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Abstract

Fountain codes are a class of rateless codes well-suited for communication over erasure channels
with unknown erasure parameter. We analyze the decoding of LT codes, the first instance of
practical, universal Fountain codes. A set of interest during LT decoding is the set of output
symbols of reduced degree one (the “ripple”). The evolution of the ripple size throughout the
decoding process is crucial to successful decoding. We derive an expression for the variance of the
ripple size, thus obtaining bounds on the error probability of the decoder. This provides a first
step toward finite-length analysis of LT codes, and ultimately toward the design of provably good
Fountain codes. In a related work, we analyze a generalization of LT codes where output symbols
consist of r parities generated from a subset of input symbols via an MDS code. We study the
modified decoding algorithm and derive a Soliton-like distribution that allows recovering of the
input symbols with high probability with asymptotically vanishing overhead.

We study two generalizations of product codes. First, we introduce and analyze irregular
product codes, a generalization where rows and columns of codeword matrices are not restricted
to a single row and column code but can come from a distribution of component codes of varying
rates. We characterize the rate of these codes and give families of irregular product codes
based on MDS component codes that achieve rate 1 − ε on erasure channels of parameter ε
(at the cost of a growing field size). We also exhibit finite-length irregular product codes that
outperform all regular product codes of similar rate on erasure channels. Second, we study
staircase codes, a product-like construction introduced in [1] that combines a short component
code in two dimensions in a “continuous” fashion. Motivated by the improvement that these
codes present over their component code, we seek to push this improvement further by going to
higher dimensions still. We abstract out the properties of staircase codes that allow them to be
generalized to higher dimensions and design a three-dimensional staircase code.

In the field of network coding, we propose a relaxed measure of security over untrusted
networks, where intermediary nodes are allowed to learn only as many linear combinations of the
source messages as they need to send. We study the problem over some classes of combination
networks and give necessary and sufficient conditions for achieving this notion of security over
such networks.

Keywords: Rateless codes, Fountain codes, LT decoder, second moment analysis, ripple, gen-
eralized LT codes, product codes, generalized product constructions, irregular product codes,
staircase codes, network coding, security.
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Résumé

Les codes Fontaine constituent une classe de codes sans taux très appropriés pour la communica-
tion sur des canaux à effacement à paramètre d’effacement inconnu. Nous analysons le décodage
des codes LT, la première instance de codes Fontaine pratiques et universels. Un ensemble im-
portant durant le décodage LT est l’ensemble de symboles de sortie de degré réduit égal à 1 (le
“ripple”). L’évolution de la taille du ripple durant le processus de décodage est cruciale pour le
succès du décodage. Nous développons une expression pour la variance de la taille du ripple, et
en déduisons des bornes sur la probabilité d’erreur du décodeur. Ceci constitue un premier pas
dans la direction de l’analyse des codes LT à longueur finie, et dans la direction de la création
de bons codes LT. Sur un sujet voisin, nous analysons une généralisation des codes LT où les
symboles de sortie sont constitués de r symboles de parité générées par un code MDS à partir
d’un sous-ensemble des symboles d’entrée. Nous étudions l’algorithme modifié de décodage et
définissons une distribution de type Soliton, qui permet avec une haute probabilité de reconstituer
les symboles d’entrée avec une transmission ajoutée asymptotiquement nulle.

Nous étudions deux généralisations de codes produit. Premièrement, nous définissons et
analysons les codes produit irréguliers, une généralisation où les lignes et les colonnes des matrices
correspondant aux mots de code ne sont pas restreintes à un seul code de lignes et un seul code de
colonnes, mais proviennent d’une distribution sur des codes de taux variable. Nous caractérisons
le taux de ces codes et créons des familles de codes produits irréguliers basés sur des codes
MDS qui réalisent un taux de 1− ε sur des canaux à effacement de paramètre ε (lau prix de la
croissance du corps de base). Nous montrons des codes produits irréguliers dont la performance
dépasse celle de tous les codes produit réguliers de taux similaires sur les canaux à effacement.
Deuxièmement, nous étudions les codes escalier, une construction-produit créée dans [1], qui
combine un code court dans deux dimensions de manière “continue”. Motivés par l’amélioration
que ces codes offrent par rapport à leur code constituant, nous désirons pousser cette amélioration
encore plus loin en étendant le code à des dimensions supérieures. Nous isolons les propriétés
des codes escaliers qui leur permettent d’être généralisés à des dimensions supérieures et créons
un code escalier trois-dimensionnel.

Dans le domaine du codage de réseaux, nous proposons une mesure relâchée de sécurité où
les sommets intermédiaires peuvent apprendre seulement autant de combinaisons linéaires des
messages de sources qu’ils ont besoin d’envoyer. Nous étudions ce problème sur certaines classes
de réseaux de combination, et donnons des conditions nécessaires et suffisantes pour que cette
notion de sécurité soit applicable sur ces réseaux.

Mots-clés: Codes sans taux, codes Fontaine, décodeur LT, analyse du deuxième moment, ripple,
codes LT généralisés, codes produit, constructions-produit généralisées, codes produit irréguliers,
codes escalier, codage de réseaux, sécurité.
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Résumé iii

Acknowledgements v

Contents vii

List of Figures ix

1 Introduction 1

I Fountain codes 3

2 Analysis of the LT decoder 9
1 Preliminaries - an expression for the expected ripple size . . . . . . . . . . . . . . 10
2 Approximating solutions of difference equations . . . . . . . . . . . . . . . . . . . 13
3 An expression for the variance of the ripple size . . . . . . . . . . . . . . . . . . . 15
4 Proofs of intermediary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Proof of Lemma 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Proof of Lemma 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Proof of Lemma 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Proof of Lemma 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Proof of Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 A generalization of LT codes 31
1 Code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 An optimal degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Some preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Discussion and open problems 39

II Generalized product constructions 41

5 Irregular product codes 45

vii



viii Contents

1 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2 Encoding and rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1 A construction achieving the rate upper bound . . . . . . . . . . . . . . . 52
3 Asymptotic analysis on the erasure channel . . . . . . . . . . . . . . . . . . . . . 53

3.1 Decoding on the erasure channel . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Families of nested-MDS irregular product codes . . . . . . . . . . . . . . . . . . . 55
5 Some finite-length irregular product codes . . . . . . . . . . . . . . . . . . . . . . 57
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Staircase codes 61
1 The two-dimensional staircase code . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.1 Encoding and rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2 The three-dimensional staircase code . . . . . . . . . . . . . . . . . . . . . . . . . 65
3 Encoding and rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Encoding a single cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Encoding the whole construction . . . . . . . . . . . . . . . . . . . . . . . 72

4 Decoding and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 A comparison of the performance of SC2(C) and SC3(C) . . . . . . . . . . 76

7 Discussion and open problems 79

III Network coding 83

8 Untrusting Network Coding 85
1 Network coding over untrusted networks . . . . . . . . . . . . . . . . . . . . . . . 86
2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3 The butterfly network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4 Canonical combination networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Sufficient conditions for secrecy (and an algorithm) . . . . . . . . . . . . . 90
4.2 Necessary condition for secrecy . . . . . . . . . . . . . . . . . . . . . . . . 91

5 General combination networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Sufficient conditions as a combinatorial problem . . . . . . . . . . . . . . 93
5.2 A method to construct H . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Upper bound on the needed number of edges . . . . . . . . . . . . . . . . 96
5.4 Counterexample to the optimality of the combinatorial problem . . . . . . 97

6 Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 101



List of Figures

2.1 Ripple size expectation and standard deviation versus the fraction of decoded input
symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Encoding the irregular product code of Example 5.2. . . . . . . . . . . . . . . . . . . 49
5.2 The decoder of the irregular product code of Example 5.2, decoding a burst erasure. 53
5.3 Deriving the α curve matching the β curve in Construction 5.16. . . . . . . . . . . . 56
5.4 A [64, 38]-irregular product code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Heuristically adapting a code from Construction 5.16 to get a finite-length irregular

product code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 A comparison of the block error rate of the [2500, 1709]-irregular product code and

regular product codes of comparable rates. . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Comparison of the gap to capacity of a staircase code and of various standardized
codes, all of rate 239/255 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 A staircase code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 A slight generalization of 2-dimensional staircase codes. . . . . . . . . . . . . . . . . 63
6.4 The underlying graph of a two-dimensional staircase code. . . . . . . . . . . . . . . . 64
6.5 Encoding a staircase code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 The underlying graph of a 3-dimensional staircase code. . . . . . . . . . . . . . . . . 65
6.7 Filling the blocks of a cell with information symbols. . . . . . . . . . . . . . . . . . . 66
6.8 Indexing block coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.9 Encoding the last two blocks of a cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.10 Cells in the underlying graph G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.11 The four possible scenarios when encoding cells at level `. . . . . . . . . . . . . . . . 75
6.12 Cone decoding in the 3-dimensional staircase code. . . . . . . . . . . . . . . . . . . . 76
6.13 Gap to capacity of SC2(C) (left) and SC3(C) (right) over the 26-ary symmetric channel. 77

8.1 Network coding on the butterfly network. . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2 A combination network with h sources, m bottleneck edges and N ≤

(
m
h

)
receivers. . 88

8.3 A secure scheme for the butterfly network. . . . . . . . . . . . . . . . . . . . . . . . . 89
8.4 A secure scheme for a canonical combination network. . . . . . . . . . . . . . . . . . 92
8.5 The tree scheme for general combination networks. . . . . . . . . . . . . . . . . . . . 94
8.6 Venn diagram representation of our requirements. . . . . . . . . . . . . . . . . . . . . 94
8.7 Tree in the case where n = 3 and P[1:3] is active. . . . . . . . . . . . . . . . . . . . . 97
8.8 Counterexample to the optimality of a solution to the combinatorial problem. . . . . 98

ix





Introduction 1
Ever since Shannon’s seminal 1948 paper [2], coding theory has aimed at finding transmission
schemes with efficient encoding and decoding algorithms that achieve the capacity of various
noisy channels. For the first half-century or so, the approach to finding good error-correcting
codes was algebraic. Here the goal was mainly to find good linear codes, i.e., subspaces of a vector
space that simultaneously achieve high dimension (so that a large number of messages can be
expressed by the code) and are such that their elements are as far apart as possible (so that it
takes a lot of noise to erroneously decode a codeword). The tools used were mainly algebraic and
combinatorial and resulted in such well-known codes as Hamming codes, Hadamard codes, BCH
codes, Reed-Solomon codes, Reed-Muller codes, Goppa codes and algebraic geometry codes. For
a classic reference on algebraic coding theory, the reader is referred to [3].

The advent of graph-based coding theory in the 90’s revolutionized the notion of what makes a
good error-correcting code. We mention Turbo codes [4], and Gallager’s LDPC codes [5] that were
rediscovered in many different ways [6, 7, 8, 9]. Families of irregular LDPC codes were exhibited
that achieved the capacity of various channels [9, 10, 11]. In general, modern coding theory
resulted in codes based on sparse graphs that were thoroughly optimized to perform extremely
well under a low-complexity decoding algorithm: (any variant of) the belief propagation (BP)
algorithm. A survey paper by Costello and Forney gives a nice overview of the evolution of
coding theory and of the paradigm shift that was associated with the transition to graph-based
codes [12].

In Part I of this thesis, we focus on Fountain codes [13], a class of graph-based codes well-suited
for communication over erasure channels with unknown erasure parameter, and in particular for
multi-user communication settings over the Internet. LT codes [14] were the first class of universal
and practical Fountain codes. We start the part with a review of the main concepts behind LT
codes and Raptor codes, a class of LT code with better encoding and decoding complexity. In
Chapter 2, we study first- and second- moments of quantities of interest in the LT decoding
process that allow us to bound precisely the error probability of the decoder in terms of the
parameters of the LT code, rather than relying on an asymptotic expectation analysis of this
decoding process. This constitute a first step toward finite-length analysis of LT codes and the
corresponding design problem. In Chapter 3, we analyze a generalization of LT codes where
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2 Introduction

output symbols consist of r parities generated from a subset of input symbols via an MDS code.
We study the modified decoding algorithm and derive a Soliton-like distribution that allows
recovering of the input symbols with high probability with asymptotically vanishing overhead.

Algebraic coding did not just disappear, however. The ubiquitous Reed-Solomon codes,
for example, are used in applications all around us, such as magnetic recording and storage
applications. Hard decoding of short algebraic codes might not be linear in the code length, but
it often has simple and fast enough hardware implementations. Moreover, as pointed out in [1],
in some contexts, hard decoding of short algebraic codes combined to form a long code is much
more efficient than soft-decoding a long LDPC code, in terms of the message-passing complexity
at the decoder. LDPC codes achieve capacity asymptotically (on the binary erasure channel),
but are not necessarily optimal at short lengths, and exhibit error floors that can be problematic
for applications requiring an extremely low BER [1].

In Part II of this work, we investigate generalized product constructions. Product codes
combine short component codes to create a longer code more powerful than its components;
generalizations of product codes seek to push this improvement further by combining the com-
ponent codes in more complex ways. Both generalized product constructions that we explore,
the irregular product codes that we define in Chapter 5 and the staircase codes of [1] that we
extend in Chapter 6, can be viewed as (regular, highly structured) sparse-graph codes with alge-
braic component codes (for irregular product codes, this is only true in a limit sense, as will be
discussed in Chapter 7). Thus in a sense, generalized product constructions combine the best of
both worlds: the interactive decoding that is key to the great performance of graph-based codes,
and the simplicity and hardware efficiency of very short algebraic codes.

In Part III, we touch upon the subject of network coding. In linear network codes, inter-
mediary nodes often learn much more about the source messages than they “need to know”.
We propose a relaxed measure of security over untrusted networks, where intermediary nodes
are allowed to learn only as many linear combinations of the source messages as they need to
send. We study the problem over some classes of combination networks and give necessary and
sufficient conditions for achieving this notion of security over such networks.

The three parts of this thesis can be read independently. Each part starts with an overview
of the main concepts that come into play in the part and of the related work in the area, and
concludes with a discussion of the research directions that we believe are most promising.



Part I

Fountain codes
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Introduction

Consider the problem of reliably transmitting data over the Internet. There, a point-to-point
transmission can be modeled as an erasure channel, where each packet is either lost, discarded or
delivered to the receiver. Massive amounts of data are transmitted nowadays over the Internet,
which creates a need for scalability in new ways not addressed by the usual data transmission
protocols, such as TCP/IP. Moreover, delay-sensitive applications such as streaming digital media
make acknowledgement-based protocols inefficient. Consider for example the following data
transmission scenarios:

1. transmission of data from one server to one receiver with a large distance between them;

2. transmission of identical data from one server to multiple receivers with heterogeneous
channel conditions;

3. transmission of identical data from multiple senders to one or multiple receivers.

In all of these scenarios, TCP/IP leads to inefficiency due to the need for the sender(s) to wait
for acknowledgements and to manage separate data streams, and, in case of multiple senders,
due to the redundancy of received data at the receiver(s) if senders do not coordinate. A detailed
explanation of the shortcomings of TCP/IP in such cases can be found in [15].

Fountain codes were introduced in [13] as a scalable protocol that addresses these shortcom-
ings. Given data to be transmitted, viewed as k input symbols, a Fountain code generates a
potentially limitless stream of output symbols (or encoded symbols) z1, z2, . . ., where each out-
put symbol is produced independently by the addition of some subset of the input symbols,
chosen according to a probability distribution on Fk2 . The symbols can be field elements or
finite-dimensional vectors over some base field. In what follows we assume that the underlying
field is binary, which is commonly the case in practice. We also assume that there is a way for the
receiver to know, for each output symbol, which input symbols it is produced from. A number
of such ways are described in [14].

Practical Fountain codes are required to have fast encoding and decoding. Moreover, a sender
should be able to recover the original k symbols with high probability from a preset number n of
collected output symbols, no matter what these output symbols are (hence the “digital fountain”
appellation: when you fill a bucket from a fountain, the property you require from your bucket
at the end is that it is contains a certain quantity of water, and not that it contains this or that
particular droplet). If the Fountain code can be designed so that n can be made arbitrarily close
to k, then this code is said to be universal. Universality refers to the fact that a code with this

5



6 Introduction

property achieves the capacity of any binary erasure channel with erasure probability p as long
as p < 1.

LT codes and Raptor codes

LT codes, invented by Luby [14], were the first instance of practical, universal Foutain codes.
LT codes obey the following design paradigm: start with a good (efficient) decoding algorithm
(belief propagation) and carefully design a code that will perform well under this algorithm.
Indeed, LT codes under BP decoding are optimal in ways that will be made clear later.

Given a message length k and a probability distribution Ω = (Ω1, · · · ,Ωk) on the integers
1, . . . , k (the degree distribution), LT codes generate output symbols according to the following
procedure: for each output symbol, first sample a number d (the degree of this symbol) from the
distribution Ω, then pick d input symbols uniformly at random and XOR them to produce the
corresponding output symbol. An LT code that encodes k input symbols and uses a distribution
Ω with generating function Ω(x) =

∑
i Ωix

i is said to have parameters (k,Ω(x)).

Decoding starts when the receiver has gathered n = (1 + ε)k output symbols, for some
predetermined (relative) overhead ε. The decoding graph, set up at the receiver, is an undirected
bipartite graph with k nodes on one side, representing the k input symbols, and n nodes on
the other, representing the output symbols. An input node is connected to an output node if
the corresponding input symbol contributes to the value of the output symbol. The decoding
process is basically belief propagation (BP) decoding and can be described as follows: the receiver
randomly chooses an output symbol among the set of output symbols connected to only one input
symbol. Then the value of the corresponding input symbol can be recovered directly. This value
is bitwise XORed (recall that symbols are binary vectors) to the value of any other output
symbols connected to this input symbol, then the input symbol and all its outgoing edges are
removed from the graph. The decoder then repeats the operation by randomly picking another
output symbol connected to only one input symbol. If at any stage before the recovery of all
symbols no such output symbol is found, the decoder reports an error.

The average number of operations required to produce an encoding symbol is its average
degree in the decoding graph (minus one). Similarly, during decoding, a XOR is performed with
each edge removal, so that the number of operations required to recover all input symbols is
exactly the number of edges in the decoding graph.

The challenge is to design the degree distribution in such a way as to ensure correct decoding
with high probability (usually, the error probability is required to be upper bounded by 1/kc

for some constant c) while minimizing the overhead and the encoding and decoding complexity,
i.e, the number of edges in the decoding graph. A fundamental lower bound based on a simple
balls and bins argument [14, 16] states that if an LT code can be decoded (even with ML
decoding) with polynomially small error probability, the number of edges in the decoding graph
must be at least of the order of k log k. This is the number of edges needed to ensure that
every input symbol is covered, with high probability, by some edge in the decoding graph; a
necessary but not sufficient condition for successful decoding. Surprisingly, Luby [14] gives a
degree distribution for LT codes, the Ideal Soliton distribution, that simultaneously achieves this
lower bound and asymptotic zero overhead under BP decoding. Although optimal asymptotically,
the Ideal Soliton distribution performs very poorly in practice, as it relies on the existence, in
expectation, of exactly one output symbol of degree one at each decoding step. Clearly even the
smallest variance in the actual number of degree-one output symbols will cause the decoder to
fail. Therefore, Luby also gives a robust variant of the Soliton distribution, designed to keep the
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size of the set of degree-one output symbols (the ripple) reasonably high at any decoding step, at
the cost of a higher overhead. This distribution achieves any target error probability δ with an
overhead of O(

√
k ln2(k/δ)) output symbols and an average encoding/decoding cost of O(ln k/δ)

per output/input symbol [14].

Raptor codes. We saw that if we require that all input symbols of an LT code be decoded with
high probability, the decoding graph cannot have less than O(k ln k) edges. Thus if a constant
encoding cost per output symbol and a constant normalized decoding cost per input symbol
are required, something else needs to be done. Raptor codes [16] are based on the observation
that by encoding the input message with a precode before feeding the resulting codeword (the
intermediate symbols) to an LT encoder, we need not require that the LT code recovers all input
symbols with high probability. If the precode can recover from a fraction of erasures equal to the
remaining fraction of undecoded intermediate symbols, we will still be able to recover our input
message. The precode should have linear encoding and decoding times, so that the normalized
cost of encoding with the precode adds only a constant to the overall cost of encoding an output
symbol, and the cost of decoding with the precode adds only a linear factor to the overall decoding
cost. In [16], for any arbitrarily small given overhead ε, Shokrollahi gives a carefully designed
LT degree distribution combined with a good choice of precode, such that the resulting Raptor
code asymptotically achieves a polynomially small error probability for this overhead, with an
average encoding cost of O(ln 1

ε ) per output symbol and a decoding cost of O(k ln 1
ε ). For finite

lengths, good Raptor code designs are also given, based on the heuristic of trying to keep the
ripple at a reasonable size during decoding.

Organization of this part

The study of the evolution of the size of the ripple during decoding plays a large part in Chapter
2. In it, we use recursions for the LT decoder to derive bounds on the error probability of
this decoder. In Chapter 3, we consider a generalization of LT codes where each output symbol
consists of several parities generated using an MDS code, and derive an expression for the optimal,
Soliton-like degree distribution for these codes. We discuss some future directions in Chapter 4





Analysis of the LT decoder 2
One can infer from the brief discussion of the Ideal Soliton distribution and of Raptor codes in
the introduction that a crucial element of successful decoding of an LT code is the evolution of
the set of output symbols of degree 1. This set was called the ripple in [14]. The size of the ripple
varies during the decoding process, as high-degree output symbols become of degree 1 after the
removal of their edges, and as ripple elements become useless after the recovering of their unique
neighbor. The decoding is in error if and only if the ripple becomes empty before all the input
symbols are recovered. A natural question is thus whether we can track the size of the ripple, in
the expectation, during the decoding process. Karp et al. [17] proved that the expected ripple
size is linear in k throughout most of the decoding process. Their asymptotic analytic expressions
for the expected ripple size can be found in Section 1. They also derive an expression for the
expected cloud size throughout decoding, where the cloud is defined at each decoding step as
the set of output symbols of degree strictly higher than 1. We are interested in the cloud size
inasmuch as the cloud “feeds” the ripple during the decoding process, as higher-degree symbols
lose edges. Thus, expressions for the expectation and higher moments of the ripple size depend
on the corresponding expressions for the cloud size.

We extend the analysis of [17] in two ways. First, we consider higher moments of the cloud
and the ripple size in order to upper bound the error probability of the LT decoder. More
specifically, we use methods similar to those of [17] to derive an expression for the variance of
the ripple size and prove that it is also linear in k throughout most of the decoding process. We
can then use this expression together with the expression for the expectation of the ripple size
to offer a guarantee for successful decoding, as follows: if, for fixed LT code parameters, R(u)
is the expectation and σR(u) is the standard deviation of the ripple size when u symbols are
unrecovered, then, if the function

hα(u) = R(u)− α · σR(u) (2.1)

for some parameter α never takes negative values, we can upper bound the error probability of
the LT decoder by the probability that the ripple size deviates from its mean by more than α
standard deviations. This is easily done using Chebyshev’s inequality.

The content of this chapter is joint work with A. Shokrollahi and was published in [18, 19].
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Second, we take the first step towards an analytic finite-length analysis of the LT decoder,
by providing exact expressions for the expectation (variance) of the ripple size up to O(1/k)
(constant) terms. This is done by considering lower-order terms in the difference equations, but
also by getting tight bounds on the discrepancy introduced by approximating difference equations
by differential equations.

It is worthy to note that the expressions we deal with are valid for “most of the decoding
process,” that is, the analysis breaks down when the number of unrecovered symbols is no longer
a constant fraction of k. This is no issue, however, when one considers Raptor codes, which need
only a constant fraction of the input symbols to be recovered by the LT decoder [16].

This chapter is organized as follows. In Section 1, we define the state generating function
of the LT decoder and give an overview of the work of Karp et al. [17], in which they give a
recursion for this generating function and use it to derive closed-form expressions for the expected
size of the ripple and the cloud. In Section 2, we state and prove a technical lemma on which
our moment derivations will rely. Then in Section 3, we derive a closed-form expression for the
second moment of the ripple size, thus obtaining an expression for the variance up to terms of
constant order. We defer several of the proofs to Section 4 to enhance readability of our main
result.

