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A new self-learning algorithm for accelerated dynamics, reconnais-
sance metadynamics, is proposed that is able to work with a very
large number of collective coordinates. Acceleration of the dy-
namics is achieved by constructing a bias potential in terms of a
patchwork of one-dimensional, locally valid collective coordinates.
These collective coordinates are obtained from trajectory analyses
so that they adapt to any new features encountered during the
simulation. We show how this methodology can be used to en-
hance sampling in real chemical systems citing examples both from
the physics of clusters and from the biological sciences.
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Many chemical systems, notably those in condensed matter
and in biology, are characterized by the presence of multi-

ple low energy states that are separated by large barriers. The
presence of these barriers prevents exploration of all of config-
uration space during the relatively short time scales accessible
in molecular dynamics (MD) simulations. Typically this means
that only those configurations in a small, locally ergodic region
in the vicinity of the input structure are visited.

A large number of methods have been put forward to over-
come this difficulty, many of which either use some form of
enhanced sampling (1–6) or focus on the transition from one
local minimum to another (7–10). Other methods recognize that
a small number of degrees of freedom (collective variables) ac-
curately describe the interesting transitions and so either raise the
temperature of these degrees of freedom (11–13) or introduce a
bias to enhance the sampling along them (14–22). The major dif-
ferences between the various approaches in this last class is the
way in which the bias is generated, a particularly useful technique
being to use a bias that is dependent on the previously visited
trajectory. This is the basis of the metadynamics method (23, 24)
that has been introduced by our group and applied to a large vari-
ety of chemical problems (25).

For many chemical systems the interesting, reactive processes
take place in a relatively low-dimensional space (26, 27). How-
ever, it is often not immediately obvious how to identify a set
of collective variables (CVs) that span this “reactive” subspace.
Furthermore, in methods such as metadynamics, the presence
of barriers in the transverse degrees of freedom leads to incom-
plete sampling. The obvious solution therefore is to use very large
numbers of collective coordinates. However, although this is the-
oretically possible with methods such as metadynamics, it is im-
practical because the volume of bias that one must add to the free
energy surface, and hence the length of the simulation, increases
exponentially with dimensionality. One suggestion for resolving
this issue is to run multiple short, 1D metadynamics simulations
in parallel with different collective coordinates and to allow swaps
between the different realizations based on a Monte Carlo criter-
ion (28). Here we propose an alternative solution based on the
realization that, if the free energy surface (FES) is to be flattened,
the majority of the bias will have to be added at or near the mini-
ma in the surface. Identifying the locations of these minima is
straightforward as, during a dynamical trajectory, the system
should spend the majority of its time trapped in the vicinity of

one or more of them (29). Therefore by using a form of “smart”
bias that targets these low free energy regions specifically, we can
force the system away from them and into unexplored areas of
configuration space. We call the self-learning algorithm that we
have developed based on these ideas Reconnaissance Metady-
namics and have implemented it in the plugin for molecular
dynamics PLUMED (24). In what follows we demonstrate this
algorithm on two different systems—a cluster of seven Lennard–
Jones atoms and a short protein.

Background
Before introducing our method, a brief survey of established tech-
niques for dealing with complex energy surfaces in terms of very
large numbers of collective coordinates is in order. Zhu et al. (30,
31) have introduced a method that uses a variable transformation
to reduce barriers and thereby increase sampling, which works
with a large number of collective coordinates. Problematically
though this method does not work if there are hydrogen bonds
present. In contrast, methods that work by thermostating the
CVs at a higher temperature (11–13) suffer no such problems and
have been used successfully with large numbers of CVs (32).
However, in these methods, unlike metadynamics, there is noth-
ing that prevents the system from revisiting configurations, which
could prove problematic for examinations of glassy landscapes
with many local minima of equal likelihood.

For many free energy methods explicitly including a large num-
ber of collective coordinates is not feasible. However, one can
use collective coordinates that describe a collective motion that
involves many degrees of freedom. For example, one can use the
principal components of the covariance matrix of a large set of
collective coordinates, the values of which have been calculated
over a short MD trajectory (33, 34). Alternatively, one can take
nonlinear combinations by defining a path in the high-dimension-
ality CV space (35). The distance along and the distance from this
path span a low-dimensional, nonlinear space, and metadynamics
simulations using these two CVs have been shown to work well.
However, a great deal of insight is required in choosing an initial
path from which the CVs are generated as the simulation can pro-
vide meaningful insight only for the region of configuration space
in the immediate vicinity of this path.

