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Abstract

In this document we provide supplementary material for [1].
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III-A Additional Measurements for the Paléo Dataset . . . . .. . . . . . . . . . 6

III-B Additional Measurements for the EPFL Dataset . . . . . . .. . . . . . . . 7

III-B1 Users’ Arrival and Departure Times . . . . . . . . . . . . . . .7

III-B2 Population Size Estimation using Subset of the Information . . 7

IV Proof of the Theorems 9

IV-A Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IV-B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

References 11

November, 2015 DRAFT



2

I. POPULATION SIZE ESTIMATION MODEL

A. Poisson-Gamma Assumption of the Detection Patterns

In Section 4.2.1 of [1] we demonstrate that the Poisson-Gamma model fits well to the contact

patterns of individuals by agents. Here we show that the fit tothe detection patters is not good.

We first redefine the Poisson-Gamma model based on the detection patterns.

We denote byκij the number of times that individuali has beendetectedby agentj on

the festival grounds. We denote byκi =
∑M

j=1 κij the total number of times that individual

i has been detected on the festival grounds. Individuali is discovered (i.e., is among theS

discovered individuals) if and only ifκi > 0 (if he has been detected by at least one of the

agents). The assumptions of our population size estimationmodel based on the detection patters

are as follows.

• Poisson detections: The number of times agentj detects individuali on the festival grounds,

i.e.,κij , is Poisson distributed with mean equal toλit
j
ati,dti

, whereλi is called thedetection

rate of individual i.

• Independence: The random variableκij is independent fromκi
′
j
′ for i 6= i

′

, j 6= j
′

.

We assume that for individuali, λi is drawn from a Gamma distribution with unknown parameters

α andβ, independently from other individuals and from his arrivaland departure times. Parameter

λi represents how easily the individualputs himself in a detectable positionon the festival

grounds. We have

κij ∼ Poisson
(

λi · t
j
ati,dti

)

.

We now check the fit of the above model to the detection patterns. Given the values ofλi,

ati, anddti for individual i,

κi =
M
∑

j=1

κij ∼ Poisson(λi

M
∑

j=1

tjati,dti).

That isκi is also Poisson distributed givenλi, ati, anddti. Now consider the values ofκ1, κ2, . . . , κS

for theS discovered individuals; these values follow atruncatedPoisson distribution, because the

value ofκi for individual i must be non-zero in order for the individual to be observed. The solid

curve in Figure 1(a) shows the empirical distribution of theobserved number of detections for all

theS discovered individuals. As expected, number of detectionsof individuals is larger than their

number of contacts, which is shown in Figure 4(a) of [1]. The dashed curve in Figure 1(a) shows

the analytical distribution of the number of detections based on the truncated Poisson-Gamma
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fit to the measurements. The corresponding Q-Q plot is shown in Figure 1(b), which shows that

the fit of the Poisson-Gamma model to the measurements is not good, in particular they have

very different tail behaviors. Pearson’s chi-squared testfor the equality of the two distributions

gives a p-value of8.61 × 10−9, which indicates the rejection of the equality hypothesis of the

two distributions (i.e., the empirical histogram of the detections and the corresponding fitted

Poisson-Gamma distribution).
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Fig. 1. The goodness of fit of truncated Poisson-Gamma distribution to the measurements. (a) and (b) show, respectively,the

probability distribution function and the Q-Q plot with respect to the empirical distribution of detections.

B. Likelihood Function for the Population Size Estimation Model

In Section 4.3 of [1] we compute the likelihood function of our population size estimation

model by using a distributionf(at, dt) for individuals’ arrival and departure times. In the case

where in addition tof(at, dt), the discovered individuals’ actual arrival/departure times are also

known, the likelihood function can be simplified as follows:

L(N,α, β) =

(

N

S

)

(

Eat,dt

[(

β

β +
∑M

j=1 t
j
at,dt

)α])N−S

×
S
∏

i=1











Γ(α + ki)β
α

Γ(α)
·

∏M

j=1

(tj
at,dt

)
kij

kij !