1 Preliminaries - an expression for the expected ripple size

Let u be the number of unrecovered (undecoded) input symbols at a given decoding step. Define
the decoder to be in state (c, r, u) if the cloud size is c and the ripple size is r at this decoding
step. To each state (c, r, u), we can associate the (conditional) probability pc,r,u of the decoder
being in this state, given that u symbols are undecoded. Define the state generating function of
the LT decoder when u symbols are undecoded as

Pu(x, y) =
∑

c≥0,r≥1

pc,r,ux
cyr−1. (2.2)

Note that since we count only the case r ≥ 1, Pu(x, y) does not satisfy Pu(1, 1) = 1. Rather,

Pu(1, 1) = 1−
∑
c≥0

pc,0,u.

The following theorem by Karp et al. gives a recursion for the state generating function of
the LT decoder.

Theorem 2.1. [17] Suppose that the original code has k input symbols and that n = k(1 +
ε) output symbols have been collected for decoding. Further, denote by Ωi, i = 1, . . . , D, the
probability that an output symbol is of degree i, where D is the maximum degree of an output
symbol. Then we have for u = k + 1, k, . . . , 1

Pu−1(x, y) =
1

y

[
Pu

(
x(1− pu) + ypu,

1

u
+ y

(
1− 1

u

))
− Pu

(
x(1− pu),

1

u

)]
, (2.3)
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where for u ≤ k,

pu =

u−1
k(k−1)

∑D
d=1 Ωdd(d− 1)

 k − u
d− 2


 k − 2
d− 2



1− u∑D
d=1 Ωdd

 k − u
d− 1


 k
d

 −∑D
d=1 Ωd

 k − u
d


 k
d



(2.4)

and [
a
b

]
:=

(
a

b

)
b!,

and pk+1 := Ω1. Further, Pk+1(x, y) := xn.1

A proof of this theorem can be found in [20].

This recursion gives a way to compute the probability of a decoding error at each step of the
BP decoding. As the decoding is in error at a given step if and only if the ripple at this step is
empty, the error states are those of the form (c, 0, u). Thus the probability of error at a given
decoding step is computed as

Perr(u) =
∑
c≥0

pc,0,u = 1−
∑

c≥0,r≥1

pc,r,u = 1− Pu(1, 1),

and the overall error probability of the decoder as

Perr =

k∑
u=1

Perr(u).

Karp et al. [17] consider the following approximation of the LT process: suppose output
symbols are allowed to choose their neighbors with replacement during encoding. Then the
expression in (2.4) for pu is replaced by

pu =
1

k
f
(u
k

)
− 1

k2
g
(u
k

)
=

1

k
f
(u
k

)
+O(1/k2),

where

f(x) :=
xΩ′′(1− x)

1− xΩ′(1− x)− Ω(1− x)
(2.5)

and

g(x) :=
f(x)

x
. (2.6)

Note that f(x) is also given by

f(x) =
d

dx
log (1− xΩ′(1− x)− Ω(1− x)).

1The expression we present here for pu corrects some slight typos in [17].
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Also note that the expression for Pu−1(x, y) in (2.3) is still valid with this new expression for
pu.

For simplicity, the process that we analyze in what follows is this modified LT process.
Intuitively, the modified process is “worse” than the original LT process in that it allows for
multiple, “useless” edges in the decoding graph. With this assumption, Karp et al. [17] use the
recursion given by Equation (2.3) to derive difference equations for the expected size of the ripple
and the cloud, and further approximate these difference equations by differential equations that
they solve to get closed-form expressions for the expected ripple and cloud size. Formally, let

R(u) :=
∑

c≥0,r≥1

(r − 1)pc,r,u

denote the expected number of output symbols in the ripple when u symbols are undecoded,
right after an output symbol is chosen for the next decoding step (the fact that this chosen
output symbol leaves the ripple with probability 1 explains why the expected ripple size is not

defined as
∑

rpc,r,u). Similarly, let

C(u) :=
∑

c≥0,r≥1

cpc,r,u

denote the expected number of output symbols in the cloud when u input symbols are undecoded.
Then Karp et al. [17] derive closed-form expressions for continuous approximations of R(u) and
C(u). More precisely, let ξ := u/k denote the fraction of undecoded symbols. For δ ∈ R smaller
than 1, define the set

Sδ :=

{
i

k
| i = bδkc, . . . , k

}
. (2.7)

From now on, we always make the assumption that ξ ∈ Sδ for some strictly positive δ, so that
our analysis only applies to all but the very end of the decoding process. Let C(ξ) := C(u)/n be
the normalized version of C(u). Then the continuous function Ĉ(x) given by

Ĉ(x) = c0 (1− xΩ′(1− x)− Ω(1− x)) , (2.8)

with

c0 = 1− (1− Ω1)n−1, (2.9)

is a “good” approximation for C(ξ) on Sδ, where the notion of “good” is made more precise in
the upcoming Theorem 2.2.

Similarly, let R(ξ) := R(u)/n be the normalized version of R(u). Then the continuous function
R̂(x) given by

R̂(x) = x

(
c0Ω′(1− x) +

1

1 + ε
lnx+ r0

)
, (2.10)

with

r0 = Ω1(1− Ω1)n−1 − 1− (1− Ω1)n

n
, (2.11)

is a “good” approximation for R(ξ) on Sδ.
2 Theorem 2.2 formalizes this notion of a “good”

approximation.

2Again, these expressions for Ĉ(ξ) and R̂(ξ) correct some slight typos in [17].
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Theorem 2.2. [17] Consider an LT code with parameters (k,Ω(x)) and assume n = (1 + ε)k
symbols have been collected for decoding. During BP decoding, let C(u) and R(u) be, respectively,
the expected size of the cloud and ripple as a function of the number u of undecoded input symbols.
Then, under the assumptions that u is a constant fraction of k and Ω1 > 0, we have

C(u) = nĈ(u/k) +O(1)

= n
(

1− u

k
Ω′(1− u/k)− Ω(1− u/k)

)
+O(1)

and

R(u) = nR̂(u/k) +O(1)

= (1 + ε)u

(
Ω′(1− u/k) +

1

1 + ε
ln
u

k

)
+O(1).

2 Approximating solutions of difference equations

The core idea behind the analysis in [17], which also comes into play in this work, is to first
express C(u) and R(u) as first-order derivatives of the state generating function. More precisely,
note that

C(u) =
∂Pu
∂x

(1, 1), R(u) =
∂Pu
∂y

(1, 1).

This allows the authors to use the recursion (2.3) to deduce difference equations for C(u) and
R(u). These difference equations can then be approximated by differential equations whose
solutions are analytic approximations for the quantities C(u) and R(u).

We follow the same method to find analytic approximations for the second-order derivatives
of Pu(x, y) that will arise during the variance analysis. The following technical lemma unifies the
machinery at work in all of these derivations. It also allows us to carefully bound the discrepancy
terms that arise from the continous approximations of the quantities we are interested in.

Before we state the lemma, we point out that the functions we consider are dependent on the
input length k, and we remind the reader that O(a(k)) for some function a(k) denotes the set
of functions b(k) whose growth is “at most as fast” as that of a(k), i.e., the set of functions b(k)
for which there exists a constant c and an integer k0 such that

|b(k)| ≤ c|a(k)| for k ≥ k0.

In what follows it will be convenient to write, by an abuse of notation, b(k) = O(a(k)) to mean
b(k) ∈ O(a(k)), or to simply say that b(k) is of the order of a(k). If b(k) = O(1), we say that
b(k) is of constant order.

Lemma 2.3. Let δ ∈ R be a positive constant and L a positive integer, and for ` = 1, . . . , L, let
f`(x) and g`(x) be continuous functions on [δ, 1] such that

f`(x) = O(1/k), ` = 1, . . . , L

g`(x) = O(1/k2), ` = 1, . . . , L.

Furthermore, for ` = 2, . . . , L, let A`(ξ) be a function defined on Sδ (as defined in (2.7)), such
that A`(ξ) is of constant order, and assume A` can be approximated by a function Â` continuous
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on [0, 1], so that A`(ξ) = Â`(ξ)− d`(ξ), where d`(ξ) is a discrepancy term of the order of 1/k.
Now let A(ξ) be a function defined on Sδ that satisfies the difference equation

A(ξ)−A(ξ − 1/k) =f1(ξ)A(ξ) + g1(ξ)A(ξ) +

L∑
`=2

f`(ξ)A`(ξ) +

L∑
`=2

g`(ξ)A`(ξ) +O(1/k3),

and let Â(x) be a twice-differentiable function on [0, 1] that is the solution of the differential
equation

Â′(x) = kf1(x)Â(x) + k

L∑
`=2

f`(x)Â`(x)

with initial conditions Â(1) = A(1).
Then A(ξ) can be approximated by Â(ξ) with a discrepancy d(ξ) = Â(ξ) − A(ξ) of the order of
1/k and given precisely by

d(ξ) =
1

k2

k(1−ξ)−1∑
i=0

Di

k(1−ξ)−1∏
j=i+1

dj +O(1/k2), (2.12)

where

Di =
1

2
Â′′(1− i/k) + k2g1(1− i/k)Â(1− i/k)

+ k2
L∑
`=2

g`(1− i/k)Â`(1− i/k)

− k2
L∑
`=2

f`(1− i/k)d`(1− i/k),

dj =1− f1(1− j/k).

Proof. A(ξ) satisfies the recursion

A(ξ − 1/k) =(1− f1(ξ))A(ξ)− g1(ξ)A(ξ)−
L∑
`=2

f`(ξ)Â`(ξ)

+

L∑
`=2

f`(ξ)d`(ξ)−
L∑
`=2

g`(ξ)Â`(ξ) +O(1/k3).

(2.13)

We write the Taylor series expansion of Â(x) around ξ − 1/k as

Â(ξ − 1/k) = Â(ξ)− 1

k
Â′(ξ) +

1

2k2
Â′′(ξ) +O(1/k3),

with

Â′(ξ) = kf1(ξ)Â(ξ) + k

L∑
`=2

f`(ξ)Â`(ξ),



3. An expression for the variance of the ripple size 15

so that

Â(ξ − 1/k) = (1− f1(ξ))Â(ξ)−
L∑
`=2

f`(ξ)Â`(ξ) +
1

2k2
Â′′(ξ) +O(1/k3). (2.14)

We wish to bound the discrepancy term d(ξ) := Â(ξ) − A(ξ). For this, we find a recursive
expression for it. We know that d(1) = 0 and that d(ξ−1/k) can be related to d(ξ) by subtracting
the recursion (2.13) for A(ξ) from the recursion (2.14) for Â(ξ):

d(ξ − 1/k) =Â(ξ − 1/k)−A(ξ − 1/k)

=(1− f1(ξ))d(ξ) +
1

2k2
Â′′(ξ) + g1(ξ)Â(ξ)

−
L∑
`=2

f`(ξ)d`(ξ) +

L∑
`=2

g`(ξ)Â`(ξ) +O(1/k3).

This recursion readily gives the closed-form expression of Equation (2.12) for the discrepancy
term d(ξ).

3 An expression for the variance of the ripple size

We now turn to finding an analytic approximation for the variance of the ripple size by following
similar methods to those of [17]. Our main result is given by the following theorem.

Theorem 2.4. Consider an LT code with parameters (k,Ω(x)) and overhead ε and let σ2
R(u) be

the variance of the ripple size throughout BP decoding, as a function of the number of undecoded
symbols u. Then

σ2
R(u) = (1 + ε)u

(
Ω′
(

1− u

k

)
+

1

1 + ε
ln
u

k

)(
1 + 2(1 + ε)kdR

(u
k

))
− (1 + ε)

u2

k
Ω′
(

1− u

k

)2

− (1 + ε)2k2dN

(u
k

)
,

(2.15)

with dR(ξ) and dN (ξ) given by (2.18) and (2.24), respectively.

The remainder of this section is devoted to proving Theorem 2.4.

By definition, σ2
R(u) is given by

σ2
R(u) =

∑
c≥0,r≥1

(r − 1)2pc,r,u −R(u)2.

If we define

N(u) :=
∂2Pu
∂y2

(1, 1)

=
∑

c≥0,r≥1

(r − 1)(r − 2)pc,r,u

=
∑

c≥0,r≥1

(r − 1)2pc,r,u −R(u),

(2.16)
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we can relate σ2
R(u), N(u) and R(u) as follows:

σ2
R(u) = N(u)−R(u)2 +R(u).

It is thus enough to find an expression for N(u) to get an expression for σ2
R(u). In what follows,

we show that a “good” approximation for N(u) is n2N̂(u/k), where the function N̂(x) is given
by Equation (2.26). For convenience, the analytic approximations for (a normalized version of)
N(u) as well as for other moments of the cloud and ripple sizes appear in Table 2.1 at the end
of the section.

The goal is now to find a difference equation for a normalized version of N(u) so that we can
apply Lemma 2.3. To this end, we start by differentiating both sides of the recursion (2.3) twice
with respect to y and evaluating at (1, 1). This gives us a recursion for N(u) :

N(u− 1) =

(
1− 1

u

)2

N(u)− 2puC(u)− 2

(
1− 1

u

)
R(u)

+ p2
u

∂2Pu
∂x2

(1, 1) + 2pu

(
1− 1

u

)
∂2Pu
∂x∂y

(1, 1)

− 2

[
−Pu(1, 1) + Pu

(
1− pu,

1

u

)]
. (2.17)

Before we can proceed with solving the resulting difference equation, we first need to handle
the “residual” term

−2

[
−Pu(1, 1) + Pu

(
1− pu,

1

u

)]
,

which does not involve derivatives and for which we cannot find an expression independent of
the state generating function. However, we can bound it under an assumption on the ripple size,
as Lemma 2.5 shows.

Lemma 2.5. Assume that the ripple size r is at least 4. Then

−2

[
−Pu(1, 1) + Pu

(
1− pu,

1

u

)]
= 2 +O(1/k).

Proof. See Section 4.1.

In what follows, we assume that the size of the ripple is at least equal to the constant 4.3

Next, we give finer approximations for C(u) and R(u) than the ones provided in [17]. Recall
that Theorem 2.2 approximated C(u) by nĈ(u/k) and R(u) by nR̂(u/k) up to a constant-order
term, where Ĉ(x) and R̂(x) are given by (2.8) and (2.10), respectively. The following lemma
gives a precise expression for the constant-order discrepancy term.

Lemma 2.6. The expected cloud and ripple sizes when u symbols are undecoded, where u is a
constant fraction of k, can be approximated by

C(u) = nĈ(u/k)− ndC(u/k)

3It is not difficult to check at the end of the analysis, and using an inductive reasoning, that this assumption
holds with high probability.
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and
R(u) = nR̂(u/k)− ndR(u/k),

where the discrepancy terms are given by

dC(ξ) =
1

k2

k(1−ξ)−1∑
i=0

Ci

k(1−ξ)−1∏
j=i+1

(
1− cj

k

)
+O(1/k2)

dR(ξ) =
1

k2

k(1−ξ)−1∑
i=0

Ri

k(1−ξ)−1∏
j=i+1

(
1− rj

k

)
+O(1/k2), (2.18)

with

Ci =
1

2
Ĉ ′′(1− i/k)− g(1− i/k)Ĉ(1− i/k),

cj = f(1− j/k), (2.19)

Ri =
1

2
R̂′′(1− i/k) + g(1− i/k)Ĉ(1− i/k) + kf(1− i/k)dC(1− i/k),

rj =
1

1− j/k . (2.20)

Proof. See Section 4.2.

We also need to find expressions for the second-order derivatives ∂2Pu

∂x2 (1, 1) and ∂2Pu

∂x∂y (1, 1).
To do so, we define

M(u) :=
∂2Pu
∂x2

(1, 1)

L(u) :=
∂2Pu
∂x∂y

(1, 1).

Then Lemmas 2.7 and 2.8 give closed-form expressions for M(u) and L(u), respectively.

Lemma 2.7. Let M(ξ) := M(u)/n2 be the normalized version of M(u), where ξ denotes the
fraction u/k of undecoded symbols. Then

M(ξ) = M̂(ξ)− dM (ξ),

where
M̂(x) = m0 (1− xΩ′(1− x)− Ω(1− x))

2
,

with

m0 =

(
1− 1

n

)(
1− (1− Ω1)n−2

)
, (2.21)

and the discrepancy term is given by

dM (x) =
1

k2

k(1−x)−1∑
i=0

Mi

k(1−x)−1∏
j=i+1

(
1− 2cj

k

)
+O(1/k2),
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with

Mi =
1

2
M̂ ′′(1− i/k)−

(
2g(1− i/k) + f(1− i/k)2

)
M̂(1− i/k)

and cj as given by (2.19).

Proof. See Section 4.3.

Lemma 2.8. Let L(ξ) := L(u)/n2 be the normalized version of L(u). Then

L(ξ) = L̂(ξ)− dL(ξ),

where

L̂(x) = x (1− xΩ′(1− x)− Ω(1− x))

(
m0Ω′(1− x) +

c0
1 + ε

lnx+ l0

)
,

with

l0 =
−1

n
+ (1− Ω1)n−2

(
Ω1 +

1− 2Ω1

n

)
, (2.22)

and the discrepancy term is given by

dL(x) =
1

k2

k(1−x)−1∑
i=0

Li

k(1−x)−1∏
j=i+1

(
1− rj + cj

k

)
+O(1/k2),

with

Li =
1

2
L̂′′(1− i/k)− 2g(1− i/k)L̂(1− i/k) +

(
g(1− i/k) + f(1− i/k)2

)
M̂(1− i/k)

+kf(1− i/k)dM (1− i/k)− 1

1 + ε
f(1− i/k)Ĉ(1− i/k)− k

1 + ε
dC(1− i/k)

and cj and rj as given by (2.19) and (2.20), respectively.

Proof. See Section 4.4.

Replacing M(u) and L(u) by the above expressions and using the bound of Lemma 2.5 for
the residual term in the recursion (2.17), we obtain the following difference equation for N(u):

N(u)−N(u− 1) =

(
2

u
− 1

u2

)
N(u)− p2

uM(u)− 2pu

(
1− 1

u

)
L(u)

+ 2puC(u) + 2

(
1− 1

u

)
R(u) +O(1).

(2.23)

Note that N(u) as defined in Equation (2.16) can be as large as a constant fraction of k2. We
thus need to normalize this quantity if we are to say something meaningful about the difference
N(u)−N(u− 1). We let N(ξ) := N(u)/n2 be the normalized version of N(u), where ξ denotes,
as before, the fraction u/k of undecoded symbols.
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Normalizing (2.23) and replacing the functions M(ξ), L(ξ), C(ξ) and R(ξ) by the approxima-
tions given by Lemmas 2.6, 2.7 and 2.8, we obtain

N(ξ)−N(ξ − 1/k) =

(
2

kξ
− 1

k2ξ2

)
N(ξ)− 1

k2
f(ξ)2M̂(ξ) +

(
−2

k
f(ξ) +

4

k2
g(ξ)

)
L̂(ξ)

+

(
2

(1 + ε)k
− 2

(1 + ε)k2ξ

)
R̂(ξ) +

2

(1 + ε)k2
f(ξ)Ĉ(ξ)

− 2

(1 + ε)k
dR(ξ) +

2

k
f(ξ)dL(ξ)− 2

(1 + ε)2k2
+O(1/k3).

This difference equation satisfies the conditions of Lemma 2.3, so that a straightforward
application of the lemma allows us to approximate N(ξ) by N̂(ξ), where N̂(x) is the solution of
the differential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x)

with initial condition N̂(1) = N(1).

The approximation introduces a discrepancy term dN (ξ) := N̂(ξ)−N(ξ) given by

dN (ξ) =
1

k2

k(1−ξ)−1∑
i=0

Ni

k(1−ξ)−1∏
j=i+1

nj +O(1/k2), (2.24)

with

Ni =
1

2
N̂ ′′(1− i/k)− 1

(1− i/k)2
N̂(1− i/k)− f(1− i/k)2M̂(1− i/k)

+ 4g(1− i/k)L̂(1− i/k) + 2kf(1− i/k)dL(1− i/k) +
2f(1− i/k)

(1 + ε)
Ĉ(1− i/k)

− 2

(1 + ε)(1− i/k)
R̂(1− i/k)− 2k

1 + ε
dR(1− i/k)− 2

(1 + ε)2
,

nj =1− 2

k(1− j/k)
. (2.25)

Finally, the following theorem gives a closed-form expression for the approximation N̂(x).

Theorem 2.9. Let N̂(x) satisfy the differential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x)

with initial condition N̂(1) = N(ξ = 1). Then an analytic expression for N̂(x) is

N̂(x) =x2
(
m0Ω′(1− x)2 + 2l0Ω′(1− x) +

2c0
1 + ε

Ω′(1− x) lnx

+
2r0

1 + ε
lnx+

1

(1 + ε)2
(lnx)2 + n0

)
,

(2.26)
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where the constants c0, m0 and l0 are given by (2.9), (2.21) and (2.22), respectively, and the
value of the constant n0 is

n0 =
2

n2
(1− (1− Ω1)n)− (1− Ω1)n−2

(
Ω2

1 +
2Ω1 − 3Ω2

1

n

)
.

Proof. See Section 4.5.

We are now ready to conclude the proof of Theorem 2.4. Plugging the expression for

N(u) = n2(N̂(x)− d̂N (x) +O(1/k2))

given by (2.26) and (2.24) and the expression for

R(u) = n(R̂(x)− dR(x))

given by Lemma 2.6 into the relation

σ2
R(u) = N(u)−R(u)2 +R(u)

immediately yields Equation (2.15).

Theorem 2.4 implies the following order estimate for σR(u), which can be found using general
principles as well (see for example [21]).

Corollary 2.10. Consider an LT code with parameters (k,Ω(x)) and let σR(u) be the standard
deviation of the ripple size throughout BP decoding. Then

σR(u) = O(
√
k).

Figure 2.1 shows a plot of the expected ripple size and the functions hi(u) given by (2.1) for
i ∈ {1, 1.5, 2, 2.5}, throughout the decoding process, for an LT code with k = 800 and ε = 0.1,
and with the degree distribution

Ω(x) =
1

1
50 +

∑50
i=2

1
i(i−1)

[
1

50
x+

50∑
i=2

1

i(i− 1)
xi

]
,

inspired from Luby’s Ideal Soliton distribution [14]. The plot also shows the result of real
simulations of this code, and confirms that the “problem zones” of the decoder are those predicted
by the functions hi(u): the closer they are to the horizontal axis, the more probable it is that
the decoder fails. As can be seen, there is a fair chance that the decoder fails when the fraction
of decoded input symbols 1−u/k is between 0 and 0.2, and there is a very good chance that the
decoder fails when the fraction of decoded input symbols is close to 0.95.
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Figure 2.1: Ripple size expectation and standard deviation versus the fraction of decoded input
symbols. The solid line is the empirical failure probability of the decoder based on 100 million
simulations. It confirms that the “problem zones” of the decoder are the ones predicted by the
second moment method.

