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In this study we investigate electrical conduction in finite rectangular random resistor networks in quasione
and two dimensions far away from the percolation threshold pc by the use of a bond percolation model. Various
topologies such as parallel linear chains in one dimension, as well as square and triangular lattices in two
dimensions, are compared as a function of the geometrical aspect ratio. In particular we propose a linear
approximation for conduction in two-dimensional systems far from pc, which is useful for engineering pur-
poses. We find that the same scaling function, which can be used for finite-size scaling of percolation thresh-
olds, also applies to describe conduction away from pc. This is in contrast to the quasi-one-dimensional case,
which is highly nonlinear. The qualitative analysis of the range within which the linear approximation is
legitimate is given. A brief link to real applications is made by taking into account a statistical distribution of
the resistors in the network. Our results are of potential interest in fields such as nanostructured or composite
materials and sensing applications.
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I. INTRODUCTION

The knowledge about the physical properties of compos-
ite, porous, or discontinuous materials exhibiting critical
phenomena or phase transitions �1–3� has great importance
in many fields of science and engineering such as functional
polymer materials �4� or chemical sensing applications �5,6�.
Characteristic properties such as critical thresholds, conduc-
tion, or cluster sizes can be described by percolation theory,
which has been subject of many studies over the last decades
�7–9�. Its capability to predict transport processes in the vi-
cinity or away from the critical region makes it applicable to
a variety of physical phenomena such as water flow through
porous media �10�, diffusion in disordered media �11� or
electrical conduction in discontinuous materials �5�.

In the simplest case a percolation system consists of con-
nected bonds �bond percolation�, which are randomly placed
on a lattice in n spacial dimensions with probability p. In the
limit of an infinite system a set of connected bonds appears
at a critical fraction pc of occupied bonds �the percolation
threshold�, which spans across the entire system. The prop-
erties of this so-called infinite cluster, such as size or con-
ductivity, are described as a function of p− pc. In the vicinity
of the percolation threshold, which is a sharp transition,
power laws with specific exponents apply, which are of the
generic form x�p���p− pc�y �8�.

In real systems, finite-size effects and related boundary
effects become non-negligible and geometrical and/or topo-
logical constraints might come into play �6,12,13�. Finite
size scaling techniques �8,14�, renormalization group theory
�8,15–17�, and common Monte Carlo techniques �8� have
been used to address such issues.

Conduction in square systems has been extensively stud-
ied �7�, especially in the critical region around pc. Conduc-

tion phenomena can be studied using random resistor net-
works, which are the electrical embodiment of a percolation
system �7�. Here, the conduction G growths nonlinearly with
p following a power law with a critical exponent t �t�1.31
in two dimensions �18�� and obeys finite-size scaling �18,19�.
In the region far away from pc, effective medium theory �7�
gives a linear approximation for G�p�, where G�P�� p− pc
with pc=2 /z and z as the coordination number �the number
of next neighbors� of the undiluted lattice, where p=1. A
combination of real-space normalization and effective me-
dium theory showed a quite good approximation to the con-
duction problem over the entire range of p �16�.

Most existing literature refers to systems with a square
geometry in the infinite limit, yet only few studies exist on
percolation in systems with finite rectangular network geom-
etries. It has been shown that geometrical constraints
strongly affect the percolation properties, making it interest-
ing for the structuring and design of materials for, e.g., sens-
ing applications �6�. For the first time, Monetti and Albano
�20–22� studied percolation cluster properties by Monte
Carlo techniques and finite-size scaling on rectangular per-
colation systems. Tsubakihara �23� found the percolation
probabilities for site percolation in two dimensions based on
a modified finite-size scaling function. Masihi et al. �24� pro-
posed a new scaling function for percolation thresholds in
systems of moderate geometrical aspect ratios and showed
finite-size scaling for the connectivity �fraction of connected
sites� and its variation in site percolation.