Entropy plays an important role in free energy surfaces as it
can wash out potential energy minima and make it such that finite
temperature equilibrium states do not correspond to minima in
the potential energy surface. Nevertheless, for systems with deep
minima in the potential energy surface, one can use algorithms
that locate all the minima on the 0-K (potential) energy surface
and assume that the properties at every point on this surface are
the same as those of the nearest local minima safe in the knowl-
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edge that the entropic effects are small. These algorithms allow
one to divide up configuration space and map every point to its
appropriate local minimum using a minimization algorithm (36).
Furthermore, the slow modes in the vicinity of each basin provide
good local collective coordinates as in the vicinity of basins the
system is very nearly harmonic. From a patchwork of such de-
scriptors one could conceive of ways to obtain globally-non-linear
CVs. Recently, Kushima et al. (37) have developed a self-learn-
ing, metadynamics-based algorithm based on these ideas that
works by minimizing the energy and adding bias functions at the
position of the minimum found so that subsequent minimizations
will identify new minima.

Ideas described above for the exploration of potential energy
surfaces cannot be straightforwardly transferred to the study of
free energy surface because of the difficulties associated with
the calculation of derivatives at finite temperature. Nonetheless,
Gaussian mixture umbrella sampling (GAMUS) (29) is a method
that has some similarities to the 0-K method developed by Kush-
ima et al. In GAMUS the kinetic traps that are preventing free
diffusion are located by fitting the probability distribution of
visited configurations with a Gaussian mixture (GM) model. The
resulting set of bespoke Gaussians are then used to update an
adaptive bias that encourages the system to visit unexplored
regions of configuration space. This adaptive approach acceler-
ates the filling of basins and thus provides a considerable speed
up over conventional metadynamics when one is using three or
four collective variables. Nevertheless, the filling time will still
increase exponentially with the number of CVs.

Reconnaissance Metadynamics Algorithm
Reconnaissance metadynamics combines a number of ideas in
order to be effective with very large numbers of CVs. The bias
potential is constructed in terms of a patchwork of basins each
of which corresponds to a low free energy region in the under-
lying FES. These features/basins are recognized dynamically by
periodically analyzing the trajectory with a sophisticated cluster-
ing strategy. The region of configuration space in the vicinity of
each basin is then described using a one-dimensional CV that is
tuned using information collected during the clustering. Conse-
quentially, even when the overall number of collective coordinates
(d) is large, depressions are compensated for rapidly because the
bias is added in a locally valid, low-dimensional space.

Cluster analyses are performed at regular intervals using a set
of stored configurations for the CVs that are accumulated from
the trajectory. During this analysis it is essential that some form of
dimensionality reduction be performed as otherwise the fitting
will be intractable. In addition, one must recognize that, because
this is a dynamical trajectory, the system may well have hopped
between different basins on the free energy surface (see Fig. 1).
Therefore, because we would ideally like to treat each basin
separately, principal component analysis (PCA) is not an option.
Furthermore, Gaussian mixture expectation maximization algo-
rithms (29), although able to separate the basins, will become
unstable when the number of collective coordinates is large.
Thankfully, however, combinations of these two algorithms exist
(38–40) that allow us to cluster the data while simultaneously
reducing the dimensionality.

This clustering strategy provides us with a set of Gaussian cen-
ters (μ) and covariance matrices (C) for the various basins in the
free energy surface. Some of these will have very low weights or
will be very similar to previously encountered basins and can thus
be safely discarded. Those remaining provide useful information
on the local topology of the FES but cannot be used to predict
the actual depth of the basin or its shape away from the center.
Consequentially, a flexible biassing strategy must be used in the
vicinity of the minimum as addition of a single Gaussian will not
necessarily compensate for the depression in free energy. This
failure to compensate basins fully can lead to the formation of

spurious low energy features in the region surrounding the basin
center (see Fig. 1C), which is a problem that becomes more
severe as the dimensionality is increased. To resolve these issues
we assume that the basin is spherically symmetric in the metric
induced by C and, in the spirit of metadynamics, construct an
adaptive bias composed of small Gaussian hills of height wi
and width Δr, along a single, radial collective coordinate rðsÞ
(see Eq. 1).

