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Abstract —Consider a set of probes, called “agents”, who sample, based on opportunistic contacts, a population moving between a set
of discrete locations. An example of such agents are Bluetooth probes that sample the visible Bluetooth devices in a population. Based
on the obtained measurements, we construct a parametric statistical model to jointly estimate the total population size (e.g., the
number of visible Bluetooth devices) and their spatial density. We evaluate the performance of our estimators by using Bluetooth traces
obtained during an open-air event and Wi-Fi traces obtained on a university campus.
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1 INTRODUCTION

Estimating population size and population density finds
applications in various fields. For example, ecologists and
biologists are interested in estimating the population sizes
of certain animal species (refer to [1], [2], [3] for a review).
In the field of urban analysis, estimating population density
is important, e.g., to create evacuation paths, to plan new
locations for department stores (refer to [4], [5], [6], [7],
[8] and references therein). Social networking applications
such as activity-hotspot detection [9], make use of popula-
tion density to pinpoint night-life hotspots to users of the
application.

In the above mentioned examples, the measurements for
population size and density estimation are obtained using
various techniques. For example, in the case of population
size estimation of certain animal species, traps are con-
structed to capture the animals. Upon capture, the animals
are marked and then released. This method, known as the
capture-recapture method [10], uses the number of times
that animals are recaptured to infer the population size.
To estimate crowd density for urban analysis, surveillance
cameras are installed in different locations in a given area;
computer-vision techniques are then applied to the captured
data to count the people and to estimate the density of
the crowd in these different locations [7], [11]. Most of the
measurement techniques for estimating population size and
density, as will be reviewed in Section 2, come with at least
one of the following drawbacks or requirements: (i) invest-
ment in hardware (e.g., installing cameras in different posi-
tions, which also raises privacy issues [6]), (ii) deployment
constraints (e.g., requiring everyone to carry RFIDs [12]),
and (iii) proprietary issues (e.g., requiring cooperation with
another party such as a GSM operator [8], [9]).

The (spatial) density of a population is a measure of the
number of people present in different locations within an
area of interest (e.g., a campus or a city). By normalizing the
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spatial densities such that they sum to one, we obtain the
relative spatial density that measures the relative ‘popularity’
of different locations. Most existing methods essentially
count the number of people in an area of interest by using
some ‘agents’ that ‘monitor’ the locations (e.g., surveillance
cameras). In practice, some locations might not be mon-
itored for some periods of time, because there might be
fewer agents than the number of locations for many reasons
such as those outlined above, or because agents might be
mobile and some locations might occasionally be empty of
agents. If the total population size in the area of interest is
known, then we can calculate the number of people in the
non-monitored locations: the total population size minus
the number of people in monitored locations gives us the
number of people present in non-monitored locations; this
gives us the overall density in the non-monitored locations.
However, if the total population size is unknown, then
estimating the spatial density becomes more challenging,
as we do not know the number of people present in the
non-monitored locations.

In this work, we consider the joint estimation of pop-
ulation size and density for the case where measurements
are obtained based on opportunistic contacts between some
agents that monitor the population and the population mem-
bers. In particular, we consider the join estimation of popu-
lation size and density based on Bluetooth measurements.
Nearly every current mobile phone is equipped with a
Bluetooth radio interface, each with a unique MAC address.
This technology includes a detection functionality, where
enabled devices can discover (detect) each other within a
small radius (typically 10-20m), which is refered to as their
proximity. It has also been observed [13], [14], [15], [16],
[17] that a non-trivial fraction of mobile phone users leave
the detection feature of their phone turned on constantly
(“discoverable (visible) mode”). A particularly interesting
feature is that when they are in visible mode, phones
broadcast their MAC address, which makes them uniquely
identifiable. This possibility enables us to use mobile phones
as sensing devices and to evaluate different features related
to the mobility patterns of the population.

Our contributions are as follows. On the theory side, we
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develop a parametric estimator for the joint estimation of
population size and density. Our estimator is a “minimally
sufficient” estimator of population size and densities, i.e.,
an estimator that uses optimally all available information
collected from the agents. It extends the population size
estimator that we introduced in [14]. On the practical side,
we use an opportunistic sampling of the population (e.g.,
Bluetooth measurements) in contrast to other works where
sampling is systematic following a predefined planning. We
only consider the case where measurements are performed
by mobile agents who move normally in the area of interest
(i.e., agents were given no specific movement instructions).
On the empirical side, as is explained later, instead of
directly using the detection patterns of the Bluetooth devices
by the agents, we use the contact patterns, which profoundly
impacts our estimator. In this setting, several questions need
to be answered: What kind of information do the agents
need to collect in order to estimate the density? When is
it possible to estimate with good accuracy the population
density from such traces? To the best of our knowledge,
our work is the first effort to use such measurements of
opportunistic nature for the joint estimation of population
size and density. The main theoretical challenge of our
approach is incorporating the mobility of the agents, which
makes the computations more involved. A practical chal-
lenge in our approach is knowing the percentage of visible
Bluetooth devices in the population. On average, close to
8.2% of people carry Bluetooth devices with an activated
detection functionality [13], [14], [15], [16], [17], which is
large enough to make possible density estimations from
Bluetooth measurements.

The rest of this paper is organized as follows. After a
brief literature review in the next section, we describe the
experiment we conducted at the Paléo Music Festival and
the obtained measurements in Section 3. We first revisit in
more detail the population size estimation model of [14]
in Section 4, and apply it on the Paléo measurements in
Section 5. We then extend our model to the joint-estimation
model of population size and density in Section 6, and apply
it to the Paléo measurements in Section 7. We apply our
estimators to a second dataset based on Wi-Fi technology in
Section 8, and finally conclude the paper in Section 9.

2 RELATED WORK

The problem of the estimation of population size has a long
history (refer to [1], [2], [3] for a review); perhaps one of
the first estimators of population size is the Turing-Good
estimator presented in [2]. An important line of work in
estimating the population sizes of certain animal species is
the capture-recapture methods. In these techniques, traps are
set up to capture some individuals of the animal population,
after which they are marked and released. All the animals
are vulnerable to the sampling process by these traps dur-
ing the experiment. In the recapture process, some of the
animals are captured again and the number of previously
marked animals will provide information that is used to
infer about the population size [10], [18]. In contrast to
these works, we do not place monitoring devices or traps at
given places, and we cannot start and stop the measurement
campaign at given times. In our case, the “sensing devices”

are carried by individuals from the population, with an
uncontrolled, random, mobility pattern and who arrive and
leave the monitored area at different, random times. The
individuals are thus exposed to the sampling process for
different random times. Moreover, some methods [1], [18]
when applied to our problem, only account for whether an
individual has been discovered by an agent or not. Whereas,
in our estimator we make the best use of the information
available, e.g., we process the pattern of contact between an
individual and an agent.

In the field of information theory, alphabet-size es-
timation [19], pattern-likelihood maximization [20], and
sequence-probability estimation [21], [22] also address re-
lated problems. These works usually assume that an ob-
served sequence is drawn in an independent and identically
distributed (i.i.d.) manner from a source with an unknown
underlying distribution, and an unknown alphabet size, that
is to be estimated. In order to apply these methods to our
measurements, we would have to consider an agent as a
source, and her Bluetooth traces as such a sequence. We
would then have several (more precisely, a number equal
to the number of agents) sequences drawn from several
sources, that have the same alphabet. However, to the best of
our knowledge, there is no methodological way to deal with
multiple sequences/sources where the sources have the
same alphabet. Furthermore, the estimator in [19] assumes
that the underlying distribution of the source is uniform,
which is not true in our case, because individuals have
different probabilities of being detected by an agent due to
their diverse mobility patterns.

