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SUMMARY

The combination of evidence from independent studies has a curious history. The origins

reach back at least to the beginning of the twentieth century. Since the mid-seventies

the term meta-analysis (G. Glass, 1976 presidential address to the American Educational

Research Association) has become popular in several fields, among them medical statistics

and the behavioral sciences. The most widely used procedures were perfected in early

papers and subsequently a kind of groupthink has taken hold of meta-analysis. This

explains the need for a review in a statistics journal, destined for a statistical audience.

Meta-analysis is not a hot research topic among graduate students in statistics and by

writing this article we hope to change this. We wish to point out the shortcomings of

the mainstream view and exhibit some of the open problems that await the attention of

statistical researchers.

A host of competent reviews of meta-analysis have been published and several book-

length treatments are also available. We have listed many of these in the bibliography, but

cannot guarantee completeness.
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RÉSUMÉ

La mise en commun des résultats de plusieurs études individuelles portant sur la même

question possède une drôle d’historique. Les débuts remontent au début du 20e siècle.

Depuis le milieu des années septantes le terme méta-analyse (G. Glass, 1976 discours pres-

identiel lors de la conférence de l’American Educational Research Association) est devenu

populaire dans plusieurs domaines, entre autres la statistique médicale et les sciences du

comportement et de psychologie. Les méthodes les plus utilisées ont été élaborées assez

vite et ensuite une sorte de pensée unique s’est emparée de la méta-analyse. Cela ex-

plique la nécessité d’un bilan dans un journal déstiné à un publique de statisticien(ne)s.

La méta-analyse n’est pas un sujet apprécié par nos étudiants doctorants et nous espérons

de changer cela avec cet article. Nous voulons montrer les points faibles de l’approche

habituelle et explorer quelques problèmes ouverts qui posent des défis aux chercheurs en

statistique.

Une série de bilans compétents de la méta-analyse ont été publiés et plusieurs livres

sont également à disposition. Notre article fait référence à beaucoup d’entre eux, mais

nous avons sûrement oublié quelques-uns.

Mots clés: bilan, méta-analyse, ampleur de l’effet, effets aléatoires, méta-régression,

logiciels

1 Introduction

The broad aim of a meta-analysis (MA) is to provide a review of the literature on some

scientific question and to summarize the information in a quantitative manner. It is hoped

that by combining the statistical evidence from all the available studies a stronger consensus

view can emerge. Meta-analysis taken in this sense is merely a part of a systematic review,

which involves an extensive methodology for research synthesis going beyond meta-analysis.

A systematic review requires the identification of the relevant studies, the determination

how each study was conducted and under what precise circumstances, the collection of the

associated data , the evaluation of the study quality, etc. But it is fair to say that unless the

statistical methods being used are sound, the numerical summaries from a meta-analysis

may be misleading and no benefits may accrue from combining the studies.

Each study or trial used in a meta-analysis is summarized by an estimate of an appropri-
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ate effect, for example, the odds-ratio when comparing two samples with binary outcomes,

or the mean, when the study consists of a single sample with continuous outcomes, and

so on. The meta-analysis attempts to provide a more precise estimate. The single most

important reason for failures in meta-analyses are biases. Many estimators, for example,

are biased when applied to finite samples. Combining even a very large number of finite

sample estimates does not make this bias disappear. On the contrary, its relative impor-

tance grows, because the variance decreases towards zero by combining studies. Another

example are study-related biases. Does it makes sense to estimate an overall effect via a

meta-analysis? To what populations will the result apply? Sequences of studies are usually

done with differing standards, different definitions and methods, different populations, and

so on. Sometimes, covariates may help in explaining the differences at least partially. In

other instances it might be better to refrain from attempting a combination. Yet other

biases are more subtle. Difficulties in publishing papers with insignificant findings, for

example, will result in publication bias which exaggerates the true effect. The history of

science provides many examples in which statistically significant effects were identified,

published and even celebrated, only to be refuted later on. It seems all too easy to arrive

at such wrong conclusions, particularly if the effect is believed to be real by the scientific

community. Statisticians have already contributed to the resolution of publication bias

(see Section 3), but much more needs to be done.

The second order effects, such as variances or lengths of confidence intervals, are of

lesser importance, but nevertheless deserve attention. One should make sure that all

sources of variation are accounted for when computing the variance of an estimated effect.

The resulting confidence intervals will be wider, but also more realistic. It clearly would

also be desirable to include potential biases when calculating confidence intervals. But this

requires a rethink of our current theories of testing and inference.

In view of the unmet needs in the area of bias and variance, it seems almost unnecessary

to talk about the higher order effects due to deviations from Gaussianity. Clearly, however,

more accurate models will lead to more accurate inferences and it presumably would be

useful for meta-analysis to use more sophisticated models.
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1.1 A very brief history of meta-analysis

An early paper is an investigation reported in Simpson and Pearson (1904) of correlation

coefficients in 2× 2 contingency tables of incidence or survival vs. inoculation. Data sets

from South Africa and India are taken into consideration and the paper’s main achieve-

ments are the organization and reduction of the data into comparable form and the sum-

mary of the data via a correlation coefficient with accompanying probable error. The only

meta-statistic Simpson and Pearson present is the mean across the data sets. One of the

conclusions of the paper states that “To sum up, it seems that, while most of the cor-

relations both for immunity and recovery are distinctly sensible, having regard to their

probable error, yet they are so irregular that little reliance can be placed upon them as

representing a definitive uniform effect.” (Simpson and Pearson, 1904, p. 1244). This

remains a valid statement of one of the main difficulties one encounters when combining

estimated effects.

The analysis of variance, a technique developed by R.A. Fisher in the nineteen-thirties,

can be seen as a basic tool for meta-analysis. The simplest case concerns several paral-

lel samples (1-way ANOVA), with the factor denoting the studies. The common mean

represents the common effect, while the individual study effects can be used to assess the

variation between studies. The residual variation, finally, is a measure of the within study

variation. The first papers written from this point of view appeared in the late thirties

(Cochran, 1937; Yates and Cochran, 1938). In Cochran’s paper a setup is introduced that

is still in use today. The individual samples – or centres as he calls them – are summarized

by the effect estimate xi (the mean) and its standard error si based on a known number

of degrees of freedom. An even simpler summary – merely a p-value of a significance test

for a null hypothesis common to all centers — was discussed in Tippett et al. (1931) and

Fisher (1932). They proposed methods for computing a combined p-value.

For most statisticians, meta-analysis became an area to avoid, perhaps because they

mistakenly thought that such analyses were straightforward. Notable exceptions include

Gene V. Glass, Larry Hedges, and Ingram Olkin.

1.2 Data in a typical meta-analysis

It is of interest to understand what data constitutes a ‘typical’ meta-analysis. We analysed

all meta-analyzes using the difference of means as an effect measure from issue 4 of the
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Cochrane database (2004, compact disk edition). All these studies have two arms: a

treatment and a control arm with sample sizes denoted be nT and nC , respectively, with

the overall sample size n = nT + nC . The data consists of sample means and sample

variances in the two arms. There were 4,585 meta-analyses having K > 1 studies and

positive variances in both arms. Interestingly, the numbers of studies per meta-analysis

are small: 47% with K = 2, 21% with K = 3, and in total 95% with K ≤ 8, though the

maximum was K = 58.

An assumption often taken for granted in theoretical work is that of large sample sizes.

In fact, the majority of meta-analyses include some small studies. The minimum study size

is 20 or less in 25% of meta-analyses; ≤ 33 in 50%, and ≤ 70 in 75%. Often all studies in a

meta-analysis are rather small: maximum study size is 50 or less in 25% of meta-analyses

and less than ≤ 110 in 50%. Only 10% of the meta-analyses include one or more studies

of 490 or more patients. The majority of the studies are fairly balanced: in 75% of the

meta-analyses min{nT/n, nC/n} ≥ 0.44, and only in 10% min{nT/n, nC/n} ≤ 0.33.

1.3 What is to come

The paper offers a review of the procedures and open problems in statistical meta-analysis.

This is a topic of growing importance, because in many areas of application the need for

combining different sources of data and different sources of information in order to reach

an overall assessment manifests itself. The classical material on meta-analytic statistical

procedures are reviewed in Section 2. These include the distinction between fixed and

random effects models, tests of homogeneity, meta-regression, observational studies, and a

discussion of the types of data typically available for a meta-analysis. Section 3 investigates

two sources of bias in meta-analysis, the bias due to the systematic selection of studies

showing stronger than average effects, and the meta-analysis of smallish studies combined

with the use of estimators with appreciable small sample biases. In Sections 4 and 5

generalizations and extensions to the standard procedures are discussed. They include

multivariate responses and sequential procedures. A non-exhaustive list of software tools

closes out the review.
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2 Models for meta-analysis and meta-regression

For a statistician, standard meta-analysis is very close to fixed or random effects 1-way

ANOVA under heteroscedasticity, complicated by mere asymptotic rather than exact nor-

mality of the participating statistics. A closely linked area is the analysis of interlaboratory

studies. Exact distributional results do not exist in a closed form, and various approxima-

tions are in use. There are three possible ways to derive these approximations: increasing

within-study sample sizes nk →∞ for a fixed number of studies K; increasing number of

studies K → ∞ for fixed or bounded study sizes; and also for both K and nk increasing

simultaneously. These three options are often erroneously interchanged. As we shall see,

they result in very different inferential procedures.

A reader who is interested in more detailed information about meta-analysis, can con-

sult one of the recently published books on the subject. Here is a selection in chronological

order: Hedges and Olkin (1985), Wolf (1986), Sutton et al. (2000), Whitehead (2002),

Schulze et al. (2003), Rothstein et al. (2006), Kulinskaya et al. (2008), Cooper et al.

