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Abstract

In this document we provide supplementary material for [1].
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|. POPULATION SIZE ESTIMATION MODEL
A. Poisson-Gamma Assumption of the Detection Patterns

In Section 4.2.1 ofi[1] we demonstrate that the Poisson-Gammodel fits well to the contact
patterns of individuals by agents. Here we show that the fihéodetection patters is not good.
We first redefine the Poisson-Gamma model based on the detguiterns.

We denote byx,; the number of times that individual has beerdetectedby agent; on
the festival grounds. We denote by = Z;Vil ri; the total number of times that individual
i has been detected on the festival grounds. Individuial discovered (i.e., is among the
discovered individuals) if and only ik; > 0 (if he has been detected by at least one of the
agents). The assumptions of our population size estimatiotiel based on the detection patters

are as follows.

« Poisson detections: The number of times ageatects individual on the festival grounds,
l.e., ki;, IS Poisson distributed with mean equal)t@iti’dti, where)\,; is called thedetection
rate of individual i.

« Independence: The random variabig is independent from, - for i # N

We assume that for individual \; is drawn from a Gamma distribution with unknown parameters
« andg, independently from other individuals and from his arriaatl departure times. Parameter
A; represents how easily the individuputs himself in a detectable positimn the festival
grounds. We have

kij ~ Poisson(\; - &2, .. ).

at;,dt;

We now check the fit of the above model to the detection patteBiven the values ok;,

at;, anddt; for individual 4,
M Mo
Ry = Z Rij ~ POiSSOI(I)\Z' Z tfzti,dti)‘
j=1 j=1

That isk; is also Poisson distributed given at;, anddt;. Now consider the values @f , x», . .., kg
for the S discovered individuals; these values followrancatedPoisson distribution, because the
value ofk; for individual i must be non-zero in order for the individual to be observéa: Jolid
curve in Figuré 1(a) shows the empirical distribution of theserved number of detections for all
the S discovered individuals. As expected, number of detectadmsdividuals is larger than their
number of contacts, which is shown in Figure 4(a)lof [1]. Thstted curve in Figufe 1{a) shows

the analytical distribution of the number of detectionsdshen the truncated Poisson-Gamma
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fit to the measurements. The corresponding Q-Q plot is shavifigure] 1(B), which shows that
the fit of the Poisson-Gamma model to the measurements isauat, gn particular they have
very different tail behaviors. Pearson’s chi-squared fisthe equality of the two distributions
gives a p-value oB.61 x 10~?, which indicates the rejection of the equality hypothedishe
two distributions (i.e., the empirical histogram of the e#ions and the corresponding fitted

Poisson-Gamma distribution).
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Fig. 1. The goodness of fit of truncated Poisson-Gamma igian to the measurements. (a) and (b) show, respectitredy,

probability distribution function and the Q-Q plot with pext to the empirical distribution of detections.

B. Likelihood Function for the Population Size Estimatioondél

In Section 4.3 of[[1] we compute the likelihood function ofrquopulation size estimation
model by using a distributiorf (at, dt) for individuals’ arrival and departure times. In the case
where in addition tof(at, dt), individuals’ exact arrival/departure times are also knpwhe

likelihood function can be simplified as follows:

e = () (E

() ]) e
B + Z;\il t‘;t,dt i=1 P(a) (5 + ZJAil titi,dti)a—’_ki

C. Population Size Estimation by Using a Subset of the Irdtion

In Section 5.3 of([1] we apply our population size estimatorat subset of the Paléo mea-
surements. In the first part, we consider the measuremetdmet by a subset of size of the