(β +
∑M

j=1 t
j
at,dt)

α+ki











.

By removing the constant parts (e.g.,kij ! ) we get:

L(N,α, β) ∝

(

N

S

)

(

Eat,dt

[(

β

β +
∑M

j=1 t
j
at,dt

)α])N−S S
∏

i=1











Γ(α + ki)β
α

Γ(α)
(

β +
∑M

j=1 t
j
ati,dti

)α+ki











.
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C. Population Size Estimation by Using a Subset of the Information

In Section 5.3 of [1] we apply our population size estimator to a subset of the Paléo mea-

surements. In the first part, we consider the measurements obtained by a subset of sizem of the

agents. For each subset of sizem, we consider all the possible combinations of the agents and

estimate the population size for each combination ofm agents. The average percentage of the

discovered individuals (S/N × 100) and their90% confidence intervals for all the combinations

of sizem are shown in Figure 2(a) form = 5, 6, . . . , 10. In the second part, we consider the

measurements obtained by all agents during an observation window of lengthw smaller than the

festival duration. The observation window starting from the moment when the first agent arrives

at the festival (17h09 for agent5), until the moment when the last agent departs from the festival

(4h01 for agent1) is approximately11 hours. We partition this interval into slots10-minutes in

length. For an observation window of lengthw, we consider all the consecutive10-minute slots

with total lengthw, and we estimate the population size based on the measurements obtained

during these slots. The average percentage of the discovered individuals (S/N × 100) and their

90% confidence intervals are shown in Figure 2(a), forw = 4, 5, . . . , 11 hours.
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Fig. 2. Percentage of discovered individuals (S/N × 100) as a function of (a) the number of agents and (b) the observation

window length. The solid lines and the bars show the average and the90% confidence interval, respectively.

II. JOINT-ESTIMATION MODEL FOR POPULATION SIZE AND DENSITY

A. Likelihood Function for the Joint-estimation Model of Population Size and Density

Here we derive the full likelihood function of the joint-estimation model of population size and

density. The procedure for computing the likelihood function is similar to that of the population

size estimation model given in Section 4.3 of [1].
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Recall that we have the following property for the Gamma distribution:

Eλ

[

e−λxλy
]

=
Γ(α + y)βα

Γ(α)(β + x)α+y
. (1)

Given the location-dependent contact ratesλ(1), . . . , λ(K), and the arrival/departure timesat

anddt for an individual, we have

p
(λ(1) ,λ(2),...,λ(K),at,dt)
dsc = 1−

M
∏

j=1

K
∏

l=1

e−λ(l)t
j,(l)
at,dt = 1−

K
∏

l=1

e−λ(l)
∑M

j=1 t
j,(l)
at,dt.

By marginalizing out the random contacts rates using Equation (1) we get

p
(at,dt)
dsc = 1−

K
∏

l=1

(

β

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)

,

and by marginalizing out the arrival/departure times of theindividuals we get

pdsc = 1− E(at,dt)





K
∏

l=1

(

β

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)


 .

Now we compute the likelihood of the discovered individuals,

P
(λ(1),λ(2),...,λ(K),at,dt)
i =

M
∏

j=1

K
∏

l=1

e−λ(l)t
j,(l)
at,dt

(

λ(l)t
j,(l)
at,dt

)k
(l)
ij

k
(l)
ij !

=

K
∏

l=1

e−λ(l)
∑M

j=1 t
j,(l)
at,dt

(

λ(l)
)k

(l)
i

M
∏

j=1

(

t
j,(l)
at,dt

)k
(l)
ij

k
(l)
ij !

.

By marginalizing out the random contact rates using Equation (1) we get

P
(at,dt)
i =

K
∏

l=1

βα(l)
Γ
(

α(l) + k
(l)
i

)

Γ(α(l))
(

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)+k
(l)
i

M
∏

j=1

(

t
j,(l)
at,dt

)k
(l)
ij

k
(l)
ij !

