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Abstract

One of the key challenges in the area of signal processing on graphs is to design dictionaries and transform
methods to identify and exploit structure in signals on weighted graphs. To do so, we need to account for
the intrinsic geometric structure of the underlying graph data domain. In this paper, we generalize one of
the most important signal processing tools - windowed Fourier analysis - to the graph setting. Our approach
is to first define generalized convolution, translation, and modulation operators for signals on graphs, and
explore related properties such as the localization of translated and modulated graph kernels. We then use
these operators to define a windowed graph Fourier transform, enabling vertex-frequency analysis. When
we apply this transform to a signal with frequency components that vary along a path graph, the resulting
spectrogram matches our intuition from classical discrete-time signal processing. Yet, our construction is
fully generalized and can be applied to analyze signals on any undirected, connected, weighted graph.

Keywords: Signal processing on graphs; time-frequency analysis; generalized translation and modulation;
spectral graph theory; localization; clustering

1. Introduction

In applications such as social networks, electricity networks, transportation networks, and sensor net-
works, data naturally reside on the vertices of weighted graphs. Moreover, weighted graphs are a flexible
tool that can be used to describe similarities between data points in statistical learning problems, func-
tional connectivities between different regions of the brain, and the geometric structures of countless other
topologically-complex data domains.

In order to reveal relevant structural properties of such data on graphs and/or sparsely represent different
classes of signals on graphs, we can construct dictionaries of atoms, and represent graph signals as linear
combinations of the dictionary atoms. The design of such dictionaries is one of the fundamental problems
of signal processing, and the literature is filled with a wide range of dictionaries, including, e.g., Fourier,
time-frequency, curvelet, shearlet, and bandlet dictionaries (see, e.g., [1] for an excellent historical overview
of dictionary design methods and signal transforms).

Of course, the dictionary needs to be tailored to a given class of signals under consideration. Specifically,
as exemplified in [2, Example 1], in order to identify and exploit structure in signals on weighted graphs,
we need to account for the intrinsic geometric structure of the underlying data domain when designing
dictionaries and signal transforms. When we construct dictionaries of features on weighted graphs, it is also
desirable to (i) explicitly control how these features change from vertex to vertex, and (ii) ensure that we
treat vertices in a homogeneous way (i.e., the resulting dictionaries are invariant to permutations in the
vertex labeling). Unfortunately, weighted graphs are irregular structures that lack a shift-invariant notion
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of translation, a key component in many signal processing techniques for data on regular Euclidean spaces.
Thus, many of the existing dictionary design techniques cannot be directly applied to signals on graphs in a
meaningful manner, and an important challenge is to design new localized transform methods that account
for the structure of the data domain.

Accordingly, a number of new multiscale wavelet transforms for signals on graphs have been introduced
recently (see [2] and references therein for a review of wavelet transforms for signals on graphs). Although
the field of signal processing on graphs is still young, the hope is that such transforms can be used to
efficiently extract information from high-dimensional data on graphs (either statistically or visually), as well
as to regularize ill-posed inverse problems.

Windowed Fourier transforms, also called short-time Fourier transforms, are another important class
of time-frequency analysis tools in classical signal processing. They are particularly useful in extracting
information from signals with oscillations that are localized in time or space. Such signals appear frequently
in applications such as audio and speech processing, vibration analysis, and radar detection. Our aim here
is to generalize windowed Fourier analysis to the graph setting.

Underlying the classical windowed Fourier transform are the translation and modulation operators.
While these fundamental operations seem simple in the classical setting, they become significantly more
challenging when we deal with signals on graphs. For example, when we want to translate the blue Mexican
hat wavelet on the real line in Figure 1(a) to the right by 5, the result is the dashed red signal. However,
it is not immediately clear what it means to translate the blue signal in Figure 1(c) on the weighted graph
in Figure 1(b) “to vertex 1000.” Modulating a signal on the real line by a complex exponential corresponds
to translation in the Fourier domain. However, the analogous spectrum in the graph setting is discrete
and bounded, and therefore it is difficult to define a modulation in the vertex domain that corresponds to
translation in the graph spectral domain.

In this paper, an extended version of the short workshop proceeding [3], we define generalized convolution,
translation, and modulation operators for signals on graphs, analyze properties of these operators, and then
use them to adapt the classical windowed Fourier transform to the graph setting. The result is a method to
construct windowed Fourier frames, dictionaries of atoms adapted to the underlying graph structure that
enable vertex-frequency analysis, a generalization of time-frequency analysis to the graph setting. After a
brief review of the classical windowed Fourier transform in the next section and some spectral graph theory
background in Section 3, we introduce and study generalized convolution and translation operators in Section
4 and generalized modulation operators in Section 5. We then define and explore the properties of windowed
graph Fourier frames in Section 6, where we also present illustrative examples of a graph spectrogram analysis
tool and signal-adapted graph clustering. We conclude in Section 7 with some comments on open issues.

(a) (b) (c)

Figure 1: (a) Classical translation. (b) The Minnesota road graph [4], whose edge weights are all equal to 1. (c) What does it
mean to “translate” this signal on the vertices of the Minnesota road graph? The blue and black lines represent the magnitudes
of the positive and negative components of the signal, respectively.
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2. The Classical Windowed Fourier Transform

For any f ∈ L2(R) and u ∈ R, the translation operator Tu : L2(R)→ L2(R) is defined by

(Tuf) (t) := f(t− u), (1)

and for any ξ ∈ R, the modulation operator Mξ : L2(R)→ L2(R) is defined by

(Mξf) (t) := e2πiξtf(t). (2)

Now let g ∈ L2(R) be a window (i.e., a smooth, localized function) with ‖g‖2 = 1. Then a windowed Fourier
atom (see, e.g., [5], [6], [7, Chapter 4.2]) is given by

gu,ξ(t) := (MξTug) (t) = g(t− u)e2πiξt, (3)

and the windowed Fourier transform (WFT) of a function f ∈ L2(R) is

Sf(u, ξ) := 〈f, gu,ξ〉 =

∫ ∞
−∞

f(t)[g(t− u)]∗e−2πiξtdt. (4)

An example of a windowed Fourier atom is shown in Figure 2.
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Figure 2: A classical windowed Fourier atom. In this example, the window is a Gaussian with standard deviation equal to 2
and scaled so that ‖g‖2 = 1. The real part of the atom g5, 1

2
is shown in (c).

A second, perhaps more intuitive, way to interpret Sf(u, ξ) is as the Fourier transform of f(Tug)∗,
evaluated at frequency ξ. That is, we multiply the signal f by (the complex conjugate of) a translated
window Tug in order to localize the signal to a specific area of interest in time, and then perform Fourier
analysis on this localized, windowed signal. This interpretation is illustrated in Figure 3.
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Figure 3: Second interpretation of the windowed Fourier transform: multiply the signal f (shown in blue) by a sliding window
(shown in solid red) to obtain a windowed signal (shown in magenta); then take Fourier transforms of the windowed signals.

As mentioned in Section 1, our plan for the rest of the paper is to generalize the translation and modula-
tion operators to the graph setting, and then mimic the classical windowed Fourier transform construction
of (3) and (4).
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3. Spectral Graph Theory Notation and Background

We consider undirected, connected, weighted graphs G = {V, E ,W}, where V is a finite set of vertices
V with |V| = N , E is a set of edges, and W is a weighted adjacency matrix (see, e.g., [8] for all definitions
in this section). A signal f : V → R defined on the vertices of the graph may be represented as a vector
f ∈ RN , where the nth component of the vector f represents the signal value at the nth vertex in V. The
non-normalized graph Laplacian is defined as L := D −W , where D is the diagonal degree matrix. We
denote by d the vector of degrees (i.e., the diagonal elements of D), so that dn =

∑
m 6=nWmn is the degree

of vertex n. Then dmin := minn{dn} and dmax := maxn{dn}.
As the graph Laplacian L is a real symmetric matrix, it has a complete set of orthonormal eigenvectors,

which we denote by {χ`}`=0,1,...,N−1. Without loss of generality, we assume that the associated real, non-
negative Laplacian eigenvalues are ordered as 0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax, and we denote the
graph Laplacian spectrum by σ(L) := {λ0, λ1, . . . , λN−1}.

3.1. The Graph Fourier Transform and the Graph Spectral Domain

The classical Fourier transform is the expansion of a function f in terms of the eigenfunctions of the
Laplace operator, i.e., f̂(ξ) = 〈f, e2πiξt〉. Analogously, the graph Fourier transform f̂ of a function f ∈ RN
on the vertices of G is the expansion of f in terms of the eigenfunctions of the graph Laplacian. It is defined
by

f̂(λ`) := 〈f, χ`〉 =

N∑
n=1

f(n)χ∗` (n), (5)

where we adopt the convention that the inner product be conjugate-linear in the second argument. The
inverse graph Fourier transform is then given by

f(n) =

N−1∑
`=0

f̂(λ`)χ`(n). (6)

With this definition of the graph Fourier transform, the Parseval relation holds; i.e., for any f, g,∈ RN ,

〈f, g〉 = 〈f̂ , ĝ〉,

and thus

N∑
n=1

|f(n)|2 = ‖f‖22 = 〈f, f〉 = 〈f̂ , f̂〉 = ‖f̂‖22 =

N−1∑
`=0

|f̂(λ`)|2.

Note that the definitions of the graph Fourier transform and its inverse in (5) and (6) depend on the
choice of graph Laplacian eigenvectors, which is not necessarily unique. Throughout this paper, we do not
specify how to choose these eigenvectors, but assume they are fixed. The ideal choice of the eigenvectors
in order to optimize the theoretical analysis conducted here and elsewhere remains an interesting open
question; however, in most applications with extremely large graphs, the explicit computation of a full
eigendecomposition is not practical anyhow, and methods that only utilize the graph Laplacian through
sparse matrix-vector multiplication are preferred. We discuss these computational issues further in Section
6.7.1.