(2009), Higgins and Green (2011), Borenstein et al. (2011), Stanley and Doucouliagos

(2012), Pigott (2012), Koricheva et al. (2013).

2.1 Fixed effects model

We are given K studies, each trying to measure some effect θ. The effects can be measured

by a variety of statistics, such as sample means, correlation coefficients and, for studies in

which there are treatment and control arms, difference of sample means, standardized mean

differences, odds ratios, and differences or ratios of binomial probabilities known as risk

differences and relative risks. In the kth study or trial there are nk observations yielding an

estimator θ̂k, which is asymptotically normal in the sense that
√
nk (θ̂k− θk)→ N(0, vk) in

distribution for some unknown parameters (θk,vk). A second assumption is that for each k a

consistent estimator v̂k of vk exists in the sense that v̂k/vk → 1 in probability. This justifies

large sample confidence intervals for θk of the form θ̂k ± z1−α/2{v̂k/nk}1/2, with confidence

coefficient 1 − α. It further follows for the known inverse variance weights wk = nk/vk,

that a large sample confidence interval for the combined or meta effect θw =
∑

k wkθk/W ,

where W =
∑

k wk, is given by θ̂w ± zW−1/2.

For the fixed effects model (FEM) it is assumed all θk = θ, say. It is widely recognized

6



that this assumption is an over-simplification of reality, but nevertheless an analysis for

it is usually given for the sake of comparison with a random effects model analysis, to be

discussed shortly. For the FEM, θw = θ for any set of weights. The weights that minimize

the standard error of θ̂w for estimating θ are the inverse variance weights wk = nk/vk. So

the ‘conventional’ meta-analysis now estimates θ by θ̂ŵ =
∑

k ŵkθ̂k/Ŵ , where ŵk is the

consistent estimator of wk in the kth study. Figure 1 is an example of a meta-analysis

of seven two-armed binomial studies. The effect is the difference of the two probabilities.

The data is from Fleiss (1993) and concerns the use of aspirin to prevent death following

a myocardial infarction. The plot is a common technique for visualizing the results of a

meta-analysis.

The variance of θ̂ŵ is no longer W−1, because the weights are estimated. In fact, W−1

underestimates this variance (Li et al., 1994; Rukhin, 2009), so that the coverage of the

conventional interval θ̂ŵ ± z1−α/2Ŵ
−1/2 is lower than the nominal level 1 − α, and the

conventional Wald test, Ŵ 1/2θ̂ŵ, for H0 : θw = 0 is too liberal. For example, for normally

distributed data with ni = 3 for each study, the variance of θ̂ŵ is K times larger than W−1

(Rukhin, 2009)!

Another shortcoming of the variance estimation by W−1 is its over-sensitivity to the

minimum of the estimates of the variances in the K studies, which follows from the in-

equality W−1 ≤ min(vk, k = 1, · · · , K) (Li et al., 1994).

An approximate unbiased variance of θ̂ŵ up to any order was obtained for the normal

model by Sinha (1985). There are no similar results in the general case.

The maximum likelihood estimator (MLE) of θ does not have a closed form, although

it is a weighted means statistic with the weights inversely proportional to the MLEs of

the within-study variances. Several tests for the common mean, including a test based on

the first-order approximate variance by Sinha (1985) and on the MLE combined with a

parametric bootstrap procedure were studied by simulation in Chang and Pal (2008) for

K = 2 and K = 5. Both tests performed well, with the MLE based test being somewhat

more powerful.

It can be seen that proper statistical inference under the FEM is difficult even under

normality; it becomes even more so in the general case. The problem is exacerbated by

possible correlations between the effects and the weights. Higher order inference needs to

be developed for many non-normal effects used in meta-analysis.
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Figure 1: A forest plot of seven studies involving two binomial arms. For each trial, the summary

of the data and the confidence interval for the difference of the probabilities is shown. The first five

studies are too small to show a significant effect. The bigger studies give contradictory outcomes.

The final meta interval based on the FEM is to a large extend determined by the largest study.

2.2 Random effects model

For the random effects model (REM) it is assumed that the θ1, . . . , θK are a random sample

from a N(θ, τ 2) distribution, with both parameters unknown. When combined with the

assumption that θ̂k|θk ∼ N(θk, vk/nk), this leads to the unconditional distribution for the

estimated effect θ̂∗k ∼ N(θ, τ 2+vk/nk). Note that we have changed notation from θ̂k to θ̂∗k to

reflect the change in distribution. There are now K + 2 unknown parameters: the overall

or representative effect θ, the inter-study variance τ 2, and the unknown vk, k = 1, . . . , K.

There are two important issues here, how to interpret θ, and how to estimate it. The
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main advantage of the REM over the FEM is that because the effects themselves are a

random sample with mean θ, an estimate of the latter could provide insight into the larger

family of studies which might be carried out under similar conditions. At its most extreme

interpretation, there is an urn of possible studies, and the ones that have been selected

have randomly chosen sample sizes and within-study variances as well as effects, see Shuster

(2010); Buonaccorsi (2006). The choice of the random urn model greatly affects statistical

inference under REM. The conventional estimator θ̂∗ŵ is biased, and the unweighted mean

is recommended in Shuster (2010). However, a more modest interpretation is that the

REM is chosen for mathematical convenience, and allowing for only one more (nuisance)

parameter τ 2. An alternative, multiplicative model for REM based on overdispersion due

to within-studies correlations was recently proposed by Kulinskaya and Olkin (2013). The

real advantage of detecting a positive τ 2 is that it suggests finding explanatory variables (or

moderators) which explain the variation between study outcomes, as in meta-regression,

see Section 2.5. For a recent review of various issues involving the REM, the reader is

referred to Higgins et al. (2009). See also Sutton and Higgins (2008) for a more general

discussion of a variety of meta-analytic methods.

Statistical methods for the REM just described has been the subject of much research

(see Section 2.4.), especially with regard to the nefarious τ 2. This parameter cannot be

estimated to any reasonable precision without a large number K of studies, and hence

neither can θ. The traditional approach of substituting an estimator τ̂ 2 for τ 2 into the

asymptotic variance formula Var[θ̂∗k] = τ 2 + vk/nk and applying the estimated inverse vari-

ance weights combination suffers from all the problems of this methodology for the FEM,

further aggravated by neglecting the variability of τ̂ 2. It has been applied to thousands

of data sets, despite the lack of theoretical or simulation studies to confirm when it does

work, if ever.

If a prior distribution for θ and τ 2 is chosen, the REM becomes a Bayesian hierarchical

model. Much has recently been written about Bayesian methods in statistical modelling

and meta-analysis is a popular area of application. A very readable introduction to the

methods can be found in Koricheva et al. (2013). Bayesian methods are particularly popular

when performing network meta-analyses, in which studies comparing several treatments

are combined. Both direct comparisons between two treatments used together in a trial as

well as indirect comparisons of the two treatments used in different studies are combined.
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Xie et al. (2011) propose a frequentist method that relies on summarizing the results of

the meta-analysis in the form of a confidence distribution. This is related to the Bayesian

approach using non-informative priors.

2.3 Testing for homogeneity

In a meta-analysis it is usual to conduct a homogeneity test to determine if the effects

measured by the included studies are sufficiently similar. For the FEM, the homogeneity

test is a test of the hypothesis that the underlying effects are all equal, θk = θ. For the

REM, this is the test of the null hypothesis H0 : τ 2 = 0.

The most commonly used test statistic is Cochran’s Q (Cochran, 1937) which is defined

by Q =
∑

k ŵk(θ̂k − θ̂ŵ)2 with the inverse variance weights ŵk. Several other tests were

compared by Takkouche et al. (1999) and Viechtbauer (2007), but it was concluded that

Q is the best choice. A number of results have been published about the distribution

of Q for the case in which the effects are normally distributed sample means and the

weights are inverses of sample variances. Under these normality assumptions, the chi-

square distribution is an exact distribution of the Q statistic if the variances are assumed

to be known, resulting in known weights. We denote this statistic with known weights by

Qw, to distinguish it from Q = Qŵ. Since the randomness of the weights is traditionally

ignored in meta analysis, a number of publications provided further distributional results

for Qw, among them Biggerstaff and Tweedie (1997), Jackson (2006), Biggerstaff and

Jackson (2008).

For estimated weights, there is no exact analytic expression for the distribution of

Q, and so an approximation must be used in order to conduct the homogeneity test.

Further, the distribution of Q will vary depending on the effect measures. The chi-square

distribution is asymptotically valid as the sizes nk of the studies become large, but the

approximation is less accurate for small and medium sample sizes, see the simulation studies

by Hedges and Olkin (1985), Viechtbauer (2007) and the references therein. James (1951)

and Welch (1951) proposed separate order O(1/nk) corrections to the null distribution of Q

for the normal case. Welch’s proposal (more commonly used and known as the Welch test)

refers Q to a rescaled F -distribution (cFI−1,ν) with I − 1 and ν degrees of freedom where

ν and c are estimated from the data. Kulinskaya et al. (2003) dealt with the improved

approximation under alternatives for the FEM.
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Kulinskaya et al. (2011b,a) found O(1/N) improvements to the chi-square approxi-

mation to the null distribution for Q applicable to non-normal effect measures, where

N =
∑

k nk is the total sample size. Kulinskaya et al. (2011b) dealt with the situation in

which both the effect and the weight from an individual study depend on a single parame-

ter, with principal application to the standardized mean difference between treatment and

control arms of a study. Kulinskaya et al. (2011a) provides expansions for the first two mo-

ments of Q when the effect and weight for an individual study depends on two parameters,

the effect θk and a nuisance parameter ζk. These expansions were applied to the difference

of binomial probabilities (risks) from treatment and control arms of the studies. In this

context, a two-moment gamma approximation was recommended as an approximate null

distribution of Q. The resulting homogeneity test is substantially more accurate than the

standard chi-square test, especially when the sample sizes are small or moderate.

