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Abstract— We consider the problem of incrementally learning
different strategies of performing a complex sequential tak
from multiple demonstrations of an expert or a set of experts
While the task is the same, each expert differs in his/her way
of performing it. We assume that this variety across experts
demonstration is due to the fact that each expert/strategysi
driven by a different reward function, where reward function
is expressed as a linear combination of a set of known featuse
Consequently, we can learn all the expert strategies by foring
a convex set of optimal deterministic policies, from which oe
can match any unseen expert strategy drawn from this set.
Instead of learning from scratch every optimal policy in this set,
the learner transfers knowledge from the set of learned potiies
to bootstrap its search for new optimal policy. We demonstrge
our approach on a simulated mini-golf task where the 7 degree
of freedom Barrett WAM robot arm learns to sequentially putt
on different holes in accordance with the playing strategis of
the expert.

I. INTRODUCTION

aude. billard}@pfl.ch

Rothkopf [10] generalize the Bayesian approach to learn
multiple reward functions by considering two types of joint
priors on reward functions and policies. Following above,
Choi and Kim in [11] present a non-parametric Bayesian
approach using the Dirichlet process mixture model to learn
multiple reward functions. In this paper, we take a direct
geometric approach to learn a convex set of optimal policies
enclosing all expert strategies. This helps us to effiggentl
match any previously unseen expert strategy drawn from this
set. Moreover, our method of learning multiple strategges i
incremental and allows transfer of knowledge; contraryiito a
the batch learning approaches described above.

In this work, we are interested in learning multiple strate-
gies of performing a task by observing several experts’
demonstrations. We seek to endow our learner with the
ability to mimic a variety of experts, irrespective of how
different these experts are in their actions. We believs thi

Inverse reinforcement learning, or rewards-driven imitaability is crucial to adapt to different situations/enviroents

tion learning, is a paradigm for learning reward functiconfr
expert demonstrations [1], [2], [3], [4], [5], [6], [7]. Exgot

in an optimal way. Moreover, we exploit the fact that all the
strategies share the same transition dynamics and onbr diff

demonstrations provide a powerful means to bootstrap the the underlying reward function. This helps to reuse the
learning process, subject to two notions of prime imporanc previous experience and bootstrap incremental learning of
‘what-to-imitate’ and ‘how-to-imitate’, i.e., what is thieten-  multiple expert strategies.

tion of the expert in the demonstration and how to replicate

the intended policy of the expert [8]. Inverse reinforcemen I.
learning assumes that the expert’s intent is driven by résvar -gnsider the learner as an autonomous agent in a

in a demonstration and aims to recover the control policy th@ arkov Decision Process (MDP) represented by a tuple
can yield the same rewards as that of the expert. Rewardsg 4 p ~,6,w >, whereS is a finite set ofV states;
here are obtained by a linear combination of a set of knowp s 5 set of M actions that the agent can take in a given
features representing the task. o state; P, : S x A x S — [0,1] describes the transition
tis well-_known_that hum_ans vary Wldely in perf(_)rm- dynamics of the environment, i.eB,, £ Pr(s',a, s) is the

ing sequential decision-making tasks, possibly differing - yropapility of transitioning to state’ after taking action: in
their intentions or ways of gauging task-dependent featuregiate,: a(s) : S — [0,1] andy", a(s) = 1 is the initial state
This difference is a fundamental trait of natural selectiogjistribution from which the state, is drawn;y € R — [0,1)

that cqntribut_es to fitness and survival of an individual ing the discount factory(s) : S — RFOJ] is the mapping from
changing environments. Consequently, there are oftenaleveg;,q o

) to a set ofk task-dependent featuElaau S Rf_l 1]
useful ways of performing a task and how one assessgs

: >k : L ann al |w|; < 1 defines the relative weights of the features.
multiple criteria in a given situation yields the goocjr‘esﬁ‘\l)ifferent weights for the features vyield different rewards
of a decision. Despite this, most of the previous work in

, ¢ : ! inal ‘while interacting with the environmenR(s) = w’ ¢(s).
inverse reinforcement learning assumes single experhbavi policy = € I defines the mapping from state to actions.

the same |nte_nt|on in all the demonstrations — albeit V\_ntt& policy can be deterministicr(s) : S — A, in which case
a few exceptions. In [9], the authors use an expectatior,