While effective medium theory holds well for conduction
away from the percolation threshold on square systems, no
model exists yet for finite systems with rectangular geom-
etries to our knowledge. In this paper, we investigate con-
duction far away from the percolation threshold for various
topologies: a quasi-one-dimensional �1D� and the square and
triangular two-dimensional �2D� systems. The choice of
those topologies is motivated by their occurrence and appli-
cability to nanostructured or functional materials such as ar-
rays of electrodeposited metallic mesowires on highly orien-
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tated pyrolytic graphite surfaces �25�, electromigration
failure in metallic wire networks �26� or conducting poly-
mers �27� to give just a few examples. Due to their applica-
bility to, e.g., sensors even above the percolation threshold,
the modeling of electrical conduction in this regime is of
practical interest.

In contrast to the quasi-one-dimensional system, which
shows pronounced nonlinear characteristics and a strong de-
pendence on the geometry, a linear approximation for con-
duction in two-dimensional bond percolation based on
Monte Carlo simulations and previous work on connectivity
in site percolation can be formulated. The geometrical effects
are less pronounced in two dimensions. We further give a
rough estimate of the range in which this approximation in
2D is legitimate. In the last section we briefly make a link
from our percolation model to physical quantities as it is the
case in, e.g., sensors, where the fraction of bonds is only
indirectly accessible.

II. SIMULATION MODEL

In our model, we consider a bond percolation lattice
where each bond is placed with an independent probability p
and left void with probability q=1− p. Replacing the bonds
by unit resistors/conductances turns the system into a ran-
dom resistor network �7�. An electric unit potential V0 is
applied at two opposing ends of the network, which are con-
nected by isopotential bars. We define a longitudinal axis y
into the direction of the electric field where ny is the number
of resistors in this direction, and a transversal axis x with nx
resistors and open boundary conditions, which is perpendicu-
lar to it �see schematic in Fig. 1�. Using Kirchhoff’s voltage
law for each loop in the circuit, a set of linear equations is
obtained �7�

�
j

Vj = gij
−1Ii = 0, �1�

where gij are randomly chosen conductances at adjacent sites
i and j, and Ii is the current through the ith conductance of
the network. The mean conductance G�p� of the resulting
resistor network can be calculated by generating a number of
different realizations �in our case 1000� for constant p and
solving the set of equations by, e.g., a conjugate gradient
method.

The fraction of network realizations, which leads to a
cluster that connects across one direction, is called the per-
colation probability P. In the infinite limit there is a sharp
transition where P=0 for p� pc and P=1 for p� pc. For
finite systems this transition smears out and P becomes a
monotonously increasing function of p. In this case another
definition must be used. In two-dimensional site percolation,
Masihi et al. �24� introduced an apparent percolation thresh-
old p̃c where the probability to find a percolating cluster is
P=0.5. A change in the geometrical aspect ratio �=ny /nx of
the network causes a shift in p̃c. With their definitions, this
shift was found to be symmetric around the isometric case,
which is the case where the aspect ratio �=1. The introduc-
tion of a new scaling function, which will be used in Sec. IV,
allowed the use of regular finite-size scaling to describe the
mean connectivity and its standard deviation.

Using similar definitions, we performed Monte Carlo
simulations on random resistor networks with quasi-one-
dimensional as well as two-dimensional square and triangu-
lar lattices under moderate geometrical aspect ratios. A sche-
matic drawing is shown in Fig. 1.

III. QUASI-ONE-DIMENSIONAL SYSTEM

Linear chains of resistors, which are arranged in parallel,
can be considered as a quasi-one-dimensional system since
each of the chains can be independently treated as one-
dimensional. Unlike for a single linear chain, the percolation
probability P in a finite system of parallel chains is not a
sharp transition anymore. The definition of an apparent per-
colation threshold is therefore required. Monte Carlo simu-
lations indicate that P is approximately symmetric around
P=0.5 but this symmetry breaks up when p approaches the
boundaries p=0 and p=1 �see Fig. 2�. Changing the geo-
metrical aspect ratio � causes significant shifts of P over a
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FIG. 1. Schematic representation �not to scale� of resistor net-
works with various coordination numbers z: quasi-one-dimensional
system �parallel linear chains� with z=2, two-dimensional square
�z=4�, and triangular lattice �z=6�. Lines represent resistors; dots
represent nodes. The ends are connected by isopotential bar and an
electric potential V0 is applied across.