An asymptotic distribution of Qw for non-normal effects when the sample sizes are

finite and K → ∞ is discussed in Demidenko (2004, Section 5.1.3). This distribution is

asymptotically N(K, (κ− 1)K), where κ is the kurtosis of the underlying distribution.

Asymptotics in the case of K →∞ is discussed by Akritas and Papadatos (2004) both

for Q and for a new unweighted statistic TK which can be used with small sample sizes.

They do not require normality, but some standard moment conditions, and demonstrate

that an asymptotic approximation to the distribution of Q is possible only if the within-

study sizes nk → ∞ suitably fast in relation to K. In that case Qŵ is asymptotically

equivalent to Qw and K−1/2(Qŵ − (K − 1)) ∼ N(0, 2) under the null. They also show that

Q is very unstable for small sample sizes. The unweighted statistic proposed by Akritas

and Papadatos (2004) is given by

TK = K−1/2

K∑
k=1

[
nk(X̄k. − X̄..)

2 − (1− nk
N

)S2
k

]
,

where Xki is the i-th observation in the k-th study and S2
k are sample variances. This

statistic, equivalent to the standard F -statistic in the case of equal study sizes, is yet to be

tried in meta-analytic applications. Akritas and Papadatos (2004) derive its distribution

under local alternatives in FEM. The rates that local alternatives must converge to the

null are K−1/4 for bounded study sizes and K−1/4n
−1/2
k for nk →∞. These rates resemble

those for lack-of-fit testing in nonparametric regression.

There are so far no results on the distribution of Q or TK for the REM. These results
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would be important for derivation of the distribution of τ̂ .

There is no consensus on the appropriateness of conducting a homogeneity test. If the

choice of model in further analysis depends on the Q test as recommended by Normand

(1999) and as is often done in applications, then the two-stage procedure is in use and

the level needs to be adjusted accordingly (Hartung and Knapp, 2003). Another view is

that the heterogeneity should not be tested but quantified by some effect measure (Higgins

et al., 2009), the most popular being the I2 = (Q − (K − 1))/Q proposed by Higgins

and Thompson (2002). I2 is an increasing function of Q, which means that the statistical

properties of I2 can be deduced from those of Q. If there is no additional variance, the

expectation of Q is approximately equal to K − 1 and I2 will be close to zero. If the

alternative is true, Q grows with the total sample size N =
∑

k nk and I2 tends to 1 as

N →∞, unless the number of studies K grows with N in such a way that the average study

size N/K remains bounded. Appropriately standardized effect measures for heterogeneity

are yet to be derived. The paper by Demidenko et al. (2012) takes a step in this direction.

2.4 Inference for the REM

There are several statistical problems in REM, to do with inference for θ and for τ . Usually,

the former is of primary interest, but the variance of θ̂ depends on τ , so the latter cannot

be easily bypassed.

The most popular estimator of τ is the moment estimator of DerSimonian and Laird

(1986)

τ 2
DL = max

(
0,
Q− (n− 1)

S1 − S2/S1

)
,

where Q =
∑K

1 wk(θ̂k − θ̄)2 is the Q statistic (Cochran, 1937) and Sr =
∑K

1 wri . Instead,

the MLE of τ 2, or the restricted MLE (REML) can be used. Yet another possibility

is to use profile likelihood (Hardy and Thompson, 1996; Malloy et al., 2013). All these

methods require numerical maximization. An easier option is to use the Mandel-Paule

(MP) algorithm (Mandel and Paule, 1970). Given that the weights wk = wk(y) = (y +

v̂k/nk)
−1, the Mandel-Paule estimator is found from the estimating equation

F (y) =
K∑
1

wk(y)(θ̂k − θ̄w)2 = K − 1 .

The motivation comes from the fact that, for the true weights, F (y) ∼ χ2
K−1 and therefore

the first moment isK−1. The solution is unique because F (y) is the a convex monotonically
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decreasing function of y ≥ 0 (Rukhin, 2009). The MP algorithm was initially introduced in

the context of inter-laboratory studies, but was then adopted for meta-analysis by Rukhin

(2003) and DerSimonian and Kacker (2007). In the modified Mandel-Paule procedure

(MMP) K − 1 is replaced by K in the right-hand side of the above estimating equation.

As was shown in Rukhin and Vangel (1998), under normality, the MLE of τ 2 coincides

with the MMP estimate if the weights wk admit the representation wk = wk(y). The

original MP is similarly related to REML (Rukhin et al., 2000). The MP algorithm is also

a generalized Bayes procedure (Rukhin et al., 2000). Unfortunately, there is no uniformly

MSE optimal estimator of τ 2 over the whole range of τ 2, even if the distribution is normal.

Under normality, improved quadratic estimators of the random variance component τ 2 and

within-study variances σ2
k in the spirit of Stein are given in Mathew et al. (2010).

Given an estimate τ̂ 2, the weights w∗k = 1/(τ̂ 2 + v̂k/nk) can be used to obtain the

combined effect estimate θ̂w∗ . Inference for θ̂w∗ has the same problems as the inference in

FEM, additionally the variability in τ̂ 2 is often neglected. The coverage of the conventional

confidence intervals is considerably below nominal. A further problem with these random

effects confidence intervals is that they can be very sensitive to publication bias. If smaller

studies (with larger variances) are less likely to be published than larger studies (with

smaller variances), then the coverage probabilities of these confidence intervals can rapidly

decrease as the degree of heterogeneity, or the number of studies or both, becomes large

(Henmi and Copas, 2010).

An alternative to the standard inverse weights method accounts for the variability in τ

by replacing the approximating normal distribution for the weighted effect by a Student-t

distribution; theoretical and simulation studies justifying this approach are in Hartung

(1999), Hartung and Makambi (2003), Sidik and Jonkman (2002, 2003, 2006, 2007).

Hardy and Thompson (1996) obtained the ML confidence interval for θ by inverting

the likelihood ratio test for θ combined with the profile likelihood estimate of τ 2. However,

Sørensen (2008) showed that, for small values of K, the distribution of the likelihood ratio

test, and therefore related p-values and confidence intervals, strongly depend on the true

value of τ 2. A higher order asymptotic procedure was recently developed by Sharma and

Mathew (2011), but the regularity conditions for its applicability were not established.

Henmi and Copas (2010) proposed a new interval centered at the FEM combined effect

θ̂ŵ and based on the gamma-approximation to the conditional distribution of Q given

13



θ̂ŵ. The coverages of the intervals by Sidik and Jonkman (2002); Hardy and Thompson

(1996); Sharma and Mathew (2011); Henmi and Copas (2010) are considerably better than

the coverage of conventional intervals for small K (starting from K = 5). Additionally

the interval by Henmi and Copas (2010) is designed to perform well under publication

bias. All these methods assume that normality of estimated effects is already reached and

therefore require considerable within-study sample sizes. As an example, Henmi and Copas

(2010) simulated the odds ratios (their effect size of interest) from the normal distribution,

and therefore have no information on the within-studies sample sizes required for good

coverage. Our experience is that for large K, larger sample sizes are often required for

asymptotic results to hold. Applicability of the above methods to various effect measures

should be explored by extensive simulations. It may be necessary to develop second-order

asymptotic methods for non-normal effect measures such as odds ratios or standardized

mean differences.

A recent addition to this area by Rukhin (2013) proposes new estimators of the between-

study variability which are linear functions of quadratic statistics (Xi−Xj)
2 and the sample

variances. This class includes the τ 2
DL estimator (DerSimonian and Laird, 1986) among

others. The proposed estimators perform well in the case of small to moderate numbers

of studies. An important conclusion is that different estimators of τ 2 should be used

depending on the inferential task: “one to minimize the variance of the treatment effect

statistic; another to construct a reliable confidence interval for this parameter; yet another

to estimate τ 2 itself! ”

Another approach by Malloy et al. (2013) for random effects having the Student-t distri-

bution uses variance stabilization before finding maximum likelihood and profile estimates

of both θ and τ 2; this approach yields explicit formulae for the standard errors of each

estimator in terms of the number of studies K. In addition, these authors show that the

best performing confidence interval for δ is a simple t-interval which does not require an

estimate of τ 2. Further, both traditional and new methods for the FEM are shown to be

robust to small τ 2 > 0, so that if K is too small to estimate τ 2, a practical solution is to

revert to the FEM, even though one might prefer the REM. These results should be able

to be extended to the standardized mean difference, see Malloy et al. (2013, Section 1.4).
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2.5 Meta-regression

Let θ̂k denote the estimated effect for the kth study which is based on nk observations, and

suppose that these estimates satisfy

θ̂k = β0 + β′xk + εk (2.1)

where xk = [xk1, . . . , xkp]
′ is a vector of study covariates, called moderators in the meta-

analytic literature, β = [β1, . . . , βp] is a vector of unknown coefficients, and εk ∼ N(0, vk/nk),

where vk are known constants. This is the fixed effects meta-regression model. Tests for

non-zero coefficients can be found using traditional weighted least squares. Examples are

given in Hedges and Olkin (1993), where variance stabilization of the effect estimates pre-

cedes weighted least squares in order to obtain θ̂k’s (at least approximately) satisfying the

normality assumption with known variances. When the variances vk/nk are unknown, it is

tempting to use weighted least squares with estimated variances v̂k/nk, but this can lead to

highly biased estimates of the coefficients, as demonstrated in Malloy et al. (2011), where

it is compared with a generalized linear model approach.

