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Abstract

The majority of the information on the web is encoded as web documents in natural language
for human consumption. According to International Data Corporation (I DC) 80% of the
data on the web is unstructured (free text) and is growing at a rapid pace due to the ease
with which data can be published on the blogs, social networks, web, etc. The fundamental
idea of Semantic Web is to link all the knowledge on the web. For Semantic Web to be
widely adopted, and to exploit its full potential, it is important that the researched techniques
understand and automatically extract knowledge from the unstructured web documents, as
majority of data on the web is unstructured. A promising approach to have programmatic
access to such knowledge is the use of information extraction techniques. Most frequently
these techniques aim at extracting entities, such as persons, geographic locations, etc., from
free text. These entities can potentially be linked to each other, thus creating a de-facto
global knowledge graph of linked entities. A number of entity-related challenges need to be
addressed for realizing the entity-oriented view of Semantic Web. In this doctoral thesis, we
provide research contributions to the field of entity extraction from Web text documents with
the aim of facilitating the adoption of the Semantic Web. This thesis addresses following
entity-related problems: Entity Resolution for web documents; Entity Matching in micro-
blogging environments; and Entity Profiling and Applications. More specifically, we make
the following contributions:

(1) Entity Resolution for Web Documents: One of the key challenges to realize automated
processing of the information on the Web is related to the entity resolution problem.
There are a number of tools that reliably recognize named entities, such as persons,
companies, geographic locations, in Web documents. The names of these extracted
entities are however non-unique; the same name on different Web pages might or might
not refer to the same entity. We address this disambiguation problem, which is very
similar to the entity resolution problem studied in relational databases, however there
are also several differences. Most importantly Web pages often only contain partial
or incomplete information about the entities. We propose a generic framework where
multiple similarity functions corresponding to the domain specific rules can be defined.
We make use of techniques from graph theory and machine learning for efficiently
combining the evidence from multiple similarity functions for improved ER results,

and demonstrate the efficiency of our framework on two real-world datasets.

(2) Entities in micro-blogs like Twitter: Twitter is a popular micro-blogging service on
the Web, where people can publish short messages, which then become visible to other
users of the service. While the topics of these messages vary, there are a lot of messages
where the users express their opinions about companies or their products. These mes-

sages are a rich source of information for companies for sentiment analysis or opinion



mining. There is however a great obstacle for analyzing the messages directly: as the
company names are often ambiguous (e.g. apple, the fruit vs. Apple Inc.), one needs
first to identify which messages are related to the company. We first present simple
techniques that make use of company profiles, which we created semi-automatically
from external Web sources. Our advanced techniques take ambiguity estimations into
account and also automatically extend the basic company profiles through active learn-
ing from the Twitter stream itself. We demonstrate the effectiveness of our methods
through an extensive set of experiments. We also present TweetSpector as a working

prototype for entity-based classification of tweets.

(3) Entity Profiling and Applications: Entity profiling is the problem of constructing a
compact representation (profile) of an entity, which summarizes the various mentions
of an entity. We focus on constructing entity profiles to user and location entities, and

show applications that make use of such entity profiles.

(a) User-Entity Profiles on Social Networks: Users through their activities on social
networks leave traces of their personalities. With the advances of content mining
and modeling techniques, it should be possible to profile an user entity from his
social network content. In this work we explore various techniques for summa-
rizing a user’s presence on different social networks. We show that one of the
advantages of maintaining user profile is to provide the context for understanding
the short texts, and help in better understanding of microposts. Additionally, we
present TripEneer: Travel plan recommendation application based on user and

location entity profiles.

(b) Social and Sensor Data Fusion of a Location-entity in the Cloud: As mobile
cloud computing facilitates a wide spectrum of smart applications, the need for
fusing various types of data available in the cloud grows rapidly. In particular,
social and sensor data lies at the core in such applications, but is typically pro-
cessed separately. This work explores the potential of fusing social and sensor
data, related to a location entity, in the cloud. We present a travel recommenda-
tion system that is built upon a conceptual framework. This framework allows to
blend the heterogeneous social and sensor data for integrated analysis, extracting
weather-dependent people’s mood information from Twitter and meteorological

sensor data streams.

This thesis through these contributions for linking entities on the web makes a promising

step towards realizing entity-oriented view of (Semantic) Web.

Keywords: entity, entity resolution, entity profiles, recommendations, semantic web, twit-
ter streams, social networks, machine learning, online reputation management, sentiment

metrics, user models
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Résumé

La majorité de I’information sur le web est codée sous forme de documents web en langage
courant pour la consommation par I’homme. Selon 1’International Data Corporation (I DC'),
80% des données sur le web ne sont pas structurées (en texte libre) et se développent a un
rythme rapide en raison de la facilité avec laquelle les données peuvent étre publiées sur
les blogs, réseaux sociaux, web, etc. L'idée fondamentale du Web sémantique est de relier
toutes les connaissances sur le web. Pour que le Web sémantique soit largement adopté, et
exploité a son plein potentiel, il est important que les techniques, objets de cette recherche,
comprennent et extraient automatiquement les connaissances a partir des documents Web
non structurées, étant donné que la majorité des données sur le web ne sont pas struc-
turées. Une approche prometteuse pour avoir un acces programmable a ces connaissances
est I'utilisation de techniques d’extraction d’information. Le plus souvent, ces techniques
visent a extraire les entités, comme les personnes, lieux géographiques, etc., partir de texte
libre. Ces entités peuvent potentiellement étre reliées les unes aux autres, créant ainsi de
facto un graphe de connaissance globale des entités liées. Un certain nombre de défis liés
aux entités doivent étre abordés pour la réalisation d’un point de vue orienté vers les entités
du Web sémantique. Dans cette these de doctorat, nous contribuons a la recherche dans le
domaine de I’extraction d’entités a partir de documents de texte en ligne avec pour objectif
de faciliter ’adoption du Web sémantique. Cette these aborde les problemes liés aux entités
suivants: Résolution d’entité pour les documents Web, Reconnaissance d’entité dans les en-
vironnements micro-blogging, et Profilage d’entité et Applications. Plus précisément, nous

faisons les contributions suivantes:

(1) Résolution d’entité pour les documents Web: L'un des principaux défis pour réaliser
un traitement automatisé de I’information sur le Web est 1ié au probléme de la résolution
d’entité. Il y a un certain nombre d’outils qui parviennent a reconnaitre de maniére
fiable des entités nommées, comme les personnes, les entreprises, ou les lieux géo-
graphiques, dans les documents Web. Les noms de ces entités extraites ne sont cepen-
dant pas uniques; le méme nom sur différentes pages Web peut ou ne peut pas faire
référence la méme entité. Nous abordons ce probleme d’homonymie, qui est tres sem-
blable au probleme de la résolution d’entité, étudié¢ dans les bases de données rela-
tionnelles, mais comporte aussi quelques différences. Mais surtout les pages Web
ne contiennent souvent que des informations partielles ou incompletes sur les entités.
Nous proposons donc un cadre général ou plusieurs fonctions de similarité correspon-
dant aux regles spécifiques du domaine peuvent €tre définies. Nous utilisons des tech-

niques de la théorie des graphes et d’apprentissage pour combiner efficacement les



2)

données provenant de multiples fonctions de similarité afin d’améliorer la reconnais-
sance d’entité, et de démontrer I’efficacité de notre méthode sur deux ensembles de

données du monde réel.

Entités sur les micro-blogs comme Twitter: Twitter est un service de micro-blogging
populaire sur le Web, ot les gens peuvent entrer des messages courts, qui deviennent
alors visibles par les autres utilisateurs du service. Bien que les sujets de ces mes-
sages varient, il y a beaucoup de messages ou les utilisateurs expriment leurs opinions
sur les sociétés ou leurs produits. Ces messages sont une riche source d’information
pour les entreprises pour I’analyse des sentiments ou des opinions. Il y a cependant un
grand obstacle avant d’analyser directement les messages: comme les noms de société
sont souvent ambigus (par exemple, la pomme (apple), le fruit vs Apple Inc.), il faut
d’abord identifier les messages qui sont liés a la société en question. Nous présentons
tout d’abord des techniques simples qui font usage de profils d’entreprise, que nous
avons créés semi automatiquement a partir de sources Web externes. Nos techniques
avancées prennent en compte une estimation de 1’ambiguité et completent automa-
tiquement les profils d’entreprise grace a un apprentissage actif sur le flux Twitter
Iui-méme. Nous démontrons I’efficacité de nos méthodes a travers un vaste ensemble
d’expériences. Nous présentons aussi TweetSpector comme un prototype fonctionnel

de classification axée sur les entités de tweets.

(3) Profilage d’entité et Applications: Le profilage d’entité est le probleme de la con-

struction d’une représentation compacte (profil) d’une entité, qui résume les différentes
mentions d’une entité. Nous nous concentrons sur la construction d’un profil d’une en-
tité d’un utilisateur et une entité de localisation, et montrons des applications qui font

usage de ces profils d’entité.

(a) Profils d’entité d’utilisateurs sur les réseaux sociaux: Les utilisateurs, par le
biais de leurs activités sur les réseaux sociaux, laissent des traces de leur person-
nalité. Avec les progres de I’extraction de contenu et des techniques de modélisation,
il devrait étre possible de profiler I’entité de I'utilisateur a partir de son contenu
sur un réseau social. Dans ce travail, nous explorons différentes techniques pour
résumer une présence de 'utilisateur sur les différents réseaux sociaux. Nous
montrons que 'un des avantages de maintenir un profil de l’utilisateur est de
fournir le contexte pour comprendre les textes courts, et d’aider une meilleure
compréhension des micro-messages. En outre, nous présentons TripEneer: un
outil de recommandation de planification de voyage basé sur le profil de I’entité

de 1I’utilisateur et de 1’entité de localisation.

(b) Fusion de données sociales et issues de capteurs d’une entité de localisation
dans le Cloud: Comme I’informatique mobile en nuage facilite un large éventail
d’applications intelligentes, la nécessité d’une fusion des divers types de données
disponibles dans le nuage se développe rapidement. En particulier, les données so-
ciales et issues de capteurs sont au cceur de ces applications, mais sont généralement
traitées séparément. Ce travail explore le potentiel de fusion des données so-

ciales et issues de capteurs, liés a une entité de localisation, dans le nuage. Nous



présentons un systeme de recommandation de voyage qui repose sur un cadre
conceptuel. Ce cadre permet de mélanger les données sociales et issues de cap-
teurs hétérogenes pour une analyse intégrée, comme par exemple I’extraction de
I’humeur des gens en fonction des conditions météorologiques a partir de Twitter

et des flux de données de capteurs météorologiques.

Cette these, grace a ses contributions permettant de relier les entités sur le web, fait une

étape prometteuse vers la réalisation d’une vue du Web (sémantique) axée sur les entités.

Mots-clés: entité, résolution d’entité, profil d’entités, recommandations, web sémantique,
Sflux twitter, réseaux sociaux, apprentissage automatique, gestion de la réputation en ligne,

mesure de sentiment, modeles d’utilisateur
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Chapter

Introduction

I have a dream for the Web in which
computers become capable of
analyzing all the data on the Web —
the content, links, and transactions
between people and computers. A
”Semantic Web”, which should
make this possible, has yet to
emerge, but when it does, the
day-to-day mechanisms of trade,
bureaucracy and our daily lives
will be handled by machines talking
to machines. The intelligent
agents” people have touted for ages
will finally materialize.

Tim Berners-Lee vision of the
Semantic Web

1.1 Background

Invention of Internet and World Wide Web (WWW) revolutionized the way information is produced
and consumed across the globe. The ease of creation of web documents and interconnecting these web
documents using hyperlinks is the primary reason that ignited the massive growth that resulted in the
Web that we know today. Algorithms like PageRank [PBMW99] and HITS [Kl1e99|], which exploit these
simple interconnections (hyperlinks) across web documents, are enabling keyword-based search engines
to readily identify subset of documents that are relevant to the user query. However, most of the human
queries still require the human to refer to multiple web documents resulting from the search engine and
use his intelligence to connect the information across the documents to meet his needs. As the needed
information is already present in the web documents as free text, it could be a great advantage for the
computers to extract this information, possibly understand the semantics, interlink the information across
documents, do the inference and provide the user with the needed information. The primary requirement
to achieve the goal of computers automatically connecting information across the web documents is
that these documents should be augmented with meta-data, followed by developing systems which can
use this meta-data to connect information across web documents. The core vision of Semantic Web is
3



1. INTRODUCTION

to extend this simple links among documents to interlinks of data/information across documents, and
providing a programmatic access to such knowledge.

Semantic Web is a broad concept and could refer to multiple things. In some scenarios it is referred
to as web of data, where the information related to a document is represented using RDF [RDF], micro-
formats (hCard, hCalendar, XCN, etc.) [MF], etc. Many times it is also referred to the technology stack
that enables computers to automatically interlink information across data sources. Semantic Web also
refers to the web services offering semantic functionalities. Semantic Web can also be seen as a global
database of web documents against which one can run queries using SPARQL [SPA], and apply inference
and reasoning using OWL, Ontologies etc. All in all, Semantic Web encompasses all the technologies
that can extract semantics (knowledge) from data. Research in semantic technologies involves devel-
oping the various components in the stack: developing meta-data annotation tools, enabling querying
and inferring on these meta-data stores (SPARQL, RDF-DB Engines), Vocabularies, Ontologies (OWL
[OWL]) and Schemas for Al inference.

The efforts of W3C (World Wide Web Consortium) on Semantic Web resulted in a number of stan-
dards for representing the meta-data. On the one hand there is the comprehensive, heavy-weight, and
graph-based RDF, while on the other hand there are simplistic micro-formats (hCard, hCalendar, XCN,
etc.). For the core of semantic techniques to work it is essential that the web documents should be an-
notated with meta-data. Given the huge number of web documents, there are two natural approaches for

adding meta-data to the documents.

e Manual Approach: This first approach involves data providers manually enriching their webpages
with metadata in one of the standard metadata formats (RDF or micro-formats), so that it is ma-
chine readable. Some big data providers (like Government organizations, Yahoo, etc.) are making
their data available in this format. The incentive for the data providers to annotate their content is
that their data can be consumed by a wider audience. Tools like Dapper [Dap], Semantify [Seml],
etc., are aiding publishers to add semantic annotations to their existing web documents. For a
technology to be massively adopted by the users, it is important that the technology is simple and
easy to integrate into the existing infrastructure. Despite the existence of tools and incentives,
it is difficult to make this approach widespread because of the involved manual effort. This is
a very time-consuming process, and to adopt it for web-scale is a daunting task. Examples of
data-sources based on this approach include: DBpedia [DBp| (semantic version of Wikipedia),
FreeBase [Ere]], many data sources released by Governments [Govl], and Nepomuk [Nep]|| (a social

semantic desktop).

o Automatic Approach: The success of Google is that it understands the webpages as is, without the
demand that the web documents publishers follow all the W3C recommendations. For the Seman-
tic Web to be popular it is important that any proposed approach understands the web documents
as they are. In view of this, the second approach proposes to infer the metadata automatically
from the existing webpages. Additionally, semantic tools based on these automatic approaches are
equipped on dealing with imperfections and uncertainties in existing information. Examples of
contributions based on this approach include: the natural language based processing tools that do
entity extraction - such as Calais [Ope|] and TextWise [Texl]] APIs that recognize entities like peo-
ple, companies, places, etc. in documents; vertical search engines, like ZoomInfo [Inf], 123People

4
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[lin] and Zaba [Seal], which mine the web for people; technologies like GATE [GAT] and Apache
UIMA [UIM], which recognize objects in web pages. These two approaches, manual and auto-
matic, can compliment each other. The partial metadata added using manual approach can be used

by automatic approach to extract other metadata from a document.

The main question in the second approach concerns the kind of information that can be automatically
extracted from the web documents. It is very unlikely to automatically extract every possible informa-
tion from a document accurately. It could be argued that most of the web documents (news articles, blog
entries, wiki articles, etc.) are about entities, their descriptions, relationships among entities, attributes
of entities, concepts, and relationships between concepts. Automatic extraction of information related
to entities has been the central theme of many conferences like MUC (Message Understanding Confer-
ences) [GS96]] and TREC [TRE] over the years. This thesis focuses on several entity related problems,
solving which makes important steps towards realizing the entity-oriented view of the Semantic Web
[BSGO7].

The concept of entities is not new, and is quite central to many computer systems and database
management systems. The tables in popular relational databases are usually modeled on concept of
entities. In software engineering Entity Relationship (ER) model is used as an abstract way of describing
the database. This popular Entity Relationships design methodology, based on entities, aids in building
efficient computer systems.

The data available on the web is heterogeneous and is usually structured, semi-structured or unstruc-
tured data. However, according to International Data Corporation (I DC') 80% of the data on the web
is unstructured and is growing at rapid pace due to the ease with which data can be published on blogs,
media exchanged on social networks, etc. Semantic Web can be seen as an effort to convert all the un-
structured data on the web to structured format that could be queried upon. Once converted to structured
format, the data can be efficiently handled using successful DBMS technologies. In this thesis work we

focus on entity related problems in unstructured documents.

1.2 Entities on the Web and the Challenges

What is an entity? As per Wikipedia an entity is something which exists by itself, although it need not be
of material existence. Some examples of entity include: any real or fictional person, location, company,
organization, product, object, etc. An entity is usually described with set of attributes. For example: a
person is described using name, date of birth, gender, etc.; a location is described by name, co-ordinates,
etc.; a book by its title, author, publisher, etc. Majority of the web documents — like homepages, news
articles, blog entries, websites, comments, microposts, etc. — are about entities.

Entity-oriented view of Semantic Web involves linking entities on the Web. Such a web would
empower users with easy information discovery and provide alternate ways of exploring the Semantic
Web. A number of entity related challenges need to be addressed for realizing such an Entity-oriented
view of Semantic Web (Figure[I.T)).

Entity Extraction: Human language is rich, complex and ambiguous. The web documents containing
the information about entities are usually expressed in the natural language format. This poses a
number of challenges for computers to automatically extract information related to entities. The
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Figure 1.1: Entity Oriented View of Semantic Web

first entity-related challenge is entity extraction. Entity extraction is about identification of entities
that are being described in a free text. It is commonly used to parse unstructured text documents
and extract useful entity information (like location, person, brand, etc.) to construct a more useful
structured representation of the entity. Entity extraction is one of the most common text prepro-
cessing tasks to automatically understand a text document. If the entity extraction is concerned
about only certain type of entities then it is often referred to as Named Entity Extraction (NER)
[NER] in literature. The NER tools developed for text documents work on one document at a time
for an entity extraction. The NER tools for web documents face additional challenges of dealing
with multiple web documents at a time and the uncertainties involved in text extraction from the
html content. There is also need for developing NER tools for micro-blogging kind of media, as
the language on these media is very dynamic.

Entity Resolution: The next challenge related to entities is Entity Resolution. A real world entity (e.g.
a person, book, etc.) is described on the web at multiple pages possibly in different ways. For
example, a person entity 7im Berners Lee, inventor of the world wide web, could be described as
Tim Berner on one webpage and as Tim B. Lee on another web page. Entity Resolution (ER) is
the problem of deciding whether two or more entity mentions (Tim Berner, Tim B. Lee) refer to
the same real world entity (Tim Berners Lee). This is a common problem in many information
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integration scenarios, where multiple data sources might contain different representations of the
same entity. The attributes of an entity description at one source (for example on a webpage)
can be different from describing the same entity at a different source (another webpage). Another
example of this situation is an eProfile management system, where a user (customer) can have
different profiles at different websites. Also, the amount of information about an entity can be
different at the different sources. Entity Resolution addresses the problem of linking these different

profiles to the same user entity.

More examples of entity resolution applications include: large customer-oriented organizations of-
ten need to merge long lists of names and addresses (possibly obtained from different data sources)
in order to get to know more about its customers; web portals, like CiteSeer [Cit], Cora [Cort], etc.,
they need to integrate citations and paper titles, parsed and extracted from several personal and
publisher web-pages.

Entity Resolution leads to efficient organization of data/knowledge, and information enhancement
(knowledge discovery) of an entity when the data from the diverse sources is reconciled. However
entity resolution is a difficult but an important problem. Some of the underlying challenges are due
to the lack of an explicit structure for representing entities. Each source has its own way of repre-
senting an entity. There is no unique structure or schema for the entities. The other challenge is the
uncertainties involved in the entity representation. Uncertainties may arise due to typographical
errors, non-standard representation, missing information, inherent ambiguity, malicious intent, the
trustfulness of the source, etc. Given that Entity Resolution problem is a challenging task, there is
scope for better theoretical models, better algorithms or techniques which are computationally fea-
sible and achieve more accuracy. There is need for research in these directions in order to realize
efficient systems.

Entity Identification: The linking of entities across data sources will be easier if each entity maintains
a unique entity-id. When RDF format is used for representing metadata, it is common to use URI
as an unique id for a resource (aka entity). For a small repository, it should be possible to have
unique ids for the entities. How does one ensure the entity ids are unique for an entity across the
web? How does one build such an Entity Identification System (EIS)?

OKKAME] [BSGO7] is an example of such an EIS system. OKKAM envisions an Entity Name
System (ENS) that can act as a repository of the entities on the web, where each entity would have
an unique entity id. OKKAM’s guiding philosophy is “Entity identifiers should not be multiplied
beyond necessity.” Newly generated content on the web can use existing entity identifiers if the
described entities are already present in the ENS; if not, a new entity identifier will be generated
by the ENS, which can be used from there on. Thus OKKAM would act as a global service for
providing the unique identifiers for the entities on the web.Such a service would power entity-
centric search engines, enable easier and efficient web-scale mash-ups, improve the quality of the

content production in professional environments, etc.

What kind of entity models are ideal for such an Entity Identification system? How can the EIS
handle the life-time evolution of an entity, where new information related to the entity gets added

and some past information is valid no-more or conflicting with the existing information? EIS

"http://www.okkam.org
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would need ER algorithms for maintaining unique entities in its repository. Algorithms can rely

on such entity identification systems to develop more efficient ER techniques.

Entity Summarization and Profiling: Once we identify entity mentions as related to the same entity
using the ER techniques, we face the problem of consolidating the various information related to
entities. Should we simply merge all the information and consider it as one entity, or maintain the
history of the evolution of the entity. For efficient storage solutions it might be ideal to merge all
the information and discard all the other information. During consolidation how does one handle
conflicting information? If one is interested in the provenance of the entity data, then the system

should maintain all the information.

What kind of entity model is efficient for a summarized view of the entity? It could be a simple
bag-of-words model, semi-structured attribute-value pairs, or extensive graph-based model (RDF
[RDE]). How does one go about consolidating conflicting information across different sources.
A user entity is present on the web across many websites. If a system can maintain a compact
summary of the user entity, many customized services related to the entity can be constructed. All
the queries can use the user entity profile as a context for the queries, thus providing user entity

centric results.

Entity Search Systems and Entity-based Retrieval: Entity-based information retrieval received a lot
of attention at major conferences like TREC [TRE], INEX [INE], etc., over the past decade. The
challenges here include: how does one index or organize the document collection in order to
retrieve entities specific to the user query; what are the query models for entity-specific search;

and what are efficient metrics for evaluating entity search systems?

Twitter, Facebook, etc., are important platforms where users publish their opinions, emotions, and
news about products, tv-shows, sports, books, companies, etc., they interact with. This information
is of tremendous value for companies, organizations, etc, for studying the trends, for making
informed decisions. From this deluge of data it is essential to retrieve data relevant to a specific
individual or organization entity. How does such an entity-based retrieval system be designed that
can work at large scale and in real-time? Current search systems interface are keyword-based.

Efficient query interfaces would be needed to support entity-based search.

Uncertainties and Philosophical Ambiguities: There is also a philosophical aspect to Entity and its
existence. It is not possible to give a precise definition for an entity. In the popular super-hero
series Superman, the main character has two different personalities: Clark Kent (alter-ego) and
Superman. Do these two personalities refer to the same entity or are these two different entities?
A person during childhood and the same person in his old age, each with different personality, are
they two different entities or the same person entity? A sub-part of an entity, should it be treated
as an independent entity, or should it be treated as an attribute of the main entity? There is also
a philosophical debate about the existence of abstract entities and their differences with concrete

entities. We do not dwell into these involved philosophical aspects of the entities in this thesis.

The success of research efforts in the fields of Machine Learning, Natural Language Technologies,
Artificial Intelligence, and Database technologies have to come together in order to address these chal-

lenges.



1.3 Contributions

1.3 Contributions

Having presented the main challenges involved in realizing Web of Entities, we now give an overview
of the challenges addressed in this work. The thesis broadly focuses on the following problems: Entity

Resolution, Entity Matching and Entity Profiling.

1.3.1 Entity Resolution for Web Documents

One of the key challenges to realize automated processing of the information on the Web, which is the
central goal of the Semantic Web, is related to the entity resolution problem. There are a number of
tools that reliably recognize named entities — such as persons, companies, geographic locations —in Web
documents. The names of these extracted entities are however non-unique; the same name on different
Web pages might or might not refer to the same entity. The entity resolution problem concerns of
identifying the entities, which are referring to the same real-world entity. This problem is very similar to
the entity resolution problem studied in relational databases. However, there are also several differences.
Most importantly Web pages, often only contain partial or incomplete information about the entities.
Similarity functions try to capture the degree of belief about the equivalence of two entities, thus
they play a crucial role in entity matching. The accuracy of the similarity functions highly depends
on the applied assessment techniques, but also on some specific features of the entities. We propose
systematic design strategies for combined similarity functions in this context. Our method relies on the
combination of multiple pieces of evidence, with the help of estimated quality of the individual similarity
values and with particular attention to missing information that is common in Web context. We study the
effectiveness of our method in two specific instances of the general entity matching problem, namely the
person name disambiguation and the Twitter message classification problem. In both cases, using our
techniques in a very simple algorithmic framework, we obtained better results than the state-of-the-art

methods. Specifically, we make following contributions:

e We layout the similarities and differences that exists between the ER problem for structured

database records and the ER problem for unstructured documents

o As the ER algorithms depend on domain specific rules, we propose a generic framework where in
multiple similarity functions corresponding to the domain specific rules can be defined. We make
use of techniques from graph theory and machine learning for efficiently combining the evidence

from multiple similarity functions for improved ER results.

o We demonstrate the efficiency of our framework by applying our techniques on two real-world

datasets. (i) Web people names dataset and (ii) Twitter dataset.

1.3.2 Entity Matching on Twitter

Twitter is a popular micro-blogging service on the Web, where people can enter short messages, which

then become visible to other users of the service. While the topics of these messages varies, there are a

lot of messages where the users express their opinions about some companies or their products. These

messages are a rich source of information for companies for sentiment analysis or opinion mining. There

is however a great obstacle for analyzing the messages directly: as the company names are often am-

biguous (e.g. apple, the fruit vs. Apple Inc.), one needs first to identify, which messages are related
9
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to the company. In this part we address this question. We present various techniques for classifying
tweet messages containing a given keyword, whether they are related to a particular company with that
name or not. We first present simple techniques, which make use of company profiles, which we created
semi-automatically from external Web sources. Our advanced techniques take ambiguity estimations into
account and also automatically extend the company profiles from the twitter stream itself. We demon-
strate the effectiveness of our methods through an extensive set of experiments. Moreover, we extensively
analyze the sources of errors in the classification. The analysis not only brings further improvement, but

also enables to use the human input more efficiently. Our contributions include:

e We address the challenge of matching a named-entity in a short message (twitter message) by

focusing on semi-automatic creation of entity profile.

e Entity profile of a named-entity is constructed using data mined from multiple data sources. This
entity profile already outperforms the state-of-art methods created for classifying tweet messages

containing the entity mention.

e We make use of estimated relatedness-factor to further improve the classification performance of
entity profile based classification.

o We resort to Active Learning for continuously updating the entity profile by monitoring the live

Twitter streams.

e We present Tiveetspector as a working prototype for entity-based classification of tweets in real-

time.

1.3.3 Entity Profiling and Applications

We have seen that an entity (a user, a location, etc.) is mentioned on multiple web documents (web
pages, twitter streams, news, etc.). Entity profiling is the problem of constructing a compact represen-
tation (profile) of an entity, which summarizes the various mentions of the entity. Firstly, we focus on
constructing an entity profile of an user entity, and show applications that make use of such constructed
user entity profiles. Next, we look at a location entity profile based travel recommendation system, where
we fuse social and sensor data corresponding to a location.

e Pervasive web and social networks are becoming part of everyone’s life. Users through their
activities on these networks are leaving traces of their personalities. With the advances of content
mining and modeling techniques it should be possible to profile the user entity. In this work we
explore various techniques for summarizing a users online presence. In this work we show that
one of the advantages of maintaining a user profile is to provide a context for understanding the

short texts, and help in better understanding of microposts. Our contributions are:

— We present a number of state-of-art techniques in order to extract the main topics of the
content published by a user on his online social networks.

— The merits and demerits of each of the entity profile creation are presented.

— Dataset specific to evaluate the entity profile is created and evaluated.
10
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— Using the user-specific profile we present the enhanced named-entity recognition in Twitter

context.
— In TripEneer (User social profile based travel plan recommendation) :

* We profile both the user-entity and location-entity (travel destinations) and present var-
ious ranking schemes which allow the user to choose his travel destinations easily and

efficiently.
* We present a scalable user-based travel plan recommendation system.

* Our application enables the user to choose his places of interests easily and efficiently

compared to the current systems.

e As mobile cloud computing facilitates a wide spectrum of smart applications, the need for fusing
various types of data available in the cloud grows rapidly. In particular, social and sensor data
lie at the core in such applications, but typically processed separately. This work explores the
potential of fusing social and sensor data of a location entity in the cloud, presenting a practice—a
travel recommendation system that offers the predicted mood information of people on where and
when users wish to travel. The system is built upon a conceptual framework that allows to blend
the heterogeneous social and sensor data for integrated analysis, extracting weather-dependent
people’s mood information from Twitter and meteorological sensor data streams. In order to handle
massively streaming data, the system employs various cloud-serving systems, such as Hadoop,
HBase, and GSN. Using this scalable system, we performed heavy ETL as well as filtering jobs,
resulting in 12 million tweets over four months. We then derived a rich set of interesting findings
through the data fusion, proving that our approach is effective and scalable, which can serve as an

important basis in fusing social and sensor data in the cloud. We make following contributions:

— We present techniques to extract the social metrics of a location based on the real-time tweets.

— A scalable system is presented for fusing the social metrics with sensor metrics of a location,

and providing the user with enhanced contextual information.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: Chapter [2] presents a survey of literature related to
research challenges addressed in this thesis work. In Chapter [3] we address the problem of Entity Res-
olution of the mentioned person-names in web-documents. We present a generic framework in which
(a) abstract similarity functions that capture the degree of belief about the equivalence of two entities
mentioned in unstructured documents, can be defined; (b) results from various similarity functions are
combined; (c) efficient ER techniques can be designed by using the results from graph modeling and
machine learning. Accurately constructing the context around the entity mention directly impacts the
performance. Next, in Chapter ] we address the problem of retrieving short messages/microposts con-
taining entity mention that actually matches with a specific entity . Microposts being short messages
contain little or no-context, thus making it a challenging problem. The proposed solutions focus on rich
construction of the entity profile. We also demonstrate Tweetspector (in Section [4.8): a prototype for
entity-based classification of tweets. Chapter []is about user entity profiling, where we discuss several
11
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techniques for accurately constructing a user profile based on the users presence on a number of social
networks. We additionally demonstrate TripEneer: Travel recommendation system based on user entity
profile. Chapter [6] presents social and sensor data fusion of a location-entity in the cloud. Finally we

summarize the conclusions and discuss the future work in Chapter [7]

1.5 Selected Publications

This thesis is based on the following several research papers that were published during the course of

this work.

e S.R. Yerva, Z. Mikl6s, and K. Aberer, “Towards better entity resolution techniques for Web doc-
ument collections,” in Ist International Workshop on Data Engineering meets the Semantic Web
(DESWeb’2010) (co-located with ICDE’2010), Long Beach, California, 2010.

e S. R. Yerva, Z. Miklos, and K. Aberer, “It was easy, when apples and blackberries were only
fruits,” in Third WePS Evaluation Workshop: Searching Information about Entities in the Web,
CLEF (Notebook Papers/LABs/Workshops), Padova, Italy, 2010.

e S. R. Yerva, Z. Miklos, and K. Aberer, “What have fruits to do with technology? The case of
Orange, Blackberry and Apple,” in International Conference on Web Intelligence, Mining and
Semantics (WIMS 2011), p. 48, ACM, Sogndal, Norway, 2011.
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Chapter

State of the Art

If I have seen farther, it is by
standing on the shoulders of giants.

Issac Newton

2.1 Introduction

In this chapter, we present the state-of-the-art work related to the thesis in detail. We mainly review
the works related to the entity related problems: Entity Resolution, Entities in Twitter streams, and User
Entity Profiling. Entity Resolution is an important problem and it appears in many scenarios, thus, has
received significant attention over last 20-30 years. First, we present how Entity Resolution problem was
addressed in databases and citations domains, next we also look into number of differences among these
approaches, and finally how it is addressed for web document collections in a scalable and distributed
manner.

With the popularity of social networks, micro-blogging platforms and e-commerce, more and more
relevant data is becoming accessible on the Web. We review various research efforts which mined these
real-time data — with special emphasis on twitter data containing entity mentions. After covering the
works related to generic entities on the Web and Twitter streams, we shift our focus on modeling the
most important entity i.e. the user entity. We present a number of works which have modeled the user
and number of applications that have benefited from the user models. Further we present works related

to information fusion based on the location entity.

2.2 Entity Resolution

Entity Resolution (ER) is the problem of identifying and merging entity mentions, appearing in database
records or documents, referring to the same real-world entity. It has received significant attention in the
literature over last 20-30 years. It is an important problem in the domains that involve data cleansing
[M;03]] and information integration [HS09]. Some ER motivating examples include: linking census
records, public health records, comparison shopping, counter terrorism, spam detection, web mashups,
linking paper citations, etc.
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Entity Resolution is the problem of identifying and merging entity mentions, appearing in database
records or documents, referring to the same real-world entity. This is a challenging task owing to a
number of reasons.

1. Variations in text representations: A single entity, for example a person entity: Michael Jordan,
could be named in various ways: M. Jordan, Michael J., Michele Jordan, etc. There could be
number of reasons for such variations: convention used by the content publisher, typographical
errors, impromptu acronyms, colloquial usage, etc. Since it is essential that ER algorithms should
handle such text variations, it is hardly a surprise that the string similarity functions form a core
component of the ER techniques. String similarity functions can be broadly grouped into: Edit
Distance based: Jaro [Jar89| Jar95|], Wrinkler [Win99|], Monge & Elkan [ME96, ME9/]; Set
similarity based: Jaccard, Dice, etc.;Vector based: cosine similarity, tfidf, etc.; miscellaneous:

phonetic based soundex [Zob96], fuzzy matching similarity [CGMO3].