FIG. 2. �Color online� Normalized conduction and percolation
probability for a quasi-one-dimensional system with nx=20 and
various aspect ratios �. Data points represent Monte Carlo simula-
tion data with standard deviations; the solid lines represent the ana-
lytical solutions. Apparent percolation thresholds are defined where
P=0.5. Symmetry of P around P=0.5 breaks up toward the bound-
aries p=0 and p=1.
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wide range of p. In good approximation, we define can the
apparent percolation threshold p̃c where P=0.5 �9�. This
definition coincides with the definition in 2D, yet is has to be
pointed out that no correlation exists between the one- and
two-dimensional case.

An analytical solution to this problem is readily obtained
by using basic probability theory: given the probability for a
single 1D chain to conduct, which is P= pny �9�, the percola-
tion probability P to find at least one conductive chain can be
calculated by the complementary probability of having no
single conductive chain, which yields

P = 1 − �1 − pny�nx, �2�

with the 50% criterion one obtains P50%=0.5=1− �1− p̃ny�nx,
where p̃c is the apparent percolation threshold, and Eq. �2�
yields

p̃c
1D = �1 − 0.5nx

−1
�ny

−1
, �3�

where nx is the number of chains and ny the number of re-
sistors per chain. In the infinite limit p̃c

1D converges to 1. This
analytical solution and the values extracted from numerically
obtained data show good agreement as it can be seen in Fig.
2 for P and Fig. 3 for p̃c

1D. The apparent percolation thresh-
olds cover approximately 80% of the range in between the
boundaries p=0 and p=1 for aspect ratios ��1 and the
given system size of nx=20. Larger systems will result in
higher percolation thresholds for a given aspect ratio.

The conduction for a parallel set of linear chains can sim-
ply be derived from the probability of conduction for a single
chain, multiplied by the number of chains and yields

G�p� = pnyny
−1nx = pnyG0, �4�

where G0=nx /ny is the conduction of the undiluted lattice.
Figure 2 shows that the model fits well the simulated data
over the entire range of p. The conduction G as a function of

p is highly nonlinear and, such as the percolation probability,
changes drastically with the aspect ratio �.

IV. TWO-DIMENSIONAL SQUARE AND TRIANGULAR
LATTICE

In two-dimensional rectangular percolation systems, no
simple analytical expression for the conduction can be de-
rived from probability theory. In a first step we will confirm
that the scaling function for percolation thresholds intro-
duced by Masihi et al. �24� applies to our bond percolation
model. In analogy, we use a scaling function, which has been
�as an approximation� defined as

���� = c��1/� − 1� , �5�

where � is the aspect ratio of the system, � the correlation
length exponent ��=4 /3� and c a constant factor. This func-
tion in two dimensions is symmetric with respect to the lon-
gitudinal and transversal direction of the lattice with �x���
=−�y���. With this, the apparent percolation thresholds
scale with the system size as

p̃c
2D = pc

� + ����ny
−1/�, �6�

where pc
� is the percolation threshold of the infinite system

�24�. The constant c can be determined as follows: First,
numerical values for p̃c are obtained by Monte Carlo simu-
lations of lattices with various aspect ratios. Using Eq. �6�,
corresponding values for the scaling function are obtained
and plotted against �1/�−1 by using Eq. �5�. The slope of the
resulting linear plot is equal to c. For bond percolation in two
dimensions we find c=0.82�0.04 for both z=4 and z=6 and
is therewith independent of the topology. Note that the varia-
tion of �0.04 adds an uncertainty factor of approximately
5% to the prediction of the model.

