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The reduced model to study SOL turbulence	

The GBS code and its path towards SOL simulations	


Anatomy of SOL turbulence: from linear instabilities to SOL width and 
intrinsic toroidal rotation	


	




SOL channels particles and heat to the wall	


Plasma outflowing from	

the core	


Scrape-off	

Layer	


Perpendicular 
transport	


Losses at the vessel	


Parallel flow	




The key questions	


	

•  What is the mechanism setting the SOL turbulent level and the 

perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, tokamak 
size, …?	


•  What determines the SOL electrostatic potential?	


•  Are there mechanisms to generate toroidal rotation in the SOL?	




Properties of SOL turbulence 	
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nfluc ∼ neq

Lfluc ∼ Leq

Fairly cold magnetized plasma	


•   	


•   	


•   	




A reduced model for the SOL	

•  Delta-n vs full-n?	


Ø                             , need full-‐n	  

•  Local vs global?	


Ø Flux tube valid for                  , but                , need global	  

•  Gradient-driven vs flux-driven?	


Ø  Evolution equilibrium profile needed, need flux-‐driven	  

•  Kinetic vs fluid?	


Ø               ,            , fluid is good starting point	


•  Full v and FLR vs drift-reduced?	

	


Ø               and                , dri2-‐reduced	  is reasonable 	


nfluc ∼ neq

k⊥ρ ∼ 0.1ω � ωci

λei � L� ν∗ � 1

krLeq � 1 krLeq � 1



The GBS code, a tool to simulate SOL turbulence  	


ne~ni
ρ <<L, ω<<Ωci	


Braginskii 
model	


Drift-reduced 
Braginskii equations	


Collisional	

Plasma	


Te, Ω (vorticity)        similar equations (Ti<<Te)	

V||e, V||i             parallel momentum balance	


! 
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Solved in 3D geometry, taking into account plasma outflow 
from the core, turbulent transport, and losses at the vessel  	


Parallel 
dynamics	


Magnetic curvature	

Source	


Convection	

∂n

∂t
+ [φ, n] = Ĉ(nTe)− nĈ(φ)−∇�(nV�e) + S
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Boundary conditions at the plasma-wall interface	
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nse

SOL PLASMA	


vx

DRIFT-REDUCED MODEL VALID 	
 DRIFT APPROXIMATION 
BREAKS	


DRIFT VELOCITY	
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•  Set of b.c. for all 
quantities, 
generalizing 
Bohm-Chodura	


•  Checked 
agreement with 
PIC simulations	


	


BOUNDARY CONDITIONS	


VELOCITY	


MAGNETIC PRE-SHEATH	


DEBYE SHEATH	




GBS analysis of configurations of increasing complexity	
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Motivation
The plasma-wall transition
GBS turbulence simulations
Sheath effects on turbulence

Conclusions

The GBS code
Examples of 3D simulations

The GBS code, a tool to simulate open field line turbulence

� Developed by steps of increasing complexity

� Drift-reduced Braginskii equations

� Global, 3D, Flux-driven, Full-n [Ricci et al PPCF 2012]
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From linear devices…	

(role of non-curvature 
driven modes, DW vs KH)	
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Limited	

SOL	


… to the Simple Magnetized Torus…	

(role of curvature-driven modes and 
rigorous code validation)	
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… supported by analytical investigations 	




Tokamak SOL simulations	


Simulations contain physics of ballooning modes, drift waves, 	

Kelvin-Helmholtz, blobs, parallel flows, sheath losses… 	


Losses 
at the 
limiter	


Radial 
transport	


Flow	

 along B	


Plasma 
outflowing from 

the core	
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The key questions	


	

•  What is the mechanism setting the SOL turbulent level and the 

perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, tokamak 
size, …?	


•  What determines the SOL electrostatic potential?	


•  Are there mechanisms to generate toroidal rotation in the SOL?	




Turbulent transport with gradient removal (GR) saturation	


Turbulence 
saturates when it 
removes its drive	


∂pe1
∂r

∼ ∂pe0
∂r

krpe1 ∼ pe0/Lp

GR hypothesis 

∂pe
∂t

� [pe,φ]

Nonlocal linear theory, kr ∼
�

kθ/Lp

DGR =
Γr

pe0/Lp
∼ γLp

kθ

Γr =

�
pe1

∂φ1

∂θ

�
∼ γpe0

Lpk2r
∼ γpe0

kθ

θ

Γr

t



Turbulence saturation due to 
Kelvin-Helmholtz instability (KH)	


Primary instability grows 
until it causes KH 

unstable shear flow	


∂ω

∂t
∼ [φ,ω] φ1 ∼ γ

k2θ

We expect KH to limit the transport,	

provided that KH is unstable!	