It is also possible to use other bases to define the forward and inverse graph Fourier transforms. The
eigenvectors of the normalized graph Laplacian L̃ := D−

1
2LD− 1

2 comprise one such basis that is prominent
in the graph signal processing literature. While we use the non-normalized graph Laplacian eigenvectors as
the Fourier basis throughout this paper, the normalized graph Laplacian eigenvectors can also be used to
define generalized translation and modulation operators, and we comment briefly on the resulting differences
in the Appendix.
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We consider signals’ representations in both the vertex domain (analogous to the time/space domains in
classical Euclidean settings) and the graph spectral domain (analogous to the frequency domain in classical
settings). As an example, in Figure 4, we show these two different representations of the signal from Figure
1(c). In this case, we actually generate the signal in the graph spectral domain, starting with a continuous

kernel, f̂ : [0, λmax] → R, given by f̂(λ`) := Ce−τλ` , where τ = 5. We then form the discrete signal f̂ by

evaluating the continuous kernel f̂(·) at each of the graph Laplacian eigenvalues in σ(L). The constant C is

chosen so that ‖f‖2 = 1, and the kernel f̂(·) is referred to as a normalized heat kernel (see, e.g., [8, Chapter
10]). Finally, we generate the signal shown in both Figure 1(c) and 4(a) by taking the inverse graph Fourier

transform (6) of f̂ .

(a)

λ

f̂ () =Ce−5λ
f̂ (λ ) =Ce

−5λ

(b)

Figure 4: A signal f represented in two domains. (a) The vertex domain. (b) The graph spectral domain.

Some intuition about the graph spectrum can also be carried over from the classical setting to the graph
setting. In the classical setting, the Laplacian eigenfunctions (complex exponentials) associated with lower
eigenvalues (frequencies) are relatively smooth, whereas those associated with higher eigenvalues oscillate
more rapidly. The graph Laplacian eigenvalues and associated eigenvectors satisfy

λ` = χT

`Lχ` =
∑

(m,n)∈E

Wmn[χ`(m)− χ`(n)]2.

Therefore, since each term in the summation of the right-hand side is non-negative, the eigenvectors associ-
ated with smaller eigenvalues are smoother; i.e., the component differences between neighboring vertices are
small (see, e.g., [2, Figure 2]). As the eigenvalue or “frequency” increases, larger differences in neighboring
components of the graph Laplacian eigenvectors may be present (see [2, 9] for further discussions of notions
of frequency for the graph Laplacian eigenvalues). This well-known property has been extensively utilized in
a wide range of problems, including spectral clustering [10], machine learning [11, Section III], and ill-posed
inverse problems in image processing [12].

3.2. Localization of Graph Laplacian Eigenvectors and Coherence

There have recently been a number of interesting research results concerning the localization properties
of graph Laplacian eigenvectors. For different classes of random graphs, [13, 14, 15] show that with high
probability for graphs of sufficiently large size, the eigenvectors of the graph Laplacian (or in some cases,
the graph adjacency operator), are delocalized; i.e., the restriction of the eigenvector to a large set must
have substantial energy, or in even stronger statements, the element of the matrix χ := [χ0, χ1, . . . , χN−1]
with the largest absolute value is small. We refer to this latter value as the mutual coherence (or simply
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coherence) between the basis of Kronecker deltas on the graph and the basis of graph Laplacian eigenvectors:

µ := max
`∈{0,1,...,N−1}
i∈{1,2,...,N}

|〈χ`, δi〉| ∈
[

1√
N
, 1

]
, (7)

where

δi(n) =

{
1, if i = n

0, otherwise
.

While the previously mentioned non-localization results rely on estimates from random matrix theory, Brooks
and Lindenstrauss [16] also show that for sufficiently large, unweighted, non-random, regular graphs that do

not have too many short cycles through the same vertex, in order for
∑
i∈S |χ`(i)|

2
> ε for any `, the subset

S ⊂ V must satisfy |S| ≥ Nδ, where the constant δ depends on both ε and structural restrictions placed on
the graph.

These non-localization results are consistent with the intuition one might gain from considering the
eigenvectors of the Laplacian for the unweighted path and ring graphs shown in Figure 5. The eigenvalues
of the graph Laplacian of the unweighted path graph with N vertices are given by

λ` = 2− 2 cos

(
π`

N

)
, ∀` ∈ {0, 1, . . . , N − 1},

and one possible choice of associated orthonormal eigenvectors is

χ0(n) =
1√
N
, ∀n ∈ {1, 2, . . . , N}, and

χ`(n) =

√
2

N
cos

(
π`(n− 0.5)

N

)
for ` = 1, 2, . . . , N − 1. (8)

These graph Laplacian eigenvectors, which are shown in Figure 5(b), are the basis vectors in the Discrete
Cosine Transform (DCT-II) transform [17] used in JPEG image compression. Like the continuous com-
plex exponentials, they are non-localized, globally oscillating functions. The unordered eigenvalues of the
graph Laplacian of the unweighted ring graph with N vertices are given by (see, e.g., [18, Chapter 3], [19,
Proposition 1])

λ̄` = 2− 2 cos

(
2π`

N

)
, ∀` ∈ {0, 1, . . . , N − 1},

and one possible choice of associated orthonormal eigenvectors is

χ` =
1√
N

[
1, ω`, ω2`, . . . , ω(N−1)`

]T
, where ω = e

2πj
N . (9)

These eigenvectors correspond to the columns of the Discrete Fourier Transform (DFT) matrix. With this
choice of eigenvectors, the coherence of the unweighted ring graph with N vertices is 1√

N
, the smallest

possible coherence of any graph. In this case, the basis of DFT columns and the basis of Kronecker deltas
on vertices of the graph are said to be mutually unbiased bases.

However, empirical studies such as [20] show that certain graph Laplacian eigenvectors may in fact be
highly localized, especially when the graph features one or more vertices whose degrees are significantly
higher or lower than the average degree, or when the graph features a high degree of clustering (many
triangles in the graph). Moreover, Saito and Woei [21] identify a class of starlike trees with highly-localized
eigenvectors, some of which are even close to a delta on the vertices of the graph. The following example
shows two less structured graphs that also have high coherence.
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Figure 5: (a) The path graph. (b) One possible choice of the graph Laplacian eigenvectors of the path graph is the discrete
cosines. (c) The ring graph.

Example 1: In Figure 6, we show two weighted, undirected graphs with coherences of 0.96 and 0.94. The
sensor network is generated by randomly placing 500 nodes in the [0, 1]× [0, 1] plane. The Swiss roll graph
is generated by randomly sampling 1000 points from the two-dimensional Swiss roll manifold embedded in
R3. In both cases, the weights are assigned with a thresholded Gaussian kernel weighting function based on
the Euclidean distance between nodes:

Wij =

{
exp

(
− [d(i,j)]2

2σ2
1

)
if d(i, j) ≤ σ2

0 otherwise
. (10)

For the sensor network, σ1 = 0.074 and σ2 = 0.075. For the Swiss roll graph, σ1 = 0.100 and σ2 = 0.215.
The coherences are based on the orthonormal Laplacian eigenvectors computed by MATLAB’s svd function.

(a) (b)

Figure 6: Two graphs with high coherence. (a) The coherence of this random sensor network is 0.96. (b) The coherence of this
graph on a cloud of 1000 points randomly sampled on the Swiss roll manifold is 0.94.

The existence of localized eigenvectors can limit the degree to which our intuition from classical time-
frequency analysis extends to localized vertex-frequency analysis of signals on graphs. We discuss this point
in more detail in Sections 4.2, 6.6, and 6.7.

Finally, we define some quantities that are closely related to the coherence µ and will also be useful in
our analysis. We denote the largest absolute value of the elements of a given graph Laplacian eigenvector
by

µ` := ‖χ`‖∞ = max
i∈{1,2,...,N}

|χ`(i)| , (11)

and the largest absolute value of a given row of χ by

νi := max
`∈{0,1,...,N−1}

|χ`(i)| . (12)
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Note that

µ = max
`∈{0,1,...,N−1}

{µ`} = max
i∈{1,2,...,N}

{νi} . (13)

4. Generalized Convolution and Translation Operators

The main objective of this section is to define a generalized translation operator that allows us to shift a
window around the vertex domain so that it is localized around any given vertex, just as we shift a window
along the real line to any center point in the classical windowed Fourier transform for signals on the real
line. We use a generalized notion of translation that is – aside from a constant factor that depends on the
number of vertices in the graph – the same notion used as one component of the spectral graph wavelet
transform (SGWT) in [22, Section 4]. However, in order to leverage intuition from classical time-frequency
analysis, we motivate its definition differently here by first defining a generalized convolution operator for
signals on graphs. We then discuss and analyze a number of properties of the generalized translation as a
standalone operator, including the localization of translated kernels.

4.1. Generalized Convolution of Signals on Graphs

For signals f, g ∈ L2(R), the classical convolution product h = f ∗ g is defined as

h(t) = (f ∗ g)(t) :=

∫
R
f(τ)g(t− τ)dτ. (14)

Since the simple translation g(t − τ) cannot be directly extended to the graph setting, we cannot directly
generalize (14). However, the classical convolution product also satisfies

h(t) = (f ∗ g)(t) =

∫
R
ĥ(k)ψk(t)dk =

∫
R
f̂(k)ĝ(k)ψk(t)dk, (15)

where ψk(t) = e2πikt. This important property that convolution in the time domain is equivalent to multi-
plication in the Fourier domain is the notion we generalize instead. Specifically, by replacing the complex
exponentials in (15) with the graph Laplacian eigenvectors, we define a generalized convolution of signals
f, g ∈ RN on a graph by

(f ∗ g)(n) :=

N−1∑
`=0

f̂(λ`)ĝ(λ`)χ`(n). (16)

Using notation from the theory of matrix functions [23], we can also write the generalized convolution as

f ∗ g = ĝ(L)f = χ

 ĝ(λ0) 0
. . .