.

By marginalizing out the arrival/departure times of the individuals we get:

Pi = E(at,dt)









K
∏

l=1

βα(l)
Γ
(

α(l) + k
(l)
i

)

Γ(α(l))
(

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)+k
(l)
i

M
∏

j=1

(

t
j,(l)
at,dt

)k
(l)
ij

k
(l)
ij !









.
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The total likelihood is:1

L =

(

N

S

)



E(at,dt)





K
∏

l=1

(

β

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)








N−S

×
S
∏

i=1

E(at,dt)









K
∏

l=1

βα(l)
Γ
(

α(l) + k
(l)
i

)

Γ(α(l))
(

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)+k
(l)
i

M
∏

j=1

(

t
j,(l)
at,dt

)k
(l)
ij

k
(l)
ij !









.

Note that in the general case where individuals’ actual entrance/departure times are not known,

we compute the above expectation over the entrance/departure time distributionf(at, dt). In

the special case where the discovered individuals’ actual arrival/departure times are known, the

likelihood function can be simplified as follows:

L =

(

N

S

)



E(at,dt)





K
∏

l=1

(

β

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)








N−S

×
S
∏

i=1















K
∏

l=1

βα(l)
Γ
(

α(l) + k
(l)
i

)

Γ(α(l))
(

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)+k
(l)
i

M
∏

j=1

(

t
j,(l)
at,dt

)k
(l)
ij

k
(l)
ij !















.

By removing the constant parts (e.g.,k
(l)
ij ! ) we get:

L ∝

(

N

S

)



E(at,dt)





K
∏

l=1

(

β

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)








N−S

×

S
∏

i=1















K
∏

l=1

βα(l)
Γ
(

α(l) + k
(l)
i

)

Γ(α(l))
(

β +
∑M

j=1 t
j,(l)
at,dt

)α(l)+k
(l)
i















.

III. A DDITIONAL MEASUREMENTS

In this section we present additional measurements for the Paléo and the EPFL datasets.

A. Additional Measurements for the Paléo Dataset

Figure 3 shows the total number of different Bluetooth devices discovered, and the duration

of stay (in minutes) on the festival grounds for each agent.

1Note that by mistake there is an extra1 inside the first parenthesis of the total likelihood function in Eq. (17) of [1], available

via ieeexplore. This is corrected here and in the paper available via infoscience.epfl.ch and rr.epfl.ch.
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Fig. 3. The total number of different Bluetooth devices discovered, and the duration of stay (in minutes) on the festivalgrounds

for each agent.

B. Additional Measurements for the EPFL Dataset

1) Users’ Arrival and Departure Times:The empirical joint arrival/departure time distribution

of the individuals (users) is plotted in Figure 4. The empirical marginal distributions of the

individuals’ arrival (first connection) times, departure (last connection) times, and the duration

of stay on the campus is plotted in Figure 5.
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Fig. 4. Empirical distribution of individuals’ joint ar-

rival/departures times to/from the EPFL campus
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Fig. 5. Empirical marginal distributions of the individuals’

arrival times (top), departure times (middle), and the duration

of stay (bottom).

2) Population Size Estimation using Subset of the Information: Here, similar to Section 5.3

of [1], we apply our population size estimator to the EPFL dataset by varying the number of

agents and the observation window. We first perform an experiment where we vary the number
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of agents fromM = 2 to M = 16. For each value ofM we simulate agents’ trajectories as

described in Section 8.3 of [1]; we assume that agents arriveat 06h00 and depart at24h00.