V iðsÞ ¼ wie
−½rðsÞ−ri �2

2Δr2 ; [1]

rðsÞ2 ¼ ðs − μÞTC−1ðs − μÞ: [2]

In the above s is a vector that denotes the position in the full,
d-dimensional CV space. The form of Eq. 1 means that the bias
associated with each hill acts in a hyper-ellipsoidal-crust-shaped
region in the full, d-dimensional CV space. Each of these crusts
has a shape much like a layer in an onion, and so the integral of
the bias added increases with rðsÞ. Consequentially, the filling
time for each basin no longer depends exponentially on the num-
ber of collective coordinates. Furthermore, the hills have a shape
that is consistent with the underlying anisotropy of the free energy
surface because of the use of the covariance matrix in Eq. 2.

Obviously the distance from a basin center is only a good col-
lective coordinate when we are close to that center so each basin
must have a size S. This size assigns the region of configurational
space in which it is reasonable to add hills that will force this
system away from a particular basin. Setting an initial value
for this size is straightforward as we know from our fitting that
the basin’s shape is well described by a multivariate Gaussian.
Therefore, we choose an initial size equal to S0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ 3
because, as shown in SI Text, when the angular dependency of
a d-dimensional Gaussian is integrated out the resulting distribu-
tion of r is approximately equal to a 1D Gaussian with standard
deviation

ffiffiffi
2

p
centered at

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
.

If the size of basins is fixed, then the problems described
in Fig. 1 are encountered once more. Hence, in reconnaissance
metadynamics the basin’s size is allowed to expand during the
course of the simulation so as to ensure that spurious minima,
which would otherwise appear at the edge of basins, are dealt
with automatically. Periodically we check whether or not the sys-
tem is inside the hypercrust at a basin’s rim [S < rðsÞ < Sþ Δr]
and also that it is not within the sphere of influence of any other
basin. If these conditions are satisfied, we then decide whether or

A B

DC

Fig. 1. Schematic representations of why it is necessary to use more than
one PCA analyzer and why it is necessary to expand basins. The trajectory
in A can be fit using a single PCA analyzer. By contrast the trajectory in B
must be fit with a pair of analyzers as the energetic barrier is low enough
that there will be hopping events between the two subbasins. C shows
how adding a single Gaussian to the center of the basin in A can lead to
the creation of spurious basins in later cluster analyses. D demonstrates
how this problem becomes more severe as the dimensionality is increased
and also that it will occur if the basins are given a fixed size.
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not to expand using a probabilistic criterion, which ensures that it
becomes more difficult to expand basins as the simulation pro-
gresses. Based on the loose analogy with free particle diffusion
outlined in SI Text, this probability for expansion is given by
P ¼ minð1; DΔt

2ΔrSÞ, where S is the current size of the basin, Δt is the
time between our checks on whether or not to expand, and D is a
user-defined parameter.

The algorithm is summarized in the flow chart in Fig. 2.
Further details on the components of the algorithm can be found
in Materials and Methods and in SI Text.

Results
2D Surface. To illustrate the operation of the algorithm we first
show how it can be used to accelerate the (Langevin) dynamics
on the model, 2D potential energy surface illustrated in Fig. 3.

At low temperatures a particle rolling about on the surface
shown in Fig. 3 will remain trapped in one of the deep basins.
This is precisely what is observed during the first part of the
simulation, when no metadynamics is performed, as the first ap-
plication of our clustering algorithm demonstrates. On addition
of bias, the system quickly escapes this first basin and falls into
other basins, the locations of which are identified during subse-
quent applications of our unsupervised learning protocol. This
process continues throughout the simulation so, once basins
are identified, the history-dependent bias compensates for them
quickly and hence the system rapidly explores the entirety of the
energy surface.