2. Non standardization: Since there is no standard agreed-on notation for representing the informa-
tion, various conventions are used by various publishers. Usage of acronyms, short forms, etc.,
are some of the reasons which make Entity Resolution a tough problem. A person name could
be represented as first name, or last name, or some combination of first and last name; address
of a location could be represented in multiple ways; attribute names could be used differently at
different places; the same date could be represented in multiple formats. The ER techniques rely
on converting an entity mention to certain standard format, and make comparisons in this standard

format. ER algorithms could rely on schema alignment and schema matching techniques.

3. Missing Values and Missing Context: Many of the real world entities could have same entity
mention names, which is also one of the reasons for ER being a challenging task. A person name
like Michael Jordan could refer to the popular basket ball playelﬂ or the famous Machine Learning
researchelﬂ or some other person entity. So, it is difficult to identify who the real entity is until
more information is available. It is essential that an entity mention will be resolvable only when
the context around entity mention is clear. Many ER techniques have been proposed which vary in

how they handle the context during the disambiguation process.

4. Uncertainties and Constraints: The ER algorithms should be robust enough to handle inherent un-
certainties in the entire process. Uncertainties could arise due to automatic error-prone techniques,
errors in data preparation steps, threshold deciding steps, missing attributes, etc. A number of
simple constraints may fail. For example, when record M; matches with My, record Ms matches
with M3, but M, does not match with M3 according to an ER technique. ER techniques should be
clever enough to handle such conflicts by enforcing the constraints.

5. Big Data: Given the deluge of data, there is a need for efficient ER techniques that can exploit par-
allelism and use pruning techniques to keep lower computational costs . Given the recent advances
in handling big-data via the map-reduce technologies, there is need for adapting ER techniques
than can make use of map-reduce frameworks. With larger data comes additional challenges of:

dealing with heterogeneous data (unstructured, semi-structured, unclean, and incomplete data);

"Basket ball player: |http://en.wikipedia.org/wiki/Michael_Jordan
*Machine Learning and AI Researcher: http://en.wikipedia.org/wiki/Michael_I._Jordan
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2.2 Entity Resolution

additionally infer links and relationships besides equality among entities; and additionally deal

with multi-domain data.

Al community has proposed different models for representing knowledge. [IY94] provides the
information processing with a theoretical foundation. The four basic notions of this model are data,
information, knowledge and wisdom. The model defines transformation from one notion to another
as similar to humans gaining information from data, knowledge from information, and wisdom from
knowledge. The current computer systems mimic these transformations. It refers to this transformation
as entropy reduction process. The process of entity resolution can be seen as an important step in entropy

reduction process.

ER Variations and Techniques

ER is the problem of identifying and grouping different manifestations of the same real world object.
The Entity Resolution (ER) problem or similar variations have been referred to in literature as record
linkage [Win99|], merge/purge [HS93], reference reconciliation [DHMOSI], de-duplication [SB02], refer-
ence matching [MNUOQQ], object identification [TKMO2||, co-reference resolution [SNLO1]] and identity
uncertainty [MWO3]].

Record Linkage [KSS06] is the problem of linking records that refer to the same entity across data
sources (e.g., data files, books, citations, websites, databases). It is a challenging task as these different
records may not share a common identifier like URI, database key, or unique id, etc. Reference reconcil-
iation [DHMO3] is the problem of identifying when different references (i.e., sets of attribute values) in
a dataset correspond to the same real-world entity. De-duplication [SB02] corresponds to clustering the
records or documents, containing entity mentions, based on the same entity. Each such cluster would be
representative of that real world entity. Reference matching [MNUOQO], another variation of ER, refers to
the problem of linking noisy records to clean records in a reference table.

The research efforts in the field of entity resolution have been at different levels. Research efforts
were proposed to formalize the theory by providing mathematical models [FS69, BGMM™09]. New-
combe et al. [NKAJ59] are among the first who introduced odds ratios of frequencies and decision rules
for delineating matches and non-matches. Fellegi and Sunter [ES69|] provided mathematical models that
define the odds ratios of frequencies as R. Given the thresholds, they propose a decision rule which de-
cides if two records are matching, non-matching or are uncertain, based on the relation of R with respect
to the defined thresholds. The models proposed in these papers form a central part of many modern ER
techniques proposed in literature.

On other side, efforts were put in to solve the entity resolution problem by coming-up with techniques
that are computationally efficient, accurate, results and rules interpretable by humans, and scalable. Ear-
lier solutions to the entity resolution problem were based on the closeness/similarity of the attributes of
the entities. As majority of the attributes are of string format, many efficient string matching algorithms
[[CohO1]] [CRFO3] were proposed. Further ER solutions were based on manually set rules as in [HS93].
Subsequent work focused on learning the rules [TKMO02] [SBO2]. Some works used clustering as a forte
in their ER algorithms. All the ER techniques can be seen as pairwise ER (comparing records in pairs) or
collective ER (the whole dataset is resolved by the use of clustering techniques). Techniques and results
from machine learning are applied extensively to the entity resolution problem.
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Matching and merging functions [BGMM™09] are two important abstract functions of the many
generic ER techniques. Clever matching and merging techniques have been proposed. Again, the focus
was making these functions easily applicable and computationally efficient on the dataset at hand. In
the paper [BGMM™09] these functions are considered as black boxes. The calls to these black boxes
are usually expensive. So, the focus of the proposed swoosh algorithms was to make calls to these
functions as less as possible. Authors identify four core fundamental properties: ICAR (Idempotence,
Commutative, Associative, and Representativity). Efficient algorithms were proposed depending on the
properties that “match and merge” functions satisfy. Some research efforts have focused on incorporating
constraints in their ER techniques to avoid inconsistencies and identify participating source trustfulness.

In the following sections we look, in depth, into these different efforts. We discuss pairwise vs
collective ER techniques in Section[2.2.1] constraints-based ER in Section[2.2.2] big-data and distributed
ER in Section [2.2.3] and finally in Section [2.2.4] we present techniques specific to ER for web documents

2.2.1 Pairwise vs. Collective ER

The ER techniques proposed in literature can be broadly classified into two categories: pairwise ER and
collective ER, depending on whether the pair of records are compared and decided if they refer to the
same entity or if the decision is made on collection of records. Pairwise ER techniques typically involve
comparing two records, and based on the component-wise similarities of the comparison vector decide
if the two records match or do-not-match. These techniques could rely on hand coded rules, manually
set thresholds, or the thresholds decided by the use of machine learning approaches. Fellegi and Sunter
[ES69] were one of the first to formalize this approach, which has formed the basis for many works that
followed.

Machine Learning (ML) approaches were extensively used in pairwise matching ER algorithms
mainly to decide the weights for individual components of the comparison vector and in deciding the
suitable thresholds for separating matches from non-matches. Machine Learning techniques like De-
cision Trees [CKLSO1]], SVMs [BMO03, |ChrO8]], ensemble of classifiers [CKMO09], conditional random
fields [GSO9], etc., have been used for solving pairwise ER problem. Even though the ML based tech-
niques are more effective than hand coded rules, their efficiency is dependent on the availability of the
training sets which usually involves a significant cost to obtain. Further, one has to deal with class im-
balance problem. It is quite common to have many more negative examples (non-matches) compared to
positive examples (matches).

A number of techniques have been proposed either to avoid the supervised training sets, or to mini-
mize the number of trained examples, or to employ crowd sourcing for creating training sets. Alternatives
to the above supervised learning ER techniques include unsupervised or semi-supervised techniques like:
Expectation Maximization (EM) based techniques to learn parameters [HSWO07, WWP06|] and Genera-
tive Models [RC04].

Active learning is a supervised machine learning technique where the learning algorithm is able to
interactively query the user (or other information source) to obtain the desired output for selected exam-
ples. It is ideal for situations in which unlabeled data is abundant but manually labeling it is expensive.
Since the learner chooses the examples, the number of examples to learn a concept can often be much
lower than the number required in normal supervised learning. Active learning is used in ER works
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like: learning from a committee of classifiers [SB0O2, [TKMO02|], ER techniques based on optimizing pre-
cision and recall [AGK10, BIPR12, BHLZ10], using crowd sourcing for labeling selective examples
[WKFF12, MWK 11].

Deduplication [SBO2]] similar to ER, aims at detecting and eliminating duplicate records that refer to
the same entity. Traditional systems perform deduplication by use of hand-coded functions or rules coded
by the domain expert. This task is challenging and non-trivial. The paper argues the need for automa-
tion/machine learning techniques. Machine learning techniques involve designing a classifier with the
use of training data. The quality of the training set decides the effectiveness of the classifier. This paper
proposes efficient Active Learning technique, which would identify decision rules for deduplication.

Collective ER techniques make resolution decisions on a group of records rather than each pair of
records. These algorithms often employ variety of clustering algorithms for grouping records, which
may take pair-wise similarity graph as input. Some of the frequently used cluster methods for ER in-
clude: hierarchical clustering [BBSO35], nearest neighbor based clustering [CGMOSJ]], correlation cluster-
ing [SNLO1, BBC04, NC02! [ECO8, [ES09,IACNOS], etc. It may also require construction of a cluster rep-
resentative or canonical entity representing the cluster with maximal information [BGMM ™09, DBES(9,
CWH™ 07, PRMB12].

Collective ER decides on a collection of records by placing similar records, that could potentially
refer to the same entity, in the same cluster. These techniques progress either by joining clusters or
breaking existing clusters depending on the seen evidence. Decisions for one cluster membership tend
to depend on other clusters. As in paper citations, where the records contain attributes about authors,
paper, conference, and venue, it is often necessary that two author attribute mentions refer to the same
author when the paper titles match or when the conferences are same. Similarly two paper citations may
refer to the same paper despite the variations in the titles when the authors and conference attributes
match. The proposed ER techniques uses one of these approaches for cluster-membership decisions: a)
Non-probabilistic approach: similarity propagation [DHMOS]; b) Probabilistic approaches: generative
models [BGO6]] and undirected models [MWO3l; and ¢) Hybrid approaches [SLD05,|[ARS09].

Similarly propagation algorithms work by defining a graph which encodes the similarity between en-
tity mentions and matching decisions, and compute matching decisions by propagation similarity values.
Reference reconciliation paper [DHMO3] considers entity resolution in complex information spaces. The
proposed techniques along with similarity in one class or domain, also take into account the relations of
entities in other classes or domains. The proposed algorithm involves identifying associations between
entities, propagating the associations discovered in order to accumulate positive and negative evidences
for other entities, thus leading to further associations or dissociations of other entities. They keep track
of negative constraints enforcement and fix any resulting inconsistencies. Collective relational clustering
[BGO7| after constructing attribute and relational similarity graph, make use of hierarchical agglomera-
tive clustering to merge clusters of mentions. When clusters are merged, all the related clusters similarity
values are updated and propagated. Domain independent data cleaning [KMO6] makes use of blocking
for finding the initial bootstrap clusters. They repeatedly find closest cluster pair and merge them to form
a bigger cluster if no constraints are violated. All these similarity propagation approaches can make use
of probabilistic models locally, but there is no global probabilistic model. Thus these techniques are
often found to be more scalable.
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Collective ER techniques based on probabilistic approaches aim to model a global probabilistic
model for making the decisions. The generative models (LDA-ER [BG06], Bayesian Networks [PMM™03]])
aim to model dependencies between match decisions in a generative manner. The disadvantage of gen-
erative models is that it requires the underlying similarity graph to be acyclic. Undirected probabilistic
approaches rely on Markov networks based probabilistic semantics. Many of the traditional ER tech-
niques make the assumption that two records are pairwise independent, and fail to exploit the correla-
tions for identifying the further resolutions. The paper [MWO3|], foregoing this assumption, makes use of
undirected graphical models to introduce several discriminative, conditional probability models for en-
tity resolution. The conditional models help in incorporating a great variety of features of input without
being concerned about their dependencies. Other examples of undirected probabilistic approaches can be
seen in Markov Logic Networks based ER [SDO6]], where in the constraints can be defined declaratively
based on first order logic syntax; and probabilistic similarity logic based ER (PSL) [BMG10].

Constraint-based ER approaches explicitly encode relational constraints. Hybrid approaches help in
formulating these constraints as an hybrid of constraints and probabilistic models or as a constraint opti-
mizing problem. Constraint-based Entity Matching [SLDOS|] and Dedupalog [ARSQ9]] are two examples
where the constraints are specified as probabilistic graphical models. In summary, the similarity propa-
gation approaches often scale better than the probabilistic models but are often cumbersome to specify.
The probabilistic models are often expensive but easier to specify. Making these techniques scalable is

an active research area.

2.2.2 Constraints based ER

Constraints play an important role in the ER. They not only help in reducing the complexity, but also
avoid inconsistencies. We explain some of the important forms of constraints with which ER algorithms
deal below.

Consider M7, Ms, M3, and M, to be entity mentions in a dataset, which may or may not refer to the

same entity.

1. Transitivity: If M; and My match, M> and M3 match, then M; and M3 match. Similarly, if M,
and Ms match, Ms and M3 do not match, then M7 and M3 do not match.

2. Exclusivity: If M; and M5y match, then Ms and M3 cannot match. Likewise, if M; and M5 do
not match, then M5 and M3 can match.

3. Functional Dependency: When M; and M> match, then M3 and My must match. Similarly, if
M; and M5 do not match, then M3 and My cannot match.

The above discussed are generic constraints. However, there could be many domain specific con-
straints. Constraint ER paper [SLDO05] discusses a number of semantic integrity constraints specific to
ER in paper citations records. Some such semantic constraints include: Aggregate Constraint: No re-
searcher has published more than five AAAI papers in a year; Incompatible constraint: No researcher
exists who has published both HCI and numerical analysis; Ordering Constraint: If two citations match,
then their authors will be matched in order; etc.

In [FanO8]], the authors propose a class of integrity constraints for relational databases, referred to as
conditional functional dependencies (CFDs), and study their applications in data cleaning. In contrast to
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traditional functional dependencies (FDs) that were developed mainly for schema design, CFDs aim at
capturing the consistency of data by enforcing bindings of semantically related values. Their work not
only yields a constraint theory for CFDs but is also a step toward a practical constraint-based method for
improving data quality.

Chauduri et al. in [[CSGKO7|] show that aggregate constraints (as opposed to pairwise constraints)
that often arise when integrating multiple sources of data, can be leveraged to enhance the quality of
deduplication. However, despite its appeal, they show that the problem is challenging, both semantically
and computationally. By defining a restricted search space for deduplication that is intuitive in the con-
text, they solve the problem optimally for the restricted space. Their experiments on real data show that
incorporating aggregate constraints significantly enhances the accuracy of deduplication.

Robust identification of fuzzy duplicates [ACG02,(CGMOS] proposes a new formulation for duplicate
elimination problem based on two properties namely: Compact Set (C'S) and Sparse Neighborhood
(SN), that characterize the duplicate tuples. It is intuitive to add additional constraint predicates to
their framework. They show that their formulation has several desirable characteristics under intuitive
transformations to distances between tuples.

Probabilistic approaches discussed above in Collective ER Section [2.2.T]are also capable of model-
ing and propagating the constraints. Constraint-based entity matching [SLDO0S5]] describes a probabilistic
solution that exploits integrity constraints that frequently exist in the domains, to improve the match-
ing accuracy. The paper describes a novel combination of EM and relaxation labeling algorithms that
efficiently learns the generative model, thereby matching entities in an unsupervised way. Correlation
clustering techniques [ACNOS8|| address optimization problems in which contradictory pieces of input
information are given and the goal is to find a globally consistent solution that minimizes the extent of

disagreement with the respective inputs.

2.2.3 Big Data and Distributed ER

When matching records from two databases, one approach needs each record from one database be
compared with all records in the other database in order to determine if a pair of records corresponds
to the same entity or not. When de-duplicating a single database, each record potentially needs to be
compared with all others. The computation complexity of data matching therefore grows quadratically,
i.e. O(N?), as the databases to be matched get larger. On the other hand, the number of potential true
matches (i.e. pairs or groups of records that refer to the same entity) only grows linearly, i.e. O(N),
with the size of the databases to be matched. If it is assumed that the databases to be matched do not
contain duplicate records, then the maximum possible number of true matches is limited by the size of
the smaller of the two databases.

The second approach of keeping computational costs low becomes critical when dealing with large
data sizes. This computational challenge is addressed by techniques like blocking or canopy generation,
that aim to efficiently and effectively remove record pairs that likely do not refer to matches, while
selecting candidate record pairs for detailed comparison and classification that likely will be matches. For
example, when we look into customer records in a database, it is mostly likely that customer records with
different cities will not refer to the same customer. In such a case an efficient blocking technique would
be city-based. Only records falling in the same canopy (blocking criterion: city) need to be compared,
where-by avoiding comparing records that fall in different canopies, thus reducing computational cost
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significantly. Examples of simple blocking keys include: first four characters of last name, City +
State + Zip, ngrams, etc. More complex blocking functions are explored as: conjunction of simple
functions [MKO06, [ BKMO6], chain trees and blkTrees [DSJMB12].

Hash-based blocking works by assigning a hash key (h;) to each canopy (C;). A record r is as-
signed to C; if hash(r)=h;. So, each hash value results in disjoint blocks. All pairs within a block are
compared, while pairs across canopies are never compared, thus keeping computational costs low. The
hash functions could be deterministic function of attribute value or combination of attribute values. They
could also be boolean functions over attribute values as used in [BKMO06, MKO06, DSJIMB12]. Another
popular technique is MinHash technique [BCEM9S|]. MinHash or the min-wise independent permu-
tations locality sensitive hashing scheme is a technique for quickly estimating how similar two sets are.
It has been used in search engines to detect duplicate web pages and eliminate them from search results
and also been used in large-scale clustering problems, such as clustering documents by the similarity of
their sets of words.

Pairwise similarity or nearest neighborhood is one other way of blocking, where in nodes (records)
according to similarity metric are clustered together and grouped into non-disjoint canopies. The merge-
purge problem in [HS935]], which is about merging data (large scale) from multiple sources in as efficient
manner as possible, while maximizing the accuracy, makes use of sorting for ordering all its records, by
which similar records fall in the same neighborhood, followed by clustering techniques for finding the
canopies. The sorted neighborhood is very expensive because of sort step involved. While clustering is
good but does not have high accuracy. The authors propose a novel approach called multi-pass approach
which performs well computationally and achieves better accuracy. In this approach, merge-purge pro-
cess is done multiple times over small windows followed by the computation of transitive closure.

Canopy clustering is one other blocking technique. Applying exact clustering techniques on the com-
plete dataset is expensive. Using canopy clustering the data sets are cheaply partitioned in to approximate
overlapping subsets (canopies) and the exact clustering techniques are now applied on the canopies, thus
keeping computational cost low. The paper [MNUOO|| proposes efficient clustering techniques even when
the datasets are huge, have high dimensionality and the target number of clusters are huge. The proposed
technique involves two steps. In the step one, the data is partitioned into canopies based on a simple
metric (which is computationally less intensive). The so formed canopies can be overlapping. In the sec-
ond step, more sophisticated metrics can be used to cluster the data in the canopies independently. The
important gain in this approach is that data points across canopies need not be compared, thus reducing
the computation cost significantly.

ER for big-data efforts include extending the existing algorithms or creating new ones that could be
done in a distributed manner. MapReduce [DGO04], proposed by Google and popularized by Hadoop
[Whi09]] community, is a simple programming model for processing large datasets with a parallel, dis-
tributed, and fault tolerant algorithm on a cluster. The large datasets are distributed across cluster of
nodes. MapReduce framework is efficient for tasks that can perform computations locally on the nodes
and keep data exchange across nodes to the minimum. MapReduce involves two important phases on
Map and Reduce. Distributed ER techniques work well with disjoint blocking techniques, such as:
hash-based blocking [VCL10], distance-based canopy clustering on map-reduce [Mabhl], iterative block-
ing [WMK™09]. These disjoint blocking techniques can be implemented in Map phase and are useful
in localizing the blocks; however, the remainder of the ER algorithm that is implemented in Reduce
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phase, needs information from multiple reducers. Computing connected components among canopies
[KTFO09, RMCS12] with message passing [RDG11]] in addition to blocking aid in realize distributed ER.

Recent efforts in ER have been extending the algorithms to distributed systems. IdMesh [CMO07]]
tackles the problem of managing identities on the web. The authors describe a decentralized infrastruc-
ture supporting efficient and scalable identity management and demonstrate the practicability of their

approach in a deployment over several hundreds of machines.

2.2.4 Entity Resolution for Web Documents

We have seen a number of techniques that address the ER problem in databases and citations domains.
As we concern ourselves with solving Entity Resolution problem for web document collections, the ER
techniques proposed earlier for DB and citations domain do not apply readily. Web document collections
pose a number of challenges, mainly because the web data , we are interested in, is unstructured. As most
of the proposed ER techniques work on structured records, they fall short when they are applied to web
documents. In this section, we look into number of research efforts addressing the ER problem for web
based records.

The paper [MBGMO0] presents a pairwise comparison-based method, where the authors consider
confidence values during the resolution process. They propose to merge database records, which refer
to the same entity, right away, as they are found to be equivalent by the algorithm. The algorithm also
computes a new combined confidence value for the merged record. A more complete analysis of results
can be found in [BGMM™(9], where the authors also study, how to chose the sequence of the records
to be processed, such that the running time of the algorithm remains low. Chauduri et al. [CGMO3]]
introduce a model for detecting fuzzy duplicates in databases. They extended their model also to a more
general setting in [CSGKO7]. Their paper is particularly important from methodological point of view,
as they systematically derive their entity resolution algorithms from an axiomatic model. Unfortunately
their model cannot be easily extended to the Web context because the properties of similarity functions
for entities in Web documents do not show the same properties as in the case of fuzzy duplicates, so the
basic assumptions of their model are not satisfied.

A number of commercial tools are available for duplicate records elimination in databases domain.
Some examples include: SQL Server ToolsE] (Microsoft), DataBladeE] (IBM), ETI* DataCleanelﬂ (ETD),
Trilliunﬂ WizRul (WizSoft), ChoiceMake etc. Refer to [BGOS] for an extensive survey on data
quality commercial tools. As these tools are developed in the context of (relational) databases, they are
ill-equipped to deal with the similar problem in web documents collection.

Kalashnikov et al. [KMO6] study Entity Resolution in Web context. They propose to create an entity
resolution graph using the feature-based similarities. The graph witnesses the uncertainty of the features
by having multiple nodes, the so called “choice nodes” are corresponding to possible references to a
given entity. The authors apply heuristic graph measures to measure the connectedness of entities. The

underlying idea behind their heuristic is the “context attraction principle”: if two entities are related

3http://www.microsoft.com/en-us/sqlserver/default.aspx
*http://www.ibm.com/software/data/informix/
Shttp://www.eti.com/
Shttp://www.trilliumsoftware.com/
"http://www.wizsoft.com/
8http://sourceforge.net/projects/oscmt/
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then it is likely that there are multiple chains in the entity resolution graph between their correspond-
ing nodes. The authors further improved their techniques in [KCMNOSJ|. In [KCMNOS8] and in many
other approaches, such as for example in [DHMOS], the authors consider a more complex graph, which
captures more complex relations rather than the similarities between the entities as in our work. In this
thesis, as we show in Chapter[3] we limited ourselves to a simple representation and to focus the issues in
this simpler case, our framework could be later extended to a more complex setting. Their work and their
use of context information in [KMO6] is a similar technique to our quality-aware similarity assessment
technique. We rely on different features, which are also easier to estimate.

IdMesh authors Cudré-Mauroux et al. [CMHJT09] take a different approach to entity resolution in
the Web context. They propose a graphical model-based probabilistic framework to capture the relations
among the entities. Their framework also includes trust assessments about the providers of the entity
equivalence assertions. These trust assessment values are later adjusted as their probabilistic reasoning
framework eliminates the detected inconsistencies. While this approach has many advantages, it is not
fully applicable to our case, as the underlying factor graph model would have very large cliques, as
subgraphs, which could easily lead to poor convergence of the probabilistic reasoning.

In certain cases, person names appearing on Web pages might be annotated with a globally accepted
ontology. This direct link between the person names and the ontology helps to disambiguate the person
names. However, such globally accepted ontologies are not present in the emerging Semantic Web. In-
stead, ontologies are very often used as local schema, thus one needs to relate the existing annotation
to an ontology one would like to use. The Semantic Web community has developed a plethora of such
techniques, see [ESO7]. The OKKAM project suggests a different approach [BPSVQ9]; they propose
an Entity Naming Service (£ N .S), which provides globally unique identifiers for entities on large scale,
for (Semantic) web applications. Their approach relies on the existence of a large and clean (i.e. re-
solved) collection of entity profiles. Entity profiles collect relevant attributes of real world entities. Our

techniques proposed in this thesis can contribute to create or extend such an entity profile collection.

Combining classifiers

Many of the ER techniques relevant to web domain make use of multiple classifiers that are based on
multi-set features; they also need to employ sophisticated techniques to combine the decisions from such
multiple classifiers. Combining multiple classifiers is studied extensively in the machine learning and
data mining communities [SE10]. We make use of such techniques in ChapterE] when addressing the
ER problem for Web documents. In summary, these techniques can be broadly divided into two main

categories:

1. Classifiers Fusion: In which the final decision on a sample point is based on the fusion of decisions
of individual classifiers, in some sense similar to achieving consensus. Examples include majority

voting, weighted voting.

2. Dynamic Classifier Selection: In this scenario, the decision of one of the classifier is chosen as
the combined decision. Here, the classifier is chosen based on which classifier best represents the
sample point.
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The combination of classifiers rely on dividing the sample space into regions, and estimating the
accuracy of the participating classifiers in each of the sample regions. Various works like [WKB97,
LYO1, [SGC02, ICKMO09, BMO03\, [ZR0S, BGBO8] propose different ways of defining these regions, and
present simple to sophisticated ways of combining the decisions of various participating classifiers. We

discuss their approaches in detail and contrast our work in Section [3.6]

2.3 Entities in Twitter like Micro-blogging Platforms

Twitter kind of microblogging services allow people to publish, share and discuss short messages on
the Web. On average, Twitter users publish more than few hundred million tweets per dayﬂ Given the
tremendous growth of such microblogging platforms in the recent years, it has undoubtedly attracted
great interest from both industry and academia. Many public and private organizations have started to
monitor Twitter streams to collect and understand users’ opinions about the organization entities. With
the popularity of social networks, where people express themselves on these networks, many organiza-
tions, sports teams, TV shows, etc., are interested in mining these networks and provide real-time social
pulse related to their products.

Given the huge amount of data that is produced on these social networks, it is essential to correctly
identify subset of the data that is relevant to the entity one is interested. Even though this data is publicly
accessible, nevertheless, the noisy and short-context-less nature of the tweets brings in new challenges.
The ER techniques discussed earlier perform poorly when applied directly on Twitter kind of data. In
the following Section [2.3.1) we see number of research works that are based on mining of the Twitter
data. Next in section Section we discuss the efforts concerning extraction of useful information
(sentiment metrics) from social networks like Twitter. Finally in Section we present works that

have explored entity related classification of Twitter data.

2.3.1 Mining of Twitter Data

Twitter has seen exploratory growth in last few years. Due to which the Twitter data is of interest
in many research works for a number of reasons. While some works [ZJW ™11, (GAHY12, JZSC(09]
were interested in understanding how this new media is in comparison to the other forms of exist-
ing media (news channels, news websites, etc) and social networks, others [GAC™10] were interested
in modeling information propagation and temporal dynamics in this new medium. Some other works
[WHMW 11, |IAGHT11, HMOS12|] were interested in understanding users’ behavior and usage patterns
in Twitter, while some others [SSTT09, [PP10] were interested in assessing the sentiments and opinions
of the Twitter users. Other class of works include adapting tools (extracting entities, inferring topics,
etc.) that are applicable to document collections to twitter kind of data.

One of the challenges we deal in this thesis work is the task of Entity Matching of tweets, where we
are interested in classifying a tweet message with respect to an entity (see Chapter[d). Also at the core of
many of the above works, lies the problem of classifying tweets with respect to a criteria. We give brief
overview of such works which need to address the classification of tweets problem. Some of the relevant
works include [SFD™10], TwitterStand: news in tweets [SST09], Twitter as corpus [PP10], tweets as
electronic word of mouth [JZSC09], etc.

“http://articles.washingtonpost.com/2013-03-21/business/37889387_1 _tweets-jack-dorsey-twitter
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The authors of information filtering in Twitter [SFD™ 10, take up the task of classifying the tweets
from twitter into predefined set of generic categories such as News, Events, Opinions, Deals and Private
Messages. They propose to use a small set of domain-specific features extracted from the tweets and the
user’s profile. The features of each category are learned from the training set.

In TwitterStand [SSTT09], the authors have built a news processing system based on Twitter. They
built a system that identifies messages from Twitter streams that correspond to late breaking news. Some
of the issues they deal with are: separating the noise from valid tweets, forming tweet clusters of interest,
and identifying the relevant locations associated with the tweets. All these tasks are done in an online
manner. They also build a Naive Bayes classifier for distinguishing relevant news tweets from irrelevant
ones. They represent intermediate clusters as a feature vector, and associate an incoming tweet with
cluster if the distance metric to a cluster is less than a given threshold.

Discovering of geographical topics from Twitter streams is explored in [HAG™12]]. The work pro-
poses a unified model for diversity in twitter considering the topical diversity, geographical diversity and
user interest diversity. They make use of sparse generative techniques for the unified model. Using this
unified model they are able to predict accurately the geographical location based on the tweet message.
They are also able to uncover the topics for different locations. The paper [TKW 10] proposes a technique
to retrieve photos of named entities with high precision, high recall and diversity. The innovation used is
query expansion, and aggregate rankings of the query results. Query expansion is done by using the meta
information available in the entity description. The query expansion technique is very relevant for our
work, it could be used for better our entity profile creation techniques, which we present in Chapter [4]

The authors of short messages clustering [PTPCR11]], address the problem of company identification
in the micro-blogs by resorting to clustering techniques as a parallel approach to designing classifiers.
They propose techniques to improve the representation of a twitter message through term expansion, in
a process to enrich the semantic similarity hidden behind the lexical structure.

Identifying relevant tweets for Social TV [DFDI11] look into similar problem —classifying tweets
with respect to an entity— in a different setting. They address the problem of filtering twitter messages
for Social TV purposes. They are concerned if a tweet message is about some popular TV show (Lost,
Survivor, Friends etc). Their approach, somewhat similar to the approach we propose in Chapter [} is
of bootstrapping a model with smaller training set, developing a more sophisticated model using large
dataset of unlabeled messages and further using domain specific features to obtain a final classifier.
However, their focus was on developing a generic classifier that can be used on any unseen TV show in

the training set.

2.3.2 Sentiment Extraction from Twitter Data

Sentiment analysis and opinion mining based on the user generated content is studied in various research
efforts [DPH™ 09| [Tur02] PLV02, [HL04, IGSS07]]. User written reviews based sentiment analysis can be
seen in [[Tur02, [PLVO02, IHLO4]. Authors of product-reviews sentiment mining [HLO4|| perform feature set
based sentiment analysis. They extract product specific features from the review texts using Noun-Noun
phrases, and compute sentiment metric along each feature. While the product-reviews work [[TurO2[
uses adjectives and adverbs for performing opinion classification of the product reviews. They employ
Pointwise Mutual Information - Information Retrieval (PMI-IR) algorithm for estimating the sentiment
orientation of the phrases. Where as in [PLVO02], the authors tested various machine learning algorithms
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on Movie Reviews. In [DPH"09], Dray et al. instead of generic adjective based sentiment analysis, they
made use of domain specific adjectives to perform sentiment analysis. They observed that predefined
lexicon fails to capture domain specific information. Each blog-post is classified as positive, negative or
neutral using the classifier that is built for the domain of the blog post. Godbole et al. [GSSQ7|] present a
system that assigns scores indicating positive or negative opinion to each distinct entity in the text corpus.
Their system consists of a sentiment identification phase, which associates expressed opinions with each
relevant entity, and a sentiment aggregation and scoring phase, which scores each entity relative to others
in the same class. Finally, they evaluate the significance of their scoring techniques over large corpus of
news and blogs.

All of these promising works deal with larger texts, as they employ NLP tools developed for larger
text documents collections. They do not perform well when applied to shorter text messages like tweets.

Here we look into few works that performed sentiment analysis of Twitter data.

Mood analysis on tweets

Social-network services facilitate users to share their ideas, opinions, pictures, videos, news, and other
various forms of contents in the Web. Such social data typically contains highly valuable information,
aiding a wide range of applications; for example, allowing social scientists to understand human behav-
ior, companies to figure out their customers’ preferences, news agencies to identify significant news,
political analysts understanding the political pulse of the nation, etc. Previously, it was difficult to obtain
the rich set of social information, or required large amounts of laborious human efforts like conducting
surveys, interacting with the users. With the advent of Web 2.0, all this information is readily available,
leading to a variety of interesting research works.

One popular research line is to extract and analyze mood information from Twitter messages [MBB ™11,
BMZ10, Pul, TBP11, [PP10, IAXV™11]. In [MBB™11] micro-blogs are used for mood analysis, where
they present a method for associating mood to certain events. Their techniques help in summarizing
huge volumes of tweets w.r.t. the events. The TwitInfo system proposed by the authors, allows users to
browse a large collection of tweets using a timeline-based display that highlights peaks of high tweet ac-
tivity corresponding to the events. Similarly, the authors of Pulse of Nation [Pul] by extracting sentiment
information from Twitter messages are able to track the national mood. This study analyzed over 300
million tweets corresponding to the US region over a period of 3 years . They present the moods across
the country using different cartograms; and observe the variation of nation’s mood over 24-hour period
of a day and the days of a week.

Another study [BMZ10] tries to predict the impact of public mood expressed in Twitter messages on
the stock market, by investigating the correlation of moods inferred from large-scale twitter feeds with
the Dow Jones Industrial Average. They make use of mood tracking tools, namely, OpinionFinder (that
measures positive vs. negative mood) and Google-Profile of Mood States (GoPMS) that measures mood
in terms of 6 dimensions.

The authors of [TBP11] analyze Twitter messages in order to study why certain events resonate well
with the population. They assess whether surges of interest in Twitter are associated with heightened
emotions, by checking if the average sentiment strength of popular Twitter events is higher than the
Twitter average, or by assessing whether an important event within a broad topic is associated with
increased sentiment strength.
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Research works [PP10, JZSCO09|] make use of Twitter for the task of sentiment analysis. They build
a sentiment classifier based on a tweet corpus. Their classifier is able to classify tweets as positive,
negative, or neutral sentiments. The papers identify relevant features (presence of emoticons, n-grams,
hash-tags), and train the classifier on an annotated training set.