T o O ach state is mapped to a unique action, or a policy can be
maximization approach to cluster similar strategies in the
demonstrations where the number of .CIUSterS.‘ d.efmed _apnoruA” the features are normalized to make their effect on theard
represent the number of reward functions. Dimitrakakis anidnction comparable in a relative way.
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stochastic in which case each state is mapped to a distiibuti I1l. TRANSFER INLEARNING MULTIPLE STRATEGIES

over actionsyr(s,a) : S x A — [0,1] and}_, 7(s,a) = 1. The main contribution of this paper is to incorporate the

The policies we consider here are stationary as they depefignsfer of knowledge for boosting incremental learning of

only on current state and do not change with time. Note that@itiple expert strategies. We first formalize our problem

stochastic policy can be represented as a convex combinatigatement in this section, followed by our multiple expert

of deterministic policies and every convex combination ofirategies learning algorithm and then explain the traraffe

deterministic policies represents some stochastic p¢feg  knowledge to speed up the learning process.

Ch. 6 of [12]).

The value-functiont’™ (s) : S — [{=L, 1] measures the A: Problem Statement

expected value of discounted sum of rewards that the agentlLet II, be the set of all deterministic stationary policies

gains starting from state and following policy: available to the learner in a MDP as possible ways of exe-
cuting a task. Each policy possibly gives a different featur

expectationy™, among which the optimal ones maximize

= the value of a policyV™ for somew. The set of feature
™ _ t _ _
V7i(s) = E{ 27 R(se)lso = s,a = 7(s), expectationgu™, ™, ..., ™ C u(Ilp) that are maximal
=0 ) for somew defines a convex hull G (I1p)} in the feature
s~ PW(-|8t)} expectation space. Ideally, we would like to learn all the

optimal policies over this convex hull so that the learner
where P™ : S x S — [0,1], is the transition dynam- can readily replicate any expert strategy by appropriately
ics after fixing action in each state according to polic\combining these optimal policies.
7. When modulated by the initial state distributier(s), To make it concrete, suppose we can compute the set of
the value of a policyr reduces to a scalar defined by:feature expectations of all the optimal policieslip, then
VT =3, a(s)V™(s) (note that we dropped the s in thewe can approximate any expert strategy (in expectation)
parentheses). A policy is optimal for the MDP if it satisfies: by constructing a mixed poliEythat assigns a probability;

to the policy with feature expectatiqu™:

m=argmax V"
well |7d]

- . . HTE =A™
Similar to how the value-function gives an expectation =1

oxer rewards km the long rurfeature expgctatlon/ector, Plote that the deterministic stationary policiesldf, alone
pr(s) S = R[O,ﬁ]’ corresponds to the discounted sum %o not constitute all the feasible strategies in the feature
the features as the agent observes the sequensg s,...  expectation space. By allowing ourselves to approximate
starting from the state, = s following policy 7. the expert strategy with mixture of optimal policies, we do
not limit the expert to be optimal or nearly-optimal in a
o deterministic way; otherwise we could select one optimal
[ (s) = E{ 27t¢(8t)|80 = s,a =7(s), deterministic poI_icy with feature expectatipfi: _Iying on the
=0 convex hull that is closest t0™=. We only require the expert
strategy to lie within the convex hull of feature expectasip
and thereby, assume the expert to be optimal in a stochastic
manner. In other words, the expert may sequentially opémiz
over different reward functions in his/her strategy.
However, learning all optimal policies ifip is in general
> C T o intractable with IIp | = A°. Moreover, not all the policies in
similarly for the initiay state distributionl™ = w" ., where the set lead to practically useful description of a task.his t

T =30 os)u” () B end, we leverage upon the availability of the expert to asklre

The expert strategy is represented by its feature expec%s challenge. Let us denoiég as the set of deterministic
tion 2. Given the expert's sequence of visited states over i

- . . policies available to the expert whetélz| < |IIp]| in
mrunslso, s1, s2, .. .]™, an empirical estimate of the expert’s i e
. ) general. LetA(Ilg) be the set of probability distributions
feature expectation can be computed as: .
(unknown) over the selfly from which the expert draws a

s ~ P”(.|st)}

Note that the reward function is linear in features, the @alu
function is also linear in feature expectations, pararnetti
by the same weight vectar, i.e., V™(s) = w’ ™ (s) and

