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Simulated Results for the Example of Section 4
In addition to the algorithms reported in the main text, the following three algorithms
were also examined:
Algorithm A1l — Ideal Target
Here, uj  , is taken as the plant optimum at all iterations.
Algorithm A2 — Projected Gradient Descent with Diminishing Step

This is the same as Algorithm 2 in the example of Section 3, with the gradient of
the cost used to determine the optimal target at each iteration.

Algorithm A3 — Modifier Adaptation with Affine Correction
A model of the plant is available:
p(u) = (ug — 0.3)% + (uz — 0.5)?
g1(u) = —4u? — 4ug +2us — 0.5 <0
g2(u) = 3u2 + uy + 0.5us — 0.5 < 0 : (1)
g3(u) = —2u? — 0.5(ug — 0.15)2 +0.01 <0

Modifier terms are then calculated at every iteration:

€k = Ip.j(Ug) — gj(ug)
Akj = Vpi(ug) — Vg;(ug) , (2)
Aio = Vop(ug) — Vo(uy)

and the model with an affine correction is then optimized to compute uy, ;:
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Figure 1: Performance of Algorithm A1l (ideal target). Only in (al) is there a major
issue with convergence to the optimum, as the algorithm runs into the concave constraint

and is unable to progress any further.

uy,u2

subject to g1(u) + €1 + )‘5,1(“ —u;) <0

Figures 1-3 present the results.

g2
g3

uj_ , = argminimize ¢(u) + )\%’@u

A2

(u) + e+ )\g’z(u —u) <0
(u) + e+ )\;‘gg(u —ug) <0
w1 € [~0.5,0.5], us € [0,0.8]
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Figure 2: Performance of Algorithm A2 (gradient descent). Notice that the algorithm
does not reach the optimum unless at least the condition of Theorem 3 is enforced. We
also note that the algorithm requires an excessive number of iterations in (a2), which is
due to the diminishing step size of the gradient descent law. While this may be seen as
a poorly designed algorithm, we point out that applying the full SCFO avoids this issue
(Case (a3)) due to the repeated use of a relatively large d4.
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Figure 3: Performance of Algorithm A3 (modifier adaptation). Convergence (or approx-
imate convergence) to the optimum is achieved in all cases except (al). Here, enforcing
the SCFO slows down convergence slightly for the second initial point (compare (bl)
and (b3)), but the loss in optimality is quite small.
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