Table 2.1: Expressions for the continuous approximations

Ĉ(x) c0 (1− xΩ′(1− x)− Ω(1− x))

R̂(x) x
(
c0Ω′(1− x) + 1

1+ε lnx+ r0

)
M̂(x) m0 (1− xΩ′(1− x)− Ω(1− x))

2

L̂(x) x (1− xΩ′(1− x)− Ω(1− x))
(
m0Ω′(1− x) + c0

1+ε lnx+ l0

)
N̂(x) x2

(
m0Ω′(1− x)2 + 2l0Ω′(1− x) + 2c0

1+εΩ
′(1− x) lnx+ 2r0

1+ε lnx+ 1
(1+ε)2 (lnx)2 + n0

)
c0 1− (1− Ω1)n−1

r0 Ω1(1− Ω1)n−1 − 1−(1−Ω1)n

n

m0

(
1− 1

n

) (
1− (1− Ω1)n−2

)
l0

−1
n + (1− Ω1)n−2

(
Ω1 + 1−2Ω1

n

)
n0

2
n2 (1− (1− Ω1)n)− (1− Ω1)n−2

(
Ω2

1 +
2Ω1−3Ω2

1

n

)
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4 Proofs of intermediary results

4.1 Proof of Lemma 2.5

We will prove that 1− Pu(1, 1) + Pu

(
1− pu,

1

u

)
can be upper bounded by a term of the order

of 1/k. To see this, note that

1− Pu(1, 1) + Pu

(
1− pu,

1

u

)
=
∑
c≥0
r≥0

pc,r,u −
∑
c≥0
r≥1

pc,r,u +
∑
c≥0
r≥1

pc,r,u(1− pu)c
(

1

u

)r−1

=
∑
c≥0
r=0

pc,r,u +
∑
c≥0
r≥1

pc,r,u(1− pu)c
(

1

u

)r−1

≤
∑
c≥0
r=0

pc,r,u + k
∑
r≥1

(
1

u

)r−1

=
∑
c≥0
r=0

pc,r,u + k
∑

r=1,...,3

(
1

u

)r−1

+ k
∑
r≥4

(
1

u

)3(
1

u

)r−4

.

If r is at least 4, the first two summands vanish. As for the last summand, k
∑
r≥4

(1/u)
3

(1/u)
r−4

,

it is the sum of O(k2) terms, each of them of the order of 1/k3, so that their sum is of the order
of 1/k.

This means that as long as the ripple size is at least 4, the contribution of the residual term

1−Pu(1, 1)+Pu

(
1− pu,

1

u

)
is negligible, so that we can approximate −Pu(1, 1)+Pu

(
1− pu,

1

u

)
by −1 +O(1/k) and hence −2

(
−Pu(1, 1) + Pu

(
1− pu,

1

u

))
by 2 +O(1/k). �

4.2 Proof of Lemma 2.6

An approximation for C(ξ)

Recall that

C(u) =
∑

c≥0,r≥1

cpc,r,u =
∂Pu
∂x

(1, 1).

Differentiating both sides of the recursion (2.3) with respect to x and evaluating at (1, 1), we
obtain a recursion for C(u), given by

C(u− 1) = (1− pu)C(u)− (1− pu)
∂Pu
∂x

(
1− pu,

1

u

)
.

A simple analysis, similar to that of the proof of Lemma 2.5, shows that the residual term

(1− pu)
∂Pu
∂x

(
1− pu,

1

u

)
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can be bounded by a term of the order of 1/k2, for r ≥ 6. Indeed, note that

(1− pu)
∂Pu
∂x

(
1− pu,

1

u

)
=
∑
c≥0
r≥1

cpc,r,u(1− pu)c
(

1

u

)r−1

≤
∑
c≥0

r=1,...,5

cpc,r,u(1− pu)c
(

1

u

)r−1

+
∑
c≥0
r≥6

c

u5

(
1

u

)r−6

.

In what follows, we thus make the assumption that the ripple size is at least 6, so that we
can write

C(u− 1) = (1− pu)C(u) +O(1/k2).

We normalize C(u) by n so that we can work with expressions of constant order, and obtain
the following difference equation for C(ξ), where ξ denotes the fraction of undecoded symbols:

C(ξ)− C(ξ − 1/k) =

(
1

k
f(ξ)− 1

k2
g(ξ)

)
C(ξ) +O(1/k3),

where expressions for the functions f and g are given by (2.5) and (2.6), respectively.

This difference equation satisfies the conditions of Lemma 2.3. The lemma allows us to
approximate C(ξ) by Ĉ(ξ), where Ĉ(x) is the solution of the differential equation

Ĉ ′(x) = f(x)Ĉ(x) (2.27)

with initial condition Ĉ(1) = C(ξ = 1). The discrepancy dC(ξ) = Ĉ(ξ)−C(ξ) introduced by the
approximation is equal to

dC(ξ) =
1

k2

k(1−ξ)−1∑
i=0

Ci

k(1−ξ)−1∏
j=i+1

(
1− cj

k

)
+O(1/k2),

with

Ci =
1

2
Ĉ ′′(1− i/k)− g(1− i/k)Ĉ(1− i/k),

cj = f(1− j/k).

A closed-form expression for the solution of the differential equation (2.27) is readily seen to
be of the form

Ĉ(x) = c0 (1− xΩ′(1− x)− Ω(1− x)) ,

where the value of the constant c0 is to be determined by the initial condition c0(1−Ω1) = C(ξ =
1). To obtain an expression for C(ξ = 1), we look at the beginning of the decoding process and
note that

C(u = k) =
∑

c≥0,r≥1

cpc,r,k.

When there are k undecoded symbols, the coefficients pc,r,k are given by

pc,r,k =

{ (
n
c

)
Ωr1(1− Ω1)c if c+ r = n

0 otherwise.
(2.28)
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Then

C(u = k) =

n−1∑
c=1

c

(
n

c

)
Ωn−c1 (1− Ω1)c

= n(1− Ω1)

n−2∑
c=0

(
n− 1

c

)
Ωn−1−c

1 (1− Ω1)c

= n(1− Ω1)
(
1− (1− Ω1)n−1

)
,

so that

C(ξ = 1) = (1− Ω1)
(
1− (1− Ω1)n−1

)
.

This gives us

c0 = 1− (1− Ω1)n−1.

An approximation for R(ξ)

By definition,

R(u) =
∑

c≥0,r≥1

(r − 1)pc,r,u =
∂Pu
∂y

(1, 1).

Differentiating both sides of the recursion (2.3) with respect to y and evaluating at (1, 1), we
obtain the recursion

R(u− 1) =

(
1− 1

u

)
R(u) + puC(u)− Pu(1, 1) + Pu

(
1− pu,

1

u

)
.

A similar analysis to that of Section 4.1 shows that the residual term

−Pu(1, 1) + Pu

(
1− pu,

1

u

)
can be approximated by −1 + O(1/k2), for r ≥ 5. We thus assume in what follows that r is at
least 5, so that we can work with the following difference equation for R(u) :

R(u)−R(u− 1) =
1

u
R(u)− puC(u) + 1 +O(1/k2).

Normalizing R(u) by n, we obtain a difference equation for R(ξ) :

R(ξ)−R(ξ − 1/k) =
1

kξ
R(ξ)− 1

k
f(ξ)Ĉ(ξ) +

1

k(1 + ε)
+

1

k2
g(ξ)Ĉ(ξ) +

1

k
f(ξ)dC(ξ) +O(1/k3),

where the functions f and g are as given by (2.5) and (2.6), respectively. Note that we replaced
C(ξ) by its approximation Ĉ(ξ) and accounted for the resulting error.

This difference equation for R(ξ) satisfies the conditions of Lemma 2.3, so that we can apply
the lemma to approximate R(ξ) by R̂(ξ), where the continuous function R̂(x) is the solution of
the differential equation

R̂′(x) =
R̂(x)

x
− f(x)Ĉ(x) +

1

1 + ε
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with initial condition R̂(1) = R(ξ = 1). The general solution of this differential equation can be
easily found by standard techniques to be

R̂(x) = x

(
c0Ω′(1− x) +

1

1 + ε
lnx+ r0

)
,

where c0 is given by (2.9) and the value of r0 can be determined by the initial condition c0Ω1+r0 =
R(ξ = 1). For the value of R(ξ = 1), we look at the beginning of the decoding process, as we did
in the previous section in order to derive an expression for C(ξ = 1). By the same method we
obtain

R(u = k) = nΩ1 − 1 + (1− Ω1)n,

so that

r0 = Ω1(1− Ω1)n−1 − 1− (1− Ω1)n

n
.

The discrepancy dR(ξ) = R̂(ξ) − R(ξ) introduced by approximating R(ξ) by R̂(ξ) is given by
Lemma 2.3 to be

dR(ξ) =
1

k2

k(1−ξ)−1∑
i=0

Ri

k(1−ξ)−1∏
j=i+1

(
1− rj

k

)
+O(1/k2),

with

Ri =
1

2
R̂′′(1− i/k) + g(1− i/k)Ĉ(1− i/k) + kf(1− i/k)dC(1− i/k),

rj =
1

1− j/k .

�

4.3 Proof of Lemma 2.7

Recall that

M(u) =
∂2Pu
∂x2

(1, 1).

By differentiating both sides of the recursion (2.3) twice with respect to x and evaluating at
(1, 1), we get the following recursion for M(u):

M(u− 1) = (1− pu)2M(u)− (1− pu)2 ∂
2Pu
∂x2

(
1− pu,

1

u

)
.

By a similar analysis to that of the proof of Lemma 2.5 (Section 4.1), it can easily be shown that
under the assumption r ≥ 6, we can bound the residual term

(1− pu)2 ∂
2Pu
∂x2

(
1− pu,

1

u

)
by a term of the order of 1/k, thus obtaining the following difference equation for M(u) :

M(u)−M(u− 1) = (2pu − p2
u)M(u) +O(1/k).

Normalizing by n2, we obtain a difference equation for M(ξ)

M(ξ)−M(ξ − 1/k) =
2

k
f(ξ)M(ξ)− 1

k2

(
2g(ξ) + f2(ξ)

)
M(ξ) +O(1/k3)
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which satisfies the conditions of Lemma 2.3, so that we can apply the lemma to approximate
M(ξ) by M̂(ξ), where the continuous function M̂(x) is the solution of the differential equation

M̂ ′(x) = 2f(x)M̂(x)

with initial condition M̂(1) = M(ξ = 1). The general solution of this differential equation is of
the form

M̂(x) = m0 (1− xΩ′(1− x)− Ω(1− x))
2
. (2.29)

The value of the constant m0 can be found from the initial condition M̂(1) = M(ξ = 1). Looking
at the beginning of the decoding process, namely at the step u = k, we have

M(u = k) =
∑

c≥0,r≥1

c(c− 1)pc,r,u=k,

where the coefficients pc,r,k are given by Equation (2.28). Then

M(u = k) =

n−1∑
c=0

c(c− 1)

(
n

c

)
Ωn−c1 (1− Ω1)c

= n(n− 1)

n−3∑
c=0

(
n− 2

c

)
Ωn−2−c

1 (1− Ω1)c+2

= n(n− 1)(1− Ω1)2
(
1− (1− Ω1)n−2

)
.

We normalize to obtain

M̂(1) =

(
1− 1

n

)
(1− Ω1)2

(
1− (1− Ω1)n−2

)
.

On the other hand, from (2.29),

M̂(1) = m0(1− Ω1)2.

Equating the two expressions, we finally get

m0 =

(
1− 1

n

)(
1− (1− Ω1)n−2

)
.

As for the discrepancy term dM (ξ) = M̂(ξ)−M(ξ) resulting from the approximation of M(ξ)
by M̂(ξ), Lemma 2.3 shows that it is equal to

dM (ξ) =
1

k2

k(1−ξ)−1∑
i=0

Mi

k(1−ξ)−1∏
j=i+1

(
1− 2cj

k

)
+O(1/k2),

with Mi and cj as in the statement of Lemma 2.7. �

4.4 Proof of Lemma 2.8

Recall that

L(u) =
∂2Pu
∂x∂y

(1, 1).
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By differentiating both sides of the recursion (2.3) and evaluating at (1, 1), we obtain a
recursion for L(u) :

L(u− 1) =pu(1− pu)M(u) +

(
1− 1

u

)
(1− pu)L(u)− (1− pu)C(u)

+ (1− pu)
∂Pu
∂x

(
1− pu,

1

u

)
.

The residual term

(1− pu)
∂Pu
∂x

(
1− pu,

1

u

)
can be shown, in a similar proof to that in Section 4.2, to be of the order of 1/k under the
assumption r ≥ 5, so that we have the following difference equation for L(u) :

L(u)− L(u− 1) =

(
1

u
+ pu −

pu
u

)
L(u)− pu(1− pu)M(u) + (1− pu)C(u) +O(1/k).

We normalize the difference equation above to obtain a difference equation for L(ξ):

L(ξ)− L(ξ − 1/k) =

(
1

kξ
+

1

k
f(ξ)

)
L(ξ)− 1

k
f(ξ)M(ξ) +

1

k(1 + ε)
C(ξ) +O(1/k3).

Lemma 2.3 now yields the approximation L̂(ξ) for L(ξ), where L̂(x) satisfies the differential
equation

L̂′(x) =

(
f(x) +

1

x

)
L̂(x)− f(x)M̂(x) +

1

1 + ε
Ĉ(x)

with initial condition L̂(1) = L(ξ = 1). The general solution of this differential equation is of
the form

L̂(x) = x (1− xΩ′(1− x)− Ω(1− x))

(
m0Ω′(1− x) +

c0
1 + ε

lnx+ l0

)
,

where the values of c0 and m0 are given by (2.9) and (2.21) respectively. The value of l0 can
be found using the initial condition L̂(1) = L(ξ = 1). Looking at the initial step u = k of the
decoding process, a simple computation shows that

l0 =
−1

n
+ (1− Ω1)n−2

(
Ω1 +

1− 2Ω1

n

)
.

From Lemma 2.3, we can express the discrepancy term dL(ξ) = L̂(ξ)− L(ξ) as

dL(x) =
1

k2

k(1−x)−1∑
i=0

Li

k(1−x)−1∏
j=i+1

(
1− rj + cj

k

)
+O(1/k2),

with

Li =
1

2
L̂′′(1− i/k)− 2g(1− i/k)L̂(1− i/k) +

(
g(1− i/k) + f(1− i/k)2

)
M̂(1− i/k)

+kf(1− i/k)dM (1− i/k)− 1

1 + ε
f(1− i/k)Ĉ(1− i/k)− k

1 + ε
dC(1− i/k)

and cj and rj as given by (2.19) and (2.20). �
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4.5 Proof of Theorem 2.9

N̂(x) satisfies the differential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x)

with initial condition N̂(1) = N(ξ = 1). The general solution of this differential equation can be
easily found by standard methods to be

N̂(x) =x2
(
m0Ω′(1− x)2 + 2l0Ω′(1− x) +

2c0
1 + ε

Ω′(1− x) lnx

+
2r0

1 + ε
lnx+

1

(1 + ε)2
(lnx)2 + n0

)
.

(2.30)

To find the value of the constant n0, we use the initial condition. The value of N(ξ = 1) can
be found by looking at the beginning of the decoding process. N(u) was defined as

N(u) :=
∂2Pu
∂y2

(1, 1),

so that
N(u = k) =

∑
c≥0,r≥1

(r − 1)(r − 2)pc,r,u=k.

Then, using the expression for pc,r,k given by (2.28), we have that

N(u = k) =

n∑
r=1

(r − 1)(r − 2)

(
n

r

)
Ωr1(1− Ω1)n−r

=

n∑
r=2

r(r − 1)

(
n

r

)
Ωr1(1− Ω1)n−r − 2

n∑
r=1

r

(
n

r

)
Ωr1(1− Ω1)n−r

+2

n∑
r=1

(
n

r

)
Ωr1(1− Ω1)n−r.

Now

n∑
r=2

r(r − 1)

(
n

r

)
Ωr1(1− Ω1)n−r = n(n− 1)Ω2

1

n−2∑
r=0

(
n− 2

r

)
Ωr1(1− Ω1)n−2−r

= n(n− 1)Ω2
1.

Similarly,

n∑
r=1

r

(
n

r

)
Ωr1(1− Ω1)n−r = nΩ1

n−1∑
r=0

(
n− 1

r

)
Ωr1(1− Ω1)n−1−r

= nΩ1,

and
n∑
r=1

(
n

r

)
Ωr1(1− Ω1)n−r = 1− (1− Ω1)n.
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Normalizing and using the initial condition N̂(ξ = 1) = N(ξ = 1), we get

N̂(ξ = 1) =

(
1− 1

n

)
Ω2

1 −
2

n
Ω1 +

2

n2
(1− (1− Ω1)n) .

Evaluating the expression for N̂(x) given by (2.30) at ξ = 1, and equating it to the above
expression, we get

m0Ω2
1 + 2l0Ω1 + n0 =

(
1− 1

n

)
Ω2

1 −
2

n
Ω1 +

2

n2
(1− (1− Ω1)n) ,

where the values of m0 and l0 were already found to be given by the expressions in (2.21) and
(2.22). Solving for n0, we finally obtain

n0 =
2

n2
(1− (1− Ω1)n)− (1− Ω1)n−2

(
Ω2

1 +
2Ω1 − 3Ω2

1

n

)
.

�





A generalization of LT codes 3
We consider the following generalization of LT codes: suppose that each output symbol,

instead of being a single linear combination of a subset of input symbols, now consists of r
parities generated from this subset of input symbols using an MDS code over a large enough field
F, for a fixed integer r. The r parities thus generated are then sent jointly, as a single packet,
over an erasure channel. The decoding rule is modified accordingly: an output symbol of degree
d can recover the value of all its neighbors as long as r of them or fewer are erased, thanks to
the MDS property of the code with which the parities were generated. For r = 1, this reduces
to our familiar definition of an LT code, where the MDS code used is the parity code.

This scenario might be justified in applications where the required packet size over the channel
is larger than the optimal size of a symbol at the encoder and decoder. But the real motivation
behind this work is to later on allow the parameter r itself to come from a distribution that we
might be able to optimize in order to get capacity approaching codes over other channels than
the erasure channel, while still retaining the advantages of fountain coding. This idea of using
carefully designed irregularity (in this case, in the choice of r) to design good codes is a powerful
idea that will be more fully developed in Chapter 5 in the context of product codes.

In this short chapter, we derive an optimal limit degree distribution for a generalized LT code
with fixed r, over the erasure channel. Variants and future directions are discussed in Chapter
4.

1 Code description

Let x1, . . . , xk be input symbols over a field F that we wish to encode and transmit over an
erasure channel. Fix an integer r and let Ω(x) =

∑D
d=1 ΩDx

D be the generating function of a
distribution on the integers {1, . . . , D}. To each integer d in this range, we associate a [d+ r, d]F-

The content of this chapter is joint work with M. Alipour, O. Etesami and A. Shokrollahi. The same results
were derived independently by M. Luby.
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32 A generalization of LT codes

MDS code Cd. For example, we can use Reed-Solomon codes over a field F of size greater than
D + r. We define the generalized LT code with parameters (r, k,Ω(x)) as follows.

Encoding. To generate an output symbol, the encoder samples d according to the distribution
Ω(x) and picks d input symbols uniformly at random. Viewing these symbols as message symbols,
the encoder uses the code Cd to generate r corresponding parity symbols. These r symbols are
jointly sent in one packet, as a single output symbol, over the channel. In what follows, we will
make the distinction between parity symbols and the output symbols to which they belong.

Decoding. Decoding starts when the decoder has collected a number n of output symbols,
where n = (1 + ε(k))kr for some overhead ε(k).

The decoder sets up the decoding graph, a bipartite graph with the k input symbols on one
side and the k/r received output symbols on the other. There is an edge between an input
symbol and an output symbol if the value of the input symbol contributed to the value of the
parities of the output symbol. The decoder uses belief propagation to recover the input symbols
just like the normal LT decoder, with the decoding rule modified as follows: whenever an output
symbol is such that at most r of its neighboring input symbols are erased, the value of those
input symbols can be recovered, and they can be removed, along with their outgoing edges, from
the graph. Equivalently, in the analysis of Section 2, instead of removing edges from the graph,
we will assume they carry messages “erasure” and “non-erasure” during decoding. Whenever
an output symbol recovers the value of its neighboring symbols, all edges emanating from it
will carry a non-erasure message; and similarly whenever an input symbol is recovered, all edges
emanating from it will carry a non-erasure message.

2 An optimal degree distribution

We are concerned in finding an optimal degree distribution, in the sense that the corresponding
generalized LT is able to successfully decode with an asymptotically vanishing overhead. Theorem
3.1 gives such a degree distribution. Note that for r = 1, this reduces to the limit of the Soliton
distribution as k goes to infinity.

Theorem 3.1. Let r ∈ N∗, and for each d ∈ N let

Ωd :=

{
0, d ≤ r
r

d(d−1) , d > r.
(3.1)

Then the generalized LT code with parameters (r, k,Ω(x)) can asymptotically decode correctly
from k/r output symbols.

Before we prove the theorem, we will state some binomial identities and an intermediary
result that will be of help in our proof.

2.1 Some preliminaries

We refer to [22] for the following definition of a binomial coefficient, for any real number n and
any integer k:

(
n

k

)
=

{
n(n−1)···(n−k+1)

n(n−1)···1 , k ≥ 0

0, k < 0.
(3.2)
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For n an integer with n ≥ k ≥ 0, this definition reduces to the well-known expression(
n
k

)
= n!

k!(n−k)! . In our case we will always use integer n; but it will be convenient to use the

definition of the binomial coefficient in Equation (3.2) because we do not have to constrain k to
be in the interval 0 ≤ k ≤ n, since this expression immediately results in

(
n
k

)
= 0 for k outside

of these bounds.

The proof of Lemma 3.2 makes use of three standard binomial coefficient identities (for proofs,
see [22]):

• Symmetry: (
n

k

)
=

(
n

n− k

)
, n ∈ N, k ∈ Z, (3.3)

• Upper negation: (
n

k

)
= (−1)k

(
k − n− 1

k

)
, k ∈ Z, (3.4)

• Vandermonde convolution:∑
k∈Z

(
n

k

)(
s

m− k

)
=

(
n+ s

m

)
, m ∈ Z. (3.5)

Lemma 3.2 states an identity that will be useful in the proof of Theorem 3.1.

Lemma 3.2. For any integer r ≥ 1,

∑
d≥r

0≤j≤r−1

1

d

(
d

j

)(
j

d− `

)
(−1)j−d+` =

{
0, ` = 0
1
` , ` ≥ 1.

Proof. For ` = 0, the fact that j < d ensures that the binomial coefficient
(
j
d−`
)

is equal to 0, so
that the desired equality holds. For ` ≥ 1, we prove the equality by induction over r.
Let r = 1. Then the only term that survives in the summation

∑
d≥1

1

d

(
d

0

)(
0

d− `

)
(−1)−d+`

is that for which d = `, so that the summation is indeed equal to 1
` . Now we suppose

∑
d≥r

0≤j≤r−1

1

d

(
d

j

)(
j

d− `

)
(−1)j−d+` =

1

`
, ` ≥ 1

and wish to prove that

∑
d≥r+1
0≤j≤r

1

d

(
d

j

)(
j

d− `

)
(−1)j−d+` =

1

`
, ` ≥ 1. (3.6)
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Consider the difference of the left-hand sides of the two equations above

∑
d≥r

0≤j≤r−1

1

d

(
d

j

)(
j

d− `

)
(−1)j−d+` −

∑
d≥r+1
0≤j≤r

1

d

(
d

j

)(
j

d− `

)
(−1)j−d+`

=
∑

0≤j≤r−1

1

r

(
r

j

)(
j

r − `

)
(−1)j−r+` −

∑
d≥r+1

1

d

(
d

r

)(
r

d− `

)
(−1)r−d+`. (3.7)

We now show that this expression is equal to zero, which proves that Equation (3.6) holds.

On one hand,

∑
0≤j≤r−1

1

r

(
r

j

)(
j

r − `

)
(−1)j−r+` =

1

r

∑
0≤j≤r−1

(
r

r − j

)(
j

j − r + `

)
(−1)j−r+` (3.8)

=
1

r

∑
0≤j≤r−1

(
r

r − j

)(
`− r − 1

j − r + `

)
(3.9)

=
1

r

((
`− 1

`

)
−
(
r

0

)(
`− r − 1

`

))
(3.10)

=
1

r

(
`− r − 1

`

)
, (3.11)

where (3.8) follows from symmetry, (3.9) from upper negation, and (3.10) from Vandermonde
convolution.