Figure 3 shows simulation data and calculated values for
apparent percolation thresholds as a function of aspect ratio
for various topologies and nx=20. Dots indicate data points;
solid lines indicate solutions of the analytical model. The
calculated values show slight deviations compared with the
data of the Monte Carlo simulations but still lie within the
range of uncertainty, which is given by the constant c. The
relative deviations, averaged over three different system
sizes nx=10, 20, and 50, were 0.7%�1.3% for z=2,
2.4%�2.5% for z=4, and 3.3%�1.9% for z=6, with de-
creasing values for larger systems and larger errors for
smaller aspect ratios �. For �=1 the apparent percolation
thresholds in two dimensions coincide with the percolation
thresholds of an infinite system as expected.

Let us now focus on the conduction problem in 2D. In the
infinite limit a rectangular system with a finite aspect ratio is
not affected by its boundaries and behaves like a square sys-
tem. The apparent percolation threshold becomes the perco-
lation threshold of the infinite square system. In analogy, the
slope of the normalized conduction d�G /G0� /dp far away
from pc converges in good approximation to the slope at
infinity, which will here be referred to as m�. For z=4 one
obtains m�=2 and for z=6, m��1.532. Due to this analogy
we assume the conduction in the linear regime to follow a
similar scaling function with the same parameter c. We de-

FIG. 3. �Color online� Monte Carlo simulation results and ana-
lytical model for apparent percolation thresholds for various coor-
dination numbers z as a function of aspect ratio �. The isotropic
case �=1 is marked by the vertical dashed line. Horizontal dashed
lines represent corresponding percolation thresholds of the infinite
systems. For z=2 �quasi-1D� this is pc

�=1.
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fine m̃ as the slope of d�G /G0� /dp far from p̃c and replace pc
�

in Eq. �6� by the corresponding slope m�. Isotropic scaling of
the system size still strongly affects the absolute value for
conduction, so we have to add a prefactor G0, which is the
conduction of the undiluted system at p=1. This gives for
the slopes

��G/G0�
�p

= m̃ = m� + ����ny
−1/�. �7�

The results of Monte Carlo simulations for nx=20 and the
model are compared in Fig. 4 and show reasonable agree-
ment within the given accuracy. The values for the isotropic
case �=1 correspond approximately to the theoretical values
of the effective medium approximation for the square system
as expected.

Averaged over three different system sizes nx=10, 20, and
50, the relative deviations between Monte Carlo simulations
and the model are found as 2.4%�2.3% for z=4 and
2.6%�2.6% for z=6. This still lies within the uncertainty
range given by the variation in the constant c of the scaling
function. Due to the small system sizes, which have been
used �nx	50� and the increasing influence of the boundaries
into the short direction, the errors are more pronounced for
decreasing aspect ratios. Similar deviations between simula-
tions and model were already observed for the apparent per-
colation thresholds. The approximation for the slopes hence
provides a similar accuracy as the analog model for pc. The
most significant changes in slope occur for values of �nx
approximately below 20. Above, only slight changes are ob-
served. Note that in the limit of nx=1 the system becomes a
one-dimensional system and a transition in exponents is ex-
pected to occur �24�.

For the representation of the slope, two generic definitions
can be used, which result in substantially different character-
istics. This is especially of interest in physical systems where
the characterization or measurement method plays an impor-
tant role. By replacing the normalized conduction by the ab-
solute conduction G�p�, a dependency on the conduction of

the undiluted lattice G0 is added �which in turn is a function
of the aspect ratio�. Unlike for normalized conduction, the
absolute conduction shows decreasing slopes for increasing
aspect ratios and steeper slopes for z=6 �see results for vari-
ous system sizes and coordination numbers in Fig. 5�.

