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Abstract. In this work we deal with a stochastic optimal Robin boundary control problem
constrained by an advection-dffusion-reaction elliptic equation with advection-dominated term. We
assume that the uncertainty comes from the advection filed and consider a stochastic Robin boundary
condition as control function. A stochastic saddle point system is formulated and proved to be
equivalent to the first order optimality system for the optimal control problem, based on which we
provide the existence and uniqueness of the optimal solution as well as some results on stochastic
regularity with respect to the random variables. Stabilized finite element approximations in physical
space and collocation approximations in stochastic space are applied to discretize the optimality
system. A global error estimate in the product of physical space and stochastic space for the numerical
approximation is derived. Illustrative numerical experiments are provided.

Keywords. stochastic optimal Robin boundary control, saddle point formulation, stochastic
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1 Introduction

Design and optimization of physical and engineering systems can be formulated as optimal control
problems. The latter usually aim at the determination of the forces or boundary conditions in a system
of partial differential equations, through the minimization of suitable objective or cost functionals.
Deterministic optimal control problems constrained by partial differential equations have been well
developed and investigated for several decades (see, e.g., [21, 14, 29]), while the development of
stochastic optimal control problem constrained by stochastic partial differential equations can still be
considered to be in its infancy, see the very recent work of [18, 15, 26]. In [18], stochastic optimal control
problem constrained by stochastic steady diffusion problem with deterministic distributed control
function is introduced and an error estimate for the Galerkin approximation of the optimality system in
both physical space and stochastic space is provided. The work [15] deals with deterministic Neumann
boundary control with error estimate for the same numerical approximation based on stochastic steady
diffusion problem. The existence of a local optimal solution has also been demonstrated. However,
the global existence as well as uniqueness of the optimal solution remain to be investigated. In [26],
numerical experiments are conducted with ‘pure’ stochastic control function as well as ‘semi’ stochastic
control function for an optimal control problem constrained by stochastic steady diffusion problem.
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In this work, a stochastic Robin optimal control problem constrained by an advection-diffusion-
reaction equation with advection-dominated term is studied. In order to analyze the existence and
uniqueness of the optimal solution as well as the convergence of numerical approximation, saddle point
formulation for linear-quadratic type of optimal control problem in the deterministic case has been
developed and fully analyzed [5, 8]. We take advantage of this formulation in the stochastic Robin
optimal control problem to study the theoretical properties of the optimal solution and the numerical
properties of approximation in both physical and stochastic spaces. We first derive a stochastic saddle-
point system [8, 5] and prove that it is equivalent to the first order optimality system for the stochastic
Robin boundary control problem. The global existence and uniqueness of the optimal solution is
obtained via Brezzi’s theorem [7] for the saddle point formulation. Moreover, the optimal solution of
the stochastic saddle-point system is proven to depend regularly on the random variables. Thanks
to this regularity, we are able to use stochastic collocation approximation [2] for the discretization
of random variables and obtain a priori error estimate of the numerical approximation. As for the
discretization of the physical domain, we apply stabilized finite element approximation [25, 17, 16]
and provide a priori error estimate. Based on these two approximations, a global error estimate for
their combination is derived. Finally, we verify the correctness of the theoretical error estimates by
numerical experiments in both low (of order O(1)) and high (of order O(100)) stochastic dimensions.

In section 2, the stochastic Robin boundary control problem constrained by a stochastic advection
dominated elliptic equation is introduced. We derive the stochastic saddle point system and prove
it to be equivalent to the optimality system. In the following section 3, the stochastic regularity of
the solution is obtained by applying Brezzi’s theorem for saddle point system recursively. Section 4 is
attributed to the stabilized finite element approximation in physical space and stochastic collocation
approximation in stochastic space as well as the error estimates of these approximations, followed by
section 5 with numerical experiments of the approximation. Some concluding remarks are given in
the last section 6.

2 Stochastic Robin boundary control problem

2.1 Problem definition

We denote a complete probability space by (Ω,F , P ), where Ω is a set of outcomes ω ∈ Ω, F is
σ-algebra of events and P assigns probabilities to the events as P : F → (0, 1) with P (Ω) = 1
[13]. D represents an open and bounded physical domain in Rd (d = 2, 3) with Lipschitz continuous
boundary ∂D. For a stochastic function defined in D × Ω, we introduce the stochastic Hilbert space
L2(Ω;L2(D)), or L2(D) by calligraphic letter for convenience [18], equipped with the norm

||v||L2(D) =

(∫
Ω

∫
D

v2dxdP

)1/2

<∞,

Similarly, we denote L2(∂D) ≡ L2(Ω;L2(∂D)) and Hs(D) ≡ L2(Ω;Hs(D)) for s ≥ 0.
Our stochastic Robin boundary control consists in finding a stochastic Robin boundary condition

g ∈ L2(∂D) in order to minimize the following quadratic cost functional

J (u, g) :=
1

2
||u− ud||2L2(D) +

α

2
||g||2L2(∂D) (2.1)

constrained by the stochastic elliptic problem featuring a stochastic advection-dominated term{
−∇ · (a(x)∇u(x, ω)) + b(x, ω) · ∇u(x, ω) + c(x)u(x, ω) = f(x) in D × Ω,

a(x)∇u(x, ω) · n + k(x)u(x, ω) = g(x, ω) on ∂D × Ω,
(2.2)

where ud ∈ L2(D) is the observation, α > 0 is a regularization coefficient, a, b, c are the diffusion,
advection and reaction coefficients, respectively, f is a force term, k is Robin coefficient and n is the
unit outward normal direction along the boundary. We make the following assumptions for a, b, c, k
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Assumption 1 The uncertainty is presented on the advection-dominated term through the random

coefficient b : D×Ω→ Rd, which satisfies b ∈
(
L∞(D̄)

)d
,∇ · b(x, ω) ∈ L∞(D) and can be written as

a linear function of finite random variables by, e.g., truncation of Karhunen-Loève expansion [27],

b(x, ω) = b0(x) +

N∑
n=1

bn(x)yn(ω), (2.3)

where yn : Ω→ Γn, n = 1, . . . , N are uncorrelated and have zero mean and unit variance.

Assumption 2 There exist positive constants 0 < r < R <∞ such that the diffusion coefficient

r < a(x) < R a.e. in D̄. (2.4)

As customary, a.e stands for almost everywhere, meaning everywhere except for possible set with zero

measure, and D̄ = D ∪ ∂D. Moreover, we assume that c ∈ L∞(D̄), f ∈ L2(D), k ∈ L2(∂D) as well

as the relations

− 1

2
∇ · b(x, ω) + c(x) ≥ r′ > 0 a.e. in D × Ω, with r′ < r, (2.5)

and

k(x) +
1

2
b(x, ω) · n(x) ≥ 0 a.e. on ∂D × Ω. (2.6)

Let us introduce the bilinear form B(·, ·) : H1(D)×H1(D)→ R, defined as

B(u, v) := (a∇u,∇v) + (b · ∇u, v) + (cu, v) + (ku, v)∂D

≡
∫

Ω

∫
D

a∇u · ∇vdxdP +

∫
Ω

∫
D

(b · ∇u)vdxdP +

∫
Ω

∫
D

cuvdxdP +

∫
Ω

∫
∂D

kuvdγdP,
(2.7)

and the linear functional F(·) : H1(D)→ R defined as

F(v) := (f, v) + (g, v)∂D ≡
∫

Ω

∫
D

fvdxdP +

∫
Ω

∫
∂D

gvdγdP, (2.8)

then the weak formulation of problem (2.2) can be written as

B(u, v) = F(v), ∀v ∈ H1(D). (2.9)

Theorem 2.1 Provided that all the data satisfy Assumption 1 and Assumption 2, we have that there

exists a unique solution u ∈ H1(D) to problem (2.2), and for a suitable constant C, it holds

||u||H1(D) ≤ C
(
||f ||L2(D) + ||g||L2(∂D)

)
. (2.10)

The proof follows the same lines as in the deterministic case [25] and is omitted here for simplicity.