Fig. 3 shows that the reconnaissance metadynamics algorithm,
when properly applied, finds only basins that correspond to the
true features in the free energy surface. In addition Fig. 3D shows
how effective the adaptive bias is in dealing with regions where
small basins are encompassed in larger depressions. It clearly
shows that initially small hills are used to deal with the subbasins,
whereas later, much larger hills are used to compensate for the
superbasin.

Lennard–Jones 7. Small clusters of rare-gas atoms have a remark-
ably complex behavior despite their rather limited number of
degrees of freedom. A particularly well-studied example is the
two-dimensional, seven-atom, Lennard–Jones cluster (41, 42)
for which four minima and 19 saddle points in the potential en-
ergy surface have been identified (43) (see Fig. 4). At moderate
temperatures (kBT ¼ 0.1ϵ) this system spends the majority of its
time oscillating around the minimum energy structure, in which
one of the atoms is surrounded symmetrically by the six other
atoms. Infrequently, however, the system will also undergo iso-
merizations in which the central atom of the hexagon is exchanged
with one of the atoms on the surface (43).

To test the reconnaissance metadynamics algorithm we exam-
ined this system using the coordination numbers of all the atoms
(seven collective coordinates). In doing this we neglect the inter-
change symmetry to see if we can reproduce this symmetry in the

positions of the various basins we find. Fig. 4 gives the results of
this calculation and denotes the position of each of the basins
found by a circle whose area reflects the final bias at the basin
center. The three lowest lying minima for this cluster have one
atom that has a much higher coordination number than the
others, and so the basins identified along the trajectory have been
grouped, based on the index of the atom with the highest coor-
dination number, onto seven slices. On each of these planes the
positions and sizes of the basins are consistent, which suggests
that the algorithm finds the correct symmetry and explores con-
figuration space correctly.

In reconnaissance metadynamics there is no straightforward
connection between the bias and the free energy because each
CV is valid only in a local region, and hence the overall bias is
not a function of a global order parameter. Nonetheless, the bias
greatly enhances the exploration of phase space and so free en-
ergies could be obtained using an umbrella sampling approach.
However, even without this additional step, a reconnaissance
metadynamics trajectory gives one a feel for the lie of the land,
which can be used to obtain chemical insight. For example, the
basin centers provide a set of landmark points that can be used to
validate a low dimensionality description of the system (27). For
this simple case we did this by calculating the value at the basin
centers of many different candidate coordinates. We discovered
that an optimal, in-plane separation of the various basins is at-
tained when we use the second and third moments (μ22 ¼
1
N∑N

i¼1ðci − hciÞ2 and μ33 ¼ 1
N∑N

i¼1ðci − hciÞ3, respectively) of the
distribution of coordination numbers. These two CVs clearly pro-
ject out permutation symmetry, and so we also performed a con-
ventional well-tempered metadynamics simulation. Fig. 4 shows
the free energy surface obtained in its eighth slice. A comparison
of this surface with the results from the reconnaissance metady-
namics shows how the basins found cluster around the minima in
this FES.Fig. 2. Flowchart for the reconnaissance metadynamics algorithm.

A B

C D

Fig. 3. Contour plots showing the potential energyþ the current bias at
selected points along a reconnaissance metadynamics trajectory for a particle
diffusing about a 2D potential energy surface. The black dots indicate the
positions of the snapshots accumulated from the trajectory, whereas the
red ellipses indicate the basins found using the clustering algorithm. Blue
ellipses are those basins, found during previous analyses, to which hills
are being added. The expansion of these blue basins as the bias grows is
clearly seen in this figure.
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Polyalanine 12. The protein folding problem is commonly tackled
using computer simulation, and there exist model systems for
which the entirety of the potential energy landscape has been
mapped out (36) that represent a superb test of any methodology.
For example, polyalanine 12, modeled with a distance dependent
dielectric (ϵij ¼ rij in angstroms) that mimics some of the solvent
effects, has been extensively studied (44). This protein has a fun-
nel-shaped, energy landscape with an alpha-helical, global mini-
ma. We found that during a 1-μs, conventional MD simulation
started from a random configuration, the protein did not fold
(see SI Text). Hence, examining whether or not the protein will
fold during a reconnaissance metadynamics simulation will pro-
vide a third test of our methodology.

