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Abstract— We consider the problem of incrementally learning
different strategies of performing a complex sequential task
from multiple demonstrations of an expert or a set of experts.
While the task is the same, each expert differs in his/her way
of performing it. We assume that this variety across experts’
demonstration is due to the fact that each expert/strategy is
driven by a different reward function, where reward functio n
is expressed as a linear combination of a set of known features.
Consequently, we can learn all the expert strategies by forming
a convex set of optimal deterministic policies, from which one
can match any unseen expert strategy drawn from this set.
Instead of learning from scratch every optimal policy in this set,
the learner transfers knowledge from the set of learned policies
to bootstrap its search for new optimal policy. We demonstrate
our approach on a simulated mini-golf task where the 7 degrees
of freedom Barrett WAM robot arm learns to sequentially putt
on different holes in accordance with the playing strategies of
the expert.

I. I NTRODUCTION

Inverse reinforcement learning, or rewards-driven imita-
tion learning, is a paradigm for learning reward function from
expert demonstrations [1], [2], [3], [4], [5], [6], [7]. Expert
demonstrations provide a powerful means to bootstrap the
learning process, subject to two notions of prime importance:
‘what-to-imitate’ and ‘how-to-imitate’, i.e., what is theinten-
tion of the expert in the demonstration and how to replicate
the intended policy of the expert [8]. Inverse reinforcement
learning assumes that the expert’s intent is driven by rewards
in a demonstration and aims to recover the control policy that
can yield the same rewards as that of the expert. Rewards
here are obtained by a linear combination of a set of known
features representing the task.

It is well-known that humans vary widely in perform-
ing sequential decision-making tasks, possibly differingin
their intentions or ways of gauging task-dependent features.
This difference is a fundamental trait of natural selection
that contributes to fitness and survival of an individual in
changing environments. Consequently, there are often several
useful ways of performing a task and how one assesses
multiple criteria in a given situation yields the goodness
of a decision. Despite this, most of the previous work in
inverse reinforcement learning assumes single expert having
the same intention in all the demonstrations – albeit with
a few exceptions. In [9], the authors use an expectation-
maximization approach to cluster similar strategies in the
demonstrations where the number of clusters defined apriori
represent the number of reward functions. Dimitrakakis and

Rothkopf [10] generalize the Bayesian approach to learn
multiple reward functions by considering two types of joint
priors on reward functions and policies. Following above,
Choi and Kim in [11] present a non-parametric Bayesian
approach using the Dirichlet process mixture model to learn
multiple reward functions. In this paper, we take a direct
geometric approach to learn a convex set of optimal policies
enclosing all expert strategies. This helps us to efficiently
match any previously unseen expert strategy drawn from this
set. Moreover, our method of learning multiple strategies is
incremental and allows transfer of knowledge; contrary to all
the batch learning approaches described above.

In this work, we are interested in learning multiple strate-
gies of performing a task by observing several experts’
demonstrations. We seek to endow our learner with the
ability to mimic a variety of experts, irrespective of how
different these experts are in their actions. We believe this
ability is crucial to adapt to different situations/environments
in an optimal way. Moreover, we exploit the fact that all the
strategies share the same transition dynamics and only differ
in the underlying reward function. This helps to reuse the
previous experience and bootstrap incremental learning of
multiple expert strategies.

II. PRELIMINARIES

Consider the learner as an autonomous agent in a
Markov Decision Process (MDP) represented by a tuple
< S,A, Psa, α, γ, φ, w >, whereS is a finite set ofN states;
A is a set ofM actions that the agent can take in a given
state;Psa : S × A × S → [0, 1] describes the transition
dynamics of the environment, i.e.,Psa , Pr(s′, a, s) is the
probability of transitioning to states′ after taking actiona in
states; α(s) : S → [0, 1] and

∑

s α(s) = 1 is the initial state
distribution from which the states0 is drawn;γ ∈ R → [0, 1)
is the discount factor;φ(s) : S → R

k
[0,1] is the mapping from

states to a set ofk task-dependent features1; w ∈ R
k
[−1,1]

and ‖w‖1 ≤ 1 defines the relative weights of the features.
Different weights for the features yield different rewards
while interacting with the environment,R(s) = wTφ(s).

