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Abstract

In this paper, the problem of predicting blood glucose concentrations (BG) for the treatment of patients with type 1
diabetes, is addressed. Predicting BG is of very high importance as most treatments, which consist in exogenous insulin
injections, rely on the availability of BG predictions. Many models that can be used for predicting BG are available in the
literature. However, it is widely admitted that it is almost impossible to perfectly model blood glucose dynamics while
still being able to identify model parameters using only blood glucose measurements. The main contribution of this work
is to propose a simple and identifiable linear dynamical model, which is based on the static prediction model of standard
therapy. It is shown that the model parameters are intrinsically correlated with physician-set therapy parameters and
that the reduction of the number of model parameters to identify leads to inferior data fits but to equivalent or slightly
improved prediction capabilities compared to state-of-the-art models: a sign of an appropriate model structure and
superior reliability. The validation of the proposed dynamic model is performed using data from the UVa simulator and
real clinical data, and potential uses of the proposed model for state estimation and BG control are discussed.

Keywords: Type 1 Diabetes Mellitus, Blood Glucose Prediction, Therapy Parameters, Physiological Model, Blood
Glucose Control

1. Introduction

Type 1 diabetes mellitus is an autoimmune disease that
destroys insulin producing beta cells. Since insulin stim-
ulates the uptake of glucose by cells, the lack of insulin
leads to high levels of BG. This condition, referred to as
hyperglycemia, is at the origin of numerous other medi-
cal conditions such as blindness, nerve damage, vascular
diseases, and so forth [1]. Patients with Type 1 diabetes
are typically treated by exogenous insulin injections that
replace endogenous production. The amount of insulin,
which can be administered by means of an insulin pen or
pump, needs to be carefully computed, as an insulin over-
dose leads to low BG, i.e. to hypoglycemia. Fainting, coma
or even death may result from hypoglycemia, which, thus,
has to be avoided. Preventing hyper- and hypoglycemia is
complicated by the huge variability of insulin absorption
and action between patients, but also within one patient
[2]. Thus, predicting BG is a challenging but crucial task,
as most therapies rely, to some extent, on BG predictions.

The development of reliable BG prediction models, that
can be used e.g. in bolus calculators, educational tools,
insulin pump suspension algorithms and closed-loop BG
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controllers, is a very active research field and many pre-
diction models are now available in the literature. Some of
these models, which can be of very different nature, have
been recently reviewed and discussed by Steil et al. and
Boutayeb et al. [3, 4]. But among all the available models,
the most commonly used are undoubtedly compartmental
models. These models, whose complexities rise from the
simplicity of the minimal model of Bergman [5] to the com-
plexity of the models of Hovorka et al. [6] or Dalla Man et
al. [7], e.g., show potentially good prediction capabilities
as long as they can be personalized [8]. The personaliza-
tion of the corresponding model parameters is only possi-
ble if, together with BG, additional measured quantities,
such as insulin concentrations and tracer measurements,
are available. Unfortunately this is rarely the case and pre-
diction models that are identifiable with only BG measure-
ments should be preferred. This justifies the widespread
use of black-box models, such as auto-regressive models
[9], or neural networks [10, 11, 12]. These models, how-
ever, have the disadvantage that their parameters cannot
be linked to physically observable quantities. As a result,
identification errors which result in unlikely parameters
cannot be easily detected and predictions may become
dangerously corrupted. Yates and Watson therefore pro-
posed recently to use a Maximum A Posteriori method in
combination with the minimal model in order to do BG
predictions [13]. However, this has the disadvantage of
heavily relying on prior knowledge.
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In this context, the contribution of this paper is to
propose a new compartmental model that can be identi-
fied using only BG measurements. Its simple linear struc-
ture, together with its low number of model parameters
and states, facilitates the identification step and prevents
fitting measurement noise. Additionally, it is proven that
the corresponding models parameters are related to the
standard therapy parameters, which have a physiological
meaning. These are very valuable model properties for
applications like continuous glucose measurement signal
filtering, BG control (automated pancreas or open loop
control), state estimation, bolus calculators, or pump sus-
pension algorithms.

The paper is organized as follows: In Section 2, the
new Therapy Parameter-based Model (TPM) is presented
and the link between its parameters and standard therapy
parameters is discussed. In Section 3, the UVa simulator
and clinical data used to validate the model, the identifi-
cation method, and the evaluation metrics are described.
The validation method of the TPM is presented in Section
4. This validation is performed in 3 successive steps: (i)
the model is fitted to the UVa simulator and study data,
(ii) the correlation between model and therapy parame-
ters is verified, and (iii) model predictions are analyzed
and compared. We conclude the paper in Section 5 and
give an outlook on future work.

2. Therapy Parameter-based model

In this section, the model equations of the TPM are
derived from the Bergman Minimal Model and the rela-
tion between TPM parameters and physician-set therapy
parameters is shown.

2.1. Model derivation

2.1.1. Bergman Minimal Model (BMM)

Though originally designed to provide estimations of
insulin sensitivities based on intravenous glucose tolerance
tests in dogs and subsequently in humans [14], the BMM
[5] has recently been used for BG prediction and control
[15, 16, 17, 18] and is found in modified versions, too [19].
One variation of the Bergman minimal model equations is
as follows:

dG(t)

dt
= −X(t)G(t)− SGG(t) + Uendo (1)

dX(t)

dt
= −p2(X(t)− SII(t)) (2)

where G is the BG concentration in mg · dl−1, X is the
insulin action in min−1, SG is the glucose effectiveness
at zero insulin in min−1, SI is the insulin sensitivity in
U−1 ·min−1 ·l, Uendo is the endogenous glucose production
in mg ·dl−1 ·min−1, and p2 is the inverse of time constant
of the insulin action in min−1. I is the plasma insulin
concentration in U/l.

What makes the BMM appealing for prediction and
control is mainly its simple structure and its widespread
acceptance, although, to be used as a prediction model,
it requires additional sub-models for meal contributions,
insulin dynamics and, optionally, physical activity [20].
However, the identification of BMM parameters is only
possible with a priori knowledge [21] or using insulin con-
centration measurements [22]. Identifiability can be im-
proved by using sub-models such as proposed by Kande-
rian et al. [23], provided the insulin concentration profile
I(t) is available. This is unfortunately not the case in prac-
tice, as I(t) is not measured, and the identifiability of the
BMM is still an issue.

