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Abstract

Parametric polymorphism enables code reuse and type
safety. Underneath the uniform interface exposed to pro-
grammers, however, its low level implementation has to
cope with inherently non-uniform data: value types of dif-
ferent sizes and semantics (bytes, integers, floating point
numbers) and reference types (pointers to heap objects).
On the Java Virtual Machine, parametric polymorphism is
currently translated to bytecode using two competing ap-
proaches: homogeneous and heterogeneous. Homogeneous
translation requires boxing, and thus introduces indirect ac-
cess delays. Heterogeneous translation duplicates and adapts
code for each value type individually, producing more byte-
code. Therefore bytecode speed and size are at odds with
each other. This paper proposes a novel translation that sig-
nificantly reduces the bytecode size without affecting the
execution speed. The key insight is that larger value types
(such as integers) can hold smaller ones (such as bytes) thus
reducing the duplication necessary in heterogeneous trans-
lations. In our implementation, on the Scala compiler, we
encode all primitive value types in long integers. The result-
ing bytecode approaches the performance of monomorphic
code, matches the performance of the heterogeneous trans-
lation and obtains speedups of up to 22x over the homoge-
neous translation, all with modest increases in size.

Categories and Subject Descriptors D.3.3 [Language

Constructs and Features]: Polymorphism; E.2 [Object rep-

resentation]

Keywords Miniboxing; Specialization; Data Representa-
tion; Parametric Polymorphism; Erasure; Scala; Java Virtual
Machine; Bytecode; Generics
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1. Introduction

Parametric polymorphism allows programmers to describe
algorithms and data structures irrespective of the data they
operate on. This enables code reuse and type safety. For the
programmer, generic code, which uses parametric polymor-
phism, exposes a uniform and type safe interface that can be
reused in different contexts, while offering the same behav-
ior and guarantees. This increases productivity and improves
code quality. Modern programming languages offer generic
collections, such as linked lists, array buffers or maps as part
of their standard libraries.

But despite the uniformity exposed to programmers, the
lower level translation of generic code struggles with funda-
mentally non-uniform data. To illustrate the problem, we can
analyze the contains method of a linked list parameterized
on the element type, T, written in the Scala programming
language:

def contains(element: T): Boolean = ...

When translating the contains method to lower level
code, such as assembly or bytecode targeting a virtual ma-

chine, a compiler needs to know the exact type of the param-
eter, so it can be correctly retrieved from the stack, registers
or read from memory. But since the list is generic, the type
parameter T can have different bindings, depending on the
context, ranging from a byte to a floating point number or
a pointer to a heap object, each with different sizes and se-
mantics. So the compiler needs to bridge the gap between
the uniform interface and the non-uniform low level imple-
mentation.

Two main approaches to compiling generic code are in
use today: heterogeneous and homogeneous. Heterogeneous

translation duplicates and adapts the body of a method for
each possible type of the incoming argument, thus producing
new code for each type used. On the other hand, homoge-

neous translation, typically done with erasure, generates a
single method but requires data to have a common represen-
tation, irrespective of its type. This common representation
is usually chosen to be a heap object passed by reference,
which leads to indirect access to values and wasteful data
representation. This, in turn, slows down the program exe-



cution and increases heap requirements. The conversions be-
tween value types and heap objects are known as boxing and
unboxing. A different uniform representation, typically re-
served to virtual machines for dynamically typed languages,
uses the fixnum [44] representation. This representation can
encode different types in the same unit of memory by reserv-
ing several bits to record the type and using the rest to store
the value. Aside from reducing value ranges, this representa-
tion also introduces delays when dispatching operations, as
the value and type need to be unpacked. An alternative is the
tagged union representation [17], which does not restrict the
value range but requires more heap space.

C++ [38] and the .NET Common Language Runtime
[5, 20] have shown that on-demand heterogeneous transla-
tions can obtain good performance without generating sig-
nificant amounts of low level code. However, this comes
at a high price: C++ has taken the approach of on-demand
compile-time template expansion, where compiling the use
of a generic class involves instantiating the template, type
checking it and generating the resulting code. This provides
the best performance possible, as the instantiated template
code is monomorphic, but undermines separate compilation
in two ways: first, libraries need to carry source code, namely
the templates themselves, to allow separate compilation, and
second, multiple instantiations of the same class for the same
type arguments can be created during different compilation
runs, and need to be eliminated in a later linking phase. The
.NET Common Language Runtime takes a load-time, on-
demand approach: it compiles generics down to bytecode
with type information embedded, which the virtual machine
specializes, at load-time, for the type arguments. This pro-
vides good performance at the expense of more a complex
virtual machine and lock-step advancements of the type sys-
tem and the virtual machine implementation.

In trying to keep separate compilation and virtual ma-
chine backward compatibility, the Java programming lan-
guage [23] and other statically typed JVM languages [1–4]
use homogeneous translations, which sacrifice performance.
Recognizing the need for execution speed, Scala special-

ization [13] allows an annotation-driven, compatible and
opportunistic heterogeneous transformation to Java byte-
code. Programmers can explicitly annotate generic code to
be transformed using a heterogeneous translation, while the
rest of the code is translated using boxing [10]. Specializa-
tion is a compatible transformation, in that specialized and
homogeneously translated bytecode can be freely mixed. For
example, if both a generic call site and its generic callee are
specialized, the call will use primitive values instead of box-
ing. But if either one is not specialized, the call will fall back
to using boxed values. Specialization is also opportunistic in
the way it injects specialized code into homogeneous one.
Finally, being annotation-driven, it lets programmers decide
on the tradeoff between speed and code size.

Unfortunately the interplay between separate compilation
and compatibility forces specialization to generate all het-

erogeneous variants of the code during the class compila-
tion instead of delaying their instantiation to the time they
are used, like C++ does. Although in some libraries this be-
havior is desirable [9], generating all heterogeneous variants
up front means specializing must be done cautiously so the
size of the generated bytecode does not explode. To give a
sense of the amount of bytecode produced by specialization,
for the Scala programming language, which has 9 primitive
value types and 1 reference type, fully specializing a class
like Tuple3 given below produces 10

3 classes, the Carte-
sian product of 10 variants per type parameter:

class Tuple3[A, B, C](a: A, b: B, c: C)

In this paper we propose an alternative translation, called
miniboxing, which relies on a very simple insight to reduce
the bytecode size by orders of magnitude: since larger value
types (such as integers) can hold smaller value types (such as
bytes), it is enough for a heterogeneous translation to gener-
ate variants for the larger value types. In our case, on the
Java Virtual Machine, miniboxing reduces the number of
code variants from 10 per type parameter to just 2: reference
types and the largest value type in the language, the long in-
teger. In the Tuple3 example, miniboxing only generates 23

specialized variants, two orders of magnitude less bytecode
than specialization. Miniboxed code is faster than homoge-
neous code, as data access is done directly instead of using
boxing. Unlike fixnums and tagged unions, miniboxing does
not attach the type information to values but to classes and
methods and thus leverages the language’s static type system
to optimize storage. Furthermore, the full miniboxing trans-
formation eliminates the overhead of dispatching operations
by using load-time class cloning and specialization (§6). In
this context, our paper makes the following contributions:

• Presents an encoding that reduces the number of variants
per type parameter in heterogeneous translations (§3) and
the code transformations necessary to use this encoding
(§4);

• Optimizes bulk storage (arrays) in order to reduce the
heap footprint and maintain compatibility to homoge-
neous code, produced using erasure (§5);

• Utilizes a load-time class transformation mechanism to
eliminate the cost of dispatching operations on encoded
values (§6).

The miniboxing encoding can reduce duplication in any
heterogeneous translation, as long as the following criteria
are met:

• The value types of the statically typed target language can
be encoded into one or more larger value types (which
we call storage types) - in the work presented here we
use the long integer as the single storage type for all of
Scala’s primitive value types;



• Conversions between the value types and their storage
type do not carry significant overhead (no-op conversions
are preferable, but not required);

• The set of operations allowed on generic values in the
language is fixed (similar to fixing the where clauses in
PolyJ [8]);

• All value types have boxed representations, in order to
have a common data representation between homoge-
neous and miniboxed code. This representation is used
to ensure compatibility between the two translations.

In order to optimize the code output by the miniboxing
transformation, this paper explores the interaction between
value encoding and array optimization on the HotSpot Java
Virtual Machine. The final miniboxing transformation, im-
plemented as a Scala compiler plug-in1, approaches the per-
formance of monomorphic code, matches the performance
of specialization, and obtains speedups of up to 22x over the
current homogeneous translation, all with modest increases
in bytecode size (§7).

The paper will first explain the specialization transfor-
mation (§2) upon which miniboxing is built. It will then go
on to explain the miniboxing encoding (§3), transformation
(§4), runtime support (§5) and load-time specialization (§6).
It will finish by presenting the evaluation (§7), surveying the
related work (§8) and concluding (§9).

2. Specialization in Scala

This section presents specialization [13], a heterogeneous
translation for parametric polymorphism in Scala. Minibox-
ing builds upon specialization, inheriting its main mecha-
nisms. Therefore a good understanding of specialization and
its limitations is necessary to motivate and develop the mini-
boxing encoding (§3) and transformation (§4).

There are two major approaches to translating paramet-
ric polymorphism to Java bytecode: homogeneous, which
requires a common representation for all values, and hetero-
geneous, which duplicates and adapts code for each type.
By default, both the Scala and Java compilers use homoge-
neous translation with each value type having a correspond-
ing reference type. Boxing and unboxing operations jump
from one representation to the other. For example, int has
java.lang.Integer as its corresponding reference type.

Boxing enables a uniform low level data representation,
where all generic type parameters are translated to refer-
ences. While this simplifies the translation to bytecode, it
does come with several disadvantages:

• Initialization cost: allocating an object, initializing it and
returning a pointer takes longer than simply writing to a
processor register;

• Indirect access: Extracting the value from a boxed type
requires computing a memory address and accessing it
instead of simply reading a processor register;

1 Available at http://scala-miniboxing.org/.

• Undermined data locality: Seemingly contiguous mem-
ory storages, such as arrays of integers, become arrays of
pointers to heap objects, which may not necessarily be
aligned in the memory. This can affect cache locality and
therefore slow down the execution;

• Heap cost: the boxed object lives on the heap until it is
not referenced anymore and is garbage collected. This
puts pressure on the heap and triggers garbage collection
more often.