A policy π ∈ Π defines the mapping from state to actions.
A policy can be deterministic,π(s) : S → A, in which case
each state is mapped to a unique action, or a policy can be

1All the features are normalized to make their effect on the reward
function comparable in a relative way.



stochastic in which case each state is mapped to a distribution
over actions,π(s, a) : S × A → [0, 1] and

∑

a π(s, a) = 1.
The policies we consider here are stationary as they depend
only on current state and do not change with time. Note that a
stochastic policy can be represented as a convex combination
of deterministic policies and every convex combination of
deterministic policies represents some stochastic policy(see
Ch. 6 of [12]).

Thevalue-functionV π(s) : S → [ −1
1−γ

, 1
1−γ

] measures the
expected value of discounted sum of rewards that the agent
gains starting from states and following policyπ:

V π(s) = E
{ ∞∑

t=0

γtR(st)|s0 = s, a = π(st),

s′ ∼ P π(.|st)
}

where P π : S × S → [0, 1], is the transition dynam-
ics after fixing action in each state according to policy
π. When modulated by the initial state distributionα(s),
the value of a policyπ reduces to a scalar defined by:
V π =

∑

s α(s)V
π(s) (note that we dropped the s in the

parentheses). A policyπ is optimal for the MDP if it satisfies:

π = argmax
π∈Π

V π

Similar to how the value-function gives an expectation
over rewards in the long run,feature expectationvector,
µπ(s) : S → R

k
[0, 1

1−γ
], corresponds to the discounted sum of

the features as the agent observes the sequences0, s1, s2, . . .

starting from the states0 = s following policy π.

µπ(s) = E
{ ∞∑

t=0

γtφ(st)|s0 = s, a = π(st),

s′ ∼ P π(.|st)
}

Note that the reward function is linear in features, the value-
function is also linear in feature expectations, parametrized
by the same weight vectorw, i.e., V π(s) = wTµπ(s) and
similarly for the initial state distribution,V π = wTµπ, where
µπ =

∑

s α(s)µ
π(s) 2.

The expert strategy is represented by its feature expecta-
tion µπE . Given the expert’s sequence of visited states over
m runs[s0, s1, s2, . . .]m, an empirical estimate of the expert’s
feature expectation can be computed as:

µ̂πE =
1

m

m∑

i=1

∞∑

t=0

γtφ(sit)

2With slight abuse of notation, we later use bold-face notation to write
equations in matrix form without parentheses as well.µπ for N×k matrix
[µπ(s1) . . . µπ(sN )]T , andµπ for column vector of dimensionk, Φ for
the matrix of reward features, andα for the initial-state distribution vector
of dimensionN .

III. T RANSFER INLEARNING MULTIPLE STRATEGIES

The main contribution of this paper is to incorporate the
transfer of knowledge for boosting incremental learning of
multiple expert strategies. We first formalize our problem
statement in this section, followed by our multiple expert
strategies learning algorithm and then explain the transfer of
knowledge to speed up the learning process.

A. Problem Statement

Let ΠD be the set of all deterministic stationary policies
available to the learner in a MDP as possible ways of exe-
cuting a task. Each policy possibly gives a different feature
expectationµπ, among which the optimal ones maximize
the value of a policyV π for somew. The set of feature
expectationsµπ1 , µπ2 , . . . , µπd ⊆ µ(ΠD) that are maximal
for somew defines a convex hull Co{µ(ΠD)} in the feature
expectation space. Ideally, we would like to learn all the
optimal policies over this convex hull so that the learner
can readily replicate any expert strategy by appropriately
combining these optimal policies.

To make it concrete, suppose we can compute the set of
feature expectations of all the optimal policies inΠD, then
we can approximate any expert strategyµπE (in expectation)
by constructing a mixed policy3 that assigns a probabilityλi

to the policy with feature expectationµπi :

µπE =

|πd|∑

i=1

λiµ
πi

Note that the deterministic stationary policies ofΠD alone
do not constitute all the feasible strategies in the feature
expectation space. By allowing ourselves to approximate
the expert strategy with mixture of optimal policies, we do
not limit the expert to be optimal or nearly-optimal in a
deterministic way; otherwise we could select one optimal
deterministic policy with feature expectationµπi lying on the
convex hull that is closest toµπE . We only require the expert
strategy to lie within the convex hull of feature expectations,
and thereby, assume the expert to be optimal in a stochastic
manner. In other words, the expert may sequentially optimize
over different reward functions in his/her strategy.