" oo finite number of strategieg™*, u™==2, ..., u™#~ as possible
[4TE = 1 Z 27%(81) useful ways of demonstrating a task to the learner. The goal
m =i of the learner is to approximate the strategies demondtrate

by the expert asu™:!, ™2, ... u™~ belonging to the

2With slight abuse of notation, we later use bold-face noteto write ~ Probability distribution setA(Il4), and after experiencing
equations in matrix form without parentheses as well. for N x k matrix
[u™(s1) ... 4™ (sn)]T, andu™ for column vector of dimensio, & for 3A mixed policy is executed by randomly selecting the poligyatt = 0
the matrix of reward features, and for the initial-state distribution vector with probability A\; (A; > 0,3, A\; = 1), and following it for the rest of
of dimensionV. the time.



a finite number of them, be able to approximate any new
expert strategy drawn frorm(HE)E. The learner does so
by finding the set of deterministic policid$, that is used

to generate a mixed policy for matching any expert strategy
by drawing from the associated distribution such that the
performance of the learner is at least as good as that of the
expert with a tolerance afy:

7

Ve -V <€ 1)

whereey > 0, ma ~ A(Ila), 7z ~ A(Ilg) and the expert's  gig 1: Projection algorithm for multiple expert strategjie
weight vector is unknown in the demonstrated strategy.

B. Learning Multiple Expert Strategies

, o . expectation sep™, ™2, ..., ™ corresponding tdl’ iter-
AG|ven an expert strategy™”, the learner seeks a policy 4tions of the projection algorithm for expert strateg¥e,
7 whose performance is close to that of the expert’s polic

5 > X the initial weight vector foru™=2 is selected along the line
" as given by Eq.[{1). Based on the reward function useg necting, > and the closest possible feature expectation

by the expert, there are two main approaches to recover tg@hievable from the set™, u™,. ... u™ to u™=2. For the
learner’s policy: 1) learn the expert’'s reward functionnfro jh expert strategy, the initial weight is computed as:=

demonstrations of the strategy explicitly and then computﬁm — u, whereu is obtained from the feature-expectation
the optimal policy for this reward function [1], [3], [7], &) set as following:

match the feature expectations of the learner and the éxpert
policy irrespective of the reward function used [2], [13].[
We follow the latter approach in this work and present our ming, [[p— "2 st (2)
results with the well-knowrprojectionalgorithm [2]. =T N ST N =1, A >=0
The projection algorithm returns the learner’s policy} B B o
for a given expert strategy such that™ — u™|j» < e, Note that if |w|2 < e; after the above optimization, the

thereby yielding the same performance as that of the eXpeﬂ_gorithm terminates in the first iteration a%#: can already

From [): be estimated from the existing feature expectation setef th
learner.
Ve —ymal = T (e — yma) C. Optimal Policy Tra.nsf.er - . .
< wllollg™F = g4 There are two main issues in learning multiple expert
; ) strategies with the feature-matching approach: 1) it is-com
= T €1

putationally very expensive to find an optimal policy for a
where the first inequality follows from Cauchy-Schwarzgiven reward function with weighty, and 2) the number
inequality: |z7y| < ||z||2||y|l> ande; > €. The problem of of deterministic policies in the sél4 can grow arbitrarily
matching a given expert strategy with respect to the unknowarge for matching all the expert strategies. Consequently
weight vector is, hence, transformed to a vector matchingje learner seeks to: 1) reuse the previously learned poli-
problem over feature expectations. The projection algorit Cies to achieve faster learning with a new reward function
iteratively computes an optimal policy’ with feature ex- parametrized byw, and 2) store only distinct policies (we
pectationy™ for reward function,R(s)* = (w*)T¢(s) in  call theme-better policies) that are possibly optimal for a
each iteration; = 1...7. The weight vectorw® of the wide range of weights. Previous work in [14] uses such
reward function is updated in each iteration such that th&ansfer of knowledge to optimize average-reward per time
successive projected mappipg moves closer to the expert step in hierarchical Semi-Markov Decision Processes. A
strategy 1"#, where i’ is the projection ofy™ on the more generic overview of transfer in reinforcement leagnin
line joining 7*~! and ™. Learning converges when the can be found in [15].