To eliminate the overhead of boxing, the Scala com-
piler features specialization: an annotation-driven, compat-
ible and opportunistic heterogeneous transformation. Spe-
cialization is based on the premise that not all code is worth
duplicating and adapting: code that rarely gets executed or
has little interaction with value types is better suited for ho-
mogeneous translation. Since a compile-time transformation
such as specialization has no means of knowing how code
will be used, it relies on programmers to annotate which
code to transform. Recent research in JavaScript interpreters
[14, 45] uses profiling as another method of triggering com-
patible specialization of important traces in the program.

With specialization, programmers explicitly annotate the
code to be transformed heterogeneously (§2.1 and §2.2) and
the rest of the program undergoes homogeneous translation.
The bytecode generated by the two translations is compat-
ible and can be freely mixed. This allows specialization to
have an opportunistic nature: it injects specialized code, in
the form of specialized class instantiations and specialized
method calls (§2.3), but the injected entities are always com-
patible with the homogeneous translation (§2.4). However,
the interaction with separate compilation leads to certain
limitations that miniboxing addresses (§2.5).

2.1 Class Specialization

To explain how specialization applies the heterogeneous
translation, we can use an immutable linked list example:

class ListNode[@specialized T]

(val head: T, val tail: ListNode[T]) {

def contains(element: T): Boolean = ...

}

Each ListNode instance stores an element of type T and
a reference to the tail of the list. The null pointer, placed
as the tail of a list, marks its end. A real linked list from
the Scala standard library is more sophisticated [26, 34], but
for the purpose of describing specialization this example is
sufficient. It is also part of the benchmarks presented in the
Evaluation section (§7), as it depicts the behavior of non-
contiguous collections that require random heap access.

The ListNode class has the generic head field, which
needs to be specialized in order to avoid boxing. To this
end, specialization will duplicate the class itself and adapt its
fields for each primitive value type. Figure 1 shows the class
hierarchy created: the parent class is the homogeneous trans-
lation of ListNode, which we also call generic class. The
10 subclasses are the specialized variants. They correspond



to the 8 Java primitive types, Unit (which is Scala’s object-
oriented representation of void) and reference types2. Each
of these specialized classes contains a head field of a prim-
itive type, and inherits (or overrides) methods defined in the
generic class. So far, specialization duplicated the class and
adapted the fields, but in order to remove boxing the methods
also need to be transformed heterogeneously.

2.2 Method Specialization

In the specialized variants of ListNode, the contains

method needs to be duplicated and adapted to accept prim-
itive values as arguments instead of their boxed represen-
tations. Since the contains method is already inherited
from the generic class, it actually needs to be overridden.
But it cannot be overridden, because its signature after
the erasure [10] transformation expects a reference type
(java.lang.Object) and the specialized signature ex-
pects a primitive value. Therefore specialized methods need
to be name-mangled, giving birth to new methods such as
contains_I for Int and contains_J for Long.

The contains method from the generic parent class will
be inherited by all the specialized classes. But its code is
generic and does not make use of primitive values, which
is suboptimal. Therefore each specialized class overrides
the generic contains and redirects it to the corresponding
specialized variant, such as contains_I or contains_J.
The redirection is done by unboxing the argument received
by contains and calling the specialized method with the
value type, as shown in Figure 2. The same transformation
is applied for accessors of specialized fields, such as head
in the ListNode class.

2.3 Opportunistic Tree Transformation

The program code can only refer to generic classes and
methods, not their specialized variants. This happens be-
cause the specialization phase, which creates the variants,
runs after the type checking phase. Thus the program is
checked only against the generic classes and methods. But
this does not mean specialization duplicates code in vain:
aside from creating the variants, specialization also injects
the specialized variants in the program code.

The last step in eliminating boxing is rewriting the Scala
abstract syntax tree (AST) to instantiate specialized classes
and use specialized methods. We call this process rewiring.
Rewiring works across separate compilation, as the special-
ization metadata is written in the generated bytecode. This
makes is possible to use specialized code from libraries.

The instantiation rewiring injects specialized classes
when the new keyword is used. When the instantiated class
has a more specific specialized variant for the given type
arguments, the instantiation is rewired. Despite constructing
a different class, the types in the AST are not adjusted to
reflect this: In the example given below, although the instan-
tiation is rewired to new ListNode_I, the type of node1

2 Technical note: For a single type parameter the reference variant will not
be generated and the generic class will be used instead.

Figure 1. Class hierarchy generated by Specialization. The
letters in class suffix represent the type they are specialized
for: V-Scala Unit, Z-Boolean, B-Byte . . . J-Long, L-AnyRef.
The names are simplified throughout the paper, and we avoid
discussing the problem of name mangling, which was ad-
dressed in [13].

remains ListNode[Int]. This makes specialization com-
patible: whether or not the instantiation is rewired, both the
specialized class and the generic class are still subtypes of
ListNode[Int]. Rewiring can only be done if the type
arguments are statically known:

// before rewiring:

val node1: ListNode[Int] =

new ListNode[Int](3, null)

// after rewiring:

val node1: ListNode[Int] =

new ListNode_I(3, null)

// not rewired if U is an abstract type or the

// type parameter of an enclosing class/method

val node2: ListNode[U] =

new ListNode[U](u, null)

The next step of rewiring changes inheritance relations
when parent classes have specialized variants that match the
type arguments. This injects specialized variants of a class in
the inheritance chain, making it possible to use unboxed val-
ues when extending a specialized class. This is yet another
opportunistic transformation, since the inheritance relation
is only rewritten if the type arguments are known statically,
as shown by the following example:

// before rewiring:

class IntNode(head: Int, tail: IntNode)

extends ListNode[Int](head, tail)

// after rewiring:

class IntNode(head: Int, tail: IntNode)

extends ListNode_I(head, tail)

// not rewired, T not known statically:

class MyNode[T](head: T, tail: MyNode[T])

extends ListNode[T](head, tail)

The two rewirings above inject specialized classes in the
code. Still, call sites point to the homogeneous methods,
which use boxed values. The last rewiring addresses meth-
ods, which are rewritten depending on the type of their re-
ceiver. Any call site with a specialization-annotated receiver
for which the type argument is statically known is rewritten
to use specialized versions of the methods. In the first call
site of the example below, the receiver is the specialization-
annotated class ListNode and the type argument is stati-
cally known to be Int. Therefore the call to contains is
rewired to the specialized contains_I:



Figure 2. Method overriding and redirection for ListNode
and two of its specialized variants. Constructors and acces-
sors are omitted from this diagram.

// before rewiring:

(node1: ListNode[Int]).contains(3)

// after rewiring:

(node1: ListNode[Int]).contains_I(3)

// not rewired if U is an abstract type or the

// type parameter of an enclosing class/method

(node2: ListNode[U]).contains(u)

2.4 Specialization Compatibility

Since the rewiring process only takes place for statically
known type arguments, the generic class and its specialized
subclasses may be mixed together. In the following snippet,
the first branch of the if statement is rewired to create an
instance of ListNode_I while the second branch calls the
node method, whose type parameter T is not annotated for
specialization, and thus creates the generic class ListNode.
Therefore, the value lst (of static type ListNode[Int])
may be either an instance of ListNode_I or of ListNode,
depending on the random condition:

// new ListNode[T] not rewired to

// ListNode_I since T is a type parameter

def node[T](t: T) = new ListNode[T](t, null)

val lst: ListNode[Int] =

if (Random.nextInt().isEven)

new ListNode[Int](1, null) // ListNode_I

else

node(2) // ListNode

lst.contains(0) // rewired to contains_I

Therefore, calling a specialized method, contains_I
in this case, can have as receivers both the generic class,
ListNode, and the specialized one, ListNode_I. So both
classes must implement the specialized method. To do so, in
ListNode, contains will be implemented using generic
code and contains_I will box the argument and call
contains. In ListNode_I, contains_I will be imple-
mented using primitive value types and contains will un-
box and redirect. This can be generalized to multiple spe-
cialized variants, as can be seen in Figure 2: The generic
class at the top of the hierarchy contains all specialized vari-
ants of the contains method as redirects to the generic
method. Then, each specialized variant of the class inherits
from the generic class and overrides its corresponding spe-

cialized methods (such as contains_I for ListNode_I)
with the heterogeneously transformed code and redirects the
generic method to the specialized variant.

This shows the compatible nature of specialization: in or-
der to avoid boxing, both the call site and the receiver need to
be rewired, which means the receiver needs to be specialized
and the call site needs to know the type arguments statically
or be part of code that will be specialized. But if either condi-
tion is not fulfilled, the code remains compatible by boxing,
either at the call site itself or inside the redirecting method.

From the perspective of typing the abstract syntax trees,
compatibility is achieved because types are assigned before
the specialization phase and are not modified later, so they
refer to the generic class, even in the presence of rewiring.
The first example in §2.3 shows that despite rewiring the
new operator to create an instance of ListNode_I, the
type of the node1 value remains ListNode[Int]. Thus
type-level compatibility is satisfied by ListNode_I being
a subtype of ListNode, and the reverse subtyping is not
necessary, as types never refer to ListNode_I3.

2.5 Limitations of Specialization

There are two limitations in specialization: the bytecode ex-
plosion and the crippled specialized class inheritance. We
will describe each problem and show how both can be ad-
dressed by the miniboxing encoding.

The specialization mechanism for generating variants is
static: whenever the compiler encounters a class annotated
for specialization, it generates all its variants up front and
outputs bytecode for each of them. This is done to support
separate compilation.

Theoretically, the specialized variant creation could be
delayed until the actual usage but this requires that the source
files for specialized classes are available in all future compi-
lation stages, exactly like in C++. This approach is undesir-
able from a user perspective, as it also requires encoding the
original compilation flags and state, which can influence the
generated code. Therefore the simplest, although bytecode-
expensive solution was chosen: to generate specialized vari-
ants for all value types during compilation.

Fulfilling the bytecode compatibility requirements de-
scribed before, for n type parameters and full specialization,
means the generic class needs to implement 10n methods, of
which 10n−2 are then inherited in the specialized subclasses
and 2 are overridden by each of the 10

n subclasses. This
makes the bytecode size proportional to 10

n. If the methods
were not inherited but defined in each subclass, the bytecode
size would be proportional to 10

2n.
Still, the generic parent design choice affects inheritance

between specialized classes. Figure 3 shows an example
where the design of specialization bumps into a multiple
class inheritance, which is forbidden by Java. In this case, the
children inherit from their generic parent, which is subopti-
mal, since the specialized variants of MyList cannot use the

3 Except for the this type and singleton types in the adapted code.



specialization in ListNode. Experienced Scala program-
mers might suggest that MyNode should be a trait, so it can
be mixed in [28]. Indeed this solves the multiple inheritance
problem, but creates bytecode proportional to 10

2n, because
the compiler desugars the trait into an interface, and each
specialized MyList_* class has to implement the methods
in that interface. Other more technical problems stem from
this design choice too, but could be avoided by having an ab-
stract parent class. For example, fields from the generic class
are inherited by the specialized classes, therefore increasing
their memory footprint. Constructors also require more com-
plex code because instantiating a specialized class calls the
constructor of its parent, the generic class, which needs to be
prevented from running, such that side effecting operations
in the original class’ constructor are not executed twice.

