellipsoids to the units of measurement.

- When we don't know Σ, we must use a proxy of it : the sample covariance matrix (or sample correlation matrix to avoid sensibility issues).

Means on Manifolds

Given $x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}$, the mean $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ is minimizing : $\bar{x}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{N}\left\|x-x_{i}\right\|^{2}$.
This inspires the following extension :

Definition (Extrinsic mean)

For every $x_{1}, \ldots, x_{N} \in M^{p}$, we define the extrinsic mean as :

$$
\mu_{\Phi}=\underset{x \in M^{p}}{\operatorname{argmin}} \sum_{i=1}^{N}\left\|\Phi(x)-\Phi\left(x_{i}\right)\right\|^{2}
$$

with $\|\cdot\|$ the Euclidean norm on \mathbb{R}^{p}, and $\Phi: M^{p} \rightarrow \mathbb{R}^{d}$ an embedding.

- Can be computed with a gradient descent algorithm.
- Computationally convenient but extrinsic definition (requires an embedding).

Figure: Computing the extrinsic mean with the gradient descent algorithm. In this example we computed the extrinsic mean μ_{Φ} of the withe dots on the manifold M^{2} embedded in \mathbb{R}^{3}.

Means on Manifolds (continues)

We prefer the more natural definition :

Definition (Intrinsic Mean)

Let M^{P} be a Riemannian manifold and $d(\cdot, \cdot)$ the geodesic distance. Then, the intrinsic mean of $x_{1}, \ldots, x_{N} \in M^{p}$ is :

$$
\mu=\underset{x \in M^{p}}{\operatorname{argmin}} \sum_{i=1}^{N} d\left(x, x_{i}\right)^{2} .
$$

- Existence and unicity if data well-localized.
- Can be computed by the gradient descent algorithm : $\nabla f(x)=-\frac{1}{N} \sum_{i=1}^{N} \log _{x}\left(x_{i}\right)$,

Update equation :

$$
\mu_{j+1}=\operatorname{Exp}_{\mu_{j}}\left(\frac{\tau}{N} \sum_{i=1}^{N} \log _{\mu_{j}}\left(x_{i}\right)\right)
$$

- No optimal step size τ :

Figure: One step of the gradient descent algorithm in the computation of the intrinsic mean.

Variance, Geodesics submanifolds and Projection operator

Variance :

For $x \in \mathbb{R}^{p}$ one can show that :

$$
\operatorname{trace}(\operatorname{Var}(x))=\mathbb{E}\left[x^{\top} x\right]-\mathbb{E}[x]^{\top} \mathbb{E}[x]
$$

which may be rewritten as :

$$
\operatorname{trace}(\operatorname{Var}(x))=\mathbb{E}\left[d(x, \mu)^{2}\right]
$$

This inspires the natural definition :

Definition (Variance)

Let $d(\cdot, \cdot)$ the geodesic distance on M^{p}. Then, the variance of a r.v. $x \in M^{p}$ with mean μ is :

$$
\sigma^{2}=\mathbb{E}\left[d(x, \mu)^{2}\right] .
$$

Sample variance of $x_{1}, \ldots, x_{N} \in M^{p}$:
$\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N} d\left(\mu, x_{i}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(x_{i}\right)\right\|^{2}$.

Geodesic submanifolds :

Definition (Geodesic Submanifolds)

A submanifold H of M^{p} is said to be geodesic at $x \in H$ if all geodesics of H passing through x are also geodesics of M^{P}.

A geodesic submanifold preserves the Riemannian distance : crucial for PGA!

Projection operator :

Definition (Projection operator)

Let $H \subset M^{p}$ a geodesic submanifold of M^{p}. Then, the projection operator $\pi_{H}: M^{p} \rightarrow H$ is :

$$
\forall x \in M^{p}, \quad \pi_{H}(x)=\underset{y \in H}{\operatorname{argmin}} d(x, y)^{2},
$$

Approximation formula (tangent plane) :

$$
\log _{p}\left(\pi_{H}(x)\right) \simeq \sum_{i=1}^{k}\left\langle\log _{p}(x), v_{i}\right\rangle
$$

Principal Geodesics Analysis

Goal

Given a set $x_{1}, \cdots, x_{N} \in M^{p}$, find :

- A sequence of nested geodesic submanifolds $H_{1} \subsetneq H_{2} \subsetneq \cdots \subsetneq H_{p}=M^{p}$: the principal geodesic submanifolds (PGS).
- A sequence of one-dimensional geodesic submanifolds $V_{1}, \cdots, V_{p} \subset M^{p}$: the principal geodesic components (PGC).