2.1.2. Minimal model (MM)

Prud’homme et al. [24] recently extended the BMM by
substituting the insulin action and insulin absorption mod-
els [25] by a 2nd-order insulin action model and by adding
the 2nd-order linear carbohydrates (CHO) sub-model by
Hovorka et al. [26], resulting in the following set of ODEs:

dG(t)

dt
= −X(t)G(t)− SGG(t) + Uendo + UG(t) (3)

dUG(t)

dt
= U̇G(t) (4)

dU̇G(t)

dt
= −2agU̇G(t)− a2gUG(t) +Kga

2
gUCHO(t) (5)

dX(t)

dt
= −axX(t) + axX1(t) (6)

dX1(t)

dt
= −axX1(t) +KxaxUI(t) (7)

where the new states are the gut glucose absorption UG
in g · min−1, its time derivative U̇G in g · min−2, and
the intermediate insulin action X1 in min−1. Additional
model parameters are introduced: the meal sensitivity Kg

in mg · dl−1 · g−1, the inverse of the meal time constant
ag in min−1, the insulin sensitivity Kx in U−1 (different
from SI), and the inverse of the insulin absorption/action
time constant ax in min−1. The manipulated inputs are
the subcutaneous insulin infusion, UI in U ·min−1 and the
carbohydrate intake rate UCHO in g ·min−1. This model
is referred to as the Minimal Model (MM) in what follows.

The fact that the insulin concentration - which is nei-
ther measured nor used - is not explicitly modeled im-
proves the identifiability of this model compared to models
using the original Bergman minimal model insulin action
of Equation (2).

However, the results presented by Prud’homme et al.
show that, despite improved identifiability and the use of
prior knowledge, the resulting predictions are still unsatis-
factory and lead to sub-optimal insulin infusions. Another
drawback of the MM lies in the behavior induced by the
bilinear term of Equation 3 (Equation 1 for the BMM).
As such, Equation 1 predicts that, for any given value
X of the insulin action X(t), the reduction of the blood
glucose concentration is an increasing function of BG. In
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other words, according to the term −X(t)G(t), high BG
values should always lead to a large effect of a given in-
sulin action X(t) on BG concentration (and vice-versa).
This is however not always true, since the opposite effect
has been observed in practice [27]. Especially prolonged
hyperglycemia blunts the effect of insulin.

2.1.3. Linear Minimal Model (LMM)

A simple yet effective approach to circumvent the lim-
itations of both the BMM and MM is to linearize the BG
equation. As linearity is also advantageous for identifica-
tion and control purposes [28], several linearized versions
of the minimal model are available in the literature. Lin-
earizing the MM will lead to the removal of the effect of
glucose concentration on the insulin efficiency. As said be-
fore, although many models (like the MM) incorporate the
bilinear term X(t)G(t), this removal can be physiologically
justified since the increased effect of X on the variation of
G at high BG concentrations cannot be observed in real
patients [27]. It has been shown that the performances
of both the minimal model and the LMM are compara-
ble, though none fits all the available data [29]. Linearized
minimal models were also used for predicting BG, with
limited success [16]. The LMM presented here and used
thereafter is a linear version of the MM that reads:

dG(t)

dt
= −X(t)− SGG(t) + Uendo + UG(t) (8)

dUG(t)

dt
= U̇G(t) (9)

dU̇G(t)

dt
= −2agU̇G(t)− a2gUG(t) +Kga

2
gUCHO(t) (10)

dX(t)

dt
= −axX(t) + axX1(t) (11)

dX1(t)

dt
= −axX1(t) +KxaxUI(t) (12)

with the insulin sensitivity Kx being now in mg ·dl−1 ·U−1.
Despite the removal of the bilinear term, the LMM

is still not very efficient in terms of steady-state predic-
tions. In fact, if no insulin bolus is infused and no meal
is ingested, steady-state BG concentration is obtained by
setting all inputs and time derivatives to 0 in Equations
(8) to (12) and reads:

Gss =
Uendo −KxUI,b

SG
(13)

where UI,b is the corresponding basal insulin infusion. Typ-
ical values of Gss are around 100 mg ·dl−1, when adequate
UI,b are infused. However this is rarely the case as shown
in 4.1.1.

As such, the steady-state BG concentration predicted
by the LMM does not depend on a patient’s initial BG.
For example all the aforementioned models predict re-
covery even when a patient in hyperglycemic condition
does not take counteractive actions. This is in contra-
diction with practical observations that showed that in
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Figure 1: BG predictions using the LMM with the same insulin
sensitivity Kx and inputs, but two different time constants 1/ax.

such a case, the patient will typically remain in hyper-
glycemic condition. Also, the parameters Uendo and SG
directly influence the identification of insulin and meal pa-
rameters, which makes identification particularly prone to
model mismatch - which is inevitable in such a high noise
and perturbation-rich environment. Indeed, the couples
of insulin and meal time constants and sensitivities, i.e.
(ax,Kx) and (ag,Kg), respectively, are dependent. This
latter issue is illustrated by Figure 1, where it is shown
that the time constant 1/ax influences the amplitude of
an insulin injection-related drop in BG. To obtain mean-
ingful model parameters the amplitude and the rate of the
effect of meal and/or insulin on BG concentration have
to be decoupled, which furthermore increases correlation
with therapy parameters (cf. 4.1.1 and 4.2.2). Therefore
this influence should be eliminated, making ax and ag in-
dependent of the respective response amplitudes.

2.1.4. Therapy parameter-based model (TPM)

To improve the LMM, it is proposed to remove Uendo
and SG, leading to the following set of ODEs:

dG(t)

dt
= −X(t) + UG(t) (14)

dUG(t)

dt
= U̇G(t) (15)

dU̇G(t)

dt
= −2agU̇G(t)− a2gUG(t) +Kga

2
gUCHO(t) (16)

dX(t)

dt
= −axX(t) + axX1(t) (17)

dX1(t)

dt
= −axX1(t) +KxaxUI(t) (18)

The removal of Uendo and SG leads to the following changes
in the properties of the resulting dynamical model proper-
ties:

• After an insulin bolus or a meal, BG drops or rises,
respectively, as a second-order dynamical system.
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Figure 2: BG predictions using the TPM with the same insulin sen-
sitivity Kx and inputs, but two different time constants 1/ax.