Recently, social networking applications have generated
interest in developing methods for estimating the number
of nodes in graphs based on some sampling of the graphs; the
interested reader can refer to [23] and references therein. In
these methods, at each step of the sampling process, exactly
one node in the graph is sampled (e.g., by one random
walker on the graph acting as an agent), and local informa-
tion of the node (such as its neighboring nodes) is measured.
After the sampling process runs for a certain number of
steps, the obtained measurements are used to estimate the
total number of nodes in the graph. In contrast, in our
measurement process, at a step of the sampling process, i.e.,
Bluetooth scanning by an agent, it could happen than (i) no
Bluetooth device is detected, or (ii) more than one Bluetooth
device is detected. These two cases occur when there are
zero and several, respectively, Bluetooth devices present in
the proximity of the agent when the Bluetooth scanning is
performed.

Computer vision techniques have been widely used to esti-
mate population density [6], [7], [12], [24], [25]; the methods
presented use surveillance cameras to capture images of
crowds in order to count the number of people and estimate
density. Their performance is usually affected by factors
such as background lighting, the density of the crowd, and
the view angles of the camera. The difficulties of the com-
puter vision approaches, besides their cost, are in finding
places to install the cameras, and in avoiding privacy issues.
In addition, these methods are able to estimate the density
only in the monitored locations, as the cameras act as static
agents.

RFID-based techniques [26], [27], [28], [29] require the
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population to wear special RFID tags. These tags are later
localized in order to analyze the spread of the population
over different locations in order to estimate the density of
the population in a given region. Some techniques exploit
the wireless networking infrastructure in order to perform
a passive-density estimation [30], [31], [32]. These methods
model the change of the RSSI in the system in order to infer
the density of people. In order to estimate the density, some
algorithms use measurements (obtained via cellular phone
operators) that indicate the position of cellular subscribers in
different locations [8]. CitySense [9] clusters GPS and WiFi
data to indicate the hotspots of activity in San Francisco.
There even exist hand-counting methods [4], which need
investment in personnel, and are intractable for large areas
of interest such as those considered in our experiments.
In [33] the authors used Bluetooth probes to estimate crowd
density at the town center of Kaiserslautern. Their approach
is based on the comparison and fusion of collected data
from different probes. In [34] static Bluetooth sensors are
deployed in a music festival in order to study group forma-
tion and music preferences of attendees.

3 THE PAL ÉO EXPERIMENT

In this section, we describe the experiment that we con-
ducted at Paléo Music Festival, which took place in July
2010 in Nyon, Switzerland.

3.1 Experiment Description

The Paléo Music Festival is one the major music festivals
in Europe: it attracts several tens of thousands of people
per day. It is an open-air festival, which allows for GPS
coverage, and takes place within a closed area with fixed
entrance and exit points. The surface of the festival covers
around 280, 000 m2. These characteristics make this festival
a good environment for performing experiments related
to population sampling via Bluetooth. In order to have a
better understanding of the environment of the festival, a
map and a snapshot of attendees listening to a concert are
shown in Figure 1. Our idea is to sample the population by
sending some attendees as “agents” inside the festival. Each
agent is equipped with a mobile phone (Nokia N95) that is
programmed to regularly scan for Bluetooth devices within
its range (10-20 m). The phones then collect the Bluetooth
MAC addresses of mobile devices that have their Bluetooth
visibility turned on. Bluetooth MAC addresses are unique to
each device and can be used as the identifiers of attendees.
The purpose is to use this information to estimate the
population size and density of the attendees (more precisely,
of the subset of those who carry visible Bluetooth devices).

In order to have the ground truth of the number of vis-
ible Bluetooth devices at the festival, a Bluetooth scanning
is done at the entrances. Two mobile phones are installed
at the main entrance of the festival, and another phone is
installed at the back entrance. The position of these three
mobile phones is shown by markers in Figure 1(a). The same
gates are used both for the entrance and exit of attendees.
We refer to these three phones as the entrance phones.

In our experiment, ten people (acting individually) took
part as agents. The agents’ phones and entrance phones
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Fig. 1. (a) Paléo Music Festival map. The surface covers around
280, 000 m2. Position of the entrance phones is indicated by dark tri-
angular markers. (b) Attendees listening to a concert in ‘Grande Scene’.

were programmed to perform Bluetooth scanning every
80 seconds. The agents’ phones were also programmed
to record GPS positions. The experiment was performed
during one day of the festival, and the duration of the
festival (opening/closing of the entrance/exit gates) on that
day was 13 hours 15 minutes; from 15h00 until 4h15 on the
following day.

3.2 Obtained Measurements

In this section we discuss the measurements obtained in the
experiment.

3.2.1 Measurements at the Entrances

For the entrance phones, we consider only the Bluetooth
traces that were collected during the opening hours of the
festival. In total, 3326 different Bluetooth devices were dis-
covered at the entrances. The estimated number of attendees
(obtained on the basis of the number of tickets sold and the
tickets punched at the entrance gates), which was provided
to us by the organizers of the festival, is 40,536. From these
two numbers, we get 8.2% as the approximate percentage
of attendees who have visible Bluetooth devices. This ratio
depends on many factors such as the characteristics of the
population (e.g. age). Other estimated ratios reported in the
literature are as follows: 4.7% to 7% in a campus bar [13],
8% to 12.5% in an airport [17], 11% in a cultural and theater
festival [15], and 13% in a sports event [16].

As the entrance phones can discover all the visible
Bluetooth devices upon their arrival and departure, we can
compute the empirical arrival/departure time distribution
of the visible Bluetooth devices, which is plotted in Fig-
ure 2(a). The empirical marginal distributions of the visible
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Fig. 2. (a) Empirical distribution of the visible Bluetooth devices’ ar-
rival/departures times to/from the Paléo Music festival. (b) Empirical
marginal distributions of the visible Bluetooth devices’ arrival times (top),
departure times (middle), and the duration of stay on the festival grounds
(bottom).

Bluetooth devices’ arrival times, departure times, and the
duration of stay on the festival grounds are plotted in
Figure 2(b). The average (the 90% confidence interval) of
the visible Bluetooth devices’ arrival times is 18h56 (respec-
tively, [15h00, 21h22]). The value for the visible Bluetooth
devices’ departure times is equal to 01h01 (respectively,
[22h25, 03h58]). The average (the 90% confidence inter-
val) of the visible Bluetooth devices’ duration of stay on
the festival grounds is equal to 365.4 min (respectively,
[102.4 min, 591.6 min]).

3.2.2 Measurements by Agents

For the agents’ phones, we consider only the Bluetooth
traces that were collected during the period when the
agents were on the festival grounds; we can determine
these periods by using either the obtained GPS traces from
the agents’ phones. The 10 agents were able to discover
2637 out of 3326 of the Bluetooth devices discovered at
the festival entrances. This corresponds to 79.3% of the
visible Bluetooth devices. This ratio is referred to as the
coverage in the literature on animal species estimation [1].
We expect this ratio to be less than 100%, because there
were only a few agents present for a short period of time at
the festival and the mobile phones have a short Bluetooth
range. Nevertheless, the coverage percentage is rather large.

