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Abstract— In this paper, a new approach to fixed-order
H∞ and H2 output feedback control of MIMO discrete-time
systems with polytopic uncertainty is proposed. The main
idea of this approach is based on the definition of SPR-pair
matrices and the use of some instrumental matrices which
operates as a tool to overcome the original non-convexity
of fixed-order controller design. Then, stability condition as
well as H∞ and H2 performance constraints are presented
by a set of linear matrix inequalities with linearly parameter
dependent Lyapunov matrices. Iterative algorithm for update
on the instrumental matrices monotonically converges to a
suboptimal solution. Simulation results show the effectiveness
of the proposed approach.

I. INTRODUCTION

Recently, linear matrix inequalities (LMIs) emerge as a
useful tool to deal with a wide variety of optimization and
control problems. Many control design problems can be
easily expressed in terms of a set of LMIs which are readily
solved using existing standard LMI solvers.

Low-, fixed-order dynamic output-feedback control design
of polytopic systems using LMI conditions is a challenging
issue in the community of robust control theory and it has
attracted considerable attention since the last decade. The
problem is originally non-convex in the space of controller
parameters and it cannot be solved in polynomial time [1].

Recently, several researchers have developed inner convex
approximations of the non-convex set of all fixed-order
stabilizing controllers in terms of LMIs for systems with
polytopic uncertainty in the polynomial framework [2], [3].
The results have been extended to fixed-order H∞ controller
design in [4], [5]. An LMI formulation of fixed-structure
H2 controller design for SISO transfer functions is also
given in [6]. All these approaches are based on the positivity
of polynomials and Strictly Positive Realness (SPRness) of
transfer functions. The quality of these approaches depends
on the choice of a so-called central polynomial. These
approaches are limited to systems with polynomially poly-
topic uncertainty; therefore, they cannot consider state-space
polytopic uncertainty which has more general structure than
polynomially polytopic uncertainty.

This paper is a continuation of our previous research work
in [7], [8] where the problem of fixed-order H∞ and H2

control synthesis of continuous-time polytopic systems in the
state space framework has been considered by introducing a
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new concept of SPR-pair matrices. The SPR-pair matrices
play a key role as instrumental matrices to convexify the
originally non-convex problem of fixed-order controller de-
sign by decoupling some unknown matrices.

In this paper, discrete-time systems with polytopic uncer-
tainty are handled by a similar idea. However, the extension
of results to discrete-time case is not straightforward spe-
cially for fixed-order H∞ controller design. In Bounded Real
Lemma of discrete-time systems, the product of unknown
Lyapunov and state matrices appears not only in the stability
block (ATPA−P ) but also in other blocks (ATPB/APCT ).
Therefore, in comparison to the continuos-time case in [7],
the SPR-pair matrices have to decouple all these unknown
matrices.

For both fixed-order H∞ and H2 controller design, suf-
ficient conditions in terms of LMI optimization problems
are given in this paper. Moreover, an iterative procedure for
update on the instrumental matrices is proposed that mono-
tonically converges to a suboptimal solution. This property
is one of the important features of the proposed approach in
this paper.

The organization of the paper is as follows: Problem
statement, preliminaries, basic idea and simulation examples
are presented in next section. LMI conditions for fixed-order
H∞ and H2 controller design are developed in Sections III
and IV, respectively. Finally, conclusions are provided in
Section V.

The notation used throughout the paper is standard. I
is an identity matrix of appropriate dimension. ? indicates
symmetric blocks. P > 0 and P < 0 means that the matrix
P is positive-definite and negative-definite, respectively.

II. FIXED-ORDER STABILIZING CONTROLLERS

A. Problem statement

Consider a dynamical discrete-time system given by:

xg(k + 1) = Agxg(k) +Bgu(k) +Bww(k)

z(k) = Czxg(k) +Dzuu(k) +Dzww(k)

y(k) = Cgxg(k) +Dww(k)

(1)

where xg ∈ Rn, u ∈ Rni , w ∈ Rr, y ∈ Rno , and
z ∈ Rs are the state, the control input, the exogenous
input, the measured output, and the controlled output vector,
respectively. The real matrices Ag , Bg , Bw, Cz , Cg , Dzu,
Dzw, and Dw are of appropriate dimensions. It is assumed
that the matrices Ag and Bg belong to a polytopic region as



follows:

Ag(λ) =

q∑
i=1

λiAgi Bg(λ) =

q∑
i=1

λiBgi; (2)

where λ = [λ1 · · ·λq]T ∈ Λ,

Λ =

{
λ

∣∣∣∣∣
q∑

i=1

λi = 1, λi ≥ 0; i = 1, . . . , q

}
(3)

and

Hi(z) =

 Agi

[
Bgi Bw

][
Cz

Cg

] [
Dzu Dzw

0 Dw

]  (4)

is the transfer matrix of each vertex of the polytope. This
polytopic system contains a variety of parametric uncertain-
ties such as multiple models and interval uncertainty. Note
that if the matrix Cg has polytopic uncertainty and the matrix
Bg is fixed, very similar results are obtained.

The problem addressed in this section is to present LMI
conditions for fixed-order output feedback stabilizing con-
troller design of the polytopic system in (1) and (2). The
controller is represented by:

xc(k + 1) = Acxc(k) +Bcy(k)

u(k) = Ccxc(k) +Dcy(k)
(5)

where Ac ∈ Rm×m and Bc, Cc, and Dc are of appropriate
dimensions. Then, the state space representation of the
closed-loop system Hzw is given by:

x(k + 1) = A(λ)x(k) +B(λ)w(k)

z(k) = Cx(k) +Dw(k)
(6)

where

A(λ) =

[
Ag(λ) +Bg(λ)DcCg Bg(λ)Cc

BcCg Ac

]
B(λ) =

[
Bw +Bg(λ)DcDw

BcDw

]
C = [Cz +DzuDcCg DzuCc]

D = Dzw +DzuDcDw

(7)

The matrix A(λ) is called robustly stable if the magnitude
of all its eigenvalues is less than one for all λ ∈ Λ.

B. Basic idea

The main idea behind the polynomial-based approaches
[2], [3] for the fixed order controller design of SISO poly-
topic systems with rational transfer function representations
is based on the strictly positive realness (SPRness) of some
transfer functions. These transfer functions are the ratio of
the closed-loop characteristic polynomial at the each vertex
to a given stable polynomial called the central polynomial.
The control performance as well as the conservatism of the
approach depends on the choice of the central polynomial.
In this paper, the similar idea is used to propose some
LMI conditions for fixed-order controller design of discrete-
time systems with polytopic uncertainty in their state space
representation. The following lemma, definition and theorem

provide the basic concepts of this paper concerning the fixed-
order stabilizing controller synthesis.

Lemma 1: [5] An SPR transfer matrix H(z) and its in-
verse H−1(z) are SPR with a common Lyapunov matrix P .

Now, consider two transfer matrices H(z) and its inverse
as follows:

H(z) =

[
A B
C I

]
, H−1(z) =

[
A−BC B
−C I

]
(8)

Based on the Kalman-Yakubovic-Popov (KYP) lemma
[10], [11], the SPRness of H(z) and H−1(z) leads to the
following equivalent inequalities:[

ATPA− P ?
BTPA− C BTPB − 2I

]
< 0 (9)[

(A−BC)TP (A−BC)− P ?
BTP (A−BC) + C BTPB − 2I

]
< 0

(10)
Remark: The matrices A and A − BC are both stable with
a common Lyapunov matrix P .

Definition 1: Two matrices M and A in Rn×n are called
SPR-pair matrices if

H(z) =

[
M I

M −A I

]
(11)

is SPR.
By applying Lemma 1, it is obvious that if H(z) in (11)

is SPR, H−1(z) with the following state space realization is
also SPR.

H−1(z) =

[
A I

A−M I

]
(12)

Therefore, if M and A are SPR-pair, then A and M
are also SPR-pair (commutative property) and they are both
stable with a common Lyapunov matrix. As a result, the
following inequalities are equivalent:[

MTPM − P ?
PM −M +A P − 2I

]
< 0[

ATPA− P ?
PA−A+M P − 2I

]
< 0

(13)

The following theorem proposes a new set of LMIs for
fixed-order stabilizing controller design of the discrete-time
systems with polytopic uncertainty defined in (1) and (2).