[LSSWI10,ICWS12[] use Twitter data, to study the political inclination of the crowd in order to predict
the outcome of US presidential elections. Where as in [AXV™11], the authors present a method for
tweet sentiment identification using a corpus of manually pre-annotated tweets. They also present a
sentiment scoring function which uses prior information to classify and weight various sentiment bearing
words/phrases in tweets.

We will show in Chapter [ that these works are complementary to ours. Our techniques, which iden-
tify the tweets relevant to an entity, could serve as an essential preprocessing step to these sentiment or
opinion analysis based works. The works we discussed in this section, which aid in sentiment extraction
from tweet messages, present tools & techniques that are useful in our social metric extraction task of
data fusion process (Chapter [6).

2.3.3 Entity-based Classification of Tweets: Approaches

Many works based on entity identification and extraction, for example in [BMOS], [CKMOQ9]], [KCMNOS],
[YMAI1Qb], usually make use of the rich context around the entity reference for deciding if the reference
relates to the entity. However, in the current work (entity-based classification of tweets), the tweets
which contain the entity references usually have very little context, because of the size-restrictions of
tweet messages. Our work addresses these issues, namely how to identify an entity in scenarios where
there is very little contextual information.

It is also common practice to use hash-tags (for example #apple) in the tweet messages, when users
intend to refer to a particular entity (#apple refers to Apple Inc. company entity). Facebook also in-
troduces hash—tagﬂ for linking topics and events discussed by its users. Works [LWH™ 12, MWL ™ 12]
have relied on hash-tags to filter-out messages corresponding to a particular entity. While this applies
to popular entities, it is not possible to use it for every possible entity. Also, not every tweet message
about the company entity makes use of the hash-tag, resulting in the system missing out many relevant
tweets. In this thesis work, we want to identify all tweets relevant to an entity, irrespective of presence
of hash-tags in the messages.

We summarize the different classifiers [YMO™10, Kal10, [CVSPO10, TB10] proposed by various
research groups for the WePS-3 challenge task [AAG™ 10, of classifying tweets based on entity. The
ITC-UT system [YMO™10] was built according to rules based on Part of Speech tagging and Named
Entity extraction. The system —by considering the linguistic aspect of the company mentions— achieves
acceptable accuracy. The classifier realized in the SINAI system [CVSPO10] makes use of Named Entity
extraction from the tweet messages. The performance of the classifier varied across various companies.
It is difficult to predict for what kind of companies this classifier performs well. From the above two
systems it can be seen that Named Entity extraction does bring in some accuracy, but these tools are
not designed for short and context-less messages like tweets. KAMLAR systems [Kall0]] build their
classifier starting with a bootstrapping step based on the vocabulary of the home page. This system

—even though it has low on overall accuracy— had decent F-score for relevant tweets, suggesting that

http://abecnews.go.com/Technology/wireStory/facebook-introduces-hashtags-19384 18 1#.Ubi3AVltg_g
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a bootstrapping step can be very useful for company names with high ambiguity. Another approach
described in [TB10]], focuses on working with organization independent features and not relying on any
external information sources. Their approach of using J48 decision tree classifier is quite interesting, but
the drawback it relies heavily on the availability and quality of the training set.

In Chapter 4] we present our basic profile classifier (LSIR-EPFL classifier [YMA10al) that was the
winner of WePS-3 evaluation challenge. The LSIR-EPFL classifier essentially makes use of different
information sources on the Web to create an entity profile. These semi-automatically created company
profiles are essential for accurately classifying the tweets based on the company entity. We further ex-
tended the basic techniques with Active Learning [YMAT11], through constant monitoring of the Twitter
streams. We also discuss further details on the work and introduce systematic performance analysis in
Section 4.6

2.4 Entity Profiles

As regular users of the social networks, people share and communicate their thoughts and opinions via
Facebook, Twitter, or other numerous social platforms. The topics discussed on these media is of diverse
nature ranging from user specific topics, news to casual chatter. This large reservoir of social data is of
great benefit to applications — in particular for those that rely on information about its users. A specific
user entity publishes content on these platforms, which reflect his interests, personality, expertise, etc.
Entity profiling tasks concerns about creating compact summary of an entity (e.g. an user entity) based
on the content related to the entity. In this section we review different works that deal with extraction of
topics from content, which eventually aid in constructing entity profiles.

Probabilistic modeling (LS pLS graphical models [BNJO3, RHNMOQ9], etc) has been exten-
sively used for discovering latent topic structures in data in text documents. Topic discovery, topic
evolution, document classification and clustering, etc., are some of the problems studied for modeling
and profiling of knowledge in text documents collections. These works are essential in summarizing
huge document collections, helping in exploring the collections, retrieving documents that are semanti-
cally relevant to the queries, and etc. Topic models [JRT10] and language modeling [BAdRO6] is used

in identifying topic based experts in enterprise document collections.

2.4.1 Topic Modeling in Micro-blogging Platforms

As we are interested in profiling an user entity and a location entity based on the Twitter and other social
networks content related to the entity, we look into different research works that apply topic modeling to
Twitter content in this section.

A number of recent works have explored the use of topic models in the Twitter domain for model-
ing Twitter messages and users [HD10], finding topical authorities [PC11, WLJH10, [ZTLO7]], making
recommendations [HBST0]], and comparing it with other media [GAHY12, ZJW11]. We also focus
our attention on works that have explored user modeling [AGHT11, (GAHY 12, HMOS12, /AHK11] in

micro-blogging platforms.

http://en.wikipedia.org/wiki/Latent_semantic_indexing
Phttp://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis
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Works like [LWH™ 12,[RCMET1] have focused on adapting techniques and tools that were successful
on text corpora to the recent vastly popular micro-blogging platforms. They adapted the named entity
extraction (NER) techniques for the shorter and noisy micro-blog posts. The NER task is a critical step
for the task of identifying the subset of tweets that are relevant to an entity which we tackle in Chapter 3]
of this thesis.

Topic modeling of Twitter messages has been considered in [HD10]], where models for three differ-
ent tweet aggregation strategies have been considered: First, each Twitter message is considered as a
document; second, all the tweets corresponding to a user are considered as being a single document; and
finally, all tweets containing a particular term are put together in a one single document. These three
strategies are referred to as MSG-Topic-Model, USR-Topic-Model and TERM-topic model. Each docu-
ment D is considered to be sampled from a topic distribution (#), and each topic has ¢ distribution over
the words. The documents are generated based on the 6 and ¢ distributions. One uses Gibbs Sampling
to estimate the values of ¢ and ¢. They show that the topics learned by the various schemes are different
in quality. The topic models learned from aggregated messages of a user can lead to superior perfor-
mance in classification problems. Based on their study, in our current work we grouped all the tweets
corresponding to a user in to a single document and used it to infer the users’ topics.

Several previous works [PC11, WLJH10, [ZTLO7, RDL10|] have used topical modeling features on
micro-blogging platforms for finding topic-based experts and authorities. The authors in their work on
topical authorities in microblogs [PC11] propose various sets of features in order to find topic-based
authoritative users. The set of features are based on how frequently users tweet, what percentage of
their tweets are retweets, how often their tweets are retweeted, how often users are mentioned by other
users, and how diverse or focused are the tweets to a particular topic. TwitterRank [WLJH10] proposes a
ranking algorithm, which is an adaptation of PageRank algorithm, for finding topic-sensitive influential
users. They make use of LDA on the twitter content for linking an user with certain set of topics, and use
topic level similarity among users as feature of their ranking algorithm.

Expert finding in Social Network, combines personal local information with network information to
find the experts on a topic. The approach proposed in [ZTLO7] involves two steps: initialization and
propagation. The initialization step forms an expert profile just based on the local information, and a
propagation model is applied in the next step in which expert scores from one node are propagated to the
neighboring nodes. Such approaches could be combined with the ones we propose in this thesis work to
improve the quality of both tweet disambiguation as well as of expert finding.

Most user interactions in Twitter are still primarily focused on the social graphs. Characterizing
micro-blogs with topic models [RDL10|| explores content analysis of Twitter feeds for addressing special
information needs of the users. They apply LDA [BNJO3|| and labeled LDA [RHNMOQ9] for identifying
the latent topics of Twitter messages. Using unsupervised LDA they assign latent topics into one of the
four subcategories {substance, social, status, and style}. The partially supervised labeled LDA could
assign labels (emoticons, hashtags, etc.) to the latent topics extracted from the Twitter feeds. We apply
similar techniques for the problem of tweet disambiguation.

Some works, as in [ZJW™ 11, [GAHY12], have relied on topic modeling for comparing recent micro-
blogging platforms and traditional news media platforms. In the paper [ZJIWT11], the authors do an
empirical comparison of the Twitter content with that published on tradition media like the New York
Times. Using standard LDA they infer topics from the news dataset, while they propose a Twitter-LDA
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model for extracting topics from Twitter data. This study shows how certain topics are popular on Twitter
while some others are popular on news media. In [GAHY12] the authors extend their user modeling
framework [AGHT11]] for comparing the usage behavior on two popular micro-blogging platforms: Sina
Weibd"] and Twitter.

In [KMLI13,IWCI10] the authors present LDA transfer learning. Transfer Learning is the process of
generic learning in one domain and applying the model in a different domain. In topic-bridged LDA
(tLDA) a model is built from a variety of labeled and unlabeled documents, and they apply transfer

learning for document classification task.

2.4.2 User Modeling over Micro-blogging platforms

Web is gradually transforming itself as a users personal archive, where users not only find information
but leave, share and archive information [LMB™13]. Twitter being widely adopted, real time and rep-
resentative of the users, despite being of noisy nature, is a great source for modeling a user [YMH™].
User profiles were constructed in [SCS09, IAGHT11, HMOS12]] for better news and people-to-follow
recommendations, dealing with information overload, understanding users’ expertise and interests, etc.
[SCSO9]] make use of entity profiles, that are sets of information extracted for each ambiguous person
in the entire document, and features based on topic models to cluster documents — containing a person
name — based on the actual person entity. Authors of [AGHT11] analyze user modeling on Twitter for
personalized news recommendations. Their framework helps in creating user profiles that are based on
extracted topics and entities from the tweet content, and show its superior performance compared to
hash-tag based user profiles. They also consider temporal aspects of the user profile for better news
recommendations.

The work [HMOS12| proposes techniques to construct multi-faceted user profiles for Twitter users,
thereby helping one to navigate the complex domain-space represented by Twitter. Their model profiles
users and their social networks using tags and labels from curated lists. In our future work, we plan to
make use of the user maintained lists and the lists to which an user belongs in improving the quality of
our constructed user profiles. [AHK11]] work extracts professional interests from social web (Facebook,
Twitter) profiles. Twittomender [HBS10] explores building of user profiles based on tweets which are
grouped as users’ own tweets, followers tweets and followees tweets. They make use of TF-IDF ranking
technique in construction of the user profile, which they use for recommending other Twitter users to
follow.

We present our techniques to construct user and location entity profiles in Chapters [5| & [f] We
also present few applications that are based on such generated entity profiles, namely, making sense of
microposts by using the user entity profile as an additional context to the messages and user-based travel

plan recommendation system.

2.5 Summary

In this chapter, we presented a comprehensive overview of research works that addressed various entity-
related challenges. Here, we surveyed a number of techniques that addressed ER problems under various
domains. We started with the solutions proposed for traditional DB domain, citations domain, and to

Bhttp://www.weibo.com
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the ways it was addressed for web documents. We broadly grouped these techniques under pairwise and
collective ER, constraint-based ER, and distributed ER. In this thesis work, specifically in Chapter 3] we
are interested in solving ER for web documents. Most of the ER methods, proposed for DB and citations
domain, are primarily designed for structured records. They fall short when applied to unstructured web
documents. We propose a generic framework for solving ER for web documents in the next chapter.

In the second part, we presented a number of works that have relied on mining the Twitter data. In this
thesis we are interested in entity matching in microblogging environments. We designed our techniques
partly based on number of features extracted from these Twitter data works. It is also important to realize
that entity-matching methods rely on the context surrounding the entities. Entity-matching in Twitter
environments provides additional challenge of dealing with noisy and short context-less tweet messages.
In Chapter[d] we present our entity-based classification of tweets techniques that overcome the challenges
posed by shorter texts. We have also seen several works that dealt with sentiment extraction from tweet
messages. The sentiment extraction techniques can be applied on relevant subset of tweets, which can
be identified using our proposed techniques.

User modeling has been studied extensively to understand user preferences and interests. Also a
number of sophisticated approaches have been proposed to extract concepts and topics from text docu-
ments. In the final part of this chapter, we gave an overview of works that focused on extracting topics
from Twitter data. We adapt these techniques for profiling user and location entities based on the content
related to the corresponding entities in Chapters[S|and[6] We also present applications that rely on these
entity profiles.
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Chapter

Entity Resolution for Web Documents

Entities should not be multiplied
beyond necessity. (14" century).

Entity identifiers should not be
multiplied beyond necessity (215
century).

OKKAM'’s razor principle, Then
and Now

One of the key challenges to realize automated processing of the information on the Web, which is
the central goal of the Semantic Web, is related to the entity resolution problem. There are a number of
tools that reliably recognize named entities, such as persons, companies, geographic locations, in Web
documents. The names of these extracted entities are however non-unique; the same name on different
Web pages might or might not refer to the same entity. The entity resolution problem concerns of
identifying the entities, which are referring to the same real-world entity. This problem is very similar to
the entity resolution problem studied in relational databases, however there are also several differences.
Most importantly Web pages, often only contain partial or incomplete information about the entities.

Similarity functions try to capture the degree of belief about the equivalence of two entities, thus
they play a crucial role in entity resolution. The accuracy of the similarity functions highly depends on
the applied assessment techniques, but also on some specific features of the entities. In this chapter, we
propose systematic design strategies for combined similarity functions in this context. Our method relies
on the combination of multiple evidences, with the help of estimated quality of the individual similarity
values and with particular attention to missing information that is common in Web context. We study the
effectiveness of our method in two specific instances of the general entity resolution problem, namely the
person name disambiguation and the Twitter message classification problem. In both cases, using our
techniques in a very simple algorithmic framework, we obtained better results than the state-of-the-art

methods.

3.1 Introduction

Entity resolution is a well studied problem in the context of relational databases [FS69, HS935, I(CGMO05,
CKMO07, MBGMO06, DHM05, BGMM 09, TVEQ7]. Even if the papers are dated back quite early, this
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topic has also regained in importance recently. It is more and more common and easy to combine
independent data sources, especially on the Web. There is a number of tools which recognize named
entities, such as persons, companies, geographic locations, in Web documents. The names of the entities
are however non-unique, the same name on different Web pages might or might not refer to the same
entity. The entity resolution problem concerns with identifying the entities, which are referring to the
same real-world entity. This problem is very similar to the entity resolution problem studied in relational
databases, however there are also several differences. Most importantly Web pages, often only contain
partial or incomplete information about the entities. Web pages are also much less structured as database
records. Many of the models, which were developed for databases are not directly applicable in the new
setting, for example the model of fuzzy duplicates [CGMO0S] does not fit well the new context. The
information that could help here is the content of the Web pages, where the entity appears. They are on
the one hand rich sources of information, but on the other hand this source is often not so straightforward
to exploit, as it is very hard to distinguish the relevant information from noise and the relevant information
might be even missing.

Entity resolution is essential for realizing entity-oriented view of the Semantic Web. In order to
process information on Web pages automatically, one needs to identify the entities in Web documents
and then match them to other entities in entity collections or to entities described by ontologies. Entity
resolution is also needed to create such large entity collections themselves. This process is described in
[MBB™10]. Linking entities present in unstructured Web documents to each other can in many ways con-
tribute to the development of the Semantic Web, independently of whether such large entity repositories
will emerge.

We study two specific variants of the general entity resolution problem, namely the person name
disambiguation problem and the Twitter message classification. In the person name disambiguation
problem we are given a set of Web documents, each containing a given name, and the goal is to cluster
the documents such that two documents are in the same cluster if and only if they refer to the same
real-world person. In the Twitter classification problem, we are given a set of Twitter messages, each
containing a particular keyword, which is a company name. The goal is to classify the messages whether
they are related to the company or not. For this problem, we develop company profiles, and the task is
then to match these profiles to the messages. While these problems require some specific algorithmic
techniques, they both can be seen as entity resolution problems. We use these settings to demonstrate
our quality-aware similarity assessment technique.

Similarity functions try to capture the degree of belief about whether two entities refer to the same
real-world entity. There is a number of known techniques to derive similarity values. One can observe
that the quality of these methods varies and highly depends on the input, and specific features of the
input. The quality-aware similarity assessment technique combines similarity assessments from multiple
sources. As opposed to other combination methods, we estimate the accuracy of individual sources for
specific regions of the input (i.e. they are not global estimations) and uses this quality information to
determine the similarity value. Additionally, as we are dealing with Web data, the lack of information
poses an additional difficulty. We give particular attention to this challenge that is often not addressed by
techniques in the machine learning literature.

We describe a systematic design of similarity assessment particularly suited for Web data, including
novel ways of partitioning the input for quality-estimations. At the same time we demonstrate, that
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one can obtain and accuracy comparable or even better than the state-of-the-art methods with a very
simple algorithmic technique, with the help of quality-aware similarity assessment. We analyze our
techniques experimentally, on real-world datasets. The experiments show promising results, our error
analysis shows systematic improvements. While we are studying the quality improvements within our
algorithmic framework, we think that our quality-aware similarity assessment technique can lead to
quality improvements in other entity resolution algorithms as well.

The rest of the chapter is organized as follows. Section [3.2] discusses the general entity resolution
problem and our method of constructing quality-aware similarity functions. Section elaborates on
the person-name disambiguation problem, while Section [3.4]discusses the Twitter classification problem;
both sections present algorithmic frameworks which make use of quality-aware similarity functions.
Section @] contains details on the experimental evaluation, Section @] summarizes related work and
finally we make conclusions in Section

3.2 Quality-aware similarity assessment
3.2.1 Problem definition

We consider the following general entity resolution problem. We are given two sets of Web documents
D4 and Dp (for example, Web pages, Twitter messages, semi-structured profiles), such that each doc-
ument d € D4 (or d’ € Dp) is associated with some named entities (for example, persons, geographic
locations, companies, organizations, etc.). We assume that the set of named entities is already extracted,
and they are available as sets A and B (which are extracted references to the same entity type). Let R
and Rp be the set of real world entities and for an entity a € A, let r(a) € R4 denote the corresponding
real world entity. The entity resolution problem aims to find the pairs (a, ), such thata € A, b € B and
a and b are representing the same real-world entity, i.e. 7(a) = r(b). Note that in some cases the set of
real world entities or their relation is not known, or only partially known. In such cases, our goal is to
find the pairs that best corresponds to our available training sets.

In particular, we study two specific variants of the general entity resolution, namely the person name
disambiguation problem and the Twitter message classification problem. In the case of person name
disambiguation problem we are given a set of documents, containing a particular name. In this setting
the set D 4 and Dp coincides (this is our document collection) and the goal is to cluster the set of docu-
ments, such that each document within a cluster refers to the same real-world person. In our document
collection, for a given name, each document refers to only one of the persons. In other terms, there is a
one-to-one correspondence between a name and a document. This assumption simplifies the algorithmic
framework. Our quality-aware similarity assessment techniques are applicable also in the more complex
algorithmic framework that is needed, if we drop this assumption. The number of persons (with the same
name) is not known in advance. In the case of Twitter classification the set of documents D 4 is a set of
Tweet messages, each containing a given company name (for example, Apple). The set Dp is a set of
profiles (see Section [3.4) for a given company (with the same name as D 4) and the goal is to identify
whether the documents in D4 (i.e. the tweets) are really referring to the company or not, for example,
decide whether the word “apple” in a tweet refers to the company Apple, represented in the profiles or
something else (e.g. a fruit).
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Figure 3.1: Accuracy of a similarity function

3.2.2 Challenges of assessing similarities

Assessing similarities between entities in Web documents is a challenging task. One faces (among others)

the following difficulties.

e Similarity assessments focus on some specific features of the entities only. It is not clear what

features one should compare and with which technique.

e Independently of which feature one chooses for assessing similarities of entities, it is likely that

the Web documents contain incomplete, imprecise information about the entities or the relevant

information may be completely missing. As a result, the similarity assessment techniques are often

inaccurate.

e Moreover, they have varying accuracy on different input and even on different parts of the input.

In the following we give an example for the above-mentioned problem of varying accuracy, from

our own experiments. Figure [3.1| shows accuracy of similarity values on a training set. On the x-axes

one can see the similarity values, while on the y-axis is the accuracy of the measured value. (They are
the values for the person “Cohen”, in the WWW’05 dataset, see Section Even if the actual values
might depend on the dataset, the variation of accuracy is a common phenomenon.) For a given interval of

similarity values, we computed, how many entities match (based on the ground truth). One would expect

a monotonic behavior, higher similarity values should indicate an entity match with higher accuracy.

3.2.3 Matching with quality-aware similarity assessment

We propose a technique, that addresses the above problems. While elements of this technique are known

and also used elsewhere (see Section [3.6), we apply them systematically and in novel ways. As a result,
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Figure 3.2: The accuracy of the similarity values varies depending on the region of the input. For
example, C'1 might have overall the best accuracy, while in region R3 the function with the best accuracy
is C3.

with the help of a very simple algorithmic framework that we explain below (Algorithm we could

obtain results even better than the state-of-the-art methods.

1. We first compute similarity values, using multiple techniques, since we do not know which feature
to look for. The ways we compute similarity values is specific to the particular problem, we will
explain them in detail in Sections[3.3]and

2. We partition the input into regions. In a smaller region we can much more reliable estimate the
accuracy of the similarity values (Figure [3.2) than for the entire function, because each function
has varying accuracy in each of these regions. In our work we used several ways to identify these
regions. We explain the techniques, which are specific to the Web context, in Sections [3.3]and [3.4]

3. Using the accuracy estimations, we combine the similarity values using different combination
techniques into one single similarity value, that we finally use to decide whether two entities match

or not.

The simple algorithmic framework (relying on quality-aware similarity assessment) involves the fol-

lowing steps.

Algorithm 3.1: Generic Quality-aware Entity Resolution Algorithm

compute similarity values, using multiple methods

identify regions of the input, where we can estimate the quality of the computed similarity values
estimate the accuracy of each similarity value, for each region

combine the similarity values using the estimated accuracy

decide whether the entities match

output the decision

AN o s
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3.3 Person-name disambiguation

In this section we discuss the person name disambiguation problem and the use of quality-aware simi-
larity functions for this problem. This problem is relevant for many applications, for example for person
search engines who collect information from Web pages, or for news agencies (or for the online publish-
ing industry in general). To enrich and to interlink online information (e.g. to construct owl : sameAs
statements) person name disambiguation is essential.

Our technique relies on the quality-aware similarity assessment, and uses a simple algorithmic frame-
work. First, in Section we elaborate on the basic similarity functions we used. Then, in Section
we explain how we defined the regions of the input and how we estimate the accuracy of the ba-
sic similarity functions, finally in Section [3.3.3] we explain the algorithm addressing the person name

disambiguation problem.

3.3.1 Basic similarity functions

Similarity functions associate a value from the interval [0, 1] to a pair of entities. In our case, instead of
comparing the entities themselves, we compare the related web-pages. As a preprocessing step we apply
information extraction tools, so the input to the similarity functions is the extracted information and not
the pages themselves. In other terms, we apply (dictionary-based) named entity recognition techniques.

Each similarity function compares two webpages based on a particular feature (like concepts, URLs
etc) using a similarity measure (like cosine similarity, number of overlaps etc) [MRSO0S8], [HFCT08].
We use common observations in coming up with the following similarity functions. Two webpages are
about a same person, if the concepts or organizations or person names etc mentioned on the pages are
similar/overlap, or if the pages URLSs are on a same Web domain.

Regarding the implementation: For extracting features from the webpages we used several infor-
mation extraction tools, including “alchemy API’ﬂ to extract named entities, “GATE” [Cun02], “open-
Calais” [Ope] to extract other types of entities, such as organizations and locations. We also extract
wikipedia-based concepts using Textwiseﬂ Finally for representing a webpage as document vector we

use the services provided by lucen The similarity functions we consider are summarized in Table

B31

3.3.2 Quality-aware similarity assessment

3.3.2.1 Accuracy estimations

We estimated the accuracy of individual similarity functions in different ways. These include global
accuracy estimates, where we give an overall estimate for the entire similarity function and region-based
estimates, where we partition the input into smaller regions, where we can do estimations much more
reliably.

Global accuracy estimation: Given a single similarity function, we can consider two related persons

equivalent if their similarity value is higher than an appropriately chosen threshold. Indeed, for each

"http://www.alchemyapi.com/
“http://www.textwise.com/
3http://lucene.apache.org/
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3.3 Person-name disambiguation

Function Feature Similarity Measure
F1 Weighted Concept Vector Cosine Similarity
F2 URL of the page String Similarity
F3 Most frequent name on the page String Similarity
F4 Concepts Vector Number of overlapping concepts
F5 Organizations Entities on the page |Number of overlapping organizations
F6 Other Person-Names on the page Number of overlapping persons
F7 The name closest to the search keyword String Similarity
F8 TF-IDF (based weights) words vector Cosine Similarity
F9 TF-IDF (based weights) words vector Pearsons Correlation similarity
F10 TF-IDF (based weights) words vector Extended Jaccard similarity

Table 3.1: Basic similarity function descriptions

function we have chosen such a threshold, and based on the training set, we estimated the accuracy
of the threshold-based decision: we computed, what is the percentage of correct matches, if we would
consider that two entities with similarity values above the threshold do match.

The accuracy of such decisions clearly depends on the choice of the threshold. For each function, we
have chosen a threshold, which —based on the training set— maximizes the number of correct decisions.
We used these estimations as a base-line for our experiments.

As we discussed in Section [3.2] as an alternative to global accuracy estimations, we can partition the
input to smaller regions and compute accuracy estimates for these parts.

Region-based accuracy estimation: We tried multiple ways to divide the input into regions:

1. We defined the regions based on the similarity values: we divided the similarity values to equal
sized sub-intervals: [0,0.1),[0.1,0.2),...,[0.9,1], and one region consists the pairs having the
values in a given range. This is a very simple definition, however, the similarity values do not
have a uniform distribution in the [0, 1] interval, thus by this definition, some regions contain
significantly larger than others.

2. We clustered the similarity values corresponding to the training set using the k —means clustering
technique. (We have chosen k = 15.) The pairs, whose similarity values fall into one cluster form

aregion.

In the case of the functions F'5 and F'6 we further divided the regions we constructed in this way. The
function F'6 computes the number of overlaps of person names in the corresponding Web documents.
If we obtain the value 0, this can have multiple reasons. Either (one of the ) Web documents do not
contain such person names, or they both contain person names, but the two sets are different. In such
cases, we defined the regions using “dimensions”: the similarity value and the existence/non-existence
of information.

Based on the training set, for each region we computed an accuracy estimate. From the training
sample set, each region would contain certain sample points corresponding to link existence and non-
existence. Accuracy for a region is then defined as the percentage of the sample points representing link
existence. If this value is lower than 0.5 then it suggests that the majority pairs should not be considered
as a link. Note that the accuracy estimations are based on the small training set and not the entire data,

so computationally the method remains feasible.
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3.3.2.2 Combining multiple functions

Given the heterogeneity of the Web, we cannot expect that we can design a single similarity function
which would perform optimally in all cases. To overcome this problem we compute several similarity
functions and try to make our decision based on a combination of the similarity functions. To find a
suitable way of combination involves a lot of challenges.

The different functions report similarity values with very different value distribution as they capture
different aspects of similarity. Thus instead of combining the similarity values themselves, we try to
combine the decisions (whether or not to consider two entities as equivalent) and the estimated accuracy
values.

In this way, for each function f; we obtain a graph el ij, together with accuracy estimates, where
Dj is the decision criteria, i.e. whether we decide upon a single threshold or also consider the accuracy
estimates. Our goal is to combine the the individual graphs ng into a single graph G ompined. First
we obtain a multi-graph, where the multiple edges between two nodes correspond to the edges from the
individual graphs. We weight the edges with the individual accuracy estimates, which we consider as
estimations of the probability of a link. Then we compute a weighted average and obtained an optimal
threshold, based on our training set. If the combined value is above this threshold, we add an edge to
G combined-

We also considered other combination techniques. Instead of considering the weighted average of the
values, we used other aggregation functions, namely we have selected the maximum value. Interestingly,
this combination technique performed the best on our datasets, which might not always be the case. It is

important to note that not always the same function performed the best.

3.3.3 Entity resolution algorithm

We say that two entity references (names) n; and n; are equivalent (n; = n;) if they refer to the same
person. Clearly this relation is transitive. The relation of the entity references can be represented as a
graph, in which for each entity reference there is a vertex in the graph, and two vertices are connected
by an edge whenever the two corresponding entities are equivalent. We refer to this graph as the entity
graph. The goal of the entity resolution algorithms is to reconstruct this entity graph as accurately as
possible. Note that the entity graph has very specific properties: it is not a connected graph, it is a
union of pairwise disjunct connected components and each component is a clique, i.e. a complete graph,
because of the transitivity of the equivalence relation.

Our entity resolution technique is the following. First we compute a complete weighted graph Gl
for each similarity function f;. (The nodes of the graph Gﬂf correspond to the Web pages, while the
weights on the edges are the similarity values reported by f;.) To avoid computational bottlenecks,
we apply a basic blocking technique, so essentially we only compute the similarity values between
documents, which are about a person with the same nameH From the graph G{J we would like to obtain
a graph Gp,, a (not-weighted) graph, where an edge between two nodes shall indicate whether the
entities corresponding to the nodes are the same. This transformation depends on the decision criteria
D;. These decision criteria include to chose values above a threshold or also consider accuracy estimates,
as it is explained in Section Once we have all the graphs G, ; for all functions f; and all decision

*Such blocking strategy is very natural in the datasets we used, where the documents already organized around person
names. In general, one needs to consider the applicable blocking schemes more carefully.
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3.4 Classifying Twitter messages

criteria DD, we obtain a combined graph G .ompined, Which is explained in Section 3.3.2.20 For this we
also use accuracy estimates acc(G”bj ), based on the training set. Finally, we apply clustering techniques
to obtain the final entity resolution. In our recent implementation we compute the transitive closure of the
graph Geompined, but we also experimented with several other clustering techniques, such as correlation
clustering [BBCO4]. The overall procedure is summarized in Algorithm [3.2]

Algorithm 3.2: Quality-aware Entity Resolution Algorithm for Person Name Disambiguation

compute the graph G for each fi (per block)

obtain the decision criteria D; (threshold, regions, etc.) from the training set
apply the decision D; to the data, to compute G j, for each ¢ and D);
compute the accuracy acc( G’bj)

combine them, for all ¢, D;

apply a clustering algorithm

output the final entity resolution

AN A S S

3.4 Classifying Twitter message{]

In this section we focus on a second problem, where we apply our quality-aware similarity assessment
techniques, namely the Twitter classification problem. Twitter E] is a popular service where users can
share short messages (a.k.a. tweets) on any subject. Twitter is currently one of the most popular sites
of the Web: as of March 2013, Twitter users send more than 200 million messages per day on average
m As users are sharing information on what matters to them, analyzing twitter messages can reveal
important social phenomena, indeed a number of recent studies like [GAC™10] report such findings.
Clearly, twitter messages are also a rich source for companies, to study the opinions about their products.
To perform sentiment analysis or obtain reputation-related information, one needs first to identify the
messages which are related to a given company. This is a challenging task on its own as company or
product names are often homonyms. This is not accidental, companies deliberately choose such names
as part of their branding and marketing strategy. For example, the company Apple Inc. shares its name
with the fruit apple, which again could have a number of figurative meanings depending on the context,
for example, “knowledge” (Biblical story of Adam, Eve and the serpent) or New York (the Big Apple).
Our task is to relate tweets to a company entity, which can be seen as a special case of the entity
matching problem. We assume that we are given a set of companies and for each company a set of tweets,
which might or might not be related to the company (i.e. the tweets contain the company name, as a
keyword). Constructing such a matcher is a challenging task, as tweet messages are very short (maximum
140 characters), thus they contain very little information, and additionally, tweet messages use a specific
language and often also incorrect grammar, they are full with proprietary abbreviations, which are hard
to interpret without further background knowledge. To overcome this problem, we constructed profiles

for each company, which contain more rich information. For each company, in fact, we constructed

SWe study Twitter message classification problem in depth in the next chapter (Chapter . However, in this chapter, we
are presenting this problem in a different context, and try to solve the problem using our proposed framework. For clarity and
continuity of the presentation, we repeat essential parts of the problem here.

®http://twitter.com

"http://articles.washingtonpost.com/2013-03-21/business/37889387_1 _tweets-jack-dorsey-twitter
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several profiles, some of them automatically, some of them manually. The profiles are essentially sets
of keywords, which are related to the company in some way. We also created profiles, which explicitly
contains unrelated keywords. Once we have the profiles, we are facing an entity matching problem. In
this context, we make use of our quality-aware similarity assessment.

Below, in Section |3.4.1| we give a more precise problem definition. In Section [3.4.2| we explain how
we represent Tweet messages and company profiles. We explain in Section [3.4.3]the use of quality-aware

similarities and our Twitter classification technique.

3.4.1 Problem Statement

In this section we formulate the problem and our computational framework more formally. The task is
concerned to classify a set of Twitter messages I' = {T1,...,T),}, whether they are related to a given
company C. We assume that each message 7; € I' contains the company name as a sub-string. We say
that the message 7; is related to the company C, related(T;, C), if and only if the Twitter message refers
to the company. It can be that a message refers both to the company and also to some other meaning of
the company name (or to some other company with the same name), but whenever the message 7; refers
to company C' we try to classify as TRUE otherwise as FALSE. The task has some other inputs, such as
the URL of the company url(C), the language of the webpage, as well as the correct classification for a
small number of messages (for some of the companies).

For the Twitter classification problem, we assume that we have training sets corresponding for a few
companies (CT®). Our goal is to classify test sets corresponding to new (unseen) companies (C7¢*),
for which we do not have training data, i.e. CT® (" CT*t = 0.

3.4.2 Information representation

The tweet messages and company names alone contain very little information to realize the classification
task with good accuracy. To overcome this problem, we created profiles for the companies, several
profiles for each company. These set of profiles can be seen as a model for the company. In this section,
we discuss how we represent tweet messages and companies and we also discuss how we obtained these
profiles. In the classification task we eventually compare a tweet against the profiles representing the

company entity.

Tweet Representation

We represented a tweet as a bag of words (unigrams and bigrams). We do not access the tweet messages
directly in our classification algorithm, but apply a preprocessing step first, which removes all the stop-
words, emoticons, and twitter specific stop-words (such as, for example, RT, @username). We store a

stemmecﬁ version of keywords (unigrams and bigrams), i.e.

T; = set{wrd;}.