• Gss only varies with Kx, Kg, and the initial BG
concentration:

Gss = G(0)−KxUI,tot +KgUCHO,tot (19)

where G(0) is the initial BG, UI,tot =
∫ tf
0
UI(t)dt

is the total amount of infused insulin between the
initial time and the final time tf , and UCHO,tot =∫ tf
0
UCHO(t)dt is the total amount of ingested CHO

between the initial time and the final time tf .

• As depicted in Figure 2, the sensitivities are now
decoupled from their respective time constants.

• The number of parameters to identify has been re-
duced from 6 to 4.

By coincidence, Kirchsteiger et al. used the same model
as the TPM to predict BG concentrations on real patient
data [30]. However, neither a comparison to other mod-
els was performed, nor a link to therapy parameters was
established.

Percival et al. developed a similar model with first-
order dynamics and a pure time delay [31]. However, the
corresponding simulated BG profiles are not smooth and
the time delay is difficult to identify. Also, their correlation
analysis showed that the identified parameters were not
significantly correlated to therapy parameters.

2.2. Standard therapy

In this subsection, the principles of the standard bolus
and insulin pump therapy are described and it is shown
how therapy parameters are related to the parameters of
the TPM.

2.2.1. Standard therapy definition

Patients with type 1 diabetes typically:

• Take a fingerstick BG measurement (Gm) before a
meal, or whenever they suspect their BG to be high,

• Compare Gm to the target BG (Gt), and compute
the difference: ∆G = Gm −Gt,

• Compute the correction bolus as Icorr = ∆G/CF ,
with CF being the correction factor in mg·dl−1·U−1.
Icorr may be negative if the patient plans to ingest
a meal.

• Compute the meal bolus as Imeal = I2C · CHO,
with I2C being the insulin-to-carbohydrates ratio in
U · g−1, and CHO being the corresponding weight
of carbohydrates in g.

• Inject the bolus I = Icorr + Imeal using their insulin
pump or pen.

Indeed, CF and I2C correspond to the therapy parameters
and are set by a physician. CF quantifies the drop in
BG resulting from a 1U insulin injection at steady-state,
while I2C indicates how much insulin should be injected
per gram of ingested carbohydrates. MS = I2C · CF can
thus be defined as the meal sensitivity, which indicates the
increase in BG per gram of ingested carbohydrates.

From the viewpoint of systems theory, a way to in-
terpret the standard therapy parameters MS and CF is
by assimilating them to the parameters of a static model,
identified by physicians, that maps the amount of insulin
to the future steady-state BG.

2.2.2. Basal insulin

With an insulin pump, insulin may be infused almost
continuously. This basal rate is useful in that it counter-
acts circadian variations in insulin sensitivity, such as the
dawn effect. It is generally tuned by a physician in such
a way that, in the absence of disturbances (such as meals
or physical activity), BG stays approximately at the tar-
get value throughout the day. Hereafter, we will always
assume a properly set basal rate. In this case, basal in-
sulin is not considered as an input, i.e. inputs correspond
exclusively to insulin boluses.

2.2.3. Relation between therapy parameters and the TPM

Proposition 1. The TPM parameter Kx is equal to the
therapy parameter CF .

Proof. If a 1U insulin bolus is infused at t = 0, UI(s) = 1
and, in the absence of previous insulin boluses and meals,
CF , according to the definition given in 2.2, is given as:

CF = −(G(∞)−G(0)) (20)

where G(∞) is the BG at steady-state and G(0) the initial
BG.

G(s) = − Kx

s
(

1 + 1
ax
s
)2UI(s) +

1

s
G(0) (21)
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Applying the final value theorem leads to:

G(∞) = lim
s→0

sG(s)

= − lim
s→0

Kx(
1 + 1

ax
s
)2 −G(0)

= −Kx −G(0)

Thus,
Kx = −(G(∞)−G(0)) = CF (22)

which concludes the proof.

Proposition 2. The TPM parameter Kg is equal to the
therapy parameter MS.

Proof. If 1g of CHO is ingested at t = 0, and in the ab-
sence of previous insulin boluses and meals, MS, according
to its definition (see Section 2.2), reads:

MS = G(∞)−G(0) (23)

The rest of the proof is straightforward and is similar to
that of Proposition 1.

As shown, the therapy parameters CF and MS cor-
respond by construction to the model parameters Kx and
Kg of the TPM, respectively. Both indicate how much
BG will drop or rise, respectively, in between consecutive
steady states. In other words, the TPM may be considered
as a dynamical extension of the standard, static, therapy
model. This property is illustrated in Figure 3, while ex-
perimental verification of this link is presented in section
4.2.2.

The main advantage of TPM compared to the standard
therapy model lies in its ability to predict BG evolution
over time. Thus, TPM may be used for predictions, con-
trol, and other applications requesting time-varying BG
concentrations. The link between therapy and model pa-
rameters is very valuable, because TPM parameters have a
physical meaning that is recognized by physicians and may
therefore be accepted more easily. On the other hand, a
priori knowledge of the physician-set therapy parameters
can be used, if available, to improve the reliability of the
TPM parameters.

On the other hand, no explicit link between therapy
parameters and parameters of the LMM and the MM can
be established, because these models have a stead-state
behavior that is not compatible with the definition of CF
and MS. In fact, with these models, if time goes to in-
finity, simulated BG concentration will tend to the value
defined in equation (13), irrespective of the initial BG con-
centration. However, it does make sense to compare the
values of Kg and Kx to MS and CF , respectively, because
these parameters define the amplitude of the rise or drop
in BG concentration. As will be seen in section 4, these
values are correlated. Hence, such a comparison will be
performed in the next sections, but it has to be clear that
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Figure 3: TPM simulations after an insulin bolus (left-hand side)
and a meal (right-hand side)

this comparison is not performed to quantify the correla-
tion between the parameters of the MM or of the LMM
to the therapy parameters as such, but rather to highlight
the intrinsic higher correlation degrees between the pa-
rameters of the TPM and the therapy parameters, which
is one of the main added-values of the TPM.