0 ĝ(λN−1)

χ∗f.

Proposition 1: The generalized convolution product defined in (16) satisfies the following properties:

1. Generalized convolution in the vertex domain is multiplication in the graph spectral domain:

f̂ ∗ g = f̂ ĝ. (17)

2. Let α ∈ R be arbitrary. Then

α(f ∗ g) = (αf) ∗ g = f ∗ (αg). (18)

8



3. Commutativity:

f ∗ g = g ∗ f. (19)

4. Distributivity:

f ∗ (g + h) = f ∗ g + f ∗ h. (20)

5. Associativity:

(f ∗ g) ∗ h = f ∗ (g ∗ h). (21)

6. Define a function g0 ∈ RN by g0(n) :=
∑N−1
`=0 χ`(n). Then g0 is an identity for the generalized

convolution product:

f ∗ g0 = f. (22)

7. An invariance property with respect to the graph Laplacian (a difference operator):

L(f ∗ g) = (Lf) ∗ g = f ∗ (Lg). (23)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

N∑
n=1

(f ∗ g)(n) =
√
Nf̂(0)ĝ(0) =

1√
N

[
N∑
n=1

f(n)

][
N∑
n=1

g(n)

]
. (24)

4.2. Generalized Translation on Graphs

The application of the classical translation operator Tu defined in (1) to a function f ∈ L2(R) can be
seen as a convolution with δu:

(Tuf)(t) := f(t− u) = (f ∗ δu)(t)
(15)
=

∫
R
f̂(k)δ̂u(k)ψk(t)dk =

∫
R
f̂(k)ψ∗k(u)ψk(t)dk,

where the equalities are in the weak sense. Thus, for any signal f ∈ RN defined on the the graph G and any
i ∈ {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN → RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
√
N(f ∗ δi)(n)

(16)
=
√
N

N−1∑
`=0

f̂(λ`)χ
∗
` (i)χ`(n). (25)

The translation (25) is a kernelized operator. The window to be shifted around the graph is defined in the

graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by χ∗` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 7, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired effect of shifting a window around the graph, centering it at any given
vertex i.
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(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(λ`) = Ce−5λ` . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g ∈ RN and i, j ∈ {1, 2, . . . , N},

1. Ti(f ∗ g) = (Tif) ∗ g = f ∗ (Tig).

2. TiTjf = TjTif .

3.
∑N
n=1(Tif)(n) =

√
Nf̂(0) =

∑N
n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i∈{1,2,...,N} do not form a mathematical group;
i.e., TiTj 6= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = T[(
(i−1)+(j−1)

)
mod N

]
+1
, ∀i, j ∈ {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., ‖Tif‖2 6= ‖f‖2 for all indices i and signals f . Rather, we have

Lemma 1: For any f ∈ RN ,

|f̂(0)| ≤ ‖Tif‖2 ≤
√
Nνi‖f‖2 ≤

√
Nµ‖f‖2. (27)

Proof.

‖Tif‖22 =

N∑
n=1

(
√
N

N−1∑
`=0

f̂(λ`)χ
∗
` (i)χ`(n)

)2

= N

N−1∑
`=0

N−1∑
`′=0

f̂(λ`)f̂(λ`′)χ
∗
` (i)χ

∗
`′(i)

N∑
n=1

χ`(n)χ`′(n)

= N

N−1∑
`=0

|f̂(λ`)|2 |χ∗` (i)|
2

(28)

≤ Nν2
i ‖f‖22. (29)

10



Substituting χ0(i) = 1√
N

into (28) yields the first inequality in (27).

If µ = 1√
N

, as is the case for the ring graph with the DFT graph Laplacian eigenvectors, then |χ∗` (i)|2 = 1
N

for all i and `, and (28) becomes ‖Tif‖2 = ‖f‖2. However, for general graphs, |χ∗` (i)| may be small or even
zero for some i and `, and thus ‖Tif‖2 may be significantly smaller than ‖f‖2, and in fact may even be zero.
Meanwhile, if µ is close to 1, then we may also have the case that ‖Tif‖2 ≈

√
N‖f‖2. Figures 8 and 9 show

examples of {‖Tif‖2}i=1,2,...,N for different graphs and different kernels.

f̂ (λ )

λ

(a)

 

 

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

(b)

 

 

1

1.5

2

2.5

3

3.5

4

(c)

 

 

0.6

0.8

1

1.2

1.4

1.6

1.8

(d)

 

 

0.8

0.9

1

1.1

1.2

1.3

1.4

(e)

 

 

0.9

1

1.1

1.2

1.3

1.4

1.5

(f)

Figure 8: Norms of translated normalized heat kernels with τ = 2. (a) A normalized heat kernel f̂(λ`) = Ce−2λ` on the sensor
network graph shown in (b). (b)-(f) The value at each vertex i represents ‖Tif‖2. The edges of the graphs in (b) and (c) are
weighted by a thresholded Gaussian kernel weighting function based on the physical distance between nodes (10), whereas the
edges of the graphs in (d)-(f) all have weights equal to one. In all cases, the norms of the translated windows are not too close

to zero, and the larger norms tend to be located at the “boundary” vertices in the graph. The lower bound |f̂(0)| and upper
bound

√
Nµ‖f‖2 of Lemma 1 are (b) [0.27,21.38]; (c) [0.20,29.22]; (d) [0.07,42.88]; (e) [0.62,4.26]; (f) [0.36,3.25].

4.4. Localization of Translated Kernels in the Vertex Domain

We now examine to what extent translated kernels are localized in the vertex domain. First, we note
that a polynomial kernel with degree K that is translated to a given center vertex is strictly localized in a
ball of radius K around the center vertex, where the distance dG(·, ·) used to define the ball is the geodesic
or shortest path distance (i.e., the distance between two vertices is the minimum number of edges in any
path connecting them). Note that this choice of distance measure ignores the weights of the edges and only
depends on the unweighted adjacency matrix of the graph.

Lemma 2: Let p̂K be a polynomial kernel with degree K; i.e.,

p̂K(`) =

K∑
k=0

akλ
k
` (30)

for some coefficients {ak}k=0,1,...,K . If dG(i, n) > K, then (TipK)(n) = 0.

11



f̂ (λ )

λ
(a)

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b)

Figure 9: (a) A smooth kernel with its energy concentrated on the higher frequencies of the sensor network’s spectrum. (b)
The values of ‖Tif‖2. Unlike the normalized heat kernels of Figure 8, the translated kernels may have norms close to zero. In
this example, ‖f‖2 = 1 and the minimum norm of a translated window is 0.013.

Proof. By [22, Lemma 5.2], dG(i, n) > K implies (LK)i,n = 0. Combining this with the fact that

(Lk)i,n =

N−1∑
`=0

λk`χ
∗
` (i)χ`(n),

and with the definitions (25) and (30) of the generalized translation and the polynomial kernel, we have

(TipK) (n) =
√
N

N−1∑
`=0

p̂K(λ`)χ
∗
` (i)χ`(n)

=
√
N

N−1∑
`=0

K∑
k=0

akλ
k
`χ
∗
` (i)χ`(n)

=
√
N

K∑
k=0

ak(Lk)i,n = 0, ∀ i, n ∈ V s.t. dG(i, n) > K.

More generally, as seen in Figure 7, if we translate a smooth kernel to a given center vertex i, the
magnitude of the translated kernel at another vertex n decays as the distance between i and n increases. In
Theorem 1, we provide one estimate of this localization by combining the strict localization of polynomial
kernels with the following upper bound on the minimax polynomial approximation error.

Lemma 3 ([25, Equation (4.6.10)]): If a function f(x) is (K + 1)-times continuously differentiable on an
interval [a, b], then

inf
qK

{
‖f − qK‖∞

}
≤

[
b−a

2

]K+1

(K + 1)! 2K
‖f (K+1)‖∞, (31)

where the infimum in (31) is taken over all polynomials qK of degree K.

Theorem 1: Let ĝ : [0, λmax]→ R be a kernel, and define din := dG(i, n) and Kin := din − 1. Then

|(Tig)(n)| ≤
√
N inf

p̂Kin

{
sup

λ∈[0,λmax]

|ĝ(λ)− p̂Kin(λ)|

}
=
√
N inf

p̂Kin

{‖ĝ − p̂Kin‖∞} , (32)
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where the infimum is taken over all polynomial kernels of degree Kin, as defined in (30). More generally,
for p, q ≥ 1 such that 1

p + 1
q = 1,

|(Tig)(n)| ≤
√
Nµ

2(q−1)
q inf

p̂Kin

{‖ĝ − p̂Kin‖p} . (33)

Proof. From Lemma 2, (TipKin)(n) = 0 for all polynomial kernels p̂Kin of degree Kin. Thus, we have

|(Tig)(n)| = inf
p̂Kin

|(Tig)(n)− (TipKin)(n)| = inf
p̂Kin

∣∣∣∣∣√N
N−1∑
`=0

[ĝ(λ`)− p̂Kin(λ`)]χ
∗
` (i)χ`(n)

∣∣∣∣∣
≤
√
N inf

p̂Kin

{
N−1∑
`=0

∣∣∣[ĝ(λ`)− p̂Kin(λ`)]χ
∗
` (i)χ`(n)

∣∣∣}

≤
√
N inf

p̂Kin


(
N−1∑
`=0

|ĝ(λ`)− p̂Kin(λ`)|p
) 1
p
(
N−1∑
`=0

|χ∗` (i)χ`(n)|q
) 1
q


(34)

≤
√
Nµ

2(q−1)
q inf

p̂Kin

{‖ĝ − p̂Kin‖p} , (35)

where (34) follows from Hölder’s inequality, and (35) follows from

N−1∑
`=0

|χ∗` (i)χ`(n)|q ≤ µ2(q−1)
N−1∑
`=0

|χ∗` (i)χ`(n)| ≤ µ2(q−1)

√√√√N−1∑
`=0

|χ`(i)|2
√√√√N−1∑

`=0

|χ`(n)|2 = µ2(q−1).