8Porter stemmer from python based natural language toolkit available at http://www.nltk.org
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Company Representation
We represent each company as a collection of profiles, formally
E* = {PF PF. ... PF}.

Each profile is a set of weighted keywords i.e. Pik = {wrd; : wt;}, with wt; > 0 for positive evi-
dence (i.e. keywords, which -if contained in a message- shall indicate that the message is related to the
company) and wt; < 0 for negative evidence.

For the tweets classification task, we eventually compare the tweet with the entity (i.e. company)
profile. For better classification results, the entity profile should have a good overlap with the tweets.
Unfortunately, we do not know the tweet messages in advance, so we tried to create such profiles from
alternative sources, independently of the tweet messages. The entity profile should not be too general,
because it would result many false positives in the classification and also not too narrow, because then
we could miss potential relevant tweets.

We generated most of our profiles automatically, i.e. if one would like to construct a classifier for
a previously unseen company, one can automatically generate the profiles. Further, small, manually
constructed profiles further improve the accuracy of the classification process.

We used the following profiles: the homepage profile contains keywords, extracted from the Web
page of the company, the metadata profile relies on the metadata of the Web page. The category profile
contains keywords relevant to the domain of the company. Similarly, for common-knowledge profile
we obtained relevant keywords from GoogleSetsﬂ We also defined user-feedback-profiles containing
positive and negative keywords from users. For more details on semi-automatic profile construction see
Sectionof Chapter@ Table shows how an “Apple Inc’ company entity is represented using
different profiles. As we constructed the profile semi-automatically, some of the keywords might be
incorrect.

3.4.2.1 Features Extraction

We define a feature extraction function, which compares a tweet 7; to the company entity representation
E;. and outputs a vector of features.

profile— features ad—hoc
—— —
F?’L(Tz,Ek):{ Gl,...,Gm ,Fl,...,Fn,Ul,...,UZ}
N——

tweet—speci fic
Here the G; are profile-specific, which are entirely based on the quality of the entity profiles and do not

depend on Tweet message 7;. One could use different ways of quantifying the quality of the profiles.

e Boolean: In this work we make use of boolean metrics to represent if a profile is empty or has

sufficient keywords.

e Other possibility is that a human can inspect the profiles and assign a metric of x € [0,1] based on

the perceived quality. One could think of exploring an automated way of assigning this number.

“GoogleSets|http: //labs.google.com/sets|is a service that generates a set of keywords, given a few examples.
Ohttp://www.apple.com
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Profile Type Keywords

HomePage Profile iphone, ipod, mac, safari, ios, iphoto, iwork, leopard, forum,
items, employees, itunes, credit, portable, secure, unix, auditing,
forums, marketers, browse, dominicana, music, recommend, pre-
view, type, tell, notif, phone, purchase, manuals, updates, fifa,
8GB, 16GB, 32GB,...

Metadata Profile {empty}

Category Profile opera, code, brainchild, movie, telecom, cruncher, trade, cathode-
ray, paper, freight, keyboard, dbm, merchandise, disk, language,
microprocessor, move, web, monitor, diskett, show, figure, in-
strument, board, lade, digit, good, shipment, food, cpu, moving-
picture, fluid, consign, contraband, electronic, volume, peripher-
als, crt, resolve, yield, server, micro, magazine, dreck, byproduct,
spiritualist, telecommunications, manage, commodity, flick, vehi-
cle, set, creation, procedure, consequence, second, design, result,
mobile, home, processor, spin-off, wander, analog, transmission,
cargo, expert, record, database, tube, payload, state, estimate, in-
tersect, internet, print, factory, contrast, outcome, machine, de-
liver, effect, job, output, release, turnout, convert, river,. . .
GoogleSet Profile itunes, intel, belkin, 512mb, sony, hp, canon, powerpc, mac, ap-
ple, iphone, ati, microsoft, ibm,. . .

UserFeedback Positive Profile |ipad, imac, iphone, ipod, itouch, itv, iad, itunes, keynote, safari,
leopard, tiger, iwork, android, droid, phone, app, appstore, mac,
macintosh

UserFeedback Negative Profile|fruit, tree, eat, bite, juice, pineapple, strawberry, drink

Table 3.2: Apple Inc Company Profiles

The F; features are tweet specific features, i.e. they quantify how close a tweet overlaps with the
entity profiles. We use a comparison function to compare the tweet message 7;, which is a bag of
words, with j** profile Pf, which is also a bag of weighted keywords, to get the F]'?h feature. In this
work we use Boolean overlap as one of the comparison functions, which compares two bags of words
looking for exact overlap of keywords, and for all such keywords the sum of their weights quantify
how close the tweet message is to the entity profile. Formally with 7; = Set{w!, w}, ... ,w};} and Pf
= Set{w] : wty,wh : wty, ..., wh : wty}, we compute the F; feature using the Boolean overlap

comparison function as:

F; = BooleanOverlap(T;, P]k) = Z wt,, where ¢
q

is the index of overlapping words, i.e. 3.1

wh € Set{wt, wh, ... ,w,ﬁ}ﬂSet{w{’,wg, cowh )

The above comparison function is simple and easy to realize, but it may miss out some potentially similar
words. We also make use of Edit-Distance and Jaro similarity based comparison functions to identify
similar words.
The U; features encapsulate some user based rules, for example, presence of the company URL
domain in the tweet URL list, is a big enough evidence to classify the tweet as belonging to the company.
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3.4.2.2 C(lassification Process

The classifier is a function which takes the feature vector as input and classifies the tweet as {T RUE,
FALSEY}, with TRU E label if the tweet is related to the company and F'ALSE otherwise. We use the
Naive Bayes Classifier model for designing the individual classifiers. We have chosen to use the Naive
Bayes technique, as it was easy to realize and still promises acceptable accuracy. For each company in
the training set (C7), based on the company tweets, we find the conditional distribution of values over
features for two classes, for the class of tweets which are related to the company and the another class
of tweets, which are not related. With the help of these conditional probabilities, as shown in equations
(3.21 B.3) and by applying Bayes theorem, we can classify an unseen tweet whether it is related to the
company or not.
Let us denote the probability distribution of features of the tweets that are related to a given company
with
P(f1,f2,-- 5 fu | ©), (3.2)

and the probability distribution of features of the tweets that are not related to the company with

P(f1, f2s-- - fn | O). (3.3)

Then, for an unseen tweet ¢, using the features extraction function we compute the features values:

(f1, fa,--., fn). The posterior probabilities of whether the tweet is related to the company or not, are

calculated as in equations (3.4} [3.5).

P(C) = P(t| C)

PO == pm— =
3.4)
_ PO« P(f1, fo, - fu | C)
P(f17f27-~'7f7l)
_ C) « C
Py =21 )P(i)(” ) _
o o 3.5
PC)* P(f1,f2,---, [n|C)
P(fi, fo,---, fn)

Depending on whether P(C' | t) is greater than P(C | t) or not, the naive Bayes classifier decides

whether the tweet ¢ is related to the given company or not, respectively.

3.4.3 Entity matching with quality-aware similarities

Given the representation we explained in Section [3.4.2] the Twitter classification can be seen as an entity

matching problem. We address the problem with our quality-aware entity matching strategy (Algorithm

B.3). First we design individual classifiers based on our training set. Each of them uses a subset of

all features or possible comparison methods. We then identify the regions of the unseen companies

and estimate the accuracy of the individual classifiers in these regions. Once we have these accuracy
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Setl|Set2 Profiles Used Comparison Fn
BB1| B1 |X=[Homepage Profile, BooleanOverlap
Category Profile,
Metadata Profile,
GoogleSet Profile,

UserFeedback Positive Profile,
UserFeedback Negative Profile]

BB2| B2 |X EditDistance

BB2| B2 X JaroSimilarity

BB4| B4 |[Homepage Profile] Y=[BooleanOverlap,
EditDistance,
JaroSimilarity]

BB5| B5 |[UserFeedback Negative Profile] | Y

Table 3.3: Individual Classifiers

Algorithm 3.3: Quality-aware Entity Matching Algorithm for Twitter Messages Classification

AN AN S > e

compute decisions using multiple individual classifiers

identify the regions in the feature space for the companies in the fest set

estimate the accuracy, for each classifier

combine the decisions of the individual classifiers, using the estimates, for unseen companies
decide whether the entities match

output the decision

estimates, we combine the decision of individual classifiers for unseen companies and we use these

combi

ned values as a basis for our final decision, whether we consider two entities as a match.

The above algorithm can be seen to proceed in two phases. In the first phase, we construct many

individual classifiers, based on the training set. We need many individual classifiers, as we do not know

beforehand, which set of features and comparison functions one should use. In the second phase, we

chose
of the

two di

1.

the best possible classifier for the unseen companies. In this phase, we rely on accuracy estimates
individual classifier in the “neighborhood” of the unseen companies. We explain these phases for

fferent scenarios.

In the first scenario, the individual classifiers are in the Setl = {BB1, BB2, BB3, BB4, BB5}. Each
classifier in the Setl is trained per company and per feature group. We have in total |CT%| % 5
individual classifiers. We consider only the classifiers of the companies that are “similar” to the
unseen company. For each unseen company, we consider the K = 5 closest companies from the
training set as possible candidates, using the dot product distance metric, where each company

profile is seen as a vector in the terms-dimension space.

For the second scenario, the individual classifiers are in the Set2 = {B1, B2, B3, B4, B5}. We

have one classifier per feature set for the entire training set, i.e. in its design it makes use of tweets

of all the companies in the training set. In this case, we have 5 individual classifiers in total.

We divide the companies in the training set into 6 groups using the k-means clustering technique

(k = 6). Each cluster is considered as a region and we estimate the accuracy of each classifier

for each region. Figure [3.3]depicts the accuracy estimates of the individual classifiers. The figure
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suggests that there is no single best classifier and by combining the classifiers we have a chance
to achieve better performance. For an unseen company, we first decide to which region it belongs
to, by computing its distance to the means of the different regions. As the combination strategy,
we choose the most accurate classifier in this region, and we use it as the classifier for the unseen

company.

Regarding the computational efforts, in the first case, we are creating many classifiers, but each of
them is constructed using a small subset of the training set, containing the relevant company name. In
the second case, we have only a few classifiers, each constructed using the entire training set.

Overall, if we have many classifiers making decisions about the entity match, the next question is
how can we decide on the final result. One way is to chose the globally most accurate classifier among
the many individual classifiers and use it for making the decisions on the test set. The globally most
accurate classifier might not necessarily be the best classifier for unseen companies. However, we can do
better if we can make use of the accuracy estimates associated with the regions. Other simple alternative
combining strategies could be taking the weighted averages, maximal voting, etc. of the individual
classifier decisions. For comparison, we also train an SVM Classifier [CST00, MDMO07] as a generic
classifier, which makes use of all features: profile-features, tweet-specific features and ad-hoc/heuristics-

based features, in its classification task.

Varying quality of classifiers across groups
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Figure 3.3: Accuracy estimates of the individual classifiers on WePS-3 Twitter Dataset.

3.5 Experimental evaluation
Experimental setup

We performed our experiments on a 2GB RAM, Genuine Intel(R) T2500 @ 2.00 GHz CPU. Linux
Kernel 2.6.24, 32-bit machine. We implemented our methods using matlab, java and python.
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3. ENTITY RESOLUTION FOR WEB DOCUMENTS

3.5.1 Person name disambiguation

3.5.1.1 Datasets

For our experiments for evaluating the person name disambiguation we used two different datasets: the
WWW’05 people dataset and the WePS people dataset. The WWW’05 dataset was created in [BMOS].
This dataset was also used in a series of papers, which enabled us to compare our methods with other
techniques. The dataset contains Web documents for 12 different person names. The dataset was created
by querying the Web using the google search engine with the different person names. The top 100
returned web documents for the web search were gathered and labeled manually. For each person, the
correct resolution is available together with the data. We used this ground truth to measure the quality of
our techniques. The number of clusters for each person name is different, it varies from 2 to 61.

WePS people test dataset is provided by the web people search clustering task [WeP09||. The test data
consisted 30 Web page collections, each one corresponding to one ambiguous name. These 30 person
names were chosen from three different sources: wikipedia, ACL’08 (Association for Computational
Linguistics Program committee members) and US census data. Each person name was queried using
yahoo search API and the top 150 results were included into the dataset. = We have evaluated our
techniques on WePS people dataset. We report the performance figures we observed on the 10 person

names chosen from the ACL’08.

3.5.1.2 Measures of interest

Various measures are considered to assess the quality of entity resolution. Precision, recall and F'-
measure are widely used in information retrieval. We also measure the Rand-index [MRSOS|| and the
F,-measure [HFCT08||, which is the harmonic mean of purity and inverse purity. They are typically
measures from information retrieval or variants of those measures. We summarize here the definitions.
Some of these definitions can be found in [MRSOS]].

An entity resolution algorithm tries to predict the entity graph. Given a prediction graph, one can
categorize its links with respect to the ground truth, i.e. the correct entity graph, into four categories: true
positives (1'P), true negatives (1T'IV), false positives (F'P) and false negatives (F'N). The true positives
are links which are correctly predicted while the wrongly predicted links are the false positives. Simi-
larly, the correctly predicted missing links fall into the true negatives category, while wrongly predicted
missing links are false negatives. We also denote the number of links in the corresponding category with
TP, TN,FP,FN.

Precision (P), recall (R) and F-measure (F') are defined as:

TP
P=_——
TP+ FP’
TP
R_TP+FN’
2PR
dF =
o P+R
Accuracy (a.k.a. Rand index, RJ) is the percentage of correct decisions for the predicted links:
RI — TP+TN
 TP+TN+FP+FN
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F,-measure (F},) is the harmonic mean of purity and inverse purity. Purity is defined as follows [HFCT08]]:
let M = {M;,...,M,} be the clusters of the ground truth and let C' = {C4, ..., Cy,} be the clusters
predicted by the algorithm and let Prec(C;, M;) denote the precision of C; w.r.t. M. Purity is defined
as

Pur(C,M) = Z |’ Ci || nax, Prec(C;, Mj).
C;eC

while inverse purity E as

IPur(C, M) Z énaé Prec(M;, Cy).
€

We note here that the above measures rely on the fact that we know the ground truth, which is

unrealistic in the Web context. We could apply them for the document collections in our experiments, as

we had this information available.

3.5.1.3 Methods

Given the dataset, we use 10% of the complete dataset as the training set. The performance of the entity
resolution (entity matching) algorithm depends on how well the training set represents the features of the
complete dataset. In order to avoid any bias, we repeated the experiments for 5 runs and the averages
of the observed results are presented. On each run we randomly choose the training subset from the
complete dataset. We make use of a standard 10-fold-cross validation technique to obtain the optimal
parameters of a classifier. For computing the parameters we minimize the loss function, i.e. the number

of incorrect decisions.

3.5.1.4 Experimental results
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Figure 3.4: WWW’05 people dataset results graph.

""The name “inverse purity” is supported by the fact that Pur(C, M) = I Pur(M,C).
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3. ENTITY RESOLUTION FOR WEB DOCUMENTS

Figure shows the performance of the individual similarity functions on the entire WWW’05
dataset. The figure shows three metrics, namely Fj-measure, F'-measure and Rand-index. The final
column, depicted as black in the figure, is the combined performance of our quality-aware combination
technique, which clearly shows improved performance. Similarly, Figure [3.5] shows the experimental
results on the WePS peoples dataset.

Performance on WePS Dataset
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Figure 3.5: WePS people dataset results graph.

Table contains the achieved F), values, for each individual person, by each individual function
in the WWW’05 dataset. One can observe that each function performs differently for different persons.
For example, for “Voss” the function F8 has the highest F},-value, while for “Mulford” the best function
is F6.

| F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 [ C10 | W |
Cheyer |0.9686]0.9948]1.0000/0.9686]0.7950]0.99481.0000[0.9948]0.99480.9948|| 1.0000([0.9948
Cohen |0.8724]0.3827]0.73680.8859]0.84440.89910.8839(0.8746|0.8746|0.8718(/0.8991|/0.8816
Hardt [0.8680/0.88280.8985]0.8680/0.47170.9074]0.8985/0.8828|0.8828]0.87790.9074(/0.8828
Isracl [0.8206/0.7568]0.7881]0.8312]0.8093]0.8476/0.7257|0.8315]0.7536|0.7568 || 0.8476/0.8690
Kaelbling [0.9831]0.9944[0.9711[0.9831]0.9012]0.9467[0.9711]0.9944]0.9888[0.9944/0.9944[/0.9944
Mark [0.7871]0.7871]0.7228]0.78710.7871]0.7871[0.76680.7871]0.7915[0.7871]/0.8104[/0.7871
Mccallum|0.7921]0.7391]0.6642]0.78120.8066 |0.8248|0.4667 | 0.8024|0.5851|0.8187|/0.9670/[0.8597
Mitchell |0.8473]0.7756/0.5796|0.7417|0.7981|0.7733]0.4448|0.5966|0.7097|0.7382]|0.8575 || 0.6448
Mulford [0.7471]0.7467]0.7569]0.7471]0.7337]0.7582|0.7569|0.7467 |0.7467 |0.7467 || 0.8053 | 0.7467
Ng  [0.8607]0.7111]0.7493]0.8660|0.7938]0.8163|0.7031|0.8086|0.7082|0.7082 | 0.88130.8845
Pereira |0.7215]0.5420/0.63620.7180[0.6389|0.69420.5571[0.7326|0.5554|0.5519/0.7573][0.7438
Voss  0.60940.6365/0.5813]0.57600.5993[0.6073|0.6135]0.8016[0.6391]0.6979/[0.8016|0.7567

Table 3.4: I}, measure for each name in WWW?’05 Dataset
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Dataset | Metric | 14 [ 17 | 110 [ C4 | C7 | C10 | W [Related work |

WWW’05| F),-measure||0.8128 0.8211]0.82321/0.8537|0.873210.8774|/0.8371|/0.864 [KCMNOS],
0.9000 [CKMO9]
F-measure ||0.7654|0.7773]0.7822/0.8338]0.8376|0.8438(/0.8168|(0.8000  [BMO5]],
0.8 [CKMO09]

RandIndex {/0.8018{0.8109{0.8326(|0.8747|0.8814|0.8886|0.8531

WePS | F,-measure ||0.7270]0.7388|0.7682|(0.7560(0.7659(0.7880/0.7785(|0.791 [KCMNOS],
WePS: 0.7800

F-measure ||0.7042]0.704210.7042/0.7127]0.7231|0.7476|0.7190
RandIndex {/0.7102{0.7102]0.7139/0.7492(0.7531|0.7675|/0.7290

Table 3.5: Comparison of results of the ensemble classifiers w.r.t. the state-of-the-art classifiers for
WWW’05 and WePS people datasets.

Table shows that by considering more and more functions we indeed get a better performance
for both datasets. The first three columns show the maximal performance considering just the threshold-
based technique, by including functions I4={F4,F5,F7,F9}, IT={F3, F4, F5, F'7, F'8, F9, F10},
and 10={F'1,...,F10}, respectively. The columns C'4, C'7 and C'10 take the same functions as the first
three columns respectively, but there we chose the best decision criteria, based on accuracy estimation of
the regions. The column W shows the performance of weighted average combination result. The table
also contains a comparison with the figures reported in the literature. The best results for the WWW’05
dataset were reported in the paper [CKMO09], however they manually improved the available ground truth
(and the improved data is not public), therefore the comparison is not precise. The last column contains
the result achieved by the WePS competition winner. We found this result in [KCMNOS]], but we could

not obtain the original reference.

0.98
0.84

0.96

0.82

0.94

g 0.8
@ ° 0.92
5 o
(5] >
% 0.78 § 0.9
x =
® 0.76
E IE_L 0.88 —
2 o 086 :7%
o  —  —

0.72 0.84 —

0.7 0.82

F5 iF5 F6 iF6 C10 iC10 Ora10iOra10
(a) Rand Index (b) Fp-measure

Figure 3.6: Improvements in the Rand index for individual functions. (Basic vs. improved regions.)
for WWW’05 peoples dataset; and [(b)] ,-measure of the combined classifier and the maximum plausible
performance. (Basic vs. improved regions.) for WWW’05 peoples dataset.

Figure[3.6(a)|depicts the Rand index values, for two similarity functions F'5 and F'6 (Person overlap,
Organization overlap, Table [3.3.1), on the WWW’05 dataset. For both functions, the left bar (F5, F6)
is the mean Rand index value across all the person names, where we were relying on regions defined

51
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by similarity values only (basic regions). For obtaining the value depicted in the right bar (iF5,iF6), we
refined the regions and also consider whether a value is missing or not (improved regions). The improved
performance is due to the refinements in the definition of the regions. Low similarity values can have
many reasons; here we distinguish the cases where information is missing from the cases, where the
information is dissimilar. Considering this feature does not increase the number of regions, thus it does
not increase the computational efforts needed for computing the accuracy estimates.

We wanted to see, how far are our methods from the accuracy values that we could have potentially
achieved using the same similarity functions. We defined an oracle combination function as follows.
Whenever one of the classifiers has a decision agreeing with the ground truth, the oracle decides on that
value. We computed the accuracy of this oracle combination function (Oral0, iOral0) and we depict it
together with C10 and iC10 in Figure
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Figure 3.7: Improvement of combined values (Basic vs. improved regions) for WWW’05 peoples
dataset.

Figure[3.7]depicts the improvements in the combination. The value iC10 is obtained using the refined
regions, {F'1,...,iF5,iF6,...,F10} i.e. as opposed to 110, the functions F'5 and F'6 are replaces by
1F'5 and 1 F6.

3.5.2 Twitter classification

3.5.2.1 Dataset

Our experimental setup was the following. For our experiments we used the WePS-3 Twitter dataset,
which is is available hereﬁ We are given a general training set, which consists tweets related to about
50 companies (we denote this set as CT*). For each company ¢ € CT® we are provided around 400
tweets with their corresponding ground truth, i.e. if the tweet is related to the company or not. For each
company, we are provided with the following meta-information: URL, Language, Category. We have
trained a generic classifier based on this training set. The test set for this task consisted tweets of around
50 new companies. We denote this set of companies as C7 ¢!, There was no overlap with the training set,

Zhttp://nlp.uned.es/weps/weps—-3/data
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Figure 3.8: [(a)| Individual classifiers vs. quality-aware combination for WePS-3 Twitter dataset; and [(b)]
Individual feature set classifiers vs. quality-aware combination. for WePS-3 Twitter dataset.

CTEN CTest = 0. For each company ¢ € CT¢* there are about 400 Tweets, which are to be classified.
We classified them with the classifiers explained in Section[3.4.2.2]

3.5.2.2 [Experimental results

The task is of classifying the tweets into two classes: one class which represents the tweets related to the
company (positive class) and second class represents tweets that are not related to the company (negative
class). Our performance metric for the evaluation was accuracy.

We conduct two series of experiments. In the first case we design five classifiers (BB1, ..., BB5)
per company in the training set. For each training set company, we compute how a particular classifier
performs in its neighborhood and take it as an accuracy estimate for that classifier in that region. Given
these set of individual classifiers, we would like to see the performance of quality-aware combination
against the case of choosing the most accurate classifier for the complete test set. The results are shown
in Figure

In the second series of experiments, we design five global classifiers (B1, ..., B5) for the complete
training set. These five global classifiers would have different performance on each individual company
in the training set. This performance is taken as an accuracy estimate of a particular global classifier
for that region. For quality-aware combination, we choose the global classifier with most accuracy in
the region of the company in consideration. We also show the SVM classifier, which makes the quality-
aware combination decision implicitly, as a comparison. The results are depicted in Figure 3.8(b)] We
compare these quality-aware combination against these five global classifiers used against all the test set.

In both figures, we see that quality-aware combination techniques outperform the other techniques
which do not take regions based accuracy into consideration.

The amount of accuracy one could achieve with our technique depends on two factors. They are the
quality of similarity functions and the type of combination function. We show that starting with a rich
set of similarity functions and even with a choice of a simple combination technique we can get results
better the state-of-art-techniques. In some cases, more sophisticated combination techniques, like SVM,
achieve further improvements.
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3.6 Related work

Our work addresses entity resolution problem in Web context. In this section we relate our method with
other entity resolution and Twitter classification techniques. We also relate our work to the literature on

combining multiple classifiers.

3.6.1 Entity matching

The entity resolution and related problems, such as for example duplicate detection have an extensive
literature in the database community, a few important references include [ES69], [HS95], [VMEO3],
[DHMOS], [LIVEQ7], and [KR10]. We provided extensive overview of these approaches in Section
of Chapter [2] Many papers suggest (for example [HS93]) incremental clustering-based methods, while
others propose pairwise comparison-based techniques. A recent paper [MBGMOG] presents a pairwise
comparison-based method, where the authors also consider confidence values during the resolution pro-
cess. They propose to merge database records, which refer to the same entity, right away, as they are
found to be equivalent by the algorithm. The algorithm also computes a new combined confidence value
for the merged record. A more complete analysis of results can be found in [BGMM™09], where the
authors also study, how to chose the sequence of the records to be processed, such that the running time
of the algorithm remains low. In our work, we do not merge or recompute the similarity values.
Chauduri et al. [CGMO3]| introduce a model for detecting fuzzy duplicates in databases. They ex-
tended their model also to a more general setting in [[CSGKO7|]. Their paper is particularly important
from methodological point of view, as they systematically derive their entity resolution algorithms from
an axiomatic model. Unfortunately their model cannot be easily extended to the Web context because
the properties of similarity functions for entities in Web documents do not show the same properties as

in the case of fuzzy duplicates, so the basic assumptions of their model are not satisfied.

3.6.2 Entity matching on the Web

Entity resolution in Web context was studied by Kalashnikov et al. [KMO6]. They propose to create
an entity resolution graph, using the feature-based similarities. The graph witnesses the uncertainty
of the features by having multiple nodes, the so called “choice nodes” are corresponding to possible
references to a given entity. The authors apply heuristic graph measures to measure the connectedness
of entities. The underlying idea behind their heuristic is the “context attraction principle”: if two entities
are related, then it is likely that there are multiple chains in the entity resolution graph between their
corresponding nodes. The authors further improved their techniques in [KCMNOS]. In [KCMNOS]|
and in many other approaches, such as for example in [DHMOS]], the authors consider a more complex
graph, which captures more complex relations, rather than the similarities between the entities as in
our work. We limited ourselves to a simple representation and to focus the issues in this simpler case,
our framework could be later extended to a more complex setting. Their work and their use of context
information in [KMO6] is a similar technique to our quality-aware similarity assessment technique. We
rely on different features, which are also easier to estimate.

Cudré-Mauroux et al. [CMHJT09] take a different approach to entity resolution in the Web con-
text. They propose a graphical model-based probabilistic framework to capture the relations among the
entities. Their framework also includes trust assessments about the providers of the entity equivalence
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assertions. These trust assessment values are later adjusted as their probabilistic reasoning framework
eliminates the detected inconsistencies. While this approach has many advantages, it is not fully applica-
ble to our case, as the underlying factor graph model would have very large cliques, as subgraphs, which
could easily lead to poor convergence of the probabilistic reasoning.

On the Semantic Web person names might be annotated with a globally accepted ontology. This di-
rect link between the ontology helps to disambiguate the person names. However, such globally accepted
ontologies are not present in the emerging Semantic Web. Instead, ontologies are very often used as local
schemas, thus one needs to relate the existing annotation to the ontology one would like to use. The Se-
mantic Web community has developed a plethora of such techniques, see [ESO7]. The OKKAM project
suggests a different approach, [BPSV09]. They propose a service, which provides globally unique iden-
tifiers on large scale for entities, for (semantic) web applications. Their approach relies on the existence
of a large and clean (i.e. resolved) collection of entity profiles. Entity profiles collect relevant attributes
of real world entities. Our techniques can contribute to create or extend such an entity profile collection.

Balog et al. in [BAdROS|| address the problem of clustering web documents based on the person
entity, typically needed for web people search task. They explore and empirically evaluate different
clustering techniques. In our approach we propose techniques to improve the overall accuracy of the

clustering methods.

3.6.3 Combining classifiers

Combining multiple classifiers is studied in the machine learning and also in data mining community

[SE10]]. The techniques can be broadly divided into two main categories:

1. Classifiers fusion, in which the final decision on a sample point is based on the fusion of decisions
of individual classifiers, in some sense similar to achieving consensus. Examples include majority

voting, weighted voting.

2. Dynamic Classifier selection: In this scenario, the decision of one of the classifier is chosen as
the combined decision. Here, the classifier is chosen based on which classifier best represents the

sample point.

Our methods use both combination techniques.

There are different ways have been proposed how to identify regions for accuracy estimates. Woods
et al. [WKB97| discuss a method, which divides the sample space into partitions either on predefined
criteria or on the features. Each classifiers performance is estimated for each partition. This estimates
would be used in choosing a best classifier for each partition. Liu et al. [LYO1] propose a novel way
of combining classifiers: which is by a technique called as clustering and selection. The input sample
space is partitioned into several regions and clustering the correct and incorrect decisions separately.
Each classifier performance is estimated for each region. On seeing a new sample, the region to which
it belongs to is identified and the classifier with best performance for that region is chosen for the final
decision. Strehl et al. [SGCO02] address the problem of combining multiple partitions of a set of objects
into a single consolidated clustering without accessing the features or algorithms that created the parti-
tions. In our work we use conceptually similar techniques as the papers above, but the actual definitions
are specific to the application.
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Chen et al. [CKMOQ9] studied the combination of multiple classifiers, where the classifiers are applied
for performing entity resolution. They also suggest that the performance of the classifiers depends on the
context. Their method introduces techniques to exploit the context and find regions, where the classifier
work better. Their method highly depends on their estimation of the total number of clusters (entities),
which can be highly unreliable. Once they obtained the combination of the clustering methods, they also
apply further techniques to improve their method, such as correlation clustering [BBC04| and related
heuristic approximation techniques. Their overall strategy is similar to ours, but their way of defining
regions and combining similarity values is different.

Bilenko et al. [BMO3|| propose to use SVM classifiers for entity matching in databases. They also
adapt the distance functions, which are string similarity functions, with the help of machine learning
techniques. A multiple classifier approach was used by Zhao et al. [ZRO3S]] for entity identification in
heterogeneous database integration scenarios. They also consider various classifier combination tech-
niques to improve the classification accuracy. Our work applies similar techniques, but in a more general
context.

Bi et al. [BGBOS|| propose a classifier combination technique, based on Dempster-Shafer theory of
evidence and evidential reasoning. We did not consider this approach, as our classifiers are often not

independent.

3.6.4 Twitter classification

The classification of tweets has already been addressed in the literature, in different contexts. Some of
the relevant works include [SED™10], [SSTT09], [PP10], [JZSC09].

In [SED™10], the authors take up the task of classifying the tweets from twitter into predefined set
of generic categories such as News, Events, Opinions, Deals and Private Messages. They propose to use
a small set of domain-specific features extracted from the tweets and the user’s profile. The features of
each category are learned from the training set. This task which can be seen as a supervised learning
scenario is different from our current task which is a generic learning task.

The authors in [SST™09], build a news processing system based on Twitter. From the twitter stream
they build a system that identifies the messages corresponding to late breaking news. Some of the issues
they deal with are separating the noise from valid tweets, forming tweet clusters of interest, and identify-
ing the relevant locations associated with the tweets. All these tasks are done in an online manner. They
build a naive Bayes classifier for distinguishing relevant news tweets from irrelevant ones. They con-
struct the classifier from a training set. They represent intermediate clusters as a feature vector, and they
associate an incoming tweet with cluster if the distance metric to a cluster is less than a given threshold.

In [JZSCQ9] and [PP10], the authors make use of twitter for the task of sentiment analysis. They
build a sentiment classifier, based on a tweet corpus. Their classifier is able to classify tweets as positive,
negative, or neutral sentiments. The papers identify relevant features (presence of emoticons, n-grams),
and train the classifier on an annotated training set. Their work is complementary to ours: the tech-
niques proposed in our work could serve as an essential preprocessing step to these sentiment or opinion
analysis, which identifies the relevant tweets for the sentiment analysis.

The work in this chapter partially relies on the entity profiles and datasets used for Twitter classifi-
cation task, which we cover extensively in Chapter d] However, we realized different experiments and
we used different classifiers. In this work we use our quality-aware similarity assessment technique and
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define regions to improve the quality of our accuracy estimations, which was not studied before. The
focus of the next chapter is the dynamic maintenance and improvement of company profiles, that is not

used in this work.

3.7 Conclusion and future work

We studied two variants of the general entity resolution problem in the Web context, namely the person
name disambiguation and the Twitter classification problem. Such entity resolution tasks are essential
for realizing the entity-oriented view of Semantic Web. In order to process the information on the Web
automatically, one needs to connect the entities present in unstructured Web documents to descriptions
of entities, or to entity collections. We designed a simple algorithmic framework for both problems.

We studied the design of similarity assessment techniques. Our proposed method estimates the qual-
ity of available similarity values, for particular regions of the input and not globally, as the assessment
techniques themselves produce results of different quality. Also it takes specifically into account if some
information is not available or missing, which is very common in the context of Web documents. We
demonstrated the effectiveness of these methods in our framework: for both problems our techniques
show promising results. Quality-aware similarity functions can be used in combination with other algo-
rithmic frameworks as well. The systematic quality assessment and quality-aware combination technique
results improved similarity values and improves the overall performance of these algorithms. Clearly,
there is a balance between the definition of regions and computational efficiency. Our way of defining
regions is simple and easy to realize, yet different from other techniques. Through these techniques we
addressed entity resolution for web documents, one of the important problems in realizing entity oriented
view of the Semantic Web, in this chapter.

In our future work, we would like to find other ways for defining regions for accuracy estimations. We
also plan to address the effect of incomplete information available in the Web pages on the accuracy of the
similarity functions even more directly, by considering entropy based metrics, similar to [CMBHAOS]].
We also would like to extend our quality estimations to more dynamic settings, which is essential if the

Twitter messages have to be classified on the fly, as they arrive in the Twitter stream.
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Chapter

Entity-based Classification of Twitter
Messages

There’s more value in messages
shared publicly because more
opportunities arise. A kind of social
alchemy takes place when a
seemingly valueless message finds
its way to someone for whom it
strikes a chord.

@toomuchnick

Twitter is a popular micro-blogging service on the Web, where people can enter short messages,
which then become visible to some other users of the service. While the topics of these messages varies,
there are a lot of messages where the users express their opinions about some companies or their products.
These messages are a rich source of information for companies for sentiment analysis or opinion mining.
There is however a great obstacle for analyzing the messages directly: as the company names are often
ambiguous (e.g. apple, the fruit vs. Apple Inc.), one needs first to identify, which messages are related
to the company. In this chapter, we address the problem of Entity Matching in Twitter streams. We
are interested in deciding if a tweet containing an entity mention is related to a particular real world
entity. As seen in the previous chapter, the algorithms for identifying entities in an unstructured text,
rely on exploiting the context surrounding the entity-mention for reliably identifying the entities. Twitter
messages (tweets) being short messages either have very little context or no context, provide an additional
challenge for the entity identification algorithms.