All in all, at the heart of the bytecode explosion problem
and thus the other limitations of specialization, lies the large
number of variants per type parameter: 10. For two type pa-
rameters, full specialization with correct inheritance creates
10

4 times the bytecode. In practice this is not acceptable.
Therefore a natural question to ask is how can we reduce the
number of variants generated per type parameter? This is the
question that inspired miniboxing.

3. Miniboxing Encoding

Constraints on the bytecode size currently prevent us from
extending the use of specialization in the standard library,
namely, to tuples of three elements, to the collections hierar-
chy and to Function traits, which are used in Scala’s object
oriented representation of functions. Therefore we propose
the miniboxing encoding and transformation as a solution to
reduce bytecode size and allow library specialization. Along
with the encoding, we present a transformation based on the
principles of specialization, but using the miniboxed encod-
ing (§4) instead of primitive value types.

The miniboxing technique relies on a simple insight:
grouping different value types reduces the number of vari-
ants necessary in the heterogeneous translation. To this end,
we need to group the value types in the language into dis-
joint sets and for each set designate a value type, also called
a storage type, which can encode any type in that set. Notice
that this definition is not limited to primitive value types, but
can also be used for C-like structs.

Four conditions need to be satisfied for the miniboxing
transformation to work:

• All of the value types in the language can be encoded into
one or more storage types;

• The overhead of transforming between any value type
and its storage type must be limited, ideally a no-op;

• The operations available for generic types in the lan-
guage (inherited from the top of the hierarchy, such as
toString, hashCode and equals) must be fixed;

• All the value types need to have boxed representations,
to enable compatibility between the miniboxed and ho-
mogeneous translations (§2.4). If the bytecode’s common

Figure 3. An example of specialized class inheritance made
impossible by the current translation scheme.

representation is tagged union, the requirement changes
to having tagged union representations.

In this case, the heterogeneous translation only needs to
generate variants for the storage types and references. Ref-
erences are a special storage type, since all value types are
also considered to be part of the reference group. During the
translation, whenever a type is not known to be miniboxed
to one of the storage types, it is automatically assumed to be
attached to the references group. This allows the opportunis-
tic (§2.3) and compatible (§2.4) rewiring of the tree: indeed
since any value type has a boxed representation, it is always
correct (but not optimal) to store it as a boxed reference. In
the extreme case where all value types are their own storage
types, we are back to specialization.

The next subsection will present miniboxing in Scala.

3.1 Miniboxing in Scala

In order to apply the miniboxing encoding to Scala, we de-
cided to use the long integer (Long) as the storage type of
all other primitive value types. Other sets of storage types
could also be implemented to improve specific scenarios,
such as running on 32-bit architectures (32-bit Int and 64-
bit Long) or using floating-point numerics extensively4 (64-
bit Double and 64-bit Long). Still, for the rest of the descrip-
tion, we will use the long integer as the only storage type, in
order to be consistent with the current implementation of the
miniboxing plugin.

The transformation primitives from value types to Long

and back are implemented in the HotSpot Java Virtual Ma-
chine and have direct translations to bytecode4 and to pro-
cessor instructions [18]. Nevertheless, two concerns need
our attention when using miniboxing:

• Packing and unpacking cost;
• Memory footprint of the miniboxed encoding.

Packing and unpacking cost. Boxing and unboxing ac-
cesses the heap memory. The main goal of miniboxing is to
eliminate this overhead, but, in doing so, conversions to and
from long integers must not slow down program execution
significantly compared to monomorphic code. Our bench-
marks show that indeed the overhead is negligible (§7).

4 The floating point to integer bit-preserving transformations, which are
implemented as intrinsics, do incur a measurable overhead.



Figure 4. An example of miniboxed class inheritance. The
suffixes are: M - miniboxed encoding and L - reference type.
Compare to the specialized class inheritance in Figure 3.

Memory footprint. The miniboxed encoding has a mem-
ory footprint between that of monomorphic and generic
code. Considering byte as the type argument, the memory
footprint of the miniboxed encoding is 8 times larger than
the one for monomorphic code, which would store the byte
directly. This factor is reduced by specializing bulk storage
(arrays) and considering the paddings introduced by the vir-
tual machine. On the other hand, when compared to boxing
on 64 bit processors, the factor is exactly 1, as both a pointer
and a long integer have 8 bytes. And this does not take into
account the heap space occupied by the boxed values them-
selves. Therefore, all things considered, miniboxing has a
memory footprint larger than the monomorphic and hetero-
geneous translations, but smaller than homogeneous transla-
tions based on boxing.

4. Miniboxing Transformation

The miniboxing transformation, which we developed as a
Scala compiler plugin, builds upon specialization, which has
been formalized in [13]. It has the same opportunistic and
compatible nature and performs class and method duplica-
tion in a similar manner. Still, five elements set it apart:

• the different inheritance scheme (§4.1)
• the type bytes for storing encoded types (§4.2.1, §4.2.4)
• the use of a shallow type transformation (§4.2.2)
• the use of the final peephole transformation (§4.2.3)
• the runtime support for miniboxed values (§4.3 and §5)

4.1 Inheritance

Miniboxing uses a generic trait as the parent of the special-
ized classes, therefore avoiding the limitation that miniboxed
classes cannot inherit from each other (§2.5). Figure 4 shows
an example miniboxed class inheritance. As explained in
§2.5, for n specialized type parameters, having a trait as
the parent increases the bytecode size from 2

n to 4
n, since

each of the 2
n miniboxed variants needs to implement all

2
n methods. Still, the extra bytecode is well spent, for two

reasons:

• Having a trait at the top of the hierarchy means no generic
fields are inherited in the specialized variants, as it hap-

pens when the homogeneous translation is at the top of
the hierarchy (§2.5);

• This inheritance scheme allows specialized classes to in-
herit their specialized parent, thus achieving better per-
formance in deep hierarchies.

Since the types assigned to tree nodes do not reference
the specialized variants but only the generic interface, this
inheritance scheme does not interfere with covariance or
contravariance. Indeed, if the type parameter of ListNode
is defined as covariant, ListNode_M[Int] is subtype of
ListNode[Int] and, transitively, of ListNode[Any].

4.2 Miniboxing Specifics

This section will work its way from small examples to de-
scribing the new elements in the miniboxing transformation,
as compared to specialization. In order to simplify the pre-
sentation, we will use the Long-based encoding for mini-
boxing, but the transformation can still be generalized to any
number of storage types.

4.2.1 Type Bytes

Type-encoding bytes (or type bytes for short) record the
original type of the miniboxed values. Translating the fol-
lowing example shows when type bytes are necessary:

def print[@minispec T](value: T): Unit =

println(value.toString)

Having the type parameter T annotated with @minispec

will trigger miniboxing, which will duplicate this method for
Long-encoded value types, which we also call miniboxed
types. Like specialization, miniboxing produces groups of
overloaded methods, with the original method being the all-
reference implementation in its group. In our case, only the
miniboxed overload needs to be created. To do so, the com-
piler will create another version of print for long integers,
which we call print_M:

def print_M(value: Long): Unit =

println(value.toString)

This is a very naive translation. Calling print(false),
after method rewiring, will transform the boolean to a long
integer whose value will be printed on the screen instead of
the “false” string. To perform the correct action, the transla-
tion should recover the string representation of the boolean
value false from the Long encoding. This suggests the
toString operation should be rewritten to:

def print_M(value: Long): Unit =

println(MBRuntime.toString(value))

The code above shows a less naive implementation, since
it rewires toString calls on the miniboxed value to a spe-
cial runtime support object in order to obtain the string
representation. But passing a single miniboxed value isn’t
enough, as we mentioned miniboxing does not encode the
type with the value as tagged unions do [17]. Therefore, it
should have a separate parameter to encode the original type:



def print_M(T_Type: Byte, value: Long): Unit =

println(MBRuntime.toString(value, T_Type))

This is close to the minibox-transformed version of
print_M the plugin would output. The T_Type field only
encodes the 9 primitive types in Scala, therefore it does not
incur the typical overhead of full reified generics [37]. A call
to print(false) will be translated to the following code,
where BOOLEAN is the type byte for boolean values:

print_M(BOOLEAN, MBRuntime.BoolToMinibox(false))

The method call above shows two differences between
rewiring in miniboxing and specialization:

1. Calling a miniboxing-transformed method (or instanti-
ating a miniboxing-transformed class) requires passing
type bytes for all the Long-encoded type arguments;

2. The arguments to minibox-transformed methods need to
be explicitly encoded in the storage type.

We will now present exactly how the miniboxing plugin
arrives to this transformed code. As the miniboxing transfor-
mation takes place, it needs to preserve program semantics
and type correctness. In order to do so, the transformation
for print is actually done in three steps.

First, the new signature is created, knowing the type pa-
rameter T is encoded as Long. The method name is man-
gled (mangled names are simplified in this presentation) and
the type byte for T is added to the signature. Then parame-
ters are added, with all parameters of type T being replaced
by parameters of type Long. As this happens, the symbols
whose types changed are recorded and treated specially. In
this case, the only miniboxed parameter is value, which is
recorded. It is also recorded that the type byte T_Type cor-
responds to the encoded type T. This yields: (we’ll see later
why the type parameter T still appears)

def print_M[T](T_Type: Byte, value: Long): Unit

= // need to copy and adapt body from print

In the second step, the body is copied from the print

method. To maintain type correctness, all the symbols previ-
ously recorded as having their types changed are now auto-
matically boxed back to generic type T, so the newly gener-
ated code tree is consistent in terms of types:

def print_M[T](T_Type: Byte, value: Long): Unit

= println(MBRuntime.MiniboxToBox[T](value,

T_Type).toString)

In the final step, the tree rewrite rules will transform the
call to MiniboxToBox followed by toString into a single
call to the MBRuntime system, which typically yields better
performance:

def print_M[T](T_Type: Byte, value: Long): Unit

= println(MBRuntime.toString(value, T_Type))

The next section will explain why it is necessary to carry
the type parameter T.