For this reconnaissance metadynamics calculation we used the
24 backbone dihedral angles as the collective coordinates as these
angles provide an excellent description of the protein structure.
These variables are periodic, which had to be accounted for in the
method by replacing the multivariate Gaussians with multivariate
von Mises distributions (45). This distribution, if sufficiently con-
centrated about the mean, is equivalent to a Gaussian in which
the difference between any point and the mean is shifted to the
minimum image. Consequentially, we can continue to use the
same algorithm for trajectory analysis as long as we take into ac-
count the periodicity when we calculate differences and averages.
In addition, we can define a quantity (see Eq. 3) that is equivalent
to the distance from the center of the basin (Eq. 2) but that takes
into account the periodicity of the CVs (Pi).

rðsÞ2 ¼ 2∑
d

i¼1

C−1
ii

�
1 − cos

�
2π½si − μi�

Pi

��

þ∑
i≠j

C−1
ij sin

�
2π½si − μi�

Pi

�
sin

�
2π½sj − μj�

Pj

�
: [3]

Fig. 5 provides a representation of a portion of a typical recon-
naissance metadynamics trajectory of the protein. Fig. 5 shows
the values of all the backbone torsional angles and clearly demon-
strates that a large volume of configurational space is explored
during this relatively short simulation. Furthermore, unlike in
conventional MD, after approximately 22 ns the protein folds into

the global-minimum, alpha-helix configuration. To further de-
monstrate that the reconnaissance metadynamics is ensuring that
large portions of configurational space, which would otherwise
not be visited, are being explored, we calculated the inherent
structures by minimizing the energy every 20 ps. The energies
of the minimized structures are shown in the uppermost panel
of Fig. 5 and demonstrate that the potential energy surface is very
rough and that the alpha helix is considerably lower in energy
than the other energy minima encountered.

Conclusions
We have proposed an accelerated dynamics scheme, reconnais-
sance metadynamics, that uses a self-learning algorithm to con-
struct a bias that accelerates the exploration of configuration
space. This algorithm works by automatically identifying low free
energy features and deploying a bias that efficiently and rapidly
compensates for them. The great advantage of this algorithm is
that there is no limit on the number of CVs on which the bias acts.
This is possible only because we collapse all these CVs into a single
collective coordinate that is valid only locally and patch together a
number of these local descriptors in order to reflect the fact that
the important degrees of freedom are not uniform throughout
configuration space. As shown in Fig. 3 this approach provides
us with a simple, compact, hierarchical description of the free
energy surface, which could be used to construct bias potentials
for umbrella sampling.

As shown for the two chemical systems on which we have de-
monstrated the algorithm, our ability to work with large numbers
of collective coordinates means that one can employ generic
configurational data, such as torsional angles and coordination
numbers, as collective coordinates and thereby avoid all the usual
difficulties associated with choosing a small set of collective co-
ordinates. In fact, even when CVs, on which there are no large
barriers to motion, such as the torsional angles on the terminal
amino acid groups in ala12, are included, the algorithm will still
function. For both systems our method produces trajectories that
contain an extensive exploration of the low energy parts of
configurational space and hence provides a feel for the lie of the
land. Furthermore, even without a quantitative estimate of the
free energy, considerable insight can be obtained from the trajec-
tory. In the Lennard–Jones this allowed us to attain an effective

Fig. 4. The locations of the various basins found during a reconnaissance metadynamics simulation of the Lennard–Jones 7 cluster plotted as a function of the
second and third moments of the distribution of coordination numbers and the index of the atom with the highest coordination number. Also shown is a free
energy surface calculated using a well-tempered metadynamics simulation that employed the second and third moments of the distribution as collective
coordinates. Each basin is represented by a circle with an area that is proportional to the bias at its center. On the free energy surface contours are placed
at intervals of 0.1ϵ.
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two-dimensional description of the landscape. For more complex
systems, nonlinear embedding could be used to automate this
procedure.

