Euclidean Distance Matrix Completion for Ad-hoc Microphone Array Calibration

This paper addresses the application of missing data recovery via matrix completion for audio sensor networks. We propose a method based on Euclidean distance matrix completion for ad-hoc microphone array location calibration. This method can calibrate a full network from partial connectivity informa- tion. The pairwise distances of microphones in close proximity are estimated using the coherence model of the diffuse noise field. The distance matrix of the ad-hoc network is constructed where the distances of the microphones above a threshold are missing. We exploit the low-rank property of the squared distance matrix and apply a matrix completion method to recover the missing entries. In order to constrain the Euclidean space geometry, we propose the additional use of the Cadzow algorithm for matrix completion. The applicability of the proposed method is evaluated on real data recordings where a significant improvement over the state-of-the-art is achieved.

Published in:
Proceedings IEEE International Conference on Digital Signal Processing
Presented at:
IEEE International Conference on Digital Signal Processing (DSP'2013), Santorini, Greece

 Record created 2013-08-11, last modified 2018-03-18

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)