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Abstract 
Object delineation that is based only on low-level segmen- 
tation or edge-finding algorithms is difficult because typical 
edge maps have either too few object edges or too many 
irrelevant edges, while object-containing regions are gener- 
ally oversegmented or undersegmented. We correct these 
shortcomings by using model-based geometric constraints 
to produce delineations belonging to generic shape classes. 
Our work thus supplies an essential link between low-level 
and high-level image-understanding techniques. We show 
representative results achieved when our models for build- 
ings, roads, and trees are applied to aerial images. 

I. Introduction 
Our goal is to find and delineate probable instances of 
generic object classes in real images. The shape delin- 
eation task described here is critical for the extraction of 
objects from images that are too complex to be handled 
by syntactic approaches alone. 

We choose as our application domain aerial images of 
intermediate resolution, that is, images with resolution ad- 
equate for humans to perceive shapes clearly, but not so 
fine that small details and textures would dominate the 
description given by a human observer. In Figure 1, we 
present a typical aerial image of this class that contains 
a combination of suburban features, along with a corre- 
sponding edge image [Canny, 19861 and a segmentation 
[Laws, 19841. 

A standard low-level approach to the task of extract- 
ing objects such as buildings from Figure la would attempt 
to match region boundaries or edge groups with the edges 
of a building template. However, when we examine the 
data, we see that neither regions nor edges correspond 
reliably to building objects. The segmentation bound- 
aries tend either to break a building roof into pieces, or 
to merge extraneous areas with those identifiable as roofs. 
The Canny edges, on the other hand, do not include sev- 
eral critical edges in the center building or the road, even 
though these are extracted as region boundaries by the 
segment ation. 

*This research was supported in part by the Defense Advanced 
Research Projects Agency under Contract No. MDA903-86-C-0084. 

Clearly, no single parameter setting for conventional 
segmentation or edge-finding techniques can be expected 
to handle all the desired objects in one image, much less 
in multiple images. 

Therefore, an intermediate step is required for com- 
plex scenes: model-based shape parsing procedures must 
be provided in order to generate object delineations that 
are sufficiently reliable to be useful for applications such 
as context-specific labeling systems [see, e.g., Brooks, 1981; 
McKeown et al., 1985]. 
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The key elements of our approach to solving this prob- 
are the following: 

Define Generic Shape Models. We avoid the 
drawbacks of rigid template models and produce de- 
lineations that are not necessarily tied to any specific 
labeling scheme by defining shape models for generic 
classes of objects. When we supplement low-level data 
with the predictive power of such models, we are able 
to recover information that is more likely to be seman- 
tically meaningful. 

Integrate Edge-Based and Area-Based Geo- 
metric Constraints. Both the edges and areas of - 
a feature contain geometric information relevant to 
the task of identifying it as an instance of a generic 
model. We use edges to generate overall geometry 
and to provide estimated area outlines. Areas that 
are associated with edges are tested for compatibil- 
ity with the object model and with one another; we 
use the RANSAC random sample consensus technique 
[Fischler and Bolles, 19811 to compute optimal model 
fits that systematically discount gross anomalies. Fur- - 
thermore, multiple so&ces of information are incorpo- 
rated in the geometric search procedure by using a set 
of segmentations produced by a progression of param- 
eter settings. 

Predict and Verify Model Components Missing 
components of models are predicted and checked us- 
ing model-based adaptive search procedures; our im- 
plementation uses a gradient ascent method [Leclerc 
and Fua 19871 to search for predicted edges with the 
required geometry. Thus, 
struct and locate building 

- 
for example, we 
boundaries and 

can recon- 
road edges 

that might be unrecoverable using conventional meth- 
ods; if one chose an edge-detector parameter setting 
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weak enough to find such missing edges at the begin- 
ning, the edge map would be dominated by irrelevant 
noise. 

2. Find edge relationships based 011 geometric 
constraints combined with tests Otl signatures 
of enclosed areas. 

enerie ePing 

People can classify instances of various object categories 
accurately even though a particular instance may have a 
unique shape they have never seen before. Generic shape 
classes provide an effective approach to automating this 
human ability. Generic models that we have found useful 
for analysis of real images possess the following character- 
istics: 

Q Strong edge geometry. The elementary edge or 
line data extractable from an image must be related 
in some direct and computable way to the object. 
In particular, the model must suggest explicit rules 
for dealing with anomalies and predicting likely lo- 
cations of missing geometrical components. Typical 
models include edge geometry characterized by long, 
straight edge segments, by edges or lines with uniform 
local curvature, and by edges with good statistical sig- 
natures characterizing their jaggedness. In addition, 
there must be mechanisms for the production of co- 
herent area-enclosing structures. Thus, for example, 
parallel edges, corners, equidistant curved lines and 
edges outlining a compact shape are reasonable ge- 
ometric substructures that can be used to delineate 
areas that are portions of the larger structure. 