Here we analyze in more detail the Bluetooth measure-
ments obtained by each agent. Figure 3(a) shows the evolu-
tion of the total number of discovered Bluetooth devices as
a function of time for each agent. The agents are numbered
in a decreasing order, according to the total number of
discovered Bluetooth devices. By looking at the evolution
of the curves in Figure 3(a), we observe that as soon as
the agents arrived at the festival, they began discovering
Bluetooth devices rapidly. All agents have however periods
during which the slope of the curve is quite flat. These
periods correspond, for example, to periods when the agents
were listening to the main concerts, hence, were not moving;
during these periods, they kept detecting the same Blue-
tooth devices, but discovered fewer new Bluetooth devices.
Figure 1(b) shows one such situation. Figure 3(b) shows the
accumulated total number of discovered Bluetooth devices
by all the agents, the final value of the curve is equal to 2637.
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Fig. 3. Evolutions as a function of time of (a) the total number of different
Bluetooth devices discovered by each agent, and (b) the accumulated
total number of discovered Bluetooth devices by all the agents.

4 POPULATION SIZE ESTIMATION MODEL

Our goal is to estimate the total number of visible Bluetooth
devices and their spatial density at the festival, based on
agents’ traces. We start by defining our notation and intro-
ducing the population size estimation model.

4.1 Data Structure and Notation

4.1.1 Population

The population is comprised of attendees with visible Blue-
tooth devices. We call the population members individuals,
use variable i to index them, and use masculine pronouns
to refer to them. We assume that every individual carries
one Bluetooth device with him at the festival. Denote the
population size by N and the festival duration by Tfest. We
shift the time origin such that the festival opening time is
at 0 and its closing time is at Tfest. Let ati and dti denote,
respectively, the arrival and departure times of individual
i to/from the festival; these variables will be treated as
random variables. We assume that the tuple (ati, dti) for
every individual i is drawn in an i.i.d. fashion from the
probability density function (pdf) f(at, dt), on which we
will elaborate later. The empirical estimate of f(at, dt) is
shown in Figure 2(a).

Note that in order to empirically verify the i.i.d. as-
sumption of tuples (ati, dti) and (atj , dtj) for individuals
i and j, we would need several realizations of the two
tuples (e.g. the measured arrival/departure times of the
two individuals across different days of the festival). As
we only have one set of measurements of the individuals’
arrival/departure times, we cannot empirically verify the
i.i.d. assumption; but we argue that some individuals tend
to arrive/depart to/from the festival in groups. In such
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situations, the arrival/departure times of the individuals
within a group will not be independent. The group sizes
in which attendees arrive/depart to/from the festival were
rarely greater than 6, yielding a probability of having more
than one visible Bluetooth device in the group less than 0.08.

4.1.2 Agents

We denote the number of agents by M , use variable j for
indexing them, and use feminine pronouns to refer to them.
Let atAj and dtAj denote the arrival and departure times
of agent j to the festival. Note that agents’ arrival and
departure times, unlike those of the individuals, are known

to us. Let tjati,dti denote the duration of time between the
arrival and departure of individual i, which is overlapped
with the arrival and departure of agent j. We have

tjati,dti = max
(
min(dtAj , dti)−max(atAi , ati), 0

)
. (1)

Intuitively, the chance that agent j discovers individual i
increases as the value of tjati,dti increases. We further assume
that when individuals arrive at the festival, they stay on the
festival grounds until they depart from the festival.

4.1.3 Detection

As described in the beginning of Section 3, the agents
perform a Bluetooth detection every 80 seconds and record a
list of the MAC addresses of the visible Bluetooth devices in
their proximity, i.e., their Bluetooth communication range.
The data that each agent provides consists therefore of
a list of MAC addresses detected by the agent, together
with the corresponding detection times during her stay at
the festival. Denote by S the total accumulated number
of discovered MAC addresses by all the agents and map
the discovered MAC addresses to the set {1, . . . , S}. In our
experiment, the value of S is equal to 2736.

Consider an individual who stays in the proximity of an
agent for some continuous period of time, but not before or
after that period. In this case, we say that the individual is
in contact with the agent during that period of time. Such
contact periods can be identified from the detection pattern
of the individual in the following way. During a contact
between the individual and the agent, he will be detected
by the agent at every 80 second interval when the Bluetooth
scanning is performed, resulting in a burst of consecutive
detections, each shifted by 80 sec. Thus every burst of con-
secutive detections represents one contact period; a contact
starts at the first detection of a burst and finishes at the last
detection of the burst.

It will be clear later why we focus on the contacts that
occur between the agents and the individuals rather than
the detections. In particular, we denote by kij the number
of times that individual i is contacted by agent j. We denote

by ki =
∑M

j=1 kij the total number of times that individual
i is contacted. Note that individual i is discovered (i.e., is
among the S discovered individuals) if and only if ki > 0
(if he has been contacted by at least one of the agents).

4.2 Model Assumptions

In this work we adopt a parametric approach to the estima-
tion of population size and density. Following our intuition,

kij is an increasing function of tjati,dti given in (1), and for
a fixed agent j, we expect to observe different values of
kij across the individuals. This is because individuals have
diverse mobility patterns hence some of them are more
easily contactable by the agent than the other individuals.
In our population size estimation model, we assume the
following.

• Poisson contacts: The number of times agent j con-
tacts individual i, i.e., kij , is Poisson distributed with

mean equal to λit
j
ati,dti

, where λi is called the contact
rate of individual i.

• Independence: The random variable kij is indepen-

dent from ki′ j′ for i 6= i
′

and/or j 6= j
′

.

In other words, we set the mean number of contacts of
individual i by agent j to be proportional to the amount
of time during which both individual i and agent j are
on the festival grounds (tjati,dti), following our intuitive
expectation, and to the specific contact rate (λi) of individual
i:

kij ∼ Poisson
(
λi · t

j
ati,dti

)
. (2)

From (1), parameter tjati,dti is a function of agent j and
individual i’s arrival/departure times to/from the festi-
val. Consequently, if individual i’s exact arrival/departure

times are known, then the exact value of tjati,dti can be
calculated. Otherwise, if the distribution for individual i’s
arrival/departure times is known, then the distribution of

tjati,dti can be computed. The contact rate λi represents how
easily an individual puts himself in a contactable position on
the festival grounds, which is analogous to the concept of
abundance level in the literature on the species estimation
problem [1]; some individuals place themselves in one
location which is not frequently visited by others, and in
particular by the agents; others move from one place to an-
other. Hence, we assume that for individual i, λi is a random
variable drawn from a Gamma distribution with unknown
parameters α and β, independently from other individu-
als and from his arrival and departure times. We use the
Gamma prior, because it is a flexible distribution and it is the
conjugate prior of the Poisson distribution. The probability
density function of λi is fλi

(λi;α, β) = βαe−βλiλα−1
i /Γ(α),

where Γ(α) =
∫∞
0 xα−1e−xdx. Its first two moments are

E[λi] = α/β, and σ2
λi

= α/β2.