2.2 Stochastic saddle point formulation

We apply Lagrangian approach for the derivation of an optimality system to solve optimal control
problem (2.1) subject to the constraint (2.9). The Lagrangian functional is defined as [29]

L(u, g, p) = J (u, g) + B(u, p)−F(p), (2.11)

where p is the Lagrangian multiplier or adjoint variable in H1(D).
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Lemma 2.2 The first-order necessary optimality conditions of the Robin boundary control problem is

equivalent to the following stochastic optimality system: to find u ∈ H1(D), p ∈ H1(D), g ∈ L2(∂D),

s.t.


B(u, ũ) = F(ũ) ∀ũ ∈ H1(D),

B′(p, p̃) = (ud − u, p̃) ∀p̃ ∈ H1(D),

α(g, g̃)∂D = (p, g̃)∂D ∀g̃ ∈ L2(∂D),

(2.12)

where B′(p, p̃) = B(p̃, p) is the adjoint bilinear form.

The stochastic optimality system (2.12) is obtained by taking Gâteaux or directional derivative of
the Lagrangian functional with respective to the variables p, u and g respectively, and setting them
to be zero, which employs the same procedure as in the deterministic case, see [20] for instance.
This optimality system has also been studied in [18, 15, 26], with only local existence of the optimal
solution obtained. In the following, we derive a stochastic saddle point formulation of the optimal
control problem (2.1) and demonstrate the global existence and uniqueness of the optimal solution.

First of all, let us introduce new variables u = (u, g) ∈ U and v = (v, h) ∈ U , where the stochastic
tensor product space U = H1(D)×L2(∂D) is equipped with the norm ||u||U = ||u||H1(D) + ||g||L2(∂D).
Define a bilinear form A(·, ·) : U × U → R

A(u, v) := (u, v) + α(g, h)∂D ∀u, v ∈ U , (2.13)

which is related to the cost functional (2.1) as follows,

J (u, g) =
1

2
A(u, u)− (ud, u) +

1

2
(ud, ud). (2.14)

Write ud = (ud, 0) ∈ U as the new observation variable, we have the equivalence (ud, u) = (ud, u), so
that minimizing the cost functional (2.1) is not different, up to a constant (ud, ud)/2, than minimizing
the following cost functional (still denoted by J )

J (u) :=
1

2
A(u, u)− (ud, u). (2.15)

Furthermore, introduce the affine form by slight abuse of notation B(·, ·) : U ×H1(D)→ R

B(u, q) := B(u, q)− (g, q)∂D, ∀u ∈ U ,∀q ∈ H1(D). (2.16)

By this new definition, we have the following minimization problem equivalent to the original one of
minimizing the cost functional (2.1) subject to the stochastic constraint (2.9), which is min

u∈Uad
J (u) =

1

2
A(u, u)− (ud, u),

s.t. B(u, q) = (f, q), ∀q ∈ H1(D).
(2.17)

Moreover, the equivalence between minimization problem (2.17) and the saddle point problem

to find (u, p) ∈ U ×H1(D), s.t.

{
A(u, v) + B(v, p) = (ud, v), ∀v ∈ U ,

B(u, q) = (f, q), ∀q ∈ H1(D).
(2.18)

is established by the following proposition extended from deterministic case to the stochastic case

Proposition 2.3 [5, 8] Assume that the bilinear form A is symmetric, continuous, non-negative and

strongly coercive on the kernel space U0 := {∃u ∈ U : B(u, q) = 0 ∀ q ∈ H1(D)}. Assume also that

the bilinear form B is continuous and satisfies the compatibility condition (inf-sup condition) (2.22).
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Then the minimization problem (2.17) and the saddle point formulation (2.18) are equivalent.

From the above proposition, we immediately obtain the following lemma:

Lemma 2.4 The minimization problem (2.1) subject to the stochastic problem (2.9) is equivalent to

the saddle point problem (2.18).

Proof We only need to verify the assumptions in Proposition 2.3. By definition (2.13), we have
A(u, v) = A(u, v) and A(u, u) ≥ 0 so that A is symmetric and non-negative. The continuity of A on
U × U is evident with the following estimate

A(u, v) ≤ ||u||H1(D)||v||H1(D) + α||g||L2(∂D)||h||L2(∂D) ≤ Cα||u||U ||v||U , (2.19)

where Cα is a constant depending on α. On U0, we have B(u, q) = 0 so that B(u, q) = (g, q)∂D, ∀ q ∈
H1(D). Hence, it holds by Lax-Milgram theorem that ||u||H1(D) ≤ R′/r′||g||L2(∂D). With this esti-
mate, the coercivity of A follows:

A(u, u) = ||u||2L2(D) + α||g||2L2(∂D) ≥
αr′2

2R′2
||u||H1(D) +

α

2
||g||2L2(∂D) ≥

αr′2

2R′2
||u||U . (2.20)

As for the continuity of the bilinear form B on U ×H1(D), we have by definition (2.16) that

B(u, q) ≤ R′||u||H1(D)||q||H1(D) + ||g||L2(∂D)||q||L2(∂D) ≤ max(R′, 1)||u||U ||q||H1(D). (2.21)

The compatibility (inf-sup) condition of B on U ×H1(D) is shown by the following estimate

sup
06=v∈U

B(v, q)

||v||U
= sup

06=(v,h)∈U

B(v, q)− (h, q)∂D
||v||H1(D) + ||h||L2(∂D)

≥ sup
(v,0)∈U

B(v, q)

||v||H1(D)
≥ r′||q||H1(D). (2.22)

�

Thanks to the equivalence between the original minimization problem and the saddle point formu-
lation established in Lemma 2.4, we can also obtain the global existence of a unique solution to the
minimization problem, according to the following Brezzi’s theorem for saddle point problem (2.18)
(for the proof, see e.g. [7] or [25]).

Theorem 2.5 (Brezzi) Provided that the assumptions in Lemma 2.4 are satisfied, the saddle point

problem (2.18) admits a unique solution (u, p) ∈ U ×H1(D) or (u, g, p) ∈ H1(D)×L2(∂D)×H1(D).

Further more, we have the following estimate

||u||U ≤ α1||ud||L2(D) + β1||f ||L2(D),

||p||H1(D) ≤ α2||ud||L2(D) + β2||f ||L2(D).

(2.23)

where

α1 =
2R′2

αr′2
, β1 =

αr′2 + 2R′2

αr′3
, α2 =

2R′2 + αr′2

αr′3
, β2 =

αr′2 + 2R′2

αr′4
. (2.24)

Lemma 2.6 The saddle point problem (2.18) is equivalent to The optimality system (2.12).

Proof (2.18) amounts to find (u, g, p) ∈ H1(D)× L2(∂D)×H1(D), such that{
(u, v) + α(g, h)∂D + B(v, p)− (h, p)∂D = (ud, v), ∀v ∈ H1(D),∀h ∈ L2(∂D),

B(u, q)− (g, q)∂D = (f, q), ∀q ∈ H1(D).
(2.25)

As we can observe, (2.25)2 coincides with the state equation (2.12)1. Moreover, we can recover the
adjoint equation (2.12)2 by setting h = 0 in (2.25)1 (notice B(v, p) = B′(p, v)) and the optimality
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condition (2.12)3 by setting v = 0 in (2.25)1. Conversely, (2.25)1 is retrieved by adding (2.12)2 and
(2.12)3.

�

Remark 2.1 Lemma 2.4 and 2.6 establish the equivalence between the minimization problem (2.1)

subject to the stochastic problem (2.9), the saddle point problem (2.18), and the optimality system

(2.12). In particular, the optimality system also admits a unique global optimal solution (2.1) accord-

ing to Theorem 2.5. Moreover, other properties for the saddle point problem are also shared by the

optimality system, in particular, the regularity properties of the optimal solution.