We present various techniques for classifying tweet messages containing a given keyword, whether
they are related to a particular company with that name or not. We first present simple techniques, which
make use of company profiles, which we created semi-automatically from external Web sources. Our
advanced techniques take ambiguity estimations into account and also automatically extend the company
profiles from the twitter stream itself. We demonstrate the effectiveness of our methods through an exten-
sive set of experiments. Moreover, we extensively analyze the sources of errors in the classification. The
analysis not only brings further improvement, but also enables to use the human input more efficiently.
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4.1 Introduction

Twitte is a popular micro-blogging service on the Web, where people can enter short messages (a.k.a.
tweets), which then become visible to other users. Twitter is currently one of the most popular sites of
the Web: as of March 2013, Twitter users send more than 200 million messages per day on average El
While the subject of these varies, in many cases the messages express opinions about companies or their
products. Since the service is very popular, the twitter messages form a rich source of information for
companies about how their customers like their products. In the same way companies might learn what is
the general perception of the company. There is however a great obstacle for analyzing the data directly:
as the company names are often ambiguous, one needs first to identify, which messages are related to the
company. This name ambiguity is not accidental, the choice of the company name is part of the branding
and marketing strategy. Examples for such company and brand names from the technology industry are
Apple ™ Inc., Orange® or BlackBerry®.

Hash-tags are often used in twitter messages, as an indirect way of linking tweet messages that are
about a common thing (an event, a news article, an entity, a product, etc.). It is possible to associate an
hast-tag corresponding to an entity, for example: #apple hash-tag could represent Apple Inc. company
entity. If all tweet messages related to Apple company entity use #apple hash-tag then it is trivial to
identify all such messages. But in reality, only small set of tweets contain such hash tags, due to which
one fails to find all the relevant tweets corresponding to an entity. In this chapter, we are interested in
identifying if a tweet — which may or may not contain any hash-tag — is relevant to a particular company
entity.

In this work we focus on the problem of classifying twitter messages containing a given keyword,
whether or not they are related to a given company. Constructing such a classifier is a challenging task, as
tweet messages are very short (maximum 140 characters), thus they contain very little information, and
additionally, tweet messages use a specific language, often with incorrect grammar and specific abbre-
viations, which are hard to interpret by a computer. To overcome this problem, we constructed profiles
for each company, which contain more rich information. For each company we collected keywords from
different sources (Web, User) automatically and in some cases manually. The company profiles essen-
tially contain these keywords, which are related to the company in some way. With each profile we also

maintain a set that contains unrelated keywords. With the help of these profiles we could construct a

classifier.
Tweet-ID Tweet Message \ Classification(T/F) ‘
T1 “.. installed yesterdays update released by apple..” T
T2 “.. the apple juice was bitter..” F
T3 “.. it was easy when apples and blackberries were only fruits..” T
T4 “.. dropped my apple, mind u its not the fruit..” T

Table 4.1: Tweets containing the keyword “apple”

Table gives some examples of tweets containing the keyword “apple”. Our task is to decide

whether these messages are related to the company Apple Inc. or not. This task is not trivial, even for

"http://www.twitter.com
“http://articles.washingtonpost.com/2013-03-21/business/37889387_1 _tweets-jack-dorsey-twitter
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4.2 Model and Problem Statement

human inspectors. The human decision process relies on some specific keywords, which —together with
the background knowledge— give hints for the decision. In the table, the bold words are examples for such
possible hints. In our classification techniques, we try to construct profiles, which contain exactly these
keywords. Note that in the sentences T3 and T4 the speaker exploits the multiple possible interpretations
of the word “apple”. (If one of them is the company Apple Inc. we try to classify the message as TRUE.)

Beyond this standard technique we construct more sophisticated classifiers as well. First we estimate
the overall ambiguity of a company name, and include this information in our classification decision.
Moreover we do not use static profiles for the companies, rather dynamic ones, which we continually
update from the twitter stream. This extension is essential and specific to our classification problem.
The keywords appearing in the tweets are repeated with changing frequencies: for example if a company
launches a new product, this new product name might appear more frequently in the twitter stream, and
such keywords can be temporarily good indications that the message is related to the company. We
conducted an extensive set of experiments using the WePS-3 dataseﬂ and also through direct access to
the twitter stream. The experiments show promising performance figures. Moreover, we extensively
analyze the sources of errors in the classification. The analysis not only brings further improvement, but
also enables to use the human input more efficiently.

The rest of the chapter is organized as follows. Section {.2] explains the problem more formally.
Section presents our basic classification technique, while Section describes our more advanced
techniques, where we involve ambiguity estimations and also active profiles. Section [4.5] contains the
results of our extensive experimental evaluation. Section elaborates on the reasons of errors in the
classification and presents systematic techniques to minimize the effect of certain types of errors. Section
summarizes the related work and finally, Section 4.9 concludes the chapter.

4.2 Model and Problem Statement

4.2.1 Problem statement

In this section we formulate the problem and our computational framework more formally. The task is
concerned to classify a set of Twitter messages I' = {77, ..., T, }, whether they are related to a given
company C. We assume that each message 7T; € I" contains the company name as a sub-string. We say
that the message 7; is related to the company C', related(T;, C), if and only if the Twitter message refers
to the company. We also use the term that a tweet belongs to a company, by which we mean the same. It
can be that a message refers both to the company and also to some other meaning of the company name
(or to some other company with the same name), but whenever the message 7; refers to company C we
try to classify as TRUE otherwise as FALSE. We assume that some basic further information is available
as input, such as the URL of the company url(C'), the language of the Web page.

4.2.2 Model
4.2.2.1 Tweet Representation

We represent a tweet as a bag of words (unigrams and bigrams). We do not access the tweet messages

directly in our classification algorithm, but apply a preprocessing step first, which removes all the stop-

3http://nlp.uned.es/weps/weps-3|In fact, we are not using the training set of WePS-3, just the test set with the
available ground truth, for evaluation purpose.
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words, emoticons, and twitter specific stop-words (such as, for example, RT, @username). We store a

stemme version of keywords (unigrams and bigrams). Formally we have:

T; = set{wrd;}. 4.1)

4.2.2.2 Company Representation

We represent each company entity as a profile, where a profile is a set of weighted keywords.
P, = {wrd; : wt;} (4.2)

with wt; > 0 for positive evidence keywords (i.e. those words which suggest that the message should
be related to the company) and wt; < 0 for negative evidence keywords. We can consider the profile as
two sets of weighted keywords. The set with positive weights constitute positive evidence keywords and

the set with negative weights represent negative evidence keywords.

P..Set™ = {wrd; : wt; | wt; > 0} (4.3)
P..Set™ = {wrd; : wt; | wt; < 0} 4.4)

The weights wt; corresponding to word wrd; essentially captures the conditional probability of the
event that a message containing the keyword belongs (or does not belong) to the given company C'. (For

simplicity, we denote these events as C and C).

P(wrd; | C) = wt; if wt; > 0, 4.5)
P(wrd; | C) = |wt;] if wt; < 0, (4.6)

4.2.2.3 Classification Process

For the tweets classification task, we compare the tweet with the entity (i.e. company) profile. We make
use of Naive Bayes Classifier [Hec96l], [Lew98]| for our classification process. We assume the words
appearing in a tweet independently contribute towards the evidence of whether the tweet belongs to the
company, or not.

For each tweet T; = set{wrdé} we compute the conditional probabilities P(C' | T;) and P(C | T;)
for deciding if a tweet belongs to a company C or not. We make use of Bayes theorem for computing

these terms.

P(C)*P(T; | C)
P(T;)
_ P(C)* P(wrdt, ..., wrd, | C)
B P(T;) @D
=K, [[ Pwrdi | C)

J=1

P(C|T) =

“We used the Porter stemmer from the python based natural language toolkit, available at http: //www.nltk.org
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Similarly we have,

P(C|T;) = Ky [ [ P(wrd: | C) (4.8)
j=1

where, P(wrd; | C) and P(wrd; | C) are the weights associated with the words wrd; as described
in previous section. Depending on whether P(C | T;) is greater than P(C | T;) or not, the Naive Bayes

Classifier decides whether the tweet T; is related to the given company or not, respectively.

4.3 Basic Twitter classification

In this section we present a basic classification technique for twitter messages. This technique is an
improved version of our classifier [YMA10a], which we developed in the context of WePS-3 evaluation
challenge. It is referenced with the name LSIR-EPFL in [AAG™10]]. Our classifier is essentially a Naive
Bayes classifier, which relies on constructed company profiles. In the following we give details about
how we constructed the profiles from different information sources. We represent a company using basic
profile, which is set of weighted keywords. We assume that for each company we are provided with the
company name, an URL representing the company, the category to which the company belongs. For each
information source we show how we extract the keywords, and discuss the advantages and disadvantages

associated with that source.

Homepage Keywords For each company name, we assume that the company homepage URL is avail-
able. To extract relevant keywords from the homepage URL, we crawled all the relevant links up
to a depth of level (d=2), starting from the given homepage URL. First we extracted all the key-
words present on these relevant pages, then we removed all the stop-words, finally we store in the
profile the stemmed version of these keywords. From this construction process one would expect
that homepage provides us all the important keywords related to the company. However, since the
construction is an automated process, it was not always possible to capture good quality represen-
tation of the company for various reasons like: the company webpages may use java-scripts, some
use flash, some company pages contain irrelevant links, most of the webpages are non-standard

home-pages etc. The collected keywords from this source contribute towards positive evidence.

Metadata Keywords HTML standards provides few meta tagsﬂ which enables a Web page to list set of
keywords that one could associate with the Web page. We collect all such meta keywords whenever
they are present. If these meta-keywords are present in the HTML code, they have high quality,
the meta-keywords are highly relevant for the company. On the negative side, only a fraction of
webpages have this information available. The metadata keywords contribute towards positive

evidence.

Category Keywords The category, to which the company belongs, is a good source of relevant infor-
mation of the company entity. The general terms associated with the category would be a rich
representation of the entity. For example Apple Inc. belongs to “Computers Software and Hard-
ware” category. One usually fails to find this kind of category related keywords on the homepage

Shitp : / Jwww.w3schools.com/html/html_meta.asp
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URLs. Further, we make use of WordNetF_’l a network of words, to find all the terms linked to
the category keywords. Thus by using this kind of source helps us associate keywords like: soft-
ware,install, update, virus, version, hardware, program, bugs etc to a software company entity.

This source of keywords contribute towards positive evidence.

GoogleSet/CommonKnowledge Keywords GoogleSet is a good source of obtaining “common knowl-
edge” about the company. We make use of GoogleSet{] to get words closely related to the com-
pany name. This helps us identify companies similar to the company under consideration, we get
to know the products, competitor names etc. This kind of information is very useful, especially for
twitter streams, as many tweets compare companies and their products with the competitors. We
could for example associate Mozilla, Firefox, Internet Explorer, Safari keywords to Opera Browser

entity from the keywords inferred from this source.

UserFeedback Positive Keywords The user himself enters the keywords which he feels are relevant to
the company. The keywords we get from the user are of high quality, though they would be few in
number. In case of companies where sample ground truth is available, we can infer the keywords

from the tweets (in the training set) belonging to the company.

UserFeedback Negative Keywords The knowledge of the common entities with which the current
company entity could be confused, would be a rich source of information, using which one could
classify tweets efficiently. The common knowledge that “apple” keyword related to “Apple Inc”
company could be interpreted possibly as the fruit, or the New York city etc. This particular set of
keywords helps us to collect all the keywords associated with other entities with similar keyword.
An automated way of collecting this information would be very helpful, but it is difficult. For now
we make use of few sources as an initial step to collect this information. The user himself provides
us with this information. Second, the wiki disambiguation pagesﬂ contains this information, at
least for some entities. Finally this information could be gathered in a dynamic way i.e., using
the keywords in all the tweets, that do not belong to the company. In fact, our more sophisticated
classifier to be discussed in section [4.4] exploits this information. The unrelated keywords could
also be obtained if we have training set for a particular company with tweets that do not belong
to the company entity. Only keywords from this source contribute towards the negative evidence

during the classification of tweet.

Table shows the basic profile of “Apple Inc’ﬂ company entity.

We associated a weight proportional to the quality of the source from which these words are extracted.
More generally, if a training set is available one can use more sophisticated techniques. From the training
set of the company, for each word, let IV, be the number of tweets containing this word and belong to

the company. Similarly /V,,, be the number of tweets in the training set containing this keyword but

N,
Ny+Npyr®

this process, there could be many keywords in the profile, where there are no tweets in the training set

In

do not belong to the company. The weight of the keyword can be chosen proportional to

containing these words. For all such words one can associate a weight proportional to the quality of the

6http ://wordnet .princeton.edu/

"http://labs.google.com/sets
8http://en.wikipedia.org/wiki/Apple_(disambiguation) page contains apple entities
*http://www.apple.com
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Positive Evidence Keywords

HomePage Source: iphone, ipod, mac, safari, ios, iphoto, iwork, leopard,
forum, items, employees,itunes, credit, portable, secure, unix, auditing, fo-
rums, marketers, browse, genius, music, recommend, preview, type, tell, notif,
phone, purchase, manuals, updates, fifa, 8GB, 16GB, 32GB ...

Metadata Source: {empty}

Category Source: opera, code, brainchild, movie, trade, paper, freight, key-
board, merchandise, disk, language, microprocessor, move, web, monitor,
show, instrument, board, lade, digit, shipment, food, cpu, moving-picture,
fluid, consign, contraband, electronic, volume, peripherals, crt, resolve, yield,
server, micro, magazine, telecommunications, manage, commodity, flick, ve-
hicle, set, creation, procedure, consequence, second, design, result, mobile,
home, processor,spin-off, wander, analog, transmission, cargo, expert, record,
database, tube,payload, state, estimate, intersect, internet, print, machine, de-
liver, job, output, release

GoogleSets Source: itunes, intel, belkin, 512mb, sony, hp, canon, powerpc,
mac, apple, iphone, ati, microsoft, ibm

UserFeedback Source (Positive): iphone, ipod, itouch, itv, iad, itunes, keynote,
safari, leopard, tiger, iwork, android, droid, phone, app, appstore, mac, macin-
tosh

Negative Evidence Keywords

UserFeedback Source (Negative): fruit, tree, eat, bite, juice, pineapple, straw-
berry, drink

Table 4.2: Apple Inc. Basic Profile

source from which these words are extracted, as in our simple case. This default weight for the keywords
not present in the training set tweets, is similar to default weights usually used for an improved Naive
Bayes Classifiers [KRYLO2].

4.4 Improved techniques

4.4.1 Relatedness-based Classification

Based on the training set of size 50 tweets per company, we estimate the relatedness factor of a com-

pany. We define this term as the percentage of tweets that really belong to the company.

# of tweets in Training Set € Company
relatedness =

4.9
# of tweets in the Training Set (49)

Figure[4.1|shows the estimated relatedness factor of the different companies in the test set. Compa-
nies with higher relatedness factor (for example: Sony, Starbucks, MTV etc.), implies majority of the
tweets containing the company keyword belong to the company. Similarly for companies with very low
relatedness factor (for example: Seat, Orange, Camel etc.), implies the majority of the tweets mention-
ing the company keyword do not refer to the company. Note that the relatedness factor characterizes a
company based on the dataset and it is independent of the entity profiles.

When classifying a tweet, we actually compare the words present in the tweet against the words
present in the profile of a company. Since the number of words we have in the profile are often limited
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Relatedness Factor of Companies
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Figure 4.1: Relatedness Factor of Companies

and the possible set of words present in tweet is potentially infinite, in many cases, for many tweets, we
do not find any overlap with the company profile. In such cases, it would be better to classify such tweets
according to the relatedness factor of the company. The knowledge of the relatedness factor helped
us to improve the accuracy of our classification. This technique particularly improves the performance
in the cases, where the constructed company profiles are small or have low quality.

Once we know (i.e. estimate) the relatedness factor of a company, there are two ways of classifying
an unseen tweet. The first strategy is, if this factor is greater than 0.5, for all tweets we classify them
as belonging to the company. This way of classifying helps us achieve an expected accuracy equal to
the relatedness factor. When the relatedness factor of a company is less than 0.5, all the tweets
are classified as not belonging to the company. In this case, we achieve an expected accuracy of 1 -
(relatedness).

The second way is, for each tweet we classify the tweet belonging to the company with a probability
equal to the relatedness factor. In this way of classification, we would have tweets in both the classes:
belonging to the company and not belonging to the company. The expected accuracy of this process can
be shown to be a little lower than first case, but we gain some knowledge in this probabilistic classification
which could be used for classifying future unseen tweets. We explain in more detail how we can infer
some useful information using this method in the following section (Section 4.4.2).

Let us denote by N the number of tweets to be classified. With p = relatedness factor, we have
p X N tweets belonging to the company and (1 — p) x N tweets not belonging to the company. When
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we decide with probability p that a tweet belongs to the company, we would be right with p? x N tweets
as belonging to the company and (1 — p)? x NN tweets as not belonging to the company. So, in total the

expected accuracy is given as:

Expected Accuracy = p® + (1 — p)%, where p = relatedness-factor. (4.10)

We assume that the relatedness factor of a given company does not change in time. We can make
this assumption as these changes are relatively slow. One can observe dynamic changes of individual

word frequencies which we handle using a different technique, that we explain in the next section.

4.4.2 Active Stream Learning Based Classification

In Section|4.3|we described how we constructed a basic profile of the company using few reliable sources
(such as company homepage, category keywords, Google sets keywords, user feedback etc.) which give
us list of keywords which help us decide if a tweet belongs the company. The basic profile is a good
starting point for building an efficient classifier, however there are severe limitations of just using the
basic profile, which we need to address in order to design better classifiers. In this section, we identify
these limitations and propose novel techniques to overcome them.

The efficiency of the basic profile is limited by number of tweets in the test set that contain at-least
few overlapping words from the basic profile. From the analysis of the test set tweets we observe that
there is a significant percentage of tweets, which do not have any overlapping words with the correspond-
ing basic profile keywords. The Figure 4.3|in Experiments section confirms this observation.

Some of the limitations of using only the basic profile include:

1. The number of keywords in the basic profile are limited, while the number of words one could find

in a twitter stream of the company are potentially infinite.

2. The sources from which we gather the basic profile keywords are good for collecting positive
evidence keywords but not so good for negative evidence keywords. It is possible, at least through
human input and with the help of many Web sources, to associate all possible keywords related to
a company. On the other hand it is relatively difficult to get a list of entities with which a company
keyword could be confused. There is no single authoritative source on the web which lists all

possible interpretations of a company name.

3. The basic profile does not consider the characteristics of the words distribution in a tweet stream.
The power law shown by word frequencies of tweet words, suggests which words should be present

in the company profile so as to make an intelligent decision.

4. The relatedness factor of a company is useful information, which is completely ignored by a

classifier that solely relies on the basic profiles.

5. The limited user feedback is completely ignored by the basic profile. Usually it is difficult to
involve humans in classifying the tweets, as there are numerous tweets in amount. Even for some
number of tweets for which the user is willing to provide feedback, is not exploited by the basic
profile.
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Algorithm 4.1: Active Stream Learning

1: Input : Basic Profile: Py.Set™, Py.Set™

2:  Twitter Stream: I' = {T",...,T,}

3: R: Relatedness factor of company

4: Init : Active Tweet Sets: P,.Set™ = {}, Py.Set™ = {}
5: forall T; € I" do
6
7
8
9

score = SCORE(T}, Py.Set™) + SCORE(T;, Py.Set™)
if score > 0 then

P,.Set™ .add(Tj},score)
else if score < 0 then

10: P,.Set™.add(T;,score)

11:  else

12: if Math.radom(0,1) < Relatedness factor then
13: P,.Sett.add(T;,Relatedness)

14: else

15: P,.Set™.add(T;,Relatedness)

16: end if

17:  end if

18: end for

19: { Py.Set™,P,.Set™ } = WordFreqAnalysis(P,.Set™, Py.Set™)

20: Add Top-K keywords or all words above Threshold from P,.Set™ to Py.Set™
21: Add Top-K keywords or all words above Threshold from P,.Set™ to Fy.Set™
22: return Py.Set™, Py.Set™

Few observations made on the twitter streams, along with identifying relatedness factor of the
company helps us in overcoming many limitations of the basic profile based classifier. Here we discuss
our observations and how we make use of them in developing more accurate classifier.

For each company we inspected the messages from the twitter stream which contain the given com-
pany name as a search keyword. For each company, by inspecting the twitter stream | °| (of about 2000
tweets), we studied the word frequency distributions. In general, we could observe power law of distribu-
tions for word frequencies. If we have a knowledge about all or top-k of these words, and if these words
contribute as positive or negative evidence, then this should help us in classifying many more tweets
from test set more accurately. Indeed, we applied such techniques.

The premise we use for improving over basic profile classifier is, to add more words to the positive
and negative evidence profile. While adding these words we have to make sure they are of high quality
and if they have more possibility of appearing in the future tweets. Some of the tweets which we are
able to identify accurately using the basic profile, provide us more keywords, which can be used to
resolve new unseen tweets. For example, assume our basic profile about Apple Inc. company contained
only keywords {iPhone, iPod, mac}. Now when inspecting tweets from stream containing the “apple”
keyword, we observe that there are many tweets mentioning “iPhone” and “iPad” together. Since we
are able to classify all such tweets as belonging to the Apple Inc. company by the virtue of “iPhone”
keyword, we can confidently associate “iPad” word also as a useful word which helps us associate future

tweets containing only “iPad” keyword as belonging to Apple Inc.

Yhttp://search.twitter.com/search. json?q=COMPANY-NAME
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4.5 Experimental evaluation

As discussed in Section in our representation the basic profile contains two sets of weighted
keywords. The set with positive weights contribute as positive evidence while the negative weights set
contribute as negative evidence. The weights of the words signify how confident the word helps in
classifying the tweet as belonging to or not belonging to the company.

We proceed as follows (Algorithm[4.T). We start inspecting the twitter stream using this basic profile.
Of the many tweets we inspect some percentage of tweets, which have overlap with the basic profile, can
be accurately classified. All words co-occurring with profile keywords in these tweets can be added to
the profile. The weights we associate with these newly identified keywords should depend on the words
which made them as possible candidates and also on number of times they co-occurred.

Also when inspecting twitter stream, we would come across many tweets which do not have any
overlap with the basic profile keywords. For all such tweets, we classify based on the relatedness factor
of the company. We end up with two sets of tweets: one set of tweets which we classify as belonging
to the company and the other set as not belonging to the company. For both the sets, based on the word
frequency distribution, we add all the keywords above certain threshold to the profile. The weight we
associate with these words should depend on number of times the word appears and the relatedness
factor.

When there is feedback on some of the tweets by the user, this model is able to use the feedback
very efficiently. All the tweets on which the user has responded, the active stream learning algorithm can
ignore the basic profile-based and relatedness factor-based decisions and give more weight-age to the

user responded tweet keywords.

4.5 Experimental evaluation

Experimental setup

We performed our experiments on a 2GB RAM, Genuine Intel(R) T2500 @ 2.00 GHz CPU. Linux

Kernel 2.6.24, 32-bit machine. We implemented our methods using matlab, java and python.

Dataset

We used the WePS-3 Dataset available here] || as our test set. This dataset contained about 47 companies,
with each company having about 450 tweets. All the tweets corresponding to a company are annotated as
belonging to or not belonging to the company. For each company we randomly selected 50 tweets out of
about 450 tweets as our training set. We used the training set only for estimating the relatedness factor
for each company. For constructing the active profiles, we gathered twitter streams for each company,
using the query term shown in companies dataset table in [AAG™ 10|, from Twitter search AP The

number of tweets we investigated for active profiles varied from 600 to 9900 tweets.

Metrics

The task is of classifying the tweets into two classes: one class which represents the tweets related to the
company (positive class) and second class represents tweets that are not related to the company (negative

class). For evaluation of the task, the tweets can be grouped into four categories: true positives (1'P),

"http://nlp.uned.es/weps/weps—3/data
Zhttp://search.twitter.com
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Accuracies of different Classifiers
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Figure 4.2: Accuracies of different Classifiers

true negatives (T'N), false positives (F'P) and false negatives (F'N). The true positives are the tweets
that belong to positive class and in fact belong to the company and the other tweets which are wrongly
put in this class are false positives. Similarly for the negative class we have true negatives which are

correctly put into this class and the wrong ones of this class are false negatives.
We use the accuracy metric to study the performance of our different classifiers.

TP+ TN
TP+ FP+TN+ FN

Accuracy =

Different Classifiers

Our experiments make use of following different classifiers:

(4.11)

1. Basic Profile-based Classifier (BP1): For each company we formed the basic profile, which in-
cluded keywords from all the sources: homepage, category, metadata, google sets and user feed-

back.

2. Basic Profile-based Classifier (BP2): In general we observed that keywords extracted from home-
page source are of low quality compared to all other sources. So, we formed a second basic profile

whose keywords are from high quality sources like category, metadata, google sets and user feed-

back.
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4.5 Experimental evaluation

3. Relatedness factor based Classifier (BPR): Based on the training set we estimated the relatedness

factor of each company. Using this factor the classifier classified all the tweets.

4. Active Profile Classifier (BPRA1): We used high quality basic profile (BP2), which considered
only high quality sources, for forming the active profile. This classifier based on the active profile
classified all the tweets in the test set.

5. Active Profile Classifier (BPRA2): In order to study the impact of the quality of basic profile on
the construction of active profile, we used basic profile (BP1) for forming the active profile. This

classifier based on the active profile (BPRA2) is used to classify all the tweets in the test set.

6. Active Profile Classifier (BPRA3): We earlier discussed that the quality of the active profile de-
pends on how good the starting basic profile we use for its construction. For the active profile
classifier BPRA3 we assume that the initial basic profile is empty, and go about constructing the

active profile based only on the relatedness factor decisions.

Please note that the classifiers (BPRA1), (BPRA2) and (BPRA3) internally make use of the estimated
relatedness parameter, as it is explained in Algorithm 4.1

In the first set of experiments, we study how the different classifiers performed on the test set. The
accuracy metric of the different classifiers : BP1, BPR and BPRA1 are shown in the Figure #.2] We
see that on average the relatedness factor based classifier (BPR) and active profile based classifier
(BPRA1) outperform the basic profile-based classifier (BP1). Also the BPRAI classifier outperformed
BPR classifier. On close observation of the Figure we see that for the companies on the far-right
that is with high relatedness factor, the profile-based classifiers BP1 and BPRA1 are better than the
classifier BPR. The reason is, the basic profile is already good enough to capture all the useful words
associated with the company. The active profile does not improve much on the basic profile. Thus they
both outperform the classifier (BPR). This is in tune with the argument in Section 4.4 that it is relatively
easy to gather positive evidence keywords compared to the negative evidence keywords.

In the left side of the graph where the relatedness factor of the companies are low, we observe that
BPR and BPRA1 clearly outperform BP1. It strongly suggests that the basic profile was not good enough
to contain all the negative evidence keywords associated with the company. BPR is outperforming be-
cause it is exploiting the relatedness factor estimate. While BPRA1 was able to efficiently identify all
the supporting keywords which were not initially available in the basic profile.

The significant performance improvement of active profile-based classifier over the basic profile
based classifier can be attributed to the fact that the active profile is able to identify many more keywords
just by inspecting the twitter streams. In Figure[d.3]we show number of words in the profiles that overlap
with the top 50 keywords of the test set. It confirms our observation that only small percentage of tweets
in the test set overlap with the keywords in the basic profile. We also see that by use of active profile,
there is significant percentage of overlap between the keywords in the test set and the active profile.

The quality of the active profile we construct depends on the quality of the basic profile that is used.
In order to study how the different basic profiles affect the active profile based classifiers performance, we
constructed many active profiles BPRA1,BPRA2 and BPRA3, each starting with a different quality basic
profile. From the description of the different basic profiles, we see that the quality of BP2 classifier is
better than BP1 classifier, which further are better than the empty basic profile. The average performance
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Number of Word Overlaps

Between the TestSet and Profile Keywords

& Basic Profile (BP1) == Active Profile (BPRAT)

Number of Word Overlaps

Companies ordered according to Relatedness Factor
Figure 4.3: Number of word overlaps between a company profile and corresponding tweets test dataset.

of each of the different classifiers is shown in the Table From the table we observe that BPRA1 is
better than BPRA2 which in turn is better than BPRA3 classifier. Thus we observe that as the basic

profile quality deteriorates so does the performance of the corresponding active profile.

4.5.1 Performance of the Classifiers in WePS-3 ORM Task

A number of teams participated in WePS-3 Online Reputation Management (ORM) Task, concerning
classification of tweets containing the company name if they are related to the company entity. The
participating teams submitted multiple classifiers for the task. We participated in this challenge with a
classifier that is based on BP1 (Basic Profile using all sources) and Relatedness factor, which we refer
to as LSIR.EPFL#I classifier henceforth. Other competing classifiers were from KALMAR [Kall0],
SINAI [CVSPO10], UVA [TB10], and ITC-UT [YMOT10]. We discuss their approaches in Section

Table [4.4] shows the performance of the different classifiers based on a number of performance met-
rics. The table also shows two baseline classifiers: BASFELIN Er which classifies each tweet as related
to the company , while BASFELIN Ey g classifies each tweet as not-related to the company. We see that
our classifier, LSIR.EPFL#1, is performing the best on a number of performance metrics and mainly in
the overall accuracy and related-ratio-deviation. We also see that the baseline classifiers (BASELIN Eg
and BASELIN EnR) are also performing best on some of the performance metrics. It is not clear how
to unanimously rank all the participating classifiers. F-measure is just one way of combining precision
and recall measures by giving equal importance to each of them.
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Classifier Average Accuracy
Basic Profile using all sources (BP1) 0.43
Basic Profile using only high quality sources 0.46
(BP2)
Relatedness factor based classifier (BPR) 0.73
Active Profile constructed using high quality Ba- 0.84
sic Profile-BP2 (BPRA1)
Active Profile constructed using normal quality 0.79
Basic Profile-BP1 (BPRA2)
Active Profile constructed using the empty Basic 0.76
Profile (BPRA3)

Table 4.3: Average Accuracy of Different Classifiers

The judges of the WePS-3 task relied on Unanimous Improvement Ratio (UIR) measure [AGAV11]
to rank all the participating classifiers based on pairwise relative performance. In the UIR measure they
vary the relative importance of precision and recall, and study in the number of cases in which one system
performs better than the other. Table 4.5 shows which classifiers improve on which other classifiers. It
can be observed that LSIR.EPFL#I has shown improvement over most of the other participant classifiers.
Also observe that the baseline classifiers (BASELIN Er and BASELIN Eng) , despite having good

performances over few metrics, are not improving on any other classifiers.

4.6 Performance Analysis and Further Improvements

We have introduced and evaluated various Twitter classification methods. In Section 4.3] we started with
a simple classifier only relying on a basic profile, while in Section #.4| we improved this method through
the use of the relatedness factor and updates from the active Twitter stream. In Section4.5|we evaluated
these methods. Our evaluation shows that the performance of these classifiers is still leaves some room
for improvement, for some companies. In this section we look into the reasons for the under-performance
and also propose principled techniques for improvements.

As a summary, our classifiers work as follows. A company profile in our setting is a set of weighted
keywords. When a company profile is used for classifying an unseen tweet, the Naive-Bayes classifica-
tion looks for overlapping keywords in the tweet message and in the company profile. The net sum of
the weights of the overlapping words, determines if the tweet belongs to the company or not. For all the
tweets which do not have any overlapping words with the profile, we classify those tweets based on the
relatedness factor of the company.

We first introduce some useful concepts for studying the performance of a classifier. The performance
of a classifier, given a company profile on the test set collection of tweets, depends on how well the
keywords of the test set collection overlap with the company profile keywords and how accurate are
the weights in the company profile. Thus, to improve the performance of classifiers, we need “better”
profiles, that is profiles that contain a high number of relevant keywords which also appear in the test set
collection, with as accurate weights as possible.

For our performance analysis, we define following concepts:
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Non .. Precision Recall | F-measure Related
Precision| Recall |F-measure .
Run Processed (related) | (related) | (related) (non (non (non Accuracy Ratio
Tweets related) related) related) Deviation
LSIR.EPFL#1 0 0.71 0.74 0.63 0.84 0.52 0.56 0.83 0.15
ITC-UT#1 0 0.75 0.54 0.49 0.74 0.6 0.57 0.75 0.18
ITC-UT#2 0 0.74 0.62 0.51 0.74 0.49 0.47 0.73 0.23
ITC-UT#3 0 0.7 0.47 0.41 0.71 0.65 0.56 0.67 0.26
ITC-UT#4 0 0.69 0.55 0.43 0.7 0.55 0.46 0.64 0.32
SINAI#1 449 0.84 0.37 0.29 0.68 0.71 0.53 0.63 0.36
SINAI#4 449 0.9 0.26 0.17 0.73 0.72 0.53 0.61 0.38
BASELINENR 0 1 0 0 0.57 1 0.66 0.57 0.43
SINAI#2 449 1 0 0 0.58 0.98 0.65 0.56 0.43
UVA#1 409 0.47 0.41 0.36 0.6 0.64 0.55 0.56 0.27
SINAI#5 449 0.72 0.51 0.28 0.75 0.47 0.33 0.51 0.48
KALMAR#4 874 0.48 0.75 0.47 0.65 0.25 0.28 0.46 0.43
SINAI#3 449 0.6 0.7 0.36 0.86 0.28 0.19 0.46 0.54
KALMAR#2 874 0.47 0.7 0.43 0.61 0.27 0.28 0.44 0.43
KALMAR#5 874 0.48 0.77 0.47 0.65 0.21 0.23 0.44 0.45
BASELINER 0 0.43 1 0.53 1 0 0 0.43 0.56
KALMAR#1 2207 0.51 0.7 0.42 0.59 0.19 0.21 0.4 0.39
KALMAR#3 2202 0.49 0.66 0.39 0.66 0.25 0.27 0.4 0.47

Table 4.4: Final Ranking of the Classifiers that participated in WePS-3 Online Reputation Task Challenge
[AAGT10]

Perfect Profile : P, : We define the Perfect Profile, P., of a company as the profile that can be formed
using the words inferred from the entire test set. The weights associated with these words reflect

the distribution of words in the entire test set collection.

Eventually, when one uses this profile for classifying the tweets in the test set, with the given
classification method we will have the best possible performance. The performance of the classifier
that uses the Perfect Profile is an upper bound for the accuracy level of the classifier with any other

profile.

Current Profile : P; : It is the profile that is formed using the different techniques proposed in the
earlier sections (Sections [4.3|and [4.4) that is eventually used by the classifier.