e Strong area signature. Areas contained within a 
substructure of a generic object should be character- 
izable by a computable signature. If anomalies are 
expected, they should be clearly distinguishable by 
using the area signature and should ideally comprise 
no more than a small fraction of the area. Exam- 
ples of such areas are parking lots with cars or roofs 
with chimneys. Typical area signatures would be the 
presence of uniform or uniformly changing intensity 
values or textures. Anomalies in such a background 
are easily located and discounted using a RANSAC 
procedure to fit planes to the intensity values within 
the delineated area. 

The models we have implemented - buildings, roads, 
and trees - contain the following universal components: 
(1) edge definition, (2) composite structure definition, 
(3) linking geometry specification for composite structures, 
(4) area signature specification, and (5) a geometric com- 
pletion model. The components of each of these models 
are are summarized in Table I. 

The most general model-parsing procedure that we 
have needed to interpret each of these models in an image 
includes the following steps: 

3. Build closed graphs of related edges that en- 
close consistent areas as well as matching the 
model geometry. 

4. Predict, search for, and fill in missing elements 
of the model geometry. 

5. Compare the resulting delineation with the 
characteristics of the original model. 

The overall approach can clearly be extended to any other 
object for which appropriate characteristics can be for- 
mulated, e.g, cylindrical oil tanks, drainage patterns, and 
buildings with perspective distortion. 

In the following subsections, we outline the features of 
our models for buildings, roads, and trees, and illustrate 
how these models fit into the general framework. Where* 
space allows, we mention some details of the individual re- 
quirements of the model parsing framework outlined above. 

A. ectilinear Networks 
Our most extensive work so far has been devoted to the 
task of delineating rectilinear, presumably cultural, struc- 
tures [Fua and Hanson, 1985, 19861. 

We characterize buildings and related cultural struc- 
tures (e.g., parking lots, patios, gardens, and court- 
yards) as rectilinear networks of adjacent or joinable area- 
enclosing straight-edge groups that contain areas with pla- 
nar intensity. 

The basic parsing procedure for generic rectilinear 
structures follows the pattern given above. Since re- 
gion boundaries of a histogram-based segmentation [Laws, 
1984; Ohlander et al. 19781 tend to correspond to high im- 
age gradients, the straight edges are extracted as sequences 
of pixels with consistent gradient directions. While single 
segmentations often have inadequate characteristics, seg- 
mentations with increasingly permissive parameters pro- 
duce regions that are first undersegmented, then well seg- 
mented and finally oversegmented as shown in Figure 2. 
The multiple data sources lead to a network of geomet- 
rically consistent straight edges, shown in Figure 2f, that 
serve as a basis for the geometric processes. 

In practice, region boundaries may deviate by a few 
pixels from the actual edge location; we optimize their lo- 
cations using the gradient ascent procedure. In each of 
the segmentation regions, edges that are parallel or per- 
pendicular are singled out for special consideration. These 
associated edges, together with the region they come from, 
define areas in the image. Areas are tested for consistency 
with a RANSAC planar fit in intensity space, and edges 
that generate qualifying areas are retained for further wrs- 
ing. 

We note that the same edge can belong to several 
structures. If the structures are compatible with respect to 

1. Build the edges according to the edge defini- the structure-linking specification and enclosed-area char- 
acteristics, new geometric relationships between edges, tion. 
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such as collinearity, are instantiated. The result is that the building model, jagged parts of the boundary, rather 
edges are grouped into networks defined by graphs of the than linear parts, are selected as edge candidates. Within 
geometric relations among them. single regions, jagged edges that have consistent neighbor- 

Rectilinear geometric relationships are used to predict ing areas computed by local chamfering are incorporated 
how the edges should be linked and where missing edges into composite structures. The F* general linear-feature 
might be. The predictions are fed to the adaptive straight- utility is then used to connect the edges along the path 
edge finder [Leclerc and Fua, 19871 or to the F* edge finder with the strongest image gradient. This generates the re- 
[Fischler, et al., 19811 f i a straight edge link is not found. quired closed regions delineating the vegetation candidate. 

The networks of-compatible composite structures are 
then connected to form closed contours and define new se- 
mantically motivated regions that are the final output of 
the current system. The candidate features can be scored 
using a measure of the closeness of the delineation charac- 
teristics to those expected in an ideal model instance. 