KH vs GR mechanism:	


DKH ∼ γ

k2θ

DKH

DGR

∼ 1

kθLp

< 1

Γr =

�
pe1

∂φ1

∂θ

�
∼ γpe0

Lpk2θt



Is KH really setting transport? 	


q = 16
KH off	
 KH 

saturates 
turbulence 	


q = 4
KH off	
 KH plays a 

minor role: 
GR! 	


φφ

φ φ



Why is KH stable at low q but not higher q? 	


Only 
elongated 

eddies 
are KH 
unstable	


By comparing eddy turn over time and KH growth rate,  	

KH unstable if:                      (as in the q = 16 case)  	


�
kθLp > 3

φ

r

θ

φ
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The key questions	


	

•  What is the mechanism setting the SOL turbulent level and 

the perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, 
tokamak size, …?	


•  What determines the SOL electrostatic potential?	


•  Is toroidal rotation generated in the SOL?	




Transport and profile scaling for KH stable cases	


Simulations show 
expected scaling	


Balance of perpendicular 
transport and parallel losses 	


dΓr

dr
∼ L� ∼ n0cs

qR
Bohm’s	


LGR
p � q

�
γ

kθ

�

max

Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic effects
Scrape-off layer width scaling
Intrinsic rotation

Good agreement between theory and simulations
Lp predicted using self-consistent procedure
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GBS simulations : R = 500–2000, q = 3–6, ν = 0.01–1, β = 0–3× 10−3
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The key questions	


	

•  What is the mechanism setting the SOL turbulent level and the 

perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, tokamak 
size, …?	


•  What determines the SOL electrostatic potential?	


•  Are there mechanisms to generate toroidal rotation in the SOL?	




Lp = R1/2[2π(1− αMHD)αd/q]
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SOL Turbulent regimes	

RESISTIVE BALLOONING 

MODE, with IDEAL 
EFFECTS	


INERTIAL DRIFT WAVES	


RESISTIVE 
DRIFT WAVES	


lo
g 1

0
(ν
)

ŝ

Instabilities driving 
turbulence depends 
mainly on q,    ,   .	
ŝν

TYPICAL 
LIMITED SOL 

OPERATIONAL	

PARAMETERS	


MAJOR RADIUS	

αd ∼ (R/Lp)

1/4ν−1/2/qαMHD ∼ q2βR/Lp

LGR
p � q

�
γ

kθ

�

max

LIMITED SOL:	

γ ∼ γb =

�
2R/Lp

RBM	


kθ ∼ kb =

�
1− αMHD

νq2γb

RBM	




Simulations agree with ballooning estimates	


Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic effects
Scrape-off layer width scaling
Intrinsic rotation

Scaling follows GBS simulation data
Comparison carried out over wide range of parameters (R, q, β, ν)
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q = 3,R = 500

q = 6,R = 500
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q = 4,R = 1000

q = 4,R = 2000
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2π(1− αMHD)αd/q



The key questions	


	

•  What is the mechanism setting the SOL turbulent level and the 

perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, tokamak 
size, …?	


•  What determines the SOL electrostatic potential?	


•  Are there mechanisms to generate toroidal rotation in the SOL?	




Limited SOL transport increases with     and  	


Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic effects
Scrape-off layer width scaling
Intrinsic rotation

Electromagnetic phase space
� Build dimensionless phase space with full linear system...
� Verify turbulent saturation theory with GBS simulations

� R = 500, βe = 0 to 3× 10−3, ν = 0.01, 0.1, 1, q = 3, 4, 6

αd/q
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L
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Lp = R1/2[2π(1− αMHD)αd/q]

α
M

H
D

β ν

Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic effects
Scrape-off layer width scaling
Intrinsic rotation

SOL turbulence : interplay between β, ν, and ω∗

[LaBombard et al., Nucl Fusion (2005), lower-null L-mode discharges]

Important to understand resistive → ideal ballooning mode transition
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Maybe related to 
the density limit?	