4.2.2 Shallow and Deep Type Transformations

To further understand the miniboxing transformation, let us
look at a more complex example, which builds a linked list
with a single element:

def list[@minispec T](value: T): ListNode[T] =

new ListNode[T](value, null)

As explained before, the list method will become the
all-reference overload. But the interesting transformation
happens in the miniboxed variant. If specialization were to
transform this method its signature would be:

def list_M[T](value: Long): ListNode[Long]

The return type is incorrect, as we expect list(3) to
return a ListNode[Int], and yet rewiring list(3) to
list_M(...) would return a ListNode[Long]. This ex-
poses the difference between the deep type transformation in
specialization and the shallow type transformation in mini-
boxing: In miniboxing, only values of type T are transformed
to Long, but any type referring to T, such as ListNode[T],
will remain the same. This explains why the type parameter
T is carried over to print_M and list_M: it may still be
used in the method’s signature and code. The full transfor-
mation for method list_M will be:

def list_M[T](T_Type: Byte, value: Long):

ListNode[T] =

new ListNode[T](MiniboxToBox[T](value, T_Type))

The shallow type transformation also changes types of
local variables from T to Long and recursively transforms
all nested methods and classes within the piece of code it
is adapting. This propagates the storage type representation
throughout the code.

4.2.3 Peephole Transformation

The last transformation to touch the code before it is shipped
to the next phase is the peephole transformation, which per-
forms a final sweep over the code to remove redundant
conversions. To show this phase at work, let us consider
what happens if the ListNode class in the last example
is also annotated for miniboxing. In this case, the class
will have a miniboxed variant, ListNode_M to which the
instantiation is rewired. Since the head parameter of the
ListNode constructor is boxed, while the head parameter
of the ListNode_M constructor is miniboxed, the transfor-
mation will introduce a new BoxToMinibox conversion:

def list_M[T](T_Type: Byte, value: Long):

ListNode[T] =

new ListNode_M[T](T_Type,

BoxToMinibox[T](MiniboxToBox[T](value,

...)), null)

Converting from Long to the boxed representation and
back before creating the list node will certainly affect perfor-



mance. Such consecutive complementary conversions and
other suboptimal constructs are automatically removed by
the peephole optimization:

def list_M[T](T_Type: Byte, value: Long):

ListNode[T] =

new ListNode_M[T](T_Type, value, null)

The code produced by the rewiring phase can be opti-
mized by a single pass of the peephole transformation so
there is no need to iterate until a fixed point is reached.

4.2.4 Type Bytes in Classes

The class translation is slightly more complex than method
translation. For classes, type bytes are also included as fields
in the miniboxed variants, to allow the class’ methods to
encode and decode miniboxed values as necessary:

class ListNode[@minispec T]

(val head: T, val tail: ListNode[T]) {

def contains(element: T): Boolean = ...

}

The interface resulting after miniboxing will be:

trait ListNode[T] {

... // getters for head and tail

def contains(element: T): Boolean

def contains_M(T_Type_local: Byte, element:

Long): Boolean

}

And the miniboxed variant of this class will be:

class ListNode_M[T]

(T_Type: Byte, head: Long, tail: ListNode[T])

extends ListNode[T] {

... // getters for head and tail

def contains(element: T): Boolean =

... // redirect to this.contains_M

def contains_M(T_Type_local: Byte, element:

Long): Boolean =

... // specialized implementation

}

ListNode_M has two type tags: T_Type is a class param-
eter and becomes a field of the class while T_Type_local
is passed to the contains_M method directly. In the code
example, T_Type is used to convert the element param-
eter of contains to its miniboxed representation when
redirecting the call to contains_M. But T_Type_local
is not used in the ListNode_M class. To understand when
T_Type_local is necessary, we have to look at the refe-
rence-carrying variant of the ListNode class:

class ListNode_L[T]

(head: T, tail: ListNode[T]) extends

ListNode[T] {

... // getters for head and tail

def contains(element: T): Boolean =

... // generic implementation

def contains_M(T_Type_local: Byte, element:

Long): Boolean =

... // redirect to this.contains

}

All instantiations of ListNode where the type argu-
ment is statically known to be a value type are rewired
to ListNode_M. The rest of the instantiations are rewired
to ListNode_L, either because the type argument is not
known statically or because it is known to be a reference
type. Therefore, there is no reason for ListNode_L to carry
T_Type as a global field. But, in order to allow contains_M

to decode the miniboxed value element into a boxed form
and redirect the call contains, a local type byte is neces-
sary. Since the ListNode interface and its two implemen-
tations, ListNode_L and ListNode_M need to be compat-
ible, the local type byte in contains_M is also present for
ListNode_M, although in the miniboxed class it is redun-
dant.

4.3 Calling the Runtime Support

The previous examples have shown how the miniboxing
plugin uses the MBRuntime object for conversions between
unboxed, miniboxed and boxed data representations. But
the MBRuntime object is not limited to conversions. In
Scala, any type parameter is assumed to be a subtype of
the Any class, so the programmer can invoke methods such
as toString, hashCode and equals on generic values.
As shown in §4.2.1, these calls can be translated by a con-
version to the boxed representation followed by the call,
but are further optimized by calling the implementations in
MBRuntime, which work directly on miniboxed values.

Aside from conversions and implementations for the
methods in the Any class, the miniboxing runtime support
contains code to allow direct interaction between arrays
and miniboxed values. An example that uses arrays is the
ArrayBuffer class:

class ArrayBuffer[@minispec T: Manifest] {

// fields:

private[this] var array = new Array[T](32)

...

// methods:

def getElement(idx: Int): T = array(idx)

...

}

The miniboxed variant ArrayBuffer_M is rewritten to
call the MBArray object to create and access arrays in the
miniboxed format:

// ArrayBuffer miniboxed variant for primitives:

class ArrayBuffer_M[T: Manifest](T_Type: Byte)

extends ArrayBuffer[T] {

// fields:

private[this] var array: Array[T] =

MBArray.mbarray_new(32, T_Type)

...

// methods:

def getElement(idx: Int): T =

MiniboxToBox(getElement_M(T_Type, idx), ...)

def getElement_M(T_Type_local: Byte, idx:

Int): Long =

MBArray.array_get(array, idx, T_Type)

...

}



The implementation of the MBArray object is critical to
numeric algorithms and performance data structures, as it
has to be small enough to be inlined by the just-in-time
compiler and structured in ways that return the result as fast
as possible for any of the primitive types. The following two
sections describe the runtime support for arrays and give
technical insights into the pitfalls of the implementation.

5. Miniboxing Bulk Storage Optimization

Arrays are Java’s bulk storage facility. They can store value
types or references to heap objects. This is done efficiently,
as values are stored one after the other in contiguous blocks
of memory and access is done in constant time. Their charac-
teristics make arrays good candidates for internal data struc-
tures in collections and algorithms.

But in order to implement compact storage and constant
access overhead, arrays are monomorphic under the hood,
with separate (and incompatible) variants for each of the
primitive value types. What’s more, each array type has its
own specific bytecode instructions to manipulate it.

The goal we set forth was to match the performance of
monomorphic arrays in the context of miniboxing-encoded
values. To this end, we had two alternatives to implementing
arrays for miniboxed values: use arrays of long integers to
store the encoded values or use monomorphic arrays for each
type, and encode or decode values at each access.

Storing encoded values in arrays provides the advantage
of uniformity: all the code in the minibox-specialized class
uses the Long representation and array access is done in a
single instruction. Although this representation wastes heap
space, especially for small value types such as boolean or
byte, this is not the main drawback: it is incompatible with
the rest of the Scala code.

In order to stay compatible with Java, Scala code uses
monomorphic arrays for each value type. Therefore arrays
of long integers in miniboxed classes must not be allowed to
escape from the transformed class, otherwise they may crash
outside code attempting to read or write them. To main-
tain compatibility, we could convert escaping arrays to their
monomorphic forms. But the conversion would introduce
delays and would break aliasing, as writes from the outside
code would not be visible in the miniboxed code and vice
versa. Since completely prohibiting escaping arrays severely
restricts the programs that can use miniboxing, this solution
becomes unusable in practice.

Thus, the only choice left is to use arrays in their mono-
morphic format for each value type, so we maintain com-
patibility with the rest of the Scala code. This decision led
to another problem: any array access requires a call to the
miniboxing runtime support which performs a dispatch on
the type byte. Depending on the type byte’s value, the ar-
ray is cast to its correct type and the corresponding bytecode
instruction for accessing it is used. This is followed by the
encoding operation, which converts the read value to a long
integer. The following snippet shows the array read opera-
tion implemented in the miniboxing runtime support code:

def array_get[T](array: Array[T], idx: Int, tag:

Byte): Minibox = tag match {

case INT =>

array.asInstanceOf[Array[Int]](idx).toLong

case LONG =>

array.asInstanceOf[Array[Long]](idx)

case DOUBLE => Double.doubleToRawLongBits(

array.asInstanceOf[Array[Double]](idx)).toLong

...

}

The most complicated and time-consuming part of our
work involved rewriting the miniboxing runtime support to
match the performance of specialized code. The next sub-
sections present the HotSpot Java Virtual Machine execu-
tion (§5.1), the main benchmark we used for testing (§5.2)
and two implementations for the runtime support: type byte
switching (§5.3) and object-oriented dispatching (§5.4).

5.1 HotSpot Execution

We used benchmarks to guide our implementation of the
miniboxing runtime support. In this section we will briefly
present the just-in-time compilation and optimization me-
chanisms in the HotSpot Java Virtual Machine [21, 32], since
they directly influenced our design decisions. Although the
work is based on the HotSpot Java Virtual Machine, we high-
light the underlying mechanisms that interfere with minibox-
ing, in hope that our work can be used as the starting point
for the analysis on different virtual machines.

The HotSpot Java Virtual Machine starts off by interpret-
ing bytecode. After several executions, a method is consid-
ered “hot” and the just-in-time compiler is called in to trans-
form it into native code. During compilation, aggressive in-
lining is done recursively on all the methods that have been
both executed enough times and are small enough. Typical
inlining requirements for the C25 (server) just-in-time com-
piler are 10000 executions and size below 35 bytes.

When inlining static calls, the code is inlined directly. For
virtual and interface calls, however, the code depends on the
receiver. To learn which code to inline, the virtual machine
will profile receiver types during the interpretation phase.
Then, if a single receiver is seen at runtime, the compiler
will inline the method body from that receiver. This inlining
may later become incorrect, if a different class is used as
the receiver. For such a case the compiler inserts a guard: if
the runtime type is not the one expected, it jumps back to
interpretation mode. The bytecode may be compiled again
later if it runs enough times, with both possible method
bodies inlined. But if a third runtime receiver is seen, the call
site is marked as megamorphic and inlining is not performed
anymore, not even for the previous two method bodies.