It is unlikely that all moderators would be identified in advance, so that there would

be unknown heterogeneity in studies that should be accounted for. A mixed effects meta-

regression model is then appropriate. The simplest version of this model, the one where

only the intercept is random, was introduced by Colditz et al. (1994); Berkey et al. (1995),

and assumes that

θ̂k = β0 + β′xk + bk + εk , (2.2)

where the bk’s are assumed to be independent of each other, the moderators and of the

εk’s; further they are assumed to be distributed bk ∼ N(0, τ 2), where τ 2 is the unknown

inter-study variance. Berkey et al. (1995) did assume that the vk/nk’s were approximately

equal to within study estimates v̂k/nk , and proceeded to use weighted least squares with

inverse variance weights 1/{τ̂ 2 + v̂k/nk}, where τ̂ 2 is obtained by an iterative procedure.

Little progress has been made since then in dealing with two outstanding problems, namely

the usually unwarranted assumptions of normality of effect size estimates and of known

within-study variances, see Huizenga et al. (2011) for a thorough discussion.

There are at least two promising avenues for further research in mixed effects meta-

regression. First, maximum likelihood estimation of the parameters β and τ 2 using the

full likelihood, not the conditional one based on a false assumptions of known variances
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or normality where they are clearly not satisfied. Second, parameter estimation using

generalized linear models after variance stabilization, with the then reasonable assumption

of approximate normality.

2.6 Individual participant data versus summary statistics

Although considered the gold standard, individual participant data (IPD) and the expertise

required for its analysis are rarely both available, and IPD meta analysis is used only in

a small minority of the MAs. 9.5% of the publications between 1990 to 2004 according to

Simmonds et al. (2005).

Aggregated (summary) data (AD) may be a matter of analytic choice or be neces-

sitated by lack of the original data or lack of permission to use it, possibly because of

ethical/confidentiality issues.

For the most common case of studies of a continuous outcome with two arms (treatment

and control), Mathew and Nordstroöm (1999) have shown that AD analysis results under

FEM are equivalent to those based on IPD regardless of the covariance structure within

the studies. More recently, the same authors Mathew and Nordstroöm (2010) considered

the weighted estimation of a linear function of the mean, based on linear models for sum-

mary data and for IPD. Within-studies covariances were assumed known. They derived a

condition under which the IPD and AD meta-analysis estimators coincide. This condition

always holds for the FEM, and for the REM it holds when the proportion in the treat-

ment arm is the same across studies. They also show that when covariates are present,

the two estimators coincide only under an extra simplifying assumption that represents

homogeneity of the covariates across studies. When the condition is not satisfied, the one-

step analysis is always more efficient. The results by Mathew and Nordstroöm (2010) are

not valid when within-trial variances and covariances are not known but estimated from

the data. An example of this is shown in Jones et al. (2009), where the AD meta-analysis

estimates have a very slightly smaller standard error than the IPD meta-analysis estimates.

Lin and Zeng (2010) studied the relative efficiency of AD versus IPD meta-analysis in

the multivariate FEM with general, not necessarily the same, distributions across studies.

They show that, for all commonly used parametric and semi-parametric models, there

is no asymptotic efficiency gain by analyzing the original data if the parameter of main

interest has a common value across studies, the nuisance parameters have distinct values
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among studies, and the summary statistics are based on maximum likelihood. They also

consider the case of estimated within-study covariance matrices, and then the equivalence

holds asymptotically. They also studied the relative efficiency of the two methods when

the parameter of main interest has different values among studies, i.e. under the UFEM

(unequal but fixed effects model), or when there are common nuisance parameters across

studies. Their examples include the linear model, logistic and Cox regression.

Lin and Zeng (2010) comment that one reason for obtaining original data is to model

individual-level covariates. They have shown that there is no bias or efficiency loss if the

effect estimates are properly adjusted for individual-level covariates within each study and

then combined. They also claim that their results hold also for the REM, but these results

are unpublished.

2.7 Meta-analysis of observational studies

Randomized controlled trials (RCTs) are considered the gold standard in medicine and

health sciences, and restriction of meta-analyses to synthesis of their findings is strongly

supported by the influential Cochrane Collaboration (Higgins and Green, 2011). The main

advantage of randomisation of allocation of participants into control and treatment arms

of a study is that the difference between the summary effects in the two arms is an un-

biased estimate of the true effect. Randomization takes care of the various observed and

unobserved prognostic factors given that their differences between the arms are truly ran-

dom. No further statistical modelling is necessary. In real life, randomization may not

be practicable or ethical, and observational studies (experimental or not) constitute the

bulk of the body of evidence in epidemiology, life and social sciences (Stroup et al., 2000;

Konnerup and Kongsted, 2009). Hence a large and fast growing number of meta-analyses

of observation studies. The standards of reporting and main issues in the meta-analysis

of observational studies in epidemiology are summarized in the MOOSE consensus state-

ment, Stroup et al. (2000, for the meta-analysis of observational studies in epidemiology

(MOOSE) group). The authors recommend in-depth investigation of issues to do with

heterogeneity of populations, designs and outcomes across studies, and formal evaluation

of the study quality. Reeves and Wells (2013) is a recent special issue covering the topic

of the use of non-randomized studies in systematic reviews.

The main concern in meta-analysis of observational studies is the existence of various
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biases due to non-random allocation. The main danger is the existence of a systematic

selection bias due to systematic differences between the groups at the baseline (Deeks

et al., 2003). These baseline differences may be related to outcomes; differences in severity

of a condition of interest as the reason for treatment allocation is an example of such

a relationship. This introduces systematic bias leading to over- or under-estimation of

treatment effects. Other biases in non-randomized studies include attrition bias (due to

drop-out or non-compliance), detection bias (because of non-standardized assessment of

outcomes) and performance bias (errors and inconsistencies in the allocation, application

and recording of interventions) (Deeks et al., 2003).

Selection bias can potentially be adjusted for by statistical modelling. This includes

modelling the effects of interest controlling for known prognostic factors, or modelling the

allocation mechanism itself and then using the results for the effect adjustment (propen-

sity score analysis). The empirical modelling performed in Deeks et al. (2003) showed

inadequacy of both approaches; the main reason is the omission of important unknown

confounders.

Due to the high risk of biases and typically large sample sizes in observational stud-

ies, meta-analysis may reach spurious conclusions with very tight confidence intervals

around biased summary effects. Different biases can be modelled explicitly (Wolpert and

Mengersen, 2004), but this requires some strong assumptions about the nature of biases.

An alternative approach is the elicitation of expert opinions on the nature and size of

biases. In a recent paper by Thompson et al. (2011) the biases are separated into inter-

nal biases reflecting the study quality and external biases reflecting generalisability to a

target setting. Next, subjective opinions on the size of biases and their type (additive vs

multiplicative) are elicited from several experts and are used for bias adjustment.

Perhaps a safer option is to consider the robustness of the combined effects to different

levels of bias in point estimates or their variances. An interesting proposal by Salanti and

Ioannidis (2009) is to assume a limit to the chance that an effect is in a particular direction

and not in the other one. They call this the credibility ceiling. For the kth study with the

effect θk and variance vk, consider a random variable u ∼ N(θk, vk). Then the credibility

is defined as P (u < 0|θk > 0) or P (u > 0|θk < 0). If this probability is less than the

credibility limit c, the variance is recalculated as v∗k = max{(θk/zc)2, vk}, where zc is the

percentage point from the standard normal distribution. Meta-analysis is repeated for a
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range of values of c, using these inflated variances. Various issues to do with biases in

meta-analysis are considered in more detail in Section 3.

Finally, it is possible to design an unbiased observational study. Available methods

include matching, natural experiments and the use of instrumental variables; see Konnerup

and Kongsted (2009, Section 4) for more details.

3 Publication and other biases

As mentioned in the introduction, bias is the most immediate danger when combining the

estimated effects from K trials or studies. In this section we touch on two sources of such

bias. First, the selection bias resulting from the inability of accessing studies with negative

outcomes and, second, the effect of small sample biases on a meta-analysis.

3.1 Publication bias

Publication bias refers to the case in which the K studies we are given access to for our

meta-analysis are those with a relatively large estimated effect. Other studies, with smaller

effects may, however, also exist. This is a special case of selection bias. We are handed K

estimated effects and want to combine them to produce an overall estimate. If the large

estimated effects are over-sampled, then the naive, uncorrected combination overestimates

the true effect.

Example 3.1. For a formal discussion of this bias, we will consider the case, where the

effect estimates in each trial are variance stabilized. To distinguish these estimates from the

more general statistics θ̂k, we denote them by κ̂k and assume that they have variance equal

to 1/nk, that is, the test statistic
√
nkκ̂k has constant variance 1. With a fixed common

effect κ we then have approximately κ̂k ∼ N(κ, 1/nk). The combined estimated effect from

K randomly selected studies is κ̂meta =
∑K

k=1 nkκ̂k/N ∼ N(κ, 1/N), where N =
∑K

k=1 nk is

the total sample size. This represents the ideal situation, where the meta-analysis produces

an estimated effect which is equal to what one would get if all the data were combined

and a single trial of size N were performed. Since the weights depend on the known nk,

variance stabilization leads to more interpretable and more stable meta-analysis procedures

when compared to the usual fixed common effects estimates. For details, see Kulinskaya

et al. (2008).
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If only the studies which reach a minimal level of significance are entered into the meta-

analysis, we no longer get to work with a random sample of K studies and a selection bias is

created. Because those studies resulting in insignificant effects are filed away and forgotten,

selection based on significance is sometimes referred to as the file drawer effect.