On the other hand,

∑
d≥r+1

1

d

(
d

r

)(
r

d− `

)
(−1)r−d+` =

∑
d≥r+1

1

r

(
d− 1

r − 1

)(
r

d− `

)
(−1)r−d+`

=
∑
d≥r+1

1

r

(
d− 1

d− r

)(
r

r − d+ `

)
(−1)r−d+` (3.12)

=
1

r
(−1)`

∑
d≥r+1

(
r

r − d+ `

)(
(−1)d−r

(
d− 1

d− r

))

=
1

r
(−1)`

∑
d≥r+1

(
r

r − d+ `

)( −r
d− r

)
(3.13)

=
1

r
(−1)`

((
0

`

)
−
(
r

`

)(−r
0

))
(3.14)

=
1

r

(
`− r − 1

`

)
, (3.15)

where (3.12) follows from symmetry, (3.13) and (3.15) from upper negation and (3.14) from
Vandermonde convolution. Equating (3.11) and (3.15) proves that the difference in (3.7) is
indeed zero, which gives us the desired equality in (3.6).
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2.2 Proof of Theorem 3.1

We use a density evolution argument to derive a necessary and sufficient condition that must
be satisfied by the degree distribution to ensure successful decoding. We then verify that the
distribution given by Equation (3.1) satisfies this condition.

We start by setting up some notation and reminding the reader of the expressions for the
left and right degree distributions for LT codes. Recall that the decoding graph is a bipartite
graph with k left nodes (input symbols) and k/r right nodes (output symbols), with right degree
distribution Ω(x) =

∑
d Ωdx

d, where Ωd is the probability that a right node chosen uniformly at
random has degree d. Define ω(x) =

∑
d ωdx

d−1 to be the right degree distribution from the edge
perspective, such that ωd is the probability that an edge chosen uniformly at random is attached
to a right node of degree d, i.e., to a node with d− 1 other edges. Then

ωd =
dΩd∑
d′ d
′Ωd′

=
dΩd

Ω′(1)
, (3.16)

so that

ω(x) =
Ω′(x)

Ω′(1)
.

Similarly, define Λ(x) =
∑
d Λdx

d and λ(x) =
∑
d λdx

d−1 to be the left degree distributions
from the node perspective and from the edge perspective, respectively. That is, Λd is the proba-
bility that a randomly chosen left node is of degree d, and λd is the probability that a randomly
chosen edge touches a left node of degree d, i.e., a left node with d− 1 other edges. Then we can
similarly show that

λ(x) =
Λ′(x)

Λ′(1)
.

To derive our slightly modified version of the well-known expressions for Λ(x) and λ(x) (see for
instance [16]), note that for a left node v, the probability that it is not a neighbor of a degree-d
right node is (1− d/k), so that the probability that it is not a neighbor of any right node is∑

d

Ωd

(
1− d

k

)
= 1− Ω′(1)

k
.

The probability that a left node v is of degree d is thus(
k/r

d

)(
Ω′(1)

k

)d(
1− Ω′(1)

k

)k/r−d
,

so the left degree distribution is a binomial distribution of mean a := k
r

Ω′(1)
k = Ω′(1)

r . As k goes
to infinity, this distribution is well-approximated by the Poisson distribution of same mean, so
that

Λ(x) =
∑
d

ade−a

d!
= ea(x−1),

and

λ(x) =
Λ′(x)

Λ′(1)
= aea(x−1)a = Λ(x). (3.17)

Fix a decoding round. For a random edge of the decoding graph, let x be the probability
that this edge carries a non-erasure message from the input symbol to the output symbol side.
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To compute the probability q that a random edge carries a non-erasure message from the output
symbol to the input symbol size, first let qd be the probability that a random edge connected
to an output symbol of degree d carries a non-erasure message from the output symbol to the
input symbol side. By the decoding rule,

qd =

r−1∑
j=0

(
d− 1

j

)
(1− x)jxd−1−j . (3.18)

Averaging over the right degree distribution ω(x), we thus get

q =
∑
d

ωdqd,

with ωd as given by Equation (3.16) and qd by Equation (3.18).

To compute the new non-erasure probability from the input symbol to the output symbol side
xnew, note that a random edge connected to an input symbol of degree d will carry an erasure
from the input side to the output side if and only if the message received by the input symbol
on all other d− 1 edges was an erasure. This happens with probability (1− q)d−1, so that

1− xnew =
∑
d

λd(1− q)d−1 =
∑
d

ad−1e−a

(d− 1)!
(1− q)d−1 = e−aq,

where the value λd is given by Equation (3.17). Thus xnew is given by

xnew = 1− e−aq = 1− e−
∑

d dΩdqd
r .

In the limit, to ensure correct decoding, we are thus looking for a degree distribution that
satisfies

1− e−
∑

d dΩdqd
r = x,

i.e., ∑
d

dΩd

r−1∑
j=0

(
d− 1

j

)
(1− x)jxd−1−j = −r ln (1− x). (3.19)

It suffices to show that the degree distribution given by Equation (3.1) in the statement of
the theorem satisfies Equation (3.19), i.e., that

∑
d>r

1

d− 1

r−1∑
j=0

(
d− 1

j

)
(1− x)jxd−1−j = − ln (1− x).

Thus the degree distribution of Equation (3.1) satisfies the density evolution constraint (3.19)
if and only if

∑
d≥r

0≤i≤j≤r−1

1

d

(
d

j

)(
j

i

)
(−1)j−ixd−i =

∑
`≥1

x`

`
.

Extracting the `th coefficient of both series, this amounts to



2. An optimal degree distribution 37

∑
d≥r

0≤j≤r−1

1

d

(
d

j

)(
j

d− `

)
(−1)j−d+` =

{
0, ` = 0
1
` , ` ≥ 1,

which is true by Lemma 3.2. This concludes the proof. �





Discussion and open problems 4
In Chapter 2, we analyzed first- and second-order moments of the ripple and cloud size throughout
the LT decoding process. The order expressions that we obtain for the expectation and the
variance of the ripple size give a nice intuition about the behavior of the LT decoder; however,
what is most important is that this analysis allows us to bound the error probability of the
LT decoder as a function of the LT code parameters and overhead. Ultimately, what interests
us is the design of good finite-length LT (Raptor) codes. The next step toward this goal is to
work around the assumption that the number of undecoded symbols u is a “constant fraction”
of k. Then we would obtain a guarantee for successful decoding as a function of the LT code
parameters and overhead for practical values of k. This would then allow us to start tackling the
corresponding design problem: if R(u) denotes the expectation of the ripple size and σR(u) its
standard deviation when u symbols are undecoded, we would like to design degree distributions
that make the function hα(u) = R(u)−ασR(u) stay positive for as large a value of α as possible,
for a fixed code length k.

In Chapter 3, we considered a generalization of LT codes, where each output symbol consists
of r parities generated in an MDS fashion from a subset of the input symbols. For a fixed value
of r, we derived an Soliton-like distribution that is optimal, in expectation, in terms of overhead.
This work constitutes a very first step toward the goal stated at the beginning of the chapter,
namely, designing good codes on general channels. The next natural step is to define and analyze
generalized LT codes where r is allowed to come from a distribution that can be optimized to
garantee successful decoding at asymptotically zero overhead. Next comes the harder step of
moving to more general channels.

A natural question is whether we can design a generalized LT code where, instead of packing
the r parities corresponding to an output symbol in a single packet, the encoder would produce
the parities jointly but send them independently over the erasure channel. This would be more
practical, as it does not constrain the size of the symbols to be a factor of r smaller than the size
of a packet. However, it can be shown that the resulting generalized LT code is not universal, in
the sense that the optimal distribution will be a function of the erasure parameter of the channel.

One possible research direction is to extend the methods developed in Chapter 2 to analyze the
generalized LT codes of Chapter 3. This would allow us to obtain precise expressions describing
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the evolution of the “generalized ripple” (the set of output symbols of reduced degree less than or
equal to r) throughout decoding, and thus to account for and precisely quantify the probability
that this set deviates from its expectation for finite-length codes.



Part II

Generalized product constructions
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Introduction

Product codes are linear codes obeying the design paradigm that cleverly combining short codes
can lead to a longer, better code. In the next two chapters, we describe and analyze two
generalized product constructions that seek to create even better codes by allowing the short
constituent codes to be combined in more complex ways.

Product codes were introduced by Elias in 1954 [23] and have since become used in many
applications. For instance, they have been incorporated in CD, CD-ROM and DVD standards
(for details, see [24]). Their construction is very simple: given two linear codes C1 and C2, a
product code C = C(C1, C2) is a linear code whose codewords are represented by matrices where
each row belongs to the row code C1, and each column belongs to the column code C2. The
rate and minimum distance of the product code are easily expressible in terms of those of its
component codes (row and column codes). Systematic encoding of the product code is possible
using systematic encoders for the component codes. Similarly, decoding a codeword in C simply
consists of decoding the rows and columns in a back-and-forth manner, usually for a specified
number of rounds, using the decoders of the component codes. For a thorough survey on product
codes, the reader is referred to [25].

There are several advantages to using product codes for error-correction rather than simply
using one of the component codes to encode the data. Two important such advantages are
the following: first, the decoding of the product code makes use of the decoders of the shorter
component codes, thus gaining in efficiency. Second, many applications using algebraic codes
favor the use of minimum distance separable (MDS) codes, such as Reed-Solomon codes, which
are optimal in the sense of achieving the Singleton bound. The drawback is that Reed-Solomon
codes require an underlying field size greater than the length of the code. However, for a product
code of length N using Reed-Solomon codes as component codes, the required underlying field
size scales like

√
N (when codewords are square matrices), rather than scaling linearly with the

length of the code.

Irregular product codes. In Chapter 5, we introduce irregular product codes, a generalization
of product codes where we do not restrict rows of codeword matrices to come from a single row
code, but allow them instead to come from a distribution of row codes. Similarly, we let columns
come from a distribution of column codes. The intuition is that by using carefully designed
irregularity (in the sense that rows and columns belong to codes of varying rates), we can boost
the performance of product codes and achieve a better rate to error-correction capability tradeoff.
Moreover, such codes allow for greater flexibility of design than standard product codes: for a
fixed codeword length, by tuning the row and column code distributions, we can obtain many
more choices for the dimension of the code than those offered by standard product codes. We
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exhibit good finite-length irregular product codes as well as families of codes that achieve rate
1 − ε on erasure channels of parameter ε (with a growing field size). Even though it is not
capacity-achieving, our construction still raises interesting questions that will be developed in
Chapter 7.

Staircase codes. Staircase codes [1] constitute a novel code construction well-suited for com-
munication over optical systems. They combine a short component code in two dimensions in
a “continuous” fashion in order to create a potentially infinite codeword that can be decoded
chunk by chunk with low delay, using hard-decoding of the short code. Motivated by the notable
improvement they offer compared to their component code, we seek to push this improvement
further - in the limit - by combining the component code in higher dimensions. In Chapter 6,
we lay the ground for the design of high-dimensional staircase codes and describe, in particular,
a 3-dimensional staircase code. This is the first step toward the goal of determining the gap to
capacity of staircase codes (of any dimensions) on the q-ary symmetric channel; future directions
are discussed in Chapter 7.



Irregular product codes 5
We present irregular product codes, a generalization of product codes where we allow rows and
columns of codeword matrices to come from codes of multiple rates, rather than restricting them
to come from a single row code and a single column code. Intuitively, allowing for a few low-
rate, highly error-resilient codes might boost the decoding process, while other high-rate codes
ensure that the overall irregular product code has good rate. With a careful design of the rate
distributions, one can hope to achieve a better rate to error-correction capability tradeoff than
for regular product codes.

Irregularity fully exploits the inherently interactive nature of the decoding of product codes.
Indeed, round-based decoding of product codes lets some rows and columns “help” others to
recover and go on with the decoding process. Allowing for various decoding capabilities for
different rows and columns only taps further into this property of the decoder.

As mentioned in the introduction, one of the main advantages of product codes is the fact that
their decoding is efficient because it uses the decoders for shorter component codes. Furthermore,
by combining Reed-Solomon component codes, one can obtain product codes which have length
equal to the square of the size of the component codes for the same field size, while taking
advantage of the MDS properties of the small component codes. Another (more application-
specific) feature of product codes is that they perform well on bursty channels. Indeed, for a
product code which is transmitted row by row, a burst error will corrupt several consecutive
rows, but then other rows are received with a higher quality, allowing decoding to start from
these other rows and continue with the columns.

Irregular product codes retain all these advantages, while presenting attractive additional
features. Decoding still takes place over smaller codes and the field size is still allowed to grow
slower in the case of MDS component codes. Further, not only do irregular product codes still
perform well on bursty channels, they can also be more powerful than regular product codes
when some parts of the codeword are known to be more vulnerable to bursts than others, since
the row and column codes error-correction capabilities are tunable.

The content of this chapter is joint work with M. Alipour, O. Etesami and A. Shokrollahi, and was published
in [26].
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Moreover, for short-length linear codes, there do not exist product codes of every desirable
dimension, since fixing the dimension of the product code leaves few choices for the dimensions
of the component codes. A practical advantage of irregular product codes is that they allow for
many more dimensions due to the numerous choices for the rate distribution of the component
codes.

On the theoretical side, we exhibit families of irregular product codes that asymptotically
achieve rate 1 − ε on erasure channels of parameter ε. These are not capacity-achieving codes,
however, as they are based on Reed-Solomon component codes and crucially rely on the MDS
property of their component codes. Thus their rate comes at the cost of a growing field size.
The underlying field size can be made to scale as

√
N , however (for an irregular product code

of length N), rather than linearly in the length of the code; this opens the door to interesting
questions, discussed in Chapter 7.

Related work. Many generalizations of product codes exist. In [27], rows and columns of
codeword matrices are allowed to come from more than one row or column code; the motivation
for this, however, is more of a practical nature and is about meeting the information size and
payload size constraints dictated by various applications. Moreover, the pool of component codes
to choose from is limited to single parity codes, Hamming codes and specific BCH codes.

It has been brought to our attention that our irregular product code construction shares
similarities with the generalized concatenated codes of Blokh and Zyablov [28, 29].

As will be discussed in Chapter 7, one of the main promises of our work on irregular product
codes is the further improvement they could offer when extended to higher dimensions. It is
interesting to note that while product codes are restricted to two dimensions in practice, they
were actually initially defined by Elias as k-dimensional codes with k going to infinity [23]. The
component code in each dimension is an extended Hamming code of length equal to the double of
the length of the component code of the previous dimension. The product code is decoded exactly
once along each dimension to guarantee independence of the bits belonging to a codeword, and
a simple analysis shows that the error probability is monotonically decreasing as the product
code is decoded along each dimension. Higher-dimensional product codes were investigated in
[30, 31]. However, they differ from our work in that they restrict component codes to be a
specific code (a product code with single parity check component codes). Their main goal is to
use a component code with better properties than the extended Hamming component code of
[23] to get a more significant reduction in the error probability as the product code is decoded
along each dimension. Besides, they consider soft-decoding of the first few dimensions over the
AWGN channel, whereas we study hard decoding over the erasure channel (and plan to extend
our results to the q-ary symmetric channel).

Organization of the chapter. We start by formally defining irregular product codes in Sec-
tion 1 and describe their encoding and give upper bounds on their dimension in Section 2. We
then turn to the asymptotic analysis of their decoding on the erasure channel and derive a density
evolution condition on the minimum distances of component codes that characterizes successful
decoding in Section 3. We give a method to construct families of irregular product codes achiev-
ing rate arbitrarily close to 1 − ε on erasure channels of erasure ε in Section 4. In Section 5,
we give examples of finite-length irregular product codes performing better than regular product
codes of the same rate on the erasure channel.
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1 Formal definition

We start by giving a formal definition of irregular product codes. In what follows, we let [m]
denote the set {1, . . . ,m}.

Definition 5.1. Let F be a field and m, n be positive integers. For each i ∈ [m] let Ci be a
linear code of length n over F and for each j ∈ [n] let C ′j be a linear code of length m over F.
The m × n irregular product code C = C({Ci}i, {C ′j}j) is the linear code of length mn over F
such that

C = {(cij)i∈[m],j∈[n] | ∀i (ci1 · · · cin) ∈ Ci, ∀j (c1j · · · cmj) ∈ C ′j}.

In the above definition, when all the codes Ci corresponding to the rows are the same and
all the codes C ′j corresponding to the columns are the same, we obtain a standard product code.
The codes Ci will be referred to as row codes, and the codes Cj as column codes. Both row and
column codes will be referred to as component codes.

Example 5.2. Let RS(4, k)F denote the (unique) Reed-Solomon code of length 4 and dimension
k over the prime field F = F5. Define the length-4 linear codes C1, . . . , C4 and C ′1, . . . , C

′
4 over F

as follows:

C1 = C2 = RS(4, 2)F, C3 = C4 = RS(4, 3)F,

C ′1 = RS(4, 1)F, C
′
2 = RS(4, 2)F, C

′
3 = C ′4 = RS(4, 3)F.

Then the 4×4 irregular product code C = C({Ci}i, {C ′j}j) is the set of 4×4 matrices (cij)i,j=1,...,4

such that (c11 c12 c13 c14) ∈ C1, (c11 c21 c31 c41) ∈ C ′1, and so on. �

2 Encoding and rate

Given systematic encoders for the component codes of an irregular product code C, we give
a systematic encoding algorithm (5.3) for C. A natural extension of the encoding algorithm
for regular product codes, this algorithm marks some subset of the codeword coordinates as
generating coordinates (the coordinates of a codeword in C are all pairs (i, j) ∈ [m]×[n]) and treats
the values of these coordinates as information symbols from which it generates the remaining
coordinates. As there might be some settings of the generating coordinates that do not give rise
to valid codewords, the number of coordinates marked as generating is an upper bound on the
dimension of C. Lemma 5.5 gives an upper bound on the dimension of C by counting the number
of coordinates marked as generating by Algorithm 5.3. Theorem 5.7 gives a sufficient condition
for this upper bound to be satisfied.

At the start of the algorithm, all coordinates are unmarked. Each coordinate will eventually
be marked either as generating or as determined. A row or column where not all coordinates
have been marked is called available. A row or column whose marked coordinates can generate
the values of the remaining unmarked coordinates is called determined.

We assume that for each row code Ci, there is an encoding algorithm that generates, given the
first ai coordinates of a codeword, all remaining coordinates. Similarly, we assume that for each
column code C ′j , there is an encoding algorithm that generates, given the first bj coordinates of
a codeword, all remaining coordinates. Our encoding algorithm will make use of the individual
encoders for the component codes.
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Algorithm 5.3.

Start with all coordinates unmarked.

While there exists an unmarked coordinate:

I. If there exists an available determined row

1. Pick the available determined row with the smallest index i

2. Mark its unmarked coordinates as “determined” and generate their values from the
other coordinates of the row using the encoder for the row code Ci.

II. Else if there exists an available determined column

1. Pick the available determined column with the smallest index j

2. Mark its unmarked coordinates as “determined” and generate their values from the
other coordinates of the column using the encoder for the column code code C ′j .

III. Else

1. Pick the available row with the smallest index i

2. Starting from the smallest unmarked index, mark as many coordinates as is necessary
as “generating” until the first ai coordinates are marked

3. Mark the remaining coordinates as “determined” and generate their values from the
other coordinates of the row using the encoder for the row code Ci. ♦

The following example illustrates this encoding procedure.

Example 5.4. Let C be the irregular product code defined in Example 5.2. Figure 5.1 shows
how a codeword in C is encoded. The codeword is represented by a matrix, where we have
indicated next to each row the dimension ai of the corresponding row code, and next to each
column the dimension bj of the corresponding column code. As the component codes are Reed-
Solomon codes, hence MDS codes, any ai coordinates of a codeword of Ci can generate the entire
codeword. This is true, in particular, of the first ai coordinates. The same argument can be
made for the column codes. �

Lemma 5.5 analyzes this encoding algorithm to derive an upper bound on the dimension of
irregular product codes.

Lemma 5.5. Let C = C({Ci}i, {C ′j}j) be an m × n irregular product code. Let 0 < a1 ≤ . . . ≤
am ≤ n and 0 < b1 ≤ . . . ≤ bn ≤ m be two integer sequences such that for each i ∈ [m], the
value of the first ai coordinates of any codeword in Ci can generate the remaining coordinates,
and for each j ∈ [n], the value of the first bj coordinates of any codeword in C ′j can generate the
remaining coordinates. Then C has dimension at most

kC :=

n∑
j=1

bj∑
i=bj−1+1

max(ai − j + 1, 0), (5.1)

where we define b0 := 0.
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Figure 5.1: Encoding the irregular product code of Example 5.2. Information symbols (generating
coordinates) are shown in gray, and redundant symbols generated from the row and column codes
in blue and red, respectively. The black transition arrows indicate which step of Algorithm 5.3
executes.

Proof. Let C be the irregular product code described in the statement of the lemma. We will
show that when a codeword of C is encoded with Algorithm 5.3, the number of coordinates
marked as generating is equal to kC , as given by Equation (5.1). This will prove the lemma.

First note that whenever the algorithm picks a row in I or III, the coordinates already filled
in this row form a prefix of the row. This is because in II, the algorithm always fills the columns
with the smallest index first. Since the encoders of component codes are assumed to generate a
codeword from a prefix of this codeword, it is possible for Algorithm 5.3 to encode the row it has
picked with the encoder of the corresponding row code. The same can be argued for columns,
by noting that in I and III, the algorithm always fills the rows with the smallest index first.

For each row i, we will count the number of generating coordinates in row i.

First let i > bn. During encoding, rows with smaller index become determined earlier and
hence become fully marked earlier also. Thus, before the algorithm executes on row i, all rows
1, . . . , i− 1 have been fully marked, so that all the columns become determined (since for all j,
bj ≤ bn ≤ i− 1). Algorithm 5.3 will thus pick the columns one by one in II, until row i becomes
determined, at which point the algorithm executes I on row i. Hence, no coordinate in row i is
ever marked as generating.

Now let i ≤ bn and consider the greatest j such that bj−1 < i. Before the algorithm executes
on row i, rows 1, . . . , i− 1 have been fully marked, so that columns 1, . . . , j − 1 are determined
(since bj ≤ bn ≤ i − 1). If ai < j, the algorithm will pick these columns one by one in II until
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row i becomes determined, at which point the algorithm executes I on row i. In this case, no
coordinate in row i is ever marked as generating. If, on the other hand, ai ≥ j, then consider
coordinate (i, j). Since the coordinates marked in a column are always a prefix of the column
and since column j requires bj ≥ i marked coordinates to become determined, coordinate (i, j)
cannot be marked through II on column j. Rather, it is through row i that it will be marked.
By a similar argument, all coordinates (i, j+1), . . . , (i, n) are marked through row i (rather than
through their columns). This implies that when the algorithm executes on row i, coordinates
(i, j), . . . , (i, ai) are not yet marked, so that the algorithm executes III on row i and marks exactly
these coordinates as generating.

In other words, for i ≤ bn, the number of generating coordinates in row i is max(ai−j+1, 0),
where j is the largest such that bj−1 < i, while for i > bn, the number of generating coordinates
in row i is 0. This readily shows that the total number of coordinates marked as generating is
given by Equation (5.1), which completes the proof of the lemma.

Example 5.6. For the irregular product code C of Example 5.2, kC reduces to

kC = max(a1 − 1 + 1, 0) + max(a2 − 2 + 1, 0) + max(a3 − 3 + 1, 0) = 2 + 1 + 1 = 4,

which is indeed the number of coordinates marked as generating during encoding, as shown in
Figure 5.1. �

Theorem gives a criterion for an irregular product code to achieve the dimension upper bound
of Lemma 5.5.

Theorem 5.7. Let C = C({Ci}i, {C ′j}j) be an m× n irregular product code. Let 0 < a1 ≤ . . . ≤
am ≤ n and 0 = b0 < b1 ≤ . . . ≤ bn ≤ m be two integer sequences such that for each i ∈ [m],
Ci is a linear code of dimension ai, and for each j ∈ [n], C ′j is a linear code of dimension bj,
satisfying

C1 ⊆ · · · ⊆ Cm and C ′1 ⊆ · · · ⊆ C ′n.
Then C has dimension

dim(C) = kC =

n∑
j=1

bj∑
i=bj−1+1

max(ai − j + 1, 0). (5.2)

Proof. We show that any setting of the kC coordinates marked as generating by Algorithm 5.3
gives rise to a valid codeword of C. Specifically, we show that for every coordinate (i, j) of any
m × n matrix (cij)i,j produced by the algorithm, the vector (ci1, . . . , cij) forms a valid prefix
of a codeword of Ci, and the vector (c1j , . . . , cij) forms a valid prefix of a codeword of C ′j . We
prove this by strong induction on (i, j), where we say that (i′, j′) ≤ (i, j) if and only if i′ ≤ i and
j′ ≤ j.