agents. For each subset of size we consider all the possible combinations of the agents and
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estimate the population size for each combinatiommofgents. The average percentage of the
discovered individualsy/NN x 100) and their90% confidence intervals for all the combinations
of sizem are shown in Figurg 2(a) fom = 5,6,...,10. In the second part, we consider the
measurements obtained by all agents during an observatiaow of lengthw smaller than the
festival duration. The observation window starting frore thoment when the first agent arrives
at the festival {7h09 for agent5), until the moment when the last agent departs from thevisti
(4h01 for agentl) is approximatelyl1 hours. We patrtition this interval into sloi$-minutes in
length. For an observation window of length we consider all the consecutit@-minute slots
with total lengthw, and we estimate the population size based on the measusotgained
during these slots. The average percentage of the disabired&iduals /N x 100) and their
90% confidence intervals are shown in Figlre R(a), o= 4,5,...,11 hours.
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Fig. 2. Percentage of discovered individua/ ;' x 100) as a function of (a) the number of agents and (b) the observat

window length. The solid lines and the bars show the averagetlze 90% confidence interval, respectively.

[I. JOINT-ESTIMATION MODEL FORPOPULATION SIZE AND DENSITY
A. Likelihood Function for the Joint-estimation Model ofptation Size and Density

Here we derive the full likelihood function of the joint-eetition model of population size and
density. The procedure for computing the likelihood fuoistis similar to that of the population
size estimation model given in Section 4.3 of [1].

Recall that we have the following property for the Gammaritstion:

o +y)B*
(a)(B + z)oty’

Ey [e™N] = = 1)
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Given the location-dependent contact ra¥8, ..., \¥), and the arrival/departure times

anddt for an individual, we have

M K K
WD A@ | ANE) gt dt) H H _)\(l)tJ (l) O] ZM O]
pdSC e [ —_ | | e at,dt .
j=11=1 =1

By marginalizing out the random contacts rates using Eqodtl) we get

K 5 a®
pﬁ[itc’dt)zl—H< ) )

ﬁ+23 1 atdt

and by marginalizing out the arrival/departure times of ithdividuals we get

a®
: 8
Pdsc = 1- E(at,dt) H ( ] 0 )

B_I—Z atdt

Now we compute the likelihood of the discovered individyals

KO
AD D )

M K
1) A@) . AE) W) 49:(1) ( at,dt
pAM A2 atdt) OB,

)
j=11=1 kij :

ﬁ A ZIVI tJ (1) ()\(l))k(l) ﬁ ( s
— at,dt H - 7
=1 !

7=1 ij -
By marginalizing out the random contact rates using Eqoaflf) we get

(at,dt) o T <a(l) + kg”) M (tfzt(ld)t)
S H W\ D1
ELT () <5 + Zg 1o dt) 7= Y

By marginalizing out the arrival/departure times of theiudblals we get:
(l)
a® O] ()
K pger (O‘(l) + ki ) M (tfzt dt)

]Pi = E(at,dt) H a(l)—i-k() H

=r(a0) (5+ 0, 00

The total likelihood is:

N K 8 a®
L = < ) 1 - E(ahdt) H ( >
N-5 B+ 23 1 at dt

)
a® l i, (1 ij
FOr (a®+ k) (860
4 a4k OF
S Py (s ah)t e e

N-S
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Note that in the general case where individuals’ exact an@g@eparture times are not known,
we compute the above expectation over the entrance/depaire distributionf (at, dt). In the
special case where individuals’ exact arrival/departuree$ are known, the likelihood function

can be simplified as follows:

N K 5 a®
L = < ) ]_ - E(at,dt) H ( M i )
N -85 =1 5 + Zj:l tf;t(,cgt
g K ﬁa(”l—‘ (a(l) I k‘i(l)>
I3 11 >
= | o) (50 2

[Il. ADDITIONAL MEASUREMENTS

N-S

)

In this section we present additional measurements for éheoPand the EPFL datasets.