Construction :

Let $v_{1} \in T_{\mu}\left(M^{p}\right)$ be s.t. :

$$
v_{1}=\underset{\|v\|=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi_{H}\left(x_{i}\right)\right)\right\|^{2}
$$

with $H=\operatorname{Exp}_{\mu}(\operatorname{span}\{v\} \cap U)$. The variance of the projected data is maximized. We define :

- $H_{1}=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{1}\right\} \cap U\right)$,
- $V_{1}=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{1}\right\} \cap U\right)$.

Then, choose $v_{2} \in T_{\mu}\left(M^{p}\right)$ s.t. :

$$
v_{2}=\underset{\|v\|=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi_{H}\left(x_{i}\right)\right)\right\|^{2}
$$

with $H=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{1}, v\right\} \cap U\right)$. We define:

- $H_{2}=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{1}, v_{2}\right\} \cap U\right)$,
- $V_{2}=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{2}\right\} \cap U\right)$.
\rightarrow Problem : the choice of v_{2} isn't unique!

Principal geodesics Analysis (continues)

For unicity, we impose $v_{2} \in \operatorname{span}\left\{v_{1}\right\}^{\perp}$. This is not an arbitrary choice : attempt to de-correlate the data (analogously with PCA).
Weak de-correlation for two r.v. in $\mathbb{R}: \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. Into manifold setting :

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi_{H_{2}}\left(x_{i}\right)\right)\right\|^{2}=\frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi V_{1}\left(x_{i}\right)\right)\right\|^{2}+\frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi V_{2}\left(x_{i}\right)\right)\right\|^{2} \tag{4}
\end{equation*}
$$

With $v_{2} \in \operatorname{span}\left\{v_{1}\right\}^{\perp}$ we have :

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi_{H_{2}}\left(x_{i}\right)\right)\right\|^{2} & \simeq \frac{1}{N} \sum_{i=1}^{N}\left(\left\langle v_{1}, \log _{\mu}\left(x_{i}\right)\right\rangle^{2}+\left\langle v_{2}, \log _{\mu}\left(x_{i}\right)\right\rangle^{2}\right) \\
& \simeq \frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi V_{1}\left(x_{i}\right)\right)\right\|^{2}+\frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi V_{2}\left(x_{i}\right)\right)\right\|^{2}
\end{aligned}
$$

\rightarrow We almost fulfilled (4)!

PGA : Interpretation

Interpretation

- Best n-dimensional geodesic submanifold to describe the data : the variance of the projected data is maximized.
- Attempt to re-express the data as a sequence of "independent" components (PCs analogs).

Figure: Example of a principal geodesic analysis. The first principal geodesic submanifold is $H_{1}=V_{1}$, the second H_{2} is the manifold itself. The principal geodesic components V_{1}, V_{2} are analog of the principal components in PCA.

PGA : definition

Definition (Principal geodesic submanifolds/components)

Let M^{p} be a Riemannian manifold, $x_{1}, \cdots, x_{N} \in M^{p}$ and μ be the intrinsic mean of those points. Then, we define the p principal geodesic submanifolds/components as :

- k-th principal geodesic submanifold / component :

Let $v_{k} \in T_{\mu}\left(M^{p}\right)$ be such that :

$$
v_{k}=\underset{\substack{\|v\|=1 \\ v \in \operatorname{span}\left\{v_{1}, \cdots, v_{k-1}\right\}^{\perp}}}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left\|\log _{\mu}\left(\pi_{H}\left(x_{i}\right)\right)\right\|^{2},
$$

with $H=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{1}, \cdots, v_{k-1}, v\right\} \cap U\right)$.
Then, the k-th principal geodesic submanifold is :

$$
H_{k}=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{1}, \cdots, v_{k-1}, v_{k}\right\} \cap U\right),
$$

and the k-th principal geodesic component is :

$$
V_{k}=\operatorname{Exp}_{\mu}\left(\operatorname{span}\left\{v_{k}\right\} \cap U\right) .
$$