Clearly, the statement is true for (i, j) = (1, 1), as both a1 and b1 are greater than or equal
to 1, so that any setting of c1,1 is a valid prefix of a codeword of C1 as well as of a codeword of
C ′1.

Now consider any coordinate (i, j) and assume that for all coordinates (i′, j′) ≤ (i, j), the
induction hypothesis holds, i.e., (ci′1, . . . , ci′j′) forms a valid prefix of a codeword of Ci′ , and
(c1j′ , . . . , ci′j′) forms a valid prefix of a codeword of C ′j′ . If (i, j) is such that (ci1, . . . , cij) is
not a valid prefix of a codeword of Ci, we say that (i, j) violates the row code Ci. Similarly, if
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(c1j , . . . , cij) is not a valid prefix of a codeword of C ′j , we say that (i, j) violates the column code
C ′j .

First note that (i, j) never violates its row code. For j ≤ ai, this is true because any setting of
(ci1, . . . , cij) is a valid codeword prefix. And for j > ai, it is ensured by the fact that Algorithm
5.3 always gives precedence to determined rows over determined columns.

If i ≤ bj , coordinate (i.j) cannot violate its column code, as any setting of (c1j , . . . , cij) in
this case is a valid codeword prefix. If i > bj and j ≤ ai, column j is determined at the point
where (i, j) is filled while row i is not, so that (i, j) will be marked and filled through its column
code (in II of the algorithm) and cannot violate its column code either. The only case we need
to consider is thus when i > bj and j > ai.

Let then i > bj and j > ai, and denote by C = Ci−1,j−1 the (i − 1) × (j − 1) top left-hand
corner of the codeword matrix. Let ci,∗ be the row vector formed by the first j − 1 coordinates
of the ith row of the codeword matrix, and c∗,j be the column vector formed by the first i − 1
coordinates of the jth column of the codeword matrix.

Now since j > ai and any codeword in Ci is generated by its first ai coordinates, there exists
a vector α = (α1, . . . , αj−1) over F such that any codeword x = (x1, . . . , xn) of Ci satisfies

xi =

j−1∑
k=1

αkxk. (5.3)

Moreover, since the codes C1 ⊆ · · · ⊆ Ci are nested, any codeword x = (x1, . . . , xn) of Ci′ for all
i′ ≤ i also satisfies Equation (5.3). By the induction hypothesis, we thus have

c∗,j = C · αT . (5.4)

Similarly, since i > bj and any codeword in C ′j is generated by its first bj coordinates, there
exists a vector β = (β1, . . . , βi−1) over F such that any codeword y = (y1, . . . , ym) of C ′j satisfies

yj =

i−1∑
k=1

βkyk. (5.5)

Since the codes C ′1 ⊆ · · · ⊆ C ′j are nested, any codeword y = (y1, . . . , ym) of C ′j′ for all j′ ≤ j
also satisfies Equation (5.5). By the induction hypothesis, we thus have

ci,∗ = β · C. (5.6)

Now since we have ensured by construction that (i, j) does not violate its row code, we have that

cij = ci,∗ · αT . (5.7)

Combining Equations (5.4), (5.6) and (5.7), we get

cij = ci,∗ · αT = β · C · αT = β · c∗,j ,

i.e., cij as generated by Algorithm (5.3) is such that (c1j , . . . , cij) forms a valid prefix of a
codeword of C ′j .
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Example 5.8. The unique Reed-Solomon code of length 4 and dimension k over F = F5 can be
viewed as a cyclic code over F with generating polynomial

4−k∏
i=1

(x− αi),

where α is a primitive element of F. Thus RS(4, k1)F ⊂ RS(4, k2)F for k1 < k2, so that the
component codes of the irregular product code C of Example 5.2 satisfy

C1 = C2 ⊂ C3 = C4 and C ′1 ⊂ C ′2 ⊂ C ′3 = C ′4,

and thus C has dimension 4 by Theorem 5.7. �

2.1 A construction achieving the rate upper bound

We now give one specific method of constructing, for any m,n and sequences of required row
and column dimensions 0 < a1 ≤ . . . ≤ am ≤ n and 0 < b1 ≤ . . . ≤ bn ≤ m, an irregular product
code achieving the dimension upper bound of Equation (5.1). We will later use this method to
construct families of irregular product codes achieving rate asymptotically close to capacity on
the erasure channel.

Construction 5.9. Given any integers m,n and integer sequences 0 < a1 ≤ . . . ≤ am ≤ n and
0 < b1 ≤ . . . ≤ bn ≤ m:

• Let F be a field of size larger than max (m,n).

• Let α1, . . . , αn be any n distinct nonzero elements of F, and let β1, . . . , βm be any m distinct
nonzero elements of F.

• Let V be the am × n Vandermonde matrix given by Vij = αi−1
j , and V ′ be the bn × m

Vandermonde matrix given by V ′ij = βj
i−1.

• For each i ∈ [m], let Ci be the Reed-Solomon code having as generator matrix the first ai
rows of the matrix V .

• For each j ∈ [n], let C ′j be the Reed-Solomon code having as generator matrix the first bj
rows of the matrix V ′.

Then the resulting C = C({Ci}i, {C ′j}j) is a nested-MDS irregular product code over F of param-
eters (m,n, (ai)i, (bj)j). ♦

Example 5.10. The irregular product code C defined in Example 5.2 is a nested-MDS irregular
product code over F5 of parameters (4, 4, (2, 2, 3, 3), (1, 2, 3, 3)). The field F5 is just large enough
to allow us to pick 4 distinct nonzero elements αi and 4 distinct nonzero elements βj . Any
nested-MDS irregular product code of these parameters over F5 will have the same choice of
αs and βs as C, so that C is the only possible such code, up to a permutation of the codeword
coordinates. �

Proposition 5.11. Given integers m,n and integer sequences 0 < a1 ≤ . . . ≤ am ≤ n and
0 < b1 ≤ . . . ≤ bn ≤ m, a nested-MDS irregular product code C = C({Ci}i, {C ′j}j) of parameters
(m,n, (ai)i, (bj)j) achieves the dimension upper bound of Equation (5.1).
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Figure 5.2: The decoder of the irregular product code of Example 5.2, decoding a burst erasure.
Erased coordinates are shown in gray, and black transition arrows indicate whether rows or
columns are decoded in the current round.

Proof. Let C = C({Ci}i, {C ′j}j) be a nested-MDS code of parameters (m,n, (ai)i, (bj)j). For
each i ∈ [m], Ci is an MDS code of dimension ai, so that any ai coordinates of a codeword of
Ci can generate the rest of the codeword. This is true, in particular, of the first ai coordinates.
Similarly, for each j ∈ [n], any bj coordinates of a codeword of C ′j , and in particular the first bj
coordinates, can generate the rest of the codeword. Moreover, for any i < i′, the generator matrix
of Ci is a submatrix of the generator matrix of Ci′ , so that the row codes satisfy C1 ⊆ · · · ⊆ Cm.
By a similar argument, the column codes satisfy C ′1 ⊆ · · · ⊆ C ′n. Therefore, the irregular product
code C satisfies all the conditions of Theorem 5.7 and thus achieves the dimension upper bound
of Lemma 5.5.

Note that the MDS property of the component codes played no remarkable role in the proof
of Proposition 5.11, beside guaranteeing that the prefix of a codeword of any component code
can generate the codeword. However, in Section 4, the optimality of the tradeoff between rate
and minimum distance offered by MDS component codes will play a crucial role in construct-
ing families of nested-MDS irregular product code achieving rate asymptotically approaching
capacity on the erasure channel.

3 Asymptotic analysis on the erasure channel

We now turn to the asymptotic analysis of the performance of irregular product codes on the
erasure channel. We first briefly describe the decoding of these codes on the erasure channel.

3.1 Decoding on the erasure channel

Decoding an irregular product code C on the erasure channel is similar to decoding a regular
product code. Given decoders for the component codes, the decoder for C iterates between rows
and columns in rounds, using the decoders for the component codes in each round to recover
from as many erasures as possible. The decoding ends when all coordinates are recovered or
when there is a round in which no new coordinate was recovered. Example 5.12 illustrates this
procedure.

Example 5.12. Recall the irregular product code C of Example 5.2. Figure 5.2 shows the
decoding of a codeword that was corrupted by a burst erasure. The minimum distances of the
component codes are indicated next to the corresponding rows and columns. Recall that a code
of minimum distance d can recover from d− 1 erasures. In this case, the decoding is successful.�



54 Irregular product codes

3.2 Asymptotic analysis

We analyze of the asymptotic behavior of an m× n irregular product code C = C({Ci}i, {C ′j}j).
We thus think of C not individually but as one member of a family of irregular product codes
where m and n grow. The key element that determines whether the decoding of a family of
codes will be successful is the (approximate) minimum distance distribution of component codes,
formalized in the following definition.

Definition 5.13. Let C = C({Ci}i, {C ′j}j) be an m × n irregular product code and let α, β :
[0, 1] → [0, 1] be non-decreasing real functions. We say that the row and column codes have
asymptotic normalized minimum distance distribution α and β if for every δ1, δ2 > 0, for large
enough m and n, for each i ∈ [m], j ∈ [n] we have∣∣d(Ci)/n− α(x)

∣∣ ≤ δ1 for some x such that |1− i/m− x| ≤ δ2,∣∣d(C ′j)/m− β(y)
∣∣ ≤ δ1 for some y such that |1− j/n− y| ≤ δ2,

where d(C) denotes the minimum distance of a code C.

Theorem 5.15 gives a necessary and sufficient condition for successful decoding of irregular
product codes on erasure channels using the decoding procedure of Section 3.1, expressed in
terms of the asymptotic normalized minimum distances of the component codes and the erasure
parameter.

For intuition’s sake, it is best to think of α and β as continuous functions on [0, 1]. But in fact,
α and β need not even be invertible to be valid asymptotic minimum distance approximations.
Definition 5.14 formalizes a notion of “inverse” that will be of use in the proof of Theorem 5.15.

Definition 5.14. Let α : [0, 1]→ [0, 1] be a non-decreasing real function. For each x ∈ [0, 1], let
Sx = {z ∈ [0, 1] : α(z) ≤ x}. Then

α−1(x) :=

{
sup(Sx) if Sx 6= ∅

0 if Sx = ∅.

Note that if α is an invertible function, our definition of α−1 corresponds to the actual inverse
of α. Whenever an inverse is mentioned in what follows, it will be understood to refer to the
inverse in the sense of Definition 5.14.

Theorem 5.15. Let C = C({Ci}i, {C ′j}j) be an m× n product code with asymptotic normalized
minimum distance distribution α and β, where m and n satisfy the bounds m = o(2n) and
n = o(2m). Assume that a codeword in C is sent over an erasure channel where each symbol is
erased with probability ε > 0. If

α−1(εβ−1(εx)) < x for all x ∈ (0, 1], (5.8)

then for any constant δ0 > 0, for large enough codes in the family, all except a δ0-fraction of the
symbols can be decoded except with a probability exponentially small in min(m,n).

Proof. Let y = β−1(ε). Notice that y only depends on β and does not depend on m and n. Let
1 ≥ y′ > y, where we assume that y′ is also a number independent of m and n. We claim that for
large enough m and n, with very high probability all except the last y′-fraction of the columns
can be decoded in the first step. To see this, let y′′ ∈ (y, y′). We know β(y′′) > ε, hence for some
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ε′ > ε, for large enough codes in the family, we have d(C ′j) ≥ ε′m when n− j ≤ y′n, i.e., for the
last y′-fraction of the columns. The probability that each of the length-m codes corresponding
to these columns cannot be decoded is exponentially small in m by the Chernoff bound, since
these codes can decode up to ε′m− 1 erasures while we have on average εm erasures. Since the
number n of columns is such that n = o(2m), we can use a union bound to derive our claim.

Now define x1 = α−1(εy). We claim that for any 1 ≥ x′ > x1, with very high probability,
all except the last x′-fraction of rows can be decoded. To see this, let x′′ ∈ (x1, x

′). We know
α(x′′) > εy, hence α(x′′) > εy′′ for some y′′ > y. We can conclude that d(Ci) ≥ εy′′n when
m − i ≤ x′m, i.e., for the last x′-fraction of the columns. On the other hand, if we choose
y′ ∈ (y, y′′), by the argument in the previous paragraph, with high probability all the symbols
not appearing in the last y′-fraction of the columns are decoded for large enough codes. Therefore,
the average number of undecoded symbols at each row is at most εy′n. Again, we can derive our
claim by a union bound on Chernoff bounds.

Repeating the above argument back and forth between rows and columns, we get a non-
increasing sequence x0 = 1, x1, x2, . . . where xi+1 = α−1(εβ−1(εxi)). Here 1 − xi denotes the
approximate fraction of rows that are guaranteed to be decoded after i back-and-forth rounds
of decoding. If this sequence converges to 0, then δ0 > xi for some i. That would mean that
with high probability, at most a δ0-fraction of the rows and hence at most a δ0-fraction of all the
symbols are not decoded by the end of the algorithm.

We thus only need to check that the monotonic sequence x0, x1, x2, . . . converges to 0 if
condition (5.8) is satisfied. If it was the case that x∗ = limi→∞ xi > 0, we would have

α−1(εβ−1(εx∗)) = α−1(εβ−1(ε lim
i→∞

xi)) = lim
i→∞

α−1(εβ−1(εxi)) = x∗

because α−1 and β−1 can be shown to be right-continuous. This contradicts condition (5.8).

4 Families of nested-MDS irregular product codes

The following construction gives a generic way of creating families of nested-MDS irregular
product codes that satisfy the condition for successful decoding given by (5.8) and can achieve
rate arbitrarily close to 1− ε on erasure channels with erasure parameter ε.

Construction 5.16. Given 0 < ε < 1:

1. Choose any non-decreasing function β : [0, 1]→ [0, 1] with β(1) ≤ ε and limy→0 β(y) = 0.

2. Let α : [0, 1]→ [0, 1] be given by α(x) = εβ−1(εx), where β−1 is given in Definition 5.14.

3. Choose any m and n such that m = o(2n) and n = o(2m).

4. Pick 0 < a1 ≤ . . . ≤ am ≤ n such that ai = n(1− α(1− i/m+ o(1)) + o(1)) for all i.

5. Pick 0 < b1 ≤ . . . ≤ bn ≤ m such that bj = m(1− β(1− j/n+ o(1)) + o(1)) for all j.

6. Construct the nested-MDS irregular product code with parameters (m,n, (ai)i, (bj)j) as
indicated in Construction 5.9. ♦

Figure 5.3 provides a nice pictorial description of the construction of the matching α given β
in step 2 of Construction 5.16. The curve for α is constructed such that whenever x = β(y)/ε,
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Figure 5.3: Deriving the α curve matching the β curve in Construction 5.16. The β curve is
stretched vertically by a factor of 1/ε, and the resulting curve is shrunk horizontally by a factor
of ε.

we have α(x) = εy. We have flipped the horizontal axis so that the [0, 1]× [0, 1] square in which
α and β are plotted can be viewed as a codeword, where the blue region between the α and β
curves corresponds to the information bits. Computing its area corresponds to determining the
rate of the code.

Theorem 5.17. For each 0 < ε < 1, Construction 5.16 gives families of irregular product codes
with asymptotic rate 1−ε, such that for any constant δ > 0 one can decode almost all the symbols
of a codeword sent over an erasure channel of erasure probability ε− δ.

Proof. Let C = C({Ci}i, {C ′j}j) be a nested-MDS irregular product code produced by Construc-
tion 5.16. An MDS code Ci of dimension ai has minimum distance d(Ci) = n − ai + 1, so that
α is a valid asymptotic normalized minimum distance distribution for the row codes with the
dimension vector (ai)i chosen in step 4 of the construction. Similarly, β is a valid asymptotic
normalized minimum distance distribution for the column codes with the dimension vector (bj)j
chosen in step 5 of the construction.

By Theorem 5.15, we know that C can decode from a ε− δ > 0 fraction of errors if and only
if there is no x ∈ (0, 1] such that

α−1((ε− δ)β−1((ε− δ)x)) ≥ x.
Suppose that this inequality holds for some x, i.e., there is an x such that

α(x) ≤ (ε− δ)β−1((ε− δ)x). (5.9)

Consider x′ such that ε−δ
ε x ≤ x′ ≤ x. Then

εβ−1((ε− δ)x) ≤ εβ−1(εx′)

< εβ−1(εx)

= α(x)

≤ (ε− δ)β−1((ε− δ)x),
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where the first two inequalities result from the fact that β−1 is nondecreasing (which is easy to
check from the definition of β−1 and the fact that β is nondecreasing), the equality follows by
construction of α, and the last inequality comes from (5.9).

This can only be true if β−1((ε − δ)x) = 0, which implies that β−1(εx′) = 0 for all ε−δ
ε x ≤

x′ ≤ x. Again by the fact that β−1 is nondecreasing, this implies that β−1(εx′) = 0 for all
0 < x′ ≤ x. But this contradicts the fact that β was chosen to satisfy limy→0 β(y) = 0.
Therefore no x ∈ (0, 1] can satisfy Equation (5.9), so that we can apply Theorem 5.15 to deduce
that C can asymptotically recover from a (ε− δ)-fraction of errors.

To compute the rate of C, note that it is a nested-MDS irregular product code, so that
Proposition 5.11 guarantees that it achieves the dimension upper bound of Equation (5.1). Thus
C has dimension

n∑
j=1

bj∑
i=bj−1+1

max(ai − j + 1, 0) =

m∑
i=1

max(ai −max{j | bj < i}, 0)

= mEi max(ai −max{j : bj < i}, 0)

= mn Ei max(
ai −max{j : bj < i}

n
, 0).

Hence the rate of C is asymptotically equal to∫ 1

x=0

max(β−1(x)− α(x), 0) dx =

∫ 1

x=0

(β−1(x)− εβ−1(εx)) dx

=

∫ 1

x=0

β−1(x) dx− ε
∫ 1

x=0

β−1(εx) dx

= [(1− ε) +

∫ ε

x=0

β−1(x) dx]−
∫ ε

x=0

β−1(x) dx

= 1− ε,

where we have used the fact that β−1(x) = 1 for all x ≥ ε to deduce that
∫ 1

x=ε
β−1(x) dx = 1−ε.

This proves our claim on the rate of C and completes the proof of the theorem.

5 Some finite-length irregular product codes

We now give two examples of irregular product codes along with their error curves obtained by
simulation. In both cases, our constructed code is a nested-MDS irregular product code over a
large enough field. Example 5.18 exhibits a short, length-64 irregular product code optimized for
erasure-correction performance by brute-force search among all irregular product codes of the
same dimension.

Example 5.18. Figure 5.4 shows an irregular product code of length 64 and dimension 28.
Figure 5.4a shows the “shape” of a codeword, which is an 8× 8 matrix where the 28 generating
coordinates are shaded in gray. The code was obtained by enumerating all possible irregular
product codes of this dimension and selecting the one with the best erasure-correction capabili-
ties. The only regular product code of this dimension is one where the row code has dimension
4 and the column code has dimension 7, or vice versa. Figure 5.4b compares the performance
of our irregular product code with that of this regular product code. We can see that our code
is only very slighly irregular: all column codes are the same and there are only two types of
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(a) A codeword matrix, with the generating co-
ordinates shaded in gray. The dimensions of the
component codes are indicated next to the corre-
sponding rows and columns.
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product code. Each point is obtained by 106 sim-
ulations.

Figure 5.4: A [64, 38]-irregular product code.
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(a) A codeword of a code designed from Construc-
tion 5.16. The dark area corresponds to informa-
tion symbols.

(b) An irregular product code of length 2500 and
dimension 1709. Each dot represents an informa-
tion symbol.

Figure 5.5: Heuristically adapting a code from Construction 5.16 to get a finite-length irregular
product code.

row codes. Yet this small irregularity boosted the performance of the code beyond that of the
traditional product code of the same rate. �

The brute-force approach that allowed us to find the irregular product code of Example 5.18
quickly becomes impractical. To obtain longer codes, we turn to the families of codes constructed
in Section 4. As Example 5.19 shows, we can heuristically modify the “shape” of codes in this
family to obtain good finite-length codes.

Example 5.19. In order to obtain a length-2500 product code, we start with a code of asymp-
totic rate 1 − ε given by Construction 5.16 for ε = 0.3, where we choose β to be given by
β(x) = εx. The corresponding α is such that α(x) = εx as well. The shape of a codeword of
this code is shown in Figure 5.5a, where the dark area corresponds to information symbols. We
discretize this shape to obtain the length-50×50 irregular product code shown in Figure 5.5. We
heuristically tuned the component code dimensions in order to obtain better performance. First,
we increased the number of (relatively) low-dimensional row and column codes, in order to boost
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Figure 5.6: A comparison of the block error rate of the [2500, 1709]-irregular product code and
those of regular product codes of comparable rates. All codes have length 2500 and the numbers
in the legent indicate the corresponding row and column code dimensions.

the beginning of the decoding process. Second, whereas in the asymptotic case, the last few rows
and columns have rate approaching 1, basically corresponding to uncoded vectors, we capped the
dimension of the last few rows and columns by forcing the highest-dimensional component code
to have dimension 3. This allows decoding to terminate. The resulting code is a [2500, 1709]
irregular product code, i.e., it has rate 0.6836. Figure 5.6 shows the block error rate of this
code and of all regular product codes of length 2500 and rate in the range [0.6708, 0.684]. Each
point of these curves is obtained from 106 simulations. Note that most of the regular product
codes we consider have rate lower than that of our irregular product code; yet the irregular code
outperforms all of them. �

6 Conclusion

We have introduced irregular product codes, a generalization of product codes that allows for
more design flexibility and leads to codes that can have better performance than product codes.
We give encoding and decoding algorithms for these codes, characterize their rate, and give a
method to design families of irregular product codes achieving rate arbitrarily close to capacity
on erasure channels. This work raises several interesting questions and opens the door to natural
extensions; we defer their discussion till the end of Part II. In the next chapter, we introduce high-
dimensional staircase codes, a generalized product construction that shares several underlying
insights with irregular product codes. Open problems related to both constructions are discussed
jointly in Chapter 7.





Staircase codes 6
Introduced in [1], staircase codes constitute a novel class of codes, well-suited for error-correction
over optical systems. An optical channel can be modeled as a binary symmetric channel with low
error probability, and allowing very high-speed communication. Optical communication systems
usually require a very low bit error rate after decoding (typically below 10−15 [1]), and due to
the high-speed nature of the transmission, they require very efficient decoding.

Dubbed by their inventors a “continuous product-like construction”, staircase codes com-
bine ideas from convolutional coding with the efficiency of hard-decoding short block codes. A
product-like code refers to a generalized LDPC code with algebraic component codes, and the
“continuous” part will be made clear when we look at the code structure and decoder. The
authors cite a number of works introducing related product-like constructions with a continuous
structure, such as [32, 33, 34, 35]. What sets staircase codes apart from these constructions is
the use, during decoding, of a syndrome-based decoder for a much shorter code, leading to very
efficient decoding. In particular, the authors analyze the complexity of message passing at the
staircase decoder and show that it is much lower than that for LDPC codes.

As far as error-correcting performance goes, Figure 6.1, taken from [1], is based on FPGA
simulation results and compares the performance of a staircase code on a binary symmetric
channel to that of various G.975.1 codes of the same rate. It shows that staircase codes operate
within 0.56 dB of the Shannon limit for an output BER of 10−15, outperforming the best G.975.1
code by 0.42 dB.

A codeword in a staircase code is best viewed as a (potentially infinite) sequence of matrices, or
blocks. The vectors formed by the concatenation of two blocks (vertical or horizontal, depending
on the parity of the blocks) must belong to a given component code C - hence the “staircase”
shape, as shown in Figure 6.2.