3 Stochastic regularity

The convergence properties of the numerical approximation to the stochastic optimality system (2.12)
(or to the stochastic saddle point problem (2.18)) in the stochastic space are determined by the
regularity of the stochastic solution (u, g, p) or (u, p) and the choice of the approximation scheme. Since
(2.12) is equivalent to (2.18) by Lemma 2.6, we only need to study the regularity of the stochastic
solution to the latter with respect to the random variables y = (y1, y2, . . . , yN ) ∈ Γ. Our results
are provided in Theorem 3.1, whose proof is based on recursively applying Brezzi’s Theorem 2.5 in
high dimensional stochastic space, adopting similar approach as in [10]. An analytical extension of
the solution to a certain complex domain is obtained as a consequence to this theorem in Corollary
3.2, whose proof follows using Taylor expansion and Newton binomial formula together with several
elementary inequalities extended in high dimensional stochastic space.

Theorem 3.1 Holding the assumptions in Theorem 2.1 and Theorem 2.5, we can estimate the partial

derivative of the solution to the stochastic saddle point problem (2.18) with respect to the variables

y = (y1, . . . , yN ) as follows: for all ν = (ν1, . . . , νN ) ∈ NN ,

||∂νyu(y)||U ≤
∑

0�µ�ν

C
u,ud
ν−µ |ν − µ|!||b||

ν−µ
(L∞(D))d

||∂µy ud(y)||L2(D) + Cu,fν |ν|!||b||ν(L∞(D))d ||f ||L2(D), (3.1)

while for the adjoint variable we obtain the estimate

||∂νyp(y)||H1(D) ≤
∑

0�µ�ν

Cp,udν−µ |ν − µ|!||b||
ν−µ
(L∞(D))d

||∂µy ud(y)||L2(D) + Cp,fν |ν|!||b||ν(L∞(D))d ||f ||L2(D).

(3.2)

Here, µ � ν means that µn ≤ νn,∀n = 1, 2, . . . , N , and the constant C
u,ud
ν−µ = C

u,ud
ν−µ (α1, α2, β1, β2) is

the sum of 2|ν−µ| basic elements in the form of αn1
1 αn2

2 βm1
1 βm2

2 such that n1+n2+m1+m2 = |ν−µ|+1.

The meaning holds the same for the other constants Cp,udν−µ , C
u,f
ν , Cp,fν as coefficients for different terms.

Proof First of all, let us introduce the following point-wise saddle point formulation corresponding
to (2.18) as follows: to find (u(y), p(y)) ∈ U ×H1(D) with U = H1(D)× L2(∂D) , such that{

A(u(y), v) + B(v, p(y)) = (ud(y), v), ∀v ∈ U,
B(u(y), q) = (f, q), ∀q ∈ H1(D),

(3.3)

where we still denote A and B as the point-wise bilinear forms by slight abuse of notation. The
properties of continuity for A and B, coercivity for A and compatibility condition for B hold the
same as in Lemma 2.4. Moreover, Brezzi’s theorem verifies with the same parameters for the stability
results (2.23). Explicitly, we have the point-wise stability for y ∈ Γ

||u(y)||U ≤ α1||ud(y)||L2(D) + β1||f ||L2(D), (3.4)
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and

||p(y)||H1(D) ≤ α2||ud(y)||L2(D) + β2||f ||L2(D). (3.5)

For |ν| = ν1 + ν2 + · · ·+ νN = 0, we obtain the estimate in the above stability results (3.4) and (3.5).
For |ν| ≥ 1, by taking partial derivative of the point-wise saddle point problem (3.3) with respect to
the random vector y up to order ν, we claim that the general recursive equation is given by


A(∂νyu(y), v) + B(v, ∂νyp(y)) = (∂νyud(y), v)−

∑
j:νj 6=0

νj(bj · ∇v, ∂ν−ejy p(y)), ∀v ∈ U,

B(∂νyu(y), q) = −
∑
j:νj 6=0

νj(bj · ∇∂ν−ejy u(y), q), ∀q ∈ H1(D),
(3.6)

where bj , j = 1, 2, . . . , N is the j-th basis in the linear expansion (2.3) and ej = (0, · · · , 1, · · · , 0) is
an unit vector with the j-th element set to 1 and all the others to 0.

Indeed, if we suppose that |ν̃| = |ν| − 1 and |ν̃| takes the form as ν− ek for some k, by hypothesis,
(3.6) holds for ν̃, then we verify that it also holds for ν. Taking the derivative of (3.6) with respect to
yk and replace ν by ν − ek, we have



A(∂νyu(y), v) + B(v, ∂νyp(y)) + (bk · ∇v, ∂ν−eky p(y)) = (∂νyud(y), v)

−
∑

j 6=k:νj 6=0

νj(bj · ∇v, ∂ν−ejy p(y))− (νk − 1)(bk · ∇v, ∂ν−eky p(y)), ∀v ∈ U,

B(∂νyu(y), q) + (bk · ∇∂ν−eky u(y), q) = −
∑

j 6=k:νj 6=0

νj(bj · ∇∂ν−ejy u(y), q)

−(νk − 1)(bk · ∇∂ν−eky u(y), q), ∀q ∈ H1(D).

(3.7)

By cancelling the same terms in both sides, we retrieve the recursive equation (3.6). Applying Brezzi’s
theorem to the recursive equation (3.6), we have that there exist unique partial derivatives of the
stochastic functions ∂νyu and ∂νyp such that

||∂νyu(y)||U ≤ α1

||∂νyud(y)||L2(D) +
∑
j:νj 6=0

νj ||bj ||(L∞(D))d ||∂ν−ejy p(y)||L2(D)


+ β1

∑
j:νj 6=0

νj ||bj ||(L∞(D))d ||∂ν−ejy u(y)||L2(D),

(3.8)

and

||∂νyp(y)||H1(D) ≤ α2

||∂νyud(y)||L2(D) +
∑
j:νj 6=0

νj ||bj ||(L∞(D))d ||∂ν−ejy p(y)||L2(D)


+ β2

∑
j:νj 6=0

νj ||bj ||(L∞(D))d ||∂ν−ejy u(y)||L2(D).

(3.9)

When |ν| = 1, i.e. for some j ∈ N, ν = ej , using (3.4) and (3.5), the above recursive estimates
(3.8) and (3.9) become

||∂νyu(y)||U ≤ α1||∂νyud(y)||L2(D) + (α1α2 + α1β1)|ν|!||b||ν(L∞(D))d ||ud(y)||L2(D)

+ (α1β2 + β1β1)|ν|!||b||ν(L∞(D))d ||f ||L2(D),
(3.10)
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and

||∂νyp(y)||H1(D) ≤ α2||∂νyud(y)||L2(D) + (α2α2 + α1β2)|ν|!||b||ν(L∞(D))d ||ud(y)||L2(D)

+ (α2β2 + β1β2)|ν|!||b||ν(L∞(D))d ||f ||L2(D),
(3.11)

where ||b||ν(L∞(D))d = ΠN
n=1||bn||

νn
(L∞(D))d

. For a general ν such that |ν| ≥ 2, we claim that the esti-

mates (3.1) and (3.2) hold. Note that ||∂νyu(y)||L2(D) ≤ ||∂νyu(y)||U , ||∂νyp(y)||L2(D) ≤ ||∂νyp(y)||H1(D),
by substituting (3.1) and (3.2) into the recursive formulae (3.8) with ν replaced by ν − ej , we have

||∂νyu(y)||U ≤ α1||∂νyud(y)||L2(D)

+ α1

∑
j:νj 6=0

νj ||bj ||(L∞(D))d

 ∑
0�µ�ν−ej

Cp,udν−ej−µ(|ν − µ| − 1)!||b||ν−ej−µ
(L∞(D))d

||∂µy ud(y)||L2(D)