A. Additional Measurements for the Bal Dataset

Figure[3 shows the total number of different Bluetooth desidiscovered, and the duration

of stay (in minutes) on the festival grounds for each agent.
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Fig. 3. The total number of different Bluetooth devices digred, and the duration of stay (in minutes) on the festjvatinds

for each agent.
B. Additional Measurements for the EPFL Dataset

1) Users’ Arrival and Departure TimesThe empirical joint arrival/departure time distribution
of the individuals (users) is plotted in Figuré 4. The engafimarginal distributions of the
individuals’ arrival (first connection) times, departutast connection) times, and the duration

of stay on the campus is plotted in Figlie 5.
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Fig. 5. Empirical marginal distributions of the individsal

Fig. 4. Empirical distribution of individuals’ joint ar- 5irival times (top), departure times (middle), and the tiona

rival/departures times to/from the EPFL campus of stay (bottom).

2) Population Size Estimation using Subset of the InforomatHere, similar to Section 5.3
of [1], we apply our population size estimator to the EPFLadat by varying the number of
agents and the observation window. We first perform an exyri where we vary the number
of agents fromM = 2 to M = 16. For each value of\/ we simulate agents’ trajectories as
described in Section 8.3 of[[1]; we assume that agents aatvihO0 and depart aR4h00.
The average of estimated population sizes and W&it confidence intervals, based dan00
performed iterations, are shown in Figure 6 as a functionwhlper of agents\/. In another
experiment we choos@/ = 7 agents but vary the duration of time that agents stay on the
campus (the observation window). We consider the measuntsnobtained by all agents during
an observation window of lengtl betweers6 to 18 hours (the maximum possible durationls
hours). We partition the interval fro6h00 to 24h00 into 1-hour slots. For an observation window
of lengthw, we consider all the consecutivehour slots with total lengthv, and we estimate
the population size based on the measurements obtainetgdimese slots. For each window
of lengthw we iterate overl000 iteration, where at each iteration we simulate trajectofe
M = 7 agents. The average of the estimated population sizes and@i; confidence intervals
for all the observation windows with length are shown in Figurgl 7. The behaviors are close to
those of the Paléo dataset plotted in Figure 5 of [1]: theistge an overshoot for small/. We
have a very good estimate for the population size with a géxé bias for number of agents
M = 10. Note that for the right-most point in both figures, there &0 estimates for the
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Fig. 6. Estimated population size as a function of the nunigr7. Estimated population size as a function of the olztEm
of agents. The bars show tH#®% confidence interval. Thaindow length. The bars show ti98% confidence interval. The
observation window isl8 hours. The dashed line shows thember of agents i8/ = 7. The dashed line shows the ground-

ground-truth for the population size. truth for the population size.

population size, thus there is a non-zero standard dewidinocontrary to Figure 5 of [1]).

V. PROOF OF THETHEOREMS
A. Background

In our proofs we use the following two theorems and proposjtior more information refer

to textbooks in Statistics such as [2]) [3]]) [4].

Theorem 1 (Fisher-Neyman Factorization TheorensSuppose that the observations (denoted by
O) have a joint density or frequency functigitO; 6), where@ is the vector of the parameters.
A statisticT = T'(0O) is sufficient for@ if and only if the functionf admits the factorization
f(0:8) = g(T(0),0)h(0).

Theorem 2 (Minimally sufficient Statistic) Let the observation® have joint density or fre-
quency functionf(O;0) and T = T(O) be a statistic. Suppose that(O:;6)/f(0’;9) is
independent 0@ if and only if 7(O) = T(O"). ThenT is minimally sufficient fo®.

B. Proofs

In the following, we prove the theorems in the paper.
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Theorem 3. The following quantities are the minimally sufficient sttis for estimating the
population size in our model.
1) Number of times agent contacts individual (k;;); note that only strictly positive values
of k;;'s are observed,
2) Agents’ arrival/departure times to/from the festival,
3) Individuals’ exact arrival/departure times to/from thesfeval, or their distributionf (at, dt)

or some approximation of the distribution.