In this section we present some representative results of 
applying our approach to aerial imagery. 

To illustrate the behavior of the system on buildings, 
In practice, the information required to assign mean- 

ingful labels to candidate cultural structures can be very 
primitive; we shall give some examples below in which 
even such simple techniques as clustering based on region- 
similarity measures are quite effective. 

we have chosen two images that are especially challenging 

networks, selected in this case on the basis of a size filter; 

in terms of shape complexity and faint edge photometry. 
In Figure 3, we show the results of analyzing the image 
shown in Figure la. Figure 3a illustrates the initial set of 

Roads-Curvilinear Parallel Networks B. 
It is straightforward to modify the rectilinear cultural fea- 
ture model to include smoothly curving road segments. 
The edges of such roads are almost straight in most places 
and can be detected locally using the techniques given 
above. They are then grouped into parallel structures and 
linked into elongated networks that may have large-scale 
curvature. To deal with winding roads, the straight edges 
can be replaced by smoothly curved edges while the rest 
of the approach is retained. See Table I for a summary. 

The only major change in the road model is the rule 
employed to predict missing components of the geomet- 
ric structure. First, the initial network of parallel edges 
is used to estimate the location of the road’s center and 
width. Next, we fit a spline to the estimated center of 
the road and use it to define two parallel splines that cor- 
respond to the road’s edges. Using the gradient ascent 
method, we optimize the location of the two splines under 
the constraint that they must remain parallel. This is a 
powerful technique because, wherever one side of the road 
is lost due to poor photometry or occlusions, the edge in- 
formation present on the other side can still be utilized to 
guide the optimization procedure. 

C. Trees-Irregular Clumps 

if we add a selection criterion based upon clustering areas 
with similar intensity characteristics, one of the clusters is 
the set of house candidates in Figure 3b. 

Figure 4a shows another example of an image con- 
taining difficult-to-parse cultural structures; in particular, 
note the extreme weakness of many relevant roof edges. 
Figure 4b contains a cluster of bright enclosures that can 
be identified as sunlit roofs, Figure 4c shows a correspond- 
ing cluster of shaded roof sections, and Figure 4d gives the 
complete roof structures. 

Turning our attention now to linear features, we 
take the image shown in Figure la and apply the model 
for generic road segments. The system finds the initial 
set of straight edges shown in Figure 5a, groups them 
into equidistant parallels, connects those that seem to be 
collinear or smoothly curving, and then uses them to pre- 
diet the approximate delineation of the road as shown in 
Figure 5b. Finally, the predicted shape is optimized with 
respect to variations in the global width and local curve 
skeleton, thus yielding Figure 5c. 

Finally, we apply the parsing procedure to vegetation 
clumps. In Figure 6a, we show an image containing typical 
vegetation clumps, along with one of a set of segmentations 
in Figure 6b. The initial candidates for vegetation clumps 
are shown in Figure 6c, and a final selection filtered with 
respect to image intensity in Figure 6d. 

Clumps of vegetation, typically small groups of trees, are 
characterizable as being complementary to the regular 
cultural-object models we have described so far. Since 
their edges are typically jagged and irregular, any com- 
pact object that has no components resembling roads or 
buildings could be a candidate for vegetation. Other ir- 
regular objects such as rock outcroppings, bodies of water, 
and drainage patterns would have similar signatures. The 
tree model is summarized in Table I. 

The parsing procedure for vegetation clumps starts 
with the boundary of a given segmentation region and op- 
timizes the location using gradient ascent. In contrast to 

IV. Conclusions 

In this work, we have proposed an approach based on 
generic models and a combination of edge-driven and 
photometry-based geometric reasoning to delineate several 
classes of objects in aerial images. Such delineations may 
be utilized in a variety of ways, but are especially appropri- 
ate as input to high-level knowledge-based systems. Since 
these structures are generic, there is no a priori commit- 
ment to any particular labeling or modeling system. 

We have devised methods for the following: 
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0 Integration of Multiple Geometric Data 
Sources. 
Data-driven edge extraction and image segmentation 
processes do not perform well on multiple target ob- 
jects. We combine multiple information sources and 
use both edge geometry and enclosed-area character- 
istics to generate and verify shape hypotheses; we thus 
make efficient use of the available geometric informa- 
tion in the image. 

o Generic Shape Extraction. 
For many important tasks, the exact shapes of objects 
of interest are not known. We define and use generic 
models to deal with whole classes of objects. Within 
the context of such models, we recover expected but 
missing model components using adaptive search tech- 
niques, and compensate for photometric anomalies. 
In particular, we have proposed models for cultural 
structures, roads, and vegetation clumps, all of which 
fit into a universal format for model definition and 
parsing. 