Next we look into the performance differences of the Current Profile P; w.r.t. the Perfect Profile P,

4.6.1 Comparison of the Current Profile and the Perfect Profile of a Company

We summarize the performance of Current Profile in relation to the performance of Perfect Profile in
the Figure [#.4] We observe that Current Profile is doing as good as Perfect Profile for the companies
with either very low or very high relatedness factor. For these companies, the Current Profile is able
to capture the required keywords accurately using the mentioned techniques. However, the Current
Profile still lags behind Perfect Profile for the companies with mid-range relatedness factor. If we
want to further improve the classification performance, we need to look into the reasons for the under
performance of Current Profile for companies with mid-range relatedness factor.

In Figure 4.5] we show the comparison of Perfect Profile against Current Profile of a mid-range
relatedness factor company (Company name: “Emory University”’). The words on the x-axis are ar-
ranged in a decreasing order of their occurrence frequency in the test-set collection. The top graph shows
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Run Accuracy | Improved Systems

LSIR .EPFL#1 0.83 |KALMAR#1, KALMAR#5, ITC-UT#2, KALMAR#2, KALMAR#3,
ITC-UT#4, KALMAR#4, UVA#1, BASELINENR

ITC-UT#1 0.75 |SINAI#4, UVA#1

ITC-UT#2 0.73  |SINAI#4, UVA#1

ITC-UT#3 0.67 |KALMAR#2, KALMAR#3, #UVA#1

ITC-UT#4 0.64 |SINAI#4, UVA#1

SINAI#1 0.63 |SINAI#4, SINAI#2, UVA#1 BASELINENg

SINAI#4 0.61

BASELINENgr| 0.57

SINAI#2 0.56

UVA#1 0.56 |KALMAR#1, KALMAR#2, KALMAR#3

SINAI#5 0.51

KALMAR#4 0.46 |KALMAR#1, KALMAR#5

SINAI#3 0.46

KALMAR#2 0.44

KALMAR#5 0.44

BASELINER 0.43

KALMAR#1 04 BASELINENR

KALMAR#3 0.4 KALMAR#1

Table 4.5: UIR results (UIR threshold=0.1). Relative performance of the Classifiers that participated in
WePS-3 Online Reputation Task Challenge [AAG™10)]
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Figure 4.4: Comparison of accuracies of Current Profile vs. Perfect Profile.
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the Perfect Profile, with grey-bars referring to the positive weights and black-bars referring the nega-
tive weights. The height of the bars indicate associated weight. The lower graph represents the Current
Profile of the company. Once again the grey-bars and black-bars indicate positive and negative weights
respectively. The reverse-slashed-hatched-bars indicate positive weights but their corresponding weights
in the Perfect Profile is negative. Similarly horizontally-hatched-bars indicate negative weights while
their corresponding weights in the Perfect Profile is positive. These hatched bars in a way contribute
towards the reduced performance of the classifier.

Emory University: Perfect Profile vs Current Profile
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Figure 4.5: Comparison of a company’s profiles (Current Profile vs. Perfect Profile)

Figure [4.5] helps us understanding the possible reasons for the under-performance of Current Profile
in comparison to the Perfect Profile. First, we observe that there are certain words in Perfect Profile,
whose corresponding weights in the Current Profile is zero. The Current Profile does not contain any in-
formation about these words that are occurring in the Perfect Profile. The reason could be that, when the
profile is constructed, those words are not encountered. So, the Current Profile will not be able to clas-
sify the tweets containing those words accurately. Second, we observe some words acting as “positive
evidence” (i.e. information indicating that the keyword in the message is related to the company) in Per-
fect Profile are acting as “negative evidence”, indicated by the horizontally-hatched-bars, and similarly
some words acting as “negative evidence” in Perfect Profile are acting as “positive evidence”, indicated
by the reverse-slashed-hatched-bars. All such words also contribute to some error in the classification.
Thirdly, there could be an error because of differences in the weights of words in the Perfect Profile and
the Current Profile.

4.6.2 Error Groups

On comparing the Current Profile with Perfect Profile, we have seen the different ways in which the
errors could occur. Based on the observations we define three different error groups as follows.
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Error Components of Different Companies
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Figure 4.6: Different error components contributing towards total classification error

Missing Words Error: (FE,..,): The Current Profile, under consideration, may not contain some words
appearing in the Perfect Profile, i.e. the frequent words that are appearing in the test-set collec-
tion. The classifier with the Current Profile in this case would classify all such tweets using the
relatedness factor of the company. In this case, the classification error occurs because of these
relatedness factor-based decisions. We denote the fraction of incorrect decisions of this type as

E.ero, that can be computed as follows:

(4.12)

# of Tweets containing wrd;
# of Tweets in Test Set

E.oro = Z (1 — relatedness) <
i
where wrd; are the missing words i.e., the words which appear in Perfect Profile but not in Current
Profile.

Wrongly Placed Words Error: Epn(FEnp) is the error caused because of words, which are supposed
to be acting as positive (negative) evidence are instead of acting as negative (positive) evidence.
The Current Profile classifies all such tweets containing this misplaced words with a confidence
proportional to the weights of the misplaced words. So the error introduced will be proportional

to the weights of the misplaced words.

1+ |Jwt;]| # of Tweets containing wrd;
Enp =FEpNy = 4.13
NP PN Z ( 2 # of Tweets in Test Set 13)

i
where wrd; are the misplace words i.e, words which are acting as positive (negative) evidence in

active-profile are acting as negative (positive) evidence in Current Profile, and wt; is the weight of

the wrd; in Current Profile.

Words Weights Error: E,; is the error caused because of the differences in the weights of words in
the Current Profile and the Perfect Profile. The tweets containing these words (wrd;) are clas-
sified with a confidence of wt;, weight associated with the word in Current Profile, instead of a
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confidence of wt?, the weight associated with the word in Perfect Profile.

|lwt; — wt?||\ [ # of Tweets containing wrd;
Eyt = L 4.14
wt Z ( 2 # of Tweets in Test Set “+14)

%

The above described different error groups, for all the companies, are shown in Figure 4.6 We see
that the majority of the errors is in the middle of the graph, corresponding to the companies with mid-
range relatedness factor. We can further see the different components: F.cro, Epn, Enp and Fy
contribution towards the total error.

4.6.3 Reducing the Error Components

In this section we discuss methods and tradeoffs for reducing errors (of different types defined in Section

B.6.2).

4.6.3.1 Reducing the Missing Words Error (F..,,)

We have seen that we construct the profiles using the static information sources (for example, homepages,
etc.), that we then extend with keywords from the active twitter streams. This learning mechanism helps
us increase the overlap of words between the Current Profile and the Perfect Profile. It is natural that the
longer we inspect the active twitter stream, the higher is the probability of learning new words. Thus the

size of the active stream that we inspect, has direct impact on the number of new words that we include

in the profile.
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Figure 4.7: Reduction of Missing Words Error (E,.;,) component of selected companies

When the Missing Words Error F,.,., component, is significant we should try increasing the length
of active stream of inspection. We conducted an experiment in which we formed the Current Profile
using active streams of increasing length (from the size of 1000 to 14000 tweets per company). Figure
shows the impact on the Missing Words Error (E.¢,,), for some mid-range relatedness factor com-
panies, with the increasing the active twitter stream length, we see that the E..,, component reduces
as the active twitter stream length increases. We observe that even though the error E.¢,, reduces, it
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Figure 4.8: Comparison of Missing Words Error (F,.,,) component of all companies for two sets of

active stream tweets
never reduces to absolute zero, implying that inspected twitter streams are not containing the words one

is expected to find in the test-set collection.
the reduction in F,.,, component when the Current Profile uses longer active twitter stream (average

In the next figure we will show the summarized performance for all the companies. Figure 4.8]shows
length of 8K tweets) instead of a smaller active twitter stream (average length of 2K tweets). We observe

the error F,.,, reduction for the mid-range relatedness factor companies.

4.6.3.2 Reducing the Wrongly Placed Words Error (Epy and Enp)

With the previous technique we see that we can increase the overlap of words between the Current Profile
and Perfect Profile, but this still does not ensure that we are using the newly found words from the stream
correctly. We discuss two possible techniques for reducing the Wrongly Placed Words Error component,

with their associated costs.
negative evidence. We usually identify new words when they are co-occurring with the already existing

profile keywords. We can associate a weight for the newly found words, based on the quality of the
words which identified them and also how frequently the newly found word is occurring. One can have
stricter controls policy for adding keywords to the profiles, for example by only adding those new words
whose weight is above certain predefined threshold. In the experiments section we have already shown
that starting with high quality profile, we usually make less error with adding the newly collected words.
If we chose very strict control, like very high threshold, we may run in the risk of missing many useful

First, we can make use of stricter controls when deciding if a new word should be acting as positive or

new words, which in turn can increase the error F.,.,, component.
Another way of reducing the Epy and Enp error, is to make use of user feedback. We can either

make use of user feedback on a selected subset of tweets or on a selected set of frequently occurring

keywords. In the remaining of this chapter, we make use of the user feedback. We present a set of

keywords to the user, who has to evaluate whether they are related to the given company. We treat
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Epn + Enp error vs. User Feedback Cost
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Figure 4.9: Comparison of (Epy and Enp) error component of select set of mid-range relatedness
factor companies.

the number of words to which the user gives feedback as the associated human cost. We conduct an
experiment in which we study the impact of error Epy and Enp with respect to the user feedback
(cost). Figure @ shows the impact on the error Epy + Enp, with the increased cost of user feedback,
for some selected set of mid-range relatedness factor companies. We see the error reduces at the
expense of user feedback. If we have limited budget of human feedback, we should be careful in choosing
only those subset of words which can have maximum impact on the overall performance. This is one
of the strength of our approach: based on the error analysis, we can chose only those word which are
occurring frequently but whose associated weights are smaller than the chosen threshold. In this way we
can “optimally” use the costly human input. (In fact, we did not conduct our experiments with human
users directly, rather we considered the ground truth as human input. The ground truth itself was created
through human effort, see [AAG™10].)

4.6.3.3 Reducing the Words Weights Error (F,,;)

While it is clear how to reduce the errors F,.., and Epy+FExnp by inspecting longer active twitter
streams and efficiently using the human feedback, it is really difficult to reduce the error due to differ-
ences in the weights of words in the Current Profile and Perfect Profile. The weights are obtained through
heuristic techniques (see Section [4.3)), as no good training set is available. For reducing this error E,
we could construct a training set that represents well the test set, however obtaining a good training set

may be difficult.

4.6.4 Error reduction techniques impact on the overall accuracy performance

After seeing the different ways of reducing the individual error components, now we present the impact
on the overall accuracy. The following table shows the accuracy performance of different profiles. As
Table [4.6] shows, the error correction techniques explained above further improve the accuracy of our
classification techniques. The results using the Current Profile are approaching the ones of Perfect Pro-
file, one could even further improve them, if needed. There are certainly a limitations how close we can
get, because of the Words Weights Error component (£,¢).
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Different Profiles Overall Accuracy
Perfect Profile 0.87
Current Profile 0.79
Current Profile combined with error E ., reduction technique 0.81
Current Profile combined with error £, +E;,, reduction tech- 0.83
nique
Current Profile combined with error E..,, and error Ep,+E,), 0.84
reduction techniques

Table 4.6: Overall accuracy of classification using different error reduction techniques

4.7 Related work

We have seen an overview of a number of works that are based on Twitter data in Chapter[2] Some of the
relevant works include [SFD™10], [SSTT09], [PP10], [JZSC09], which we discussed in Section m
In this section, we present the works that involve classification of tweets with respect to an entity.

Many works based on entity identification and extraction, for example in [BMO0S,ICKMO9, [ KCMNOS,
YMAT10b], usually make use of the rich context around the entity reference for deciding if the reference
relates to the entity. However, in the current work, the tweets which contain the entity references usually
have very little context, because of the size-restrictions of tweet messages. Our work addresses these
issues, namely how to identify an entity in scenarios where there is very little context information.

The paper [TKW10] proposes a technique to retrieve photos of named entities with high precision,
high recall and diversity. The innovation used is query expansion, and aggregate rankings of the query
results. Query expansion is done by using the meta information available in the entity description. The
query expansion technique is very relevant for our work, it could be used for better entity profile creation.

Bishop [Bis06] discusses various machine learning algorithms for supervised and unsupervised tasks.
The task we are addressing in this work is generic learning, which can be seen as in between supervised
and unsupervised learning. Yang ef al. [YDTO06] discuss generic learning algorithms for solving the
problem of verification of unspecified person. The system learns generic distribution of faces, and intra-
personal variations from the available training set, in order to infer the distribution of the unknown new
subject, which is very related to the current task. We adapt techniques from [Bis06] and [[CLY07] for the
tweets classification task.

There are many ways to represent entities. In the Okkam [MBB™10] project, which aimed to enable
the Web of entities by offering an global entity identification service, an entity is internally represented
as a set of attribute-value pairs, along with the meta information related to the evolution of entity. In DB-
pediﬂ and in Linked Datﬂ the entities are usually represented using RDF models. These rich models
are needed for allowing sophisticated querying and inferences. Since we use the entity representation for
our classification algorithms, we resort to representing an entity simply as a bag of weighted keywords
instead of the rich representations of entities.

In [PTPCR11] the authors address the problem of company identification in the micro-blogs by
resorting to clustering techniques as a parallel approach to designing classifiers. They propose techniques

Bhttp://dbpedia.org/
Yhttp://linkeddata.org/

83


http://dbpedia.org/
http://linkeddata.org/

4. ENTITY-BASED CLASSIFICATION OF TWITTER MESSAGES

to improve the representation of a twitter message through term expansion, in a process to enrich the
semantic similarity hidden behind the lexical structure.

Authors in [DED11]] look into similar problem in a different setting. They address the problem
of filtering twitter messages for Social TV purposes. They are concerned if a tweet message is about
some popular TV show (Lost, Survivor, Friends etc). Their approach, somewhat similar to ours, is
of bootstrapping a model with smaller training set, developing a more sophisticated model using large
dataset of unlabeled messages and further using domain specific features to obtain a final classifier.
However, their focus was on developing a generic classifier that can be used on any unseen TV show in
the training set.

We summarize the different classifiers proposed for the WePS-3 challenge task [AAG™10]].

The approach presented in [KallO] uses data extracted from the company Web-site as surrogate
training data. This data is used to create a initial model, which is then used to bootstrap a model from
the Tweets. The model is iteratively refined with subset of tweets which were confidently classified
by the model. The features used are the co-occurring words in each tweet and the relevance of them
was calculated according to the Point-wise Mutual Information (PAM 1) value. Although it seems to
be an interesting approach, the results shown provided a lot of scope for improvement. This system
—even though it has low on overall accuracy— had decent F-score for relevant tweets, suggesting that a
bootstrapping step can be very useful for company names with high ambiguity.

The authors in [CVSPO10] based their approach on linguistic aspects like recognizing named enti-
ties, extracting external information and making use of predefined rules. They use the well-known Name
Entity Recognizer (NER) included in GATE (General Architecture for Text Engineering) for recognizing
all the entities in their Tweets. They also use the Web page of the organization, Wikipedia and DBpedia
to extract the company related information. Predefined rules are then applied to determine if a Twit-
ter message belongs to an organization or not. The performance of the classifier varied across various
companies. It is difficult to predict for what kind of companies this classifier performs well.

The research presented in [YMO™10] proposes a two-phase system. In the first phase, they divide
the organizations in the training set into 3 or 4 categories depending on the ratio of positive tweets to
negative-tweets. In the second-phase, based on simple rules, the classification is done based on the
category specific features extracted from the tweets. Their approach is based on the observation that the
ratio of positive or negative (if the tweet is related to the organization or not) has a strong correlation
with the types of organization names i.e. ‘“organization-like names” have high percentages of tweets
related to the company and when compared to “general-word-like names”. Their system performance
demonstrated high precision for positive examples and high recall for negative examples.

Another approach is described in [[ITB10], where the focus is on working with organization inde-
pendent features and not relying on any external information sources. They trained the well-known J48
decision tree classifier using as features the company name, content value such as the presence of URLSs,
hash-tags or is-part-of-a-conversation (through re-tweeting, denoted in the messages with “RT"”), content
quality such as ratio of punctuation and capital characters and organizational context. This approach is
quite interesting but heavily relies on the availability of training set. In our work we did not exploit the
presence of hash-tags or re-tweeting behavior of users.

The basic profile classifier, discussed in Section|4.3| is based on the LSIR-EPFL classifier [YMA10a],
which was the winner of WePS-3 evaluation challenge. The LSIR-EPFL classifier essentially makes use
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of different information sources on the Web to create an entity profile. We used these profiles for clas-
sifying the tweets. We further extended the basic techniques in [YMAT11]. The current work is a long
version of [YMAT1I]], which gives further details on the work and introduces systematic performance
analysis. The same dataset and company profiles were also used in an another line of research on design-
ing quality-aware similarity functions for Web data, in [YMA12b|.

4.8 TweetSpector: Entity-based retrieval of Tweets

Online Reputation Management (ORM) involves organizations monitoring the media, analyzing relevant
content, finding what people say and feel about the organization entity, and if needed interact with the
people. In this section we present TweetSpector, an application which can help companies and other
entities to find relevant tweets concerning the entity.

As discussed earlier, we have seen that people readily express their opinions about the various prod-
ucts, companies, TV shows etc., on Twitte These tweet messages are thus a rich source of information
that can be exploited to understand the sentiments about the concerned products or services. Retrieving
the tweets related to given entities is however a challenging task as their names are often (deliberately)
ambiguous, e.g. Apple, Blackberry, Friends, etc. Nevertheless, identifying the relevant entities is an
essential first step to develop reliable sentiment analysis techniques that is not considered in existing
systems, for example TweetFee]E’-] and TwitterSentimenlE

While there is a number of techniques for identifying named entities in unstructured text, they are
often not directly applicable in this case, as tweet messages are very short (maximal 140 characters). Here
we discuss TweetSpector, a tool that addresses this retrieval task and enables to link tweet messages to a
given entity. Our retrieval methods rely on classification techniques that exploit our concise descriptions

of entity-relevant information, also called entity profiles.

Figure [4.10[shows a number of features that are supported by TweetSpector, which are:

Entity Profile Creation: TweetSpector supports automatic profile creation, where we apply named-
entity recognition, NLTK, wordnet and Web data extraction techniques to construct profiles for
an entity, given a relevant Web-page. TweetSpector also enables manual profile construction,
where users can construct arbitrary entity profiles, as well as manual and automatic updates for
initially constructed profiles (thus the profiles are dynamic). The profiles can also be visualized
using Word Clouds. The company entity profile creation and word cloud visualization can be seen
in Figure (top and center-left parts).

Realtime Tweet Classification: TiveetSpector displays in real-time the classification results (see Figure
4.10} center-right part). For example, a stream of tweets is displayed and it is indicated whether
or not the messages shall be related to the company Apple Inc.. The classification techniques are

based on the number of techniques we presented in[4.4]

Bhttp://www.twitter.com
Yhttp://www.tweetfeel.com
"http://twittersentiment.appspot.com
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New Profile
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screen service
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Figure 4.10: TweetSpector: Various Features

User Feedback: The users can indicate whether the proposed classification is correct or not. This feed-
back is taken into account by the algorithms. The RIGHT and WRONG symbols shown in [4.10]
(center-right part) can be toggled by the user through clicking those icons. TweetSpector can also

take human input through crowdsourcing (through an interface to Amazon Mechanical Turk).

Dashboard: TweetSpector can display performance metrics and statistical information on a dashboard
related to the entity. For example, one can observe trends and fraction of relevant tweets in Fig-

ure [4.10] (bottom).

Figure[d.TT|shows the workflow involved in TweetSpector system. Let P; be the current profile of the
company at a time instant ¢; and with a quality metric g;. Say from time instant ¢; to ¢;;.; we inspect and
classify W number of tweets from the real time twitter stream using the current company profile ;. We
apply algorithm ff.T|over this W tweets with P; as the starting profile, and say A;; is the knowledge of
new keywords we gain from this window of tweets. We would combine P; and A;; to obtain the new

profile P 1, with quality g; 1. For better performance from the profiles evolving over time, it is essential
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Figure 4.11: TweetSpector Flowchart

that the quality of the profile should keep on improving i.e, ¢;+1 > ¢; Vi. Instead of automatically
updating the current profile, our current version of TiweetSpector relies on user feedback before updating
the current profile. In our future work we would like to explore techniques of automatically updating the
profile, and involve the user minimally. Our system also provides a way of visualizing the evolution of a

company entity profile overtime.

4.9 Conclusion and future work

We studied how to classify Twitter messages containing a keyword, whether they are related to a given
company, whose name coincides with the keyword. We proposed several techniques. First we presented a
simple Naive Bayes classifier, which relies on automatically or semi-automatically constructed profiles.
The company profiles contain two sets of keywords, which indicate whether a tweet containing this
keyword is related to the company or not. We then extended this basic technique in two ways. First we
developed a method, which takes estimations of the general ambiguity level of the problem into account.
We have also introduced a technique that updates our company profiles actively from the twitter stream.

The main advantage of our technique is that it opens the possibility to estimate the accuracy of our
classification decision. Indeed, we have exploited this possibility: we analyzed the sources of lower
accuracies and we introduced methods to systematically address these problems. In this way we can
minimize the uncertainty that is involved in the classification decision. We demonstrated how to localize
the cases, where the human input is necessary, that is usually expensive to obtain.
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In this way we can handle also the dynamic frequency changes in the use of words in the twitter lan-
guage. Such changes arise naturally when a company temporarily receives media attention (e.g. if they
launch a new product). Our experiments show systematic improvements as we extend our classifier with
the described techniques. Though we demonstrated our techniques of entity-based classification on twit-
ter messages, these techniques readily apply for other data sources like comments on social networks or
blogs. Equally, one could apply the technique for other types of entities (for which we can obtain similar
profiles) as well. In the end we also presented our prototype TiveetSpector: entity-based classification of
the tweets.
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Chapter

Social Networks based User Entity Profiles
and Applications

You are what you share.

Charles Leadbeater, We Think: The
Power Of Mass Creativity

Pervasive web and social networks are becoming part of everyone’s life. Users through their activi-
ties on these networks are leaving traces of their expertise, interests and personalities. With the advances
in Web mining and user modeling techniques it is possible to leverage the user social network activity
history to extract the semantics of user-generated content. Entity Profiling is the problem of constructing
a compact summary of an entity based on the content related to the entity. In this chapter, we explore var-
ious techniques for constructing user entity profiles based on the content they publish on social networks.
We further show that one of the advantages of maintaining social network user profiles is to provide the
context for better understanding of microposts. We propose and experimentally evaluate different ap-
proaches for entity disambiguation in social networks based on syntactic and semantic features on top of
two different social networks: a general-interest network (i.e., Twitter) and a domain-specific network
(i.e., StackOverflow). We demonstrate how disambiguation accuracy increases when considering en-
riched user profiles integrating content from both social networks. We also present TripEneer prototype
that is based on user and location entity profiles. TripEneer is a user-based travel plan recommendation

application.

5.1 Introduction

With the advent of Web 2.0, people being part of many social networks express themselves on various
on-line platforms. A part of the users personality is latent among the different actions performed on
social networks that they use. Given such user-generated data, it is possible to infer some components of
user’s personality and accordingly construct user profiles.

For example, an expert in map-reduce and cloud technologies would publish content more often
about these technologies as compared to the average user. It could be through writing blog posts, or
through microposts on Twitter, or through answering questions on Community QA (CQA) websites. In
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some cases, user generated content carries clues of user expertise and interests. Thus it becomes, in
general, possible to infer expertise model from the user-generated content. Accurately constructing user

entity profiles from their generated content is useful in many scenarios, such as:

Snapshot View : The user profiles we construct provide a summarized view of the user presence on

on-line social networks.

Enhanced User Tagging on a Social Network : The user can be suggested with new tags (learned, e.g.,
from his Twitter network) which describe himself on a new social network (e.g., on StackOver-

ﬂowﬂ).

Enhanced Recommendation : Better recommendation engines can be built which can make recom-

mendations based on the constructed user profile.

Information Filtering: The generated user profile can be used to filter relevant information from a

stream of Web content based on the user interests.

In this chapter, we show a number of techniques of constructing user social profiles, we discuss their
merits and demerits, and experimentally compare each of the techniques for constructing such profiles

on the task of entity disambiguation. The different user profiling techniques we propose are:

Term Popularity: This method reports the top words of a user based on the observed frequencies of the

different terms in the user generated content.
TF-IDF: In this method we consider those top words after sorting them based on their TF-IDF score.

Semantic: We make use of semantic techniques to extract concepts and categories from user-generated

documents.

Topic Modeling: The top topics related to the user-generated content extracted using Latent Dirichlet
allocation (LDA) topic modeling.

Labeled-LDA Topic Modeling: Summary of user-generated content in terms of labeled tags and words
obtained by means of labelled LDA (LLDA) [RHNMOQ9].

In this work we focus on using social network user profiles for effectively addressing the task of
disambiguating entity mentions in social network content (i.e., understanding whether the mention of an
entity like ‘apple’ refers to the fruit or to the company) [AAG™ 10] by exploiting the content generated by
users on other social networks. We explore how user profiles could be useful for extracting knowledge
from data. Some examples of extracting knowledge from an unstructured data, like text documents,
include named entity extraction [NSQ7], entity reference disambiguation [BT06], sentiment extraction
[LZ12], linguistic tasks [OZHM13], etc. Various semantic and knowledge engineering techniques rely
on the context for automatic meaning inference from a text [CKGS06]. Such techniques are successful
for longer documents, as they provide enough context for the proposed tools. However, they can not be

directly applied to short texts created within the social network platforms.

"http://stackoverflow.com/
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5.2 Problem Statement

Microposts are short texts posted by users on various social networks. Being short texts, microposts
usually do not contain enough contextual information for making sense of them. While it would be
difficult to develop new techniques that do not need such contextual information, we instead propose to
use existing disambiguation techniques and rather to enhance the context of microposts by looking at
user activity over other on-line social networks.

The proposed method for entity disambiguation in microposts is based on standard text classifica-
tion using features extracted from the social network activities of the users. We experimentally compare
the effectiveness of the proposed approach by disambiguating entity mentions in Tweets using as back-
ground information the user generated content on StackOverflow, a technical CQA system for computer
programming topics.

Experimental results show that the classifiers built on top of enriched user profiles significantly out-
perform the classifiers built on top of the basic user profiles by at least 11%. The most effective approach
is obtained using frequency-based and LLDA-based user profiles. By combining profiles constructed for
a user over different social networks, it is possible to obtain a global social profile for the user which
outperforms the other techniques in the tweet disambiguation task.

The rest of the chapter is organized as follows. Section formally presents the user entity profile
construction problem and the microposts disambiguation problem. Section [5.3] presents the overview
of our approach. While Section discusses a number of techniques for constructing user profiles,
Section [5.3.2] discusses how to solve the microposts classification task. Section [5.4] provides a detailed
description of the datasets and the experimental evaluation of the proposed user models. Section [5.5]
summarizes the related work. Section[5.6|presents TripEneer: travel plan recommendation based on user
social profiles. Finally, Section 5.7 concludes the paper.

5.2 Problem Statement

In this section we formulate the two tasks we are addressing in this chapter: the creation of a user
profile from the user’s social network content and the task of classifying a Twitter message based on its
relatedness to a company entity.

Task 1: A user u; publishes a set of micro-posts (ex: tweets,comments) on a social network. We
group such microposts of a user together as a document D; = {mj,ma,...,m,}. We model the user
profile U;, of user u;, as a bag of weighted set of keywords i.e. U; = Set{wrdj, : wt;} with weights
being normalized. These set of keywords could represent the topics or concepts that are most likely to
occur in the user’s microposts. We define Corpus as the group of documents related to the various users
of the system: Corpus = {D1,Ds,...,D,,}. We define the topic extraction as a function f: D; x
Corpus = U;. The techniques we considered are discussed in Section[5.3.1]

Task 2: Given a set of Twitter messages I' = {77, ..., T, } containing an ambiguous company name
(e.g., apple, orange), we want to classify whether the message is related to a given company entity C
or not. We say that the message T}, created by user u;, is related to the company C, related(T}, C), if
and only if the Twitter message refers to the company. We also use the term that a tweet belongs to a
company, by which we mean the same. We assume that some basic further information is available as
input, such as the URL of the company ur/(C') and the language of the Web page.

The tweet messages are modeled as a bag of words. Each tweet is preprocessed through follow-
ing steps: we remove stop-words, emoticons, and Twitter specific stop-words (such as, for example,
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RT,@username); and we store a stemmed (using the Porter stemmerﬂ) version of keywords (unigrams
and bigrams). Formally we have: T}, = Set{wrd;}.

The company entity C' is modeled as a set of weighted keywords. The company entity: C' =
Set{wrdy : wty}, with wty, > 0 for positive evidence keywords (i.e. those words which suggest
that the message should be related to the company) and wt;, < 0 for negative evidence keywords. We

discuss the classification of tweet messages belonging to a company entity in Section [5.3.2]

5.3 System Overview

Users are typically present on several on-line social networks. They publish microposts on their Twitter
stream, comments and posts on Facebook, address questions and answers on CQA sites like StackOver-
flow, express their interests through Facebook likes and Google +1s, etc. All the content users post, his
activities on the web, and his social network interaction data can be tremendous value for automatically
constructing a part of the user personality.

In this section, first we present a number of techniques for constructing user entity profiles. In the
second part we address the problem of classifying a micropost (tweet) based on whether it is related to a
company entity or not.

5.3.1 User Entity Profile Techniques
5.3.1.1 Frequency and TF-IDF based Topics

TF-IDF is often used in information retrieval and text mining for weighting document terms. A term is
considered as important to a document if it appears more often in the document itself and tends to appear
in fewer documents in the corpus. Term-frequency (TF) captures how often a particular word appears
in a document, while inverse-document-frequency (IDF) captures how rare a particular term is in the

document corpus.

freq(w;, D)
tf(w;, D) = 5.1
f(wi, D) max{ freq(wy, D); for word wy, € D} -1
, |CorpusSize]
df (wy, D) = | il 2
idf (w ) o9 Number of docs containing the w; (5.2)

A user entity profile Uit T is constructed based on the TF metric. We choose the top-K (with K
ranging from 10 to 150) terms with the highest TF score (eqn. to be present in the user entity profile.
Similarly we construct another user entity profile Uf 714 pased on the TF-IDF metric (eqn. . The
top-K terms with the highest TF-IDF score are stored in this user profile.

The frequency based user profile U Zt T s independent of the corpus, as it only depends on the current
user-generated document. Such property allows a relatively efficient construction this profile. However,
when a user tends to publish tweets related to various topics, for example: technology, sports and poli-
tics), and one of such topics is predominant, then the frequency based profile fails to capture the diversity

in the different topics the user is writing about.

Zhttp://tartarus.org/martin/PorterStemmer
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Figure 5.1: LDA Plate Model

5.3.1.2 Semantic-based Topics

Many semantic tools have been developed based on top of large document corpus like Wikipedia, News,
Blogs. Example of such tools include: AlchemyEl, Calaisﬂ Textwiseﬂ etc. They are built using statistical
natural language processing and machine learning techniques. These tools are inherently capable of
extracting the semantic concepts, identifying named entities, assigning an hierarchical category label,
etc. to a document based on its content.

To create a user profile we first group all the tweets of a user u; into a single document D;. We extract
concepts and category labels from the document D; using language modeling and neural networkﬂ The
semantic-based user profile (Ufem“”tic) contains the keywords representing such concepts and category
labels. While such user profile has least number of keywords as compared by other approaches, it remains

easy to understand and interpreted by a human.

5.3.1.3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) is an unsupervised learning algorithm that models each document in
a corpus as a mixture of topics. The topics in turn are mixtures of words in the vocabulary. The latent
variables of document to topics mixture distribution and topic to words mixture distribution are learned
using the LDA technique.

Figure shows the plate notation capturing the dependencies among different parameters of the
model. « and 3 are Dirichlet priors on per-document topic distributions and per-topic word distributions.
0; represents the topic distribution for a document D;, while ¢, represents the word distribution for
topic-k. w;; and z;; represent the word and the topic of it" term in j** document. K represents the
number of topics and M represents the number of documents in the corpus. Among many variables, only
the words w;; are observed variables, while the remaining are latent/hidden variables. There are number
of techniques for inferring the latent variables. In our current work we make use of collapsed Gibbs
sampling [TMT]] approach for inferring the latent variables of the corpus.

The output of the LDA learning process is topic-to-word distributions (¢y) and document-to-topic
distributions (#;). As for the frequency-based profiles, we extract top-K keywords (with K ranging
from 10 to 150) after combining both these distributions ; and ¢, for a given user U;, and group these
keywords and term them as LDA-based user profile (UZ-LD Ay,

*http://www.alchemyapi.com/

*http://www.opencalais.com/

>http://www.textwise.com/
Seehttp://www.textwise.com/api/documentation/introduction
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Figure 5.2: Labeled LDA Plate Model

tf
U, stack, overflow, google, app, soft-
ware, developer, feature, generator,
twitter, design, #stackoverflow, . ..

U Zt Fidf #annoyingsecurityquestions,
#spoton, #shootingfishinabarrel,
cinnabon, justintv, torah,
#changetheratio, . ..

Ugemantic \stack exchange, computers, internet,
protocols, arts, science fiction and
fantasy, software, crafts, knitting and
crochet, computers, open source, soft-
ware

UldaIstartup, social, facebook, business,

obama, romney, google, ...

UZ-”d“ development, sharepoint, serial, com-
pression, ms, graph, graphics, uml,
azure, scriptaculous, ...

Table 5.1: Topic keywords extracted for a popular Twitter user and StackOverflow co-founder: Joel
Spolsky (@spolsky)

5.3.1.4 Labeled Latent Dirichlet Allocation (LLDA)

LDA is an extremely popular model for summarizing a document corpus. However, it is not designed
to handle multiple-labeled corpora, and it also suffers from the fact that inferred topics are not labeled
thus needing a human to create topic interpretations. Labeled LDA (L LD A) [RHNMOQ9Y] is a generative
model for document collections that have labels assigned to each of the document. Topics extracted using
LLDA are inherently labeled using the labels supplied with the documents. The topic-word distributions
inferred during the learning process correspond to the label topics. Each label will have a multinomial

distribution over the words found in the corpus.

Figure [5.2] shows the LLDA plate diagram. Most of the parameters are same as LDA parameters.
Additionally we see variables (1 and A) corresponding to the labels of the documents. In LLDA, the
document is supervised to learn the topics corresponding to the attached labels. We use collapsed Gibbs
sampling [TMT] for inferring the latent variables. Similar to LDA, we extract top-K keywords (with K
ranging from 10 to 150) after combining the document-label distribution (6;) and label-word distribution
(¢r), and group them as LLDA-based user profile (UiLLD A).
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5.3.2 Tweet Messages Classification

In this section, we address the problem of classification of a tweet message T; that contains an ambiguous
company name and posted by an user u;, on whether it is related to a company entity C. As discussed
in Section [5.2] we model the company entity C' as a weighted set of keywords, where keywords act as
positive or negative evidence depending on their weights. The tweet bag of words are compared against
the company entity C' bag of words. Depending on the amount of positive or negative keywords that are
present in the tweet, it is classified as related to or not related to the company entity.