Theorem 1: The fixed-order controller defined in (5) sta-
bilizes the discrete-time polytopic system in (1) and (2) if
there exist a stable matrix M and a non-singular matrix T
such that M and T−1AiT are SPR-pair for i = 1, . . . , q,
where Ai is the closed-loop state matrix of the i-th vertex
defined by:

Ai =

[
Agi +BgiDcCg BgiCc

BcCg Ac

]
(14)

Therefore, a convex set of stabilizing controllers can be
given using the KYP lemma by the following set of LMIs:[

MTPiM − Pi ?
PiM −M + T−1AiT Pi − 2I

]
< 0 (15)



for i = 1, . . . , q.
The above inequalities are LMIs with respect to the con-

troller parameters (Ac, Bc, Cc, Dc) and symmetric Lyapunov
matrices Pi for i = 1, . . . , q.

Proof: Since M makes an SPR-pair with T−1AiT
in (15), both matrices are stable with the Lyapunov matrix
Pi. By convex combination of (15) for all vertices, one can
obtain:[

MTP (λ)M − P (λ) ?
P (λ)M −M + T−1A(λ)T P (λ)− 2I

]
< 0 (16)

where A(λ) =
∑q

i=1 λiAi, P (λ) =
∑q

i=1 λiPi, and λi ∈ Λ.
The above inequality shows that M and T−1A(λ)T are SPR-
pair. Based on (13), the above inequality is equivalent to:

(T−1A(λ)T )TP (λ)(T−1A(λ)T )−
P (λ)

?

P (λ)(T−1A(λ)T ) +M−
T−1A(λ)T

P (λ)− 2I

 < 0

(17)
Now, multiply the above inequality on the right by

diag(T−1, T−1) and on the left by diag(T−T , T−T ):
A(λ)T (T−TP (λ)T−1)A(λ)−

T−TP (λ)T−1 ?

(T−TP (λ)T−1)A(λ)+
T−TMT−1 −A(λ)

T−TP (λ)T−1−
2T−TT−1

 < 0

(18)
Consequently, the closed-loop state matrix of the polytopic

system A(λ) is stable with a linearly parameter dependent
Lyapunov matrix T−TP (λ)T−1.

The convex set of fixed-order stabilizing controller pre-
sented in this theorem is an inner convex approximation of
the non-convex set of all fixed-order stabilizing controllers
for the polytopic system. The quality of this approximation
depends on the choice M , the central state matrix, and T , the
similarity transformation, which will be considered in next
subsection.

C. Choice of the central state matrix and the similarity
transformation

In this paper, the non-convexity of the fixed order con-
troller design problem can be overcome by using the instru-
mental matrices which are the central state matrix M and the
similarity transformation T . However, the conservatism of
this approach is affected by these matrices and therefore they
should be determined in an appropriate way. Generally, one
approach to the choice of the instrumental matrices M and
T is to use a set of initial fixed-order stabilizing controllers
designed for each vertex of the polytopic system and then
find the matrix M such that it is SPR-pair with the closed-
loop state matrix of each vertex. Now, suppose that Āi is the
closed-loop state matrix of each vertex with its corresponding
controller. Then, a good candidate for the central state matrix
M will be a matrix which makes SPR-pair with T−1ĀiT
for i = 1, . . . , q. This matrix and the non-singular matrix T
are determined by the equivalent LMIs of (15), which are
mentioned in the following remark:

Remark: Based on Lemma 1, (15) is equivalent to the
following inequality:[

(T−1AiT )TPi(T
−1AiT )− Pi ?

Pi(T
−1AiT ) +M − (T−1AiT ) Pi − 2I

]
< 0 (19)

for i = 1, . . . , q.
Then, by multiplying this inequality on the left by

diag(T−T , T−T ) and on the right by diag(T−1, T−1), one
obtains: [

AT
i PTi

Ai − PTi
?

PTi
Ai −XAi +MT PTi

− 2X

]
< 0 (20)

where

MT = T−TMT−1

PTi
= T−TPiT

−1

X = T−TT−1
(21)

for i = 1, . . . , q.
The above inequalities are LMIs with respect to MT , X ,

and the positive definite matrices PTi for i = 1, . . . , q.
The central state matrix M and the similarity transforma-

tion T can be chosen as follows:

M = TTMTT

T = (chol(X))−1
(22)

where chol is Cholesky factorization and (MT , X) are a
feasible solution to the LMIs in (20) by replacing Ai with
Āi for i = 1, . . . , q.