The average of estimated population sizes and their90% confidence intervals, based on1000

performed iterations, are shown in Figure 6 as a function of number of agentsM . In another

experiment we chooseM = 7 agents but vary the duration of time that agents stay on the

campus (the observation window). We consider the measurements obtained by all agents during

an observation window of lengthw between6 to 18 hours (the maximum possible duration is18

hours). We partition the interval from6h00 to 24h00 into 1-hour slots. For an observation window

of lengthw, we consider all the consecutive1-hour slots with total lengthw, and we estimate

the population size based on the measurements obtained during those slots. For each window

of lengthw we iterate over1000 iteration, where at each iteration we simulate trajectories for

M = 7 agents. The average of the estimated population sizes and their 90% confidence intervals

for all the observation windows with lengthw are shown in Figure 7. The behaviors are close to

2 4 6 8 10 12 14 16

5000

5500
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6500

7000

7500

8000

8500

9000

Number of agents

N̂

(M)

Fig. 6. Estimated population size as a function of the number

of agents. The bars show the90% confidence interval. The

observation window is18 hours. The dashed line shows the

ground-truth for the population size.
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Fig. 7. Estimated population size as a function of the observation

window length. The bars show the90% confidence interval. The

number of agents isM = 7. The dashed line shows the ground-

truth for the population size.

those of the Paléo dataset plotted in Figure 5 of [1]: there exists an overshoot for smallM . We

have a very good estimate for the population size with a negligible bias for number of agents

M = 10. Note that for the right-most point in both figures, there are1000 estimates for the

population size, thus there is a non-zero standard deviation (in contrary to Figure 5 of [1]).
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IV. PROOF OF THETHEOREMS

A. Background

In our proofs we use the following two theorems and proposition; for more information refer

to textbooks in Statistics such as [2], [3], [4].

Theorem 1 (Fisher-Neyman Factorization Theorem). Suppose that the observations (denoted by

O) have a joint density or frequency functionf(O; θ), whereθ is the vector of the parameters.

A statisticT = T (O) is sufficient forθ if and only if the functionf admits the factorization

f(O; θ) = g(T (O), θ)h(O).

Theorem 2 (Minimally sufficient Statistic). Let the observationsO have joint density or fre-

quency functionf(O; θ) and T = T (O) be a statistic. Suppose thatf(O; θ)/f(O
′

; θ) is

independent ofθ if and only if T (O) = T (O
′

). ThenT is minimally sufficient forθ.

B. Proofs

In the following, we prove the theorems in the paper.

Theorem 3. The following quantities are the minimally sufficient statistics for estimating the

population size in our model.

1) Number of times agentj contacts individuali (kij); note that only strictly positive values

of kij ’s are observed,

2) Agents’ arrival/departure times to/from the festival,

3) Individuals’ actual arrival/departure times to/from the festival, or their distributionf(at, dt)

or some approximation of the distribution.

Proof. Recall that the full likelihood function had the following form,

L(O;N,α, β) =

(

N

S

)

(

Eat,dt

[(

β

β +
∑M

j=1 t
j
at,dt

)α])N−S

×

S
∏

i=1











Γ(α + ki)β
α

Γ(α)
Eat,dt







∏M

j=1

(tj
at,dt

)
kij

kij !

(β +
∑M

j=1 t
j
at,dt)

α+ki

















,

whereO represents the observed measurements. We first prove the sufficiency part by factorizing

the likelihood function as follows,

L(O;N,α, β) = g(O;N,α, β) · h(O), (2)
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where

g(O;N,α, β) =
N !

(N − S)!

(

Eat,dt

[(

β

β +
∑M

j=1 t
j
at,dt

)α])N−S

×
S
∏

i=1







Γ(α+ ki)β
α

Γ(α)
Eat,dt





∏M

j=1 (t
j
at,dt)

kij

(β +
∑M

j=1 t
j
at,dt)

α+ki











,

and

h(O) =
1

S!

S
∏

i=1

{

M
∏

j=1

1

kij !

}

.

The functionh(O) is only a function of the observations, andg(O;N,α, β) is function of the

parameters (α, β, andN) and the statistics defined in the theorem (kij ’s, f(at, dt), and agents’

arrival/departure times). Note thatki andS are functions of the statistics defined in the theorem

(i.e., functions ofkij ’s). Thus the sufficiency result follows from the Fisher-Neyman Factorization

Theorem based on the factorization in (2).