+ α1

∑
j:νj 6=0

νj ||bj ||(L∞(D))d

(
Cp,fν−ej (|ν| − 1)!||b||ν−ej

(L∞(D))d
||f ||L2(D)

)

+ β1

∑
j:νj 6=0

νj ||bj ||(L∞(D))d

 ∑
0�µ�ν−ej

C
u,ud
ν−ej−µ(|ν − µ| − 1)!||b||ν−ej−µ

(L∞(D))d
||∂µy ud(y)||L2(D)


+ β1

∑
j:νj 6=0

νj ||bj ||(L∞(D))d

(
C
u,f
ν−ej (|ν| − 1)!||b||ν−ej

(L∞(D))d
||f ||L2(D)

)
= α1||∂νyud(y)||L2(D) +

∑
0�µ�ν−ej

(
α1C

p,ud
ν−ej−µ + β1C

u,ud
ν−ej−µ

)
×

 ∑
j:νj 6=0

νj

 (|ν − µ| − 1)!||b||ν−µ
(L∞(D))d

||∂µy ud(y)||L2(D)

+
(
α1C

u,f
ν−ej + β1C

p,f
ν−ej

) ∑
j:νj 6=0

νj

 (|ν| − 1)!||b||ν(L∞(D))d ||f ||L2(D)

=
∑

0�µ�ν

C
u,ud
ν−µ |ν − µ|!||b||

ν−µ
(L∞(D))d

||∂µy ud(y)||L2(D) + Cu,fν |ν|!||b||ν(L∞(D))d ||f ||L2(D),

(3.12)

where the new coefficients read

C
u,ud
0 = α1, C

u,ud
ν−µ =

(
α1C

p,ud
ν−ej−µ + β1C

u,ud
ν−ej−µ

) |ν|
|ν − µ|

∀ 0 � µ � ν − ej (3.13)

and
C
u,f
0 = β1, Cu,fν =

(
α1C

p,f
ν−ej + β1C

u,f
ν−ej

)
. (3.14)

Carrying out the same procedure for ||∂νyp(y)||H1(D), we obtain the estimate

||∂νyp(y)||H1(D) ≤
∑

0�µ�ν

Cp,udν−µ |ν − µ|!||b||
ν−µ
(L∞(D))d

||∂µy ud(y)||L2(D) + Cp,fν |ν|!||b||ν(L∞(D))d ||f ||L2(D),

(3.15)
where the coefficients

Cp,ud0 = α2, Cp,udν−µ =
(
α2C

p,ud
ν−ej−µ + β2C

u,ud
ν−ej−µ

) |ν|
|ν − µ|

∀ 0 � µ � ν − ej (3.16)

8



and
Cp,f0 = β2, Cp,fν =

(
α2C

p,f
ν−ej + β2C

u,f
ν−ej

)
. (3.17)

By the above recursive formulae, we have that the constant C
u,ud
ν−µ = C

u,ud
ν−µ (α1, α2, β1, β2) is the sum

of 2|ν−µ| basic elements in the form of αn1
1 αn2

2 βm1
1 βm2

2 such that n1 + n2 + m1 + m2 = |ν − µ| + 1.

The same structure holds for the constant Cp,udν−µ , C
u,f
ν and Cp,fν . Notice the difference that C

u,ud
ν−µ and

Cp,udν−µ are modified by some constant related to |ν|/|ν − µ| → 1 as |ν| → ∞ for fixed µ.
�

A direct consequence of the regularity given in Theorem 3.1 is the analyticity property of (u, p)
with respect to y ∈ Γ, provided the following conditions are satisfied.

Corollary 3.2 Holding all the assumptions for Theorem 3.1, and the following conditions

2K

N∑
n

||bn||(L∞(D))d |yn − ȳn| < 1, (3.18)

where K = max(α1, α2, β1, β2) and

∑
µ

|µ||y − ȳ|µ

µ!
||∂µy ud(ȳ)||L2(D) <∞, (3.19)

we have the existence of an analytic expansion of the stochastic solution (u, p) to the saddle point

problem (3.3) around ȳ ∈ Γ. Therefore, (u, p) can be analytically extended to the set

Σ =
{
y ∈ RN : ∃ ȳ ∈ Γ such that (3.18) and (3.19) hold

}
, (3.20)

and we define Σ(Γ; τ) := {z ∈ C : dist(z,Γ) ≤ τ} ⊂ Σ for the largest possible vector τ = (τ1, . . . , τN ).

Proof The Taylor expansion of u(y), y ∈ Γ around ȳ ∈ Γ is given by

u(y) =
∑
ν

∂νyu(ȳ)

ν!
(y − ȳ)ν (3.21)

where ν! = ν1! · · · νN !. By the bound of Theorem 3.1, we have the estimate∣∣∣∣∣
∣∣∣∣∣∑
ν

∂νyu(ȳ)

ν!
(y − ȳ)ν

∣∣∣∣∣
∣∣∣∣∣
U

≤
∑
ν

|y − ȳ|ν

ν!

 ∑
0�µ�ν

C
u,ud
ν−µ |ν − µ|!||b||

ν−µ
(L∞(D))d

||∂µy ud(ȳ)||L2(D)


+
∑
ν

|y − ȳ|ν

ν!
Cu,fν |ν|!||b||ν(L∞(D))d ||f ||L2(D),

(3.22)

where |y−ȳ| = (|y1−ȳ1|, . . . , |yN−ȳN |). Let us consider the second term at first, for which we introduce
the generalized Newton binomial formula: for any η = (η1, . . . , ηN ) ∈ RN and k = 0, 1, 2, . . . , we have

∑
|ν|=k

k!

ν!
ην =

(
N∑
n=1

ηn

)k
. (3.23)

By applying (3.23), the second term of (3.22) becomes

9



∑
ν

|y − ȳ|ν

ν!
Cu,fν |ν|!||b||ν(L∞(D))d ||f ||L2(D)

= ||f ||L2(D)

∞∑
k=0

∑
|ν|=k

Cu,fν
|ν|!
ν!

(
||b||(L∞(D))d |y − ȳ|

)ν
≤ K||f ||L2(D)

∞∑
k=0

∑
|ν|=k

|ν|!
ν!

(
2K||b||(L∞(D))d |y − ȳ|

)ν
= K||f ||L2(D)

∞∑
k=0

(
2K

N∑
n

||bn||(L∞(D))d |yn − ȳn|

)k
,

(3.24)

where K = max(α1, α2, β1, β2) and the inequality comes from the estimate for the coefficient C
u,f
ν

Cu,fν ≤ 2|ν|K |ν|+1 = K(2K)ν , (3.25)

which is valid by definition. Therefore, the convergence condition for (3.24) is

2K

N∑
n

||bn||(L∞(D))d |yn − ȳn| < 1. (3.26)

As for the first term of the estimate (3.22), we have

∑
ν

|y − ȳ|ν

ν!

 ∑
0�µ�ν

C
u,ud
ν−µ |ν − µ|!||b||

ν−µ
(L∞(D))d

||∂µy ud(ȳ)||L2(D)


≤
∑
µ

|y − ȳ|µ

µ!
||∂µy ud(ȳ)||L2(D)

∑
ν�µ

C
u,ud
ν−µ
|ν − µ|!
(ν − µ)!

(
||b||(L∞(D))d |y − ȳ|

)ν−µ
≤ K

∑
µ

|µ||y − ȳ|µ

µ!
||∂µy ud(ȳ)||L2(D)

∞∑
k=0

(
2K

N∑
n

||bn||(L∞(D))d |yn − ȳn|

)k
,

(3.27)

where for the first inequality we employ the equality∑
ν

∑
0�µ�ν

· =
∑
µ

∑
ν�µ

· (3.28)

and the bound
1

ν!
≤ 1

µ!