projected mapping is; —close to the expert strategy™ Let HEZ) be the set of stored optimal deterministic policies
and the weight vector changes no more (see Algorihm 13fter learning thej™ expert strategy. Given a new reward
At the end, the pointu™ is guaranteed to be close tofunction with weightw, the learner chooses as initial policy
the convex hull of feature expectation set of intermediate™" the one with the highest value in the $&Y’ :

policies, ™, u™2, ..., ™, with ™ being the closest point o
in that convex hull tou™. 7t = arg max (w' ") 3
Here we extend the idea of projection algorithm for learn- melly

ing multiple expert strategies. After computing the featurThe initial policy 7" is the optimal policy for the given
o , reward function if there exists no other policy whose perfor
4For simplicity, we assume that the new expert strategy dutist- ise-b h he initial i Th b
ing belongs to the convex set of already experienced exgetegies ma.n(.:e '.SE' etter t a_n t e initial po 'C}" e set etbetter
WTEBL B2 [ TEn, policies is characterized in the following Lemma:



Lemma 1:Given a finite state space S, action set A, initia
state distribution, reward functionR, the optimal policy
m with transition matrixP™ is e-better than an initial policy
7init with transition matrix P™init | if it satisfies:

o' (I—=yP™) ' —=(I—~yP™*) " YR>c (4)

n:W.un

Proof: The value of are-better policy is at leastbetter =
than the value ofrimt:

VT" _ Vﬂ'init Z €
(e = (™) Nw > e (5)
b= S ur(s)als)
— t _ ! PT
- ;E(;V D(si)lso = s,8"~ P7([si))a(s) Fig. 2: ‘Value-Surface’ withk = 2 (best viewed in color).
N o For a new reward function with weight, value-surface gives
= Z(¢(8) +WZP u(s"))als) the initial policy with the best weighted value. The surface
. ° S S'T is updated only if there exists @abetter policy atw whose
pto= (@+PTp") weighted value is less than the value of other optimal pedici
wr atw!, w?,...,wT.
W= ®T(I-P7) ) a
()" = I -yP") '@ (6)

For 7 to be stored, its value” ™ has to bee-better than
Substituting Eq.[{6) into EqLI5) fofu™)? and (p™iit)T: the values of all the policies in the s&t, at weightw:
wlp™ > wTp™ + € for i = 1...T. Rearranging yields the
constraints in[(B). Since the valué™ is linear in weights,
the policy gives a weighted value ofw’)” ™ at some
Rearranging gives the required result[ih Eél) other weightw’. The weighted valué¢w®)” u™ must be less
m than the optimal valugw?®)” ™ for =% to be the optimal
Lemmall gives the space of policies that are better thalicy corresponding to weight’; otherwiser would be the
7"t for the given reward function with weight. We now optimal policy for weightw?, i.e., (w*)” u™ < (w®)T ™ for
further narrow down this space by imposing constraints due= 1...7'. Rearranging gives the constraints[ih (9). Further,

(@T(I —yP™)7'® — o (I — yP™init) " 1®)w > € (7)

to other policies in the sdﬁfj). adding constraintd18) and](9) and using Cauchy-Schwarz
Definition 1: Given a set of optimal deterministic poli- inequality gives a lower bound on the distance between
cies, 7', 72,..., 77 € TII4, with feature expectations, and other weight vectors in the set, w?,... w’ for w to
w2 ™ € u(Ila), corresponding to reward func- have ane-better policﬂ:
tions with weights!, w?, ..., w”, the optimal policyr for T
reward function with weighty and feature expectation™ (w— w )T =) 2 e
is ane-better policy inIl, if: w—w2)|p™ = p™ 2 > €
fo—wil, > L0 o1 po)
W (T =) > e ® vk
(w)T (™ —p™) < 0 i=1,2,....T (9) Every policy adds a set of constraints for a new reward
The first set of constraints follows from the definition offunction with weightw to satisfy. The set™, ™, ..., u™"
the feature expectatign™ of the optimal policyr for weight ~ defines a convex hull Gau(IL4)} in the feature expectation
w: space and the resulting piecewise planar ‘value-surfacesg
the best policy value for each possible weight (see [Hig. 2).
p" =arg max (wlp) Note that Lemmdll combined with the constraints in
nep(ln) Definition [I can be used to find anbetter policy with
- W™ > wTp Y € p(Ilp) a linear program; albeit very slow. In our implementation,

we verify the existence of-better policy in three steps in

5Note that the ternf(I —vP™)~1)” o gives the state-visitation frequen- this order: 1) satisfy[{10) to check if there does not exist
cies)_ x(s,a) following policy 7, wherez (s, a) is a feasible solution of
the dual linear MDP. Consequently, one can easily switckvéeh primal