However, learning all optimal policies inΠD is in general
intractable with|ΠD| = AS . Moreover, not all the policies in
the set lead to practically useful description of a task. To this
end, we leverage upon the availability of the expert to address
this challenge. Let us denoteΠE as the set of deterministic
policies available to the expert where|ΠE | ≪ |ΠD| in
general. Let∆(ΠE) be the set of probability distributions
(unknown) over the setΠE from which the expert draws a
finite number of strategiesµπE1 , µπE2 , . . . , µπEn as possible
useful ways of demonstrating a task to the learner. The goal
of the learner is to approximate the strategies demonstrated
by the expert asµπA1 , µπA2 , . . . , µπAn belonging to the
probability distribution set∆(ΠA), and after experiencing

3A mixed policy is executed by randomly selecting the policyπi at t = 0
with probability λi (λi ≥ 0,

∑
i λi = 1), and following it for the rest of

the time.



a finite number of them, be able to approximate any new
expert strategy drawn from∆(ΠE)

4. The learner does so
by finding the set of deterministic policiesΠA that is used
to generate a mixed policy for matching any expert strategy
by drawing from the associated distribution such that the
performance of the learner is at least as good as that of the
expert with a tolerance ofǫ0:

|V πE − V πA | ≤ ǫ0 (1)

whereǫ0 ≥ 0, πA ∼ ∆(ΠA), πE ∼ ∆(ΠE) and the expert’s
weight vector is unknown in the demonstrated strategy.

B. Learning Multiple Expert Strategies

Given an expert strategyµπE , the learner seeks a policy
πA whose performance is close to that of the expert’s policy
πE as given by Eq. (1). Based on the reward function used
by the expert, there are two main approaches to recover the
learner’s policy: 1) learn the expert’s reward function from
demonstrations of the strategy explicitly and then compute
the optimal policy for this reward function [1], [3], [7], or2)
match the feature expectations of the learner and the expert’s
policy irrespective of the reward function used [2], [13], [5].
We follow the latter approach in this work and present our
results with the well-knownprojectionalgorithm [2].

The projection algorithm returns the learner’s policyπA

for a given expert strategy such that‖µπE − µπA‖2 ≤ ǫ1,
thereby yielding the same performance as that of the expert.
From (1):

|V πE − V πA | = wT (µπE − µπA)

≤ ‖w‖2‖µπE − µπA‖2
≤ 1 · ǫ1

where the first inequality follows from Cauchy-Schwarz
inequality: |xT y| ≤ ‖x‖2‖y‖2 andǫ1 ≥ ǫ0. The problem of
matching a given expert strategy with respect to the unknown
weight vector is, hence, transformed to a vector matching
problem over feature expectations. The projection algorithm
iteratively computes an optimal policyπi with feature ex-
pectationµπi for reward function,R(s)i = (wi)Tφ(s) in
each iteration,i = 1 . . . T . The weight vectorwi of the
reward function is updated in each iteration such that the
successive projected mappingµ̄i moves closer to the expert
strategyµπE , where µ̄i is the projection ofµπE on the
line joining µ̄i−1 and µπi . Learning converges when the
projected mapping isǫ1−close to the expert strategyµπE

and the weight vector changes no more (see Algorithm 1).
At the end, the pointµπE is guaranteed to be close to
the convex hull of feature expectation set of intermediate
policies,µπ1 , µπ2 , . . . , µπT , with µπA being the closest point
in that convex hull toµπE .

Here we extend the idea of projection algorithm for learn-
ing multiple expert strategies. After computing the feature

4For simplicity, we assume that the new expert strategy during test-
ing belongs to the convex set of already experienced expert strategies
µπE1 , µπE2 , . . . , µπEn .

Fig. 1: Projection algorithm for multiple expert strategies

expectation setµπ1 , µπ2 , . . . , µπT corresponding toT iter-
ations of the projection algorithm for expert strategyµπE1 ,
the initial weight vector forµπE2 is selected along the line
connectingµπE2 and the closest possible feature expectation
achievable from the setµπ1 , µπ2 , . . . , µπT to µπE2 . For the
j th expert strategy, the initial weight is computed as:w =
µπEj − u, whereu is obtained from the feature-expectation
set as following:

minµ ‖µ− µπEj‖2 s.t. (2)

µ =
∑(T×j)

i=1 λiµ
πi ,

∑(T×j)
i=1 λi = 1, λi ≥= 0

Note that if ‖w‖2 < ǫ1 after the above optimization, the
algorithm terminates in the first iteration asµπEj can already
be estimated from the existing feature expectation set of the
learner.