A well-written account of selection bias and its consequences can be found in an article

by J. Lehrer that appeared in the New Yorker magazine (Lehrer, 2010). He points out

that selection bias, if ignored, can have costly consequences both in terms of ill-advised

research activity and in practical terms, by influencing, for example, medical decision

making. Selection bias occurs not only because the results contained in a submitted article

are negative, but also due to the reviewers likes and dislikes, the withholding of data for

commercial purposes, the choice of design of the clinical trial, and so on. Completely

different sources of bias exist as well. As mentioned by Lehrer, researchers themselves

may be prone to reach firmer conclusions than warranted due to preconceived notions and

subtle biases.

3.1.1 Assessing publication bias

If the number of studies K entering a meta-analysis is large, there is a reasonable hope

in determining whether a selection as described in the above example has occured and

possibly even in estimating the number of missing studies.

Example 3.2. We continue with the example above in order to determine the consequences

of selecting only certain studies. Suppose that the true (fixed) effect is κ and that the null

hypothesis being tested is κ0. If only the studies which reach significance are selected, only

the studies with
√
nk(κ̂k − κ0) > b = z1−α are included in the meta-analysis. In our model,

√
nkκ̂k ∼ N(

√
nkκ, 1), which implies that the probability for a study of size n to pass the

selection is 1 − Φ(b +
√
n(κ0 − κ)). This does not depend on n if κ0 = κ, that is, the

null hypothesis being tested is true. The selection favors small studies if κ0 > κ and large

studies otherwise. Being selected means that
√
nkκ̂k has a truncated normal density equal

to

f(x) =
ϕ(x−√nkκ)

1− Φ(b+
√
nk(κ0 − κ))

for x > b+
√
nkκ0 ,

where Φ, ϕ denote the standard normal distribution and density, respectively.
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If a non-random selection has produced the studies available in a meta-analysis, similar

to the above example, then for large K the histogram of the standardized effect estimates

or of the raw effect estimates would show the missing parts. If K is small, the task of

assessing missingness is essentially impossible, unless additional information is provided

through other means, for example if all the studies had to be announced via a database.

To make informal inferences about missingness, the funnel plot is popular. This graph-

ical display was introduced in Light and Pillemer (1984) and has been reviewed in Egger

et al. (1997). The funnel plot replaces the histograms mentioned above and brings into

consideration also the trial sizes or the precision of the effect estimates. For K studies with

effect estimates κ̂k and sizes nk, one could produce

• either a scatter plot of nk vs. κ̂k for k = 1, . . . , K,

• or a scatter plot of −1/
√
nk vs. κ̂k for k = 1, . . . , K, or

• or a scatter plot of −
√
v̂k vs. κ̂k for k = 1, . . . , K, with −v̂k being the estimated

variance of κ̂k.

If the studies are randomly selected, the point scatter will exhibit a funnel shape, with the

large studies tightly clustered around the common effect and the smaller studies showing

more variation. Publication bias as discussed in the example will lead to holes or asymmetry

in the funnel plot. Duval and Tweedie (2000b) and Duval and Tweedie (2000a) describe a

relatively simple and intuitive method based on the expected symmetry of the funnel plot

for estimating the number of missing studies and for creating imputed estimated effects

and standard errors for the missing studies. Their method is based on the idea that the

missing studies are missing because the effects found in the studies were too small.

Of course, the asymmetry in the point cloud of a funnel plot can have other causes. If,

for example, a single large study has been performed and it contradicts a host of previous

smaller studies, the funnel plot can take on an unexpected shape.

3.1.2 Correcting the bias

In order to estimate the bias caused by selection bias, various models can be used. The

statistical literature on estimation based on samples subject to selection bias focuses on

procedures like the EM-algorithm or data augmentation, censoring and truncation as well

as various biasing mechanisms. An example of a fairly general estimation aim and a fairly
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general selection mechanism is Vardi (1985). An example that is more specific to meta-

analysis is Givens et al. (1997).

Example 3.3. This example is again based on normally distributed variance stabilized

effect estimates with variance 1/nk. To make the calculations easier, suppose that the true

value of the fixed effect is κ = 0 and that the null hypothesis being tested is also κ0 = 0,

so that the null hypothesis being tested is true. Suppose further, that only studies with
√
nkκ̂k > b are included in the meta-analysis. In our model,

√
nkκ̂k ∼ N(0, 1), which

implies that a fixed fraction of all studies will be selected and that this fraction is equal to

1− Φ(b). The combined effect κ̂meta =
∑K

k=1 nkκ̂k/N based on K such studies, is not any

longer distributed as N(κ, 1/N). Being selected means that
√
nkκ̂k has a truncated normal

density

f(x) =
ϕ(x)∫∞

b
ϕ(u) du

=
ϕ(x)

1− Φ(b)
.

An elementary calculation shows that the expectation and variance of any selected
√
nkκ̂k

are 0 < µ(b) = ϕ(b)/(1 − Φ(b)) and σ2(b) = 1 − µ(b)(µ(b) − b) < 1. For the com-

bined effect κ̂meta, this implies an expectation of 0 <
∑K

k=1

√
nkµ(b)/N and a variance of

σ2(b)/N < 1/N . Were we to ignore the bias, we would often observe a significant effect,

because in order to compute a p-value, we would compare the combined value
√
Nκ̂meta

with a standard normal distribution. In reality, though, the mean of this random variable

is equal to µ(b)
∑K

k=1

√
nkµ(b)/

√∑K
k=1 nk ≥ µ(b)

√
K, where the inequality follows from

the concavity of the square root. As the number of studies grows and if b is not too small,

it becomes very likely that the combined effect is judged to be significantly different from

κ = 0 and one would falsely declare the discovery of a significant positive effect.

If the selection of available studies is not based on significance, but rather on the observed

raw effect, then the chance of being included in the meta-analysis depends on the sample

size. Suppose only those studies with κ̂k > b are selected. Under our model, the probability

of selection is then equal to P[κ̂k > b] = 1 − Φ(
√
nkb), which means that the selection

of a trial for inclusion in a meta-analysis is correlated with the trial size. If b > 0,

large studies are often selected out and do not make it into a meta-analysis, while for

b < 0 all the studies have a good chance of being selected. This type of selection bias

leads to more complex properties of κ̂meta than in the previous case. Given that a trial

of size nk has passed selection, the cumulative distribution of κ̂k is Fk(x) = (Φ(
√
nkx) −

Φ(
√
nkb))/(1−Φ(

√
nkb)) which has density fk(x) = ϕ(

√
nkx)
√
nk/(1−Φ(

√
nkb)). It follows
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that E[κ̂k] = (
√
nkϕ(

√
nkb)/[(1− Φ(

√
nkb))] ≈ b, where the approximation holds for b > 0

and large nk and follows from the asymptotic equivalence 1 − Φ(x) ∼ ϕ(x)/x as x → ∞.

The expected value of κ̂meta cannot be computed without more knowledge about the choice

of nk.

Shuster (2010) has put forward the idea that the correlation between sample size and

effect size is a common phenomenon in meta-analysis. Any weighted estimate using weights

that depend on the sample size then causes a bias. However, in the absence of selection

bias, the arithmetic mean of the trial effects, κ̂meta =
∑K

k=1 κ̂k/K, remains an unbiased

and, in this sense, viable estimate.

If an effect estimate κ̂ is included in a meta-analysis only if
√
nκ̂ > b, one can model the

√
nkκ̂k included in the analysis as a left-censored sample with a fixed censoring bound b.

By stipulating values for the number of censored studies, M , the bound, b, and the sample

sizes of the missing studies n and then investigating what biasing effect such a scenario

would have on the meta-analysis, we could gain a better understanding of the bias. This is

easy to make precise in the case of variance stabilized effect estimates with (approximate)

normal distribution. In this case, we have κ̂k ∼ N(κ, 1/nk), where κ is the fixed common

effect.

Suppose K studies are available for a meta-analysis and M studies are missing (or

rather censored!) and suppose that the selection is based on significance when testing

H0 : κ = κ0, which means that a trial is censored when (κ̂ − κ0)
√
n ≤ b, that is, when

κ̂ ≤ b/
√
n+ κ0. The likelihood function for the unknown common effect κ is then equal to

L(κ) =
K∏
k=1

ϕ ((κ̂k − κ)
√
nk)

M∏
m=1

Φ (b−
√
nm(κ− κ0)) . (3.1)

In order to compute this likelihood, we thus need to know not only M and the censoring

mechanism (that is, b), but also the trial sizes of the missing studies n1, . . . , nM . The

log-likelihood is

log(L(κ)) = `(κ) = −(K/2) log(2π)−
K∑
k=1

− nk
2

(κ̂k−κ)2 +
M∑
m=1

log (Φ (b−
√
nm(κ− κ0))) .

(3.2)

The last term in this log-likelihood is due to the missing studies and its derivative,∑M
m=1 −

(√
nmϕ(b−√nm(κ−κ0))

Φ(b−√nm(κ−κ0))

)
, is everywhere negative, that is, the term is decreasing in κ.

When κ → ∞, the derivative tends to −∞ and behaves asymptotically linear in κ, while
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for small values of κ, it quickly approaches zero, because the numerator dominates. Its

second derivative,

−
M∑
m=1

[
nmϕ

(
b−√nm(κ− κ0)

)
Φ
(
b−√nm(κ− κ0)

) (
b−
√
nm(κ− κ0) +

ϕ
(
b−√nm(κ− κ0)

)
Φ
(
b−√nm(κ− κ0)

))] ,
is negative, which shows that this term is strictly concave in κ. The first two terms in

log(L(κ)) form the usual normal log-likelihood, a strictly concave quadratic polynomial in

κ, whose maximum is at κ̂meta =
∑K

k=1 nkκ̂k/N and whose second derivative is −
∑K

k=1 nk.