1

(ν − µ)!
. (3.29)

For the second inequality we replace all ν − µ by ν, bound the coefficient C
u,ud
ν−µ by

C
u,ud
ν−µ ≤

|ν|
|ν − µ|

2|ν−µ|K |ν−µ|+1 ≤ K|µ|(2K)|ν−µ| (3.30)

and use the result obtained for the second term (3.24). Hence, the convergence of the first term (3.27)
is guaranteed by the condition (3.26) as well as the condition (3.19), which implies that ud is analytic
around ȳ. The same procedure holds for the Taylor expansion of

p(y) =
∑
ν

∂νyp(ȳ)

ν!
(y − ȳ)ν (3.31)
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with estimate in the space of H1(D). �

4 Approximation and error estimates

Numerical approximation in both the physical space and the stochastic space will be studied in this
section. More specifically, we apply stabilized finite element approximation in physical space in order
to address the advection dominated problem [25, 11, 4, 6, 17, 16] and employ adaptive stochastic
collocation approximation in stochastic space [31, 2, 22, 23, 30, 3] to deal with the computational
reduction for high-dimensional stochastic problem. Numerical properties of the approximations will
be analyzed in both of the physical space and the stochastic space individually, and the analysis
of a global error estimate for a combined stabilized finite element - adaptive stochastic collocation
approximation will also be considered.

4.1 Finite element approximation in physical space

Let us introduce a regular triangulation Th of the physical domain D ⊂ Rd, d = 2, 3 such that
D̄ = ∪K∈ThK and diam(K) ≤ h. Based on this triangulation, we define a finite element space Xk

h

Xk
h :=

{
vh ∈ C0(D̄)

∣∣vh|K ∈ Pk ∀K ∈ Th
}
, k ≥ 0, (4.1)

where Pk, k ≥ 0 is the space of polynomials of total degree less than or equal to k in the variables
x1, . . . , xd. Therefore, the element vh in Xk

h is simply a piece-wise polynomial, and we have that
Xk
h ⊂ H1(D) [25]. Since both the state equation and the adjoint equation are advection dominated, a

proper stabilization method is needed. Let us introduce the elliptic operator for the point-wise state
equation as follows: ∀ y ∈ Γ, define

Lu(y) := −∇ · (a∇u(y)) + b(y) · ∇u(y) + cu(y), (4.2)

which can be separated into a symmetric part and a skew-symmetric part L = Ls + Lss, defined as

Lsu(y) = −∇ · (a∇u(y)) + cu(y); Lssu(y) = b(y) · ∇u(y). (4.3)

Corresponding to the adjoint equation, we define the adjoint elliptic operator: ∀ y ∈ Γ, define

L′p(y) := −∇ · (a∇p(y))− b(y) · ∇p(y) + (c−∇ · b)p(y), (4.4)

and we split it into a symmetric part and a skew-symmetric part, L′ = L′s + L′ss, we have

L′sp(y) = −∇ · (a∇p(y)) + (c−∇ · b)u(y); L′ssu(y) = −b(y) · ∇p(y). (4.5)

Substituting the optimality condition (2.12) into the state equation (2.2) and taking the following
stabilized weak formulation for both the state equation and adjoint equation, we obtain the stabilized
and reduced optimality system in finite element space Xk

h as follows [25]:



B(uh(y), vh) +
∑
K∈Th

δK

(
Luh(y),

hK
|b|

(Lss + θLs)vh

)
=

1

α
(ph(y), vh) + (f, vh) +

∑
K∈Th

δK

(
f,
hK
|b|

(Lss + θLs)vh

)
∀ vh ∈ Xk

h ,

B′(ph(y), vh) +
∑
K∈Th

δK

(
L′ph(y),

hK
|b|

(L′ss + θL′s)vh

)
= (ud(y)− uh(y), vh) +

∑
K∈Th

δK

(
ud(y)− uh(y),

hK
|b|

(L′ss + θL′s)vh

)
∀ vh ∈ Xk

h ,

(4.6)
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where |b| is the modulus of b and the parameter δK is left to be chosen, for instance,

δK = δ(Pe) = coth(PeK)− 1

PeK
, where PeK :=

|b|hK
2amin

, ∀K ∈ Th. (4.7)

Different stabilization methods result from the choice of θ. If θ = 0, it corresponds to SUPG
stabilization (Streamline Upwind/Petrov-Galerkin); if θ = 1, GALS stabilization (Galerkin/Least-
Squares) is obtained. For these different stabilization methods, it has been proven that if the parameter
δ is small enough and the solution of the state equation (2.2) is regular enough, e.g. u(y) ∈ Hk+1(D),
the priori error of the approximation is bounded by the estimate ||u−uh||V ≤ hk+1/2||u||Hk+1(D), where
the norm ||·||V is defined according to different methods. More details about the strong consistency and
accuracy of these stabilization methods are provided in [25] or [24]. As for the convergence property
of the optimality system, we have the following point-wise results by “Optimize-Then-Discretize”
procedure for SUPG stabilization, see similar proof in [11] for distributed optimal control problem:

Lemma 4.1 Let k, l,m ≥ 1, and suppose that ∀ y ∈ Γ the solution (u(y), g(y), p(y)) satisfies u(y) ∈
Hk+1(D), g(y) ∈ Hm+1/2(∂D) and p(y) ∈ H l+1(D). If the stabilization parameter satisfies

δK ≤ min

(
h2
K

εC2
K

,
r′

||c||L∞(K)
,

r′

||c−∇ · b||L∞(K)

)
, ∀K ∈ Th, (4.8)

where ε = amax ≤ R, r′ is the coefficient defined in (2.5) and CK is the constant for the inverse

inequality ||∇vh||L2(K) ≤ CKh−1
K ||vh||L2(K),∀K ∈ Th,, and we take for positive constant τ1, τ2 > 0

δK = τ1
h2
K

ε
for PeK ≤ 1, or δK = τ2hK for PeK > 1, (4.9)

then the error estimate for the discretized optimal solution (uh(y), gh(y), ph(y)),∀ y ∈ Γ is obtained as

||u(y)− uh(y)||V + ||g(y)− gh(y)||L2(∂D) + ||p(y)− ph(y)||V

≤ C
(

(ε1/2 + h1/2)(hk|u(y)|k+1 + hl|p(y)|l+1) + hm+1|g(y)|m+1/2,∂D

)
.

(4.10)

where the norm || · ||V is defined for SUPG stabilization as

||v||2V = ε|v|21 + r′||v||2L2(K) +
∑
K∈Th

δK ||b · ∇v||2L2(K), (4.11)

and |v|k, k ≥ 1 is the semi-norm in the Hilbert space Hk(D), k ≥ 1.

Remark 4.1 Lemma 4.1 provides a convergence result for the error between the solution of the orig-

inal and that of the discretized optimal control problem over the entire domain D. The constants in

the estimates of the global error depend on regularity of the optimal solution (u, g, p). Similar results

have also been obtained recently in [4, 6, 17].

4.2 Collocation approximation in stochastic space

Stochastic collocation method has been developed by combining the advantage of straightforward
implementation of Monte-Carlo method and the benefit of high accuracy and fast convergence of
stochastic Galerkin method [31, 2]. It takes the collocation nodes in multidimensional probability space
as the samples and constructs the stochastic solution by interpolation of the solution obtained from a
deterministic solver at all the collocation nodes. In order to further alleviate the computational cost,
sparse grid proposed by [28] has been applied in both isotropic and anisotropic manner [22, 23] as well
as in quasi-optimal way with respect to the cost of computation and gain of accuracy [12]. Hierarchical
selection of the collocation nodes has also been applied based on the abscissae of Chebyshev and
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Gaussian-Patterson quadrature rule [1]. More comparison of analytical and numerical aspects among
these stochastic computational methods can be found in, for instance, [30, 3, 9]. Thanks to the non-
intrusive characteristic and fast convergence of stochastic collocation method, we will adopt it for the
computation of solution to the stochastic optimality system (2.12) or the saddle point system (2.18).
Let us summarize the stochastic collocation method in a general formulation at first with full tensor
product grid, isotropic sparse grid and anisotropic sparse grid, respectively.