A general comparison of the topologies shows that the
linear chains exhibit a fundamentally different behavior as
compared to the two-dimensional systems. While in two di-
mensions the conduction far away from pc can be well ap-
proximated by a linear function, the quasi-one-dimensional
case is inherently nonlinear. The change of m̃ with the aspect
ratio in 2D is rather weak. At small values for �nx in the
regime approximately below 20, the slope of the conduction
increases significantly for all coordination numbers. It is fol-
lowed by a slow increase with a further increasing aspect
ratio.

V. VALIDITY OF THE LINEAR APPROXIMATION
MODEL IN TWO DIMENSIONS

The linear approximation of the conduction G�p� is only
valid afar from the critical region, where the conduction is
not anymore described by power laws. To give an estimate of
this region for a rectangular system we simply calculate the
relative deviations between simulation and linear model
�G�p�−Glin�p�� /G�p� for varying aspect ratio and system
size nx, respectively. The results are shown in Fig. 6 for the
case of a square �z=4� lattice. The plots end where the linear
approximations intersect the p axis. The main graph shows
the dependence of the deviations on the systems size for �
=0.5. For high values of p �approximately 
0.75� the rela-
tive deviations are close to 0. For p values approaching the
critical region starting from p=1 the deviations increase
gradually into the positive direction for small system sizes.
For increasing system sizes an increasing undershoot into the
negative direction is observed, which relaxes toward the in-
tersection point of the approximation with the p axis. It has
to be mentioned that the deviation occurs even before the

FIG. 4. �Color online� Comparison of numerical �points� and
analytical results �solid lines� for the slope m̃=d�G /G0� /dp for the
square and the triangular lattice as a function of the aspect ratio
��nx=20�.

FIG. 5. �Color online� Changed characteristics in aspect ratio
dependance of the slope by using absolute conduction dG /dp. It is
mainly influenced by the conduction of the undiluted lattice G0

�points: simulation data; solid lines: analytical solution�.
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transition region where P=1; it is hence not an effect of the
finite size of the system only.

Similar characteristics as for changes in system size are
obtained when the aspect ratio is changed for a given trans-
versal number of bonds nx �see inset of Fig. 6�. For various
aspect ratios �, the predicted slopes deviate at different p
values from the simulation. Apart from finite-size effects,
this is mainly a result of the increasing percolation thresholds
and slopes of the conduction, respectively.

It has to be noted that relatively small systems build the
numerical basis for the simulations and the model. Devia-
tions can thus be partly attributed to related effects, making it
difficult to quantitatively conclude these results at the present
point.

The topology has a great influence on the validity of the
linear range as it is seen in Fig. 7 for a system with nx=20.
The case z=6 yields a significantly increased linear range as
compared to the case where z=4. In the transition region,
similar characteristics are obtained in this case as for the

square lattice in Fig. 6. Note that for z=6 the linear range
may exceed the boundaries, which are given by the linear
range of the statistical distribution. As already pointed out,
the increasing slope for increasing aspect ratios results like-
wise in a decreased linear range. The quantitative difference
in linear range cannot be correlated with the difference in
apparent percolation thresholds only, and needs further
investigation.

VI. INFLUENCE OF PHYSICAL QUANTITIES

As it has been introduced, our goal is to relate our results
to applications such as electrical transport in percolation
based sensors. In such systems, the dependence of the con-
duction on an externally measurable quantity is of higher
interest than on the fraction of occupied bonds itself. This
could for instance be the presence of a gas causing a mor-
phological change in a metallic nanostructure �5�. The con-
nection between p and such a quantity, in the following re-
ferred to as �, is given by a specific statistical distribution f
�e.g., Gaussian, log-normal�, which depends on the physical
nature of the system. It reflects the distribution in threshold
values �th above which a bond is occupied or not, though
practically it may be difficult to quantify in a given situation.
The bond distribution p��� is expressed by the corresponding
cumulative distribution function �CDF�. Both contributions
G�p� and p��� to the final conduction can be treated indepen-
dently. To give a simple example for such a situation we will
consider a Gaussian distribution with f��� ,
��, though oth-
ers such as the log-normal distribution are widely encoun-
tered as well �28�.