Substituting the sum of maximum likelihood estimator of κ in the formula for the second

derivative of the log-likelihood and taking the negative inverse of this value, allows us to

estimate the variance of the maximum likelihood estimate.

The censored log-likelihood (3.2) is a well-behaved, strictly concave function with a

unique maximum. Since it is the sum of a concave quadratic with a function close to zero

for small values of κ and quickly tending to −∞ for large values, the quadratic first part

is modified as shown in Figure 2.

2 1 0 1 2

10
0

80
60

40
20

0

lo
g
lik
el
ih
oo
d

Figure 2: The log-likelihood based on a single study with κ̂ = 0.33 and n = 40 is shown. The dotted

line shows the log-likelihood when adding a missing study of size n = 30, with hypothesized value

κ0 = 0 and cutoff b = z0.95 = 1.645. The effect of adding the censored part makes large values of κ

much less likely, whereas the small values are left untouched. As a result, the maximum likelihood

of the censored log-likelihood moves towards smaller κ values. The maximum likelihood estimate

of κ based on the censored likelihood becomes 0.245 with an estimated variance of roughly 1/57.

The p-value before inclusion of the censored study is 0.018 and becomes 0.031 upon inclusion of

the missing study.
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Since the log-likelihood (3.2) is a nice concave function, it is easy to determine the

maximum likelihood estimator through the use of the Newton-Raphson algorithm (see

Kulinskaya et al. (2008), Chapter 26), with a starting value equal to the meta effect esti-

mated with the observed studies.

With regard to the number of missing studies, several values should probably be tried.

If one believes that the significance of the published studies is entirely due to chance, one

might be inclined to add the 95% missing studies to the 5% published ones as in Rosenthal

(1979). In the above example, this would mean that 19 missing studies existed. If we add

these 19 studies with smallish sample sizes of 10 for each, the combined effect is estimated

to be 0.08 with a p-value of 0.21. If we take the 19 studies to be small screening studies of

size n = 2 each, the effect estimate remains quite high (0.21) but is also insignificant (p-

value of 0.067). This illustrates the difficulties one faces and which are unavoidable. One

has to make quite strong assumptions about the selection mechanism and one has to guess

or estimate the number and sample sizes of the missing studies. The statistical analysis we

outlined above does not take into account the uncertainty inherent in these choices. All

it can do is to tell us under what assumptions the resulting meta effect estimate becomes

insignificant.

3.2 Small Sample Biases

The deleterious effect on coverage probability of centering a confidence interval on a biased

estimator of the parameter seems to be relatively unknown and is widely ignored in the

traditional approach to meta-analysis. We illustrate by a simple example how this bias

undermines the coverage probabilities of fixed common effects as the number of studies

increases from 1 to 5.

Comparison of four confidence intervals for p based on binomial observations

Confidence intervals for the binomial parameter p have long been of interest to statisticians,

see the discussion paper Brown et al. (2001) and literature referred to therein. Amongst

the best performers are the Wilson interval (Wilson, 1927), and a similar, but simpler to

explain interval by Agresti and Coull (1998). The latter (with c = 2) falls in the class of

intervals centered on p̃c = (X + c)/(n+ 2c), where X has a binomial B(n, p) distribution.

These estimators are studied by Böhning and Viwatwongkasen (2005). It is easy to see
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that p̃c is for all c > 0 biased towards 1/2 and satisfies E[p̃c] = p+ c(1− 2p)/(n+ 2c) and

Var[p̃c] = np(1− p)/(n+ 2c)2.

Agresti and Coull (1998) suggest the interval p̃2 ± z0.975

√
p̃2(1− p̃2)/(n+ 4) , which is

slightly more conservative than the one obtained using the standard error of p̃2. This is

the first of the four intervals we study and we denote it IAC. Amongst the intervals of the

form p̃c ± z0.975

√
np̃c(1− p̃c) /(n+ 2c), Böhning and Viwatwongkasen (2005) recommends

the use of c = 1 for a number of reasons, so this is the second interval IBV we will include

in our comparison.

The third interval IAS to be considered is the traditional arcsine interval which is ob-

tained in two steps: first p̃c is transformed to h(p̃c) = 2arcsin(
√
p̃c ), which is asymptotically

normal with mean h(p) and variance 1/n. This yields the approximate 95% confidence in-

terval h(p̃c)±z0.975/
√
n for h(p). This interval, call it [l, u], is truncated to lie within [0, π],

the range of h(p) for p ∈ [0, 1], and then back-transformed via h−1([l, u]) = sin([l, u]/2)

to an interval of the same coverage for p. While Anscombe (1948) found that c = 3/8

provided the best variance stabilization, here we use c = 1/2, which yields similar results.

The above three intervals are biased towards 1/2. We now give a bias correction for

the arcsine interval. By expanding h(p̃c) about h(p) in a Taylor series and taking the

expectation, one finds the bias in h(p̃c) for estimating h(p) to be

E[h(p̃c)− h(p)]
.
=
{h′(p)}3(1− 2p)

4(n+ 2c)2

[
a0c

2 + a1c+ a2

]
,

where a0 = 12p(1− p)− 1, a1 = 4p(1− p) and a2 = −np(1− p). The quadratic in brackets

is 0 when c = 1/4 +O(1/n), for p bounded away from 0 and 1. The fourth interval in our

study is the arcsine interval based on h(p̃c), where c = 1/4. We call this interval IASBC. We

note that Böhning and Viwatwongkasen (2005, Theorem 4.1) found that c = 1/4 minimizes

the average bias in p̃c(1− p̃c) for estimating p(1− p).

3.2.1 Simulation study comparing the four estimators

In Figure 3 are shown the results of 10,000 simulations of X ∼ B(20, p) at increments

of 0.01. The upper left plot gives the estimated bias for p̃2 (solid line) and the bias in

p̃1 (dashed line) for estimating p. These graphs are linear in p; they correspond to the

biases in the centers of the AC interval and the BV interval, respectively. Also shown are

the biases of h(p̃0.5) (dot-dashed line) and h(p̃0.25) (dotted line) for estimating h(p); they
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correspond to centers of the arcsine and bias-corrected arcsine intervals for estimating h(p).

Note that the bias-correction works quite well for all p except near the boundaries.

The top right plot in Figure 3 shows the empirical standard deviation of each of the

four estimators, when divided by its estimated standard deviation. For example, the solid

line depicts the graph of√
V̂ar

(
p̃2/
√
p̃2(1− p̃2)/(n+ 4)

)
versus p ,

where V̂ar is the estimate based on the simulation. This would be close to 1 if the standard

deviation were known. However, this plot shows that this ratio is far from 1, and the

situation does not improve with increasing n, as other simulations, not shown, demonstrate.

Similar remarks apply to the standardized p̃1 shown in the dashed line. The standardized

version of h(p̃0.5), namely
√
nh(p̃0.5) in the dot-dashed line has empirical standard deviation

near 1, as one would expect from a variance stabilized statistic. Somewhat surprisingly, the

bias-corrected version
√
nh(p̃0.25) in the dotted line reveals an empirical standard deviation

even closer to 1 over the range of p.

The left-hand plot in the second row of Figure 3 shows the empirical coverages of the 4

intervals, again as a function of p. Note that neither the BV or the bias-corrected arcsine

interval provides adequate coverage over the range of p. However, the AC interval and the

arcsine interval have coverage between 94% and 97% for most values of p.

What are the implications for meta-analysis? We illustrate the phenomenon of how

persistent bias undermines coverage probabilities in the bottom right plot of Figure 3,

where the intervals are based on K = 5 studies, each of size n = 20. The AC and BV

intervals are centered on the weighted average of the 5 individual estimates of p, namely

p̃c,w =
∑
w̃kp̃c,k/(

∑
w̃k), where w̃k is the estimated inverse variance of p̃c,k. To obtain the

meta-interval of nominal coverage 95%, one takes p̃c,w ± z0.975/(
∑
w̃k)

1/2.

The arcsine interval [LAS, UAS] for h(p) is obtained by finding the weighted average∑
k nkh(p̃ 0.5,k)/(

∑
k nk) and adding and subtracting z0.975/(

∑
k nk)

1/2. This is then back-

transformed to an interval for p via h−1([LAS, UAS]). The bias-corrected version is found in

the same way, starting with the bias-corrected estimators p̃0.25, k, k = 1, . . . , 5.

The results are plain to see in the bottom-right hand plot of Figure 3. The estimated

inverse weights coverage probabilities are now unacceptably low, even though these inter-

vals are based on more information than the bottom-left hand plot which is based on a

single study. Of course the AC and BV intervals were not designed for meta-analysis, but
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they were used here to illustrate the point that what works well for one study, will not nec-

essarily work at all in a meta-analysis using estimated inverse variance weights, especially

if the center of the interval is biased for the parameter of interest. The plots in Figure 3

are typical of what we found for many more choices of sample sizes n1, . . . , nK for this fixed

effects model. Increasing the study sample sizes does not remove the problem; bias will

cause significant loss of coverage with K only 5 or 10 and the situation deteriorates with

increasing K. On the other hand, the bias-corrected arcsine interval maintains its good

coverage for a large number of studies, even K = 100.