4.2.1 Assumptions Verification

Before going into more detail about our Poisson-Gamma
model, we first verify it against the measurements. Based
on the Poisson-contact assumption in (2) and the indepen-
dence assumption, and given the values of λi, ati, and
dti for individual i, ki is also Poisson distributed, i.e.,
ki =

∑M
j=1 kij ∼ Poisson(λi

∑M
j=1 t

j
ati,dti

). Now consider
the values of k1, k2, . . . , kS for the S discovered individ-
uals; these values follow a truncated Poisson distribution,
because the value of ki for individual i must be non-
zero in order for the individual to be observed. The solid
curve in Figure 4(a) shows the empirical distribution of
the observed ki for i = 1, 2, . . . , S. As we have access to
the arrival/departure times of every individual (thanks to
the entrance phones in the Paléo dataset), we can compute



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2015.2393302, IEEE Transactions on Mobile Computing

6

10
0

10
1

10
−4

10
−3

10
−2

10
−1

Number of contacts

 

 

Empirical histogram of contacts
Truncated Poisson−Gamma "t

(ki)

P
[k

i
=

k
]

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Quantiles of empirical dist. of contacts

Q
u

a
n

ti
le

s 
o

f 
tr

u
ca

te
d

 P
−

G
 "

t 
to

(ki)

k
i

(b)

Fig. 4. The goodness of fit of truncated Poisson-Gamma distribution to
the measurements. (a) the probability distribution function and (b) the
Q-Q plot with respect to the empirical distribution of contacts.

tjati,dti from Equation (1) for i = 1, . . . , S. Based on the
model, we fit a truncated Poisson-Gamma distribution to the
measurements (see details in Section 4.3). The dashed curve
in Figure 4(a) shows the analytical distribution of ki based
on the truncated Poisson-Gamma fit to the measurements.
Figure 4(b) shows the Q-Q plot of the two distributions.
These two figures verify that our Poisson-Gamma model fits
well to the observed measurements based on the number of
contacts. In particular, the two probability distributions have
similar tail behaviors.

We now consider the case where, instead of modeling
the number of contacts, we model the number of detections.
We repeat the above steps but replace kij with the number
of detections of individual i by agent j, i.e., number of
detections instead of the number of bursts of detections.
In fact, the fit of the Poisson-Gamma model to the mea-
surements based on the number of detections is not good.
In particular, the empirical histogram of the detections and
the corresponding fitted Poisson-Gamma distribution have
very different tail behaviors. The Pearsons chi-squared test
for the equality of the two distributions gives a p-value of
8.61 × 10−9. We reject the equality assumptions of the two
distributions (i.e., the empirical histogram of the detections
and the corresponding fitted Poisson-Gamma distribution)
when the p-value is smaller than the predetermined signif-
icance level α, which in practice is set to 0.01 or 0.05 [35].
Due to the lack of space, corresponding plots similar to those
of Figure 4 are given in [36].

The reason for the poor fit when we model the detections
is that we are taking into account the duration of contacts
(i.e., duration of the bursts) between the agents and the
individuals. The duration of a contact between an agent and
an individual is a complex variable driven, for the Paléo
Festival, by the duration of the concerts (which explains
the shallow parts of the curves in Figure 3(a)). By taking
into account all the detections in our model, we are taking
into account these factors, which complicates the observed
measurements, and as a result we obtain a poor fit. By taking
into account only the number of contacts of the individuals
with the agents, and thus neglecting the number of detec-
tions, we capture the mixing that happens on the festival
grounds and discard irrelevant factors that complicate the
process.

The Poisson-Gamma model has previously been used in
the literature to address problems related to population size
estimation [37], [38]. In these methods, all the population

members (e.g., animals) are vulnerable to the sampling
process (e.g., traps) for the entire duration of experiment.
However, in our experiment, this assumption does not hold,
and we account for this by using the pdf f(dt, at). Some
other methods [1], [18] could be applied to this problem,
but they will only account for whether individual i has
been discovered by agent j or not. In other words, they only
take into account the indicator function 11{kij>0}, but not kij
itself. These methods address the problem by modeling the
discovering probability of an individual, and come with the
limitation that this discovering probability of an individual
does not scale linearly with time, hence the effect of time
cannot be readily included. In contrast, in the proposed Pois-
son model, the average number of times agent j contacts
individual i scales linearly with time, as we would expect.
Moreover, parameters λi and tjati,dti have meaningful inter-
pretations. Finally, we use all the information of the values
taken by kij , and not only by 11{kij>0}.

4.3 Likelihood Function

In order to derive the estimator for N , we compute the
probability of observing the obtained measurements under
the model described above with parameters N,α, β. This
is usually called the likelihood function. We then choose
the set of parameters, in particular N , that maximize this
likelihood. The likelihood function has the following form:

L(N,α, β) =

(
N

S

)
(1− pdsc(α, β))

N−S

︸ ︷︷ ︸
L1(N,α,β)

·
S∏

i=1

Pi

︸ ︷︷ ︸
L2(α,β)

, (3)

where pdsc and Pi are given below. The first term (L1) is the
likelihood of the undiscovered individuals, and the second
term (L2) is the likelihood of the pattern of the discovered
individuals. Below, we discuss each of the two components
of the likelihood function. The computation makes use of
the following property of the Gamma distribution: for all
real positive x, y > 0,

Eλ

[
e−λxλy

]
=

Γ(α + y)βα

Γ(α)(β + x)α+y
. (4)

4.3.1 Likelihood of the Undiscovered
Let p

(at,dt,λ)
dsc be the probability that at least one of the M

agents discovers an individual having contact rate λ, and
arrival and departure times at, dt. Using the Poisson contact
assumption, we have

p
(at,dt,λ)
dsc = 1−

M∏

j=1

e−λt
j

at,dt = 1− e−λ
∑M

j=1 t
j

at,dt . (5)

As the contact rate λ is a random variable, by taking the
expectation over λ using (4) we have

p
(at,dt)
dsc (α, β) = Eλ[p

(at,dt,λ)
dsc ] = 1−

(
β

β +
∑M

j=1 t
j
at,dt

)α

,

(6)
and by computing the expectation of this probability over
the joint distribution of the arrival and departure times
f(at, dt), we get

pdsc(α, β) = 1− Eat,dt

[(
β

β +
∑

j t
j
at,dt

)α]
. (7)
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The likelihood of the undiscovered individuals is equal to
the probability of not discovering N − S of the individuals:

L1(N,α, β) =

(
N

N − S

)
(1− pdsc(α, β))

N−S

=

(
N

S

)(
Eat,dt

[(
β

β +
∑M

j=1 t
j
at,dt

)α])N−S

.

(8)

4.3.2 Likelihood of the Discovered

We first compute the probability of the observed pattern of
contacts by each agent for one of the discovered individu-
als. Given that individual i has contact rate λ and arrival
and departure times at, dt, the probability for him to be
contacted kij times by agent j for j = 1, . . . ,M , is

P
(at,dt,λ)
i =

M∏

j=1

e−λt
j

at,dt

(λtjat,dt)
kij

kij !
. (9)

By taking the expectation over λ using (4) and after some
manipulations we have

P
(at,dt)
i =

Γ(α+ ki)β
α

Γ(α)(β +
∑M

j=1 t
j
at,dt)

α+ki

M∏

j=1

(tjat,dt)
kij

kij !
, (10)

and by taking the expectation over at, dt we get

Pi = Eat,dt


 Γ(α+ ki)β

α

Γ(α)(β +
∑M

j=1 t
j
at,dt)

α+ki

M∏

j=1

(tjat,dt)
kij

kij !