A fundamental feature of staircase codes is the significant improvement that they offer com-
pared to their component code, in terms of gap to capacity, by suitably combining this com-
ponent code in two dimensions. Intuitively, stall patterns (irrecoverable error patterns) have a
much smaller probability of occurring in the staircase code than in the component code. For a

The content of this chapter is joint work with A. Shokrollahi.
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Figure 6.1: Comparison of the gap to capacity of a staircase code and of various standardized
codes, all of rate 239/255 [1].

∈ C
∈
C · · ·

Figure 6.2: A staircase code.

t-error correcting component code, t + 1 errors occurring in one codeword are irrecoverable if
the data is encoded using the component code alone. However, at least (t + 1)2 errors have to
occur in one block of the staircase code to constitute a stall pattern. A natural question that
arises is thus whether the gap to capacity of staircase codes can be improved by going to higher
dimensions still. As a first step toward this goal, we start by abstracting out the structural
properties of staircase codes that allow them to be extended to higher dimensions, and we de-
fine a 3-dimensional staircase code. Ultimately, we would like to let the dimension of staircase
codes grow in order to be able to assess the fundamental capability of staircase constructions to
approach capacity on symmetric channels.

The rest of the chapter is organized as follows. Section 1 gives a brief overview of the
properties of the two-dimensional staircase codes given in [1]. We introduce our 3-dimensional
construction in Section 2 and give an encoding algorithm in Section 3, which allows us to deduce
the rate of the 3-dimensional construction. We discuss decoding in Section 4 and give simulation
results for 2- and 3- dimensional staircase codes for a given component code that show that
3-dimensional staircase codes can offer an improvement of the gap to capacity that is modest at
an input BER of 2 · 10−8 but becomes more considerable as we move toward the very-low-BER
regime in which staircase codes are meant to operate.

1 The two-dimensional staircase code

We start by giving a formal definition of two-dimensional staircase codes. In [1], these codes are
simply defined via the component code constraint on successive blocks, as suggested by Figure
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6.2. We will look at them from a slightly different viewpoint that abstracts out their structural
properties and makes it possible to generalize them to higher dimensions. In order to do so, it
will be convenient to consider a slight modification of the staircase code of [1], where the staircase
grows in two directions starting from the first block B0, as shown in Figure 6.3.

...

· · · B−3

B−2 B−1

B0 B1

B2 B3

Figure 6.3: A slight generalization of 2-dimensional staircase codes.

To capture the structure of a staircase code, we look at its underlying graph. In this graph,
each block is represented by a node, and two nodes are connected by an edge if they share a
constraint, i.e., if when we concatenate the corresponding blocks (vertically or horizontally as
appropriate), the resulting matrix is such that each of its rows (or columns) is an element of the
component code C. Figure 6.4 shows the underlying graph of the two-dimensional staircase code,
which is basically an infinite path. It will be useful to visualize this graph on a two-dimensional
grid. We define formally the underlying graph of a two-dimensional staircase code as follows:

Definition 6.1. The underlying graph of the two-dimensional staircase code is the infinite 2-
regular graph G2 = (V2, E2) with

V2 = {(x, y) ∈ Z2 | 0 ≤ x+ y ≤ 1}
and

N((x, y)) =

{
{(x+ 1, y), (x, y + 1)} if x+ y = 0
{(x− 1, y), (x, y − 1)} if x+ y = 1,

where N(v) denotes the set of neighbors of a node v in E2.

Given the underlying graph G2, the two-dimensional staircase code is completely determined
by its component code, as shown in definition 6.2. In what follows, unless mentioned otherwise,
we will be considering a [2n, 2n− r]-linear component code with r < n, i.e., with rate more than
half, with a systematic encoder. For instance, the component code used in [1] is a [1022, 990]
3-error correcting binary code resulting from the shortening of a BCH code by one bit.

Definition 6.2. Given a [2n, 2n− r]F-linear code C, the two-dimensional staircase code SC2(C)
is the set of blocks {Bv}v∈V2

, where V2 denotes the set of nodes of the underlying graph G2, and

where Bv = {bvij}ni,j=1 ∈ Fn2

for all v, such that the blocks {Bv} satisfy, for every v = (x, y)
with x+ y = 0, the following constraints:

∀j : b
(x,y)
1,j · · · b

(x,y)
n,j b

(x+1,y)
1,j · · · b(x+1,y)

n,j ∈ C
∀i : b

(x,y)
i,1 · · · b(x,y)

i,n b
(x,y+1)
i,1 · · · b(x,y+1)

i,n ∈ C.
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Figure 6.4: The underlying graph of a two-dimensional staircase code.

1.1 Encoding and rate

r

· · ·

Figure 6.5: Encoding a staircase code.

Given a [2n, 2n− r]-component code C with a systematic encoder, the staircase construction
naturally lends itself to “on-the-fly” encoding. The first block is set to a value known both at the
sender and the receiver, say all zeros. Then a (1 − r)-fraction of each subsequent block is filled
with information symbols, and the remaining r-fraction generated using the systematic encoder
for C, as shown in Figure 6.5, where information symbols are shaded in dark gray and redundant
symbols in light gray. An `-block staircase code will thus have rate

(`− 1)n(n− r)
`n2

=

(
`− 1

`

)(
1− r

n

)
.

As the number of blocks is infinite, the limit rate of the two-dimensional staircase is

r2 = 1− r

n
. (6.1)

1.2 Decoding

Smith et al. [1] give a simple sliding-window decoder for staircase codes. The size L of the
window is a tunable parameter that allows for various decoding delay choices. A window of size
L starting at index i considers blocks Bi, . . . , Bi+L−1. The decoder for the staircase code uses
the decoder for the component code to jointly decode blocks Bi+L−2 and Bi+L−1, then blocks
Bi+L−3 and Bi+L−2, all the way down to blocks Bi and Bi+1. This is repeated some fixed
number of iterations, before sliding the window one index to the right and declaring block Bi as
decoded. The staircase decoder given in [1] uses L = 7.
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2 The three-dimensional staircase code

To define a three-dimensional staircase code, we will start by appropriately extending the un-
derlying graph of a two-dimensional staircase to three dimensions. Definition 6.3 specifies the
resulting graph, pictured in Figure 6.6.

Definition 6.3. The underlying graph of the three-dimensional staircase code is the infinite
3-regular graph G3 = (V3, E3) with

V3 = {(x, y, z) ∈ Z3 | 0 ≤ x+ y + z ≤ 1}
and

N((x, y, z)) =

{
{(x+ 1, y, z), (x, y + 1, z), (x, y, z + 1)} if x+ y + z = 0
{(x− 1, y, z), (x, y − 1, z), (x, y, z − 1)} if x+ y + z = 1,

where N(v) denotes the set of neighbors of a node v in E3.

x

y

z

(0, 0, 0)

Figure 6.6: The underlying graph of a 3-dimensional staircase code, restricted, from left to right,
to the nodes at distance 1, 2, 3 and 4 from the central node (0, 0, 0).

The three-dimensional staircase code is completely determined by the underlying graph G3

and by its component code. Specifically, given a length-2n linear component code C over some
field F, the three-dimensional staircase will associate with each node v of the underlying graph
an n×n×n block over F, satisfying the constraint that the concatenation of neighboring blocks
(transposed as appropriate) is such that the vectors of the resulting block (along the appropriate
dimension) are elements of C. Definition 6.4 formalizes this construction.

Definition 6.4. Given a [2n, 2n−r]F-linear code C, the three-dimensional staircase code SC3(C)
is the set of blocks {Bv}v∈V3

, where V3 denotes the set of nodes of the underlying graph G3, and

where Bv = {bvijk}ni,j,k=1 ∈ Fn3

for all v, such that the blocks {Bv} satisfy, for every v = (x, y, z)
with x+ y + z = 0, the following constraints:

∀j, k : b
(x,y,z)
1,j,k · · · b(x,y,z)n,j,k b

(x+1,y,z)
1,j,k · · · b(x+1,y,z)

n,j,k ∈ C (6.2)

∀i, k : b
(x,y,z)
i,1,k · · · b(x,y,z)i,n,k b

(x,y+1,z)
i,1,k · · · b(x,y+1,z)

i,n,k ∈ C (6.3)

∀i, j : b
(x,y,z)
i,j,1 · · · b(x,y,z)i,j,n b

(x,y,z+1)
i,j,1 · · · b(x,y,z+1)

i,j,n ∈ C. (6.4)

3 Encoding and rate

We would like to encode SC3(C) in a similar fashion to that in which SC2(C) is encoded, starting
from the central block B(0,0,0) that will be initialized to all zeros, and encoding at each steps all
blocks at a given distance from the center before moving one step further from it.
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Figure 6.7: Filling the blocks of a cell with information symbols.

However, the underlying graph G3 does not lend itself seamlessly to this successive encoding
method, due to the existence of cycles. The cycles will not only eat away some of our rate, but
will also require a careful encoding procedure.

We will consider a fundamental unit of G3, a cell, i.e., an irreducible cycle of length 6 in
G3. Figure 6.10 shows cell C0 colored in red. We will view all of G3 as a set of cells, possibly
overlapping, and we will encode all blocks in a cell before moving to the next one and “spiralling”
further away from B(0,0,0), as shown in the figure. More details will be given in Section 3.2.

3.1 Encoding a single cell

We will start by focusing on the encoding of all the blocks of a single cell, and deduce from that
a method to encode the whole 3-dimensional staircase. Consider a single cell as shown in Figure
6.7, with blocks A, . . . , E initially unconstrained by any neighboring block. Recall that we are
using a [2n, 2n − r] component code C. Block A can be completely filled with n3 information
symbols, indicated by the dark gray shading in the figure. A (1− r)-fraction of blocks B,C and
D can be filled with information symbols along the appropriate axis, and the remainder of these
blocks is filled with redundant symbols generated by the component code C, and indicated by
light gray shading. Blocks B,C and D can thus hold n2(n− r) information symbols each.

Blocks E and F , however, cannot be that easily encoded. A more fine-grained procedure has
to be adopted in order to fit as many information symbols as possible into these two blocks. We
will need to distribute information symbols and redundant symbols among the two blocks in a
careful way, which is why we require that the component code be MDS.

Algorithm 6.7 at the end of the section formalizes the encoding procedure of a cell. We
dedicate the rest of this section to developing Algorithm 6.5 that encodes the last two blocks of
a cell, and deriving an expression for the number of information symbols it fills in those blocks.
We first set up some notation.

Since the component code is MDS, any set of 2n− r coordinates can generate the remaining
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Figure 6.8: Indexing block coordinates.

coordinates in a codeword. There are scalars {α(i)
i′ }2n−r<i≤2n

1≤i′≤2n−r
such that the resulting codeword

x = x1 · · ·x2n satisfies

∀i ∈ {2n− r + 1, . . . , 2n} : xi =

2n−r∑
i′=1

α
(i)
i′ xi′ . (6.5)

Similarly, there are scalars {β(i)
i′ } 1≤i≤r

r<i′≤2n

such that the resulting codeword x = x1 · · ·x2n satisfies

∀i ∈ {1, . . . , r} : xi =

2n∑
i′=r+1

β
(i)
i′ xi′ . (6.6)

In what follows, we will denote the entries of A by {aijk}1≤i,j,k≤n, with i indexing the x-axis,
j-the y-axis and k the z-axis, as shown in Figure 6.8. We will similarly index the entries of
B, . . . , F . The indices i, j, k will always be understood to belong to the range [1, . . . , n], so that,
for instance, i > n− r will be used to express n− r + 1 ≤ i ≤ n, and similarly for other bounds
on the indices.

We give an algorithm to encode blocks E and F during which (2n + r)(n − r)2 coordinates
of blocks E and F will be designated as “information coordinates”. We will later prove that any
setting of these coordinates leads, at the end of the encoding, to a valid codeword. Before the
encoding starts, the content of A, B, C and D is already determined.

Algorithm 6.5. [Encoding blocks E and F ]

I. (encoding the top n− r layers of E and F )

For all j > r

1. For all k ≤ n− r
i) For all i, set eijk as an information coordinate. Fill it with an information symbol.

ii) For all i ≤ n−r, set fijk as an information coordinate. Fill it with an information
symbol.

iii) For all i > n − r, generate the value of fijk from the values of {ei′,j,k}i′ and
{fi′,j,k}i′≤n−r, i.e., using the component code along the x-axis.

2. For all k > n− r
i) For all i, generate the value of fijk from the values of {di,j,k′}k′ and {fi,j,k′}k′≤n−r,

i.e., using the component code along the z-axis.

ii) For all i ≤ n−r, set eijk as an information coordinate. Fill it with an information
symbol.
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iii) For all i > n− r, generate the value of eijk from the values of {ei′,j,k}i′≤n−r and
{fi′,j,k}i′ , i.e., using the component code along the x-axis.

II. (encoding the bottom r layers of E and F )

For all j ≤ r
1. For all i, k, generate the value of eijk from the values of {ci,j′,k}j′ and {ei,j′,k}j′>r,

i.e., using the component code along the y-axis, such that Equation 6.3 is satisfied.

2. For all k ≤ n− r
i) For all i ≤ n−r, set fijk as an information coordinate. Fill it with an information

symbol.

ii) For all i > n − r, generate the value of fijk from the values of {ei′,j,k}i′ and
{fi′,j,k}i′≤n−r, i.e., using the component code along the x-axis

3. For all k > n− r
i) For all i ≤ n − r, generate the value of fijk from the values of {di,j,k′}k′ and
{fi,j,k′}k′≤n−r, i.e., using the component code along the z-axis

ii) For all i > n − r, generate the value of fijk from the values of {ei′,j,k}i′ and
{fi′,j,k}i′≤n−r, i.e., using the component code along the x-axis. ♦

This encoding algorithm is depicted in Figure 6.9, where blocks E and F are shown, with
the top n− r layers and the bottom r layers separated for visibility. The gray blocks correspond
to information symbols and the other blocks to redundant symbols, generated along the axis
indicated by the corresponding arrows.

Lemma 6.6. Consider encoding blocks E and F of a cell where blocks A, . . . ,D have already
been set, with a [2n, 2n−r]F MDS component code C over a large enough field F, using Algorithm
6.5. Then blocks E and F can hold, together, (2n+ r)(n− r)2 information symbols.

Proof. First note that the number of coordinates holding information symbols is indeed

(2n− r)(n− r)2 + r(n− r)2 + r(n− r)2 = (2n+ r)(n− r)2.

What remains to be shown is that for any setting of these coordinates, the resulting values in all
coordinates of E and F lead to a valid codeword; namely, E and F must satisfy Equation (6.2)
(the x-constraint), E and B must satisfy Equation (6.3) (the y-constraint), and D and F must
satisfy Equation (6.4) (the z-constraint).

By construction, E and F satisfy the x-constraint (6.2) (see steps I.1.iii, I.2.iii and II.2.ii of
the encoding), E and C satisfy the y-constraint (6.3) (see step II.1 of the encoding), and the
top n− r layers of blocks D and F satisfy the z-constraint (6.4) (see step I.2.i of the encoding).
In the bottom r layers of blocks D and F (i.e., for j ≤ r), the z-constraint is also satisfied for
i ≤ n− r. The only possible contention involves the coordinates {fijk}i>n−r,j≤r,k>n−r, i.e., the
red block in Figure 6.9. We need to check that these coordinates satisfy the z-constraint (6.4).
Intuitively, what we want to show is that the values that “flow down” to the red block through
the path A − C − E are equal to those that flow down to it through the path A − B −D, due
to the constraints jointly satisfied by the blocks on both paths.

From step II.2.ii of the algorithm, we know the value of the coordinates in the red block is
given by

∀i > n− r, j ≤ r, k > n− r : fijk =
∑
i′

α
(i)
i′ ei′jk +

∑
i′≤n−r

α
(i)
n+i′fi′jk. (6.7)
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Figure 6.9: Encoding the last two blocks of a cell. Information symbols are shown in gray,
and black arrows show the axis along which redundant symbols are generated. The red block
potentially creates a conflict along the z-axis.

We claim that each of these coordinates also satisfies

∀i > n− r, j ≤ r, k > n− r : fijk = f̂ijk, (6.8)

where

f̂ijk :=
∑
k′

α
(k)
k′ dijk′ +

∑
k′≤n−r

α
(k)
n+k′fijk′ . (6.9)

We dedicate the rest of the proof to showing that Equation (6.8) holds.

Fix some i, j, k such that i, k > n− r and j ≤ r. Starting from the expression for fijk given
by Equation (6.7), we will express the entries of E in terms of those of C. Specifically, since
blocks E and C satisfy the y-constraint (6.3), and since j ≤ r, we know that each ei′jk can be
written as

ei′jk =
∑
j′>r

β
(j)
j′ ei′j′k +

∑
j′

β
(j)
n+j′ci′j′k.
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Further, since A and C satisfy the z-constraint (6.4) and since k > n−r, we have, for each ci′j′k,
that

ci′j′k =
∑
k′

α
(k)
k′ ai′j′k′ +

∑
k′≤n−r

α
(k)
n+k′ci′j′k′ ,

so that fijk can be written as

fijk =
∑
i′

α
(i)
i′

∑
j′

β
(j)
n+j′

∑
k′

α
(k)
k′ ai′j′k′ +

∑
k′≤n−r

α
(k)
n+k′ci′j′k′

+
∑
j′>r

β
(j)
j′ ei′j′k


+

∑
i′≤n−r

α
(i)
n+i′fi′jk

=
∑
i′,j′,k′

α
(i)
i′ β

(j)
n+j′α

(k)
k′ ai′j′k′ +

∑
i′,j′

k′≤n−r

α
(i)
i′ β

(j)
n+j′α

(k)
n+k′ci′j′k′ +

∑
i′

j′>r

α
(i)
i′ β

(j)
j′ ei′j′k

+
∑

i′≤n−r

α
(i)
n+i′fi′jk. (6.10)

To bring this expression to a form comparable to that of an expression for f̂ijk, we need to
express the value of the ci′j′k′ and ei′j′k in terms of elements of F . Note that

∑
i′

α
(i)
i′ ei′j′k = fij′k −

∑
i′≤n−r

α
(i)
n+i′fi′j′k. (6.11)

Similarly,

∑
i′,j′

α
(i)
i′ β

(j)
n+j′ci′j′k′ =

∑
i′

α
(i)
i′

ei′jk′ −∑
j′>r

β
(j)
j′ ei′j′k′


=
∑
i′

α
(i)
i′ ei′jk′ −

∑
j′>r

β
(j)
j′

∑
i′

α
(i)
i′ ei′j′k′

=

fijk′ − ∑
i′≤n−r

α
(i)
n+i′fi′jk′

−∑
j′>r

β
(j)
j′

fij′k′ − ∑
i′≤n−r

α
(i)
n+i′fi′j′k′

 .

(6.12)

Plugging the values from Equations (6.11) and (6.12) into Equation (6.10), we get the fol-
lowing expression for fijk:

fijk =
∑
i′,j′,k′

α
(i)
i′ β

(j)
n+j′α

(k)
k′ ai′j′k′ +

∑
k′≤n−r

α
(k)
n+k′fijk′ −

∑
i′≤n−r
k′≤n−r

α
(i)
n+i′α

(k)
n+k′fi′jk′

−
∑
j′>r

k′≤n−r

β
(j)
j′ α

(k)
n+k′fij′k′ +

∑
i′≤n−r
j′>r

k′≤n−r

α
(i)
n+i′β

(j)
j′ α

(k)
n+k′fi′j′k′

+
∑
j′>r

β
(j)
j′ fij′k −

∑
i′≤n−r
j′>r

α
(i)
n+i′β

(j)
j′ fi′j′k +

∑
i′≤n−r

α
(i)
n+i′fi′jk.

(6.13)
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We can similarly express f̂ijk solely in terms of elements of A and F . Starting from Equation
(6.9), we have

f̂ijk :=
∑
k′

α
(k)
k′ dijk′ +

∑
k′≤n−r

α
(k)
n+k′fijk′

=
∑
k′

α
(k)
k′

∑
j′>r

β
(j)
j′ dij′k′ +

∑
j′

β
(j)
n+j′bij′k′

+
∑

k′≤n−r

α
(k)
n+k′fijk′

=
∑
j′>r
k′

β
(j)
j′ α

(k)
k′ dij′k′ +

∑
j′,k′

β
(j)
n+j′α

(k)
k′

∑
i′

α
(i)
i′ ai′j′k′ +

∑
i′≤n−r

α
(i)
n+i′bi′j′k′


+

∑
k′≤n−r

α
(k)
n+k′fijk′

=
∑
i′j′k′

α
(i)
i′ β

(j)
n+j′α

(k)
k′ ai′j′k′ +

∑
i′≤n−r
j′,k′

α
(i)
n+i′β

(j)
n+j′α

(k)
k′ bi′j′k′

+
∑
j′>r
k′

β
(j)
j′ α

(k)
k′ dij′k′ +

∑
k′≤n−r

α
(k)
n+k′fijk′ .

(6.14)

But note that we have ensured, in step I.2.i) of the encoding algorithm, that the top n− r layers
of E and D satisfy the z-constraint, i.e., that for j′ > r,

∑
k′

α
(k)
k′ dij′k′ = fij′k −

∑
k′≤n−r

α
(k)
n+k′fij′k′ . (6.15)

Similarly, since we have ensured, in step II.2.ii) of the encoding algorithm, that for i ≤ n − r
and all j, E and D satisfy the z-constraint, we have that for i′ ≤ n− r,

∑
j′,k′

β
(j)
n+j′α

(k)
k′ bi′j′k′ =

∑
k′

α
(k)
k′

di′jk′ −∑
j′>r

β
(j)
j′ di′j′k′


=
∑
k′

α
(k)
k′ di′jk′ −

∑
j′>r
k′

β
(j)
j′ α

(k)
k′ di′j′k′

=

(
fi′jk −

∑
k′

α
(k)
n+k′fi′jk′

)
−
∑
j′>r

β
(j)
j′

fi′j′k − ∑
k′≤n−r

α
(k)
n+k′fi′j′k′

 ,

(6.16)

so that plugging the values from Equations (6.15) and (6.16) back into Equation (6.14), we get
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the following expression for f̂ijk:

f̂ijk =
∑
i′j′k′

α
(i)
i′ β

(j)
n+j′α

(k)
k′ ai′j′k′ +

∑
i′≤n−r

α
(i)
n+i′fi′jk −

∑
i′≤n−r
k′≤n−r

α
(i)
n+i′α

(k)
n+k′fi′jk′

−
∑

i′≤n−r
j′>r

α
(i)
n+i′β

(j)
j′ fi′j′k +

∑
i′≤n−r
j′>r

k′≤n−r

α
(i)
n+i′β

(j)
j′ α

(k)
n+k′fi′j′k′

+
∑
j′>r

β
(j)
j′ fij′k −

∑
j′>r

k′≤n−r

β
(j)
j′ αn+k′fij′k′ +

∑
k′≤n−r

α
(k)
n+k′fijk′ .

(6.17)

A simple summand-by-summand inspection of Equations (6.13) and (6.17) shows that fijk and

f̂ijk are in fact equal, which concludes the proof.

We can now formally state the algorithm for encoding an entire cell.

Algorithm 6.7. Given a cell with blocks named A, . . . , E as in Figure 6.7:

1. Fill block A with n3 information symbols.

2. For all j, k

a) For i = 1, . . . , n− r, fill bijk with an information symbol

b) For i = n− r+ 1, . . . , n, generate bijk from the component code so that blocks A and
B satisfy the x-constraint (6.2).

3. For all i, j

a) For k = 1, . . . , n− r, fill cijk with an information symbol

b) For k = n− r+ 1, . . . , n, generate cijk from the component code so that blocks A and
C satisfy the z-constraint (6.4).

4. For all i, k

a) For j = 1, . . . , n− r, fill dijk with an information symbol

b) For j = n− r+ 1, . . . , n, generate dijk from the component code so that blocks B and
D satisfy the y-constraint (6.3).