4.2.1 Full tensor product grid collocation approximation

The basic idea behind the construction of stochastic collocation method is to interpolate a stochastic

function u(x, y) in multidimensional stochastic space Γ at a set of collocation nodes {yj}Nqj=1 with each

yj = (yj1, · · · , y
j
N ), j = 1, . . . , Nq [31, 2]. Denote Pq(Γ) as the multidimensional polynomial space of

degree q = (q1, . . . , qN ). The multidimensional Lagrange interpolation operator Iq : C(Γ;H1(D)) →
Pq(Γ)⊗H1(D) is defined as

Iqu(x, y) =

Nq∑
j=1

u(x, yj)l
j(y) with Lagrange polynomials lj(y) =

N∏
n=1

ljn(yn), j = 1, . . . , Nq (4.12)

Consequently, the expectation of the solution can be computed as

E[Iqu](x) =

∫
Γ

u(x, y)ρ(y)dy =

Nq∑
j=1

u(x, yj)

∫
Γ

lj(y)ρ(y)dy =

Nq∑
j=1

u(x, yj)w
j , (4.13)

where the weight wj is obtained from the integral

wj =

∫
Γ

(
N∏
n=1

ljn(y)

)
ρ(y)dy =

N∏
n=1

wjn, j = 1, . . . , Nq. (4.14)

The variance of the solution can be obtained by the orthonormal property of Lagrange polynomial

Var[Iqu](x) = E[(Iqu)2](x)− (E[Iqu](x))2 =

Nq∑
j=1

u2(x, yj)w
j −

 Nq∑
j=1

u(x, yj)w
j

2

. (4.15)

The choice of collocation nodes is crucial as it determines the accuracy and efficiency of stochastic
collocation method. An obvious choice consists of taking the full tensor product of one dimensional
set. First of all, for any one dimensional function, for instance, u(yn), n = 1, . . . , N , we have the
general interpolation operator defined as

Uqnu(yn) =

Nqn∑
jn=1

u(yjnn )ljnn (yn), n = 1, . . . , N (4.16)

on a set of collocation nodes Θn = (y1
n, . . . , y

Nqn
n ). The tensor product Lagrange interpolation operator

Iq can thus be expressed as the tensor product of the one dimensional interpolation operator

Iqu(y) = (Uq1 ⊗ · · · ⊗ UqN )u(y)

=

Nq1∑
j1=1

· · ·
NqN∑
jN=1

u(yj11 , . . . , y
jN
N )

(
lj11 (y1)⊗ · · · ⊗ ljNN (yN )

)
.

(4.17)

The convergence rate of the tensor product interpolation operator in the multidimensional stochas-
tic space C(Γ;V ) is summarized in the following proposition, see [2] for a detailed proof.
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Proposition 4.2 Suppose that the function u can be analytically extended to a complex domain

Σ(Γ; τ). The following convergence estimate holds for the multidimensional full tensor product in-

terpolation operator Iq

||u− Iqu||L2(Γ;V ) ≤ C
N∑
n=1

(
1

rn

)qn
, (4.18)

where the constants rn are defined via τn and Γn as

rn =
2τn
|Γn|

+

√
1 +

4τ2
n

|Γn|2
> 1, n = 1, . . . , N (4.19)

4.2.2 Isotropic and anisotropic sparse grid collocation approximation

The set of collocation nodes for the full tensor product interpolation operator Iq are the product of

Θ = Θq1 × · · ·ΘqN with Nq =
∏N
n=1Nqn collocation nodes in total. When N becomes large, the full

tensor product interpolation becomes computationally prohibitive. In order to alleviate the “curse
of dimensionality”, we adopt Smolyak sparse grid [28, 31]. For isotropic interpolation with the same
degree q ≥ N for one dimensional polynomial space in each direction, the Smolyak interpolation
operator is defined as

Squ(y) =
∑

q−N+1≤|i|≤q

(−1)q−|i|
(
N − 1
q − |i|

)(
U i1 ⊗ · · · ⊗ U iN

)
u(y), (4.20)

where |i| = i1 + · · ·+ iN , the multivariate index i can also be defined via the index set

X(q,N) :=

{
i ∈ NN

+ ,∀ in ≥ 1 :

N∑
n=1

in ≤ q

}
, (4.21)

and the set of collocation nodes for the sparse grid (see the middle of Figure 4.1) is thus collected as

H(q,N) =
⋃

q−N+1≤|i|≤q

(
Θi1 × · · · ×ΘiN

)
. (4.22)

Define l = q − N as the collocation level, we have q −N + 1 ≤ |i| ≤ q → l + 1 ≤ |i| ≤ l + N .
An alternative expression of Smolyak interpolation is written with the definition of the differential
operator ∆in = U in − U in−1, n = 1, . . . , N and U0 = 0 as

Squ(y) =
∑

i∈X(q,N)

(
∆i1 ⊗ · · · ⊗∆iN

)
u(y)

= Sq−1u(y) +
∑
|i|=q

(
∆i1 ⊗ · · · ⊗∆iN

)
u(y).

(4.23)

The above formula allows us to discretize the stochastic space in hierarchical structure based on nested
collocation nodes, such as the extrema of Chebyshev polynomials or Gauss-Patterson nodes, leading
to Clenshaw-Curtis cubature rule or Gauss-Patterson cubature rule, respectively [23, 19].

Smolyak sparse grid is isotropic in every one-dimensional polynomial space. However, the con-
vergence rate of the solution in each polynomial space may vary due to different importance of each
random variable, which helps to reduce the dimensionality by anisotropic sparse grid, written as

Sαq u(y) =
∑

i∈Xα(q,N)

(
∆i1 ⊗ · · · ⊗∆iN

)
u(y), (4.24)
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with the weighted index

Xα(q,N) :=

{
i ∈ NN

+ , i ≥ 1 :

N∑
n=1

inαn ≤ min(α)q

}
, (4.25)

where α = (α1, . . . , αN ) represents the weights in different directions, obtained either from a priori
error estimation or a posteriori error estimation, see [22]. Figure 4.1 displays the full tensor product
grid, the sparse grid and the anisotropic sparse grid based on Clenshaw-Curtis cubature rule. We can
observe that the isotropic and anisotropic sparse grids are far coarser than the full tensor product
grid, leading to considerable reduction of the high dimensional stochastic computation.

Figure 4.1: Two dimensional collocation nodes by Clenshaw-Curtis cubature rule in tensor product
grid q = 8 (Left), sparse grid q = 8 (Middle), anisotropic sparse grid q = 8 and α = (1, 1.5)(Right)

The convergence analysis of the isotropic and anisotropic Smolyak sparse grids stochastic collo-
cation methods have been studied in detail in [23] and [22]. Let us summarize them briefly in the
following proposition

Proposition 4.3 Suppose that the function u can be analytically extended to a complex domain

Σ(Γ; τ). Using isotropic Smolyak sparse grid with Clenshw-Curtis collocation nodes yields the fol-

lowing convergence estimate

||u− Squ||L2(Γ;V ) ≤ CN−rq , (4.26)

where C is a constant independent of Nq and r, Nq = #H(q,N) is the number of collocation nodes, r

is defined as r = min(log(
√
r1), . . . , log(

√
rN ))/(1 + log(2N)) with r1, . . . , rN defined in (4.19). Then

using the anisotropic Smolyak sparse grid, still with Clenshw-Curtis collocation nodes, we have instead

||u− Sαq u||L2(Γ;V ) ≤ CN−r(α)
q , (4.27)

where r(α) = min(α)(log(2)e− 1/2)/
(

log(2) +
∑N
n=1 min(α)/αn

)
and αn = log(

√
rn), n = 1, . . . , N .