The system’s effectiveness derives from the definition 
and use of generic shape models to refine and interpret low- 
level image information. The clear delineations that we can 
produce are an essential step toward application-oriented 
parsing schemes, and provide an adequate basis for rule- 
based labeling systems that could not function with tradi- 
tional low-level data alone. 

eferences 
R.A. Brooks, “Symbolic Reasoning Among 3-D Models 

and 2-D Images,” Artificial Intelligence Journal 16, 
(1981). 

M.A. Fischler and R.C. Bolles, “Random Sample Consen- 
sus: A Paradigm for Model Fitting with Applica- 
tions to Image Analysis and Automated Cartogra- 
phy,” CACM, Vol. 24, No. 6, pp. 381-395 (June 1981). 

M.A. Fischler, J.M. Tenenbaum, and H.C. Wolf, “De- 
tection of Roads and Linear Structures in Low- 
Resolution Aerial Imagery Using a Multisource 
Knowledge Integration Technique,” Computer Graph- 
ics and Image Processing 15, pp. 201-223 (1981). 

P. Fua and A.J. Hanson, “Locating Cultural Regions in 
Aerial Imagery Using Geometric Cues,” Proceedings 
of the Image Understanding Workshop, pp. 271-278 
(December 1985). 

P. Fua and A.J. Hanson, “Resegmentation Using Generic 
Shape: Locating General Cultural Objects,” Pattern 
Recognition Letters (1986) in press. 

K.I. Laws, “Goal-Directed Texture Segmentation,” Tech-, 
nical Note 334, Artificial Intelligence Center, SRI In- 
ternational, Menlo Park, California (September 1984). 

Y. Leclerc and P. Fua “Finding Object Boundaries Using 
Guided Gradient Ascent,” Proceedings of the 1987 
Topical Meeting on Machine Vision, Lake Tahoe, CA, 
pp.168-171 (March 1987). 

D. McKeown, W.A. Harvey, and J. McDermott, “Rule- 
Based Interpretation of Aerial Imagery,” IEEE Trans. 
PAM1 7, pp. 570-585 (1985). 

R. Ohlander, K. Price, and D.R. Reddy, “Picture Segmen- 
tation Using a Recursive Region Splitting Method,” 
Computer Graphics and Image Processing 8, pp. 313- 
333 (1978). 

J. Canny, “A Computational Approach to Edge Detec- 
tion,” IEEE Trans. PAM1 8, pp. 679-698 (1986). 

Figure 1: (a) A typical aerial image with suburban features. (b) A C army edge map. (c) A Laws histogram-based 
segmentation. 
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Model Component khuldmgs Roads Trees 
Edge definition Straight Curved Jagged 

Composite structure definition Parallel and perpendicular Parallel Cluster 

Linking geometry specification Rectilinear Curvilinear Free form 
for composite structures 
Area signature specification Planar intensity Planar intensity Planar intensity 
Geometric completion model Straight edge search 

1 I  

Curved edge search Connecting path search 

Table I. Summary of the characterstics of each of three models described in the text. 

Figure 2: (a) A small image portion containing a cultural structure. (b) A n extreme undersegmented partition. (c) An 
undersegmented partition. (d) An optimum partition for detecting the structure. (e) A highly oversegmented 
partition. (f) Th e set of long straight edges extracted from the partition boundaries using the criterion that 
the edges enclose as large a uniform rectilinear area as possible. These edges form a network. 

Figure 3: (a) Rectilinear networks meeting a size criterion. (b) H ouse-like networks found by imposing in an additional 
region uniformity filter. 
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Figure 4: (a) An image containing complex buildings with some faint edges. (b) A sunlit roof cluster. (c) A shaded 
roof cluster. (d) House candidates constructed by merging the sunlit and shaded roof candidates. 

(4 (b) (4 

Figure 5: An example of a road segment. (a) The edges that are originally grouped together as a possible road 
structure. (b) Intermediate prediction of the road path given only the initial edges. (c) Final road position 
optimized to choose best path with the same (variable) width for the entire length. 

Figure 6: (a) A n image containing vegetation clumps. (b) One of a family of segmentations used to derive edge 
candidates. (c) The initial set of vegetation clump candidates. (d) Vegetation candidates selected on the 
basis of the intensity of the enclosed area. 
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