C. Optimal Policy Transfer

There are two main issues in learning multiple expert
strategies with the feature-matching approach: 1) it is com-
putationally very expensive to find an optimal policy for a
given reward function with weightw, and 2) the number
of deterministic policies in the setΠA can grow arbitrarily
large for matching all the expert strategies. Consequently,
the learner seeks to: 1) reuse the previously learned poli-
cies to achieve faster learning with a new reward function
parametrized byw, and 2) store only distinct policies (we
call them ǫ-better policies) that are possibly optimal for a
wide range of weights. Previous work in [14] uses such
transfer of knowledge to optimize average-reward per time
step in hierarchical Semi-Markov Decision Processes. A
more generic overview of transfer in reinforcement learning
can be found in [15].

Let Π(j)
A be the set of stored optimal deterministic policies

after learning thej th expert strategy. Given a new reward
function with weightw, the learner chooses as initial policy
πinit the one with the highest value in the setΠ

(j)
A :

πinit = arg max
π∈Π

(j)
A

(wTµπ) (3)

The initial policy πinit is the optimal policy for the given
reward function if there exists no other policy whose perfor-
mance isǫ-better than the initial policy. The set ofǫ-better
policies is characterized in the following Lemma:



Lemma 1:Given a finite state space S, action set A, initial
state distributionα, reward functionR, the optimal policy
π with transition matrixPπ is ǫ-better than an initial policy
πinit with transition matrixPπinit , if it satisfies:

αT
(
(I − γPπ)−1 − (I − γPπinit)−1

)
R ≥ ǫ (4)

Proof: The value of anǫ-better policy is at leastǫ better
than the value ofπinit:

V π − V πinit ≥ ǫ

((µπ)T − (µπinit)T )w ≥ ǫ (5)

µπ =
∑

s

µπ(s)α(s)

=
∑

s

E(

∞∑

t=0

γtφ(st)|s0 = s, s′ ∼ P π(.|st))α(s)

=
∑

s

(φ(s) + γ
∑

s′

P πµπ(s′))α(s)

µπ = (Φ+ γPπµπ)
︸ ︷︷ ︸

µπ

Tα

µπ = Φ
T ((I − γPπ)−1)Tα

(µπ)T = αT (I − γPπ)−1
Φ (6)

Substituting Eq. (6) into Eq. (5) for(µπ)T and (µπinit)T :

(αT (I − γPπ)−1
Φ−αT (I − γPπinit)−1

Φ)w ≥ ǫ (7)

Rearranging gives the required result in (4)5.

Lemma 1 gives the space of policies that are better than
πinit for the given reward function with weightw. We now
further narrow down this space by imposing constraints due
to other policies in the setΠ(j)

A .
Definition 1: Given a set of optimal deterministic poli-

cies, π1, π2, . . . , πT ∈ ΠA, with feature expectations,
µπ1 , µπ2 , . . . , µπT ∈ µ(ΠA), corresponding to reward func-
tions with weights,w1, w2, . . . , wT , the optimal policyπ for
reward function with weightw and feature expectationµπ

is an ǫ-better policy inΠA if:

wT (µπ − µπi) ≥ ǫ (8)

(wi)T (µπ − µπi) ≤ 0 i = 1, 2, . . . , T (9)
The first set of constraints follows from the definition of

the feature expectationµπ of the optimal policyπ for weight
w:

µπ = arg max
µ∈µ(ΠD)

(wTµ)

⇒ wTµπ ≥ wTµ ∀µ ∈ µ(ΠD)

5Note that the term((I−γPπ)−1)Tα gives the state-visitation frequen-
cies

∑
a x(s, a) following policy π, wherex(s, a) is a feasible solution of

the dual linear MDP. Consequently, one can easily switch between primal
and dual variables.
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Fig. 2: ‘Value-Surface’ withk = 2 (best viewed in color).
For a new reward function with weightw, value-surface gives
the initial policy with the best weighted value. The surface
is updated only if there exists aǫ-better policy atw whose
weighted value is less than the value of other optimal policies
at w1, w2, . . . , wT .