Proof. Recall that the full likelihood function had the followingrim,

a N-S
N
j=1 "at,dt

Mo, )"
S F(Oz + k?z)ﬁa H .d
<II{ 5
=1

G=1 7 k!

IEat,dt ;
[(a) (8 + Y050 tog )

whereO represents the observed measurements. We first prove fleeesidy part by factorizing

the likelihood function as follows,

L(OvNaavﬁ) Zg(O,N,a,ﬁ)h(O), (2)
where o NS
. B N! 15}
g(Oanaaﬁ)_(N_S)' <Eat,dt <5+Zj]\{1titdt> ])
OH—]f H (tztdt) K
Eat,t 9
XH{ ‘ [w Ty >]}
and

The functioni(O) is only a function of the observations, apdO; N, a, ) is function of the
parametersd, 3, and N) and the statistics defined in the theoren’$, f(at,dt), and agents’
arrival/departure times). Note that and S are functions of the statistics defined in the theorem
(i.e., functions oft;;’s). Thus the sufficiency result follows from the Fisher-ien Factorization
Theorem based on the factorization [ih (2).

We now prove the minimally sufficiency part. Assume that weeh@avo sets of experiments,

for which the number of agent®/ and agents’ respective arrival/departure times are theesam
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Furthermore, assume that the individuals’ arrival/departtime distributionf(at, dt) (or its
approximation) is also the same for both experiments. Detloé measurements for the first
experiment byS, k; fori =1,2,...,5, andk;;, fori=1,2,...,5,5=1,2,..., M; and for the
fori=1,2,...,58,j=1,2,..., M.

’

Y
The minimally sufficiency of the statistics follows from Tdrem[2 since the ratio

second experiment b§', k; fori = 1,2,....5’, andk

L(O;N,a,8) _SI(N =8 3 N/ g\ 65
L(O;N,a,f) SN -5)! e g+ Z;V; tit,dt (F(O‘))

HS F(OZ + ]{I)E Hj\il (tit,dt)kij IS M 1

i=1 i ) Waat, dt (B_,_Z;Vil tit,dt)a+ki Hi:l {Hj:l i) }
’ / I, (8,00 s L

I {F(a + ki) Eat,at (6 = t;’dt )Mk;] } Iis {szl k;j!}

T2 5=1tat,at

X

is independent ofV, «, 8 if and only if the statistics given in the theorem have the sa@t of
values, i.e., when
S=8 {kli=1,....8={kli=1,...,5,

and

!

(ki kia o Ealli = 1,..., S} = {[kgl,km,...,k;M]u: 15}

To see this, consider for example the case wieré S'. In this case, the above ratio will be a
_ NGRS I . : .
function of <%> , which makes the ratio a function of the parameterand 5. Now if

S =S5, we have

e {Ee I (i)™
L(O;N,o,8)  TIJ {T(a+k)} 1=t " | r2 i, a0
7 X . : .
LO%N,a.B) [T, {T(a+k)} e Y,
. B+ )

Now if {kiji = 1,...,S} # {k;li = 1,...,5'}, then the first term depends on parameter
a. We can similarly argue that if = S" and {k;li = 1,...,S8} = {kjli = 1,...,5} but
{[k, ko, .. ka)|i = 1,0, S} # {[kiy, kia, - -, kjpglli = 1,..., "}, again the above ratio will

be a function of« and 5.

Cl}\ﬁm

&
Il

IEat,dt

O

Theorem 4. The following quantities are the minimally sufficient sttitis for jointly estimating

the population size and density in our model.
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1) Number of times agentcontacts individual in location/; note that only strictly positive
values ofk;i(]l.)’s are observed,

2) Agents’ arrival/departure times to/from the festival, atieir trajectories on the festival
grounds,

3) Individuals’ exact arrival/departure times to/from thesfeval, or their distributionf (at, dt)

or some approximation of the distribution.

Proof. Proof is exactly similar to the proof of Theordm 3. O
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