 .

(11)
The second part of the likelihood is equal to the probability
of the observed pattern for all the discovered individuals.
Using the independence assumption we have

L2(α, β) =
S∏

i=1

Pi. (12)

4.3.3 Maximum Likelihood Estimator

The full likelihood is the product of the two likelihoods in
Equations (8) and (12):

L(N,α, β) =

(
N

S

)(
Eat,dt

[(
β

β +
∑M

j=1 t
j
at,dt

)α])N−S

×
S∏

i=1




Γ(α+ ki)β

α

Γ(α)
Eat,dt




∏M
j=1

(tj
at,dt

)
kij

kij !

(β +
∑M

j=1 t
j
at,dt)

α+ki








.

(13)
We define the maximum likelihood estimators for N,α, β as

(N̂ , α̂, β̂) = argmax
N,α,β

logL(N,α, β), (14)

where L(N,α, β) is the full likelihood given by (13). N̂ is
the maximum likelihood estimator for the population size.
In the next section, we apply the above maximum likeli-
hood estimator on the Paléo measurements and compare its
performance with other existing methods.

5 RESULTS OF POPULATION SIZE ESTIMATION

5.1 Input Measurements for the Population Size Esti-
mator

For clarification purposes, we list in Table 1 the input to our
estimation model of population size, which is called a statis-
tic in usual terminology. We have the following theorem,
where proof is given in [36] because of lack of space.

Theorem 1. The input quantities in Table 1 are minimally
sufficient statistics for estimating the population size in
our model. �

Theorem 1 means that the input contains the minimally
sufficient information for estimating the population size.
In other words, any more information is irrelevant for esti-
mating N , and removing any information from the statistic
deteriorates the estimation of N based on our model.

Here we elaborate on the choice of the model for arrival
and departure times f(at, dt). As mentioned before, the
individuals’ arrival/departure times to/from the festival are
not known in general. We use three different arrival and
departure-time distributions, that we discuss below.

5.1.1 Deterministic

One extreme choice for f(at, dt) is a deterministic arrival
time and departure time for all the individuals. We choose
f1(at, dt) = δ(at)δ(dt − Tfest), where δ(·) is the Dirac
function. This distribution assumes that all the individuals
enter at the beginning of the festival (time 0) and leave at
the end of the festival (Tfest), as in the studies in [18], [37],
[38].

5.1.2 Actual Distribution

The opposite extreme choice for f(at, dt) is to use the
Bluetooth traces obtained from entrance phones to estimate
the actual distribution of f(at, dt). This information is in
general not available, but is used in our experiment for
benchmarking purposes. We computed the empirical dis-
tribution of f(at, dt), shown in Figure 2(a).

5.1.3 Low Informative

In practice, we do not have sufficiently detailed information
about arrival and departure times to estimate f(at, dt). We
assume that we have access to the first two moments of
individuals’ arrival/departure times. We then approximate
individuals’ arrival and departure times by two indepen-
dent Gaussian distributions centered at the corresponding
mean arrival and departure times with the corresponding
standard deviations (refer to Fig. 2(b)). A tuple (at, dt) is
valid if both elements fall within time period [0, Tfest] and
if dt > at.

5.2 Estimating the Population Size

For each of the three pdfs f(at, dt) described above, we
computed the maximum likelihood estimator of population
size given in (14). The result is given in Table 2. We observe
that the naive choice of deterministic arrival and departure
times gives a relatively large undershoot. The explanation
for this underestimation is that with deterministic (at, dt),
all the individuals arrive at the beginning and leave at
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• kij for i = 1, 2, . . . , S; j = 1, 2, . . . ,M (resp. k
(l)
ij for i = 1, 2, . . . , S; j = 1, 2, . . . ,M ; l = 1, 2, . . . ,K),

•

(
atAj , dtAj

)
for j = 1, 2, . . . ,M (resp.

(
atAj , dtAj

)
for j = 1, 2, . . . ,M , and agents’ trajectories),

• Individuals’ exact arrival/departure times to/from the festival, or their distribution f(at, dt) or some approximation of the
distribution.

TABLE 1
Input measurements for the population size estimator (resp. for the population size and density estimator)

Choice of f(at, dt) α̂ β̂ p̂dsc N̂ (N − N̂)/N

f1(at, dt) 1.583 1670.5 0.849 3106 6.61%

f2(at, dt) 1.868 1345.3 0.796 3311 0.45%

f3(at, dt) 1.961 1774.5 0.805 3275 1.53%

TABLE 2
Comparison of the estimated population size with the ground truth

(3326) for three different distributions of arrival/departure times.

the end of the festival, and hence the overlap time be-
tween agents and individuals is overestimated. The dis-
covering probability is overestimated, which results in an
undershoot. By using a non-deterministic f(at, dt) instead,
individuals are in contact with the agents on average for
a smaller time duration, hence the discovering probability
decreases and we have an increase in the estimated popula-
tion. We also observe that by estimating f(at, dt) from the
entrance-phone traces, we get surprisingly close to the true
value (N = 3326). This is expected as the model fits well to
the observed measurements based on Fig. 4(a) and Fig. 4(b).

We also compare our method with the capture-recapture
method described in [18], with the pattern-maximum like-
lihood (PML) method in [39], and with the method in [19].
The results are shown in Table 3; all methods exhibit an un-
dershoot, which is explained as follows. Recall that the time
duration that each individual is vulnerable to the sampling
process is random (according to his arrival and departure
time), which is not taken into account in [18]. Therefore,
the result has an undershoot similar to our method for the
choice of f1(at, dt). The method in [18] assumes uniform
sampling of the population, which is not valid in our ex-
periment and is the reason for the undershoot. We remark
that the approximation used in the estimator in [19] is not
valid for our measurements, thus we have used the exact
expression provided in [19]. PML, a nonparametric method
described in [39], gives the best result among the three. As
explained in Section 2, no method in the state of the art,
copes with the randomness both in the sampling process
and in the arrival/departure times of the actual measure-
ment setting. For comparison purposes, in particular with
respect to the effect of these additional random factors, it is
however useful to evaluate how they would perform on this
dataset.