6 k i vk
and dual variables. Remember thatu™ € R 1= ln™ = pmifl2 <

1 .
[O’E -y



any w' in the vicinity of w for which we already have the
optimal policy, 2) there exists a such that the constraints

in Definition[d are satisfied, i.e.,

Solve forp s.t. w”

Note that the use ofi™i»it atw also satisfies all:™ in (),

and 3) find the optimal policy using the well-known value .
mrinit (any reinforcement time, and 3) number of policies stored. We use the same

iteration algorithm starting fro

learning algorithm can be used) and use Lemina (1) &
decide whether to store or discard the optimal policy. If th
verification fails at any of the above three step&® is

IV. EXPERIMENTAL STUDY

Experimental study is first performed on a grid world prob-
lem, followed by our sequential decision making task of play
ing mini-golf. The goal here is to asses the performance of
optimal policy transfer in learning multiple expert stigits
with different values ot against the ‘no transfer’ case where
each expert strategy is learned separately with the profect
algorithm. The performance is evaluated using three ngetric
1) empirical error — distance between the estimated feature
expectation of the expert and the learner averaged nver
strategies, i.e.%zyzl |a™Ei — G™4il|o, 2) CPU learning
iscount factor 00.9 in all our experiments. Moreover, we
gnly iterate our algorithm for an expert strategy up to a
maximum of50 iterations.

declared the optimal policy fow. The overall algorithm of A Grid World

learning multiple strategies from demonstrations is preesk

in Algorithm 1.

Algorithm 1 Transfer in Learning Multiple Strategies

Input: < S, A, Pso, e, v, ¢, {u™8, u™2 ..
procedure LEARNER_TRAI NI NG
1 Initialize i := 1, w* s.t. |w||;y = 1, 4 = {}
2. pf = arg max,ep(Iip) ((wl)T,u)
3: for j=1to |p™="| do

4 if T4 # {} then
S Solve Q) foru = min,ueCo{p(HA)} ”:u — Qe H2
6: wh = pE —
7 pl =y
8 end if
9: repeat
10: if > 1 then
11: 7= argmaxqen, ((w')”p)
12: Verify three steps for existence efbetter policy
13: if three steps are verifietthen
14: Add 7% to T4
15: else
16: ﬂ_i — Finit
17: end if it em i
— i T 3t ™ j77717 . i
18: /’Ll = :uz 1+ (étp,""i —’uﬁifl))T(éLM”i, —ﬂl:—l)) (/’Lﬂl _/’L,L 1)
19: end if
20: w1+1 — ILLTI'E]' _ ﬁl
21: =141

22: until [|w® — w15 is unchanged
23: end for
24: return set of learner policie$l 4

procedure LEARNER_TESTI NG
25: loop
26:  Expert demonstrates a strategyz ~ A(Ilg)

27.  Learner finds a strategy™ ~ A(Il4) : p™ =
ZE‘;' Aip™, where); is obtained by solvind{2) with

(T x j) = |11a]
28: end loop

,U/ﬂ—En}, € >

We first illustrate our approach in a conceptually sim-
ple grid world environment ofil00 x 100 cells. Each cell
represents a different state of the learner. In a given,state
the learner can tak® different actions corresponding to
a move in all eight neighbouring directions or a stay in
the same cell. Transition dynamics are stochastic With
probability of moving in the direction of desired action
instead of a random one. Initial state distribution is umifo
over all the states. Five features — radial basis functiatts w
centres chosen randomly among states and width drawn in
the interval[1, 20] — are used to populate the feature space.
Ten different reward functions are generated to simulate
multiple experts by randomly assigning different weigtts t
every feature in the interv@l-1, 1]. We log the visited states
sequence of25 time steps from the optimal policy of every
reward function in a demonstration and vary the number of
sample demonstrations to study its effect on learning pielti
strategies.