5. Run Algorithm 6.5 on blocks E and F . ♦

3.2 Encoding the whole construction

The previous section gave a method to encode a single cell. It is easy to see that the same rate
can be achieved no matter at which node the cell starts to be filled, as long as the last two blocks
to be filled are contiguous. Using this cell-encoding method, we will encode all the cells of the
3-dimensional staircase successively, keeping track of how many of their blocks have already been
filled. Note that a block can be sent over the channel as soon as it has been filled.

Figure 6.10 shows the order in which cells are encoded. The proximity of a cell to C0

determines its level, formally defined in Definition 6.8. Figure 6.10 shows cells at levels 1, 2 and



3. Encoding and rate 73
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Figure 6.10: Cells in the underlying graph G3, with alternating levels in different colors. Node
(0, 0, 0) is at the bottom left corner of cell C0, which is the first cell to be encoded.

3, with levels of odd parity shaded in light gray, and levels of even parity in dark gray. Looking
at Figure 6.10, one can intuitively see that each level is shaped like a hexagon, with 6 “corner”
cells. As the size of the 3-dimensional staircase grows, most cells will be non-corner cells, and
the rate at which such cells can be encoded will determine the rate of the whole construction.
Structural properties of the 3-dimensional staircase are captured by Claim 1. Definition 6.8 first
formalizes some related notions.

Definition 6.8.

1. Let C be a cell different from C0. The level of C is defined as

level(C) = 1 + d(C,C0)

where the distance d(C,C ′) between two cells is the smallest number of edges between a
node of C and a node of C ′.

2. Call two cells C and C ′ neighbors if they share an edge. Each cell has thus 6 neighbors.

3. Consider a cell C at level i, for i ≥ 1. If C has 1 neighbor at level i − 1, 2 neighbors at
level i and 3 neighbors at level i+ 1, it is called a corner cell. If C has 2 neighbors at each
of levels i− 1, i and i+ 1, it is called a side cell.

Claim 1 gives the number of cells of each type at every level.

Claim 1.

1. Two neighboring cells at level ` have exactly one neighbor in common at level `+ 1.
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2. For all ` ≥ 1, level ` contains 6` cells, 6 of which are corner cells and 6(`−1) are non-corner
cells.

3. If the cells of level ` are numbered 0, . . . , 6` − 1 starting from a corner cell and moving
counterclockwise to a neighboring cell on the same level, then cells 0, `, 2`, 3`, 4` and 5` are
corner cells.

The first part is easily proved by considering two cells adjacent along a given axis, and
enumerating the neighbors of each of those cells. Using this result, the second and third parts
are also easily proved by induction on the level `.

The structural properties of the underlying graph G3 give rise to a natural cell-based encoding
algorithm.

Algorithm 6.9 (Encoding the 3-dimensional staircase:).

1. Encode cell C0.

2. For level ` = 1, 2, . . .

a) Number the cells 0, . . . , 6` − 1 as in Claim 1, starting at a corner cell and moving
counterclockwise.

b) Encode the cells of level ` in this order, starting at cell 1 and ending at cell 6` = 0.♦

When a cell at a given level is encoded, all cells at the previous level are already encoded,
and none of the cells at the next level are. Figure 6.11 shows the four situations that can arise
when a cell at level ` is encoded. The first cell to be encoded at level ` is a side cell and has
exactly two neighbors that are already encoded, so that 3 nodes in the current cell are already
set. This situation is depicted in Figure 6.11a. Any other side cell will have 4 nodes already set
at the time of its encoding, as shown in Figure 6.11b. Any corner cell except the last will have
3 nodes already set as shown in Figure 6.11c, while the last (corner) cell to be encoded at level
` will have 4 nodes already set at the time it is encoded, as shown in Figure 6.11d.

This leads to a simple lower bound on the rate of the 3-dimensional staircase code.

Theorem 6.10. Let C be a [2n, 2n− r]F MDS code with a systematic encoder, and let r3 be the
rate of SC3(C). Then

r3 ≥ 1− 3r

2n
+

r3

2n3
.

Proof. Let r∗3 := 1− 3r
2n + r3

2n3 . The first cell C0 is unconstrained at the time of its encoding, and
contributes 6 new blocks, i.e., 6n3 symbols, out of which n3 + 3n2(n− r) + (2n+ r)(n− r)2 are
information symbols. These 6 blocks are thus encoded at a rate of

rC0 =
n3 + 3n2(n− r) + (2n+ r)(n− r)2

6n3
> r∗3 .

At level ` = 1, C1 contributes 4 new blocks, i.e., 4n3 symbols, out of which 2n2(n− r) + (2n +
r)(n− r)2 are information symbols. These 4 blocks are thus encoded at a rate of

rC1 =
2n2(n− r) + (2n+ r)(n− r)2

4n3
> r∗3 .
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C`2
C`1

C`6`

C`6`−1

(a) Encoding the first cell at level `.

C`i+1

C`i
C`i−1

(b) Encoding an arbitrary cell at level `.

C`i+1

C`i

C`i−1

(c) Encoding any corner cell except the
last at level `.

C`1
C`6`

C`6`−1

(d) Encoding the last corner cell at level `.

Figure 6.11: Four possible situations can arise when encoding cells at level `. Previously encoded
cells are shown in gray, non-encoded cells in white, and the cell under consideration in red.

As for cells C2, . . . , C5, they contribute 3 new blocks each, out of which n2(n−r)+(2n+r)(n−r)2

symbols are information symbols, so that these 3 blocks are encoded at a rate of

rC2
=
n2(n− r) + (2n+ r)(n− r)2

3n3
> r∗3 .

Finally, cell C6 contributes 2 new blocks, corresponding to n2(n−r)+(2n+r)(n−r)2 information
symbols and an encoding rate of

(2n+ r)(n− r)2

2n3
= r∗3 .

At any subsequent level ` > 1, 6 cells (the first cell to be encoded and all corner cells except the
last) contribute 3 blocks each, encoded at a rate of rC2

> r∗3 , and all other 6`− 6 cells contribute
2 new blocks each encoded at a rate r∗3 . As every new block is encoded at an average rate higher
than r∗3 , the result follows.

4 Decoding and performance

We adapt the sliding-window decoder of SC2(C) to SC3(C). In the underlying graph G2 of
SC2(C), we can associate to each node a distance ` from the center (0, 0). A node at distance `
has exactly one neighbor at distance `−1 and one at distance `+ 1. A window of size w starting
at a node v of distance ` consists of the path of length w − 1 starting at v and ending at the
node at distance w − 1 from v and distance `+ w − 1 from (0, 0).

Similarly, in the underlying graph G3 of a 3-dimensional staircase code, we can associate to
each node its distance from the center (0, 0, 0). Then the neighbors of a node v of distance ` are
either of distance ` − 1 or ` + 1. A cone centered at v of radius w is a subgraph containing v,
its neighbor(s) at distance ` + 1, their neighbors at distance ` + 2, all the way to the nodes at
distance w − 1 from v and distance `+w − 1 from (0, 0). Figure 6.12b shows the cone of radius
4 centered at (0, 1, 0), while Figure 6.12a shows the cone of radius 4 centered at (0, 0, 0). This
cone simply includes all nodes at distance up to w − 1 from (0, 0, 0).
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(a) The cone centered at (0, 0, 0). (b) The cone centered at (0, 1, 0).

Figure 6.12: Decoding cones centered at (0, 0, 0) (left) and (0, 1, 0) (right) in G3. The cone of
radius w contains all nodes at distance up to w−1 from the cone center and further than it from
(0, 0, 0).

For a specified number of repetitions nrep, Algorithm 6.11, a natural extension of window-
decoding for two-dimensional staircase codes, describes decoding of a cone in the three-dimensional
structure.

Algorithm 6.11. [Decoding a cone H of radius w centered at a node v of distance `]

Repeat nrep times:

• For i = `+ w − 1, . . . , `+ 1

• For each node u at level i in H

• Jointly decode u with each of its neighbors at level i − 1 along the appropriate
axis. ♦

The receiver sets up the underlying graph G3 and can start decoding as soon as it has received
the blocks corresponding to the nodes at distance at most w− 1 from (0, 0, 0). It decodes simply
by iterating the center of the cone over all nodes of the graph, starting with the closest ones to
the center (0, 0, 0). Depending on the speed of decoding and on the speed of transmission, it
might have to wait from time to time for the reception of more blocks before it can proceed with
the decoding. Algorithm 6.12 describes this decoding procedure.

Algorithm 6.12. [Decoding SC3(C)]

• For ` = 0, 1, . . .

• For each node v at level `

• Define the cone H of radius w centered at v and decode it using Algorithm 6.11. ♦

4.1 A comparison of the performance of SC2(C) and SC3(C)
We simulated two-dimensional and three-dimensional staircase codes with a length 64, 2-error
correcting MDS component code C. For instance, this could be the [64, 49, 6]-extended Reed
Solomon code over F26 .
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Figure 6.13: Gap to capacity of SC2(C) (left) and SC3(C) (right) over the 26-ary symmetric
channel.

We simulate SC2(C) and SC3(C) over a q-ary symmetric channel of parameter ε, where q = 26.
This is the channel over F26 defined by

x 7→
{

x w.p. 1− ε
x+ a, a ∼u F∗26 w.p. ε,

where a ∼u F∗26 indicates that a is an element of F∗26 picked uniformly at random. The q-ary
symmetric channel of parameter ε has capacity

Cq(ε) = 6 + (1− ε) log(1− ε) + ε log
ε

63
bits. (6.18)

We used a window size of 4 for SC2(C) and a cone radius of 4 for SC3(C) and simulated the
decoder for C assuming no misdecodings occur, i.e., C corrects error patterns of weight less than
or equal to 2 and leaves error patterns of higher weight untouched.

Figure 6.13 shows the resulting BER curves for SC2(C) and SC3(C). For the error curve of
SC3(C), we observe 109 symbols for each point corresponding to ε ≥ 0.074 and 1010 symbols for
points corresponding to ε < 0.074. For the error curve of SC2(C), we observe 109 symbols for
each point, coming from codewords of 106 blocks, so that SC2(C) achieves a rate of (see Section
1.1)

r
(q)
2 =

(
1− 10−6

)(
1− 5

32

)
' 0.84375.

This rate is expressed in q-ary symbols per channel use, so that it corresponds in bits per channel
use to r2 = 5.0625.

On the other hand, by Theorem 6.10, we know the rate of SC3(C) is lower-bounded by

r
(q)
3 ≥ 1− 15

64
+

53

2 · 323
= 0.7675.

In bits per channel use, this corresponds to r3 ≥ 4.605.

Table 6.1 shows the additive and multiplicative gap to capacity of SC2(C) and SC3(C) at
2.6 × 10−8. Note that at ε = 0.02, SC2(C) has output BER 2.6 × 10−8 while at ε = 0.073,
SC3(C) has output BER 2× 10−8 so that we have favored the two-dimensional code.
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Table 6.1: Additive and multiplicative gap to capacity of SC2(C) and SC3(C) at 2.6× 10−8.

r C−1
q (r) ε C−1

q (r)− ε 1− ε/C−1
q (r)

SC2(C) 5.0625 0.0861 0.02 0.0661 0.7677
SC3(C) 4.605 0.137 0.073 0.064 0.4672

We see that SC3(C) presents a modest improvement to capacity compared to SC2(C). How-
ever, the very sharp dip in output BER of SC3(C) around ε = 0.074 suggests that it is at very
low BER, in the regime in which staircase codes are competitive, that the advantages of going
to three dimensions will start to appear.



Discussion and open problems 7
We briefly discuss some research directions involving the two generalized product constructions
that we described in this part, and then point out some common underlying themes that arise
in both types of constructions.

Irregular product codes

In Chapter 5, we exhibited a length-50 × 50 irregular product code that had better erasure-
correction capabilities than all regular product codes of similar (and mostly slightly lower) rate.
Our code was “inspired” by the asymptotic families of irregular product codes given by Con-
struction 5.16 and was hand-tuned to result in good (but not necessarily optimal) finite-length
performance. This gives a glimpse into the performance of finite-length irregular product codes
but does not give a systematic way of producing such codes. We would like to develop the
insights of Chapter 5 into a method to produce optimal irregular product codes of any given
parameters. We could then compare these codes to other optimized generalizations of product
codes.

As noted in Chapter 5, our families of irregular product codes are not capacity-achieving on
the erasure channel, because their construction requires a growing field size. However, for an
irregular product code of length N , with square codeword matrices, the field size grows as

√
N

only, rather than linearly in N . A natural extension of our codes would thus be to define them
in higher dimensions. As we grow the dimension of our codes, how small can the field size be
made in the limit? Is it possible to construct capacity-achieving codes in this manner? One
valid question is why not apply the dimensionality idea to standard product codes rather than
irregular product codes. It is easy to see that the only standard product codes based on MDS
codes that achieve asymptotically the same rate as our construction are trivial ones, in the sense
that one dimension is uncoded, say the columns, and all the erasure-correction power lies in the
rows. This basically amounts to simply using the row code, so that no gain is made in terms of
the growth of the field size relative to the growth of the code length. Irregularity thus seems to
be a key element to combine with high-dimensionality to obtain capacity-achieving codes.

We are ultimately interested in obtaining good (hopefully capacity-achieving) codes on more
general channels than the erasure channel. One research direction that runs in parallel to that of

79
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going to higher dimensions is thus that of developing the tools to analyze our codes on channels
that introduce errors rather than erasures.

Staircase codes

One of the main practical drawbacks of extending staircase codes from two to three dimensions is
the fact that the decoding complexity grows with the index of the layer being currently decoded.
As we decode blocks that lie further and further from the center node (0, 0, 0) of the underlying
graph G3, we need to keep in memory the blocks corresponding to the surface of a sphere of
increasing radius. For a given block, the delay between the time it is received and the time
it is declared as decoded also increases with its distance to the graph center. The memory
consumption and decoding delay quickly become prohibitive. One idea to counter this effect is
to use an underlying graph where the “boundary” of new blocks is of constant size. To this end,
we tailbite the underlying graph in one dimension, so that the boundary is a “ring” rather than
a sphere. The resulting graph looks like an infinite number of coupled two-dimensional tailbiting
staircase codes. The result of tailbiting the graph in one dimension is a loss in the rate that
is controlled by the size of the two-dimensional tailbiting staircase. We are currently analyzing
the dimension of two-dimensional tailbiting staircase codes in order to deduce the rate of the
construction1.

Even if we develop a tailbiting version of three-dimensional staircase codes that is more
practical than the unterminated version and does not lose too much in terms of rate, the fact
remains that two-dimensional staircase codes already offer excellent error performance for all
practical purposes, as well as a very low decoding delay. The relevance of three- (and higher-)
dimensional staircase code is mostly of a theoretical nature. It is thus very important to develop
theoretical tools to analyze the performance of these codes, rather than rely on simulations. In [1],
an analysis of stall patterns is given that gives good intuition as to why staircase codes perform
so well, but that relies on several (empirically justified, but unproven) assumptions. One research
direction is to try to formalize this analysis more, so that it is extensible to higher dimensions.
One possibility would be to start by analyzing the erasure case, as we did for irregular product
codes.

Finally, the main goal of our work remains the extension of the two-dimensional staircase
codes of [1] to any arbitrary number of dimensions. The three-dimensional construction we give
here is only the first step toward this goal. The analytical tools that we need to develop to
assess the quality of three-dimensional staircase codes will still need to be extended to allow us
to analyze the performance of staircase codes of any dimension. As the dimension of a staircase
code grows, the error-correction capabilities of the code improve, but this improvement comes
at the expense of a reduction in the rate. What is the dimension achieving the optimal tradeoff,
and how close to capacity does the resulting construction perform? As mentioned in Chapter 6,
going to higher dimensions will allow us to determine how close to capacity staircase codes can
truly operate.

Underpinning concepts

Product codes combine short codes to obtain better, longer codes. Generalizations of product
codes such as the ones we have introduced seek to push this idea further: they allow component
codes to be combined in more complex manners in order to obtain the best performance possible.
In the case of irregular product code, this comes from the extra flexibility provided by tuning the

1We thank Frank Kschischang for the helpful suggestion of tailbiting the 3-dimensional construction.
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rates of component codes. In the case of staircase codes, the interleaving of component codes into
a continuous structure allows the “goodness” of the first block to propagate down the codeword.

For both of these construction, we wish to push this process of combining short codes to get
a better longer code to the limit. We believe that it is high dimensionality that will take us
to this limit, and that high dimensionality is key in bringing out the fundamental features that
determine the quality of the codes obtained from those constructions.

As mentioned in [1], staircase codes can be viewed as generalized LDPC codes with algebraic
component codes. Irregular product codes, on the other hand, can be viewed as graph codes with
algebraic component codes, but the graph is dense. However, as we let the dimension of irregular
product codes grow, they can truly be viewed as codes defined on sparse graphs. Thus both
of our generalized constructions, in the limit, combine the best of both worlds: the interactive
nature of decoding over a sparse graph will allow us to drive down the error probability of the
decoder, while hard decoding of short codes lends itself to efficient hardware implementations.
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Network coding
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Untrusting Network Coding 8
Consider the problem of transmitting data over a communication network, for example, transmit-
ting packets over the Internet. Such a communication network is modeled by a graph where nodes
represent the communicating entities, and edges represent communication channels between the
corresponding entities. In a world where ever-increasing amounts of data are transmitted over
communication networks, a fundamental goal is to maximize throughput over these networks.
Traditionally, data streams over networks are treated like separate entities that must compete
for network resources such as bottleneck links, and nodes use a store-and-forward strategy to
direct various data flows to their appropriate destination. Network coding relies on the simple
yet powerful idea that allowing nodes to process the information they receive by combining data
from separate streams can result in an increase in throughput.

This idea is often illustrated by the following toy example. Consider the communication
network of Figure 8.1, the butterfly network, consisting of two sources S1 and S2, two receivers
R1 and R2, and intermediate nodes A and B, interconnected by unit-capacity links. Each source
Si is multicasting an information bit Xi to both receivers. In the traditional store-and-forward
scenario, the two information flows will time-share the bottleneck link (AB), resulting in a
decrease in throughput for one of the receivers, compared to the optimal throughput of two bits
per time slot it would have received had it been the only receiver in the network. However, if
node A is allowed to send a linear combination of the two source bits over the link, this will
result in an increase in throughput, as the two receivers can simultaneously recover the two bits
they are interested in by solving a full-rank system of equations.

More generally, consider a multicast scenario over a network with unit-capacity edges, where
h sources wish to transmit information to several receivers with min-cut h (here the min-cut of a
receiver refers to the total capacity of a set of edges whose removal disconnects this receiver from
the sources). For a single source-receiver pair in a unicast session over a network, the well-known
min-cut max-flow theorem [37, 38] states that the throughput that can be achieved is equal to the
min-cut separating the source and the receiver. In a multicast session, however, the min-cut to
each receiver may not necessarily be achieved with routing, as various information flows contend

The content of this chapter is joint work with Y. Büyükalp, V.M. Prabhakaran and C. Fragouli, and was
published in [36].
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Figure 8.1: Network coding on the butterfly network.

for the same resources. Surprisingly, Ahlswede et al. [39] showed that a throughput equal to
the min-cut for every receiver can be achieved if nodes in the network are allowed to combine
information rather than simply route it. That is, from the point of view of a given receiver,
network coding allows it to receive as much information as if it had exclusive access to all of
the resources in the network. Furthermore, Li et al. [40] showed that this optimal throughput
can be achieved, in particular, with linear network coding, i.e., by viewing information symbols
as vectors over a field and allowing intermediate nodes to produce linear combinations of these
vectors. This comes, however, at the cost of a growing field size: for an arbitrary number of
sources h multicasting to N receivers over a general network, it is known that the size of a field
over which a linear network code exists must be at least of the order of

√
N [41]. Meanwhile,

the best known upper bound on the required field size is N [42].

1 Network coding over untrusted networks

We consider a set of h non-colocated unit rate sources S1, . . . , Sh that would like to multicast
information to a set of receivers (with min-cut h) over a network G = (V,E) with untrusted
nodes, i.e., where the intermediate network nodes may try to passively eavesdrop and infer the
sources’ information. As communication networks move towards more flexible, temporary and
less controlled structures, communication using such untrusted nodes is common, and we expect
it to become even more so.

One approach to dealing with untrusted networks is to require information-theoretic security,
namely, to require that the network nodes learn nothing about the source messages. We can
indeed use secure network coding designs [43, 44, 45, 46] to protect from a passive eavesdropper,
Eve, who has access to at most k edges of the network; in our setting, where Eve has access
to a network node, k would be the number of incoming edges in Eve’s node. The security
comes at the cost of throughput; namely, applying the techniques of [43]-[46], we cannot hope to
achieve an information rate higher than h − k (the secrecy capacity). Thus, in the presence of
intermediate nodes with high in-degree, namely if Eve’s node has the same min-cut as a receiver,
our throughput becomes zero.

Another approach that has been investigated in [47], [48] is to only require weak security
against the eavesdropper, that is, to allow Eve to learn as many linear combinations of the
source messages as she wants, as long as she cannot infer the value of any given source message.
In this case a throughput equal to the min-cut of the receivers can still be achieved.

We propose to take a different approach to security: we neither require the network nodes to
learn nothing about the source messages nor allow them to learn as many linear combinations
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as they want; instead, we require that they do not learn anything they do not need to know.
Specifically, we ask that each intermediate node only learns as many independent linear combi-
nations of the source messages as it needs to forward (even if it has a much larger number of
incoming edges). On the other hand, we are unwilling to pay the cost in throughput required
for information-theoretical security, and we still require that the receivers experience rate h. To
achieve this, we allow the sources to collaborate with each other, i.e., to exchange information
among themselves; we assume they can achieve this through an auxiliary network H that does
not use any of the edges in G. Our cost is the bandwidth that is used for the source collaboration.

Cui et al. [49] study the problem of ensuring security against a nonuniform wiretapper, that
is, an eavesdropper with access to one of an arbitrary collection of wiretap links sets. They show
that in the case where the location of the wiretap links is unknown, the secrecy capacity cannot
necessarily be achieved. Our problem can be viewed as ensuring a (relaxed notion of) secrecy
against a nonuniform wiretapper, where every set of incoming edges to a node is a potential
wiretap set. For some special class of networks, we show that our relaxed notion of secrecy can
be guaranteed for any such choice of the wiretap set, while still achieving the optimal network
multicast throughput.

To summarize, our problem formulation differs from secure network coding in two ways.
First, we do not ask for security guarantees in the usual sense, since the untrusted nodes still
learn some information about the sent messages - but this information is the minimum possible.
Second, our security does not come at the cost of throughput experience for the receivers, but
at the cost of bandwidth connecting the sources.

If the in-degree of a node is smaller than or equal to the out-degree, our requirement is
by default satisfied; the cases that are interesting are when a node has high in-degree and low
out-degree. Motivated by this observation, we start by examining combination networks, where
the nodes that perform coding have in-degree up to h and out-degree one. For the class of
combination networks, we give schemes that solve our problem by applying the basic principle of
one-time pad encryption. Note that these schemes provide unconditional, information-theoretic
guarantees bounding the amount of information learned by intermediate nodes.

Besides defining a new notion of security over network with untrusted nodes, our contributions
are the following:

1. We provide sufficient and necessary conditions for a family of networks (which we refer to
as canonical combination networks) and exactly characterize the associated cost.

2. We provide sufficient conditions for a more general family of networks and upper bounds
on the associated cost.

The rest of this chapter is organized as follows. Section 2 formalizes our problem statement,
Section 3 solves as an example the butterfly network, Section 4 looks at canonical combina-
tion networks, and Section 5 provides algorithms and bounds for general combination networks.
Finally, Section 6 highlights some research directions building on this work.

2 Problem statement

We consider a directed acyclic graph G = (V,E) with unit capacity edges, with h not-colocated
unit rate sources S1, . . . , Sh, N receivers, and untrusted intermediate network nodes. Each source
Si wishes to multicast its message Xi to all receivers. We assume that the min-cut to each receiver
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Figure 8.2: A combination network with h sources, m bottleneck edges (Ai, Bi), and N ≤
(
m
h

)
receivers, each receiver observing a distinct subset of h B-nodes.

is h, and that G is a minimal network, in the sense that removing any edge reduces the min-cut
for at least one receiver. We also assume that a valid network code over a field of size 2`, that
allows each receiver to decode the h sources, has been designed using any of the methods in the
literature [50]. We have at our disposal an auxiliary network H that can be used to provide
alternative connections for the source nodes. We want to minimize the number of edges in H
that we use, while allowing each intermediate node to learn at most as many linear combinations
of the source messages as its out-degree. We assume that intermediate nodes do not collaborate.