After inlining as much code as feasible, the virtual ma-
chine’s just-in-time compiler applies optimizations, which
significantly reduce the running time, especially for array
operations which are very regular and for which bounds
checks can be eliminated.

5 We did not use tiered compilation.



Single Context Multi Context
generic 20.4 21.5
miniboxed, no inlining 34.5 34.4
miniboxed, full switch 2.4 15.1
miniboxed, semi-switch 2.4 17.2
miniboxed, decision tree 24.2 24.1
miniboxed, linear 24.3 22.9
miniboxed, dispatcher 2.1 26.4
specialized 2.0 2.4
monomorphic 2.1 N/A

Table 1. The time in milliseconds necessary for reversing an
array buffer of 3 million integers. Performance varies based
on how many value types have been used before (Single
Context vs. Multi Context).

5.2 Benchmark

We benchmarked the performance on the two examples pre-
viously shown in the paper, ListNode and ArrayBuffer.
Throughout benchmarking, one particular method stood out
as the most sensitive to the runtime support implementation:
the reverse method of the ArrayBuffer class. The rest of
this section uses the reverse method to explore the perfor-
mance of different implementations of the runtime support:

def reverse_M(T_Type_local: Byte): Unit = {

var idx = 0

val xdi = elemCount - 1

while (idx < xdi) {

val el1: Long = getElement_M(T_Type, idx)

val el2: Long = getElement_M(T_Type, xdi)

setElement_M(T_Type, idx, el2)

setElement_M(T_Type, xdi, el1)

idx += 1

xdi -= 1

}

}

The running times presented in table 1 correspond to re-
versing an integer array buffer of 3 million elements. To put
things into perspective, along with different designs, the ta-
ble also provides running times for monomorphic code (spe-
cialized by hand), specialization-annotated code and generic
code. Measurements are taken in two scenarios: For “Single
Context”, an array buffer of integers is created and populated
and its reverse method is benchmarked. In “Multi Con-
text”, the array buffer is instantiated, populated and reversed
for all primitive value types first. Then, a new array buffer
of integers is created, populated and its reverse method is
benchmarked. The HotSpot Java Virtual Machine optimiza-
tions are influenced by the historical paths executed in the
program, so using other type arguments can have a drastic
impact on performance, as can be seen from the table, where
the times for “Single Context” and “Multi Context” are very
different: this means the virtual machine gives up some of its
optimizations after seeing multiple instantiations with differ-
ent type arguments. “Multi Context” is the likely scenario a
library class will be in, as multiple instantiations with differ-
ent type arguments may be created during execution.

5.3 Type Byte Switching

The first approach we tried, the simple switch on the type
byte, quickly revealed a problem: The array runtime sup-
port methods were too large for the just in time compiler to
inline at runtime. This corresponds to the “miniboxing, no
inlining” in table 1. To solve this problem, we tasked the
Scala compiler with inlining runtime support methods in its
backend, independently of the virtual machine. But this was
not enough: the reverse_M method calls getElement_M
and setElement_M, which also became large after inlin-
ing the runtime support, and were not inlined by the virtual
machine. This required us to recursively mark methods for
inlining between the runtime support and the final bench-
marked method.

The forced inlining in the Scala backend produced good
results. The measurement, corresponding to the “miniboxed,
full switch” row in the table, shows miniboxed code work-
ing at almost the same speed as specialized and monomor-
phic code. This can be explained by the loop unswitching
optimization in the just-in-time compiler. With all the code
inlined by the Scala backend, loop unswitching was able to
hoist the type byte switch statement outside the while loop. It
then duplicated the loop contents for each case in the switch,
allowing array-specific optimizations to bring the running
time close to monomorphic code.

But using more primitive types as type arguments dimin-
ished the benefit. We tested the reverse operation in two
situations, to check if the optimizations still take place after
we use it on array buffers with different type arguments. It
is frequently the case that the HotSpot Java Virtual Machine
will compile a method with aggressive assumptions about
which paths the execution may take. For the branches that
are not taken, guards are left in place. Then, if a guard is
violated during execution, the native code is interrupted and
the program continues in the interpreter. The method may be
compiled again later, if it is executed enough times to war-
rant compilation to native code. Still, upon recompilation,
the path that was initially compiled to a stub now becomes
a legitimate path and may preclude some optimizations. We
traced this problem to the floating point encoding, specifi-
cally the bit-exact conversion from floating point numbers
to integers, that, once executed, prevents loop unswitching.

We tried different constructions for the miniboxing run-
time support: splitting the match into two parts and having
an if expression that would select one or the other (“semi-
switch”), transforming the switch into a decision tree (“de-
cision tree”) and using a linear set of 9 if statements (“lin-
ear”), all of which appear in table 1. These new designs ei-
ther degraded in the multiple context scenario, or provided a
bad baseline performance from the beginning. What’s more,
the fact that the runtime “remembered” the type arguments a
class was historically instantiated with made the translation
unusable in practice, since this history is not only influenced
by code explicitly called before the benchmark, but transi-
tively by all code executed since the virtual machine started.



5.4 Dispatching

The results obtained with type byte switching showed that
we were committing to a type too late in the execution:
Forced inlining had to carry our large methods that covered
all types inside the benchmarked method, where the opti-
mizer had to hoist the switch outside the loop:

while (...) {

val el1: Long = T_Type match { ... }

val el2: Long = T_Type match { ... }

T_Type match { ... }

T_Type match { ... }

}

Ideally, this switch should be done as early as possible,
even as soon as class instantiation. This can be done using
an object-oriented approach: instead of passing a byte value
during class instantiation and later switching on it, we can
pass objects which encode the runtime operations for a sin-
gle type, much like the where objects in PolyJ [8]. We call
this object the dispatcher. The dispatcher for each value type
encodes a common set of operations such as array get and
set. For example, IntDispatcher encodes the operations
for integers:

abstract class Dispatcher {

def array_get[T](arr: Array[T], idx: Int): Long

def array_update[T](arr: Array[T], idx: Int,

elt: Long): Unit

...

}

object IntDispatcher extends Dispatcher { ... }

Dispatcher objects are passed to the miniboxed class dur-
ing instantiation and have final semantics. In the reverse

benchmark, this would replace the type byte switches by
method invocations, which could be inlined. Dispatchers
make forced inlining and loop unswitching redundant. With
the final dispatcher field set at construction time, the
reverse_M inner loop body can have array access inlined
and optimized: (“miniboxed, dispatcher” in tables 1 and 2)

// inlined getElement:

val el1: Long = dispatcher.array_get(...)

val el2: Long = dispatcher.array_get(...)

// inlined setElement:

dispatcher.array_update(...)

dispatcher.array_update(...)

Despite their clear advantages, in practice dispatchers can
be used with at most two different value types. This happens
because the HotSpot Java Virtual Machine inlines the dis-
patcher code at the call site and installs guards that check
the object’s runtime type. The inline cache works for two re-
ceivers, but if we try to swap the dispatcher a third time, the
callsite becomes megamorphic. In the megamorphic state,
the array_get and array_set code is not inlined, hence
the disappointing results for the “Multi Context” scenario.

Interestingly, specialization performs equally well in both
“Single Context” and “Multi Context” scenarios. The ex-
planation lies in the bytecode duplication: each specialized

Single Context Multi Context
generic 20.4 21.5
miniboxed, full switch 2.4 15.1
mb. full switch, LS 2.5 2.4

miniboxed, dispatcher 2.1 26.4
mb. dispatcher, LS 2.0 2.7

specialized 2.0 2.4
monomorphic 2.1 N/A

Table 2. The time in milliseconds necessary for reversing an
array buffer of 3 million integers. Miniboxing benchmarks
ran with the double factory mechanism and the load-time
specialization are marked with LS.

class contains a different body for the reverse method, and
the profiles for each method do not interact. Accordingly,
the results for integers are not influenced by the other value
types used. This insight motivated the load-time cloning and
specialization, which is described in the next section.

6. Miniboxing Load-time Optimization

The miniboxing runtime support, in both incarnations, us-
ing switching and dispatching, fails to deliver performance
in the “Multi Context” scenario. The reason, in both cases, is
that execution takes multiple paths through the code and this
prevents the Java Virtual Machine from optimizing. There-
fore an obvious solution is to duplicate the class bytecode,
but instead of duplicating it on the disk, as specialization
does, we do it in memory, on-demand and at load-time.
The .NET Common Language Runtime [5, 20] performs on-
demand specialization at load-time, but it does so using more
complex transformations encoded in the virtual machine. In-
stead, we use Java’s classloading mechanism.

We use a custom classloader to clone and specialize
miniboxed classes. Similar to the approach in Pizza [29],
the classloader takes the name of a class that embeds the
type byte value. For example, ListNode_I corresponds to
a clone of ListNode_M with the type byte set to INT. From
the name, the classloader infers the miniboxed class name
and loads it from the classpath. It clones its bytecode and
adjusts the constant table [11]. All this is done in-memory.

Once the bytecode is cloned, the paths taken through the
inlined runtime support in each class remain fixed during
its lifetime, making the performance in “Single Context”
and “Multi Context” comparable, as can be seen in Table 2.
The explanation is that the JVM sees different classes, with
separate type profiles, for each primitive type.

Aside from bytecode cloning, the classloader also per-
forms class specialization:

• Replaces the type tag fields by static fields (as the class is
already dedicated to a type);

• Uses constant propagation and dead code elimination to
reduce each type tag switch down to a single case, which
can be inlined by the virtual machine, thus eliminating
the need for forced inlining;



• Performs load-time rewiring, which is described in the
next section.

6.1 Miniboxing Load-time Rewiring

When rewiring, the miniboxing transformation follows the
same rules set forth by specialization (§2.3). Load-time
cloning introduces a new layer of rewiring, which needs
to take the cloned classes into account. The factory mecha-
nism we employ to instantiate cloned and specialized classes
(§6.2) is equivalent to the instance rewiring in specialization.
The two other rewiring steps in specialization are method
rewiring and parent class rewiring. Fortunately method
rewiring is done during compilation and since methods are
not modified, there is no need to rewire them in the class-
loader. Parent classes, however, must be rewired at load-time
to avoid performance degradation.