If any feasible solution cannot be found for LMIs in (20),
different initial controllers can be applied. Another solution
is that to decrease the parametric uncertainty domain and
determine the matrices M and T . Then, by iterative update
on the instrumental matrices, the uncertainty region can be
increased.

III. LMI CONDITIONS FOR FIXED-ORDER H∞
CONTROLLER DESIGN

In this section, the problem of fixed-order H∞ controller
design of the discret-time polytopic system in (1) and (2) is
considered. The objective is that the fixed-order controller
satisfies an infinity norm bound on the closed-loop transfer
function Hzw(λ).

The idea of SPR-pair matrices can be used as a tool to
present a set of LMI conditions based on linearly parameter
dependent Lyapunov matrices. This idea will be presented in
the following theorem:

Theorem 2: Suppose that a central stable matrix M and
a non-singular similarity transformation T are given. Then,
the closed-loop system of the discrete-time polytopic system
in (1) and (2) with the controller in (5) is stable and
‖Hzw(λ)‖2∞ < µ if there exist symmetric matrices Pi > 0
such that

Pi −MTPiM ? ? ?
PiM −M + T−1AiT 2I − Pi ? ?

0 (T−1Bi)
T I ?

CT 0 D µI

 > 0

(23)



for i = 1, 2, . . . , q.
Proof: See Appendix I.

The above inequalities are LMIs with respect to the
controller parameters (Ak, Bk, Ck, Dk), µ, and q symmetric
matrices Pi for i = 1, . . . , q.

Lemma 2: The following set of inequalities are equivalent
with (23):

PT i −Ai
TPT iAi ? ? ?

PT iAi +MT −XAi 2X − PT i ? ?

Bi
TMT −Bi

TXAi Bi
TX I ?

C 0 D µI

 > 0

(24)
for i = 1, . . . , q, where MT , PTi

, and X are defined in (21).
Proof: Multiply the inequalities in (23) on the left and

on the right by the following matrix U1 and UT
1 , respectively.

U1 =


T−T T−TMT −AiT

−T 0 0
0 T−T 0 0
0 0 I 0
0 0 0 I

 (25)

The inequalities in (24) are LMIs in terms of MT , X , and
PT i for all q vertices.

Now, consider a set of initial fixed-order H∞ controllers
independently designed for each vertex and compute Āi,
B̄i, C̄i, and D̄i from (7) by replacing the initial controllers
for Ak, Bk, Ck and Dk. Then, the central state matrix M
and the non-singular matrix T can be obtained through an
optimization problem which is minimizing γ subject to the
LMIs in (24) (by simply replacing (Ai, Bi, Ci, Di) with
(Āi, B̄i, C̄i, D̄i)).

The results can be further improved if the resulting con-
troller is used as initial controller to update the central state
and the similarity transformation matrices iteratively. This
idea will be discussed in the next subsection.

A. An iterative procedure for fixed-order H∞ controller
design

The upper bound µ can be monotonically decreased if
the central state and similarity transformation matrices are
iteratively updated by applying the previous controller as
an initial controller. In this way, at each iteration, two sets
of LMIs in (23) and (24) are considered, one in which the
instrumental matrices are determined based on the controller
of the previous iteration and the other in which the new
controller is obtained. The iterative procedure can be sum-
marized by the following steps. To ease the presentation,
the inequalities in (23) and (24) are respectively defined as
follows:

F i
1(Pi,K, µ |M,T ) < 0 (26)
F i

2(PT i,MT , X, µ | K) < 0 (27)

for i = 1, . . . , q. The sign | in the arguments of F i
1 and F i

2

separates the decision variables and the known parameters
in the related LMIs. Therefore, the LMIs in (26) are used to
find the controller parameters, K = (Ac, Bc, Cc, Dc) for a

given pair of (M,T ). In the same way, the LMIs in (27) are
used to find MT , and X for a given controller K.

Step 1: Design an initial controller for each vertex of
the polytopic system (K0

i ; i = 1, . . . , q). Put the
iteration number j = 0 and a large value for
µj
1 >> 1 and a small tolerance for ε > 0.