In this paper we will focus our attention exclusively on combination networks that we describe
below; our goal is to formulate necessary and sufficient conditions to ensure secrecy at every
coding point in the combination network, with the additional constraint that no extra network
resources should be used, and no decrease in throughput is allowed.

Combination Network A combination network consists of h unit-rate source nodes, m in-
termediary nodes or coding points A1, . . . , Am controlling m bottleneck links (Ai, Bi), and a
maximum of

(
m
h

)
receivers R1, . . . , RN , each observing h independent linear combinations of the

source messages on a distinct subset of h intermediary nodes Bi, as shown in Fig. 8.2. Note that
coding points are not necessarily connected to all sources.

Definition 8.1. We describe as canonical the set of combination networks that have the following
properties:

(i) h coding points, say A1, . . . , Ah, have in-degree 1 and the only incoming edge for coding
point Ai comes from source Si;

(ii) m− h coding points are connected to all h sources;

(iii) we have all possible N =
(
m
h

)
receivers.

Note that canonical combination networks are minimal.

Security Requirement The following definition formalizes the secrecy requirement that was
described in the introduction.
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Figure 8.3: A secure scheme for the butterfly network.

Definition 8.2. Assume a network that employs a linear network code over a field Fq, with
q = 2`. Let v ∈ V be an intermediary node (i.e., not a source or a receiver node) with in-degree
d1 and out-degree d2, where the incoming edges are carrying messages Y1, . . . , Yd1 . We say the
secrecy requirement at v is met if

I(X1, . . . , Xh;Y1, . . . , Yd1
) ≤ d2 log q.

Apart from enforcing secrecy at intermediate nodes, we also require that source node Si
should not learn any information about the message Xj of a source Sj , for i 6= j.

3 The butterfly network

Here we derive necessary and sufficient conditions for our secrecy requirements to be met over
the butterfly network in Fig. 8.3. Note that the butterfly network is a special case of a canonical
combination network, where h = 2 and m = 3, and where we have replaced two “trivial” coding
points by direct links (Si, Ri). Although this network is extremely simple, we will see that the
core ideas that allow us to characterize secrecy for more general networks are already at play
here.

In Fig. 8.3, with the standard solution, node A receives values X1 and X2 from the two
sources and XORs them to produce the value X1 + X2, which it sends on its outgoing edge.
Thus node A learns two independent linear combinations of the source messages, namely, X1

and X2, and produces one linear combination of the source messages.

A. Sufficient condition for secrecy We claim that it is sufficient to connect the sources with
a unit rate edge of arbitrary direction. Indeed, assume this edge points from S1 to S2. S1 can
generate a unit rate random key k and share it with S2. Both sources XOR k to their outgoing
messages X1 and X2 before sending these to A. The one-time pad k is independent from both
X1 and X2; thus, the incoming edges of A carry, seperately, no information about either source
message. However, by XORing the messages they carry, A will still produce the desired linear
combination X1 +X2.

B. Necessary condition for secrecy We now show that the sufficient condition for secrecy
derived above is optimal.
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Assume there exist two unit-rate directed edges between the sources S1 and S2. The following
lemma provides a lower bound on the communication required between the sources if the secrecy
requirement at node A is to be met.

Lemma 8.3. In the butterfly network, secrecy at the (unique nontrivial) coding point can be
ensured iff the directed edges connecting the sources have a sum-rate of at least unity.

Proof. The if-part follows easily from the sufficiency condition1. To see the only-if-part, for any
pair of nodes V,W in the butterfly network of Fig. 8.3, denote by YVW the message transmitted
on the edge between V and W . Let ri = 1 be the rate of transmission of source Si and rij
the rate of the directed link from source Si to source Sj . The security requirement in this case
amounts to

I(X1X2;YS1,A, YS2,A) ≤ 1. (8.1)

Cut-set bounds for decodability give us

r1 ≤ r1,2 + I(X1;YS1,A) (8.2)

r2 ≤ r2,1 + I(X2;YS2,A), (8.3)

where (8.2) follows from a cut which separates nodes S1 and R1 from nodes S2, A,B, and R2,
and similarly, (8.3) follows from a cut which separates nodes S2 and R2 from nodes S1, A,B,
and R1. From these we get

r1 + r2 − (r1,2 + r2,1) ≤ I(X1;YS1,A) + I(X2;YS2,A)

≤ I(X1;YS1,A, X2) + I(X2;YS2,A)

= I(X1;YS1,A|X2) + I(X2;YS2,A)

≤ I(X1;YS1,A, YS2,A|X2)

+ I(X2;YS1,A, YS2,A)

= I(X1, X2;YS1,A, YS2,A) ≤ 1,

where the last inequality follows from (8.1). This gives us r1,2 + r2,1 ≥ 1, since the sources
transmit at unit-rate.

4 Canonical combination networks

In this section, we build on the butterfly network example to derive matching necessary and
sufficient conditions for canonical combination networks (see Definition 8.1).

4.1 Sufficient conditions for secrecy (and an algorithm)

Theorem 8.4 gives a sufficient condition to ensure secrecy at all coding points in the canonical
combination network. We prove this theorem constructively.

Theorem 8.4. In the canonical combination network, the secrecy requirement can be enforced
at all coding points if the auxiliary network contains a unit-rate tree connecting the sources (the
edges of the tree may have arbitrary directions).

1We may need to consider an appropriately large blocklength so that the links between the sources can carry
integral rate keys. Such details are omitted in the sequel.
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Proof. At the coding points of in-degree 1, the secrecy requirement is trivially met. Consider a
coding point A of in-degree h and suppose there exists a unit-rate directed tree T connecting
the sources.

For edge e = (Si, Sj) ∈ T , call Si the “tail” of the edge and Sj its “head”. Assume that the

linear combination that A must send on its outgoing edge is
∑h
i=1 aiXi, where the ai are scalars

over F2` . The secure coding scheme works as follows:

1. Over each edge e ∈ T , the tail generates a key ke and sends it to the head. Keys for
different edges are independent.

2. Node Si sends to A the value aiXi +
∑
e:Si∈e ke, i.e., it sends its scaled message aiXi added

to all keys it sees on its neighboring (whether incoming or outgoing) edges. Let us call the
sum of all keys seen by a node its node key.

3. Node A receives {aiXi +
∑
e:Si∈e ke}hi=1, i.e., h linear combinations; it adds them and sends

the result to B.

To see that the scheme actually produces the desired linear combination on the outgoing edge
of A, note that what A computes is the sum

h∑
i=1

(
aiXi +

∑
e:Si∈e

ke

)
=

h∑
i=1

aiXi +

(
h∑
i=1

∑
e:Si∈e

ke

)
=

h∑
i=1

aiXi,

since the summation
∑h
i=1

∑
e:Si∈e ke performs in fact a double counting of the tree edges.

We have restricted our attention to one coding point A, but it is easy to see that unless the
intermediate nodes collude, the same keys can be used for ensuring secrecy with respect to every
intermediate node at no additional transmission cost.

Example 8.5. Fig. 8.4 shows the application of the tree scheme in a simple combination net-
work. �

4.2 Necessary condition for secrecy

Theorem 8.6 gives a lower bound on the rate of information exchange that must take place among
the sources.

Theorem 8.6. A necessary condition for secrecy at all points of the canonical combination
network is that, in the auxiliary network H that connects the sources, the (undirected) min-cut
separating every pair of sources in H has at least unit value.

Proof. Suppose to the contrary that there is a cut which partitions the sources into M1 and M2

such that the min-cut is less than unity, i.e.,∑
(i,j):Si∈M1, Sj∈M2

(rij + rji) < 1. (8.4)

We may assume without loss of generality that S1 ∈ M1 and S2 ∈ M2. Let A1, . . . , Ah be the
h coding points of in-degree 1, each of them controlling the bottleneck link (Ai, Bi) and let A
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Figure 8.4: A secure scheme for a canonical combination network. Only a subset of the coding
points is depicted.

be any coding point of in-degree h controlling the bottleneck link (A,B). We will prove that
secrecy at A cannot hold if all receivers decode correctly, thereby leading to a contradiction.

Recall that each of the
(
m
h

)
receivers is connected to a distinct subset of h second-layer

intermediary nodes. In particular, consider the receiver that observes the set {B1, B3, . . . , Bh, B}
(where B2 does not appear): call this receiver R1. Also consider the receiver that observes the
set {B2, B3, . . . , Bh, B} (where B1 does not appear): call this receiver R2. Now we may view
the network connecting the sources and the receivers R1, R2 as follows: we have two (composite)
sources, namely, M1 and M2. There are |M1|−1 unit rate links from source M1 and |M2|−1 unit
rate links from source M2 to receivers R1 and R2 (given by the links through B3, . . . , Bh). There
is a unit rate link from M1 to R1 and similarly another from M2 to R2 (corresponding to B1 and
B2, respectively). Finally, there is a coding point A with a unit rate edge to B. Let YM1,A and
YM2,A denote, respectively, what the composite sources M1 and M2 send to A. Proceeding with
the cut-set bounds for decodability at the receivers as in the proof of Lemma 8.3, we can write

|M1| ≤ (|M1| − 1) +
∑

(i,j):Si∈M1, Sj∈M2

rij + I(M1;YM1,A)

|M2| ≤ (|M2| − 1) +
∑

(i,j):Si∈M1, Sj∈M2

rji + I(M2;YM2,A),

Proceeding as before we get

2−
∑

(i,j):Si∈M1, Sj∈M2

(rij + rji) ≤ I(S1, S2;YS1,A, YS2,A).

But, substituting from (8.4), we have that the left hand side is strictly greater than one. This
violates the secrecy requirement, a contradiction.

Actually, it is easy to verify that the necessary condition in the statement of Theorem 8.6 is
also a sufficient condition. The tree scheme of section 4.1 is thus one of many possible schemes
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that ensure secrecy at all coding points, with the additional property that it minimizes the
number of edges of H. Note that an additional attractive feature of the tree scheme is that in a
connected network, one can always find a spanning tree in polynomial time.

5 General combination networks

We now discuss sufficient conditions for general combination networks, show how these reduce
to a combinatorial problem, and propose a heuristic algorithm for its solution. Note that the
combinatorial problem defined in this section does not provide necessary conditions for secrecy
over general combination networks. Indeed, in Section 5.4 we give a simple counterexample that
shows that for some network configurations, the optimal solution to the combinatorial problem
is strictly suboptimal in terms of of the number-of-edges/rate-of-information-exchange of the
auxiliary network.

5.1 Sufficient conditions as a combinatorial problem

We saw in the previous section that a sufficient condition for canonical networks is to use the
auxiliary network H to create a tree (of arbitrary orientation). This tree in canonical networks is
used only once, although we may have an arbitrary number m of (non-colluding) coding points;
intuitively, the tree allows each source to have a “node key” such that the keys of all sources sum
to zero, while jointly, the h keys have entropy h − 1. The same source keys can be used for all
coding points since the coding points are not colluding.

In non-canonical combination networks, what changes is that coding points may be connected
to any subset of the h sources. A sufficient condition in this case would also be that, if a coding
point i is connected to a subset Ci ⊆ [1 : h] of the h sources (call it its parent) with |Ci| = k, say
sources S1, . . . , Sk, these specific k sources are connected in H with a unit rate tree Ti. Indeed,
if such a tree exists, we can apply the same algorithm as in the previous section, and create keys
so that the node keys of sources S1, . . . , Sk sum to zero. However, now the same source keys can
only be used for the coding points that have common parents. If our network has multiple coding
points j, and the parents of different coding points are different subsets of the source nodes, each
such subset needs to be connected directly with a tree Tj , for our desings to apply. Note that
the trees Tj do not need to be disjoint; in fact, if we want to minimize the use of resources, we
should select the trees Tj so that jointly they use the minimum number of edges, as Example 8.7
illustrates.

Example 8.7. Consider the network in Fig. 8.5a and two coding points, the first connected to
the subset C1 = {S1, S2} of the sources and the second to the set C2 of all sources. To apply
our coding scheme, we can connect the source nodes as in Fig. 8.5a in two trees, and use the
coding scheme shown in the same figure. Alternatively, we can use the more efficient scheme in
Fig. 8.5b: in this second scheme we use edge (S1, S2) for both trees. �

Note that what interests us now is no longer the number m of coding points, but rather
the number n of types of coding points, that is, the number of distinct subsets of the sources,
of cardinality larger than 1, seen by various coding points (for coding points seeing exactly one
source, the secrecy requirement is trivially satisfied). For example, for the canonical combination
network, n = 1. Typically, n could be much smaller than h, which motivates expressing the
minimal connectivity requirements at the sources in terms of n. Thus, our sufficient condition is
reduced to the following combinatorial problem.



94 Untrusting Network Coding

S1
k1

S2
k2

k4

S3
k3

S4

X
1
+
k

1

X
2
+
k
1

A1

X
1 +
k
4

X
2 +

k
2

X
3

+
k

2
+
k

3
+
k

4

X
4

+
k
3

A2

X1 +X2 X1 +X2 +X3 +X4

(a) Disjoint trees.

S1
k1

S2
k2

S3
k3

S4

X
1
+
k

1

X
2
+
k
1

A1
X

1 +
k
1

X
2 +

k
1
+
k

2

X
3

+
k

2
+
k

3

X
4

+
k
3

A2

X1 +X2 X1 +X2 +X3 +X4

(b) Overlapping trees.

Figure 8.5: The tree scheme for general combination networks. Only a subset of the coding
points is depicted.

Problem 8.8 (combinatorial formulation). Given h nodes and n sets Ci ⊆ [1 : h], create a graph
H that connects the h nodes with a set of edges EH of cardinality as small as possible, so that
the induced subgraph on each set Ci contains a spanning tree.

This problem can be visualized with the use of Venn diagrams, as the following example
illustrates.

Example 8.9. Fig. 8.6 depicts the case of n = 3 sets and 8 source nodes; the constructed graph
H has the property that each induced subgraph on Ci contains a spanning tree. Here, connecting
the sources through a single tree is not sufficient. �

C1 C2

C3

Figure 8.6: Venn diagram representation of our requirements. Dots represent sources, and sets
Ci correspond to subsets of sources characterizing types of coding points.

5.2 A method to construct H

As seen above, we may partition the set of h sources into parts of the form

PI =

(⋂
i∈I

Ci

)⋂⋂
j /∈I

C̄j

 , where I ⊆ [1 : n].
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Definition 8.10. A non-empty part PI is said to be active.

It is clear that for a given valid H (i.e., an H that guarantees secrecy), without increasing the
number of edges, we may replace the induced subgraph on an active part with any spanning tree
on the nodes of that part. Thus, without loss of generality, when convenient we may treat each
active part as containing only a single node which stands in for a spanning tree on the nodes of
the part.

Definition 8.11. The level of a part PI is the cardinality of I.

Definition 8.12. An active part PI is said to lead an active PJ if I ⊇ J . In this case, PJ is said
to follow PI .

Definition 8.13. An active PI is called a leader if it does not follow any other active part.
Otherwise, it is called a follower.

The following steps will produce a valid graph H:

1. Classify active parts into leaders and followers.

2. Form a spanning tree inside each active part.

3. Add an edge between the tree of each follower and the tree of one of the leaders it follows.

4. Connect the trees of the leaders such that all pairs of leaders PI , PJ with I∩J = {i1, . . ., ik}
non-empty have, for each j = 1, . . ., k, a path between them in the subgraph induced by
Cj . That is, we add edges between some pairs of leaders such that the leaders in each
set Cj are connected in the subgraph induced by Cj .

Note that while the first step is unambiguous, there are several potential choices for the next
three. We already argued that the choices made in step two do not affect the number of edges in
the resulting H. To see that the same holds for step three, note that given any valid H, we may
perform the following operations without increasing the number of edges and without affecting
connectivity within each Cj , i.e., without affecting the validity of H:

(i) Every follower that does not have an edge to a leader it follows may have one of its edges
removed and replaced by an edge to one of the leaders it follows (note that being a follower
implies that it has at least one edge).

(ii) Every follower PI that has an edge to a leader PJ it follows and has another edge to some
part PL (PL could be another leader it follows) may have this second edge removed and
replaced by an edge between PJ and PL. Note that after these two steps every follower has
only one edge, connecting it to one of the leaders it follows.

(iii) Now if a follower has more than one leader, then we may remove this single edge and
replace it with another edge to any one of the leaders it follows.

As for the choices made in the last step, they may indeed affect the quality of H produced;
we will give upper bounds on the number of edges in Section 5.3.
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5.3 Upper bound on the needed number of edges

We will use the lemma below to derive an upper bound on the number of edges produced by the
above algorithm.

Lemma 8.14. The number of leaders is at most

(
n

bn/2c

)
.

Proof. Let Nk =
(
n
k

)
be the number of parts of level k. The proof follows from arguing that the

largest number of leaders results when all parts of level bn/2c (the level with maximal size) are
the only leaders.

If there are, say, m leaders in a level k, we can argue that this will prevent at least m parts
from being leaders in a level p, where p is such that Np ≥ Nk. Suppose k > p. Consider the
graph where the parts are the vertices and an edge exists between PI and PJ if I ⊂ J or J ⊂ I.
The number of edges between a part at level k and the parts at level p is

(
k
p

)
, and there are Nk

parts at level k, giving rise to Nk
(
k
p

)
edges between the two levels. By symmetry, each part at

level p has Nk
(
k
p

)
/Np edges from level k. The m leaders at level k are responsible for m

(
k
p

)
edges

to level p. Hence, the number of parts at level p who are ruled out from being leaders is at least

m
(
k
p

)
Nk
(
k
p

)
/Np

= m
Np
Nk
≥ m.

A similar counting argument holds for k < p.

Thus, if the only active parts fall in two levels, say, levels k1 and k2, the number of leaders
is at most max(Nk1

, Nk2
). Now, suppose the active levels are k1, k2, k3 with Nk1

≤ Nk2
≤ Nk3

.
Suppose there are m1 leaders in level k1 and m2 in level k2. Then, the m1 leaders in level k1

will preclude at least m1 parts in level k2 from being leaders. These m1 parts in level k2 along
with the m2 leaders in the same level will preclude at least m1 +m2 parts from being leaders in
level k3. Thus, the largest number of leaders possible is Nk3

= max(Nk1
, Nk2

, Nk3
). This clearly

extends to any number of active levels and completes the proof.

Clearly, a trivial upper bound on the number of edges needed in the graph H is
(
h
2

)
, i.e., if

H is the complete graph on the h source nodes. For the cases where n < h, we can improve on
this upper bound using the steps in Section 5.2.

Theorem 8.15. The number of edges in an optimal valid graph H is not larger than

h+ (n− 1)

(
n− 1

bn−1
2 c

)
− n.

Proof. We will follow our algorithm. Let h source nodes belong to l leaders and f followers.
Then the total number of active parts is f + l. Let hi denote the number of source nodes in part

Pi. In step 2, where we create a spanning tree in each part, we add

f+l∑
i=1

hi−1 = h− (f + l) edges.

Then, in step 3, we connect each follower to any one of the leaders it follows. As a result, the
total number of edges becomes h− (f + l) + f = h− l. Now, in step 4, edges are added so that
leaders in each set Ci are connected to each other in the subgraph induced by Ci. At worst, this
can be done by connecting the leaders of each set Ci, without sharing any edge between different
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C2

C1

C3

Figure 8.7: Tree in the case where n = 3 and P[1:3] is active.

sets. Let li represent the number of leaders in set Ci. Thus, in step 4, we will have at most∑n
i=1(li − 1) edges. But, l ≥ li for all i ∈ 1, 2, ..., n and thus, l ≥ max(li). Using these facts, the

number of edges in an optimal valid graph H is at most

h− l +

n∑
i=1

(li − 1) ≤ h+

n∑
i:li 6=max(li)

li − n.

But li is at most the largest number of leaders PI with i ∈ I, and by Lemma 8.14,

li ≤
(
n− 1

bn−1
2 c

)
.

Thus, an upper bound on the number of edges of H is

h+ (n− 1)

(
n− 1

bn−1
2 c

)
− n.

Note that for the canonical combination network case, where n = 1, this bound is tight since
it reduces to h− 1. Similarly, the bound reduces to h− 1 for n = 2, so that we know that a tree
is sufficient for combination networks with two types of coding points of in-degree larger than 1.
The following lemma gives an optimal solution for the case where some coding point sees all h
sources.

Lemma 8.16. If part P[1:n] =
⋂
i=1...n Ci is active, then it is sufficient to use a single tree on

the h sources nodes.

Proof. Clearly P[1:n] is the only leader and all other parts are followers, thus step 4 is trivial and
for step 3 it suffices to connect with a single edge the tree of each active follower with the tree
in P[1:n]. Fig. 8.7 shows an example for n = 3.

5.4 Counterexample to the optimality of the combinatorial problem

As mentioned at the beginning of this section, a solution to Problem 8.8 is a valid solution for
secrecy over combination networks, but it may not be optimal in terms of the required amount
of communication among the sources. To see this, consider the combination network of Figure
8.8a, where a subset of coding points is shown. Because of coding point A1, our solution requires
the existence of a tree, i.e., an edge, connecting S1 and S2. Similarly, because of A2, an edge
must exist between S1 and S3, and because of A3, an edge must exist between S2 and S3. This
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S1
k1

S2
k2

k3

S3

A1 A2 A3

(a) An optimal solution to Problem 8.8.

S1
k1

S2

k1

S3

A1 A2 A3

(b) A feasible solution that ensures secrecy.

Figure 8.8: A network with three sources and three types of degree-2 coding points, where
optimally solving Problem 8.8 does not provide an optimal solution for secrecy.

corresponds to a unit-rate transmission between each pair of sources, and to the use of three
distinct random keys. However, the solution in Figure 8.8b, where S1 transmits, via a global
tree, the same key to S2 and S3 to be used for all three coding points, is clearly better in terms of
transmission rate between the sources and cost of randomness. An optimal solution to Problem
8.8 is therefore not always the most efficient way to ensure secrecy at all coding points; this is
because Problem 8.8 considers various types of coding points as independent problems, which is
not necessarily optimal. As it is not even clear how to obtain such an optimal solution, it does
not seem worthwile to further explore this research direction.

6 Discussion and open problems

We defined and started exploring a new definition of security relevant for networks that per-
form linear network coding: can we allow each intermediate node to only learn as many linear
combinations as it needs to forward, although it may have a much larger incoming degree? We
showed that this is possible for combination networks by providing an auxiliary network H that
connects the sources; we derived sufficient and necessary conditions for canonical networks, and
showed that for general combination networks, the sufficient conditions reduce to a combinatorial
problem.

Combination networks have the special property that coding points directly receive input
from the source nodes and not other coding points; it is easy to find examples of networks that
do not meet this condition, and where we cannot meet our security conditions by only connecting
the source nodes with an auxiliary network H. To deal with such networks, we may need to
allow the auxiliary network H to also connect coding points inside the network (the source nodes
can be viewed as a special class of coding points), or to sacrifice some of the min-cut rate.

In general, the tradeoff between throughput and amount of information learned by an eaves-
dropper is an interesting research direction. So far, only the extreme points of this tradeoff have
been studied, namely, the case where Eve can learn nothing but the throughput to the receivers is
decreased proportionally to the number of links she can tap; and the case where the throughput
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is unaffected but Eve can learn as many linear combinations of the sources as she wants, provided
that she cannot retrieve the value of an individual source symbol. The problem that we study
here is thus that of achieving another specific point in the achievable tradeoff range, where Eve
learns exactly as many linear combinations as her out-degree. It would be interesting to study
this tradeoff with more generality, namely to determine, for a required minimum throughput to
the receivers, how much information we can hide from an eavesdropper located on a node, and
to devise methods to achieve the corresponding tradeoff.
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