Load-time parent rewiring allows classes to inherit and
use miniboxed methods while keeping type profiles clean. If
the parent rewiring is done only at compile-time, all classes
extending ArrayBuffer_M share the same code for the
reverse_M method. But since they may use different type
arguments when extending ArrayBuffer, they are back to
the “Multi Context” scenario in table 1. To obtain good per-
formance, rewiring parent classes is done first at compile
time, to the miniboxed variant of the class, and then at load-
time, to the cloned and specialized class. The following snip-
pet shows parent rewiring in the case of dispatcher objects:

// user code:

class IntBuff extends ArrayBuffer[Int]

// after compile-time rewiring:

class IntBuff extends

ArrayBuffer_M[Int](IntDispatcher)

// after load-time rewiring:

class IntBuff extends

ArrayBuffer_I[Int](IntDispatcher)

The load-time rewiring of parent classes requires all sub-
classes with miniboxed parents to go through the class-
loader transformation. This includes the classes extending
miniboxed parents with static type arguments, such as the
IntBuff class in the code snippet before. This incurs a first-
instantiation overhead, which is an inconvenience especially
for classes that are only used once, such as anonymous clo-
sures extending FunctionX. But not all classes make use of
the miniboxing runtime for arrays, so we can devise an anno-
tation which hints to the compiler which classes need factory
instantiation. This would only incur the cloning and special-
ization overhead when the classes use arrays. The annotation
could be automatically added by the compiler when a class
uses array operations and propagated from parent classes to
their children:

@loadtimeSpec

class ArrayBuffer[@minispec T]

// IntBuff automatically inherits @loadtimeSpec

class IntBuff extends ArrayBuffer[Int]

6.2 Efficient Instantiation

Imposing the use of a global classloader is impossible in
many practical applications. To allow miniboxing to work
in such cases, we chose to perform the class instantiation
through a factory that loads a local specializing classloader,
requests the cloning and specialization of the miniboxed
class and instantiates it via reflection. We benchmarked the
approach and it introduced significant overhead, as instanti-
ations using reflection are very expensive.

To counter the cost of reflective instantiation, we propose
a “double factory” approach that uses a single reflective in-
stantiation per cloned class. In this approach each cloned and
specialized class has a corresponding factory – that instan-
tiates it using the new keyword. When instantiating a mini-
boxed class with a new set of type arguments, its correspond-
ing factory is specialized by the classloader and instantiated
via reflection. From that point on, any new instance is cre-
ated by the factory, without the reflective delay. The follow-
ing code snippet shows the specialized (or 2nd level) factory:

// Factory interface

abstract class ArrayBufferFactoryInterface {

def newArrayBuffer_M[T: Manifest](disp:

Dispatcher[T]): ArrayBuffer[T]

}

// Factory instance, to be specialized

// in the classloader

class ArrayBufferFactoryInstance_M extends

ArrayBufferFactoryInterface {

def newArrayBuffer_M[T: Manifest](disp:

Dispatcher[T]): ArrayBuffer[T] =

new ArrayBuffer_M(disp)

}

7. Evaluation

This section presents the results obtained by the minibox-
ing transformation. It will first present the miniboxing com-
piler plug-in and the miniboxing classloader (§7.1). Next, it
will present the benchmarking infrastructure (§7.2) and the
benchmark targets (§7.3). Finally, it will present the results
(§7.4 - §7.8) and draw conclusions (§7.9).

7.1 Implementation

The miniboxing plug-in adds a code transformation phase
in the Scala compiler. Like specialization, the miniboxing
phase is composed of two steps: transforming signatures and
transforming trees. As the signatures are specialized, meta-
data is stored on exactly how the trees need to be trans-
formed. This metadata later guides the tree transformation in
duplicating and adapting the trees to obtain the miniboxed
code. The duplication step reuses the infrastructure from
specialization, with a second adaptation step which trans-
forms storage from generic to miniboxed representation.

The plugin performs several transformations:

• Code duplication and adaptation, where values of type T
are replaced by long integers and are un-miniboxed back
to T at use sites (§4.2.1);



• Rewiring methods like toString, hashCode, equals
and array operations to use the runtime support (§4.3);

• Opportunistic rewiring: new instance creation, special-
ized parent classes and method invocations (§2.3);

• Peephole minibox/un-minibox reduction (§4.2.3).

The miniboxing classloader duplicates classes and per-
forms the specialized class rewiring. It uses transformations
from an experimental Scala backend to perform constant
propagation and dead code elimination in order to remove
switches on the type byte. It supports miniboxed classes gen-
erated by the current plug-in and in the current release only
works for a single specialized type parameter. Also, the in-
frastructure for the double factory instantiation was written
and tuned by hand, and may be integrated in the plug-in in a
future release. We did not implement the @loadtimeSpec

annotation yet.
The project also contains code for testing the plug-in and

the classloader and performing microbenchmarks, some-
thing which turned out to be more difficult than expected.

7.2 Benchmarking Infrastructure

The miniboxing plug-in produces bytecode which is then
executed by the HotSpot Java Virtual Machine. Although
the virtual machine provides useful services to the running
program, such as compilation, deoptimization and garbage
collection, these operations influence our microbenchmarks
by delaying or even changing the benchmarked code alto-
gether. Furthermore, the non-deterministic nature of such
events make proper benchmarking harder [15].

In order to have reliable results for our microbenchmarks,
we used ScalaMeter [33], a tool specifically designed to re-
duce benchmarking noise. ScalaMeter is currently used in
performance-testing the Scala standard library. When bench-
marking, it forks a new virtual machine such that fresh
code caches and type profiles are created. It then warms
up the benchmarked code until the virtual machine com-
piles it down to native code using the C2 (server) [32] com-
piler. When the code has been compiled and the benchmark
reaches a steady state, ScalaMeter measures several exe-
cution runs. The process is repeated several times, 100 in
our case, reducing the benchmark noise. For the report, we
present the average of the measurements performed.

We ran the benchmarks on an 8-core i7 machine running
at 3.40GHz with 16GB of RAM memory. The machine ran a
64 bit version of Linux Ubuntu 12.04.2. For the Java Virtual
Machine we used the Oracle Java SE Runtime Environment
build 1.7.0_11 using the C2 (server) compiler. The following
section will describe the benchmarks we ran.

7.3 Benchmark Targets

We executed the benchmarks in two scenarios:

• “Single Context” corresponds to the benchmark target
(ArrayBuffer or ListNode) executed with a single
value type, Int;

• “Multi Context” corresponds to running the benchmark
for all value types and only then measuring the execution
time for the target value type, Int;

The benchmarks were executed with 7 transformations:

• generic: the generic version of the code, uses boxing;
• mb. switch: miniboxed, using the type byte switching;
• mb. dispatcher: miniboxed, dispatcher runtime support;
• mb. switch + LS: miniboxed, type byte switching, load-

time specialization with the double factory mechanism;
• mb. dispatcher + LS: miniboxed, dispatcher, load-time

specialization with the double factory mechanism;
• specialized: code transformed by specialization;
• monomorphic: code specialized by hand, which does not

need the redirects generated by specialization.

For the benchmarks, we used the two classes presented
in the previous sections: The ArrayBuffer class simulates
collections and algorithms which make heavy use of bulk
storage and the ListNode class simulates collections which
require random heap access. We chose the benchmark meth-
ods such that each tested a certain feature of the miniboxing
transformation. We used very small methods such that any
slowdowns can easily be attributed to bytecode or can be di-
agnosed in a debug build of the virtual machine, using the
compilation and deoptimization outputs.

ArrayBuffer.append creates a new array buffer and
appends 3 million elements to it. This benchmark tests the
array writing operations in isolation, such that they cannot
be grouped together and optimized.

ArrayBuffer.reverse reverses a 3 million element
array buffer. This benchmark proved the most difficult in
terms of matching the monomorphic code performance.

ArrayBuffer.contains checks for the existence of
elements inside an initialized array buffer. It exercises the
equals method rewiring and revealed to us that the initial
transformation for equals was suboptimal, as we were not
using the information that two miniboxed values were of
the same type. This benchmark showed a 22x speedup over
generic code.

List construction builds a 3 million element linked list us-
ing ListNode instances. This benchmark verifies the speed
of miniboxed class instantiation. It was heavily slowed down
by the reflective instantiation, therefore we introduced the
double factory for class instantiation using the classloader.

List.hashCode computes the hash code of a list of 3
million elements. We used this benchmark to check the per-
formance of the hashCode rewiring. It was a surprise to see
the hashCode performance for generic code running in the
interpreter (Table 4). It is almost one order of magnitude
faster than specialized code and 5 times faster than mini-
boxing. The explanation is that computing the hash code
requires boxing and calling the hashCode method on the
boxed object. When the benchmarks are compiled and opti-
mized, this is avoided by inlining and escape analysis, but
in the interpreter, the actual object allocation and call to



hashCode do happen, making the heterogeneous translation
slower.

List.contains tests whether a list contains an element,
repeated for 3 million elements. It tests random heap access
and the performance of the equals operator rewiring.

7.4 Benchmark Results

Table 3 presents the main results of our benchmarks. The ta-
ble highlights “mb. switch + LS” and “mb. dispatch + LS”,
which represent the miniboxing encoding using the load-
time specialization invoked with the double factory mech-
anism.

The miniboxing encoding based on type tag switching,
“mb. switch + LS”, offers steady performance close to that
of specialization and monomorphic code, with slowdowns
ranging between 0 and 20 percent. The classloader spe-
cialization, coupled with constant propagation and dead
code elimination, make the type tag switching approach
the most stable across multiple executions with differ-
ent type arguments, with at most 6 percent difference be-
tween “Single Context” and “Multi Context”, in the case of
ArrayBuffer.append.

The dispatcher-based encoding, “mb. dispatch + LS”,
also offers performance close to specialization and mono-
morphic code, with slightly better performance when travers-
ing the linked list (benchmarks hashCode and contains),
and a lower performance on List creation. This suggests
that passing the dispatcher object on the stack is more ex-
pensive than passing a type tag.

It is worth noting that the dispatcher-based implementa-
tion relies on inlining performed by the just-in-time com-
piler. Although the load-time cloning mechanism ensures
type profiles remain monomorphic, the burden of inlining
falls on the just-in-time compiler. In the case of virtual ma-
chines that perform ahead-of-time compilation, such as Ex-

ArrayBuffer List

generic 4.6 2.2 367.0 1.4 0.2 16.6
mb. switch + LS 1.6 0.3 25.0 0.8 1.3 4.2

mb. dispatch + LS 2.5 0.7 88.9 1.1 1.5 7.3
specialization 4.3 0.5 30.7 0.6 1.9 2.2
monomorphic 1.0 0.2 12.7 0.4 1.2 2.2

Table 4. Running time for the benchmarks in the HotSpot
Java Virtual Machine interpreter. The time is measured in
seconds as instead of milliseconds as in the other tables.
“Single context” and “Multi context” have similar results.

celsior JET [24], the newly specialized class is compiled
to native code without interpretation, thus no type profiles
are available and no inlining takes place for the minibox-
ing runtime. In contrast to dispatching, type tag switching
only requires loading-time constant propagation and dead
code elimination to remove the overhead of the miniboxing
runtime. This makes it a better candidate for robust perfor-
mance across different virtual machines. The next section
will present interpreter benchmarks.