3. Validation Tools and Methods

This section describes the data used for the validation
of the TPM as well as the practical methods and tools.

3.1. UVa simulator

For model validation, a first step is to test the mod-
els on virtual patients. For this reason the UVa-Padova
simulator, based on the model by Dalla Man et al. [7, 32]
and approved by the FDA to replace animal testing in the
context of closed-loop control, has been used to generate
data sets.

We evaluate the models on 4 days that have been cho-
sen in the following way:

• The first three days are similar. An insulin bolus
and a meal are taken simultaneously at 8 AM, but
are varied from day to day to span the whole BG
range. This way the nonlinearities of the UVa model
are taken into account. The insulin bolus is chosen
such that it decreases BG concentrations by 10, 70
and 120 mg/dl, respectively. The exact amount is
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calculated using the CF that is given in the simula-
tor. The meals are then given such that they coun-
teract these boluses based on the I2C provided in
the simulator. Meal durations where chosen to be
10, 20, and 10 minutes, respectively.

• The fourth day spans the whole palette of BG con-
centrations and incorporates different amounts of car-
bohydrate ingestion and insulin injections. Boli re-
ducing BG by approximately 100, 5, 10, and 15 mg/dl
are given respectively at 10 AM, 2 PM, 3 PM and 4
PM. Meals, rising BG by approximately 80, 20, and
10 mg/dl are taken respectively at 8 AM, 2 PM, and
6 PM. Meal durations are 10, 15, and 20 minutes.

The noiseless measurements of the 10 adults are used and
are sampled with a period of 15 minutes. On days 1 to
3, data between 8 AM and 4 PM are considered. On day
4, data between 8 AM and 11 PM are used. All patients
have their standard basal insulin administered during this
time.

3.2. Clinical study

Data used for model validation are extracted from a
mono-center and open-label study, designed to evaluate
an investigational meal bolus advice method, similar to
that of Prud’homme et al. [24]. 12 subjects with type 1
diabetes mellitus followed the same 10-day procedure:

• Clinical habituation phase: The objective of the 3
first days was to get the subjects used to the clini-
cal environment and changes in their daily routine.
Meanwhile, physicians adjusted the therapy param-
eters. On day 3, an additional basal rate test was
performed to verify and adapt the basal rate.

• Sensitivity tests: On days 4 and 5, insulin sensi-
tivity tests were performed, i.e. patients received
an isolated insulin shot, followed by BG monitoring.
The goal was to observe the effect of insulin without
the influence of any meal perturbation, which is key
for obtaining reliable insulin action parameters (3.4).
Whenever necessary, the basal rate was slightly re-
duced a few hours before the test, so that at 8:30
AM a corrective bolus could be infused. Until 11:30
AM, the sampling period for SMBG measurements
was set equal to 15 minutes.

• Standard therapy days: On days 6 and 7, standard
therapy was applied (2.2). At 9:00 AM, the subjects
received the test meal and infused their standard in-
sulin bolus. BG was measured every 30 minutes until
4:00 PM.

• Optimized insulin infusion days: On days 8 to 10,
optimized insulin patterns were infused under the
same meal and BG measurements conditions than
before. The therapy consisted of small insulin bo-
luses, potentially administered every 30 minutes un-
til 2:00 PM.

SMBG measurements were performed with Accu-Chek R©

Combo meters, while test meals were always the same
fatty, heavy and long-lasting meals (750 kcal with 25-30%
carbohydrates, 15-20% protein, and 55-60% fat). The fol-
lowing data were not considered for model validation:

• Data collected after a hypoglycemic intervention.

• Data collected after the intake of medication.

• Data with very high variability and unexplained BG
excursions.

Of note is that this corresponds to the exclusion of 2 sub-
jects. Overall, the standard therapy I2C was often under-
estimated leading to high BG concentrations, most likely
due to the slow nature of the selected meal. Therapy pa-
rameter values were updated on a day-to-day basis. For
the validation of the TPM, we only consider one single
therapy parameter value per patient.

The data from this study are very well suited to an-
alyze parameter correlations and compare model predic-
tions since:

• insulin sensitivity tests were performed (cf. 3.4).

• the patients had the same meal several times on
consecutive days, which prevents that parameters
change significantly over the course of the study.

• the basal rates and therapy parameters were very
well adjusted by physicians.

• two different insulin infusion strategies were used.

The latter is interesting in that, generally speaking, if all
study days are similar, models that have good data fits
generate good predictions even if they have inappropriate
dynamics. On the other hand, an even more diversified
study design with, e.g., modified meal sizes, more patients
and more insulin sensitivity test days, would improve the
quality of the data further.

3.3. Identification method

Model parameters identification is performed by mini-
mizing the following weighted least squares objective func-
tion J :

J(θ) =

D∑
d=1

αdJd(θ) (24)

where θ is the vector of model parameters to estimate
(θ = [ax ag Kx Kg]

T for the TPM, e.g.), D is the number
of days, αd is the weight associated to day d, and Jd is
defined for each day d:

Jd(θ) =

Nd∑
i=1

(Gd,i − Ĝd,i(θ))2 (25)

where Nd is the number of BG measurements for day d,
Gd,i and Ĝd,i are the measured and simulated BG concen-
trations on day d, respectively.

6



The optimal values θ∗ are such that they minimize the
cumulated (and weighted) prediction error:

min
θ
J(θ) =

D∑
d=1

(
αd

(
Nd∑
i=1

(Gd,i − Ĝd,i(θ))2
))

(26)

s.t. Model Equations (27)

where the Model Equations (Equations (14)-(18) for the
TPM, e.g.) are integrated to compute the predicted values
Ĝd,i(θ) at the sampling instant i of day d under the same
conditions than the corresponding measured values Gd,i,
for any choice of θ.