A tweet being a short message (maximum of 140 chars) would contain on average 10-15 words. As
the tweet message contains very little context, the burden of better classification shifts to obtaining a
better company entity C' description. We construct an entity profile C following the findings of Yerva et
al. in [YMATI] ( also discussed in Chapter ), where the authors identify multiple information sources
to richly model the company entity profiles. They extract relevant keywords from the homepage[] of the
entity, keywords from the meta-data provided on the company web-pages, keywords from the glossary
related to the categoryﬂ of the company, keywords inferred using Google-set, or Wordnet services. They
also rely on Wikipedia disambiguation pages for negative evidence keywords.

Moreover, the company entity profile C' should not have too few words, resulting in less overlap with
the tweet message keywords, therefore leading to random classification of tweets. On the contrary, the
entity profile should not be too general, therefore avoiding many false positives during classification.

For our classification problem, we make use of Naive Bayes Classifier [Hec96, [Lew98|]. We assume
the words appearing in a tweet independently contribute towards the evidence of whether the tweet
belongs to the company, or not. We extend the model discussed in Section [4.2] of Chapter @ Since we
extend this model, we repeat it here for clarity and continuity.

For each tweet T; = set{wrd§} we compute the conditional probabilities P(C' | T;) and P(C' | T;)
for deciding if a tweet belongs to a company C' or not. We make use of Bayes theorem for computing

these terms.

P(C) + P(T; | O)

_ P(C)x P(wrdt, ... ,wrd, | C)
P(T:) e4
=K H P(wrdé» | C)
j=1
Similarly we have,
P(C|T;) = Ky || Pwrd; | C) (5.5)

j=1

where, P(wrd; | C') and P(wrd; | C) are the weights associated with the words wrd; as described
in the previous section. Depending on whether P(C' | T;) is greater than P(C | T;) or not, the Naive

Bayes Classifier decides whether the tweet 7; is related to the given company or not, respectively.

"Ex: http://www.apple.com for Apple company entity
8 Apple is a Computer Technology category company.
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Another way of improving the tweet message classification is through enriching the context of the
tweet. While there is no clear concise definition of context, the location and the time of the tweet
message, the previous and next messages (neighborhood) of the current message, etc. could act as
context of the message. In this work we use the user profile constructed using the different techniques to
provide certain context to the message to be classified.

A user profile U; corresponding to a user u;, is modeled as a set of weighted keywords. We have
already shown various techniques to construct such user profiles for the user generated content. When
we combine the user context U; with the tweet message 7; we get a new message, i.e., the tweet message
in user context and we call it M/;. Even though there are many ways of combining the user profile U; and
tweet message T for obtaining M, we choose to focus on a simple union function. The resulting M

will contain all the keywords found in U; and T}.

Tweet words
Mj; = U{T},U;} = Set{w?,...,wl, wi, ... wi } (5.6)
N—_———

User Profile Keywords

We again use Naive Bayes Classifier for classifying the context enhanced Twitter messages M. The
conditional probabilities P(C' | M;) and P(C | M), similar to eqns and decide if the original

tweet T); belongs to the company entity C' or not.

Tweet Component

m

‘ : ; (5.7)
P(C| Mi) = K1 [ P(wy | O) ] P(wi | ©)
k=1 k=1
User Profile Component
(5.8)

P(C | M) =K [[ P(wi | C) ] P(wi | C)
k=1 k=1

5.3.3 Cross Social Network User Profiles

More than just the features described above and their combination, we can exploit the fact that users par-
ticipate on different social networks. Thus, we generate a global social profile that combines evidences
from different social networks the user is involved in. This allows to take into account the diversity
of content produced by users over different type of social networks (e.g., professional and leisure). By
accounting the variety of content and meaning an entity can have for the user we aim at improving effec-
tiveness of tweet classification. In the context of this work, we combine a general-interest social network
(Twitter) with a domain specific one (StackOverflow) to build more diverse user profiles. Such enhanced
profiles, obtained by merging the keyword lists from the best performing technique on each network,

prove to be very useful when the company profile C' is not extensive or noisy.
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5.4 Experimental Evaluation

5.4.1 Data Description

We applied the user profile techniques explained in Section on both a Twitter and a Stack Overﬂowﬂ
(SO) dataset. Stack Overflow is a website that features questions and answers on a wide range of topics
in computer programming. Questions are tagged by the users (up to 5 tags)—at the moment of writing
this chapter, the top-6 tags on the website are: C#, Java, PHP, JavaScript, JQuery and Android. Stack
Overflow embeds also a simple but very effective reputation system that contributed to the spam-free
user experience on the website. For instance, questions can be re-tagged only by users with a reputation
score above 500 (i.e., users who have spent a fair amount of time contributing to the platform). For this
reason, we consider StackOverflow tags as a set of “labels” carefully redacted by domain experts, hence
a valid input to our LLDA user profiling technique; e.g., once a user writes a valid answer to a question
tagged as “Scala”, we can indeed infer that she has some expertise on the Scala programming language,
hence defining a characteristic aspect of her profile.

Lacking a similar set of accurate labels for Twitter users, we employed LDA instead of LLDA. On
the other hand, we applied TF, TF-IDF and Semantic on both datasets.

The evaluation dataset has been built with the following procedure:

o from the Stack Exchange Data Dump of August 201 we identified 7772 users who reported

their Twitter account in the Stack Overflow profile description

o for each of these users, we extracted all the data available in the StackOverflow XML dump: profile
information, questions and answers, and tags (extracted both from the questions asked directly by

the user and from the questions the user’s answers referred to)

o we crawled Twitter (using the REST API) to obtain the latest tweets of the user (until Mar 12,
2013)

Users 6923
StackOverflow posts| 592,021
Distinct SO tags 22,930
Tweets 4,894,944

Table 5.2: StackOverflow + Twitter dataset statistics

After cleaning the dataset (e.g., removing users with no activity, or with a protected Twitter ac-
count), we merged the information coming from both sources (Stack Overflow and Twitter) in a columnar
database, to enable fast slicing and dicing of the user data.

It is worth to note that, due to the rate limiting in the Twitter REST API, we collected a maximum
of 1000 tweets per user. On the other hand, the Stack Exchange Data Dump allowed us to process the
whole history of the Q&A platform.

“Stack Overflow: http://stackoverflow.com/
http://www.clearbits.net/creators/146-stack-exchange-data-dump
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Figure 5.3: Power-law distribution of Stack Overflow Posts and Tags

Our sample of the Stack Overflow users’ activities follows a power-law, as shown in Figure[5.3] Such
distribution is very common in websites driven by user-generated content, confirming the validity of the

approach followed to build our dataset.

5.4.2 User Profiles Construction

For each user, we extracted the text content of her tweets and StackOverflow content, and used it as an
input for the 5 techniques explained in Section TF, TF-IDF, LDA, LLDA, Semantic. While TF,
TF-IDF and Semantic were applied on both social networks, we used LDA exclusively on Twitter, and
LLDA exclusively on StackOverflow. TF, TF-IDF and Semantic return a ranked list of tokens, and for
each we extracted the top-K results, with K € {10, 25,50, 75, 100, 125, 150}. LDA and LLDA, instead,
required a more elaborated procedure. First, we computed the perplexity score for each model, varying
the number of extracted topics. The perplexity scoreEr] measures how much the original corpus differs
from one generated by the model trained on such corpus. Although it is expected that the perplexity score
decreases with a higher number of topics, it does not give any guarantees on the quality and coherence
of the topics. Furthermore, training a LDA or LLDA model does not scale gracefully with the number

of topics (both in terms of CPU time and memory required). Given the results shown in Figure [5.4]

"http://en.wikipedia.org/wiki/Perplexity
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Figure 5.4: Perplexity on the Twitter and StackOverflow corpora (normalized to 1)
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Figure 5.5: Average overlap between User Profiles extracted from Twitter and StackOverflow.

and after manual inspection of the generated topics, we opted to train our models with 50 topics, as it

represented a good tradeoff between time spent by the training procedure and quality of the topics. Once

the topics are generated, we run the inference process on the data of each single user, obtaining a ranked

list of tokens which we sliced to extract the top-K keywords (with K € {10, 25, 50, 75, 100, 125, 150}).

Figure [5.5] reports the average overlap between profiles extracted for a single user on both Twitter

and StackOverflow. The overlap has been computed in the following way: for each user, we extract 2

top-K lists from both social networks, employing TF, TF-IDF or (respectively) LDA and LLDA. We then
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Figure 5.6: Enhanced Classifier performance with different User Profile techniques and sizes.

Dataset |apple |oracle|apache|subway |orange | seat
WePS3|0.83 | 0.78 | 0.47 | 0.45 | 0.05 |0.02
SOTW | 093|096 | 097 | 0.12 | 0.15 |0.01

Table 5.3: Datasets Comparison: Percentage of tweets, containing the company keyword, that are related
to the company Entity.

compare the two lists with the following similarity function:

Zfil get_close_match(topK _TWi],topK _SO)
K

Similarity = (5.9)

get_close_match is a function that returns 1 when it finds a fuzzy match between one of the
tokens in the Twitter top-K and the StackOverflow top-K, O otherwise. The fuzzy matching is mostly
based on the concept of string edit distance (i.e., Levenshtein distance), but the cutoff parameter has been
set in such a way that almost only perfect matches would return a 1.

“Semantic” is not included in the Figure[5.5]because the technique we use does not return large sets
of concepts, hence we cannot build Semantic profiles of different sizes. Similarly to LDA/LLDA though,
the Semantic profiles are characterized by an average 11% overlap between Twitter and StackOverflow.

The relatively small overlap of the profiles built on different social networks is very valuable in our
scenario, because it improves the diversity of the keywords used to disambiguate the tweets, as explained
in the following section. It is also remarkable that, no matter the bias of our dataset towards high-tech

oriented users, the profiles built on Twitter and StackOverflow show very different facets of the user.

5.4.3 Tweet Message Classification

WePS-3 datase contains tweets related to 100 company names, with an average of 500 tweets for each
company name. The ground truth for each of this tweet is available in the dataset. However, we could
not use WePS-3 for our experiments, because most of its tweets have not been posted by the users in our
dataset. In fact, for comparison with our techniques, we need both the tweet message and the user who

posted that message.

Phttp://nlp.uned.es/weps/weps-3/data
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BC Enhanced Classifiers (EC)
Twitter StackOverFlow
Company (Basic| TF |TFIDF|Semantic| LDA| TF |TFIDF|Semantic| LLDA |Hybrid
apple |0.550.83| 0.58 0.77 |0.8310.76 | 0.71 0.69 0.83 | 0.83
apache | 0.5 [ 0.52| 0.51 0.51 0.52 1 0.52 | 0.51 0.51 0.53 | 0.53
oracle |0.55|0.77 | 0.64 0.55 |0.78| 0.7 | 0.66 0.58 0.78 | 0.78
orange | 0.5 | 0.54 | 0.51 0.51 0.54 1 0.53 | 0.53 0.51 0.55 | 0.55
subway | 0.54 | 0.94 | 0.68 0.82 |0.95|0.83| 0.78 0.57 0.95 | 0.95
seat 0.52 1 0.81 | 0.56 0.59 |0.76 | 0.84 | 0.71 0.55 0.96 | 0.98
AVG ‘0.53 0.74*| 0.58 0.63 |0.73*%|0.70*| 0.65* | 0.57 |0.77*| 0.77*
p-values 0.019] 0.053 | 0.104 |0.020|0.022| 0.021 | 0.093 |0.020 | 0.021

Table 5.4: Accuracy of the different classifiers: Basic Classifier and Enhanced Classifiers. Statistically
significant improvement of EC over BC are indicated by * (t-test p < 0.05)).

BC Enhanced Classifiers (EC)
Twitter StackOverFlow
Company |Basic| TF| TFIDF|Semantic | LDA | TF| TFIDF|Semantic | LLDA |Hybrid
apple 84 | 0| 75 16 0 |20]| 35 40 0 0
apache | 83 |2 | 59 49 1 [24] 50 62 0 0
oracle 82 | 1| 49 82 0 [28]| 41 70 0 0
orange 87 |13| 76 66 11 (21| 33 75 0 0
subway | 90 | 1| 58 28 0 |26]| 36 83 0 0
seat 95 34| 86 80 45 29| 56 89 4 0

Table 5.5: Percentage of non-overlapping Tweets with the Company Entity Profile. This percentage of
tweets will be randomly decided by the classifiers. User profiles contain K=50 keywords.

From the 5 Million tweets we collected, we choose a subset of those tweets that contained at least
one of the following set of six words: apple, oracle, apache, subway, seat, orange. The WePS-3 dataset
contains 100 company names, with varying degree of ambiguity. We chose 6 company names as a
representative sample of the entire dataset. Each of these 6 company names have multiple interpretations;
e.g., the apple keyword could mean a fruit, the Apple company, New York city, etc. We are interested in
classifying the tweet containing one of this keyword (for example: subway) with respect to its reference
(or not) to the actual company (e.g., the Subway fast-food franchise).

For each of these 6 keywords, we manually annotated a total of 100 tweets, stating if they were related
(or not) to their company entity. We refer to this dataset as the SOTW dataset. This manual annotation

would act as ground truth for verifying the classification results of the two different approaches: one with

BC Enhanced Classifiers (EC)

ek

#CP

Twitter
TFIDF Semantic

StackOverFlow
TFIDF Semantic

Basic TF LDA TF LLDA Hybrid

0 ]0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

100

0.527

0.735* (0.019)

0.580 (0.053)

0.625 (0.104)

0.730% (0.020)

0.697* (0.022)

0.650% (0.021)

0.568 (0.093)

0.767* (0.020)

0.770%* (0.021)

200

0.562

0.770* (0.020)

0.630 (0.071)

0.675 (0.079)

0.768* (0.020)

0.710%* (0.019)

0.692* (0.021)

0.608 (0.079)

0.768* (0.020)

0.770%* (0.020)

500

0.607

0.770%* (0.039)

0.677 (0.084)

0.708 (0.078)

0.768* (0.038)

0.727* (0.037)

0.713* (0.035)

0.683 (0.078)

0.768* (0.038)

0.770%* (0.039)

1000

0.633

0.770 (0.064)

0.702 (0.130)

0.713 (0.100)

0.768 (0.063)

0.730 (0.068)

0.718 (0.058)

0.693 (0.113)

0.768 (0.063)

0.770 (0.064)

Table 5.6: Average Accuracy Measure, along with p-values, for the different Classifiers w.r.t. varying
quality of the Company Profiles. Statistically significant improvement of EC over BC are indicated by *
(t-test p < 0.05)). **The first column #C P represents Number of words in a Company Profile
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the classifier that takes the user profile into consideration, one with the classifier that does not.

Table shows the percentage of tweets that belong to the company entity in the two different
datasets: WePS-3 dataset and our dataset (SOTW). It is interesting to observe that the related percentages
for tech company names (apple, oracle and apache) are higher in our dataset when compared to WePS-3.
This is due to the fact that SOTW contains mostly tech-savvy users, while WePS3 is formed by a more
general audience. Therefore, knowing the context in which a tweet was posted reduces the ambiguity in
its interpretation.

Next, we compare the performances of the two classifiers: (1) Base Classifier (BC'): the classifier
which classifies tweets only based on the tweet keywords and the company entity keywords, (2) Enhanced
Classifier (EC): the classifier that considers user profile keywords along with the tweet and company
entity keywords for its classification task.

The performance of the classifiers depends on: a) the quality and size (K) of the user entity profile
U;; b) the size of the company entity profile C'; and c) the percentage of tweets that contain overlapping
words with the company profile words. We make use of the company entity profiles that were used
in [YMAI11l [YMAI12al]. As these company profiles were developed in the context of the WePS3 task
[AAG™10], we assume that their accuracies are bounded by the values in the first row of Table Given
the full-size company entity profile, we plot the accuracies of the classifiers by varying the number of
words in the user profile, as shown in Figure [5.6] At K = 50, most of the user profiling techniques
saturate the achievable accuracy of the classifier, suggesting that the user profile has already gathered a
good candidate set of words for entity disambiguation. For this reason, we use K = 50 as the size of the
user profile U;, as it represents a good tradeoff between performance and computational cost.

We define the accuracy metric for the classifier as the percentage of tweets that are correctly classi-
fied. The performance of the classifier depends on the quality of the company entity profile C'. Table[5.4]
shows the accuracies of the different classifiers, for a fixed size company profile and a size of K = 50 of
the user profile. Given a fixed company entity profile C', we see that the enhanced classifiers (£C') (that
take user context into consideration) are outperforming the basic classifier (BC). The results in Table[5.4]
and [5.5| clearly show that the user context helps the classifier in resolving the ambiguity involved in the
company name. The percentage of tweets that do not overlap with the company profile in the test set
represent the main cause of erroneous classifications.

In Table [5.5] we show the percentage of tweets in the dataset that do not have any overlapping
keywords with the company profile C'. The higher the number, the lower is the chance for a classifier to
make accurate classifications. We see that the column-1 (basic) has the highest number of such tweets,
while the remaining columns (that represent the tweets enhanced with user context) have a very low non-
overlapping number of tweets. The Enhanced Classifiers are in a better position to classify the tweets
more accurately, thus achieving our goal of “making sense of the microposts”.

Finally, we control the quality of the company profile C by varying its size, whose impact on classifier
performance is shown in Table[5.6] along with the p-values (two tailed t-test). We observe that each of
the Enhanced Classifiers (E'C') is performing better than the Basic Classifier (BC), and this is true for
all the size variations of the company profile. However, the percentage of improvement is statistically
significant for lower sizes of the company profile. As it is relatively difficult to have an accurate company
profile, based on our results we can benefit of the user social profiles especially when the company profile
is noisy or too small.
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Tables [5.4] [5.5] and [5.6] report also the results for a Hybrid technique, which merges the best tech-
niques from multiple social networks to obtain a more diverse user profile. On our dataset, we observe
that term frequency (TF) is best among the techniques applied on Twitter, and LLDA based is best
among the techniques applied on StackOverflow. The resulting Hybrid user profile is then the top-25 for
Twitter TF, combined with the top-25 LLDA for StackOverflow. Although the improvement of the Hy-
brid classifiers is not statistically significant on SOTW, we argue that its main advantage is represented
by its reliable performance, regardless of the quality of the company profile. Our speculation is that,
on a larger and more diverse dataset, the Hybrid classifier would systematically outperform the other

Enhanced classifiers.

5.5 Related Work

Topic Modeling in Micro-blogging Platforms A number of recent works have explored the use of
topic models in the Twitter domain for modeling Twitter messages and users [HD10], finding topical
authorities [PC11, WLJH10, [ZTLO7], making recommendations [HBS10], and comparing it with other
media [GAHY12, ZJIWT11]. We also focus our attention on works that have explored user modeling
[AGHT11,IGAHY 12, HMOS12, /AHK11]] in micro-blogging platforms.

Works like, for example [LWH™ 12, RCMET1], have focused on adapting techniques and tools that
were successful on text corpora to the recent vastly popular micro-blogging platforms. They adapted the
named entity extraction (NER) techniques for the shorter and noisy micro-blog posts. The NER task is a
critical step for the task of identifying the subset of tweets that are relevant to an entity which we tackle
in this work.

Topic modeling of Twitter messages has been considered in [HD10]], where models for three differ-
ent tweet aggregation strategies have been considered: First, each Twitter message is considered as a
document; second, all the tweets corresponding to a user are considered as being a single document; and
finally, all tweets containing a particular term are put together in a one single document. These three
strategies are referred to as MSG-Topic-Model, USR-Topic-Model and TERM-topic model. Each docu-
ment D is considered to be sampled from a topic distribution (#), and each topic has ¢ distribution over
the words. The documents are generated based on the 6 and ¢ distributions. One uses Gibbs Sampling
to estimate the values of 8 and ¢. They show that the topics learned by the various schemes are different
in quality. The topic models learned from aggregated messages of a user can lead to superior perfor-
mance in classification problems. Based on their study, in our current work we grouped all the tweets
corresponding to a user in to a single document and used it to infer the users’ topics.

Several previous works [PC11, WLJH10, [ZTLO7, RDL10] have used topical modeling features on
micro-blogging platforms for finding topic-based experts and authorities. The authors in their work on
topical authorities in microblogs [PC11]] propose various sets of features in order to find topic-based
authoritative users. The set of features are based on how frequently users tweet, what percentage of
their tweets are retweets, how often their tweets are retweeted, how often users are mentioned by other
users, and how diverse or focused are the tweets to a particular topic. TwitterRank [WLJH10|] proposes
a ranking algorithm, an adaptation of PageRank algorithm, for finding topic-sensitive influential users.
They make use of LDA on the twitter content for linking an user with certain set of topics, and use topic
level similarity among users as feature of their ranking algorithm.
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Expert finding in Social Network, combines personal local information with network information to
find the experts on a topic. The approach proposed in [ZTLO7] involves two steps: initialization and
propagation. The initialization step forms an expert profile just based on the local information, and a
propagation model is applied in the next step in which expert scores from one node are propagated to
the neighboring nodes. Such approaches could be combined with the ones we propose in our work to
improve the quality of both tweet disambiguation as well as of expert finding.

Most user interactions in Twitter are still primarily focused on the social graphs. Characterizing
micro-blogs with topic models [RDL10|] explores content analysis of Twitter feeds for addressing special
information needs of the users. They apply LDA [BNJO3|| and labeled LDA [RHNMOQ9] for identifying
the latent topics of Twitter messages. Using unsupervised LDA they assign latent topics into one of the
four subcategories {substance, social, status, and style}. The partially supervised labeled LDA could
assign labels (emoticons, hashtags, etc.) to the latent topics extracted from the Twitter feeds. We apply
similar techniques for the problem of tweet disambiguation.

Some works, as in [ZJW™ 11, [GAHY12]], have relied on topic modeling for comparing recent micro-
blogging platforms and traditional news media platforms. In the paper [ZJWT11], the authors do an
empirical comparison of the Twitter content with that published on tradition media like the New York
Times. Using standard LDA they infer topics from the news dataset, while they propose a Twitter-LDA
model for extracting topics from Twitter data. This study shows how certain topics are popular on Twitter
while some others are popular on news media. In [GAHY12] the authors extend their user modeling
framework [AGHT11]] for comparing the usage behavior on two popular micro-blogging platforms: Sina
Weibd] and Twitter.

User Modeling over Micro-blogging platforms Web is gradually transforming itself as a users per-
sonal archive, where users not only find information but leave, share and archive information [LMB ™ 13]].
Twitter being widely adopted, real time and representative of the users, despite being of noisy nature,
is a great source for modeling a user [YMH™]|. User profiles were constructed in [SCS09, [AGHTI1],
HMOS12[| for better news and people-to-follow recommendations, dealing with information overload,
understanding users’ expertise and interests, etc. [SCSQ9] make use of entity profiles, that are sets of
information extracted for each ambiguous person in the entire document, and features based on topic
models to cluster documents —containing a person name— based on the actual person entity. Authors of
[AGHT11]] analyze user modeling on Twitter for personalized news recommendations. Their framework
helps in creating user profiles that are based on extracted topics and entities from the tweet content, and
show its superior performance compared to hash-tag based user profiles. They also consider temporal
aspects of the user profile for better news recommendations.

The work [HMOS12|] proposes techniques to construct multi-faceted user profiles for Twitter users,
thereby helping one to navigate the complex domain-space represented by Twitter. Their model profiles
users and their social networks using tags and labels from curated lists. In our future work, we plan to
make use of the user maintained lists and the lists to which an user belongs in improving the quality of
our constructed user profiles. [AHK11]] work extracts professional interests from social web (Facebook,
Twitter) profiles. Twittomender [HBS10]] explores building of user profiles based on tweets which are

grouped as users’ own tweets, followers tweets and followees tweets. They make use of TF-IDF ranking

Bhttp://www.weibo.com
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technique in construction of the user profile, which they use for recommending other Twitter users to

follow.

Micro-post Classification In [KML13,[WCI10] the authors present LDA transfer learning. Transfer
Learning is the process of generic learning in one domain and applying the model in a different domain.
In topic-bridged LDA (tL.D A) a model is built from a variety of labeled and unlabeled documents, and
they apply transfer learning for document classification task. One of our technique (L LD A) is based on
transfer learning.

Several works [AAG™ 10, YMATT, [YMAT2al have addressed the problem of tweet classification in
various contexts. For example, [YMA11,[YMA12al] addresses the problem of Entity-based classification
of tweets. Their techniques focus on accurately building the company entity profile, they also rely on
relatedness factor metric of the company, and adapt active-learning for continuously improving their
company entity profile. In our work, we focus on improving the classifiers performance by enriching the

context of the tweet messages using the user social profiles.

5.6 TripEneer: User-based Travel Plan Recommendation Application

In the beginning of this chapter, we argued that accurately constructing user entity profiles could be
useful for number of applications. In this section we present TripEneer as one such application that
relies on the user entity profiles.

Current travel recommendation systems are helpful in addressing a traveler’s information needs to
certain extent, however, most of them fail to factor in the user in their recommendations. TripEneer
proposes travel recommendations to a traveler by keeping the user preferences and constraints as first
class citizens. We present an intuitive Ul for helping users plan their travel trips quickly and easily. In
this application we present various global and user-specific ranking models used for recommending travel
destinations. Our preliminary evaluation showed that the users found the personalized recommendations,
based on the user entity profile model, most useful.

5.6.1 Overview

Nowadays, spontaneous trips in popular European cities are made easy by the plethora of cheap means
of transportation, visa relaxation policies and overall globalization. Because reaching the destination is
quite easy, planning the activities there should be equally easy, but current online solutions do not cover
this search space too well.

On the one hand, travelers can find generic landmarks by checking Wikipedia, Lonely Planet or via
Google. These generic landmarks do not include any user preference and do not allow easy discovery of
new landmarks. As it is common in power law distributions, where rich get even richer, most popular
landmarks at a travel destination are promoted more often by these online systems, thus depriving the
user of potential interesting landmarks that tend to occur in the long tail of power law distribution.

On the other hand with the advent of Web 2.0, it has become easier for a user to express himself on
various social networking websites. It is possible to model the user and infer his preferences by taking
his online activities into account. The recommendation systems, that consider the user online activities,
can provide far more useful recommendations adapted to the user personality.
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Additionally, once the user made up his mind about the activities to pursue, it is very difficult to
obtain a map with the optimal route to visit the wanted locations. TripEneer is a prototype trying to solve
these problems: easily choosing the landmarks, and planning the trip path. Focused on London, Rome,
Boston and other popular cities, TripEneer gathered the landmarks available from Lonely Planeﬂ and
FouquuareE] with their respective rankings. TripEneer proposes five ways of ranking these landmarks.
Lonely Planet provided ranks are modeled using a power law distribution and a weighted average is
computed with the rating provided from Foursquare. Another ranking is based on Foursquare signals:
the sum of check-ins, tips and number of active users. In addition to these collaborative approaches,
we rank landmarks by their proximity to locations visited by a user’s Facebook friends. The Facebook
profile information is used to compute a similarity value with each landmark and propose a fourth rank-
ing solution. The last hybrid approach combines all the above using a user-specific weighted average
mechanism.

Shi et al. use location data from user-uploaded photos and a collaborative filtering paradigm to
recommend items favored by other users [YSL11]]. We adapted this approach in presenting a ranked list
based on what a user’s Facebook friends visited, but the current work distinguishes itself by exploring
other sources of location data and by recommending landmarks based on individual user profile instead
of crowd-sourcing. Frankenplace [AM12] is an application for similarity-based place search that allows
users to interactively find new places starting from features extracted from the travel blogs of existing
places. On the contrary TripEneer proposes landmarks based on the user model.

Our TripEneer application is currently deployed here{lz’-] and the users can start to interact with the

system and explore a number of ranking schemes we proposed.

5.6.2 TripEneer Framework

Landmarks and Users are the main entities in our TripEneer framework. We use various data sources
to richly model these two entities. Rich features of the Landmark entity are extracted from the data
provided by Lonely Planet, FourSquare, Wiki-Travel and TravelBlog. The features include description,
popularity, geo-location coordinates, events and images of the landmark. A User model, similar to the
entity model [YMA12al], is developed from the features extracted from the user’s Facebook, Flickr and
Personal Blog profiles. Both the user and location entity profiles are built using the frequency-based
topic model technique discussed in Section[5.3.1]

TripEneer proposes five different ranking models, based on the landmark and user features, for ad-
dressing the various users requirements. Figure shows various tabs corresponding to the following

ranking schemes.

Guides Ranking: Provides ranking based on the popularity of a landmark statistics accumulated by
travel guides and by crowd-sourcing websites. The guide rank was modeled as a Zipf function.

This value was averaged with the normalized crowd-sourcing rank.

Check-ins Ranking: Considers the normalized number of signals on Foursquare. These features indi-

cate the activity around a landmark.

“http://www.lonelyplanet.com
Bhttps://www.foursquare.com
http://www.tripeneer.com
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Figure 5.7: TripEneer Application: The various tabs showing different rankings. The heat-maps showing
the popularity of various landmarks.

Friends-based Ranking: Ranking based on proximity to locations visited by a user’s Facebook friends.

The heat-map view provides a social context to the landmarks.

User-based Ranking: The user preference is modeled through Facebook profile information such as:
pages liked by the user, about-me description and his posts. The landmarks are ranked using the

distance-similarity function between the user model and the landmarks description.

Hybrid Ranking: The above four ranker values are averaged to obtain a combination of landmarks from
all sections. The users can customize the weights for each score. In the future work, we plan to

infer these values based on the users activity or through an interactive questionnaire to the user.

We have crawled many popular locations for the TripEneer application. It contains 10 locations and
on average 370 landmarks per destination. The framework is developed on many scalable components
and can be easily extended to many more destinations with little effort. In our preliminary evaluation
we observed that personalized landmark recommendations were most useful to the user. The heat-maps
corresponding to the landmarks visited by a user friends were informative and useful to the user. Addi-
tionally this ranking view (Figure [5.8)) provided the user with list of friends, that visited this landmark,
whom the user could contact for further information about that particular landmark, which we find as

one of most useful feature of our application.

WorkFlow:

The user logins to TripEneer application using his Facebook credentials. TripEneer creates a user model
based on the information extracted from the users Facebook profile. Next when the user chooses a travel
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Figure 5.8: TripEneer Application: The map showing the landmarks visited by users friends. The heat-
map view provides a social context to the landmarks.

destination from the Dashboard (for example: London), the application provides landmark recommen-
dations under different rankings tab. The user chooses different landmarks by exploring the different
ranking tabs. The MyPlan-tab shows the set of landmarks chosen by the user. The map view provides a

simple tour proposed by the framework.

5.7 Conclusions

Users in on-line social network generate content based on their interests and knowledge. They refer to
entities which, in the given context are unambiguous for the other users who are consuming the content.
However, to enable applications such as entity-centric search over social network content, we need to
disambiguate the user generated content. In this work we presented a number of techniques for con-
structing profiles based on the content corresponding to an user entity, and evaluated their effectiveness
for the tweet disambiguation task. Such user entity profiles present a summarized view of the user gen-
erated content across various social networks. In the second part of the chapter we have shown the
importance of context in handling the tweet ambiguity: We used the user entity profiles to provide the
missing context to the microposts, thus seeing an improved performance of the tweet classifier. Specif-
ically, frequency-based features on Twitter and LLDA features on StackOverflow give user profiles that
significantly improve effectiveness of disambiguation as compared to baseline approaches. Moreover,
we have observed that the most reliable results are obtained by the combination of such best performing
techniques to generate a global user profile that combines evidences from different social networks the
user is involved in. In the current work we focused only on the user generated content, however, in future
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work we want to consider other information like the users social connections and their activities on the
social networks for constructing better user profiles.

In the end we presented TripEneer, a personalized tour planning application. When a user is planning
to visit a certain tourist location, the TripEneer application helps recommending the landmarks specific to
his user profile, along with the general recommendations from Lonely Planet, Wiki Travel, etc. Users can
view the landmarks both in the classical travel guide way, or can discover new places which match their
preference. The users of the system liked the personalized rankings provided by the system. The friends-
based ranking helped the users to readily identify which of their friends have visited these landmarks and

can be contacted for further information.
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Chapter

Social and Sensor Data Fusion in the Cloud

Torture the data, and it will confess
to anything.

Ronald Coase, Economics, Nobel
Prize Laureate

After seeing the profiling of an user entity, we shift our focus to profiling a location entity. We
have already seen TripEneer (Section [5.6), which made use of location entity profile along with user
entity profile for travel-plan recommendation to the user. Constructing entity profiles involves resolving
all entity mentions corresponding to an entity, and then summarizing all integrated information into the
entity profile. In this chapter we focus on fusion of social and sensor data corresponding to a location
entity.

As mobile cloud computing facilitates a wide spectrum of smart applications, the need for fusing
various types of data available in the cloud grows rapidly. In particular, social and sensor data lie at the
core in such applications, but typically processed separately. Here in this work, we explore the potential
of fusing social and sensor data related to a location entity in the cloud, presenting a practice—a travel
recommendation system that offers the predicted mood information of people on where and when users
wish to travel. The system is built upon a conceptual framework that allows to blend the heterogeneous
social and sensor data for integrated analysis, extracting weather-dependent people’s mood information
from Twitter and meteorological sensor data streams. In order to handle massively streaming data, the
system employs various cloud-serving systems, such as Hadoop, HBase, and GSN. Using this scalable
system, we performed heavy ETL as well as filtering jobs, resulting in 12 million tweets over four
months. We then derived a rich set of interesting findings through the data fusion, proving that our
approach is effective and scalable, which can serve as an important basis in fusing social and sensor data

in the cloud.

6.1 Introduction

Mobile phones increasingly become multi-sensor devices, accumulating large volumes of data related to

our daily lives. At the same time, mobile phones are also serving as a major channel for recording peo-

ple’s activities at social-networking services in the Internet. These trends obviously raise the potential of

collaboratively analyzing sensor and social data in mobile cloud computing—where applications running
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in the cloud are accessed from thin mobile clients, providing virtually unlimited processing power, and
promising cross-device platform compatibility.

The two popular data types, social and sensor data, are in fact mutually compensatory in various data
processing and analysis. Participatory sensing, for instance, enables to collect people-sensed data via
social network services (e.g., Twitter) over the areas where physical sensors are unavailable. Simulta-
neously, sensor data is capable of offering precise context information, leading to effective analysis of
social data. Obviously, the potential of blending social and sensor data is high; nevertheless, they are
typically processed separately in mobile cloud applications, and the potential has not been investigated
sufficiently.