In this case, the conduction for the quasi-one-dimensional
case is readily given over the entire range of p by Eq. �4�,

G���1D = �	
−�

� 1


2�
�

exp�−
�x − ���2

2
�
2 �dx
ny nx

ny

. �8�

In the 2D cases, G��� can be calculated using Eq. �7� and
reads as

G���2D = �m� + c��1/� − 1�ny
−1/�

��	
−�

� 1


2�
�

exp�−
�x − ���2

2
�
2 �dx − 1
�G0,

�9�

where G0 is again the conduction of the undiluted lattice.
Note that the dependence of G on the parameter � changes
the range of linearity of G��� as compared to G�p�. While
G�p� has shown to approximately follow a linear function for
p→1, this is no longer the case for G���, caused by the
nonlinearity of the CDF. The emerging limits can be approxi-
mated by linearizing G��� around a working point on the
CDF. In case of the Gaussian distribution we choose the
slope at �� for symmetry reasons and obtain as the linear
approximation at this point,

FIG. 6. �Color online� Influence of the aspect ratio � and system
size nx on the relative deviations of the linear model to conduction
predicted by the simulation.

FIG. 7. �Color online� Influence of the coordination number z
and aspect ratio � on the relative deviations of the linear model to
the simulated currents G�p�. The largest linear ranges are found for
the lower aspect ratios and the high coordination number.
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plin��� =
1

2
+

� − ��


2�
�

. �10�

We now define a maximum relative deviation � between the
linear approximation whereby the original function and the
upper limit �u for linearity can be readily calculated. The
corresponding value of pu is obtained by evaluating the CDF
at �u. With an arbitrarily chosen value of ��5% and numeri-
cal evaluation of the resulting equation G��u��1.05plin��u�,
we obtain an upper limit of pu�0.85, which is independent
of the parameters �� and 
� of the Gaussian distribution
function. A shift of both in �� and 
�, respectively, solely
causes a linear shift in �u. In analogy, a lower limit of lin-
earity pl can be defined. For the given parameters and solv-
ing the equation G��l��0.95plin��l� we obtain pl�0.26.

Using this approximation with its boundaries, the slope
m̃� of the conduction G��� in dependence of the parameter �
is obtained as

m̃2D
� =

�p

��

�G

�p
=

m� + c��1/� − 1�ny
−1/�


2�
�

, �11�

which is only dependent on the width 
� of the distribution.

VII. CONCLUSIONS

In this work we studied conduction in finite rectangular
random resistor networks in two dimensions, motivated by
its usability for nanostructured materials and sensing appli-

cations. We showed that the same scaling function, which
has been introduced by Masihi et al. �24� for apparent per-
colation thresholds also applies for a linear approximation of
the conduction far away from the percolation threshold in
two dimensions. We performed Monte Carlo simulations on
lattices with moderate geometrical aspect ratios and various
topologies such as parallel linear chains, square, and triangu-
lar lattices. Given the statistical errors of the simulations and
the accuracy of the numerical constants within the model, a
reasonable approximation for the slope of the conduction far
away from the percolation threshold is obtained.

We find that for equivalent geometries the triangular lat-
tice shows lower percolation thresholds, flatter slopes of the
conduction and a larger range where this approximation is
legitimate. Parallel linear chains present a fundamentally dif-
ferent behavior due to their quasi-one-dimensional nature,
with pronounced shifts in percolation thresholds and conduc-
tion over a wide range. This topology shows the narrowest
linear range but the steepest obtainable slopes.

We further linked the results to physical quantities, which
are described by a distinct statistical distribution and influ-
ence the fraction of conducting bonds. These results provide
useful information for the development and the analysis of
percolation based functional materials or sensors.
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