3.4. Reliable insulin action

Particular attention has to be paid to the estimation
of insulin action, as, for instance, underestimating the in-
sulin effect increases the risk of overdosing insulin. It is
made more complicated when meals and insulin boluses
are taken simultaneously, since the effects of carbohydrates
and insulin cancel each other out, especially if they act at
similar speeds. Note that this remark further justifies the
choice of slow meals in the context of the clinical study
associated with this paper, as the meals taken by the sub-
jects were mostly slower than the insulin actions.

This difficulty to identify insulin parameters - wors-
ened by the high noise level - is depicted in Figure 4. It
shows that when the meal and the bolus are taken simul-
taneously, the simulated BG does not change significantly
when Kx is doubled, while the right-hand side plot shows
the large sensitivity of the simulated BG profile to a change
in Kx when the meal and the bolus are taken separately.
In other words, Figure 4 illustrates how difficult it is to
reliably identify Kx on the basis of BG measurements if
the meal and the bolus are taken simultaneously. Indeed,
in such a case, it is possible to estimate the ratio

Kg

Kx
that

corresponds to I2C, but not Kx (corresponding to CF ).
To eliminate this problem, the only solution is to per-

form insulin sensitivity tests, where a bolus without a cor-
responding meal is infused.

3.5. Choice of metrics

A good overview of the different metrics used to com-
pare different BG profiles is given by Del Favero et al. [33].
Additionally, the authors propose an extension of existing
metrics to incorporate a glucose specific penalty.

In this paper, we propose to assess the quality of the
LMM, the MM and the TPM by three different indicators,
which are detailed below.

3.5.1. The Mean Absolute Difference (MAD):

The MAD is used to compare data fits, as well as model
predictions resulting from the different investigated mod-
els.

MAD =
1

N

N∑
t=1

|G(t)− Ĝ(t)| (28)

where N denotes the number of samples.
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Figure 4: Simulations of the therapy parameter-based model with
simultaneous insulin bolus and meal (left) and only an insulin bolus
(right). The parameters are chosen as follows: ax = 0.04, ag = 0.03,
Kg

Kx
(= I2C) = 0.1 and Kx is chosen according to legend. The insulin

bolus is 2U and the meal is 20g.

3.5.2. The coefficient of determination:

The coefficient of determination R2 in % is defined as:

R2 = 100

(
1−

1
N

∑N
t=1(G(t)− Ĝ(t))2

1
N

∑N
t=1(G(t)− Ḡ)2

)
(29)

where Ḡ is the average BG: Ḡ = 1
N

∑N
t=1G(t). A value

of 100% is equivalent to a perfect fit, while worse fits may
have negative values. This method is more sensitive to
outliers because of its quadratic term.

In this paper it is not necessary to use the glucose
specific metrics since hypo- and hyperglycemia conditions
rarely occurred during the clinical study.

3.5.3. The Error Grid Analysis (EGA):

As BG predictions are thought to be, in the ideal case,
used in the same way as BG measurements, they should
also be evaluated using the EGA [34], which is used to
assess the performances of BG meters. BG measurements
are compared to reference BG measurements and are clas-
sified via a grid that rates resulting treatment decisions.

• If the measurement is ”clinically accurate”, i.e. if
it deviates by no more than 20%, it is classified in
zone A. If 95% of the measurements are in zone A,
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the BG meter is approximately achieving the stan-
dards of the ISO 15197 norm. However, as shown by
Freckmann et al. [35], many current BG meters do
not fulfill this norm.

• If a measurement is ”clinically appropriate”, i.e. if it
would lead to benign or no treatment, it is classified
in zone A and B.

• All other zones are considered potentially dangerous
and should therefore be avoided.

Clearly, it is highly desired to obtain as many predic-
tions in zone A as possible, and to avoid zones other than
A or B.

4. Validation

The validation of TPM is performed with the UVa
simulator data of section 3.1 and the clinical study data
of section 3.2 and follows 3 separate steps: (i) the data
fits are analyzed, (ii) the correlation between therapy and
model parameters is checked, and (iii), model predictions
are evaluated.

4.1. UVa simulations

4.1.1. Data fit

The structure of the TPM mainly differs from that of
the other models because of the absence of endogenous glu-
cose production and glucose effectiveness at zero insulin,
resulting in different behavior at steady-state. The UVa
model, however, has similar steady-state behavior as the
MM and LMM that the TPM is not able to reproduce.
For this reason, no insulin sensitivity tests are done with
the UVa simulator - the TPM does not have the dynamics
to be able to fit such data. This situation is not optimal
and may result in unreliable insulin action, as explained in
3.4, but the challenge is the same for each tested model.

For the identification of UVa simulator data, the weight
between the different days is equal, i.e. αd = 1 for all days
d. All data are used for the evaluation of fitting perfor-
mance (D = 4), leading to one parameter set for each
patient. Initial BG is computed via linear interpolation
between the values just before and right after the first
measurement used for identification. The initialization of
the other states is performed by propagating past model
inputs. Examples of such simulations are given in Figure
5.

Table 1 shows that LMM and the MM have compara-
ble fitting capabilities on UVa simulator data, while the
TPM is slightly lower. This fact was expected as the num-
ber of model parameters of the TPM is lower. However,
as it will be seen in sections 4.1.2 and 4.1.3, this small de-
crease in the fitting capability is largely compensated by
the improvement in parameter identifiability and predic-
tion performance.

Indeed, good model fits do not necessarily imply good
model predictions. With a high number of parameters,
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Figure 5: Example of data fits for different prediction models on UVa
data.

TPM LMM MM
MAD in mg/dl 6.91 4.94 5.26

R2 in % 89.6 94.8 94.0

Table 1: MAD and R2 indicators (averaged over all patients) for the
three investigated models on UVa simulator data.

a model is typically able to generate many different BG
profiles, leading to good data fits even though the dynam-
ics of the model are not appropriate. However, in such a
case, model predictions will not be good when the data set
used for validation differs from that used for identification.
Conversely, a model with less parameters may have infe-
rior fitting capabilities but better predictions capabilities
if its dynamics are more appropriate. This effect increases
with the presence of measurement noise (which is high in
our case), because having more parameters to identify in-
creases the risk of fitting the noise. To summarize, a model
with more appropriate dynamics, but less parameters will
have potentially worse data fits, but better model predic-
tions than a model with a high number of parameters, but
less appropriate dynamics. The variability on parameter
identifications is similar for all models as shown in Figure
6 and shows few significant outliers.