4.3 Convergence for approximating stochastic optimal control problem

In this section, we provide some convergence results for the stabilized finite element approximation in
the physical space and stochastic collocation approximation in the stochastic space for the optimality
system (2.12), or equivalently, the saddle point system (2.18). Let us denote the fully approximated
solution in both the physical space and the stochastic space as (uh,q, gh,q, ph,q). We summarize in
Theorem 4.4 and Theorem 4.5 the error estimates for tensor product grid collocation approximation
and sparse grid collocation approximation for stochastic Robin boundary control problem, respectively.
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Theorem 4.4 Provided that the assumptions made in Corollary 3.2, Lemma 4.1 and Proposition

4.2 are satisfied, the following global error estimate for stabilized finite element approximation in the

physical space and full tensor product grid collocation approximation in the stochastic space for the

stochastic optimality system (2.12) (or equivalently the saddle point system (2.18)) holds

||u− uh,q||V(D) + ||g − gh,q||L2(∂D)) + ||p− ph,q||V(D)

≤ Cs
N∑
n=1

(
1

rn

)qn
+ Cp(ε

1/2 + h1/2)hk
(
|u|Hk+1(D) + |p|Hk+1(D) + h|g|Hk+1/2(∂D)

)
.

(4.28)

Here, Cs, (rn, qn), n = 1, . . . , N are the constants for approximation in the stochastic space inherited

from Proposition 4.2 and Cp is the constant for approximation in the physical space inherited from

Lemma 4.1. The quantity |u|Hk+1(D), |p|Hk+1(D) and |g|Hk+1/2(∂D) are the semi-norm of u, p, g in the

stochastic Hilbert spaces.

Proof Recall the interpolation operator Iq : (u, g, p) → Iq(u, g, p) ≡ (uq, gq, pq) in the stochastic
space. Denoting by P sh : (uq, gq, pq) → P sh(uq, gq, pq) ≡ (uh,q, gh,q, ph,q) the point-wise projection
operator for the stabilized finite element approximation in the physical space, which projects the
point-wise solution (uq(y), gq(y), pq(y)) for any y ∈ Γ from the Hilbert space Hk+1(D)×Hk+1/2(∂D)×
Hk+1(D) to the finite element space Xk

h ×Xk
h |∂D ×Xk

h , we conclude the convergence result for the
combined approximation as

||u− uh,q||V(D) + ||g − gh,q||L2(∂D)) + ||p− ph,q||V(D)

≡ ||u− uh,q||L2(Γ,V ) + ||g − gh,q||L2(Γ;L2(∂D)) + ||p− ph,q||L2(Γ,V )

= ||u− P shIqu||L2(Γ,V ) + ||g − P shIqg||L2(Γ;L2(∂D)) + ||p− P shIqp||L2(Γ,V )

≤ ||u− Iqu||L2(Γ,V ) + ||Iqu− P shIqu||L2(Γ,V )

+ ||g − Iqg||L2(Γ;L2(∂D)) + ||Iqg − P shIqg||L2(Γ;L2(∂D))

+ ||p− Iqp||L2(Γ,V ) + ||Iqp− P shIqp||L2(Γ,V )

= ||u− Iqu||L2(Γ,V ) + ||g − Iqg||L2(Γ;L2(∂D)) + ||p− Iqp||L2(Γ,V )

+ ||Iqu− P shIqu||L2(Γ,V ) + ||Iqg − P shIqg||L2(Γ;L2(∂D)) + ||Iqp− P shIqp||L2(Γ,V )

≤ Cs
N∑
n=1

(
1

rn

)qn
+ Cp(ε

1/2 + h1/2)hk
(
|u|Hk+1(D) + |p|Hk+1(D) + h|g|Hk+1/2(∂D)

)
,

(4.29)

The first inequality is due to the triangular inequality, and the second one follows from using the
converge results of the stabilized finite element approximation and the stochastic collocation approx-
imation. �

Using similar arguments, we have the following convergence result for the isotropic/anisotropic
sparse grid stochastic collocation approximation.

Theorem 4.5 If the assumptions in Corollary 3.2, Lemma 4.1 and Proposition 4.3 are satisfied, we

have the following global error estimate for stabilized finite element approximation in the physical space

and isotropic/anisotropic sparse grid collocation approximation in the stochastic space

||u− uh,q||V(D) + ||g − gh,q||L2(∂D)) + ||p− ph,q||V(D)

≤ CsN−rq + Cp(ε
1/2 + h1/2)hk

(
|u|Hk+1(D) + |p|Hk+1(D) + h|g|Hk+1/2(∂D)

)
.

(4.30)

where Cp is the constant for approximation in physical space inherited from Lemma 4.1, and Cs, Nq

and r are the constants for approximation in stochastic space inherited from Proposition 4.3.
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5 Numerical results

In this section, we demonstrate by numerical experiments our error estimates for the approximation
of the stochastic optimal Robin boundary control problem obtained in the last section. Specifically,
we test the error estimates for stabilized finite element approximation in physical space and sparse
grid collocation approximation in stochastic space, respectively.

The computational domain is a two dimensional unit square x = (x1, x2) ∈ D = (0, 1)2; the
coefficients a = 0.01, c = 1, k = 1 and the force term f = 0.1, all constants, are fixed; the advection
field b = (bx1

, bx2
)T is a stochastic vector function, with the second component bx2

= 0 and the first
component bx1

as a random field with finite second moment, with expectation and correlation

E[bx1 ](x) = x2(1− x2); Cov[bx1 ](x, x′) =
x2

2(1− x2)2

102
exp

(
− (x1 − x′1)2

L2

)
, x, x′ ∈ D (5.1)

where L is the correlation length. By Karhunen-Loève expansion, bx1
can be written as

bx1
(x, ω) = x2(1− x2) +

x2(1− x2)

10

(√
πL

2

)1/2

y1(ω)

+
x2(1− x2)

10

∞∑
n=1

√
λn (sin(nπx1)y2n(ω) + cos(nπx1)y2n+1(ω)) ,

(5.2)

where the uncorrelated random variables yn, n ≥ 1 have zero mean and unit variance, and the eigen-
values λn, n ≥ 1 decay as follows:

√
λn =

(√
πL
)1/2

exp

(
− (nπL)2

8

)
, ∀n ≥ 1. (5.3)

As for Robin boundary condition g, we assume that its expectation and correlation function are
given on the same segment of the boundary,

E[g](x) = 1; Cov[g](x, x′) =
1

22
exp

(
− (x1 − x′1)2 + (x2 − x′2)2

L2

)
, x, x′ ∈ ∂D. (5.4)

The Karhunen-Loève expansion of the stochastic Robin boundary condition is written, e.g. on 0×[0, 1]

g(x, ω) = 1 +
1

2

(√
πL

2

)1/2

y1(ω) +
1

2

∞∑
n=1

√
λn (sin(nπx2)y2n(ω) + cos(nπx2)y2n+1(ω)) , (5.5)

where λn, n ≥ 1 are the same as in (5.3). For the sake of computation, we truncate the expansion
up to N terms and assume that the random variables are independent and obeying the same uniform
distribution yn ∼ U(−

√
3,
√

3), n = 1, . . . , N with zero mean and unit variance.
As the first test example, let us choose the correlation length L = 1/4 for both velocity b and

Robin boundary condition g, for which we only need n = 7 terms in both of the truncations and
therefore 15 independent random variables. Using piecewise linear function space X1

h, h = 0.025
for stabilized finite element approximation and isotropic sparse grid collocation approximation with
Clenshaw-Curtis collocation nodes as Sq, q = 19 in (4.23), we can compute the solution for the
stochastic advection dominated elliptic problem (2.2) on each finite element node of 2792 nodes in
D and each collocation node of 40001 nodes in Γ. The expectation and standard deviation of the
solution can also be evaluated, as shown in Figure 5.1.

Taking the solution as our objective function ud = u, and solving the stabilized optimality system
(4.6), we obtain the optimal solution (u, g, p). The expectation and standard deviation of the stochastic
Robin boundary control function g is displayed on the left of Figure 5.2, which is very close to the
theoretical value E[g] ≡ µ = 1 and Var[g] ≡ σ = 0.4876 computed directly from (5.5).