5.3 Results of Population Size Estimation by Using a
Subset of the Information

In this section, we apply our population size estimator
to a subset of the measurements. We use the estimator
given in (14) and use the actual distribution of individuals’
arrival and departure times (f2(at, dt)). In the first part, we

Method N̂ (N − N̂)/N

PML [39] 3129 5.95%

Mth in [18] 3013 9.46%

[19] 2676 19.54%

TABLE 3
Comparison results with other estimators.
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Fig. 5. Estimated population size as a function of (a) the number of
agents and (b) the observation window length. The solid lines and the
bars show the average and the 90% confidence interval, respectively.
The dashed line shows the ground truth for the population size.

consider the measurements obtained by a subset of size m
of the agents. For each subset of size m, we consider all
the possible combinations of the agents and estimate the
population size for each combination of m agents. The av-
erage estimated population sizes and their 90% confidence
intervals for all the combinations of size m are shown in
Figure 5(a) for m = 5, 6, . . . , 10. In the second part, we
consider the measurements obtained by all agents during
an observation window of length w smaller than the festival
duration. Consider the agents’ arrival and departure times
shown in Figure 3(a); the observation window starting from
the moment when the first agent arrives at the festival
(17h09 for agent 5), until the moment when the last agent
departs from the festival (4h01 for agent 1) is approximately
11 hours. We partition this interval into slots 10-minutes in
length. For an observation window of length w, we consider
all the consecutive 10-minute slots with total length w, and
we estimate the population size based on the measure-
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ments obtained during these slots. The average estimated
population sizes and their 90% confidence intervals are
shown in Figure 5(b) for w = 4, 5, . . . , 11 hours. Note that
for the right-most point in both figures, there is only one
estimate for the population size, specifically, the one based
on the entire measurements. Thus, the calculated confidence
interval is zero when m = 10 (Figure 5(a)) and w = 11
hours (Figure 5(b)). We observe that as the number of agents
decreases, the averaged estimated population size increases.
In [36] we have plotted the average and the 90% confidence
intervals of the number of discovered individuals (S) as
functions of m and w.

5.4 Estimating the Total Number of Attendees

Remember that N in (14) is the number of attendees who
carry visible (i.e., discoverable) Bluetooth devices. In order
to estimate the entire number of attendees (with or without
a visible Bluetooth device), the ratio of attendees who carry
visible Bluetooth devices needs to be estimated. One way to
estimate this ratio is to compare visual counts of attendees
entering the gates with the number of discovered Bluetooth
devices during the same period. Several of these counts can
be performed at different time periods and the resulting
ratios averaged [15]. The same idea is used in the works
of [40], [41] to propose techniques to estimate the ratio of
discovered Bluetooth devices.

Let NTot be the total number of attendees and let r be the
ratio of attendees carrying visible Bluetooth devices, i.e., r =
N/NTot. Recall from Section 3.2.1 that in our experiment,

NTot = 40, 536 and r = 0.082. Let N̂ = N(1 + ∆N) and
r̂ = r(1 + ∆r) be the estimates for N and r, respectively,
with relative errors equal to ∆N and ∆r. We have

N̂Tot =
N̂

r̂
=

N(1 + ∆N)

r(1 + ∆r)
. (15)

If |∆N | ≪ 1 and |∆r| ≪ 1 then, N̂Tot ≈ NTot(1 +
∆N −∆r), which means that in the worst case, the relative
error in estimating the total number NTot of attendees is
approximately equal to the sum of the relative errors ∆N
and ∆r in estimating N and r. Hence, in a setting where ∆r
is relatively small (e.g., smaller than 20%), the choice of N̂
in Tables 2 and 3 has a measurable impact on the final error

in estimating N̂Tot. For instance, in [41] the authors estimate
the ratio of visible Buetooth devices carried by pedestrians
in a high-traffic area that is similar to the entrance gates
at Paléo. They report a 9.2% visibility ratio with a relative
error of about 20%. Under such a setting, the relative error

in estimating N̂Tot in (15) by using f3 and f1 in Table 3
would be 21.5% and 26.7%, respectively.

Although estimating the entire population size of atten-
dees requires the knowledge of r, some population charac-
teristics, such as the relative density of attendees at different
locations, scales linearly with the size of the subset of visible
Bluetooth devices. Hence, studying this subset of attendees
gives us insight into the behavior of the entire population.
This is the topic of the next section.

6 JOINT POPULATION SIZE/DENSITY ESTIMATION

In this section, we extend our population size estimation
model to the joint-estimation model of population size

and density. Recall that the agents’ phones also record
GPS positions; hence the approximate locations where the
agents contact the individuals are known. Nevertheless,
our population size estimation model does not differentiate
among the locations where the individuals are contacted
by the agents; the algorithm only processes the number
of times that the agents contact the individuals. In other
words, the information of the exact location where an agent
contacts an individual is not relevant for estimating the
population size. However, as we approximate the locations
where individuals are contacted, we are able to use this
extra information to infer the spatial density of different
locations. For example, consider the case where most of the
contacts happen in a small subset of the locations; in this
case, we can conclude that locations in this subset are more
popular than the rest of the locations. In this section, we
present a model that takes into account the location where
the individuals are contacted by the agents in order to jointly
estimate population size and density. Our idea is to split the
contact rates of the individuals into a set of location-dependent
contact rates. Before describing the model in more detail, we
introduce a new notation.

We partition the area of interest (e.g., the festival area)
into K locations S1, S2, . . . , SK , which determines the gran-
ularity of the density estimation. Consider a density (pop-
ularity) vector π

∗ = [π∗(1), π∗(2), . . . , π∗(K)], where the
non-negative density value of π∗(l) is associated with lo-
cation l for l = 1, 2, . . . ,K , such that

∑
l π

∗(l) = 1. We
later elaborate on what these density values represent. We

denote by k
(l)
ij the total number of times that agent j contacts

individual i in location l; this value can be computed using

the agents’ trajectories. The random variable k
(l)
i denotes

the total number of times that individual i is contacted
in location l; k

(l)
i =

∑M
j=1 k

(l)
ij . We denote by t

j,(l)
ati,dti

the
overlap time between individual i’s presence at the area of
interest (the individual could be in any location) and agent

j’s presence in location l; tjati,dti =
∑K

l=1 t
j,(l)
ati,dti

.

6.1 Model Assumptions

Our joint-estimation model of population size and density
is based on these assumptions:

• Poisson contacts: The number k
(l)
ij of times that agent

j contacts individual i in location l is Poisson dis-

tributed with mean equal to λ
(l)
i t

j,(l)
ati,dti

, where λ
(l)
i is

the contact rate of individual i for location l,
• Independence: The random variable k

(l)
ij for the

triplet of individual i, agent j, and location l is inde-
pendent from that for all other triplets of individuals,
agents, and locations.

In this model, in contrast with our previous model for
population size estimation, we differentiate among the lo-
cations where an agent contacts an individual. Parameter

λ
(l)
i represents how easily the individual puts himself in a

contactable position in location l:

k
(l)
ij ∼ Poisson

(
λi

(l) · t
j,(l)
ati,dti

)
. (16)

Parameter t
j,(l)
ati,dti

is a function of agent j’s trajectory
and individual i’s arrival/departure times to/from the
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area of interest. Consequently, if individual i’s exact ar-
rival/departure times are known, then the exact value of

t
j,(l)
ati,dti

can be calculated. Otherwise, if only the distribution
for individual i’s arrival/departure times is known, then the

distribution of t
j,(l)
ati,dti

can be computed.
Regarding the contact rates, we assume that for every

individual i, λ
(l)
i is drawn independently from all other

contact rates from a Gamma distribution with unknown
parameters α(l) and β. To take into account the density of
each location, we modulate the parameter α(l) for location l
with π∗(l) as follows. We assume that α(l) = απ∗(l); α, β,
N , and π

∗ are unknown constants similar to the population
size estimation model. This particular choice of the prior

for the contact rates guarantees that λi =
∑K

l=1 λ
(l)
i has a

Gamma distribution with parameters α and β. Hence, we
split the contact rate of every individual i into location-

dependent contact rates λ
(l)
i . If location l is a popular lo-

cation, then individuals spend on average more time in that
location. Consequently, the contact rates for the individuals
in location l will be larger than other locations (because there
is a higher chance of contacting individuals in location l, as
they spend more time there). This will be reflected in the
estimated Gamma distribution for location l by having a
large value of α(l), which means a large value of π∗(l), and
thus a large popularity for the location.