4.1.2. Correlation analysis

In this subsection, we experimentally verify the rela-
tion between the therapy parameters provided in the UVa
simulator and those identified using the models by analyz-
ing their correlation. D = 4 and αd = 1 for all d as in
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Figure 6: Boxplot of the MAD and R2 of the data fit of every patient
(n = 10). Comparison between different prediction models on UVa
simulator data.

Correction factor Ins-to-carb ratio Meal sensitivity
MM -0.20 (0.58) -0.02 (0.95)
LMM 0.14 (0.70) 0.98 (2.6·10−77) 0.11 (0.77)
TPM 0.91 (0.0002) 0.99 (1.6·10−8) 0.71 (0.2)

Table 2: Different correlation factors and their relative p values (in
brackets) between therapy parameters provided in the UVa simulator
and identified parameters on UVa simulator data (n=10).

4.1.1. It is not clear how the therapy parameters provided
in the UVa simulator were determined, but simulations
show that they are accurate.

To calculate the correlation factor, the correlation be-
tween the therapy parameter values provided in the UVa
simulator and the identified parameter values are used. In
other words, we are comparing MS to Kg and CF to Kx.

The results are summarized in Table 2 and illustrated
in Figure 7. It can be observed that for the LMM and the
MM, there is one outlier patient that corresponds to Adult
9 of the UVa standard database. This subject was previ-
ously identified as an abnormal subject [36]. The structure
of these two models does not allow to identify this subject.
In fact some bounds that are set on the parameters in the
identification are attained and show that the computed
parameter values are unrealistic. This outlier heavily in-
fluences the comparison of correlation factors given in table
2. For this reason, the correlation analysis without Adult
9 is shown in table 3.

When not considering Adult 9, the identified parame-
ters of all models (except Kg of the MM) are correlated
(p < 0.05) to their respective values provided with the

Correction factor Ins-to-carb ratio Meal sensitivity
MM 0.77(0.014) 0.62 (0.075)
LMM 0.86 (0.0028) 0.99 (9.76·10−7) 0.69 (0.038)
TPM 0.90 (0.00078) 0.99 (1.01·10−7) 0.74 (0.023)

Table 3: Different correlation factors and their relative p values (in
brackets) between therapy parameters provided in the UVa simulator
and identified parameters on UVa simulator data without Adult 9.

UVa simulator. However, the correlation factors of the
TPM are much higher than those of the other two models,
indicating that the TPM is capable of reliably identifying
therapy parameters. These are excellent results for the
TPM, considering that no specific insulin sensitivity tests
could be included in the identification. It should be noted
that TPM parameters for Adult 9 were correctly identified.
The correlation factors for the LMM are higher than those
of the MM, indicating that its structure is more appropri-
ate. Also, the insulin-to-carbohydrates ratio is accurately
identified by the LMM, which indicates that, as discussed
in 3.4, the LMM is not capable to reliably identify Kg and
Kx in the absence of insulin sensitivity tests.

Removing Adult 9 from the data fit analysis (4.1.1)
does not significantly change the results, since its data fits
were a little below average for all models, but not outliers.

4.1.3. BG predictions

In this section, we compare prediction capabilities of
the TPM to those of the MM and the LMM.

To obtain reliable results, the data used for identifica-
tion (training data) should not be used for validation (val-
idation data). In this study, we perform cross-validation:
in the case of UVa simulator data, model parameters are
identified on 3 data sets and validated on the 4th, for all
possible permutations of the data sets. Thus, we obtain
4 parameters sets with the corresponding predictions for
every subject, which total up to 40 different parameter
sets.

Given a prediction horizon of h minutes, model predic-
tions are done as follows:

• A validation data set with corresponding model pa-
rameters (identified on training data) for a given pa-
tient and day is chosen.

• For every available BG measurement we start to sim-
ulate the model h minutes earlier. The initial BG
values are set to the measured value preceding the
h-minute simulation (this is different to the identifi-
cation because future values are assumed unknown).
All other states are initialized using simulations with
model inputs dating back several hours before the
beginning of the simulation.

• The BG value after the h-minute simulation is the
predicted BG and coincides with an experimental
measurement point.
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Figure 7: Comparison of physician-set therapy parameters and identified model parameters to illustrate correlation results on UVa simulator
data(n=10).

• The evaluation metrics are evaluated on all predic-
tion points.

• Finally, the results are averaged over all parameters
sets for comparison purposes.

For comparison, we also show the results of a Zero Or-
der Hold (ZOH) model, which is often used as a reference.
It consists in setting the predicted BG value to the initial
BG value. In other words, we consider BG concentrations
to stay constant over the prediction horizon.

We do predictions with horizons reaching from h = 15
minutes to h = 165 minutes with 15 minute increments.
The prediction results of all models are compared in Figure
8. We compare (i) the MAD, which measures the predic-
tion fit quality, and (ii) the percentage of predictions in
Clarke EGA zone A, which quantifies patient safety. In

these graphs, for each prediction horizon, the averaged
value over all possible combinations and all patients is
given, as well as the corresponding standard deviation.

For small prediction horizons up to 60 minutes, the
TPM gives better MAD values than all other models. For
longer prediction horizons, the MM is the most effective,
followed by the LMM and the TPM.

The percentage in zone A of the Clarke EGA shows
similar results. This is caused by the steady-state behav-
ior of the MM that is closer to that of the UVa simulator
model (which always converges to a value independently of
the inputs) than the TPM. All model predictions, except
for the ZOH, are within zones A and B of the EGA. Over-
all, the difference between the different models is small and
not statistically significant.
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Figure 8: MAD (top) and % in EGA zone A (bottom) of the averaged model predictions (n=40) for the different prediction models and
prediction horizons h on UVa simulator data. Mean values are given on the left, standard deviations on the right.

If Adult 9 is disregarded, only small changes are ob-
served in the results.

It can be concluded that for predicting BG on UVa sim-
ulator data, the TPM is an excellent choice because, de-
spite having less parameters, worse data fits, and a model
structure that is not fully compatible with the UVa sim-
ulator model, it is superior or comparable to the other
models in terms of prediction performance, model identi-
fiability and therapy parameter correlation.