For π to be stored, its valuewTµπ has to beǫ-better than
the values of all the policies in the setΠA at weightw:
wTµπ ≥ wTµπi + ǫ for i = 1 . . . T . Rearranging yields the
constraints in (8). Since the valueV π is linear in weights,
the policy gives a weighted value of(wi)Tµπ at some
other weightwi. The weighted value(wi)Tµπ must be less
than the optimal value(wi)Tµπi for πi to be the optimal
policy corresponding to weightwi; otherwiseπ would be the
optimal policy for weightwi, i.e., (wi)Tµπ ≤ (wi)Tµπi for
i = 1 . . . T . Rearranging gives the constraints in (9). Further,
adding constraints (8) and (9) and using Cauchy-Schwarz
inequality gives a lower bound on the distance betweenw

and other weight vectors in the setw1, w2, . . . , wT for w to
have anǫ-better policy6:

(w − wi)T (µπ − µπi) ≥ ǫ

‖w − wi‖2‖µπ − µπi‖2 ≥ ǫ

‖w − wi‖2 ≥ ǫ(1− γ)√
k

i = 1 . . . T(10)

Every policy adds a set of constraints for a new reward
function with weightw to satisfy. The setµπ1 , µπ2 , . . . , µπT

defines a convex hull Co{µ(ΠA)} in the feature expectation
space and the resulting piecewise planar ‘value-surface’ gives
the best policy value for each possible weight (see Fig. 2).

Note that Lemma 1 combined with the constraints in
Definition 1 can be used to find anǫ-better policy with
a linear program; albeit very slow. In our implementation,
we verify the existence ofǫ-better policy in three steps in
this order: 1) satisfy (10) to check if there does not exist

6Remember that:µπ ∈ R
k

[0, 1
1−γ

]
⇒ ‖µπ − µπi‖2 ≤

√

k
1−γ

.



any wi in the vicinity of w for which we already have the
optimal policy, 2) there exists aµ such that the constraints
in Definition 1 are satisfied, i.e.,

Solve forµ s.t. wT (µ− µπinit) ≥ ǫ, (11)

(wi)T (µ− µπi) ≤ 0, i = 1, 2, . . . , T

0 � µ � 1
1−γ

Note that the use ofµπinit at w also satisfies allµπi in (8),
and 3) find the optimal policy using the well-known value-
iteration algorithm starting fromπinit (any reinforcement
learning algorithm can be used) and use Lemma (1) to
decide whether to store or discard the optimal policy. If the
verification fails at any of the above three steps,πinit is
declared the optimal policy forw. The overall algorithm of
learning multiple strategies from demonstrations is presented
in Algorithm 1.

Algorithm 1 Transfer in Learning Multiple Strategies

Input: < S,A, Psa, α, γ, φ, {µπE1 , µπE2 , . . . , µπEn}, ǫ >
procedure LEARNER TRAINING

1: Initialize i := 1, wi s.t. ‖wi‖1 = 1, ΠA = {}
2: µ̄i = argmaxµ∈µ(ΠD)

(
(wi)Tµ

)

3: for j = 1 to |µπEn | do
4: if ΠA 6= {} then
5: Solve (2) forµ := minµ∈Co{µ(ΠA)} ‖µ− µπEj‖2
6: wi = µπEj − µ

7: µ̄i−1 = µ

8: end if
9: repeat

10: if i > 1 then
11: πinit := argmaxπ∈ΠA

(
(wi)Tµ

)

12: Verify three steps for existence ofǫ-better policy
13: if three steps are verifiedthen
14: Add πi to ΠA

15: else
16: πi = πinit

17: end if
18: µ̄i = µ̄i−1+ (µπi−µ̄i−1)T (µπEj−µ̄i−1)

(µπi−µ̄i−1)T (µπi−µ̄i−1) (µπi−µ̄i−1)
19: end if
20: wi+1 = µπEj − µ̄i

21: i := i+ 1
22: until ‖wi − wi−1‖2 is unchanged
23: end for
24: return set of learner policiesΠA

procedure LEARNER TESTING
25: loop
26: Expert demonstrates a strategyµπE ∼ ∆(ΠE)
27: Learner finds a strategyµπA ∼ ∆(ΠA) : µπA =