The shape space of triads

Let consider a triad $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3}$ such that $x_{1} \neq x_{2}$. Its associated shape is the orbit of the triad under the symmetry group of translations, rotations and dilatations :

$$
\mathcal{O}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\left(w x_{1}+z, w x_{2}+z, w x_{3}+z\right): z \in \mathbb{C}, w \in \mathbb{C}^{*}\right\} .
$$

We define the shape space of triads as: $\Sigma_{2}^{3}=\left\{\mathcal{O}\left(x_{1}, x_{2}, x_{3}\right) \subset \mathbb{C}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3}\right\}$. Parametrization :
Each triad is mapped to a point $z \in \mathbb{C}$:

$$
z=\frac{2 x_{3}-\left(x_{1}+x_{2}\right)}{x_{2}-x_{1}} .
$$

\: Degenerate representation! We need to add $z=\infty$ to complete it.

Spherical coordinates :

The stereographic projection (see figure), is a 1-1 correspondence between $\mathbb{C} \cup\{\infty\}$ and $S^{2}(1 / 2)$. A shape of a triad is then mapped to a point on the sphere :

Figure: The stereographic projection. The stereographic projection is a 1-1 correspondence between $\mathbb{C} \cup\{\infty\}$ and the sphere $S^{2}(1 / 2)$.

$$
\xi(z)=\left(\frac{1}{2}, \theta, \phi\right), \quad \theta \in[0,2 \pi], \phi \in[0, \pi] .
$$

The shape space of triads : representation

Figure: Different views of the shape space of planar triads. The blue great circle corresponds to the great circle of collinear triads, while the red one corresponds to one of the great circles of isosceles triads. The green line is the equatorial line.

PGA on the shape space of triads

Figure: A sample of 49 shapes randomly chosen in Σ_{2}^{3}.

We wish to compute a principal geodesic analysis to efficiently describe the variability of the above sample of shapes.

Results of the PGA

Numerical results

- Approximation of the intrinsic mean :
$\nabla f\left(\mu_{\phi}\right)=(0.03,0.01)$, thus $\mu_{\phi} \simeq \mu$.
- Variability along V_{1} : 63.2\%.
\rightarrow The analysis of variability is much more easier along the first geodesic component V_{1}.

(a) Computing extrinsic mean.

(c) PGCs in $\mathbb{C} \cup\{\infty\}$

(b) PGCs V_{1} and V_{2}.

(d) Variation along V_{1}.

Figure: Principal geodesic analysis of 49 shapes randomly chosen in Σ_{2}^{3}.

Conclusion

- We successfully extended principal components analysis into manifold setting.
- We additionally tried to provide a generalization of principal components through principal geodesics components, allowing us to re-express the data as a sequence of "independent" components.
- However, our construction is based on an approximation.

Future work :

- Look for a construction independent from such an approximation.
- Pursue the construction of the shape space of triads Σ_{2}^{3} in greater generality.
- Extend new statistical tools into manifold setting.

Bibliography

C. G. Small The Statistical Theory of Shape, Springer series in statistics, 1996.

Dietrich Stoyan, Wilfrid S. Kendall, Joseph Mecke, Stochastic geometry and its applications, Wiley series in probability and mathematical statistics, Second edition, 1995.
I.L. Dryden and K.V. Mardia, Statistical shape analysis, Chichester : John Wiley \& Sons, 2002.I. T. Joliffe, Principal Component Analysis, Second edition, Springer series in statistics, 2002.P. T. Fletcher, C. Lu, S. M. Pizer, S. Joshi, Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape, MIDAG.

H.Karcher, Riemannian center of mass and mollifier smoothing, Communications on pure and applied mathematics, vol.30, no. 5, 1977.S. R. Buss and J. P. Fillmore, Spherical averages and applications to spherical splines and interpolations, ACM transactions on Graphics, vol 20, 2001.