4.2. Clinical data

4.2.1. Data fit

On the clinical study data the data fits are computed in
the same way as described in 4.1.1, with a few exceptions:
(i) the model parameters are identified with D = 7 (i.e.
the full data set is used). (ii) As discussed in section 3.4,
to be able to identify Kx, the sensitivity tests described
in section 3.2 were performed. However, 2 sensitivity test
days out of 7 were insufficient. For this reason, the weight
of the insulin sensitivity test days was increased by 5 - the
value that showed the best results. Thus, the objective
function defined in Equation (26) used α4 = α5 = 5 and
αd = 1 otherwise. Ideally, more sensitivity tests should be
performed, so that they outweigh the meal tests.

Examples of data fits are given in Figure 9, while Table
4 compares the performances of the TPM, the LMM, and
the MM in terms of the MAD and R2 indicators.

TPM LMM MM
MAD in mg/dl 12.89 10.56 12.09

R2 in % 72.42 81.16 76.15

Table 4: MAD and R2 indicators (averaged over all patients) for the
three investigated models on clinical data.

The LMM shows the best fitting capabilities. Hence,
the structure of the LMM is more appropriate than the
MM structure, as both have 6 parameters to identify. The
performances of the TPM and the MM are comparable,
with a slight advantage for the MM. Figure 10 depicts the
variability of data fits, that is the lowest for the LMM and
increases for the MM and the TPM. A higher variabil-
ity is due to a higher number of patients that were more
difficult to fit. However, it will be seen in sections 4.2.2
and 4.2.3 that this is not detrimental to neither parameter
identification nor model prediction, the reason being that
some patients have intrinsically higher variability in their
BG concentrations. The lower variability for the LMM
and MM can be attributed to model mismatch and noise
fitting, rather than to model structures.

For 4 patients out of 10, the values of SG and Uendo
collapsed to 0, with the consequence that the LMM be-
comes identical to the TPM and that the corresponding
model fits are very close.
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Figure 9: Example of data fits for different prediction models on
clinical data.

Correction factor Ins-to-carb ratio Meal sensitivity
MM 0.16 (0.67) 0.57 (0.09)
LMM 0.47 (0.17) 0.78 (0.0077) 0.52 (0.13)
TPM 0.89 (0.00055) 0.89 (0.00055) 0.85 (0.002)

Table 5: Different correlation factors and their relative p values (in
brackets) between physician-set and identified parameters on clinical
data.

4.2.2. Correlation analysis

The correlation analysis on clinical data is done in the
same way as for UVa simulator data in section 4.1.2, with
the exception that physician-set therapy parameter values
are used instead of those provided in the UVa simulator.
Similarly to section 4.2.1, the identification of the TPM
parameters is performed with the full set of data, i.e. D =
7, and the same α.

The results are summarized in Table 5 and illustrated
in Figure 11. The parameters of the MM are not correlated
with the physician-set parameters and the correlation of
the correction factor is very low, indicating a dangerously
unreliable insulin action. Also, the identified values of Kx

have some outliers with very high values (compared to the
corresponding physician-set counterparts), which can be
due to high values of Uendo. The meal sensitivity on the
other hand has a higher correlation factor, although the
results from Figure 11 show that the Kg parameter has
low sensitivity. High Kg values should lead to high Kx

values (cf. 3.4), but this is not the case, probably due to
high values of SG. The overestimation of the meal effect
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Figure 10: Boxplot of the MAD and R2 of the data fit of every
patient (n = 10). Comparison between different prediction models
on clinical data.

is to be avoided as it could lead to the computation of
potentially massive insulin doses.

Similar results were found for the identification of Kg

with the LMM. Though the correlation of Kx and the cor-
rection factor are improved by the LMM structure, this
improvement is not significant.

On the other hand, with the TPM, all model parame-
ters are significantly correlated with the therapy parame-
ters. In some cases however, the modeled insulin sensitiv-
ity seems to underestimate the value set by the physician.
At this point it is hard to know whether the real value is
overestimated by the physician (for safety purposes), or
underestimated by the model, or both. The TPM also
slightly overestimates the insulin-to-carbohydrates ratio
set by the physician. If the TPM would have been used
for control, this would have resulted in higher insulin injec-
tions. In the context of this study this would not have been
detrimental as insulin boluses were generally too small dur-
ing the standard therapy experiments.

We can conclude that with the TPM, parameters are
more reliably and safely identified, compared to the LMM
and MM. This is a clear hint that the TPM model struc-
ture is more appropriate for BG predictions. Conversely,
this nice feature of the TPM model could make it a valu-
able tool for assisting physicians in determining the ther-
apy parameters.

4.2.3. BG predictions

The BG prediction analysis follows the same principle
as described in section 4.1.3, but again with α as described
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Figure 11: Comparison of physician-set therapy parameters and identified model parameters to illustrate correlation results on clinical data.

in 4.2.1. Also this time the cross-validation leads to up
to 7 parameter sets per patient and gives a total of 58
parameter sets.

Two examples of BG predictions with h = 90 are plot-
ted in Figure 12, with on the left-hand side a relatively
good prediction and on the right-hand side a less success-
ful one.

Initial BG concentration is noisy because it depends
on real measurements. This directly influences BG pre-
dictions and can lead in some cases to wrong predictions.
This does not preclude the representativity of the compar-
ison as the same initialization method is applied to every
tested model. Of course, a more elaborate initial state
estimation (e.g. using a Kalman filter) may lead to more
accurate predictions, but is beyond the scope of this paper.

As can be seen in Figure 13, the mean MAD for the
TPM and LMM are almost equal, the latter only having

a slightly lower standard deviation. The MM is less ef-
fective, especially with small prediction horizons, where
predictions are worse than with the ZOH. The mean per-
centage of predictions in EGA zone A leads to a similar
conclusion - this time the TPM being marginally better
and having smaller standard deviations than the LMM.

On average, 97% of predictions for TPM and LMM are
in zones A and B for the EGA. This means that nearly no
wrong treatment decisions would be taken, even for long
prediction horizons. The MM goes down to 94%, whereas
the ZOH goes to 88%.