Substituting (31) into (35) yields the following corollary to Theorem 1.

Corollary 2: If ĝ(·) is din-times continuously differentiable on [0, λmax], then

|(Tig)(n)| ≤

[
2
√
N

din!

(
λmax

4

)din]
sup

λ∈[0,λmax]

∣∣∣ĝ(din)(λ)
∣∣∣ . (36)

When the kernel ĝ(·) has a significant DC component, as is the case for the most logical candidate
window functions, such as the heat kernel, then we can combine Theorem 1 and Corollary 2 with the lower
bound on the norm of a translated kernel from Lemma 1 to show that the energy of the translated kernel is
localized around the center vertex i.

Corollary 3: If ĝ(0) 6= 0, then

|(Tig)(n)|
‖Tig‖2

≤
√
N

|ĝ(0)|
inf
p̂Kin

{
sup

λ∈[0,λmax]

|ĝ(λ)− p̂Kin(λ)|

}
. (37)

Moreover, if ĝ(·) is din-times continuously differentiable on [0, λmax], then

|(Tig)(n)|
‖Tig‖2

≤

[
2
√
N

din! |ĝ(0)|

(
λmax

4

)din]
sup

λ∈[0,λmax]

∣∣∣ĝ(din)(λ)
∣∣∣ . (38)

Example 2: If ĝ(λ) = e−τλ, then ĝ(0) = 1, supλ∈[0,λmax]

∣∣ĝ(din)(λ)
∣∣ = τdin , and (38) becomes

|(Tig)(n)|
‖Tig‖2

≤ 2
√
N

din!

(
τλmax

4

)din
≤
√

2N

dinπ
e
− 1

12din+1

(
τλmaxe

4din

)din
, (39)
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where the second inequality follows from Stirling’s approximation: m! ≥
√

2πm
(
m
e

)m
e

1
12m+1 (see, e.g. [26,

p. 257]). Interestingly, a term of the form
(
Cτe
din

)din
also appears in the upper bound of [27, Theorem 1],

which is specifically tailored to the heat kernel and derived via a rather different approach.
Agaskar and Lu [28, 29] define the graph spread of a signal f around a given vertex i as

∆2
i (f) :=

1

‖f‖22

N∑
n=1

[dG(i, n)]2[f(n)]2.

We can now use (39) to bound the spread of a translated heat kernel around the center vertex i in terms of
the diffusion parameter τ as follows:

∆2
i (Tig) =

1

‖Tig‖22

N∑
n=1

d2
in|Tig(n)|2

=
∑
n 6=i

d2
in

[
|Tig(n)|
‖Tig‖2

]2

(39)

≤ 4N
∑
n 6=i

1

[(din − 1)!]2

(
τ2λ2

max

16

)din

=
Nτ2λ2

max

4

diam(G)∑
r=1

|R(i, r)| 1

[(r − 1)!]2

(
τ2λ2

max

16

)r−1

, (40)

where |R(i, r)| is the number of vertices whose distance from vertex i is exactly r. Note that

|R(i, r)| ≤ di(dmax − 1)r−1, (41)

so, substituting (41) into (40), we have

∆2
i (Tig) ≤ Nτ2λ2

max

4

diam(G)∑
r=1

di
[(r − 1)!]2

(
τ2λ2

max

16(dmax − 1)

)r−1

=
Nτ2λ2

maxdi
4

diam(G)−1∑
r=0

1

[(r)!]2

(
τ2λ2

max

16(dmax − 1)

)r
≤ Nτ2λ2

maxdi
4

∞∑
r=0

1

r!

(
τ2λ2

max

16(dmax − 1)

)r
=
Nτ2λ2

maxdi
4

exp

(
τ2λ2

max

16(dmax − 1)

)
, (42)

where the final equality in (42) follows from the Taylor series expansion of the exponential function around
zero. While the above bounds can be quite loose (in particular for weighted graphs as we have not incorporated
the graph weights into the bounds), the analysis nonetheless shows that we can control the spread of translated
heat kernels around their center vertices through the diffusion parameter τ . For any ε > 0, in order to ensure
∆2
i (Tig) ≤ ε, it suffices to take

τ ≤ 4

λmax

√
(dmax − 1) Ω

(
ε

4Ndi(dmax − 1)

)
, (43)

where Ω(·) is the Lambert W function. Note that the right-hand side of (43) is increasing in ε.
In the limit, as τ → 0, Tig → δi, and the spread ∆2

i (Tig) → 0. On the other hand, as τ → ∞,

Tig(n)→ 1√
N

for all n, ‖Tig‖2 → 1, and ∆2
i (Tig)→ 1

N

∑N
n=1 d

2
in.
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5. Generalized Modulation of Signals on Graphs

Motivated by the fact that the classical modulation (2) is a multiplication by a Laplacian eigenfunction,
we define, for any k ∈ {0, 1, . . . , N − 1}, a generalized modulation operator Mk : RN → RN by

(Mkf) (n) :=
√
Nf(n)χk(n). (44)

5.1. Localization of Modulated Kernels in the Graph Spectral Domain

Note first that, for connected graphs, M0 is the identity operator, as χ0(n) = 1√
N

for all n. In the

classical case, the modulation operator represents a translation in the Fourier domain:

M̂ξf(ω) = f̂(ω − ξ),∀ω ∈ R.

This property is not true in general for our modulation operator on graphs due to the discrete nature of the
graph. However, we do have the nice property that if ĝ(`) = δ0(λ`), then

M̂kg(λ`) =

N∑
n=1

χ∗` (n)(Mkg)(n)

=

N∑
n=1

χ∗` (n)
√
Nχk(n)

1√
N

= δ0(λ` − λk) =

{
1, if λ` = λk

0, otherwise
,

so Mk maps the DC component of any signal f ∈ RN to f̂(0)χk. Moreover, if we start with a function f
that is localized around the eigenvalue 0 in the graph spectral domain, as in Figure 10, then Mkf will be
localized around the eigenvalue λk in the graph spectral domain.

f̂ (λ )

λ
(a)

M2000 f (λ )

λ

λ2000 = 4.03

(b)

Figure 10: (a) The graph spectral representation of a signal f with f̂(`) = Ce−100λ` on the Minnesota graph, where the

constant C is chosen such that ‖f‖2 = 1. (b) The graph spectral representation M̂2000f of the modulated signal M2000f . Note
that the modulated signal is localized around λ2000 = 4.03 in the graph spectral domain.

We quantify this localization in the next theorem, which is an improved version of [3, Theorem 1].

Theorem 2: Given a weighted graph G with N vertices, if for some γ > 0, a kernel f̂ satisfies

√
N

N−1∑
`=1

µ`|f̂(λ`)| ≤
|f̂(0)|
1 + γ

, (45)

then

|M̂kf(λk)| ≥ γ|M̂kf(λ`)| for all ` 6= k. (46)
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Proof.

M̂kf(λ`′) =

N∑
n=1

√
Nχ∗`′(n)χk(n)f(n) =

N∑
n=1

√
Nχ∗`′(n)χk(n)

N−1∑
`′′=0

χ`′′(n)f̂(λ`′′)

=

N∑
n=1

√
Nχ∗`′(n)χk(n)

[
f̂(0)√
N

+

N−1∑
`′′=1

χ`′′(n)f̂(λ`′′)

]

= f̂(0)δ`′k +

N∑
n=1

√
Nχ∗`′(n)χk(n)

N−1∑
`′′=1

χ`′′(n)f̂(λ`′′). (47)

Therefore, we have

|M̂kf(λk)| =

∣∣∣∣∣f̂(0) +

N∑
n=1

√
N |χk(n)|2

N−1∑
`′′=1

χ`′′(n)f̂(λ`′′)

∣∣∣∣∣ (48)

≥ |f̂(0)| −

∣∣∣∣∣
N∑
n=1

√
N |χk(n)|2

N−1∑
`′′=1

χ`′′(n)f̂(λ`′′)

∣∣∣∣∣
≥ |f̂(0)| −

N∑
n=1

√
N |χk(n)|2

N−1∑
`′′=1

|χ`′′(n)| |f̂(λ`′′)|

≥ |f̂(0)| −
√
N

N−1∑
`′′=1

µ`′′ |f̂(λ`′′)|

≥ |f̂(0)|
(

1− 1

1 + γ

)
(49)

where the last two inequalities follow from (11) and (60), respectively. Returning to (47) for ` 6= k, we have

γ|M̂kf(λ`)| = γ

∣∣∣∣∣
N∑
n=1

√
Nχ∗` (n)χk(n)

N−1∑
`′′=1

χ`′′(n)f̂(λ`′′)

∣∣∣∣∣
≤ γ

N∑
n=1

∣∣∣√Nχ∗` (n)χk(n)
∣∣∣ N−1∑
`′′=1

|χ`′′(n)||f̂(λ`′′)|

≤ γ
N∑
n=1

∣∣∣√Nχ∗` (n)χk(n)
∣∣∣ N−1∑
`′′=1

µ`′′ |f̂(λ`′′)|

≤ γ
√
N

N−1∑
`′′=1

µ`′′ |f̂(λ`′′)|

≤ |f̂(0)|
(

γ

1 + γ

)
(50)

where the last three inequalities follow from (11), Hölder’s inequality, and (60), respectively. Combining
(49) and (50) yields (61).

Corollary 4: Given a weighted graph G with N vertices, if for some γ > 0, a kernel f̂ satisfies (60), then

|M̂kf(λk)|2

‖Mkf‖22
≥ γ2

N + 3 + 4γ + γ2
.

16



Proof. We lower bound the numerator by squaring (49). We upper bound the denominator as follows:

‖Mkf‖22 = |M̂kf(λk)|2 +
∑
` 6=k

|M̂kf(λ`)|2 ≤ |f̂(0)|2
(

2 + γ

1 + γ

)2

+ (N − 1)|f̂(0)|2
(

1

1 + γ

)2

which follows from squaring (50) and from applying the triangle inequality at (48), following the same steps
until (49), and squaring the result.