7.5 Interpreter Benchmarks

Before compiling the bytecode to native machine code, the
HotSpot Virtual Machine interprets it and gathers profiles
that later guide compilation. Table 4 presents results for run-
ning the same set of benchmarks in the interpreter, without
compilation. It is important that transformations do not vis-
ibly degrade performance in the interpreter, as this slows
down application startup. The data highlights a steady be-
havior for the the type tag switching, while the dispatcher-
based approach suffers from up to 4x slowdowns.

The data shows a consistent slowdown of the tag switch-
ing approach compared to the monomorphic code in 4 of
the 6 experiments. This can most likely be attributed to

ArrayBuffer.append ArrayBuffer.reverse ArrayBuffer.contains

Single Context Multi Context Single Context Multi Context Single Context Multi Context
generic 50.1 48.0 20.4 21.5 1580.1 3628.8
mb. switch 30.9 35.5 2.5 15.1 161.5 554.3
mb. dispatch 16.5 58.2 2.1 26.5 160.7 2551.6
mb. switch + LS 15.6 14.8 2.5 2.4 159.9 161.7

mb. dispatch + LS 15.1 15.9 2.0 2.7 161.8 161.3

specialization 39.7 38.5 2.0 2.4 155.8 156.3
monomorphic 16.2 N/A 2.1 N/A 157.7 N/A

List creation List.hashCode List.contains

Single Context Multi Context Single Context Multi Context Single Context Multi Context
generic 16.7 1841 22.1 20.4 1739.5 2472.4
mb. switch 11.4 11.7 18.3 18.8 1438.2 1443.2
mb. dispatch 11.4 11.5 15.6 21.0 1369.1 1753.2
mb. switch + LS 11.5 11.6 16.2 16.1 1434.9 1446.3

mb. dispatch + LS 12.1 12.7 16.1 15.3 1364.2 1325.9

specialization 11.4 11.4 14.5 36.4 1341.0 1359.2
monomorphic 10.2 N/A 13.3 N/A 1172.0 N/A

Table 3. Benchmark running times. The benchmarking setup is presented in §7.2 and the targets are presented in §7.3. The
time is measured in milliseconds.
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erasure dispatch switch spec.
ArrayBuffer 4.4 19.5 24.5 57.6
ArrayBuffer factory – + 9.0 + 8.5 –
ListNode 3.1 10.9 11.5 45.0
ListNode factory – + 8.7 + 8.3 –

Table 5. Bytecode generated by different translations, in
kilobytes. Factories add extra bytecode for the double fac-
tory mechanism. “spec.” stands for specialization.

the mechanism for invoking object methods, which requires
loading a reference to the module from a static field and then
performing a method call. Even after the method call is in-
lined, the Scala backend (and the load-time specializer) do
not remove the static field access, thus leaving the redundant
but possibly side-effecting instruction in the hot loop. In the
native code the field access is compiled away by the just-in-
time compiler. This could be improved in the Scala backend.

7.6 Bytecode Size

Table 5 presents the bytecode generated for ArrayBuffer
and ListNode by 4 transformations: erasure, miniboxing
with dispatcher, miniboxing with switching and specializa-
tion. The fraction of bytecode created by miniboxing, when
compared to specialization, lies between 0.2x to 0.4x. This is
marginally better than the fraction we expected, 0.4x, which
corresponds to 4

n/10n for n = 1. The reason the fraction is
4
n/10n instead of 2n/10n is explained in §4.1. The double

factory mechanism adds a significant bytecode, in the order
of 10 kilobytes per class.

In order to evaluate the benefits of using the mini-
boxing encoding for real-world software, we developed a
“specialization-hijacking” mode, where specialization was
turned off and all @specialized notations were treated as
@minispec, thus triggering miniboxing on all methods and
classes where specialization was used. For this benchmark
we only used the switching-based transformation.

The first evaluation was performed on Spire [31], a Scala
library providing abstractions for numeric types, ranging
from boolean algebras to complex number algorithms. Spire
is the one library in the Scala community which uses special-
ization the most, and the project owner, Erik Osheim, con-
tributed numerous bug fixes and enhancements to the Scala
compiler in the area of specialization. The results, presented
in Table 6, show a bytecode reduction of 2.8x and a 1.4x, or
40%, reduction in the number of specialized classes. The two
reductions are not proportional because specialized methods

bytecode size (KB) classes
Spire - specialized (current) 13476 2545
Spire - miniboxed 4820 1807
Spire - generic 3936 1530

Table 6. Bytecode generated by using specialization, mini-
boxing and leaving generic code in the Spire numeric ab-
stractions library.

inflate the code size of classes, but do not increase the class
count. The bytecode reduction is limited to 2.8x because spe-
cialization is used in a directed manner, pointing exactly to
the value types which should be specialized. So, instead of
generating 10 classes per type parameter, it only generates
the necessary value types. Nevertheless, even starting from
manually directed specialization, the miniboxing transfor-
mation is able to further reduce the bytecode size.

The second evaluation, shown in Table 7, is motivated
by a common complaint in the Scala community: that the
collections in the standard library should be specialized. To
perform an evaluation on collections, we sliced a part of the
library around the Vector class and examined the impact
of using the specialization and miniboxing transformations.
On the approximately 64 Scala classes, traits and objects
included in our slice, the bytecode reduction obtained by
miniboxing compared to specialization is 4.7x. Compared
to the generic Vector, the miniboxing code growth is 1.7x,
opposed to almost 8x for specialization.

7.7 Load-time Specialization Overhead

In this section we will evaluate the overhead of the double
factory mechanism. There are three types of overhead in-
volved:

• Bytecode overhead, shown in the previous section;
• Time spent specializing and loading a class;
• Heap overhead for the classloader and factory.

We will further explore the last two sources of overhead.

7.7.1 Time Spent Specializing

Table 3, in the “List creation” column, shows the over-
head of the double factory mechanism and class special-
ization is not statistically noticeable after the mechanism is
warmed up. Nevertheless, it is important to understand how
the mechanism behaves during a cold start, as this directly
impacts an application’s startup time. In this subsection we
will examine the overhead for a cold start, coming from two
different sources:

• The runtime class specialization;
• The cold start of the double factory mechanism.

The evaluation checks the two overheads separately:
in the first experiment we only load the classes (using
Class.forName) to trigger the runtime class specialization,
while in the second experiment we instantiate the classes, ei-
ther directly, using the new operator or through the double

bytecode size (KB) classes
Vector - specialized 5691 1434
Vector - miniboxed 1210 435
Vector - generic (current) 715 223

Table 7. Bytecode generated by using specialization, mini-
boxing and leaving generic code on the Scala collection li-
brary slice around Vector.



time in ms classes
classpath - just load 182 ± 5 9 × 25 = 225
classloader - warmed up 300 ± 4 225
classloader - cold start 461 ± 9 225

Table 9. Loading time (classpath) and time for cloning and
specialization (classloader) for the 9 specialized variants of
Vector and their transitive dependencies.

time in ms classes
classpath - new 258 ± 5 9 × 42 = 378
classpath - factory 268 ± 6 378
classloader - factory - warm 488 ±10 378
classloader - factory - cold 655 ± 9 378

Table 10. Instantiation time for the 9 specialized variants of
Vector and their transitive dependencies.

factory mechanism. In order to evaluate the class specializa-
tion, we instrumented the specializing classloader to dump
the resulting class files, such that we can compare the spe-
cializing classloader to simply loading the specialized vari-
ants from the classpath.

For the comparison, we use the Vector class described
in the previous section. The Vector class mixes in 36 traits
[28] which are translated by the Scala compiler as transi-
tive dependencies of the class. In our experiments, loading
the Vector class using Class.forName transitively loaded
another 24 specialized classes for each variant. Instantiating
a vector using new further loads another 18 classes, mainly
specialized trait implementations and internal classes, lead-
ing to a total of 42 classes loaded with each specialized vari-
ant of Vector.

In each experiment we start the virtual machine, start
counting the time, load or instantiate Vector for all 9 value

types in Scala, output the elapsed time and exit. Once a class
is loaded, its internal representation in the virtual machine
remains cached until its classloader is garbage collected.
In order to perform correct benchmarks, we chose to use a
virtual machine to load the 9 specialized variants of Vector
only once, and then restart the virtual machine. We repeated
the process 100 times for each measurement.

The first experiment involves loading the class: this can
be done either by using the specializing classloader to instan-
tiate a template or by loading the class file dumped from a
previous specialization run. We observed a significant differ-
ence between cold starting the specializing classloader and
warming it up on a different set of classes. This is shown in
Table 9: cold starting the specialization classloader incurs a
slowdown of 153% while warming it up before leads to a
65% slowdown in class loading time.

The second experiment involves instantiating the class,
either directly (using the new operator) or through the double
factory mechanism. Table 10 presents the results. The sur-
prising result of this experiment is that the overhead caused
by the double factory mechanism is under 4%. As before,
most of the time is spent specializing the template to produce
the specialized class, which, depending on whether the class-
loader was used before, can lead to a slowdown between
84% and 144%. It is important to point out this overhead is
a one-time cost, and further instantiations of the specialized
variants take on the order of tens of milliseconds.

7.7.2 Heap Overhead

In this section we will attempt to bound the heap usage of the
double factory mechanism. The double factory mechanism
consists of a first level factory, which uses reflection to create
second level factories, which, in turn, use the new operator
to instantiate load-time specialized classes. This mechanism

ArrayBuffer.append ArrayBuffer.reverse ArrayBuffer.contains

Single Context Multi Context Single Context Multi Context Single Context Multi Context
generic 78.3 52.3 3.2 20.3 607.6 3146.1
mb. switch 27.6 × 7.4 × 844.4 ×

mb. dispatch 27.0 34.8 3.2 10.8 844.7 962.7
mb. switch + LS 22.2 14.3 3.8 2.9 725.4 725.2

mb. dispatch + LS 32.9 26.4 3.4 4.0 844.6 845.3

specialization 21.7 13.4 3.5 2.7 488.7 489.4
monomorphic 19.8 N/A 3.1 N/A 490.4 N/A

List creation List.hashCode List.contains

Single Context Multi Context Single Context Multi Context Single Context Multi Context
generic 32.6 23.3 13.4 13.6 1846.5 2168.1
mb. switch 23.7 18.0 11.7 10.9 1420.8 1421.5
mb. dispatch 20.9 18.3 12.4 11.4 1359.3 1427.5
mb. switch + LS 23.2 17.1 12.2 10.5 1414.8 1459.4

mb. dispatch + LS 25.0 18.3 12.1 10.5 1390.6 1402.9

specializare 21.7 16.9 12.4 10.6 1463.5 1459.8
monomorphic 19.6 N/A 11.7 N/A 1249.2 N/A

Table 8. Running times on the Graal Virtual Machine. “×” marks benchmarks for which the bytecode generated crashed the
Graal just-in-time compiler. The time is measured in milliseconds.



was imposed in order to avoid the cost of reflection-based in-
stantiation, which we found to be more expensive in terms of
overhead. Each second level factory corresponds to a set of
pre-determined type tags, thus instantiating two specialized
variants will require two separate second level factories.