Step 2: Compute M j
T and Xj from the following opti-

mization problem:

µj
2 = min µ

subject to F i
2(PT i,M

j
T , X

j , µ | Kj−1
i ) < 0;

i = 1, . . . , q
(28)

Compute the central state matrix M j and
the similarity transformation matrix T j using
M j

T , X
j and (22).

Step 3: Solve the following optimization problem to
obtain a fixed-order H∞ controller K:

µj
1 = min µ

subject to F i
1(Pi,K

j , µ |M j , T j) < 0;

i = 1, . . . , q

(29)

Step 4: If µj−1
1 − µj

1 > ε, use the obtained controller
in Step 3 as an initial controller (Kj+1

i =
Kj+1; i = 1, . . . , q) and go to Step 2 with
j = j + 1, else stop.

It can be proved that this iterative approach leads to
monotonic convergence of the upper bound on the H∞
norm. The proof is based on the fact that (26) and (27)
are equivalent inequalities. Therefore, for j > 1, Kj−1

and µj
2 are always feasible solutions to the optimization

problem in Step 3 which guarantee that µj
1 ≤ µj

2. On the
other hand, M j

T , X
j and µj

1 are always feasible solutions
to the optimization problem in Step 2 at iteration j + 1.
Thus, µj+1

2 ≤ µj
1. As a result, µj+1

1 ≤ µj
1 which shows

that the upper bound µ1 is not increasing and converges
monotonically to a local optimum.

B. Simulation example

Example 1: Consider the following state space model of
the system in [12] given by:

Ag =

 0 0 −r1
1 0 −r2
0 1 −r3

 ;Bg =

 r4
1
0


Cg =

[
0 0 1

]
;

Cz =
[

0 0 1
]

;

Dzu = 0; Dzw = 1; Dw = 1

(30)

with r1 = −0.1, r2 = 0.5, r3 = −1.2, and r4 = 0.2, where
all the parameters contain uncertainty up to ±20% of their
nominal values, resulting in an unstable polytope with 24 =
16 vertices in a four-dimensional space.

In this example, the problem of low-order H∞ output
feedback controller design is considered. The objective is to
design a second-order controller based on Theorem 2 such
that it minimizes ‖Hzw(λ)‖∞.
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Fig. 1. Evolution of the upper bound of the H∞ norm versus the iteration
number in Example 1

At the first step, initial second-order controllers are de-
signed by using Frequency-Domain Robust Controller De-
sign Toolbox [13] for each vertex of the polytope. Then these
controllers are utilized to determine the instrumental matrices
M and T using the LMIs in (24). Based on the results of
Section III, the iterative algorithm converges to the following
controller with µmin = 1.64222 after 15 iterations:

K(z) = −0.5413z2 − 0.2656z + 0.1565

z2 + 0.9967z + 0.03198
(31)

Figure 1 shows the monotonic decreasing of the upper
bound of ‖Hzw(λ)‖∞ for 15 iterations. Since the state
space realization of the system is in the canonical form, the
polynomial-based approaches in the literature (e.g. [4], [5],
and [14]) can be employed for the comparison purposes. The
results of these approaches for two different central polyno-
mials have been mentioned in [14]. Table I summarizes the
results.

TABLE I
UPPER BOUND OF ‖Hzw(λ)‖∞ FOR DIFFERENT APPROACHES IN

EXAMPLE 1

Approach central polynomial 1 central polynomial 2
Results of [4] 2.25 1.95
Results of [5] 2.25 1.95
Results of [14] 1.75 1.75

Results of Theorem 2 1.6422

IV. LMI CONDITIONS FOR FIXED-ORDER H2

CONTROLLER DESIGN

The main objective of this section is to propose a set
of LMIs for fixed-order stabilizing controller design of
the polytopic systems in (1) and (2) which satisfies H2

performance ‖Hzw(λ)‖22 < υ.
It is assumed that either matrix Dzu or matrix Dw in (1)

are equal to zero. In what follows Dw = 0 is considered.

Therefore, the controller matrices appear only in matrices
A(λ) and C.

The next theorem shows that how the idea of SPR-pair
matrices can be used to present a convex set of fixed-order
H2 controllers.