In this chapter, we explore the possibility of fusing social and sensor data in the cloud, while dealing
with massive data streams. To this end, we present a travel recommendation system as a practice of the
fusion, which offers the information of people’s moods regarding the predicted weather on where and
when users wish to travel. The recommendation system gears various components towards effective,

large-scale social and sensor data fusion. We summarize the salient features of the system in the sequel.

e First, we propose a conceptual framework that enables to integrate and analyze the heterogeneous
social and sensor data. Specifically, the framework first transforms tweets into data points in a
mood space which consists of 12 subspaces, each of which corresponds to a mood (e.g., happy).
We then derive the probability of each mood in the mood space from a large number of tweet
data points accumulated over time. The system computes and maintains the mood probability
information separately according to day (e.g., Monday), place (e.g., London), and weather (e.g.,

sunny), which are the major dimensions in query processing.

e Second, we present a scalable fusion system that implements the conceptual framework, extracting
the weather-dependent mood information from real-time Twitter and meteorological sensor data.
Our travel recommendation system is established upon a combination of several well-known sys-
tems typically used for large-scale data store and analysis in the cloud, such as Hadoop [Whi09],
HBase [HBal, and GSN [AHSO06]. This allows us to perform ETL jobs as well as analytic process-

ing over massively streaming data.

e Third, we offer in-depth analysis of our data-fusion approach on comprehensive experimental
results, obtained from using 12 million tweets as well as meteorological sensor readings collected
over four months. The results demonstrate various interesting findings, including the degree of
happiness according to a particular weather type, day, and location. Furthermore, we statistically

prove that our mood estimation based on the fusion is effective and accurate.

We believe that the approach proposed in this work can set a firm yard-stone in scalable social and
sensor data fusion, serving as an important foundation in further studies towards mobile cloud computing.
The rest of the chapter is organized as follows. Section[6.2] summarizes the related work. Section|[6.3]
describes in detail the theoretical framework for fusing social and sensor data, while Section[6.4] presents
the technical details as well as data collections used in our travel recommendation system. Section [6.3]
offers experimental analysis on the data fusion, followed by the conclusions in Section [6.6]
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6.2 Related Work

Social-network services facilitate users to share their ideas, opinions, pictures, videos, news, and other
various forms of contents in the Web. Such social data typically contains highly valuable information,
aiding a wide range of applications; for example, allowing social scientists to understand human behav-
iors, companies to figure out their customers’ preferences, and news agencies to identify significant news
etc. Previously, it was difficult to obtain the rich set of social information, or required large amounts of
laborious human efforts like conducting surveys, interacting with the users. With the advent of Web 2.0,
all this information is readily available, leading to a variety of interesting research directions. In this

section, we summarize three research lines which are closely related to this study.

6.2.1 Mood analysis on tweets

One popular research line on social data is to extract and analyze mood information from Twitter mes-
sages [MBB™ 11, BMZ10, Pul, TBP11, [PP10]. In [MBB™11] micro-blogs are used for mood analysis,
where they present a method for associating mood to certain events. Their techniques help in summa-
rizing huge volumes of tweets w.r.t. the events. The Twitlnfo system proposed by the authors, allows
users to browse a large collection of tweets using a timeline-based display that highlights peaks of high
tweet activity corresponding to the events. Similarly, the authors of Pulse of Nation [Pul] by extracting
sentiment information from Twitter messages are able to track the national mood. This study analyzed
over 300 million tweets corresponding to the US region over a period of 3 years . They present the moods
across the country using different cartograms; and observe the variation of nation’s mood over 24-hour
period of a day and the days of a week.

Another study [BMZ10] tries to predict the impact of public mood expressed in Twitter messages on
the stock market; they do it by investigating the correlation of moods inferred from large-scale twitter
feeds with the Dow Jones Industrial Average. They make use of mood tracking tools, namely, Opin-
ionFinder (that measures positive vs. negative mood) and Google-Profile of Mood States (GoPMS) that
measures mood in terms of 6 dimensions.

The authors of [TBP11]] analyze Twitter messages in order to study why certain events resonate well
with the population. They assess whether surges of interest in Twitter are associated with heightened
emotions, by checking if the average sentiment strength of popular Twitter events is higher than the
Twitter average, or by assessing whether an important event within a broad topic is associated with
increased sentiment strength.

In [PP10], Twitter data is used as corpus for sentiment analysis and opinion mining, where Twitter
becomes a media in which people readily express their opinion. Specifically, the Twitter data is served
for training their sentiment classifier, which classifies tweets as expressing positive, negative or neutral

sentiment.

6.2.2 Social sensing

Given the importance of sensor networks in our everyday activities, some studies [NSV11, RMZ™11]

went ahead and consider the people participating in micro-blogs or social networks as social sensors

providing the rich social context, which are hard to infer using physical sensors. For instance, the work

in [SOMI10] monitors the flows of Twitter messages for quickly detecting an earthquake that occurs in
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an area where seismic sensors are unavailable. Another study [WYLL11]] mines the Twitter messages to
identify relevant events to given monitoring conditions. Yerva et al. [YMA11]] also identify the tweets

relevant to ambiguous company entities for its advertising strategies.

6.2.3 Social data fusion

CitizenSensing [NSV11] gives a broad overview of the challenges involved in making sense of citizen
sensing, which is becoming rampant with ubiquitousness of the mobiles, sensing devices etc. The study
introduces the paradigm of Citizen Sensing, enabled by Mobile sensing and Human Computing — hu-
mans acting as citizens on the ubiquitous Web, acting as sensors and sharing their observations and view
through Web 2.0. Likewise, SocialFusion [BGX™10] proposes the use of sensor networks to enable
context-aware social applications, analyzing the data generated by the users of the applications. In addi-
tion, SocialSensors [RMZ™ 11]] describes the need for fusing social data with pervasive sensors for better
services.

The authors in [LOIP10] present heuristic methods for data fusion that combine the user’s personal
calendar with his social network posts, in order to produce a real-time multi-sensor interpretation of the
real-world events. Their study shows that the calendar can be significantly improved as a sensor and

indexer of real-world events through data fusion.

6.3 The Fusion Framework

This section describes three major components of the theoretical framework in our data fusion approach,

which are fusion base, data points, and mood probabilities.

6.3.1 Fusion Base: Mood Space

A key goal of this study is to establish a data-fusion approach that collaboratively analyzes both social
and sensor data. In particular, we aim to extract people’s mood information from social (Twitter) feeds
associated with sensor (weather) data. To this end, we propose a data space, called mood space, which
serves as a conceptual base-ground where social and sensor data can be mapped.

More specifically, we represent the mood of a word (e.g., appearing in a tweet) using the ANEW
[BL99] list, which describes a set of major words frequently appeared in people’s conversations as nu-
merical scores. In ANEW, each of such words is scored in three dimensions: valence, arousal and
dominance, where the value in each dimension ranges from 1 to 9. Valence is defined by its two poles
negative/bad and positive/good, whereas the arousal dimension spans between the two poles sleepy/calm
for very low arousal and aroused/excited for very high arousal. Valence and arousal have proven to be
the two main dimensions, accounting for most of the variance observed. An additional dimension called
dominance is proposed to differentiate subtle emotions like fear and anger (which have similar valence
and arousal values).

In this study, we consider the mood space to be defined by valence and arousal metrics, illustrated
as Figure The two dimensional plane VxA:[1,9]x[1,9] is divided into 12 regions, each region maps
to a certain mood. For example, a high value of valence and another high value of arousal indicates
someone is happy, labeled as “happy” in the figure. Similarly, a lower value for valence and a high value
for arousal maps to the mood of “annoying/rage”.
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Figure 6.1: Illustration of the mood space.

6.3.2 Data Points: Tweet Mapping

Given a tweet message, the next step in our fusion approach is to associate a mood label with the message,
by computing the valence and arousal scores of the tweet. Specifically, the tweet is decomposed into
words, each of which would have a valence and arousal score, then we resort to Naive Bayes setting in
order to compute the tweets’ overall valence and arousal score which would become a data point in the
mood space.

Formally, consider a set of moods M consisting of the 12 moods in the mood space. Given a tweet
set T = SET{T;}, for each tweet T; € T, first we try to infer the mood expressed by the tweet by
computing the conditional probabilities P(M}|T;) for all My, € M.

For computing the conditional probabilities P(My|T;), we resort to Naive Bayes setting. We consider
a Tweet T; as a bag of words, T; = set{wrdﬁ-}, and we assume each word expresses certain mood (the
words which do not express mood will make zero contribution to the final mood). We assume each word

independently contributes to the overall mood of the Twitter message.

P(My) = P(T; | M)
P(T5)
_ P(My) = P(wrds, ..., wrd}, | My)
- P(TZ) (61)
= Cy [[ P(wrd) | My)
j=1
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Each of the terms in the above product, P(wrdé | M},), can be interpreted as the amount of contribu-
tion a particular word makes towards a mood M}, which can be learnt based on the training set or one
could readily use the weights provided by prior studies like the one in creating the ANEW list [BL99].
Along with the term weights, we also compute the constant C';, based on the training set. Depending for
which mood My, the term P (M |T;) is largest, we classify the tweet T; as expressing that mood.

For example, consider the following tweet TO : “Weather here is seasonal, warmish, some rain and
sun, green and beautiful”. This tweet is composed of 12 words, in which four of them are listed in
the ANEW set of words. For these four words, we obtain the valence scores of (rain= 5.08; sun=7.55;
green=6.18; beautiful= 7.60) and arousal scores of (rain= 3.65; sun=5.04; green=4.28; beautiful= 6.17)
by looking up the ANEW list. Finally, applying the above procedure, we get the overall tweet valence
and arousal scores as (6.60,4.78) which forms a data point in our mood space and gets a “relaxed” mood
label.

6.3.3 Mood Probabilities

Given a set of data pointed in the mood space, derived from raw tweets, we next explain how the fusion
framework computes a set of mood probabilities, according to day, location, and weather.

We know that each Tweet T; carries the information about the location L, the time stamp ¢ and the
weather label W. Thanks to the analysis explained above, now the tweet also carries the mood M;
information. Now for each tweet T; € T" we have a record R : (T;,L,t,W;,M;). Essentially each tweet
now maps as a point in the 2D mood space. The complete set of twitter data maps onto the 2D mood
space as a distribution of points. For easier querying our next goal is to summarize the distribution of
points on the social metric space.

Once we have all the tweet records R’s, one can summarize the mood-weather information using p;
probabilities. The p; ;. represents the probability of witnessing mood M; when the weather is I¥; and the
day is Dy € {Monday,. . .,Sunday} i.e., the conditional probability P(M; | W, Dy,). One can consider
different models for computing this p; ;. probabilities, ranging from simple model which summarizes all
the events so far ignoring the temporal aspects like time, weekday etc., to far more sophisticated models
which give more importance to the recent events.

According to the simple model, we group all the tweet records corresponding to a particular location
L. We observe different weather labels W;, mood labels M; and day labels D;, information associated
with each of these tweets. Next we compute, p;;x (shown in eqn. , as the fraction of tweets expressing
certain mood M; for a particular weather label W; and the day Dy,.

- 12#(tweets with M;, W and Dy,) 62)
>~ #(tweets with M,, W, and Dy,)

a=1

If we plot all the tweets satisfying the conditions of having certain weather label W; and are on certain
day Dy, as points on the mood-space, one would expect to see distribution of points over each mood
space similar to the one shown in Figure[6.2] For a particular day and weather label, the fusion process
helps us to obtain the probability distribution over the mood spaces. These probability distributions will
be summarized for all days and weather labels combinations and will be used as source of useful input
to the travel recommendation system.
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Figure 6.2: An example of mood probability computation.

6.4 The Travel Recommendation System

This section introduces a travel recommender system as a practice of the data-fusion framework de-
scribed in the previous section. We first offer an overview of how the system works, and then describe

each component of the system, as well as data processing.

6.4.1 Overview

The intuition behind the system development is to show that the information derived from various, real-
time data fusion can enrich recommendations, compared with using solely static, limited-scope reviews
posted by experts or other consumers.

In our recommendation system, users provide their travel intentions (place and approximate date of
travel), and then the system provides the information of how enjoyable the place would be on the day
for travel, in addition to the typical information offered by ordinary travel recommender systems. This

recommendation process is comprised of the following steps:
1. A user first offers the details for travel to the system, e.g., going to London next Friday.

2. The system obtains the information of predicted weather on London next Friday, from a real-time

weather prediction service (e.g., WeatherUnderground).

3. The system looks up the mood information of people associated London and Friday, which is

continuously mined and updated from raw social and sensor data.

4. The system offers the information of how enjoyable the trip to London on next Friday would be,
according to the mood probability estimation.
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Figure 6.3: Architecture of the fusion system.

Note that our fusion system is flexible to blend other data sources with the social and sensor data,
in order to make the recommendation more meaningful. For example, taking into account the events
(e.g., death of a famous person, terrorism) occurring in London would be able to enrich the quality of
recommendation. We believe that such an additional data source can be easily fused in the framework of

the recommendation system.

6.4.2 System Architecture

In order to store and process massively streaming social and sensor data in the cloud, we propose a
system established upon a combination of state-of-the-art cloud systems, including Hadoop [Whi09],
HBase [HBal], and GSN (Global Sensor Network) [AHS06]. Figure shows an overview of the system,

which consists of three primary components. In the sequel, we describe in detail each of the components.

e GSN is a stream processing engine that supports a flexible integration of data streams. It has
been used in a wide range of domains due to its flexibility for distributed querying, filtering, and
simple configuration. In our travel recommendation system, GSN serves as a wrapper that receives
streaming social as well as sensor data from twitter and weather data sources. GSN provides means
to control the rate of data streams, and also allows us to parse and filter incoming data on the fly,

before the data are stored in the back-end.

e Back-End contains both Hadoop and HBase, serving as a storage-and-computing platform. Hadoop
(MapReduce) is a popular framework for data-intensive distributed computing of batch jobs. In
particular, it is very useful for “cooking” massive raw data into useful information that is consumed
by another storage system. In our system, Hadoop is used to parse continuously streaming tweets
as well as weather data delivered in an XML format, based on a cluster that is built on 16 machines.
The parsed data are then stored in HBase, which is commonly used as a “Hadoop storage”.
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6.4 The Travel Recommendation System

e Front-End implements a user interface of the recommendation system. Specifically, this compo-
nent takes user inputs for querying, and delivers the inputs to the back-end. The query results

returned from the back-end are then visualized through the front-end.

6.4.3 Data Processing

The travel recommendation system computes and maintains a set of 2D maps of Weekdays (D;) x
Weather-Labels (WW;). The cells in each map stores the mood probabilities computed by analyzing the
data points of tweets mapped to the mood space, as described in Section [6.3] Figures and
shows the visualization of these 2D maps, where each subfigure corresponds to a distinct weather
label. The system manages seven different discs corresponding to seven days in a week (Mon, Tue, .. .,
Sat, Sun). The outermost disc corresponds to Monday while innermost corresponds to Sunday. Each
disc contains the different mood distributions computed through the data fusion process.

The system computes each entry of the discs using a massively parallel computing job. It employs
map and reduce jobs in MapReduce (Hadoop) [DGO04] to run the ETL-oriented processing in parallel.
Algorithms 6.1 and [6.2] offer in detail the operations of mapper and reducer.

Algorithm 6.1: Mapper Job for Social and Sensor Data Fusion
procedure MAP(TweetId, Tweet)
ANEW](] {contains valence and arousal scores of set of words}
Tweet — words[] {decompose Tweet into words }
for word; € words[] do
if word in ANEW[] then
(val;,ars;) + ANEWJ[word;]

else
(val;,ars;) <+ (0,0)
end if

end for
val; 70 V4l
num(val; #0)
ars;#0 4TS
num(ars;7#0)
mood: M; < moodMap2DFn(tweet_val, tweet_ars)
location: L < locationOf(Tweet)
time: ¢ <— timeOf(T'weet)
Day: Dy, + dayOf(Tweet)
Emit((L,Dy,t),(Mg))
end procedure

tweet_val <

tweet_ars <—

The query processing in the recommendation system then uses the 2D mood map discs computed by
the mapper and reducer. Specifically, when a user needs to know which would be the mood on a certain
day and place, the system queries the WeatherUnderground API to obtain the weather forecast of the
input day. At the same time, the system also queries the 2D structures to know the probabilities of mood

states for that travel day. As shown, it is straightforward to add another dimension in the fusion.
121
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Algorithm 6.2: Reducer Job for Social and Sensor Data Fusion
procedure REDUCER(K ey, Value)
{Computes Mood Space Probability Distributions }
WeatherMap[]{contains weather labels for different timestamps }
(Location: L,Day: Dy, time:t) <— decompose(K ey)
Weather Label: W; < WeatherMap|¢]
Mood: M; < Value
increment(locationMoodMap|[W;][Dy][M;], 1)
return
end procedure

All Tweets - W5 Weather

All Tweets - W3 Weather All Tweets - W4 Weather

u #Pleased
= #Happy
#Excited
= #Relaxed
u #Peaceful
#Calm
 #Sleepy
#Bored

 ¢Pleased
w itHappy
#Excited
™ #Relaxed
 #Peaceful
#Calm
 #Sleepy
#Bored
m4sad
#Nervous
w#Angy
m #Annoyed

(a) Mood map for W3 weather (b) Mood map for W4 weather (c) Mood map for W5 weather

Figure 6.4: Probability distribution over mood-spaces are shown in [(a)] [(b)] and [(c)] corresponding to
weathers W3, W4 and W5 respectively. In each mood map, there are seven discs and each disc cor-
responding to a weekday. Outer disc corresponds to Monday while the inner most disc corresponds to
Sunday.

6.5 Experiments
6.5.1 Data Collection Process

In our current setting, we work with the Twitter social network API for obtaining the social data. We
collect all the tweets corresponding to London location. In order to decide if a tweet is about a particular
location, L;, we use multiple features of the Twitter API. We consider a tweet is about a particular
location if the tweet metadata has geo-tag informatimﬂ or if the tweet user is from this place, or if the
tweet text contains the location name. With these rules, we manage to obtain an approximate rate of
80-90 tweet messages per minute for the city of London, England.

We consider weather information at a particular location as sensor data in our data fusion setting.
Specifically, we make use of services provided by WeatherUndergrouncﬂ, in order to periodically query
the weather (W) of a particular location L;. WeatherUnderground is a service that provides real-time
weather information from nearly 32,000 weather stations around the world. The API provides wide
variety of weather information like wind speed, wind direction, pressure, weather label etc. We are
mainly concerned with the weather label. Some examples of the weather labels are drizzle, rain, clear,
thunderstorm etc. We categorize the weather labels into 5 sets {W1, W2, W3, W4, W5}, as shown

in Table [6.1] according to pleasantness. As we move from W1 to W5 the pleasantness of the weather

'"Many smart phones provide this information automatically for the tweets posted using them.
Zhttp://www.wunderground. com
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6.5 Experiments

W5 Clear W3 Overcast
Scattered Clouds Drizzle
W4 | Partly Cloudy W2 Snow
Mostly Cloudy Fog
Showers Rain Thunderstorm
W3 Haze W1 | Thunderstorms and Rain
Rain Thunderstorms and Snow

Table 6.1: Categories of different Weather labels

increases. We collect weather information of London, once every 30 minutes under the assumption that
weather stays same over this period.

We collect both the social and sensor data by deploying corresponding virtual sensors in the GSN.
These social and weather virtual sensors contain all the rules,filtering conditions and rate controlling
parameters for collecting the data needed for the fusion process. One can easily include other locations
into our travel recommendation system just through adding corresponding virtual sensors to GSN.

The weather data and twitter social data collected using the GSN framework is stored HBase back-
end deployed on a cluster of 16 machines. The extraction of metrics from social data, and the fusion
process of social and sensor data is done through the use of various configurable Hadoop (Map-Reduce)

jobs.

6.5.2 Dataset Statistics

We summarize the amounts of social and sensor data we collected over a period of 100 days for one
particular location “London”. The emotion expressed in a tweet might be related to different factors
(weather, stock market influence, personal, work, product, event etc.). In order to focus on tweets related
to weather we identify subset of the collected twitter dataset that is actually related to weather, and
we refer to this subset as weather-related dataset. Given a tweet, we decide if a tweet is weather-related
tweet using a set of weather related keywords. We summarize our results and observations corresponding
to both the complete twitter dataset and weather-related twitter dataset. In Table [6.2] we summarize the

statistics of the sizes of the datasets.

Twitter Data| Weather Data
Complete Dataset
Duration 28-April-2011 to 10-August-2011
Number of Entries 12 Million 6600
Weather Related Entries 500000 6600
Training Dataset
Duration 28-April-2011 to 20-June-2011
Number of Entries 6.5 Million 3800
Weather Related Entries| 300000 3800
Test Dataset
Duration 21-June-2011 to 10-August-2011
Number of Entries 5.5 Million 2800
Weather Related Entries 200000 2800

Table 6.2: Data Collection Characterization
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Table[6.3]shows summarized view of the number of tweets we observed after binning them according
to the weather labels shown in Table In the table we observe 0 tweets for weather labels W1 & W2,
as there were no thunderstorms or snow during the time window (April-August) in which we collected

our tweets. Table[6.4] shows a uniform distribution of number of tweets collected on different weekdays.

Weather Labels
#Tweets WI1|W2| W3 W4 W5
All 0 | 0 [1836460|5201270(5108473
Weather-Related| 0 | O | 124048 | 211000 | 198645

Table 6.3: Tweets distribution w.r.t. Weather labels

#Tweets| All |Weather-Related

Mon |[2197788 83585

Tue (2532976 86485
Wed [1519632 70625

Thu |1585580 80324

Fri [1655613 74684

Sat |1413140 68048

Sun 1241474 69942

Table 6.4: Tweets distribution w.r.t. Weekdays

6.5.3 Observations

In this subsection we discuss the different observations we made regarding the mood metrics, and the
correlation w.r.t. weekdays and weather labels. Some of the questions we asked were: what is the
happiness trend with respect to the weekdays? and what is the trend w.r.t to different weather conditions?
Even though our mood space is divided into 12 different mood spaces, for answering the above questions,
we simplify our problem by considering all the moods in the quadrants Q1 and Q4 (valence > 5) as happy
and the moods in quadrants Q2 and Q3 (valence < 5) will be termed as sad. Figures[6.5(a) and [6.5(b)|

show the fraction of happy tweets we observed on different weekdays {Mon, ..., Sun} irrespective

of the weather conditions. Figure represents the trend when the complete twitter data is taken
into consideration, while Figure [6.5(b)| corresponds only to weather related tweets. In either case, we
observe that people in general are happier on the weekends { F'ri, Sat, Sun} compared to the weekdays
{Mon,Tue,Wed, Thu}. Also we observe Monday has the least fraction of happy tweets.

Next we tried to see any similar trends with respect to the different weather labels {W'1,..., W5}
irrespective of the weekdays, whose results are shown in Figure and Figure [6.5(d)} For weather-
related tweets, the results shown in Figure [6.5(d)] we see that people are happiest on sunnier (W5) days,
followed by cloudy (W4) days and least happy when it is raining (W3). On the contrary we did not
see any clear trend when we consider the complete twitter data, as shown in Figure It may be
suggesting that for a place like London, the weather, per se, does not have significant impact on the mood
of the public.

124



6.5 Experiments

Happiness metric vs. Weekdays (All Tweets) Happiness metric vs. Weekdays(Weather Related Tweets Only)
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Figure 6.5: Fraction of tweets expressing happiness mood (all tweets in Q1 & Q4 quadrant). shows
happiness metric for the complete tweets dataset, while [(b)] corresponds to weather related tweets only.
In both cases we observe the tweets on the weekends tend to appear more happier than the tweets on the
weekdays. shows happiness metric of all tweets w.r.t. different weather labels, while [(d)] concerns
only weather related tweets. Only in the later case we see people are more happier on sunnier days.

6.5.4 Recommendation Validation

For travel recommendation system, when a user queries for a particular location in near future, adding to
the future weather prediction of the location we would also try to predict the mood levels of the people.
It is possible to make the prediction of near future events, based on the past history. One could imagine
different prediction models. In our simplistic prediction model we summarize the statistics seen so far
and we expect them to be valid for the future events. In order to evaluate the validity of this model, we
divided the entire tweet dataset into two time windows, the training window and the test window.

We rely on two accuracy metrics to see if the statistics inferred on the training window (history) are
still similar to the statistics observed in the test window (near future events). The first metric we rely
on essentially compares two probability distributions, in our case the distributions over mood spaces
described in Figure [6.1] We have two mood-spaces distributions corresponding to training and test
windows. In order to see if they are from similar distribution we apply Chi-Square Goodness-of-Fit test
[SC89]. We observed values of y2 = 0.0056 (Weather Related Tweets) and x? = 0.054 (All Tweets).
Such low values of x? suggest that we accept the null hypothesis that both the probability distributions
are very similar. Further the distributions are much more similar in the weather-related tweets compared

to all-tweets case.
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Mon | Tue | Wed | Thu | Fri | Sat | Sun
W3/1.000|0.667]0.667|0.667|0.667|0.667|0.667
W4(0.667]0.667|0.6670.667 |0.667|0.667 |0.667
W5|0.667]0.667|0.6670.667 |0.6670.667 |0.667

Table 6.5: Moods Overlap: Jaccard Similarity metric when considering the complete dataset

Mon Tue Wed |Thu |Fri|Sat|Sun
W3|0.66667 1 0.66667
W4|0.66667|0.66667 |0.66667
W5 1 1 1

e el B
e el B
e el R
e el B

Table 6.6: Moods Overlap: Jaccard Similarity metric when considering the weather-related twitter
dataset

The second test we consider is the percentage of overlap between the top 5 moods predicted by the
training window model and the ones we observe during the test window. We use Jaccard Similarity
metric to quantify the overlap, which is defined among two sets as the ratio of their intersection size to
the union size. The observed overlap metrics are shown in tables Table{6.5] and Table{6.6] In both the
cases we observe a significant overlap between the predicted moods and observed moods. The mood
labels we learn through our fusion process during the training window significantly overlap with the
mood labels we observe during the test window.

Our fusion process of social and sensor data in the cloud, not only helped us understand the general
trends of mood swings with respect to different weekdays and weather labels but also through simple
models make accurate predictions. Relying on scalable cloud components, our fusion process can be
readily expanded to many more locations with little effort. Through careful tuning of map-reduce jobs

our fusion process can handle far more complex prediction models.

6.6 Conclusions

In this chapter, we presented profile construction by aggregating social and sensor metrics from the
content corresponding to a location entity. As various smart applications rely on mobile cloud computing,
fusing data in the cloud becomes an essential issue. Addressing this concern, we presented a data-fusion
approach that blends representative data sources—social and sensor data corresponding to a location
entity—commonly managed in mobile cloud applications. Specifically, we explored the potential of the
data fusion by proposing a theoretical framework that enables to analyze tweet messages for extracting
people’s moods depending on day, weather, and location. We implemented the framework as a travel
recommendation system that facilitates the fusion process over massively streaming data. The system is
established upon several well-known cloud systems, allowing scalable data-fusion processing. We then
discussed about various findings obtained from comprehensive experimental results using 12 million

tweets as well as meteorological sensor readings, which demonstrate the effectiveness of our proposal.
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Chapter

Conclusion and Future Work

Now this is not the end. It is not
even the beginning of the end. But it
is, perhaps, the end of the
beginning.

Winston Churchill

7.1 Conclusion

In this dissertation we have addressed several entity-related challenges. We presented a number of con-
tributions that aid in linking the entity mentions across the web for creating a global knowledge graph of
linked entities, thus facilitating wider adoption of the Semantic Web. We addressed following important
entity-related problems: Entity Resolution for Web Documents, Entity Matching in Twitter environments,
and Entity Profiling, which make a promising step towards realizing entity-oriented view of Semantic
Web.

In the first part of the thesis, we proposed Entity Resolution methods for Web data collections, in
particular to realize Web people search [YMA10b]. We studied the design of similarity assessment tech-
niques. Our proposed method estimates the quality of available similarity values, for particular regions of
the input and not globally, as the assessment techniques themselves produce results of different quality.
Specifically it takes into account if some information is missing, which is very common in the context
of Web documents. We demonstrated the effectiveness of these methods in our framework [YMA12b]
using two real world datasets and showed promising results. Quality-aware similarity functions can be
used in combination with other algorithmic frameworks as well. The systematic quality assessment and
quality-aware combination technique results improved similarity values and also the overall performance
of these algorithms.

Nowadays people are readily expressing themselves on microblogging platforms like Twitter. For
many organizations, such messages are of great importance for many business decisions. In the sec-
ond part of the thesis, we addressed the problem of entity-based matching of tweets through several
techniques. We presented a simple Naive Bayes classifier, which relies on automatically or semi-
automatically constructed profiles [YMA10a]. We then extended this basic technique in two ways. First,
we developed a method that takes estimations of the general ambiguity level of the problem into account.

129



7. CONCLUSION AND FUTURE WORK

Second, we also introduced a technique [YMAT11] that updates our company profiles actively from the
twitter stream. We were able to analyze our techniques, find the sources of error in our profile con-
struction techniques, and introduced methods to systematically address these problems [YMA12a]. Our
experiments showed systematic improvements as we extend our classifier with the described techniques.
Using our demo, TweetSpector [YMG™12], we showed a prototype of our entity-based classification of
tweets.

In the final part, we focused on the Entity Profiling problem, which is about summarizing the informa-
tion related to an entity. We mainly focused our efforts on profiling an user entity [YGTA13,[YCDA13|
and a location entity [YSJA12| [YJA12]]. We presented a number of techniques for constructing user en-
tity profiles [YCDA13]], and evaluated their effectiveness for the tweet disambiguation task. Such user
entity profiles present a summarized view of the user generated content across various social networks.
We have also shown the importance of context in handling the tweet ambiguity. We used the user entity
profiles to provide the missing context to the microposts, thus seeing an improved performance of the
tweet classifier. Specifically, frequency-based features on Twitter and LLDA features on StackOverflow
result-in user profiles that significantly improve effectiveness of disambiguation as compared to base-
line approaches. TripEneer [YGTA13|: a travel plan recommendation application of user-entity social
profile is presented. Finally we presented a data-fusion approach [YSJA12,YJA12] that blends represen-
tative data sources—social and sensor data related to a location entity—commonly managed in mobile
cloud applications. Specifically, we explored the potential of the data fusion by proposing a theoretical
framework that analyzes tweet messages for extracting people’s moods depending on day, weather, and
location. We implemented the framework as a travel recommendation system that facilitates the fusion

process over massively streaming data.

7.2 Future Directions

There are still a number of open challenges that need to be addressed to fully realize entity-oriented
view of the Semantic Web. Significant work needs to be done for development of entity extraction tools
that can work reliably on microblogging kind of media, as this media is becoming as relevant as other
news and social media. Keywords based indexes and inverted document indexes have helped keyword
based search systems. Newer innovations are needed in designing indexes and back-end architectures for
supporting entity-based and semantic search systems. There is also need for research efforts in designing
user interfaces for such systems.

We recognize that the work described in this thesis can be strengthened in a number of ways and

specifically, we suggest the following as future work.

7.2.1 Entity Resolution for Web Documents

In relation to Entity Resolution techniques for Web Documents (Chapter [3), we propose following im-

provements as future work.

e For efficient ER techniques our framework defined regions (Section [3.2.3)) in the range of similar-
ity functions and relied on supervised ML techniques for estimating the accuracies of similarity
functions in these regions. In our future work we would like to find dataset independent ways of
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defining regions for accuracy estimations. We also plan to address the effect of incomplete infor-
mation available in the Web pages on the accuracy of the similarity functions even more directly,
by considering entropy based metrics, similar to [CMBHAOS]].

e The efficiency of the combination technique (Algorithm Step 4) depends on the quality and
diversity of the similarity functions participating. We would like to explore models to compute the
theoretical best achievable performance. As our techniques are based on supervised machine learn-
ing (ML) approaches, there is an involved cost of obtaining the training examples. We would like
to explore semi-supervised and unsupervised ML approaches to this problem. We could possibly

exploit the relative importance of the entities.

e Once we cluster the web documents based on the real world entity, we plan to explore techniques
to summarize the entity representing the cluster. We need to study the impact on summarization

when we add or remove documents from the cluster.

7.2.2 Entities in Twitter Streams

With respect to Entities in Twitter Streams (Chapter [)), we can extend our work in the following direc-

tions:

e The core of our entity-based classifiers of tweets are the entity profiles. We relied on a number of
information sources — mainly static — (homepages, Google sets, Wikipedia disambiguation pages,
etc) for constructing the initial company entity profile (Section f.2.2.2). As new products and
media information about companies are released, it is important that company-entity profile is up-
to-date so that it does not miss relevant tweets. We need cleaner ways of integrating any such
dynamic information into the company profiles. One possible way is by actively following the

news section of the company.

e Human feedback on tweets involves cost. In future work we plan to optimize on the accuracy
of the classifier by keeping the human feedback costs low by selecting a subset of those tweets,
on which human feedback would benefit the classifier the most. Active learning techniques from

machine learning could be exploited for this purpose.

e TweetSpector (Section[4.8)) is shown as prototype for company entity based classification of tweets.
In future, it can be extended to other types of interesting entities (TV-shows, sport teams, etc.) and
sub-entities (sub-group in a company, or a specific product in a company, etc.) for which similar
entity profiles could be constructed. We also plan to provide TweetSpector as a webservice API,

using which interested company entities can get relevant real-time tweets on to their websites.

7.2.3 Entity Profiling and Applications

In reference to entity profiling and applications (Chapter[5|& Chapter[)), we propose following directions

for the future work.

e In our efforts to construct an entity profile of an user we treated all the content (from Twitter
& StackOverflow) similarly. However, as a user has multiple facets, all the content on bigger
social networks (like Facebook) is not equal. The content corresponds to his different interests:
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sports, travel, movies, books, etc. One could explore complex model for user entity profile, which
has all this facets. Each facet is built on the corresponding content. Interesting recommendation

applications can request the user for a particular relevant facet.

e In future we would like to enrich the user entity profiles by making use of additional information
sources : lists, the social network connections, and the activity flow (URLs shared and propa-
gated). These additional sources could be used to identify the experts w.r.t. topics. One could also

recommend new users and content relevant to a particular user based on his entity profile.

e In TripEneer (Section [5.6) application, we presented hybrid ranking as the one which combines
various other rankings. In the future work, we plan to infer the weights for various components
based on the users activity, rather than manually setting them. We could also infer them based on

an interactive questionnaire.

e Using cloud technologies we computed aggregated values by mining tweets related to a particular
location (Chapter [f)). We would like to explore models where batch updates could be done to the
aggregated values corresponding to social metrics of a location entity profile. With the scalable
fusion framework, we would like to extend our study, the impact of weather has on peoples’ moods

[Pul]], for many more cities.
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