Materials and Methods
Mixture of Probabilistic Principal Component Analyzers. Throughout this work
we use the annealing strategy outlined in ref. 40 and in SI Text to do cluster-
ing. This algorithm requires one to state at the outset the number of clusters
that are being used to fit the data and the number of annealing steps. For the
latter we initially set σ2, which is the quantity treated like the temperature
during the annealing, equal to the maximum eigenvalue of the covariance of
the data and lowered σ2 until it was less than 1% of its initial value. To estab-
lish the correct number of clusters we run multiple fits to the data using dif-
ferent numbers of clusters and select the fit that gives the largest value for
the Bayesian Information Criterion (BIC) (46), BIC ¼ 2 log½Lðx;θÞ� − np log½M�,
where Lðx;θÞ is the maximized likelihood for the model, np is the number of
parameters in the model, andM is the number of trajectory snapshots used in
the fitting.

Selecting Unique Basins. As already discussed, the GM algorithm provides us
with the locations of a number of basins. Some of these will have very low
weights in the fit and can therefore be safely ignored in the construction of
the bias. Others, however, will provide information about the basins found
during prior runs—in short, information that is redundant. Therefore, we
introduce a criterion for the selection of basins that requires that
f i ½1 −maxðξijÞ� > TOL, where TOL is some user-defined tolerance, f i is the
weight of the new basin in the fit, and ξij is the similarity between the
new basin i and the old basin j. To calculate ξij we use Matusita’s measure,
which can be calculated exactly for multivariate Gaussians (47). For an
expanded basin of size S its original covariance is multiplied by a factor of
S∕S0 when calculating this function so that its expanded volume is appropri-
ately taken into account.

Lennard–Jones. The parameters for the simulations of Lennard–Jones 7, in
Lennard–Jones units, are as follows: The temperature was set equal to kBT ¼

0.1ϵ using a Langevin thermostat, with a relaxation time of 0.1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∕mσ2

p
. The

equations of motion were integrated using the velocity verlet algorithmwith

a timestep of 0.01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∕mσ2

p
for 5 × 107 steps. During reconnaissance metady-

namics the CVs were stored every 100 steps, while cluster analysis was done
every 1 × 105 steps. Only basins with a weight greater than 0.3 were consid-
ered and to these attempts to add hills of height 0.5 kBT and a width of 1.5
were made every 1,000 steps. Basin expansion was attempted with the same
frequency with the parameter D set equal to 0.03. The coordination numbers

were computed using ci ¼ ∑i≠j1 − ð rij1.5Þ8½1 − ð rij1.5Þ16�−1, where rij is the distance

between atoms i and j.

Polyalanine 12. All simulations of polyalanine were run with a modified ver-
sion of gromacs-4.0.3 (48), the amber96 forcefield (49) and a distance depen-
dent dielectric. A timestep of 2 fs was used, all bonds were kept rigid using
the LINCS algorithm, and the van der Waals and electrostatic interactions
were calculated without any cutoff. The global thermostat of Bussi et al.
(50) was used to maintain the system at a temperature of 300 K. The initial
random configuration of the protein was generated by setting up the protein
in a linear geometry, minimizing it, and then running 1 ns of normal MD at
300 K in order to equilibrate. During reconnaissance metadynamics the CVs
were stored every 250 steps, whereas cluster analysis was done every 5 × 105

steps. Only basins with a weight greater than 0.2 were considered, and
attempts were made every 1,000 steps to add to these basins hills of height
0.4kBT and width 1.5. Basin expansion was attempted with the same
frequency with the parameter D set equal to 0.3. Minimizations to obtain
inherent structures were done by first annealing for 1.2 ns with a decay rate
of 0.996 ps−1 and subsequently performing a steepest descent minimization.
Guidelines as to how to select parameters for reconnaissance metadynamics
are provided in SI Text. For both this system and the Lennard–Jones cluster,
we obtained similar results with a variety of different parameters sets.
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Fig. 5. A representation of a 50-ns portion of the reconnaissance metadynamics trajectory for alanine 12 modeled with a distance dependent dielectric.
(Lower) The bars give the values of 40-ps running averages for each of the torsional angles in the protein (see key). The red (light) line shows a similar running
average for the bias potential. The system was annealed every 20 ps to examine the transitions between inherent structures and the energies obtained are
indicated by the blue (dark) line. A number of low-energy, representative structures found during the trajectory are also shown, and the box highlights the
portion of the trajectory when the protein has a configuration that is near the global-minimum, alpha-helix structure.
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