∑|ΠA|
i=1 λiµ

πi , whereλi is obtained by solving (2) with
(T × j) = |ΠA|

28: end loop

IV. EXPERIMENTAL STUDY

Experimental study is first performed on a grid world prob-
lem, followed by our sequential decision making task of play-
ing mini-golf. The goal here is to asses the performance of
optimal policy transfer in learning multiple expert strategies
with different values ofǫ against the ‘no transfer’ case where
each expert strategy is learned separately with the projection
algorithm. The performance is evaluated using three metrics:
1) empirical error – distance between the estimated feature
expectation of the expert and the learner averaged overn

strategies, i.e.,1
n

∑n
j=1 ‖µ̂πEj − µ̂πAj‖2, 2) CPU learning

time, and 3) number of policies stored. We use the same
discount factor of0.9 in all our experiments. Moreover, we
only iterate our algorithm for an expert strategy up to a
maximum of50 iterations.

A. Grid World

We first illustrate our approach in a conceptually sim-
ple grid world environment of100 × 100 cells. Each cell
represents a different state of the learner. In a given state,
the learner can take9 different actions corresponding to
a move in all eight neighbouring directions or a stay in
the same cell. Transition dynamics are stochastic with0.7
probability of moving in the direction of desired action
instead of a random one. Initial state distribution is uniform
over all the states. Five features – radial basis functions with
centres chosen randomly among states and width drawn in
the interval[1, 20] – are used to populate the feature space.
Ten different reward functions are generated to simulate
multiple experts by randomly assigning different weights to
every feature in the interval[−1, 1]. We log the visited states
sequence of125 time steps from the optimal policy of every
reward function in a demonstration and vary the number of
sample demonstrations to study its effect on learning multiple
strategies.

Fig. 3 (left) shows that the average empirical error over all
strategies decreases sharply with the increase in the number
of demonstrations, while it increases slightly with higher
values ofǫ for a given number of sample demonstrations. The
other two plots clearly indicate the advantage of optimal pol-
icy transfer with a magnitude of performance improvement
in terms of required time and number of policies to learn
all strategies. Note that the optimal policy transfer is useful
even for the case of learning a single expert strategy.

B. Mini-Golf

Mini-golf, short for Miniature golf, is a competitive but
enjoyable sport in which the players compete to strike a
golf ball with a putter into a hole. The game is played
on a small field with various fixed obstacles and unique
variations. Different fields are marked with increasing order
of the difficulty level and the players are required to complete
each hole before moving on to the next one. The goal is to
sink the ball into the hole from the tee area in as few shots as
possible. Depending on the various features of the field, the
task of estimating how to hit the ball in a given situation is a
difficult task that requires a lot of skill from the expert. The



1 10 20 30 40 50
0

1

2

3

4

5

Sample Demonstrations

E
m

pi
ric

al
 E

rr
or

 

 
ε = 0.1
ε = 0.2
ε = 0.5
No Transfer

2 4 6 8 10
0

20

40

60

80

100

120

Expert Strategies

C
P

U
 T

im
e 

(s
ec

)

 

 

2 4 6 8 10
0

50

100

150

200

250

300

Expert Strategies

C
um

ul
at

iv
e 

S
to

re
d 

P
ol

ic
ie

s

 

 

Fig. 3: Grid world results. Results are averaged over5 iterations

Fig. 4: Simulated mini-golf playing field

expert has to plan a number of aspects such as reflections
of the boundaries, number of shots and intermediate ball
positions for every hole separately. In this section, we use
the knowledge of different experts to teach the learner how
to putt the golf ball into different holes.

1) Learning Problem:We are interested in learning all the
useful playing strategies for the learner from the expert. The
learner is a7-degrees of freedom Barrett WAM robot arm and
the expert is a computer program that knows how to sink the
ball in different holes. The simulated mini-golf environment
is shown in Fig. 4. To simulate various strategies of the
expert, we have5 different holes in one field. To find useful
playing strategies, the expert computes100 optimal policies
for randomly chosen weights and selects one optimal policy
for each hole based on its success count and policy-value.
For brevity, we fix100 demonstrations of length equal to
50 time steps for each optimal policy to estimate the feature
expectation of expert’s strategies,µ̂πEj , j = 1 . . . 5 (same
setting is used to empirically estimate the learner strategies).
The learner is required to learn the set of deterministic
policiesΠA from which it can approximate any randomly
chosen distribution over the5 expert strategies. In other
words, sink the ball in each hole same number of times as
the expert does in his/her strategy.