4 Multivariate meta-analysis and meta-regression

Development of multivariate methods is necessitated by an abundance of studies report-

ing a number of correlated outcomes which are habitually meta-analyzed independently

using univariate methods. Multiple outcomes appear by design in such areas as diagnostic

test meta-analysis and network meta-analysis. The former usually models sensitivity and

specificity of diagnostic tests requiring bivariate analysis, see van Houwelingen et al. (1993);

Harbord et al. (2007); Putter et al. (2010); Paul et al. (2010). The latter aims to compare

multiple treatments, see the recent reviews Jansen et al. (2011); Hoaglin et al. (2011) for

more details. Multiple outcomes, such as disease-free and all-cause survival, also appear

routinely in both clinical trials and observational studies. See Jackson et al. (2011) and its

discussion for comprehensive reviews.

The potential applications of multivariate analysis are found in the collection Arends

(2006), which summarizes most of the material in Arends et al. (2000); van Houwelingen

et al. (2002); Arends et al. (2003, 008a,b). These papers lead the way in demonstrating

what one could do if normality of effects sizes with known variances is assumed. But

there are neither sensitivity analyses nor mathematical arguments nor simulation studies

to support the models. Applications include comparing relative risks of treatment and

control arms, comparing ROC curves, comparing risks with baseline risks, and comparison

of survival curves. A recent detailed review of Arends (2006) is given in Staudte (2010).
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4.1 Multivariate meta-analysis

For the multivariate random effects model it is assumed that vectors of estimates

yk = µ+ bk + εk, k = 1, · · · , K,

where now µ, bk and εk are p-vectors, and bk and εk have zero means and covariance

matrices Σb and Σk. Usually bk and εk are assumed to be independent and multivariate

normal. These terms have the same interpretation as in the univariate REM. In the normal

case, marginally

yk ∼ N(µ,Σb + Σk),

where vectors of estimates yk are further assumed to be independent because they come

from different studies. Exactly as in the univariate meta-analysis, the within-study vari-

ances Σk are assumed to be known, and the goal is to estimate µ and Σb. When not all

outcomes are observed in all studies, a slightly more general model has Cov(bk) = V k =

HkΩH
′
k for design matrices Hk. Here Ω is called the heterogeneity matrix by Demidenko

(2004, Section 5.3.1). For simplicity, we shall assume that all studies provide all effects.

The pooled estimate of µ is given by a familiar weighted mean

µ̂ =
( K∑
k=1

(Σk + Σb)−1
)−1( K∑

k=1

(Σk + Σb)−1Y k

)
.

The standard approach to inference about the effects substitutes estimated Σ̂b instead

of true between-studies variance. Then the variance of µ̂ is given by

Var(µ̂) =
( K∑
k=1

(Σk + Σ̂b)−1
)−1

.

How large should be the number of studies K and the within studies sample sizes for this

to work is not known. This covariance matrix can be used to provide further inference

such as univariate and joint confidence regions.

Statistical issues related to the actual randomness of the estimated within-studies co-

variance matrices Σk have not yet been addressed in the multivariate meta-analysis. Esti-

mation of Σ̂b can be achieved by maximum likelihood, REML, profile likelihood, and the

method of moments (unweighted or weighted) (Jackson et al., 2011). Chen et al. (2012)

developed a noniterative method of moments matrix estimator for the between-study co-

variance matrix. This estimator is a multivariate extension of DerSimonian and Laird’s
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univariate method of moments estimator, and it is invariant to linear transformations.

Attention should be given to the constraint that this matrix should be positive-definite.

The simplest way to achieve this is to use a projection of Σ̂b on the set of nonnegative

definite matrices found by Σ̃b = PΛ+P
′, where P is the matrix of eigenvectors and Λ+

is the matrix of truncated at 0 eigenvalues of matrix Σ̂b, Demidenko (2004, Section 5.3.3).

To relax the assumption of normality, many of these methods can be cast in an unbiased

estimating equations (EE) format (Ritz et al., 2008). These EE methods are asymptoti-

cally (K →∞) equivalent to ML for distributions with zero third moment, and are much

simpler computationally. Bayesian methods are available but they may be particularly

sensitive to the choice of prior with the increase in the dimensionality, see Jackson et al.

(2011) for discussion. Rukhin (2007) investigated the multivariate REM under normality.

He does not consider within-study covariance matrices Σk known; under normality their

sample counterparts have the scaled Wishart distribution. He discussed ML and REML

estimation, but the main focus of his paper is the generalization of DerSimonian-Laird

and Mandel-Paule techniques to the multivariate setting, see also Jackson et al. (2010).

Similar to the univariate case, the Mandel-Paule estimator is close to the REML estimator.

Rukhin (2007) also provides two residuals-based estimators of the covariance matrix of the

weighted mean µ̂. He showed that, for a general matrix of weights, an unbiased quadratic

estimator of Var(µ̂) does not exist, and derived an almost unbiased estimator which is

considerably better than the standard inverted sum of weights.

4.2 Multivariate meta-regression

Multivariate meta regression further considers µ̂ = Xβ where X = (X1, X2, · · · , Xk)′ is

an n×p design matrix, and β is a p×1 vector of regression coefficients. This problem is very

similar and requires the same techniques. For any weight matrix W = diag(W1, · · · ,Wk)

and a covariance matrix S = diag(S1, · · · , Sk), the weighted least-squares estimator of β

is

bW =
( K∑
k=1

X ′
kWkXk

)−1( K∑
k=1

XkWkYk

)
.

The covariance matrix of b is

Cov(bW ) =
( K∑
k=1

X ′
kWkXk

)−1( K∑
k=1

XkWkSkWkXk

)( K∑
k=1

X ′
kWkXk

)−1
.

The main difficulty in the multivariate meta-analysis and meta-regression is the lack
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of knowledge of the within-study correlations. These correlations are not reported in the

underlying studies. Thus the matrices Σk are not known beyond the estimated main

diagonals, unless the full within-studies data are available. Correlations can be calculated

analytically for mutually exclusive binary outcomes from a multinomial distribution, such

as death from different causes (Trikalinos and Olkin, 2008), but this is not possible in

general. One possibility is to make some assumptions about the within-study correlations,

the simplest being the constant within-study correlation ρ. In this vein, Riley et al. (2008)

proposes to replace the marginal covariance matrix Σb + Σk by a matrix with constant

correlation instead of separate within- and between-studies correlations. This approach

was used only in a bivariate setting, and its generalizability is not clear.

A recent paper (Hedges et al., 2010) proposed to estimate the covariance matrix Cov(bW )

of a weighted estimator in a meta-regression context by substituting empirical within-study

covariance matrices eke
′
k, i.e. the matrices of weighted cross-products of within-study

residuals ek = Yk −Xkb for Sk in the above equation. Thus, the covariance is estimated

by

V̂ =
( K∑
k=1

X ′
kWkXk

)−1( K∑
k=1

XkWkeke
′
kWkXk

)( K∑
k=1

X ′
kWkXk

)−1
.

For a sequence of independent random matrices Xk, Wk, εk, with diagonal matrices of

weights Wk, when K →∞ Hedges et al. (2010) showed that under some regularity condi-

tions b is approximately Np(β,V ). These conditions include uniform boundedness of the

weights, the error variances and various covariances, and some moment conditions. Further

Hedges et al. (2010) propose taking equal (inverse sum of variances) fixed weights within

a study, and to specify a single value of within-study correlation ρ. Then the random vari-

ance component τ 2 can be estimated from the weighted residual sum of squares. Hedges

et al. (2010) recommend sensitivity analysis in respect of the influence of ρ values on the

estimated τ 2. They also provide a simulation study and an R program. Recommendation

to use inverse variance weights in the asymptotics K → ∞ with bounded sample sizes

seems to be rather risky. On the other hand, equal weights within a study would result

in an unbiased estimate of the covariance of bW (Rukhin, 2007), as long as the maximum

study weight wk < 1/2, and a simple correlation structure is a necessity in multivariate

meta-analysis when the covariances are not known, so overall this approach is a promising

development.
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5 Sequential meta analysis

The goal of meta-analysis is to combine evidence from various studies of the same effect

to provide a more reliable basis for decision making. However, any given meta-analysis

provides just a snapshot of the available evidence at a given point in time. At first there

may not be sufficient evidence for an effect, but as additional studies become available, the

significance of the new effect can be established. Detecting the moment when significance

is reached is a statistical problem also found in group sequential trials.

Further, temporal changes in effect sizes of substantial magnitude may occur, leading

to the loss or gain of statistical significance or even a change in the sign of the cumulative

mean effect. Such changes have been reported in medicine, ecology, the social sciences

and evolutionary biology. Factors initiating such change include time-lag bias, publication

bias, heterogeneity among studies, more effective research methods, paradigm shifts or

underlying changes in effects over time due to temporal changes in baseline values or

strength of causal agents (Koricheva and J., 2011).

These results suggest that results of meta-analyses conducted early in the process of

research accumulation should be interpreted with caution. Detection of temporal trends

in effect sizes is therefore an important methodological issue. Once temporal changes are

detected, one needs a model for this trend which will enable one to measure it. Cumulative

meta-analysis (CMA) was introduced in medical research to detect the earliest date for

which a treatment effect became statistically significant, and for which its clinical efficiency

could be evaluated (Lau et al., 1992). In a CMA studies are sorted in chronological order

and combined estimates of the effect θ̂k and their confidence intervals are plotted and

scrutinized visually for possible temporal trends. As with all visual tools, CMA are subject

to misinterpretation and need to be supplemented by formal statistical methods. Such

methods should also take into account multiple testing inherent in CMA. Thus sequential

statistical methods are in order.

A recently proposed class of methods for detecting the moment when the significance is

reached is based on statistical methods developed for sequential clinical trials, Pogue and

Yusuf (1997); Brok et al. (2008); Wetterslev et al. (2008); van der Tweel and Bollen (2010);

Higgins et al. (2011). Group sequential methods define the Trial Sequential Monitoring

Boundaries based on prespecified type I and II errors and on clinically important effect.