Remark 1: It would also be interesting to find conditions on f̂ such that∑
`:λ`∈B(λk,r)

∣∣∣M̂kf(λ`)
∣∣∣2

‖Mkf‖22
≥ γ2(r),

or such that the spread of M̂kf around λk, defined as either [2, p. 93]

N−1∑̀
=0

(λ` − λk)2
∣∣∣M̂kf(λ`)

∣∣∣2
‖Mkf‖22

or

N−1∑̀
=0

(
√
λ` −

√
λk)2

∣∣∣M̂kf(λ`)
∣∣∣2

‖Mkf‖22
(51)

is upper bounded.3 In Section 8.2 of the Appendix, we present an alternative definition of the generalized
modulation and localization results regarding that modulation operator that contain a spread form similar to
(51).

6. Windowed Graph Fourier Frames

Equipped with these generalized notions of translation and modulation of signals on graphs, we can now
define windowed graph Fourier atoms and a windowed graph Fourier transform analogously to (3) and (4)
in the classical case.

6.1. Windowed Graph Fourier Atoms and a Windowed Graph Fourier Transform

For a window g ∈ RN , we define a windowed graph Fourier atom by4

gi,k(n) := (MkTig) (n) = Nχk(n)

N−1∑
`=0

ĝ(λ`)χ
∗
` (i)χ`(n), (52)

and the windowed graph Fourier transform of a function f ∈ RN by

Sf(i, k) := 〈f, gi,k〉. (53)

Note that as discussed in Section 4.2, we usually define the window directly in the graph spectral domain,
as ĝ(λ) : [0, λmax]→ R.

3Agaskar and Lu [28, 29] suggest to define the spread of f̂ in the graph spectral domain as 1
‖f‖22

N−1∑̀
=0

λ`|f̂(λ`)|2. With

this definition, the “spread” is always taken around the eigenvalue 0, as opposed to the mean of the signal, and, as a result,
the signal with the highest possible spread is actually a (completely localized) Kronecker delta at λmax in the graph spectral
domain, or, equivalently, χmax in the vertex domain.

4An alternative definition of an atom is gi,k := TiMkg. In the classical setting, the translation and modulation operators
do not commute, but the difference between the two definitions of a windowed Fourier atom is a phase factor [6, p. 6]. In
the graph setting, it is more difficult to characterize the difference between the two definitions. In our numerical experiments,
defining the atoms as gi,k := MkTig tended to lead to more informative analysis when using the modulation definition (44),
but defining the atoms as gi,k := TiMkg tended to lead to more informative analysis when using the alternative modulation
definition presented Section 8.2. In this paper, we always use gi,k := MkTig.
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Example 3: We consider a random sensor network graph with N = 64 vertices, and thresholded Gaussian
kernel edge weights (10) with σ1 = σ2 = 0.2. We consider the signal f shown in Figure 11(a), and wish
to compute the windowed graph Fourier transform coefficient Sf(27, 11) = 〈f, g27,11〉 using a window kernel
ĝ(λ`) = Ce−τλ` , where τ = 3 and C = 1.45 is chosen such that ‖g‖2 = 1. The windowed graph Fourier
atom g27,11 is shown in the vertex and graph spectral domains in Figure 11(b) and 11(c), respectively.

f

(a)

g27,11

(b)

ĝ27,11

λ

f̂ () =Ce−5λ

(c)

Figure 11: Windowed graph Fourier transform example. (a) A signal f on a random sensor network with 64 vertices. (b)
A windowed graph Fourier atom g27,11 centered at vertex 27 and frequency λ11 = 2.49. (c) The same atom plotted in
the graph spectral domain. Note that the atom is localized in both the vertex domain and the graph spectral domain. To
determine the corresponding windowed graph Fourier transform coefficient, we take an inner product of the signals in (a) and
(b): Sf(27, 11) = 〈f, g27,11〉 = 0.358.

As with the classical windowed Fourier transform described in Section 2, we can interpret the computation
of the windowed graph Fourier transform coefficients in a second manner. Namely, we can first multiply the
signal f by (the complex conjugate of) a translated window:

fwindowed,i(n) := ((Tig)∗. ∗ f)(n) := [Tig(n)]∗[f(n)], (54)

and then compute the windowed graph Fourier transform coefficients as
√
N times the graph Fourier trans-

form of the windowed signal:

√
Nf̂windowed,i(k) =

√
N〈fwindowed,i, χk〉 =

√
N

N∑
n=1

[Tig(n)]∗[f(n)]χ∗k(n)

=

N∑
n=1

f(n)

N−1∑
`=0

Nĝ(λ`)χ`(i)χ
∗
` (n)χ∗k(n)

=

N∑
n=1

f(n)g∗ik(n) = 〈f, gik〉 = Sf(i, k).

Note that the .∗ in (54) represents component-wise multiplication.

Example 3 (cont.): In Figure 12, we illustrate this alternative interpretation of the windowed graph Fourier
transform by first multiplying the signal f of Figure 11(a) by the window T27g (componentwise), and then
taking the graph Fourier transform of the resulting windowed signal.

6.2. Frame Bounds

We now provide a simple sufficient condition for the collection of windowed graph Fourier atoms to form
a frame (see, e.g., [30, 31, 32])
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T27g

(a)

(T27g). ∗ f

(b)

√
N ̂[(T27g). ∗ f ]

λ

f̂ () =Ce−5λ

(c)

Figure 12: Alternative interpretation of the windowed graph Fourier transform. (a) A translated (real) window centered at
vertex 27. (b) We multiply the window by the signal (pointwise) to compute the windowed signal in the vertex domain. (c)
The windowed signal in the graph spectral domain (multiplied by a normalizing constant). The corresponding windowed graph

Fourier transform coefficient is
√
N ̂(T27g). ∗ f(λ11) = 0.358, the same as 〈f, g27,11〉, which was computed in Figure 11.

Theorem 3: If ĝ(0) 6= 0, then {gi,k}i=1,2,...,N ; k=0,1,...,N−1 is a frame; i.e., for all f ∈ RN ,

A‖f‖22 ≤
N∑
i=1

N−1∑
k=0

|〈f, gi,k〉|2 ≤ B‖f‖22,

where

0 < N |ĝ(0)|2 ≤ A := min
n∈{1,2,...,N}

{
N‖Tng‖22

}
≤ B := max

n∈{1,2,...,N}

{
N‖Tng‖22

}
≤ N2µ2‖g‖22.

Proof.

N∑
i=1

N−1∑
k=0

|〈f, gi,k〉|2 =

N∑
i=1

N−1∑
k=0

|〈f,MkTig〉|2

= N

N∑
i=1

N−1∑
k=0

|〈f(Tig)∗, χk〉|2

= N

N∑
i=1

〈f(Tig)∗, f(Tig)∗〉 (55)

= N

N∑
i=1

N∑
n=1

|f(n)|2 |(Tig)(n)|2

= N

N∑
i=1

N∑
n=1

|f(n)|2 |(Tng)(i)|2 (56)

= N

N∑
n=1

|f(n)|2 ‖Tng‖22, (57)

where (55) is due to Parseval’s identity, and (56) follows from the symmetry of L and the definition (25) of
Ti. Moreover, under the hypothesis that ĝ(0) 6= 0, we have

‖Tng‖22 = N

N−1∑
`=0

|ĝ(λ`)|2 |χl(n)|2 ≥ |ĝ(0)|2 > 0. (58)
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Combining (57) and (58), for f 6= 0,

0 < A‖f‖22 ≤
N∑
i=1

N−1∑
k=0

|〈f, gi,k〉|2 ≤ B‖f‖22 <∞.

The upper bound on B follows directly from (29).

Remark 2: If µ = 1√
N

, then {gi,k}i=1,2,...,N ; k=0,1,...,N−1 is a tight frame with A = B = N‖g‖22.

In Table 1, we compare the lower and upper frame bounds derived in Theorem 3 to the empirical optimal
frame bounds, A and B, for different graphs.

Graph µ τ N |ĝ(0)|2 A B N2µ2‖g‖22
0.5 3.2 498.4 846.2 1000.0

Path graph 0.063 5.0 11.0 494.5 976.5 1000.0
50.0 34.2 482.9 964.6 1000.0

0.5 150.8 465.0 591.8 12676.9
Random regular graph 0.225 5.0 500.0 500.0 500.0 12676.9

50.0 500.0 500.0 500.0 12676.9

0.5 13.5 142.7 3702.2 228607.0
Random sensor network 0.956 5.0 71.7 158.4 2530.7 228607.0

50.0 387.1 389.3 1185.6 228607.0
0.5 3.0 7.4 786.3 248756.2

Comet graph 0.998 5.0 17.9 43.9 1584.1 248756.2
50.0 52.9 119.1 1490.8 248756.2

Table 1: Comparison of the empirical optimal frame bounds, A and B, to the theoretical lower and upper bounds derived in
Theorem 3. The number of vertices for all graphs is N = 500, and in all cases, the window is ĝ(λ`) = Ce−τλ` , where the
constant C is chosen such that ‖g‖2 = 1. In the random regular graph, every vertex has degree 8. The random sensor network
is the one shown in Figure 8(b). In the comet graph, which is structured like the one shown in Figure 8(e), the degree of the
center vertex is 200.

6.3. Reconstruction Formula

Provided the window g has a non-zero mean, a signal f ∈ RN can be recovered from its windowed graph
Fourier transform coefficients.

Theorem 4: If ĝ(0) 6= 0, then for any f ∈ RN ,

f(n) =
1

N‖Tng‖22

N∑
i=1

N−1∑
k=0

Sf(i, k)gi,k(n).

Proof.