Predictions do not significantly differ between the three
models - a difference occurs mainly if, during identifica-
tion, a model’s global minimum does not coincide with
the actual patient dynamics. This happens mostly with
the MM, which is due to the less favorable model dynam-
ics. These outliers change the average and are the main
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Figure 13: MAD (top) and % in EGA zone A (bottom) of the averaged model predictions (n=58) for the different prediction models on
clinical data. Mean values are given on the left, standard deviations on the right.

reason for the differences between the different models in
Figure 13.

Overall the TPM always shows superior or compara-
ble prediction capabilities. This is particularly interesting
considering that it only requires 4 parameters to identify
and it compensates for its slightly inferior fitting capabil-
ities.

As a concluding remark, it should be noted that the dif-
ferent days of the clinical study were very similar, which
most likely makes predicting BG easier. With more varied
scenarios, some of the tested models could prove inappro-
priate. It would therefore be interesting to test the model
in a more diverse setting, similar to the previous analysis
on UVa simulator data, however this is not possible with
the currently available data.

4.3. Comparison of results of the UVa simulator data and
clinical data

Results found with the UVa simulator data and clinical
data are consistent. The TPM is the best choice in both
cases because of improved BG predictions and parameter
correlation, while having less parameters. One main differ-
ence is the relative performance of the LMM and the MM:
LMM is better on clinical data, while the MM is better on
UVa simulator data. This is probably due to the fact that
the MM dynamics are closer to the UVa simulator and its
non-linearity, while the LMM dynamics are closer to real
human glucose dynamics.

5. Conclusion

The TPM measures up to the expectations of being
a reliable but simple prediction model identifiable on BG
measurements only. Stripping the model to a bare mini-
mum allows reliable parameter identification, even in the
presence of the characteristic high noise levels in BG mea-
surements. We linked the model parameters directly to
physician-set therapy parameters and showed their strong
correlation. This adds another safety layer to the resulting
model identification and the model may easily be person-
alized. Additionally, the TPM may be used to support
physicians in determ

As expected, model fits were slightly worse than with
other models - a result of the lower number of identified
parameters. However, model predictions were on par or
slightly better than the alternatives, even though the im-
provement is not statistically significant. A higher number
of parameters is therefore not necessary.

Predictions are used to calculate insulin doses and as
such are critical for patient safety. If carefully identified,
the TPM leads to reliable insulin sensitivity estimation,
which is rarely the case with other models identified under
the same conditions. As such, the TPM may be used to
assist physicians in determining therapy parameters. Ad-
ditionally, the TPM has the property of only predicting an
increase of BG concentration in case of a meal. The pos-
sibility of predicting an erroneous increase in BG is thus

14



11:00 12:00 13:00 14:00 15:00 16:00
Time of the day

B
G

 c
on

ce
nt

ra
tio

n 
(m

g/
dl

)
 90min prediction on optimized infusion therapy

 

 

TPM
LMM
MM
measurements

11:00 12:00 13:00 14:00 15:00
Time of the day

B
G

 c
on

ce
nt

ra
tio

n 
(m

g/
dl

)

90min prediction on optimized infusion therapy

 

 

TPM
LMM
MM
measurements

Figure 12: Example of predictions for different prediction models on
clinical data.

MM LMM TPM

Simple X X X
Acceptable data fits X X X
Identifiable × X X
Linear × X X
Acceptable predictions × X X
Correlation with therapy parameters × × X
Number of parameters to identify 6 6 4

Table 6: Comparative table of model properties.

eliminated and hypoglycemia might be avoided in certain
cases, especially when used in closed-loop controllers. In-
sulin infusions based on the TPM are therefore safer than
with conventional models.

The properties of the three prediction models are sum-
marized and compared in Table 6.

The TPM has been tailor-made for the use in state esti-
mation, predictive control, and recommendation methods,
e.g. Model Predictive Control (MPC), optimal control, or
pump suspension algorithms. As such it can be used under
different scenarios:

• For state estimation, i.e. for determining the BG
concentrations in the present:

– In the absence of CGM measurements, the TPM
can be used to estimate a patient’s current BG
concentrations.

– If CGM measurements are available, it can be
used to filter the latter (using a Kalman filter,
e.g.), to detect sensor errors, or to detect system
disturbances such as unannounced meals.

– Independently of CGM measurements, it can
be used to recommend additional SMBG mea-
surements.

• For control and recommendation, i.e. for determin-
ing future BG concentrations (this cannot be done
by a CGM device), the TPM can be used to:

– Compute optimal insulin infusions for optimal
control (open-loop control) or MPC (closed-loop
control).

– Improve controllers using a Smith predictor.

– Automatically suspend or alter insulin pump in-
fusions to prevent hypoglycemia.

– Warn patients of impending hypo- or hyper-
glycemia and recommend counteractive mea-
sures.

Future work will address the following points:

• The evolution of BG is a process with many sources
of uncertainty that are not modeled in the TPM (and
neither in any other common models). It is therefore
almost impossible to have an accurate prediction of
BG, even with the best possible model and measure-
ment devices. Future work will focus on estimating
the probabilistic distribution of BG predictions, be-
cause, considering the encountered noise levels, sig-
nificantly more accurate predictions or simpler mod-
els seem unlikely. This would associate a confidence
interval to any prediction, which is of high value.
These results could be applied in the context of ro-
bust control such as proposed by , e.g., Kovács et
al., Chee et al., or Palumbo et al. [37, 38, 39].

• The current TPM does not take physical activity into
account. Adding two additional states and parame-
ters, similarly to the insulin action sub-model, would
probably lead to an acceptable and more detailed
model. This will be checked on clinical data in fu-
ture work.

• The available clinical data used for validation was
very similar from one day to the other. The TPM
should be tested on more random test days to show
its full potential.

• The TPM parameters are correlated to physician-
set therapy parameters. To improve identification
results, especially for patients with few or noisy mea-
surements, the physician set parameters may be used
as prior knowledge. Many methods applying Bayesian
principles are available among which population-based
methods [13, 24, 40] that may perform well and that
will be investigated in the near future.
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• The TPM should be tested on different meals and
the meal sub-model should be adapted if necessary.
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