We now prove the minimally sufficiency part. Assume that we have two sets of experiments,

for which the number of agentsM and agents’ respective arrival/departure times are the same.

Furthermore, assume that the individuals’ arrival/departure time distributionf(at, dt) (or its

approximation) is also the same for both experiments. Denote the measurements for the first

experiment byS, ki for i = 1, 2, . . . , S, andkij , for i = 1, 2, . . . , S, j = 1, 2, . . . ,M ; and for the

second experiment byS
′

, k
′

i for i = 1, 2, . . . , S
′

, andk
′

ij, for i = 1, 2, . . . , S
′

, j = 1, 2, . . . ,M .

The minimally sufficiency of the statistics follows from Theorem 2 since the ratio

L(O;N,α, β)

L(O
′

;N,α, β)
=

S
′

!(N − S
′

)!

S!(N − S)!

(

Eat,dt

[(

β

β +
∑M

j=1 t
j
at,dt

)α])S
′

−S
(

βα

Γ(α)

)(S−S
′

)

×

∏S

i=1

{

Γ(α + ki)Eat,dt

[ ∏M
j=1 (t

j

at,dt
)
kij

(β+
∑M

j=1 t
j

at,dt
)α+ki

]}

∏S
′

i=1

{

Γ(α + k
′

i)Eat,dt

[

∏M
j=1 (t

j

at,dt
)
k
′

ij

(β+
∑M

j=1 t
j

at,dt
)α+k

′

i

]} ·

∏S

i=1

{

∏M

j=1
1

kij !

}

∏S
′

i=1

{

∏M

j=1
1

k
′

ij
!

}

is independent ofN,α, β if and only if the statistics given in the theorem have the same set of

values, i.e., when

S = S
′

, {ki|i = 1, . . . , S} = {k
′

i|i = 1, . . . , S
′

},

and

{[ki1, ki2, . . . , kiM ]|i = 1, . . . , S} =
{

[k
′

i1, k
′

i2, . . . , k
′

iM ]|i = 1, . . . , S
′

}

.
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To see this, consider for example the case whereS 6= S
′

. In this case, the above ratio will be a

function of
(

βα

Γ(α)

)(S−S
′

)

, which makes the ratio a function of the parametersα andβ. Now if

S = S
′

, we have

L(O;N,α, β)

L(O
′

;N,α, β)
∝

∏S

i=1 {Γ(α+ ki)}
∏S

′

i=1

{

Γ(α + k
′

i)
}

·

∏S

i=1

{

Eat,dt

[ ∏M
j=1 (t

j

at,dt
)
kij

(β+
∑M

j=1 t
j

at,dt
)α+ki

]}

∏S
′

i=1

{

Eat,dt

[

∏M
j=1 (t

j

at,dt
)
k
′

ij

(β+
∑M

j=1 t
j

at,dt
)α+k

′

i

]} .

Now if {ki|i = 1, . . . , S} 6= {k
′

i|i = 1, . . . , S
′

}, then the first term depends on parameter

α. We can similarly argue that ifS = S
′

and {ki|i = 1, . . . , S} = {k
′

i|i = 1, . . . , S
′

} but

{[ki1, ki2, . . . , kiM ]|i = 1, . . . , S} 6=
{

[k
′

i1, k
′

i2, . . . , k
′

iM ]|i = 1, . . . , S
′
}

, again the above ratio will

be a function ofα andβ.

Theorem 4. The following quantities are the minimally sufficient statistics for jointly estimating

the population size and density in our model.

1) Number of times agentj contacts individuali in location l; note that only strictly positive

values ofk(l)
ij ’s are observed,

2) Agents’ arrival/departure times to/from the festival, andtheir trajectories on the festival

grounds,

3) Individuals’ actual arrival/departure times to/from the festival, or their distributionf(at, dt)

or some approximation of the distribution.

Proof. Proof is exactly similar to the proof of Theorem 3.
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