N∑
i=1

N−1∑
k=0

Sf(i, k)gi,k(n)

=

N∑
i=1

N−1∑
k=0

(
N

N∑
m=1

f(m)χ∗k(m)

N−1∑
`=0

ĝ(λ`)χ`(i)χ
∗
` (m)

)(
Nχk(n)

N−1∑
`′=0

ĝ(λ`′)χ
∗
`′(i)χ`′(n)

)

= N2
N∑
m=1

f(m)

N−1∑
`=0

N−1∑
`′=0

ĝ(λ`)ĝ(λ`′)χ
∗
` (m)χ`′(n)

N∑
i=1

χ`(i)χ
∗
`′(i)

N−1∑
k=0

χ∗k(m)χk(n)

= N2
N∑
m=1

f(m)

N−1∑
`=0

N−1∑
`′=0

ĝ(λ`)ĝ(λ`′)χ
∗
` (m)χ`′(n) δ``′ δmn = N2f(n)

N−1∑
`=0

|ĝ(λ`)|2|χ∗` (n)|2 = N‖Tng‖22 f(n),

where the last equality follows from (28).
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Remark 3: In the classical case, ‖Tng‖22 = ‖g‖22 = 1, so this term does not appear in the reconstruction
formula (see, e.g., [7, Theorem 4.3]).

6.4. Spectrogram Examples

As in classical time-frequency analysis, we can now examine |Sf(i, k)|2, the squared magnitudes of the
windowed graph Fourier transform coefficients of a given signal f . In the classical case (see, e.g., [7, Theorems
4.1 and 4.3]), the windowed Fourier atoms form a tight frame, and therefore this spectrogram of squared
magnitudes can be viewed as an energy density function of the signal across the time-frequency plane. In the
graph setting, the windowed graph Fourier atoms do not always form a tight frame, and we cannot therefore,
in general, interpret the graph spectrogram as an energy density function. Nonetheless, it can still be a
useful tool to elucidate underlying structure in graph signals. In this section, we present some examples to
illustrate this concept and provide further intuition behind the proposed windowed graph Fourier transform.

Example 4: We consider a path graph of 180 vertices, with all the weights equal to one. The graph
Laplacian eigenvectors, given in (8), are the basis vectors in the DCT-II transform. We compose the signal
shown in Figure 13(a) on the path graph by summing three signals: χ10 restricted to the first 60 vertices,
χ60 restricted to the next 60 vertices, and χ30 restricted to the final 60 vertices. We design a window g
by setting ĝ(λ`) = Ce−τλ` with τ = 300 and C chosen such that ‖g‖2 = 1. The “spectrogram” in Figure

13(b) shows |Sf(i, k)|2 for all i ∈ {1, 2, . . . , 180} and k ∈ {0, 1, . . . , 179}. Consistent with intuition from
discrete-time signal processing (see, e.g., [6, Chapter 2.1]), the spectrogram shows the discrete cosines at
different frequencies with the appropriate spatial localization.
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Figure 13: Spectrogram example on a path graph. (a) A signal f on the path graph that is comprised of three different graph
Laplacian eigenvectors restricted to three different segments of the graph. (b) A spectrogram of f . The vertex indices are on
the horizontal axis, and the frequency indices are on the vertical axis.

Example 5: We now compute the spectrogram of the signal f on the random sensor network of Example
3, using the same window ĝ(λ`) = Ce−τλ` from Example 3, with τ = 3. It is not immediately obvious
upon inspection that the signal f shown in both Figure 11(a) and Figure 14(a) is a highly structured signal;
however, the spectrogram, shown in Figure 14(b), elucidates the structure of f , as we can clearly see three
different frequency components present in three different areas of the graph. In order to mimic Example 4
on a more general graph, we constructed the signal f by first using spectral clustering (see, e.g., [10]) to
partition the network into three sets of vertices, which are shown in red, blue, and green in Figure 14(a).
Like Example 4, we then took the signal f to be the sum of three signals: χ10 restricted to the red set of
vertices, χ27 restricted to the blue set of vertices, and χ5 restricted to the green set of vertices.

Remark 4: In Figure 14(b), in order to make the structure of the signal more evident, we arranged the
vertices of the sensor graph on the horizontal axis according to clusters, so that vertices in the same cluster
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(a)

k"

Red" Blue" Green"

(b)

Figure 14: Spectrogram example on a random sensor network. (a) A signal comprised of three different graph Laplacian
eigenvectors restricted to three different clusters of a random sensor network. (b) The spectrogram shows the different frequency
components in the red, blue, and green clusters.

are close to each other. Of course, this would not be possible if we did not have an idea of the structure a
priori. A more general way to view the spectrogram of a graph signal without such a priori knowledge is as a
sequence of images, with one image per graph Laplacian eigenvalue and the sequence arranged monotonically
according to the corresponding eigenvalue. Then, as we scroll through the sequence (i.e., play a frequency-
lapse video), the areas of the graph where the signal contains low frequency components “light up” first, then
the areas where the signal contains middle frequency components, and so forth. In Figure 15, we show a
subset of the images that would comprise such a sequence for the signal from Example 5.
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Figure 15: Frequency-lapse video representation of the spectrogram of a graph signal. The graph spectrogram can be viewed
as a sequence of images, with each frame corresponding to the spectrogram coefficients at all vertices and a single frequency,
|Sf(:, k)|2. This particular subsequence of frames shows the spectrogram coefficients from eigenvalues λ26 through λ29. At
frequencies close to λ27 = 5.44, we can see the coefficients “light up” in the blue cluster of vertices from Figure 14(a),
corresponding to the spectrogram coefficients in the middle of Figure 14(b).

6.5. Application Example: Signal-Adapted Graph Clustering

Motivated by Examples 4 and 5, we can also use the windowed graph Fourier transform coefficients as
feature vectors to cluster a graph into sets of vertices, taking into account both the graph structure and a
given signal f . In particular, for i = 1, 2, . . . , N , we can define yi := Sf(i, :) ∈ RN , and then use a standard
clustering algorithm to cluster the points {yi}i=1,2,...,N .5

5Note that if we take the window to be a heat kernel ĝ(λ) = Ce−τλ, as τ → 0, Tig → δi and Sf(i, k) → 〈
√
NMkδi, f〉 =√

Nχk(i)f(i). Thus, this method of clustering reduces to spectral clustering [10] when (i) the signal f is constant across all
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Example 6: We generate a signal f on the 500 vertex random sensor network of Example 1 as follows.
First, we generate four random signals {fi}i=1,2,3,4, with each random component uniformly distributed

between 0 and 1. Second, we generate four graph spectral filters
{
ĥi(·)

}
i=1,2,3,4

that cover different bands of

the graph Laplacian spectrum, as shown in Figure 16(a). Third, we generate four clusters, {Ci}i=1,2,3,4, on
the graph, taking the first three to be balls of radius 4 around different center vertices, and the fourth to be
the remaining vertices. These clusters are shown in Figure 16(b). Fourth, we generate a signal on the graph
as

f =

4∑
i=1

(fi ∗ hi) |Ci ;

i.e., we filter each random signal by the corresponding filter (to shift its frequency content to a given band),
and then restrict that signal to the given cluster by setting the components outside of that cluster to 0.
The resulting signal f is shown in Figure 16(c). Fifth, we compute the windowed graph Fourier transform
coefficients of f using a window ĝ(λ) = e−0.3λ. Sixth, we use a classical trick of applying a nonlinear
transformation to the coefficients (see, e.g., [33, Section 3]), and define the vectors {yi}i=1,2,...,N as

yi(k) := tanh
(
α|Sf(i, k)|

)
=

1− e−2α|Sf(i,k)|

1 + e−2α|Sf(i,k)| ,

with α = 0.75. Finally, we perform k-means clustering on the points {yi}i=1,2,...,N , searching for 6 clusters
to give the algorithm some extra flexibility. The resulting signal-adapted graph clustering is shown in Figure
16(d).

Filters
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Figure 16: Signal-adapted graph clustering example. (a) The graph spectral filters
{
ĥi(·)

}
i=1,2,3,4

covering different bands of

the graph Laplacian spectrum. (b) The four clusters used to generate the signal f . (c) The signal f is a combination of signals
in different frequency bands (fi ∗ hi) restricted to different areas of the graph. We can see for example that the red cluster is
generated by the lowpass red filter in (a), and therefore the signal f is relatively smooth around the red cluster of vertices. (d)
The signal-adapted graph clustering results. We see that the red and magenta clusters roughly correspond to the original red
cluster, and the white and yellow clusters roughly correspond to the original yellow cluster. There are some errors around the
edges of the original red, blue, and green clusters, particularly in regions of low connectivity.

6.6. Tiling

Thus far, we have generalized the classical notions of translation and modulation in order to mimic the
construction of the classical windowed Fourier transform. We have seen from the examples in the previous
subsections that the spectrogram may be an informative tool for signals on both regular and irregular graphs.
In this section and the following section, we examine the extent to which our intuitions from classical time-
frequency analysis carry over to the graph setting, and where they deviate due to the irregularity of the
data domain, and, in turn, the possibility of localized Laplacian eigenfunctions.

vertices, and (ii) each window is a delta in the vertex domain.
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First, we compare tilings of the time-frequency plane (or, in the graph setting, the vertex-frequency
plane). Recall that Heisenberg boxes represent the time-frequency resolution of a given dictionary atom
(including, e.g., windowed Fourier atoms or wavelets) in the time-frequency plane (see, e.g., [7, Chapter 4]).
As shown in the tiling diagrams of Figure 17(a) and 17(b), respectively, the Heisenberg boxes of classical
windowed Fourier atoms have the same size throughout the time-frequency plane, while the Heisenberg
boxes of classical wavelets have different sizes at different wavelet scales. While one can trade-off time
and frequency resolutions (e.g., change the length and width of the Heisenberg boxes of classical windowed
Fourier atoms by changing the shape of the analysis window), the Heisenberg uncertainty principle places a
lower limit on the area of each Heisenberg box.
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Figure 17: (a) Tiling of the time-frequency plane by classical windowed Fourier atoms. (b) Tiling of the time-frequency plane
by classical wavelets. (c) Sum of the spectrograms of five windowed graph Fourier atoms on the path graph with 180 vertices.
(d) Sum of the spectrograms of five spectral graph wavelets on the path graph with 180 vertices.