6.2 Likelihood Function

The likelihood function of the joint-estimation model of
population size and density is obtained by a similar rea-
soning as in Section 4.3, and reads [36]:

L =

(
N

N − S

)
1− E(at,dt)




K∏

l=1


 β

β +
∑M

j=1 t
j,(l)
at,dt




α(l)





N−S

×
S∏

i=1

E(at,dt)




K∏

l=1

βα(l)

Γ
(
α(l) + k

(l)
i

)

Γ(α(l))
(
β +

∑M
j=1 t

j,(l)
at,dt

)α(l)+k
(l)
i

×
M∏

j=1

(
t
j,(l)
at,dt

)k(l)
ij

k
(l)
ij !


 .

(17)
The above likelihood function is maximized in order to
obtain the maximum likelihood estimates of the parameters
N , α(l) for l = 1, 2, . . . ,K , and β. The maximum likelihood
estimate for the spatial density π∗(l) of location l will then
be equal to α(l)/

∑
j α

(j). Note that maximizing the above
likelihood function is performed over K+2 parameters (N ,
α(1), α(2), . . . , α(K), β), whereas in the case of population
size estimation (Eq. (13)), it is performed over 3 parameters
(N , α, β).

7 RESULTS OF JOINT POPULATION SIZE AND

DENSITY ESTIMATION

7.1 Input Measurements for the Joint Estimator of Pop-
ulation Size and Density

We list in Table 1 the input to our joint-estimation model of
population size and density. Similar to Theorem 1, we have

Fig. 6. Reconstructed relative spatial density (i.e., π∗ defined in Sec-
tion 6) at Paléo.

the following theorem; the proof is given in [36].

Theorem 2. The input quantities in Table 1 are the minimally
sufficient statistics for jointly estimating the population
size and density in our model. �

This means that based on our model, any more information
is irrelevant for estimating N and π

∗, and removing any
information from the input will deteriorate estimation of N
and π

∗.

7.2 Result on the Pal éo Dataset

Here we apply our joint-estimation model of population size
and density to the Paléo dataset. In order to estimate the spa-
tial density at the Paléo music festival, we partition the area
into K locations. Using the GPS traces of the agents, we can
reconstruct their trajectory and determine the time duration
that each agent spends in every location. Then by processing
agents’ Bluetooth measurements, we can determine the loca-
tion where each contact occurs. This will give us the values

of k
(l)
ij , for l = 1, . . . ,K , j = 1, . . . ,M , and i = 1, . . . , S.

We partition the festival area into squares of approximate
size 15m× 15m, which is comparable with communication
range of Bluetooth; this gives us K = 1200 locations. We
use the actual arrival/departure time distribution of the
individuals in our computation. The maximum likelihood
estimate of the population size is equal to 3062, which has
7.93% undershoot. The maximum likelihood estimate of the
density after being smoothed by a low-pass Gaussian filter
is shown in Figure 6.

The error in the estimated population size is larger than
the errors in Table 2. One reason for the larger error is that
here we are estimating many more parameters than before
(K + 2 = 1202 versus 3), and the additional estimation of
density parameters introduces error in the estimation of the
population size. However, the error is still small compared
to the values in Table 3. Although the Poisson-Gamma
model succeeds in modeling the mixing that happens globally
on the festival grounds when it is considered as one location,
it fails to model the mixing that happens locally inside
every location when the festival is partitioned. Regarding
the estimated density, contrary to the population size, we
do not have the ground truth of the density. Nevertheless,
the estimated density shown in Figure 6 matches well with
the popular locations of the event.
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Dataset
Population
size ground

truth

Spatial
density

ground truth

Agents
type

Comm.
technology

Paléo available not available real Bluetooth

EPFL available available simulated Wi-Fi

TABLE 4
The properties of the datasets used in the experiments.

8 RESULT ON THE EPFL CAMPUS WI-FI DATASET

So far we applied our estimators of population size and den-
sity to the Paléo measurements, for which only the ground
truth of population is known. In this section, we estimate the
population size and spatial density of people on the École
Polytechnique Fédérale de Lausanne (EPFL) campus. In
contrast to the Paléo measurements, these measurements are
obtained using Wi-Fi technology, and both ground truths of
population size and density are known. Table 4 summarizes
the properties of the datasets used in our experiments.

8.1 Dataset Description

We consider the EPFL campus, which consists of several
buildings and hundreds of wireless access points (APs).
The main wireless network on the campus requires au-
thentication, and can thus be accessed only by members
of the university (students, faculty, etc.). The history of
connections of the users to the network is recorded in the
following way: Whenever a device (user) connects to the
network, its (anonymized) MAC address, the time of start
of the connection, and the identification (ID) of the AP to
which it connects are stored in a log file (with a precision
to the second). Moreover, when the device moves across
the campus and gets connected (roamed) to a new AP,
the time of this new connection and the ID of the AP are
similarly stored. However, a device that loses its connection
or disconnects, does not lead to the storage of any entry
in the log file. Wireless network administrators of EPFL
provided us with a log file for one weekday.

8.2 Preprocessing of the Data

We want to reconstruct the trajectories of all the users on the
campus by using the log file. There are two main sources of
error: First, all the wireless devices (laptops, smart-phones,
etc.), connected at any time to the network, appear in the
log file; therefore, if a user does not connect his device to the
network, or does not carry the device everywhere he goes,
his true trajectory cannot be reconstructed. Second, when-
ever a user leaves the campus (disconnects), the time of
disconnection is unknown. To compensate for these sources
of error, we consider only devices that arrive and depart
within the time period between 6h00 and 24h00. In addition,
we assume that a device remains connected to the same AP
until the time when it is connected to a new AP (based on
the log file entries). When a device is connected to an AP,
it stays in the communication range of the AP (typically 50-
100 m), specifically, in the access point’s vicinity. We discard
the last connection of each device, because we do not know
when it terminates.

In summary, we assume that the arrival and departure
times of a user to (from) the campus are equal to the first

(respectively, the last) connection time associated with the
user inside the log file. This will allow us to approximate
users’ trajectories at an access-point level of granularity.
Although the reconstructed trajectories are affected by the
above mentioned sources of error, they are reconstructed
based on actual wireless connection logs. The empirical
marginal distributions of the users’ arrival times, departure
times, and durations of stay on the campus are shown
in [36]. The average and the 90% confidence interval of
the users’ arrival times are 10h37 and [7h35, 14h36], respec-
tively. The respective values for the users’ departure times
are equal to 17h29 and [11h51, 22h14]. The average (the 90%
confidence interval) of users’ duration of stay on the campus
is equal to 412.2 min (respectively, [30.2 min, 669.6 min]).