Fig.[3 (left) shows that the average empirical error over all
strategies decreases sharply with the increase in the mumbe
of demonstrations, while it increases slightly with higher
values ofe for a given number of sample demonstrations. The
other two plots clearly indicate the advantage of optima po
icy transfer with a magnitude of performance improvement
in terms of required time and number of policies to learn
all strategies. Note that the optimal policy transfer isfulse
even for the case of learning a single expert strategy.

B. Mini-Golf

Mini-golf, short for Miniature golf, is a competitive but
enjoyable sport in which the players compete to strike a
golf ball with a putter into a hole. The game is played
on a small field with various fixed obstacles and unique
variations. Different fields are marked with increasingesrd
of the difficulty level and the players are required to cortgle
each hole before moving on to the next one. The goal is to
sink the ball into the hole from the tee area in as few shots as
possible. Depending on the various features of the field, the
task of estimating how to hit the ball in a given situation is a
difficult task that requires a lot of skill from the expert.&h
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Success Count of Holes

10

expert has to plan a number of aspects such as reflectic L
of the boundaries, number of shots and intermediate bz

positions for every hole separately. In this section, we use

the knowledge of different experts to teach the learner hofwd- 5: Comparison of first5 expert and learner strategies
to putt the golf ball into different holes. for 100 episodes withe = 0.1. For every strategy number,

1) Learning Problem:We are interested in learning all the the first bar gives.the success count of holes for the expert,
useful playing strategies for the learner from the expere T the second bar gives the learner's response to the expert's
learner is &-degrees of freedom Barrett WAM robot arm ancStrategy. First five strategies correspond to the traingty s
the expert is a computer program that knows how to sink tHéther mixed strategies are from the testing set.
ball in different holes. The simulated mini-golf environnte
is shown in Fig.[#. To simulate various strategies of the
expert, we havé different holes in one field. To find useful grid, |S| = 81 x 56 = 4536. The action-set corresponds
playing strategies, the expert compul®$ optimal policies to 4 hitting directions at right angles to one another and
for randomly chosen weights and selects one optimal polidy different hitting speeds|A| = 24. The feature space is
for each hole based on its success count and policy-valug-dimensional, where firs8-dimensions give distance of
For brevity, we fix100 demonstrations of length equal tothe ball to each wall segment, and ottiedimensions give
50 time steps for each optimal policy to estimate the featureistance of the ball to each hole. The features are scaldd suc
expectation of expert’s strategieg?=/,5 = 1...5 (same that¢(s) < 1. Intuitively speaking, an ideal strategy chooses
setting is used to empirically estimate the learner stiaspg the intermediate ball positions in a way that keeps the ball
The learner is required to learn the set of deterministimaximally away from all other holes and wall segments,
policiesIT4 from which it can approximate any randomlywhile sinks the ball in the desired hole in least number of
chosen distribution over thé expert strategies. In other shots. The initial state distribution is uniform on the teeaa
words, sink the ball in each hole same number of times amsarked with the yellow line in FigJ4. An episode of play
the expert does in his/her strategy. corresponds t60 shots. The ball position is randomly reset

2) State, Action and Feature Spac€he state-space cor- on the tee area every time the episode ends or the ball sinks
responds to the—dimensional position of the ball in the into a hole.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Expert and Learner Strategies



TABLE I: Performance comparison of projection algorithmy e 4150 interested in the online version of our formulated

forllearning multiple strategies with anq without optimalprob|em where the expert's choice of subsequent strategy
policy transfer. Results are averaged oveterations selection guides the learning process of the learner tchreac
Learning CPU [ Stored | Empirical | Empirical equilibrium. While having discrete state-action spacehwit

Multiple Time | Policies Error Error known transition dynamics can often be restrictive for +eal
Strategies|| (sec) (Training) | (Testing) | World tasks, we plan to relax these assumptions with continu
No 0,901 0931 ous states and actions for model-based/model-free irtienac
Transfer 333.53 250 ib 117 ib 096 with the environment in our future work.
=01 31049 | 149 0.972 0.778 ACKNOWLEDGEMENT
+0.089 +0.03 This work was supported in part by EU Project First-MM
e=0.2 188.66 12 0.971 0.797 (FP7/2007 — 2013) under grant agreement numb48258
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e=05 | 7805 | 8.2 0.073 0,038 ( )
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