	

Coupling with core 
physics needs be 
addressed…	

  	


α
M

H
D

αd
LaBombard, NF 2005	
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Limited SOL width widens with   

CASTOR	


TCV	


Lp = R1/2[2π(1− αMHD)αd/q]

R



Good agreement with multi-machine measurements	


Lp � 7.97× 10−8q8/7R5/7B−4/7T−2/7
e n2/7

e

The ballooning scaling, in SI units:	
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The key questions	


	

•  What is the mechanism setting the SOL turbulent level and the 

perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, tokamak 
size, …?	


•  What determines the SOL electrostatic potential?	


•  Are there mechanisms to generate toroidal rotation in the SOL?	




Potential in the SOL set by sheath and electron adiabaticity 	
On the electrostatic potential in the scrape-off-layer of magnetic confinement devices13

Figure 3. Equilibrium profile of the electrostatic potential φ̄ in a poloidal cross-section

as given from GBS simulations (top row), from Eq. (11) (middle row), and from the

widely used estimate φ̄ = ΛT0 (bottom row) with T0 = (T+
e +T−e )/2. Here Λ = 3 (left

column), Λ = 6 (middle column), and Λ = 10 (right column).

	

     Typical estimate: at the sheath	


     to have ambipolar flows,	

	

	

	

	

	

	

	

    Our more rigorous treatment, from Ohm’s law	


v�i = cs v�e = cs exp(Λ− eφ/T sh
e )

φ = ΛT sh
e /e � 3T sh

e /e

v�i = v�e

φ = ΛT sh
e /e+ 2.71(Te − T sh

e )/e

Sheath	
 Adiabaticity	
 ΛT sh
e /e

�φ�t

φtheory

θ



The key questions	


	

•  What is the mechanism setting the SOL turbulent level and the 

perpendicular transport?	


•  How is the SOL width established? 	


•  What are the SOL turbulent regimes?	


•  How do the SOL properties depend on beta, resistivity, tokamak 
size, …?	


•  What determines the SOL electrostatic potential?	


•  Are there mechanisms to generate toroidal rotation in the SOL?	
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GBS simulations show intrinsic toroidal rotation

Snapshot Time-average
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GBS simulations show intrinsic toroidal rotation	
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v�i
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GBS simulations show intrinsic toroidal rotation

Snapshot Time-average +/-

� There is a finite volume-averaged toroidal rotation (∼ 0.3cs)
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A model for the SOL intrinsic toroidal rotation	


Time-averaging the momentum equation: 	


∂

∂r
D
∂v�i
∂r

+
∂φ

∂r

∂v�i
∂θ

+ �
v�i
q

∂v�i
∂θ

+
�

nq

∂p

∂θ
= 0

Turbulent driven 
radial transport, 	

gradient-removal 

estimate	


Poloidal 
convection	


Parallel	

convection	


solved with boundary conditions: 	


Pressure poloidal 
asymmetry	


v�i
��
se

= cs −
q

�

∂φ

∂r

Bohm’s	

criterion	


ExB	

correction	


Sources of toroidal 
rotation	




Our model explains experimental and simulation rotation	


Good agreement between model and simulations:	
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GBS simulations agree with the theory
�
v�i

�
t
from GBS simulations

�
v�i

�
t
from Theory

(limiter position → HFS, down, LFS, up)
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Able to explain the experimental trends:	

	


•    	

	


•  Typically co-current	

	


•  Can become counter-current by 
reversing B or divertor position 	


	

Incidentally, a Rice Scaling is observed, 	


M� � 1

vϕ ∼ Te/Ip

Model	


Simulation	




What are we learning from GBS simulations?	

•  The use of a progressive simulation approach to 

investigate plasma turbulence, supported by analytical 
investigations	


•  SOL turbulence:	

–  Saturation mechanism given by gradient removal or Kelvin-

Helmholtz instability 	

–  Turbulent regimes: in limited plasmas, resistive ballooning 

modes	

–  Good agreement of the scaling of the pressure scale length 

with multi-machine measurements	

–  Sheath dynamics and electron adiabaticity set the electrostatic 

potential in the SOL	

–  Toroidal rotation generated by sheath dynamics and pressure 

poloidal asymmetry  	