Theorem 3: Suppose that a central stable matrix M and
a nonsingular similarity transformation T are given. Then,
the closed-loop system of the polytopic system in (1) and
(2) with the controller in (5) is stable and ‖Hzw(λ)‖22 < υ
if there exist symmetric matrices Pi > 0 and Wi > 0 such
that: Pi −MTPiM ? ?

PiM −M + T−1AiT 2I − Pi ?
CiT 0 I

 > 0

 Wi ? ?
PiT

−1B Pi ?
Di 0 I

 > 0

trace(Wi) < υ

(32)

for i = 1, 2, . . . , q.
Proof: See Appendix II.

The inequalities in (32) are LMIs with respect to the
controller parameters (Ak, Bk, Ck, Dk), υ, and q symmetric
matrices (Pi,Wi) for i = 1, . . . , q.

The quality of this approach is dependent of the choice of
the state matrix M and the non-singular matrix T which can
be acquired based upon the following set of LMIs: PT i −Ai

TPT iAi ? ?
PT iAi −XAi +MT 2X − PT i ?

Ci 0 I

 > 0

 Wi ? ?
PT iBi PT i ?
Di 0 I

 > 0

trace(Wi) < υ

(33)

for i = 1, . . . , q.
Lemma 3: The inequalities in (32) and (33) are equivalent.

Proof: Pre and post multiply the inequalities in (32)
with the following matrix U2 and UT

2 , respectively:

U2 =

 T−T T−TMT −AT
i T
−T 0

0 T−T 0
0 0 I

 (34)

Remarks:
1) The matrices M and T can be obtained by (22) where

(MT , X) is a feasible solution of an optimization
problem which is minimizing υ subject to the LMI
conditions in (33) (by simply replacing (Ai, Bi, Ci,
Di) with (Āi, B̄i, C̄i, D̄i)).

2) It can be shown that the upper bound υ is monotoni-
cally decreased by an iterative algorithm for update on
the instrumental matrices M and T .

3) When Dw 6= 0 and Dzu = 0, the unknown controller
matrices appear in A and B and then the second set
of inequalities in (32) is not an LMI with respect to



unknown variables. In this case, based on the fact that
‖Hzw(λ)‖2 = ‖HT

zw(λ)‖2, the dual problem which
is the minimization of two norm of HT

zw(λ) with the
realization (AT (λ), CT , BT (λ), DT ) is considered.

4) For the case when Dw 6= 0 and Dzu 6= 0, the second
inequality in (32) can be formulated as a set of LMIs
by using an instrumental matrix Y as follows: Wi ? ?

Y TT−1Bi Y + Y T − Pi ?
D 0 I

 > 0 (35)

for i = 1, . . . , q. It can be easily proved by applying
Schur Complement Lemma [15] to (35) and consider-
ing the fact that (Y − Pi)

TP−1i (Y − Pi) ≥ 0.
5) Mixed H∞ and H2 control design can be addressed

by gathering the LMIs in (23) and (32) in a single set
of LMIs without using a common Lyapunov matrix
and unique instrumental matrices (central state and
similarity transform matrices) for both objectives.

A. Simulation example

Example 2: Consider the following forth-order unstable
polytopic system in [16]:

Ag =

 0.8189 0.0863 0.0900 0.0813
0.2524 1.0033 0.0313 0.2004
−0.0545 0.0102 p1 −0.2580
−0.1918 −0.1034 0.1602 p2



Bg =

 0.0045 0.0044
0.1001 0.0100
0.0003 −0.0136
−0.0051 p3

 ;Cg =

[
1 0 0 0
0 0 1 0

]

Bw =

 0.0953 0 0
0.0145 0 0
0.0862 0 0
−0.0011 0 0

 ;Cz =

 1 0 −1 0
0 0 0 0
0 0 0 0


Dzu =

 0 0
1 0
0 1

 ;Dzw =

 0 0 0
0 0 0
0 0 0

 ;Dw =

[
0 0 0
0 0 0

]
(36)

with p1 = 0.7901, p2 = 0.8604, and p3 = 0.0936.