In order to verify the theoretical convergence rate in different finite element spaces, we choose X1
h
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Figure 5.1: Expectation (left) and standard deviation (right) of the solution of problem (2.2)

Figure 5.2: Expectation µ and standard deviation σ of the Robin boundary condition g (left), and
convergence rate of the error of the solution in stabilized finite element space X1

h and X2
h (right)

and X2
h, where for the second one we replace hK by h2

K in the specification of Péclet number Pe in
(4.7). The series of h are h = 1, 1/2, 1/22, 1/23, 1/24, 1/25. The error is defined as

error = ||u− uh,q||V(D) + ||g − gh,q||L2(∂D)) + ||p− ph,q||V(D), (5.6)

where u is computed by setting h = 1/26 and q = 19, g is given by formula (5.5), the adjoint variable
p is set as 0, (uh,q, gh,q, ph,q) is computed by solving the optimality system (4.6). The convergence
results is shown on the right of Figure 5.2, which implies that the error decays approximately with
order h1.5 for X1

h and order h2.5 forX2
h, consistently with our theoretical result in Theorem 4.5.

For simplicity, we use the same set of random variables for the expansion of bx1 and g in order to
test the convergence rate of the collocation approximation. The same error defined in (5.6) is used.
For the test of isotropic sparse grid collocation approximation, we use the series of different levels of
interpolation 1, 2, 3, 4, 5, 6, 7 and set the approximated value in the deepest level as the true solution.
The correlation length is set as L = 1/4 and the number of random variables #rv = 3, 5, 7. The
step size for the stabilized finite element approximation h is set to be a relatively large value 0.25 to
accelerate the computation. The error against the number of collocation nodes is displayed on the left
of Figure 5.3, from which we can see that the convergence rate decreases as the number of random
variables increases, and the comparison of the convergence rate with O(1/N2) and O(1/N) shows
that the isotropic sparse grid collocation approximation is faster than Monte Carlo method whose
convergence rate is O(1/N1/2).
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Figure 5.3: Comparison of convergence rate by isotropic sparse grid collocation approximation (left)
and anisotropic sparse grid collocation approximation (right) for different stochastic dimensions

However, when the number of the random variables becomes very large, this potential advantage
will fade down. In this case, we need to approximate with high interpolation level in those dimensions
that are more important than the others, using the anisotropic sparse grid. On the right of Figure
5.3, we show the convergence rate with even smaller correlation length L = 1/16 for high dimensional
approximation #rv = 11, 21, 41, 81, 161. We set a series of collocation nodes with the cardinality
as 102, 102.5, 103, 103.5, 104, 104.5, 105 and use the solution u computed with 105 collocation nodes
as the true solution. The same stepsize h = 0.25 is used. From the figure we can see that the
anisotropic sparse grid breaks the “curse of dimension” in the sense of being able to taking care
of very high dimensional stochastic anisotropic problems. Moreover, the convergence rate can be
compared to O(1/N2) for 11 dimensions and O(1/N) for over 41 dimensions, which are both higher
than O(1/N1/2). The convergence rate becomes almost the same for dimension over 41 since the
randomness is captured over 99% by n = 26 terms truncation for L = 1/16, so that the left random
variables play very little role.

From the above numerical results, we can conclude that the theoretical results obtained in the last
section are very well verified. Meanwhile, the isotropic sparse grid stochastic collocation approximation
is very efficient for stochastic optimal control problems with moderate dimensions and the application
of the anisotropic sparse grid is able to deal with high dimensional stochastic problems with different
weights in different dimensions (up to the order O(102)).

6 Concluding remarks

In this paper, we presented a stochastic optimal Robin boundary control problem constrained by
an advection dominated elliptic equation. The particular uncertainties we considered arise from the
background velocity of the advection term, the objective function as well as the stochastic optimal
control function. We introduced the stochastic saddle point formulation and proved its equivalence to
the first order necessary optimality system for the stochastic optimal control problem. The stochastic
regularity with respect to the random variables was obtained thanks to Brezzi’s theorem for the saddle
point system. We applied stabilized finite element approximation in physical space and stochastic col-
location approximation in stochastic space to discretize the optimality system. A global error estimate
was obtained for the approximation. In the last part, the error estimate is verified by numerical ex-
periments, with anisotropic sparse grid collocation approximation being highlighted for treating very
high dimensional stochastic problems. Further analysis of other approximations, e.g., adaptive hierar-
chical stochastic collocation approximation, and applications of them to more general distributed and
boundary stochastic optimal control problems, e.g., stochastic optimal control constrained by Stokes
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and Navier-Stokes equations, are ongoing.
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1974.

[8] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer, 1991.

[9] P. Chen, A. Quarteroni, and G. Rozza. Comparison of reduced basis method and stochastic
collocation method for stochastic problems. Submitted, 2012.

[10] A. Cohen, R. DeVore, and C. Schwab. Convergence rates of best n-term galerkin approximations
for a class of elliptic spdes. Found. Comput. Math, 10(6):615–646, 2010.

[11] S.S. Collis and M. Heinkenschloss. Analysis of the streamline upwind/petrov galerkin method
applied to the solution of optimal control problems. CAAM TR02-01, 2002.

[12] C. Dobrzynski, T. Colin, R. Abgrall, J. Beck, F. Nobile, L. Tamellini, and R. Tempone. Imple-
mentation of optimal galerkin and collocation approximations of pdes with random coefficients.
In ESAIM: Proceedings, volume 33:10-21. EDP Sciences, 2011.

[13] R. Durrett. Probability: theory and examples. Cambridge University Press, 2010.

[14] R. Glowinski and JL Lions. Exact and approximate controllability for distributed parameter
systems. Cambridge University Press, 1996.

[15] M.D. Gunzburger, H.C. Lee, and J. Lee. Error estimates of stochastic optimal neumann boundary
control problems. SIAM Journal on Numerical Analysis, 49:1532–1552, 2011.

[16] M. Heinkenschloss and D. Leykekhman. Local error estimates for SUPG solutions of advection-
dominated elliptic linear-quadratic optimal control problems. SIAM Journal on Numerical Anal-
ysis, 47(6):4607–4638, 2010.

20

http://www.ians.uni-stuttgart.de/spinterp/


[17] M. Hinze, N. Yan, and Z. Zhou. Variational discretization for optimal control governed by
convection dominated diffusion equations. Journal of Computational Mathematics, 27(2-3):237–
253, 2009.

[18] LS Hou, J. Lee, and H. Manouzi. Finite element approximations of stochastic optimal control
problems constrained by stochastic elliptic pdes. Journal of Mathematical Analysis and Applica-
tions, 384(1):87–103, 2011.

[19] A. Klimke. Uncertainty modeling using fuzzy arithmetic and sparse grids. Universität Stuttgart.
PhD thesis, Universität Stuttgart, 2006.

[20] A. Kunoth and C. Schwab. Analytic regularity and gpc approximation for control problems
constrained by linear parametric elliptic and parabolic pdes. ETH SAM Report, 2011.

[21] J.L. Lions. Optimal control of systems governed by partial differential equations. Springer, 1971.

[22] F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation
method for elliptic partial differential equations with random input data. SIAM Journal on
Numerical Analysis, 5(46), 2008.

[23] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for
partial differential equations with random input data. SIAM Journal on Numerical Analysis,
46(5):2309–2345, 2008.

[24] A. Quarteroni. Numerical models for differential problems. Springer, MS & A, vol 2, 2009.

[25] A. Quarteroni and A. Valli. Numerical approximation of partial differential equations. Springer,
1994.

[26] Eveline Rosseel and Garth N. Wells. Optimal control with stochastic pde constraints and uncer-
tain controls. Computer Methods in Applied Mechanics and Engineering, 213C216(0):152 – 167,
2012.
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