The first level factory mechanism keeps a cache of 10n

references pointing to second level factories, which is ini-
tially empty and fills up as the different variants are created.
The second level factories are completely stateless and only
offer a method for each specialized class constructor. There-
fore the maximum heap consumption, for a 64 bit system
running the HotSpot Virtual Machine, would be 16 bytes for
each second level factory and 8 bytes for its cached refer-
ence, all times 10

n, assuming all variants are loaded. This
means a total of 24 × 10

n bytes of storage. For a class with
a single type parameter, this would mean a heap overhead
in the order of hundreds of bytes. Assuming all of spire’s
specialized classes used arrays and required the two factory
mechanism, since most take a single type parameter, it would
mean a heap overhead in the order of tens of kilobytes.

However a hidden overhead is also present, consisting of
the internal class representations for the second level fac-
tories inside the virtual machine. To bound this overhead,
we can compare the factories to the classes themselves: for
each specialized variant of the class there will be a special-
ized factory, with a method corresponding to each construc-
tor of the class. The factory will therefore always have a
strictly smaller internal representation than the specialized
class, leading to at most a doubling of the internal class rep-
resentation in the virtual machine.

7.8 Extending to Other Virtual Machines

In order to asses whether the miniboxing runtime system
provides good performance on other virtual machines, we
have evaluated it on Graal [30]. The Graal Virtual Machine
consists of the same interpreter as the HotSpot Virtual Ma-
chine but a completely rewritten just-in-time compiler. Since
the interpreter is the same, the same type profiles and hot-
ness information is recorded, but the code is compiled using
different transformations and heuristics. The results in Ta-
ble 8 exhibit both a much lower variability but also a lower
peak performance compared to the C2 compiler in HotSpot
(in Table 3). With the single exception of ArrayBuffer’s
contains benchmark, the switching runtime support with
class loading behaves similarly to specialized code.

7.9 Evaluation Remarks

After analyzing the benchmarking results, we believe the
miniboxing transformation with type byte switching and
classloader duplication provides the most stable results and
fulfills our initial goal of providing an alternative encod-
ing for specialization, which produces less bytecode without
sacrificing performance. Using the classloader for duplica-
tion and switch elimination, the type byte switching does
not require forced inlining, making the transformation work
without any inlining support from the Scala compiler.

8. Related Work

The work by Sallenave and Ducournau [35] shares the same
goals as miniboxing: offering unboxed generics without the
bytecode explosion. However, the target is different: their
Lightweight Generics compiler targets embedded devices
and works under a closed world assumption. This allows the
compiler to statically analyze the .NET bytecode and con-
servatively approximate which generic classes will be in-
stantiated at runtime and the type arguments that will be
used. This information is used to statically instantiate only
the specialized variants that may be used by the program.
To further reduce the bytecode size, instantiations are ag-
gregated together into three base representations: ref, word
and dword. This significantly reduces the bytecode size and
does not require runtime specialization. At the opposite side
of the spectrum, miniboxing works under an open-world as-
sumption, and inherits the opportunistic and compatible na-
ture from specialization, which enables it to work under era-
sure [10], without the need for runtime type information. In-
stead, type bytes are a lightweight and simple mechanism to
dispatch operations for encoded value types.

According to Morrison et al [27] there are three types of
polymorphism: textual polymorphism, which corresponds to
the heterogeneous translation, uniform polymorphism which
corresponds to the homogeneous translation and tagged

polymorphism which creates uniform machine code that can
handle non-uniform store representations. In the compiler
they develop for the Napier88 language, the generated code
uses a tagged polymorphism approach with out-of-band sig-
naling, meaning the type information is not encoded in the
values themselves but passed as separate values. Their en-
coding scheme accommodates surprisingly diverse values:
primitives, data structures and abstract types. As opposed
to the Napier88 compiler, the miniboxing transformation is
restricted to primitives. Nevertheless, it can optimize more
using the runtime specialization approach, which eliminates
the overhead of tagging. Furthermore, the miniboxing run-
time support allows the Java Virtual Machine to aggressively
optimize array instructions, which makes bulk storage oper-
ations orders of magnitude faster. The initial runtime support
implementations presented in §5 show that it is not possible
to have these optimizations in a purely compiler-level ap-
proach, at least not on the current incarnation of the HotSpot
Java Virtual Machine.

Fixnums in Lisp [44] reserve bits for encoding the type.
For example, an implementation may use a 32-bit slot to en-
code both the type, on the first 5 bits, and the value, on the
last 27 bits. We call this in-band type signaling, as the type
is encoded in the same memory slot as the value. Although
very efficient in terms of space, the fixnum representation
has two drawbacks that we avoid in the miniboxing encod-
ing: the ranges of integers and floating point numbers are re-
stricted to only 27 bits, and each operation needs to unpack
the type, dispatch the correct routine and pack the value back
with its type. This requires a non-negligible amount of work



for each operation. Out-of-band types are used in Lua [17],
where they are implemented using tagged unions in C. Two
differences set miniboxing apart: first, fixnums and tagged
unions are used in homogeneous translations, whereas the
miniboxing technique simplifies heterogeneous translations.
Secondly, miniboxing leverages static type information to
eliminate redundant type tags that would be stored in tagged
unions. For example, miniboxing uses the static type infor-
mation that all values in an array are of the same type: in
such a case, keeping a tag for each element, as would be done
with tagged unions, becomes redundant. Therefore, we con-
sider miniboxing to be an encoding applicable to strongly
typed languages, which reduces the bytecode size of hetero-
geneous translations, whereas fixnums and tagged unions are
encodings best applied to dynamically typed languages and
homogeneous translations.

The .NET Common Language Runtime [5, 20] was a
great inspiration for the specializing classloader. It stores
generic templates in the bytecode, and instantiates them in
the virtual machine for each type argument used. Two fea-
tures are crucial in enabling this: the global presence of rei-
fied types and the instantiation mechanism in the virtual ma-
chine. Contrarily, the Java Virtual Machine does not store
representations of the type arguments at runtime [10] and
re-introducing them globally is very costly [37]. Therefore,
miniboxing needs to inherit the opportunistic behavior from
specialization. On the other hand, the classloading mecha-
nism for template instantiation at runtime is very basic, and
not really suited to our needs: it is both slow, since it uses re-
flection, and does not allow us to modify code that is already
loaded from the classpath. Consequently we were forced to
impose the double factory mechanism for all classes that ex-
tend or mix-in miniboxed parents, creating redundant boil-
erplate code, imposing a one-time overhead for class instan-
tiation and increasing the heap requirements.

The Pizza generics support [29] inspired us in the use
of traits as the base of the specialized hierarchy, also offer-
ing insights into how class loading can be used to specialize
code. The mechanism employed by the classloader to sup-
port arrays is based on annotations, which mark the bytecode
instructions that need to be patched to allow reading an array
in conformance with its runtime type. In our case there is no
need for patching the bytecode instructions, as miniboxing
goes the other way around: it includes all the code variants
in the class and then performs a simple constant propagation
and dead code elimination to only keep the right instruction.
Miniboxing also introduces the double factory mechanism,
which pays the reflective instantiation overhead only once,
instead of doing it on each class instantiation. The class gen-
eration from a template was first presented in the work of
Agesen et al [6].

Around the same time as Pizza, there has been signif-
icant research on supporting polymorphism in Java, lead-
ing to work such as GJ [10], NextGen [12] and the poly-
morphism translation based on reflective features of Viroli

[43]. NextGen [7, 12, 36] presents an approach where type
parameter-specific operations are placed into snippet meth-
ods, which are grouped in wrapper classes, one for each
polymorphic instantiation. Wrapper classes, in turn, extend
a base class which contains the common functionality inde-
pendent of the type parameters. It also implements a gen-
erated interface which gives the subtyping relation between
the specialized classes, also supporting covariance and con-
travariance for the type parameters. Taking this approach of
grouping common functionality in base classes, as special-
ization does, could reduce code duplication in miniboxed
variants, at the cost of duplicating all snippet methods from
the parent in the children classes. Since the collections hier-
archy in Scala is up to 6 levels deep, the cost of duplicating
the same snippet method 6 times outweighs the benefit of
reducing local duplication in each class.

The dispatcher objects in miniboxing are specialized and
restricted where clauses from PolyJ [8]. Since the methods
that operate on primitive values are fixed and known a priori,
unlike PolyJ, we can use dispatcher objects and type tags
without any change to the virtual machine. Nevertheless
it is worth noting that our implementation does pay the
price of carrying dispatcher objects in each instance, which
PolyJ avoids by implementing virtual machine support for
invoking methods in where clauses.

In the context of ML, Leroy presented the idea of mixing
boxed and unboxed representations of data and described the
mechanism to introduce coercions between the two when-
ever execution passes from monomorphic to polymorphic
code or back [22]. Miniboxing introduces similar coercions
between the boxed and miniboxed representation, when-
ever the expected type is generic instead of miniboxed. The
peephole optimization in miniboxing could be seen as a set
of rules similar to the ones given by Jones et al in [19].
The work on passing explicit type representations in ML
[16, 25, 41, 42] can also be seen as the base of specialization
and also miniboxing. However, since we control rewiring
and do it in a conservative fashion, we only use the type tags
available, thus miniboxing does not need any mechanism for
type argument lifting.

This paper has systematically avoided the problem of
name mangling, which has been discussed in the context of
Scala [13] and more recently of X10 [40]. Finally, minibox-
ing is not limited to classes and methods, but could also be
used to reduce bytecode in specialized translations of ran-
dom code blocks in the program [39].

9. Conclusions

We described miniboxing, an improved specialization trans-
formation in Scala, which significantly reduces the bytecode
generated. Miniboxing consists of the basic encoding (§3)
and code transformation (§4), the runtime support (§5) and
the specializing classloader (§6). Together, these techniques
were able to approach the performance of monomorphic and
specialized code and obtain speedups of up to 22x over the
homogeneous translation (§7).
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