Case a: No uncertainty in the system

First, by using the zero-order hold (ZOH) transformation,
the hinfstruct command in MATLAB (by setting the target
gain to 4) has been applied to design an initial static output
feedback controller for the system. Then, by applying the
method in Section IV and after 25 iteration, the following
static output feedback is designed such that ‖Hzw‖2 <
0.2727:

K1 =

[
−0.3506 −0.4405
−0.3039 −0.0007

]
(37)

The convergence of the algorithm is illustrated in figure 2.
The results are compared with the results in [16], (example
2), where ‖Hzw‖2 < 0.4243.
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Fig. 2. Convergence of the upper bound of H2 norm in Example 2 (case
a)

Case b: Polytope with 23 vertices

In this case, we assume that there are uncertainty in the
parameters p1, p2 and p3 up to ±8% of their nominal values.
The hinfstruct command in MATLAB (by setting the target
gain to 4) has been used to design initial controllers for each
vertex of the polytope in (36). These controllers are utilized
to find a feasible solution M and T of (33). Finally, the
results of Theorem 3 provides the following controller:

K2 =

[
−0.9915 −0.6291
−0.1881 −0.02591

]
(38)

The results can be improved more by an iterative approach
in which M and T are updated based on the controller in the
last iteration as an initial controller. Figure 3 shows the upper
bound of ‖Hzw‖2 for 5 iterations. After 5 iterations, the
upper bound υmin = 0.41872 is obtained for the polytopic
system with the following controller:

K3 =

[
−0.9243 −0.7063
−0.3921 −0.0254

]
(39)

In this example, the proposed approach provides the results
which are even better than the results in [16] where a static
output feedback has been designed for the system in (36)
without uncertainty.

V. CONCLUSION

In this paper, LMI conditions for fixed-order H∞ and H2

output feedback control design of discrete-time systems with
polytopic uncertainty has been proposed. The conditions are
based on the new concept of SPR-pair matrices which are
utilized as a tool to convexify the stability conditions as well
as the H∞ and H2 performance specifications. It has been
shown that the proposed method monotonically converges to
a suboptimal solution by iterative update on the instrumental
matrices. The simulation examples have demonstrated the
effectiveness of the proposed method.
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Fig. 3. Evolution of the upper bound of the two norm versus the iteration
number in Example 2 (case b)
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APPENDIX I
PROOF OF THEOREM 2

Proof: By convex combination of (23) for all vertices,
the following inequality can be obtained:

P (λ)−MTP (λ)M ? ? ?
P (λ)M −M + T−1A(λ)T 2I − P (λ) ? ?

0 (T−1B(λ))T I ?
CT 0 D µI

 > 0

(40)
where A(λ) =

∑q
i=1 λiAi, B(λ) =

∑q
i=1 λiBi, P (λ) =∑q

i=1 λiPi, and λ ∈ Λ. Then, by pre and post multiplication
of the above matrix with the following matrix U3 and UT

3 ,
respectively, Bounded Real Lemma can be easily reached
which means ‖Hzw(λ)‖2∞ < µ.

U3 =

[
T−1 T−TMTTTT−1 0 −µ−1CT

0 Bcl(λ)
T
T−1 −I µ−1DT

]
(41)

APPENDIX II
PROOF OF THEOREM 3

Proof: Convex combination of (32) for all vertices leads
to the following inequalities: P (λ)−MTP (λ)M ? ?

P (λ)M −M + T−1A(λ)T 2I − P (λ) ?
CT 0 I

 > 0

(42) W (λ) ? ?
P (λ)T−1B P (λ) ?

D 0 I

 > 0 (43)

trace(W (λ)) < υ (44)

where A(λ) =
∑q

i=1 λiAi, W (λ) =
∑q

i=1 λiWi, P (λ) =∑q
i=1 λiPi, and λ ∈ Λ.
By pre-multiplication of (42), (43), and (44) with the

following matrices U4, U5, and U6, respectively, and then
post-multiplication with their transposes

U4 =
[
T−T T−1MT −ATT−1

]
(45)

U5 = diag(I, T−1, I) (46)

U6 = 1 (47)

the following inequalities are obtained: P (λ) ? ?
P (λ)A(λ) P (λ) ?

C 0 I

 > 0

 W (λ) ? ?
P (λ)B P (λ) ?
D 0 I

 > 0

trace(W (λ)) < υ

(48)

Therefore, the square of the two-norm of Hzw with the
realization (T−1A(λ)T, T−1B,CT,D) is less than υ.