Different types of monitoring boundaries can be used to stop the meta-analysis.
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Pogue and Yusuf (1997) adapted the Lan and DeMets (1983) alpha spending function

with O’Brien-Fleming boundaries to cumulative fixed effects meta-analysis. They defined

the Information Size (IS) as the sample size required to achieve power for one study under

the fixed effects model.

Brok et al. (2008) and Wetterslev et al. (2008) inflated these boundaries to accommodate

the random effects meta analysis. This method is called Trial Sequential Analysis (TSA).

The inflation coefficient is the ratio of sample sizes required under the REM and FEM.

Given that the sample size calculation under REM requires, in general, an increase in the

number of trials K (Goudie et al., 2010), this method appears too simplistic.

Several recent papers (van der Tweel and Bollen, 2010; Higgins et al., 2011) used group

sequential procedures by Whitehead (1999) and his package PEST in application to random

effects CMA. These procedures are designed to satisfy a pre-specified power requirement.

The main difference between TSA and these methods is the use of the sum of weights WK

as the IS instead of the sample size. Here the scaled cumulative effect Zk = Wkθk is plotted

against Wk, for an accumulated sum of weights Wk. A decision is made when the trajectory

crosses a monitoring boundary. Whitehead (1997) used the triangular design and van der

Tweel and Bollen (2010) used the double-triangular design. Higgins et al. (2011) use the

restricted procedure by Whitehead, equivalent to an O’Brian and Flemming stopping rule.

The theory of group sequential methods is based on an approximation of the trajectory

{Zk,Wk} by a Brownian motion. For the FEM, the increments Zk−Zk−1 are independent,

and this approximation is valid. For REM, these increments have a complicated correlation

structure resulting from dependencies between estimated random variance components τ̂ 2
k .

Thus an application of group sequential methods to random effects CMA is not justified

theoretically.

Lan et al. (2003) proposed to penalize the test statistic using the law of iterated loga-

rithm to account for multiple tests. Specifically, they propose to use Z∗k =
√
Wkθ̂k/

√
λ ln ln(Wk)

for testing in the FEM, and Z∗∗k =
√
W ∗
k θ̂
∗
k/
√
λ ln ln(W ∗

k ) for the REM, where W ∗
k and

θ̂∗k correspond to accumulated sum of weights and the combined effect for the REM. The

penalizing constants λ are chosen from simulations to be 1.5 in the FEM, and 2 in the

REM.

A difficult related problem is an estimation of the variance component τ 2 when the

number of studies is small in the early stages of a cumulative meta-analysis. A semi-
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Bayesian method was proposed by Higgins et al. (2011). Lan et al. (2003) used the sample

variance of effects which is clearly overestimating τ 2 but helps to control the overall level

α.

Kulinskaya and Koricheva (2010) proposed the use of standard quality control (QC)

charts, in particular X̄ charts and CUSUM charts to detect possible outliers and trends

over time in meta-analysis. The CUSUM charts, equivalent to sequential likelihood ratio

tests, seem to be especially well suited for use in the CMA, both to assess significance, and

for detection of temporal trends. So far they were used only in the fixed effects model, but

a generalization of CUSUM charts to REM seems to be straightforward.

In order to model temporal trends, a number of papers used various regression ap-

proaches. Linear regression is used in Gehr et al. (2006) and Kampichler and Bruck-

ner (2009). Regression applied to consecutive combined effects is proposed in Bagos and

Nikolopoulos (2009). An exponential model of proportional decrease in effect is introduced

in Baker and Jackson (2010). So far there is no empirical evidence on the actual shapes of

temporal trends in effect sizes, and this is one more possible area of future work.

6 Available software packages

There are numerous packages, commercial, shareware and free, containing some meta-

analytic capabilities. Here we mention just several main contenders and provide some

further references.

The majority of systematic reviews in medicine and health sciences use meta-analytic

procedures included in Revman, the software by Cochrane Collaboration, now at version

5.2, http://ims.cochrane.org/revman. Description of the statistical methods used can be

found in Deeks and Higgins (2010). These are the basic procedures for univariate continu-

ous and binary data, and also some methods for meta-analysis of diagnostic tests accuracy.

The main commercial package is the Comprehensive Meta-Analysis (CMA), developed

by a group of experts specialising in meta-analysis. The package includes the standard uni-

variate methods, 1-factor or one covariate meta-regression, and cumulative meta-analysis,

along with a number of bias-detection tools. See Bax et al. (2007) for a review of seven

specialised software packages including the CMA. Comparison of the CMA to some pro-

grams available in SAS, SPSS, Excel and other general statistical software is given in
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http://www.meta-analysis.com/pages/comparisons.html.

A recently developed free package, the Meta-analyst (Wallace et al., 2009), includes the

same capabilities. The reference also includes a review of the existing software, against

which the Meta-analyst was extensively tested.

The main development of new statistical methods of meta-analysis is happening in

either Stata or R computational environment.

Stata includes a number of user-written packages, see Sterne (2009) and

http://www.stata.com/support/faqs/statistics/meta-analysis/ for the full list. The proce-

dures include both standard methods and various advanced options, such as multivariate

random-effects meta-analysis (White, 2009).

R has a similar array of continuously developing packages for meta-analysis. The main

three are meta by Guido Schwartzer, http://cran.r-project.org/web/packages/meta/meta.pdf,

metafor by Wolfgang Viechtbauer, http://www.metafor-project.org/, Viechtbauer (2009)

and mvmeta by Antonio Gasparrini, http://cran.r-project.org/web/packages/mvmeta/mvmeta.pdf,

Gasparrini et al. (2012). meta includes all standard univariate methods and some ex-

tensions; metafor additionally includes meta-regression, and a comprehensive array of

options for estimation in the random effects model; and mvmeta includes multivariate

meta-analysis.

7 Summary

The paper reviews the procedures and open problems in statistical meta-analysis. This is a

topic of growing importance, because in many areas of application the need for combining

different sources of data and different sources of information in order to reach an overall

assessment manifests itself. The classical material on meta-analytic statistical procedures

are reviewed in Section 2. These include the distinction between fixed and random effects

models, tests of homogeneity, and a discussion of the types of data typically available for

a meta-analysis. Section 3 investigates two sources of bias in meta-analysis, the bias due

to the systematic selection of studies showing stronger than average effects, and the meta-

analysis of smallish studies combined with the use of estimators with appreciable small

sample biases. In Sections 4 and 5 generalizations and extensions to the standard proce-

dures are discussed. They include meta-regression, multivariate responses and sequential
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procedures. A non-exhaustive list of software tools in Section 6 closes out the review.

A list of research problems for statisticians that we have identified follows:

1. Development of methods for the FEM that are based on the ‘actual likelihood’ (with-

out the assumptions of known within-study variances and normality). By ‘develop-

ment’, we mean both theoretical and simulation study analyses, as well as provision

of user-friendly software (Section 2.1).

2. The same problems exist for the REM, with the additional complication of estimating

inter-study variability. Properly standardized measures of heterogeneity and valid

tests for heterogeneity are yet to be developed for the REM. Alternative models such

as multiplicative ones should be investigated. (Section 2.4 and 2.3).

3. Investigation of actual likelihood models, or alternatively quasi-likelihood models

following transformations, which allow not only for moderators but additional inter-

study variation. For conceptual simplicity these models should reduce to the REM

when there are no significant moderators. (Section 2.5).

4. Modelling of biases in observational studies and further development of sensitivity

measures for such studies. (Section 2.7).

5. Although the qualitative issues regarding publication bias are well-understood, little

has been done to assess the degree of, and correct for, this widespread problem.

(Some detailed theory in this direction is provided in Section 3).

6. Removing the deleterious effect of small sample biases, as carried out in Section 3.2

for the one-sample binomial effects, for numerous other effects such as the relative

risk and odds ratio.

7. Multivariate meta-analysis and meta-regression methods promise to help solve a

broad range of problems in the health, social and medical sciences, as detailed in

Section 4.1. However, nearly all the research so far is based on the over-optimistic

assumptions of known covariance matrices and normality of errors. Much more pub-

licity needs to encourage gathering of covariate sample correlations, and modeling

of such to provide justification for assumed correlation structures. Again, sensitivity

measures for model miss-specification are sorely needed. As in the univariate case, de-

velopment of more realistic methodology for actual likelihood models presents many
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challenging problems, perhaps best solved on case by case basis in the context of the

same multivariate response data sets with similar covariates.

8. Although many of the above problems require more sophisticated attention, their as-

sumptions can be violated by temporal changes in effects, and so monitoring methods

and tests for such changes are required. When found, suitable meta-analyses with

built-in trends are required, especially to help in planning for future studies. Care-

ful asymptotics with attention to the rates at which within-study sample sizes grow

with the number of studies are required here, as in the above-described situations.

(Section 5.)
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Figure 3: Simulation study results showing bias and standard deviation of point estimates, to-

gether with coverage probabilities for the four intervals under comparison. The AC estimator

properties are depicted by solid lines, the BV estimator by dashed lines, the AS (arcsine) estima-

tor by dot-dashed lines and the ASBC (bias-corrected) estimator by dotted lines. The top left plot

shows the biases in the centers of the intervals when n = 20 and K = 1. Continuing with these

parameters, the top right plot depicts the standard deviations of the respective centre estimates.

Continuing, the bottom left plot shows the empirical coverages of nominal 95% confidence inter-

vals for p. The bottom right plot again shows empirical coverages of 95% confidence intervals,

but this time based on a standard meta-analysis that combines 5 studies each of size n = 20. See

text for more details and interpretation.
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