2) State, Action and Feature Space:The state-space cor-
responds to the2−dimensional position of the ball in the
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Fig. 5: Comparison of first15 expert and learner strategies
for 100 episodes withǫ = 0.1. For every strategy number,
the first bar gives the success count of holes for the expert,
the second bar gives the learner’s response to the expert’s
strategy. First five strategies correspond to the training set,
other mixed strategies are from the testing set.

grid, |S| = 81 × 56 = 4536. The action-set corresponds
to 4 hitting directions at right angles to one another and
6 different hitting speeds,|A| = 24. The feature space is
13-dimensional, where first8-dimensions give distance of
the ball to each wall segment, and other5-dimensions give
distance of the ball to each hole. The features are scaled such
thatφ(s) ≤ 1. Intuitively speaking, an ideal strategy chooses
the intermediate ball positions in a way that keeps the ball
maximally away from all other holes and wall segments,
while sinks the ball in the desired hole in least number of
shots. The initial state distribution is uniform on the tee area
marked with the yellow line in Fig. 4. An episode of play
corresponds to50 shots. The ball position is randomly reset
on the tee area every time the episode ends or the ball sinks
into a hole.



TABLE I: Performance comparison of projection algorithm
for learning multiple strategies with and without optimal
policy transfer. Results are averaged over5 iterations

Learning CPU Stored Empirical Empirical
Multiple Time Policies Error Error
Strategies (sec) (Training) (Testing)

No
333.53 250

0.901 0.931
Transfer ±0.117 ±0.096

ǫ = 0.1 310.49 14.2
0.972 0.778
±0.089 ±0.03

ǫ = 0.2 188.66 12
0.971 0.797
±0.068 ±0.032

ǫ = 0.5 78.05 8.2
1.025 0.794
±0.073 ±0.038

3) Results and Discussions:We design our experiments
as follows: the learner is required to learn the5 expert
strategies from their estimated feature expectations using our
proposed algorithm in the training phase. During testing, the
expert then draws50 mixed strategies each corresponding
to a random distribution over pure expert strategies, and the
learner is asked to replicate the expert’s strategy.

Table I gives a performance comparison of the projection
algorithm for learning multiple strategies with and without
optimal policy transfer. The algorithm with ‘no transfer’ fails
to converge for each of the5 expert strategies in50 iterations,
leading to a large number of stored policies. Increasing val-
ues ofǫ depict a similar trend as in the grid world problem,
however, the CPU learning times are more closer to one
another. This is because the value-iteration algorithm takes
somewhat shorter time in this case to compute an optimal
policy even if it is initialized randomly. In more realistic
scenarios where sample collection process is expensive and
optimal policy needs to be computed online, the difference
in learning times would be largely amplified. By reducing
the time to compute optimal policy, our approach would
scale gracefully with moderately high dimensions. A direct
comparison with learning multiple expert strategies on the
real robot is, however, subject to our future work.

Fig. 5 gives a measure of the ability of the learner to
replicate previously unseen expert strategies. It is seen that
after learning the5 expert strategies corresponding to sinking
the ball in each hole separately during training, the learner
is able to successfully replicate all the mixed strategies of
the expert in the testing phase.

V. CONCLUSIONS

We presented the learner as an autonomous agent that can
learn multiple ways of doing a task by observing the expert,
while making use of the previously gathered experience.
We tested our algorithm on the mini-golf task to verify the
proficiency of the learner against different playing strategies
of the expert.

In this work, we evaluate the ability of the learner to
match any complex strategy demonstrated by the expert. We

are also interested in the online version of our formulated
problem where the expert’s choice of subsequent strategy
selection guides the learning process of the learner to reach
equilibrium. While having discrete state-action space with
known transition dynamics can often be restrictive for real-
world tasks, we plan to relax these assumptions with continu-
ous states and actions for model-based/model-free interaction
with the environment in our future work.
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