In Figure 17(c) and 17(d), we use the windowed graph Fourier transform to show the sums of spectrograms
of five windowed graph Fourier atoms on a path graph and five spectral graph wavelets on a path graph,
respectively. The plots are not too different from what intuition from classical time-frequency analysis might
suggest. Namely, the sizes of the Heisenberg boxes for different windowed graph Fourier atoms are roughly
the same, while the sizes of the Heisenberg boxes of spectral graph wavelets are similar at a fixed scale, but
vary across scales.

In Figure 18, we plot three different windowed graph Fourier atoms – all with the same center vertex – on
the Swiss roll graph. Note that all three atoms are jointly localized in the vertex domain around the center
vertex 62, and in the graph spectral domain around the frequencies to which they have been respectively
modulated. However, unlike the path graph example in Figure 17, the sizes of the Heisenberg boxes of
the three atoms are quite different. In particular, the atom g62,983 is extremely close to a delta function
in both the vertex domain and the graph spectral domain, which of course is not possible in the classical
setting due to the Heisenberg uncertainty principle. The reason this happens is that the coherence of this
Swiss roll graph is µ = 0.94, and the eigenvector χ983 is highly localized, with a value of -0.94 at vertex 62.
The takeaway is that highly localized eigenvectors can limit the extent to which intuition from the classical
setting carriers over to the graph setting.

6.7. Limitations

In this section, we briefly discuss a few limitations of the proposed windowed graph Fourier transform.

6.7.1. Computational Complexity

While the exact computation of the windowed graph Fourier transform coefficients via (52) and (53) is
feasible for smaller graphs (e.g., less than 10,000 vertices), the computational cost may be prohibitive for
much larger graphs. Therefore, it would be of interest to develop an approximate computational method
that scales more efficiently with the size of the graph. Recall that

Sf(i, k) = 〈f, gik〉 = 〈f,MkTig〉 = 〈f (Tig)
∗
, χk〉 = ̂f (Tig)

∗
(λk). (59)
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Figure 18: Three different windowed graph Fourier atoms on the Swiss roll, shown in both domains.

The quantity Tig in the last term of (59) can be approximately computed in an efficient manner via the
Chebyshev polynomial method of [22, Section 6], and therefore f (Tig)

∗
can be approximately computed in

an efficient manner. Thus, if there was a fast approximate graph Fourier transform, we could apply that to
the fast approximation of f (Tig)

∗
in order to approximately compute the windowed graph Fourier transform

coefficients {Sf(i, k)}k=0,1,...,N−1. Unfortunately, we are not yet aware of a good fast approximate graph
Fourier transform method.

6.7.2. Lack of a Tight Frame

As discussed in Sections 6.2 and 6.4, the collection of windowed graph Fourier atoms need not form a
tight frame, meaning that the spectrogram can not always be interpreted as an energy density function. Fur-
thermore, the lack of a tight frame may lead to (i) less numerical stability when reconstructing a signal from
(potentially noisy) windowed graph Fourier transform coefficients [30, 31, 32], or (ii) slower computations,
for example when computing proximity operators in convex regularization problems [34].

6.7.3. No Guarantees on the Joint Localization of the Atoms in the Vertex and Graph Spectral Domains

Thus far, we have seen that (i) if we translate a smooth kernel ĝ to vertex i, the resulting signal Tig
will be localized around vertex i in the vertex domain (Section 4.4); (ii) if we modulate a kernel ĝ that is

localized around 0 in the graph spectral domain, the resulting kernel M̂kg will be localized around λk in the
graph spectral domain (Section 5); and (iii) a windowed graph Fourier atom, gik, is often jointly localized
around vertex i in the vertex domain and frequency λk in the graph spectral domain (e.g., Figure 18). In
classical time-frequency analysis, the windowed Fourier atoms gu,ξ are all jointly localized around time u
and frequency ξ. So we now ask whether the windowed graph Fourier atoms are always jointly localized
around vertex i and frequency λk? The answer is no, and the reason once again follows from the possibility
of localized graph Laplacian eigenvectors. For a smooth window ĝ, the translated window Tig is indeed
localized around vertex i; however, gik =

√
Nχk. ∗ (Tig) may not be localized around vertex i when χk(n)

is close to zero for all vertices n in a neighborhood around i. One such example is shown in Figure 19.
Similarly, in order for ĝik to be localized around frequency λk in the graph spectral domain, it suffices for
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T̂ig to be localized around 0 in the graph spectral domain. However,

T̂ig(λ`) =
√
Nĝ(λ`)χ

∗
` (i),

and, therefore, it is possible that the multiplication by a graph Laplacian eigenvector changes the localization
of the translated window in the graph spectral domain. In classical time-frequency analysis, these phenomena
never occur, because the complex exponentials are always delocalized.

T48g

(a)

χN−2

(b)

g48,N−2

(c)

Figure 19: A windowed graph Fourier atom that is not localized around its center vertex. (a) The translated window T48g
is localized around the center vertex 48, which is shown in magenta. (b) The graph Laplacian eigenvector χN−2 is highly
localized around a different vertex in the graph and is extremely close to zero in the neighborhood of vertex 48. (c) Therefore,
when we modulate the translated window T48g by χN−2, the resulting atom g48,N−2 is not centered around vertex 48. Note
that the three figures are drawn on different scales; the magnitudes of the largest components of the signals are 1.37, 0.59, and
0.15, respectively.

Despite the lack of guarantees on joint localization, the windowed graph Fourier transform is still a useful
analysis tool. First, if the coherence µ is low (close to 1√

N
), the graph Laplacian eigenvectors are delocalized,

the atoms are jointly localized in the vertex and graph spectral domains, and much of the intuition from
classical time-frequency analysis carriers over to the graph setting. Even when the coherence is close to 1,
however, it often happens that the majority of the atoms are in fact jointly localized in time and frequency.
This is because only those atoms whose computations include highly localized eigenvectors are affected. We
have observed empirically that there tends to be only a few graph Laplacian eigenvectors, most commonly
those associated with the higher frequencies (eigenvalues close to λmax). Moreover, if χk is highly localized
around a vertex j, then Sf(i, k) will be close to 0 for any vertex i not close to j, so it is not particularly
problematic that gik may not be localized around i in the vertex domain.

7. Conclusion and Future Work

We defined generalized notions of translation and modulation through multiplication with a graph Lapla-
cian eigenvector in the graph spectral and vertex domains, respectively. We leveraged these generalized
operators to design a windowed graph Fourier transform, which enables vertex-frequency analysis for signals
on graphs. We showed that when the chosen window is smooth in the graph spectral domain, translated
windows are localized in the vertex domain. Moreover, when the chosen window is localized around zero in
the graph spectral domain, the modulation operator is close to a translation in the graph spectral domain.
If we apply this windowed graph Fourier transform to a signal with frequency components that vary along a
path graph, the resulting spectrogram matches our intuition from classical discrete-time signal processing.
Yet, our construction is fully generalized and can be applied to analyze signals on any undirected, connected,
weighted graph. The example in Figure 14 shows that the windowed graph Fourier transform may be a
valuable tool for extracting information from signals on graphs, as structural properties of the data that are
hidden in the vertex domain may become obvious in the transform domain.

One line of future work is to continue to improve the localization results for the translated kernels
presented in Section 4.4, preferably by incorporating the graph weights. This issue is closely related to the
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study of both the localization of eigenvectors and recent work in the theory of matrix functions [23]. In
particular, it is related to the off-diagonal decay of entries of a matrix function g(L), as studied in [35, 36].
To our knowledge, existing results in this area also do not incorporate the entries of the matrix L (other
than through the eigenvalues), but rather depend primarily on the sparsity pattern of L. For more precise
numerical localization results, numerical linear algebra researchers have also turned to quadrature methods
to approximate the quantity δ∗i g(L)δj (see, e.g., [37] and references therein).

Motivated by the spirit of vertex-frequency analysis introduced in this paper, we are also investigating
a new, more computationally efficient dictionary design method to generate tight frames of atoms that are
jointly localized in the vertex and graph spectral domains.

8. Appendix

8.1. The Normalized Laplacian Graph Fourier Basis Case

We now briefly consider the case when the normalized graph Laplacian eigenvectors are used as the
Fourier basis, and revisit the definitions and properties of the generalized translation and modulation oper-
ators from Sections 4 and 5. Throughout we use a ˜ to denote the corresponding quantities derived from the
normalized graph Laplacian L̃. To prove many of the following properties, we use the fact that for connected
graphs

χ̃0(n) =

√
dn

‖
√
d‖2

=

√
N
√
dn

‖
√
d‖2

χ0(n),

where the square root in
√
d is applied component-wise.

8.1.1. Generalized Convolution and Translation in the Normalized Laplacian Graph Fourier Basis

We can keep the definition (16) of the generalized convolution, with the normalized graph Laplacian eigen-
values and eigenvectors replacing those of the combinatorial graph Laplacian. Statements 1-7 in Proposition
1 are still valid; however, (24) becomes

N∑
n=1

(f ∗ g)(n)
√
dn = ‖

√
d‖2f̂(0)ĝ(0) =

1

‖
√
d‖2

[
N∑
n=1

f(n)
√
dn

][
N∑
n=1

g(n)
√
dn

]
.