8.3 Experiment Description

After applying the above preprocessing, 5834 devices re-
main for which we reconstruct the trajectories at an access-
point level of granularity. Thus the ground truth for pop-
ulation size is N = 5834 individuals (users). For our
experiment, we assume campus security personnel to act as
our M agents, and we simulate their trajectories as follows.
Every agent arrives at 6h00 at departs at 24h00. During her
stay on the campus she visits different buildings uniformly
at random, and the sequence of her durations of stay in
each building is drawn i.i.d. from a Gaussian distribution
with 1-hour mean and 10-minute standard deviation (more
precisely, the distribution is a truncated Gaussian that re-
moves negative values). We further assume that when an
agent enters a building, she goes through every floor of the
building consecutively from the bottom floor to the top floor.
She then visits every AP inside each floor of the building in
a random order, and she equally spreads her staying time in
the building among all its APs. By visiting an AP we mean
that the agent stays in the vicinity of that AP. We consider
an agent to be in contact with an individual whenever they
are both located in the vicinity of the same AP. To obtain
building-level granularity we further process the trajectories
by aggregating the access points within each building of the
campus. This means that an individual and an agent who
are inside the same building, are in contact with each other
when they are in the vicinity of the same access point. The
campus has 21 main buildings that, in total, consist of 680
access points, thus K = 21 in our experiment. To compute
the ground truth for spatial density we proceed as follows.
Let τ (l)(i) be the duration of time that individual i spends in
location (building) l; then the (relative) spatial density of lo-

cation l is equal to π∗(l) =
∑N

i=1 τ
(l)(i)/

∑K
j=1

∑N
i=1 τ

(j)(i).

8.4 Assumption Verification

We proceed similarly as in Section 4.2.1 by first verifying our
Poisson-Gamma assumption of contacts on this dataset. We
set M = 7 agents and simulate their trajectories. The agents
are able to discover S = 4801 out of the N = 5834 individu-
als, which corresponds to 82.3% of the total population. The
solid curve in Figure 7 shows the empirical distribution of
the observed number of contacts of the discovered individ-
uals (note that the curves correspond to the particular ob-
tained measurements). The dashed curve in Figure 7 shows
the analytical distribution of the number of contacts, based
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Fig. 7. The goodness of fit of truncated Poisson-Gamma distribution in
the EPFL dataset.

on the truncated Poisson-Gamma fit to the measurements.
We observe that our Poisson-Gamma model fits well the
observed measurements, similar to the Paléo dataset (refer
to Figures 4(a) and 4(b)), although the two datasets are of
different nature: one is based on Bluetooth traces and the
other on those of Wi-Fi. In particular, Pearson’s chi-squared
test for the equality of the two distributions gives a p-value
of 0.41, which verifies the good fit.

8.5 Estimation of Population Size and Spatial Density

In our experiments, we perform 1000 iterations, where at
each iteration we simulate trajectories for M = 7 agents.
Similarly as for the Paléo dataset, we use three different
arrival/departure time distributions: (i) the estimated actual
distribution (refer to Section 8.2 for an explanation), (ii)
a deterministic choice where every individual arrives at
6h00 at departs at 24h00 (similar to the agents), and (iii) a
low informative choice, where we approximate individuals’
arrival and departure times by two independent Gaussian
distributions centered at the corresponding mean arrival
and departure times with the corresponding standard de-
viations; a tuple (at, dt) is valid if both elements fall within
time period 6h00− 24h00 and if dt > at.

The average and 90% confidence intervals of various
quantities are shown in Figure 8. The dashed line shows
the ground truth for population size N = 5834. The left-
most value is the number of discovered individuals (S); on
average the agents discover 83.2% of the population. The
second, the third, and the fourth values are, respectively,
the estimated population sizes using the estimated actual

distribution (N̂f4 ), the deterministic choice (N̂f5 ), and the

low informative choice (N̂f6 ). Similarly to the results on
the Paléo dataset (refer to Tables 2 and 3), estimating the
population size by using the actual arrival/departure times
distribution gives the best result among the three, whereas
the deterministic choice of arrival/departure times gives
a considerable undershoot. The fifth value is the result of
the capture-recapture method Mth described in [18]; the
obtained result exhibits an undershoot similar to the Paléo
dataset. We also perform experiments by varying the num-
ber of agents and agents’ arrival/departure times (similar
to Section 5.3 for the Paléo dataset). The observed behaviors
are similar to those for the Paléo dataset; due to lack of
space, the results are shown in [36].

In our second experiment, at each of the 1000 iterations,
we jointly estimate population size and density by using
the estimated actual arrival/departure time distribution and
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Fig. 8. Population size estimates at EPFL campus. The solid line and
the bars, respectively, show the estimated average and 90% confidence
intervals of various quantities (refer to Section 8.5).
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Fig. 9. Spatial density estimation at EPFL campus. The solid line and
the bars show the estimated average and 90% confidence intervals,
respectively. The dashed line shows the ground truth.

also the low informative choice. The two rightmost values in
Figure 8 show, respectively, the result for the population size

using the estimated actual distribution (N̂J
f4

) and the low

informative choice (N̂J
f6

). Similarly to Section 7.2, the error

in N̂J
f4

is larger than that in N̂f4 , but it is still much less than

that of N̂Mth
and N̂f5 . The dashed curve in Figure 9 shows

the estimated ground truth for spatial density, sorted in de-
creasing order of popularity. The average and the 90% con-
fidence interval of the estimated spatial density, using the
low informative choice for individuals’ arrival/departure
times, for each location is shown by solid curve in Figure 9.
We observe that the average estimated spatial density of
every location is very close to the ground truth, and that
the ground truth falls within the 90% confidence interval.
Figure 10 shows the reconstructed two dimensional heatmap
for the ground truth of density and the estimated density
at EPFL campus, at an access-point level of granularity.
Here the estimated density is the average estimated density
across all iterations (the solid curve in Figure 9), where we
divide the density of every building uniformly among all of
its APs.

9 CONCLUSION

In this paper we have introduced a novel application that
exploits the opportunistic contacts between mobile devices:
we estimate population size and density by using mobile de-
vices to sample a population. In order to test the feasibility
of this method, we conducted an experiment at Paléo Music
Festival. We derived a model to estimate the population of
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(a) (b)

Fig. 10. EPFL Campus: Two dimensional heatmap of (a) the ground
truth of density, and (b) the average estimated density (the solid curve
in Figure 9). The densities are reconstructed at an access-point level of
granularity.

people who carry visible Bluetooth devices, by optimally
using all the available information. The resulting estimate
of population size is surprisingly close to the ground truth,
even with a small number of agents. We observed that by
considering the contact patterns instead of the detection
patterns the quality of the estimation improves. We also
observed the importance of taking into account the random
exposure times during which the individuals are vulnerable
to the sampling process. We then extended the model to
obtain joint estimation of population size and density, and
applied it on both the Paléo traces and real datasets of Wi-Fi
contacts over a University campus.

Although having an estimate for the number of people
requires the knowledge of the ratio of visible Bluetooth
devices, some population characteristics, such as the relative
density of people in different time periods or in different
locations within the area of interest, scale linearly with the
size of the subset of visible Bluetooth devices. Therefore, the
method can be used to study such population characteris-
tics. Some open questions still remain. For example, what
kind of mobility models result in contact processes that
can provably be modeled with a Poisson-Gamma model?
Is it better to have a large number M of agents over a
short period of time T , or vice-versa? Our future work will
focus also on better understanding the difference between
the joint and the separate estimation of population size and
density; for example, knowing the population size can there
be other estimators, such as nonparametric estimators, of
spatial density?
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