Accordingly, we can redefine the generalized translation operator as

(T̃if)(n) := ‖
√
d‖2(f ∗ δi)(n) = ‖

√
d‖2

N−1∑
`=0

f̂
(
λ̃`

)
χ̃∗` (i)χ̃`(n),

so that Property 3 of Corollary 1 becomes

N∑
n=1

(T̃if)(n)
√
dn =

√
di

N∑
n=1

f(n)
√
dn,

and for any f ∈ RN , Lemma 1 becomes√
di|f̂(0)| ≤ ‖T̃if‖2 ≤ ν̃i‖

√
d‖2‖f‖2 ≤ µ̃‖

√
d‖2‖f‖2.

Because they only depend on the graph structure and not the specific graph weights, the localization results
of Theorem 1, Corollary 2, and Corollary 3 also hold, with the constant

√
N replaced by ‖

√
d‖2 and an

extra factor of
√
di in the denominator of (37) and (38).
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8.1.2. Generalized Modulation in the Normalized Laplacian Graph Fourier Basis

When we use the normalized Laplacian eigenvectors as a graph Fourier basis instead of the combinatorial
Laplacian eigenvectors, we can define a generalized modulation as

(M̃kf)(n) := f(n)
χ̃k(n)

χ̃0(n)
= f(n)

χ̃k(n)‖
√
d‖2√

dn
,

so that M̃0 is also the identity operator and ̂̃Mkδ0(λ̃`) = δ0(λ̃` − λ̃k); i.e., M̃k maps the graph spectral

component f̂(0) from eigenvalue λ̃0 to eigenvalue λ̃k in the graph spectral domain. The following theorem
on the localization of a modulated kernel in the graph spectral domain follows essentially the same line of
argument as Theorem 2, with 1

χ̃0(n) replacing
√
N in the proof.

Theorem 5: Given a weighted graph G with N vertices, if for some γ > 0, a kernel f̂ satisfies

N−1∑
`=1

µ̃`

∣∣∣f̂ (λ̃`)∣∣∣ ≤ √
dmin |f̂(0)|

‖
√
d‖2 (1 + γ)

, (60)

then ∣∣∣∣̂̃Mkf
(
λ̃k

)∣∣∣∣ ≥ γ ∣∣∣∣̂̃Mkf
(
λ̃`

)∣∣∣∣ for all ` 6= k. (61)

8.1.3. Example: Resolution Tradeoff in the Normalized Laplacian Graph Fourier Basis

We once again consider a heat kernel of the form ĝ(λ̃) = e−τλ̃. First, for the spread of a translated kernel
in the vertex domain, we can replace the upper bound (42) by

∆2
i (T̃ig) ≤ ‖

√
d‖22τ2 exp

(
τ2

4(dmax − 1)

)
. (62)

Next, our localization result on the generalized modulation, Theorem 5, tells us that

N−1∑
`=1

e−τλ̃` ≤
√
dmin

µ̃‖
√
d‖2 (1 + γ)

(63)

for some γ > 0 implies | ̂̃Mkg(λ̃k)| ≥ γ| ̂̃Mkg(λ̃`)| for all ` not equal to k. For a graph G with known
isoperimetric dimension (see, e.g., [38], [8, Chapter 11]), the following result upper bounds the left-hand side
of (63).

Theorem 6 (Chung and Yau, [38, Theorem 7]): The normalized graph Laplacian eigenvalues of a graph G
satisfy

N−1∑
`=1

e−τλ̃` ≤ Cδ‖d‖1
τ
δ
2

, (64)

where for every subset V1 ⊂ V, δ, the isoperimetric dimension of G, and cδ, the isoperimetric constant,
satisfy

|E(V1,Vc1)| ≥ cδ

[∑
n∈V1

dn

] δ−1
δ

,

and Cδ is a constant that only depends on δ.
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Combining (63) and (64), for a fixed τ ,

∣∣∣ ̂̃Mkg
(
λ̃k

)∣∣∣ ≥ ( √
dmin τ

δ
2

µ̃Cδ‖
√
d‖2‖d‖1

− 1

)∣∣∣ ̂̃Mkg
(
λ̃`

)∣∣∣ , ∀` 6= k. (65)

Similarly, to ensure
∣∣∣ ̂̃Mkg

(
λ̃k

)∣∣∣ ≥ γ
∣∣∣ ̂̃Mkg

(
λ̃`

)∣∣∣ , ∀` 6= k for a desired γ > 0, it suffices to choose the

diffusion parameter of the heat kernel as

τ ≥

(
µ̃Cδ‖

√
d‖2‖d‖1(1 + γ)√
dmin

) 2
δ

. (66)

Comparing (65) and (66) to (62), we see that as the diffusion parameter τ increases, our guarantee on the

localization of M̂kg around frequency λk in the graph spectral domain improves, whereas the guarantee on
the localization of Tig around vertex i in the vertex domain becomes weaker, and vice versa.

8.2. Alternative Definition of Generalized Modulation

The classical modulation operator corresponds to translation in the spectral domain. Therefore, a second
approach to generalize modulation to the graph setting is to define a new weighted graph Ǧ on the graph
Laplacian spectrum and then define the generalized modulation on G as a generalized translation on Ǧ. More
specifically, we first define a new graph Ǧ, whose vertices are the eigenvalues of the original graph Laplacian
L. One simple choice of graphs is a weighted path graph, where each eigenvalue λ` from the original graph
G is connected only to λ`−1 and λ`+1, and the weights are inversely proportional to the distances between
neighboring eigenvalues. Other possibilities include assigning exponential weights based on the distance
between eigenvalues, or connecting each eigenvalue to multiple neighbors on each side and assigning weights
according to a thresholded weighting function like (10). Next, we form the Laplacian Ľ on this new graph Ǧ,
and denote its eigenpairs by (λ̌j , χ̌j). Then generalized modulation on G is defined as generalized translation
on Ǧ:

(̂Mkf)(λ`) :=
(
Ťkf̂

)
(`) =

√
N

ˆ̂
f(Ľ)k,` =

√
N

N−1∑
j=0

ˆ̂
f
(
λ̌j
)
χ̌∗j (k)χ̌j(`), (67)

where we have indexed the vertices in Ǧ as ` = 0, 1, . . . , N − 1, rather than the usual 1 to N . In (67), f

lives on the vertices of the original graph G, f̂ lives on both the spectrum σ(L) of the original graph and

the vertices of Ǧ, and
ˆ̂
f (a graph Fourier transform of f with respect to the Laplacian eigenvectors of L

followed by a graph Fourier transform of f̂ with respect to the Laplacian eigenvectors of Ľ) lives on the
spectrum σ(Ľ) of Ǧ. Taking an inverse graph Fourier transform of (67) (with respect to the eigenvectors of
the original graph Laplacian L) yields

(Mkf) (n) =
√
N

N−1∑
`=0

N−1∑
j=0

ˆ̂
f
(
λ̌j
)
χ̌∗j (k)χ̌j(`)χ

∗
` (n).

We can define the kernel f in (67) in one of two ways. First, to maintain direct comparability to the

generalized modulation, we can define the kernel f̂(λ`) directly on σ(L). For example, in Figure 20, we let

f̂(λ`) = Ceτλ` (with C chosen such that ‖f̂‖2 = 1), and then use the definition (67) to modulate a kernel
on the Laplacian spectrum of the Minnesota graph.

A second option is to define f on the spectrum σ(Ľ). For example, in Figure 21, we let
ˆ̂
f(λ̌j) = eτ̌ λ̌j ,

and then modulate again via (67). One advantage of defining the kernel in this manner is that we can more
easily characterize the spread of the modulated kernel in the graph spectral domain of G, using, e.g., our

translation localization results from Section 4.4. For example, with
ˆ̂
f(·) a heat kernel and Ǧ a weighted
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f̂ (λ )

λ

τ =100

(a)

M 1000 f (λ )

λ

τ =100 , λ1000 =1.57

(b)

M 2000 f (λ )

λ

τ =100 , λ2000 = 4.03

(c)

M 2000 f (λ )

λ

τ =10 , λ2000 = 4.03

(d)

Figure 20: Generalized modulation on the Minnesota graph G, via generalized translation on Ǧ with the same kernel f̂(λ`) =
Ce−τλ` defined on σ(L) as in Figure 10. The graph Ǧ is a weighted path graph with W̌kl = 1

|λk−λ`|+10−6 . (a) The normalized

heat kernel f̂(λ`). (b) and (c) Modulated kernels with two different center frequencies, λ1000 and λ2000. In both cases, the
modulated kernel is localized around the desired frequency of σ(L) (shown in red). (d) As τ decreases, the spread of the
modulated kernel around the center frequency in the graph spectral domain of G generally increases.

path graph (which has a maximum Laplacian eigenvalue upper bounded by 4) as in Figure 21, the bound
(42) becomes

N−1∑̀
=0

(`− k)2
∣∣∣M̂kf(λ`)

∣∣∣2
‖Mkf‖22

= ∆2
k(Ť`f̂) ≤ 8Nτ̌2eτ̌

2

,

which is close to form of the desired bound on the spread of modulated kernels we mentioned in (51),
especially for a graph G whose spectrum is close to uniformly distributed on [0, λmax].

f̂ (λ )

λ

τ
∨

= 5

(a)

M 1000 f (λ )

λ

τ
∨

= 5, λ1000 =1.57

(b)

M 2000 f (λ )

λ

τ
∨

= 5, λ2000 = 4.03

(c)

M 2000 f (λ )

λ

τ
∨

= 50 , λ2000 = 4.03

(d)

Figure 21: Generalized modulation on the Minnesota graph G, via generalized translation on the same Ǧ from Figure 20, with

a kernel
ˆ̂
f(λ̌j) = e−τ̌ λ̌j defined on σ(Ľ). (a) We take an inverse graph Fourier transform

ˆ̂
f(λ̌j) to find f̂(λ`). (b) and (c) We

modulate the kernel to two different center frequencies, λ1000 and λ2000, by translating it on Ǧ. In both cases, the modulated
kernel is localized around the desired frequency of σ(L) (shown in red). (d) As τ̌ increases, the spread of the modulated kernel
around the center frequency in the graph spectral domain of G generally increases.
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