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Abstract

Ultra-wideband (UWB) localization is a recent technology that performs competitively with many
indoor localization methods currently available. Despiteits desirable traits, such as potential high
accuracy and high material penetrability, the resolution of non-line-of-sight (NLOS) signals remains
a very hard problem and has a significant impact on the localization performance. In this work, we
address the peculiarities of UWB error behavior by buildingmodels that capture the spatiality as well
as the multimodal statistics of the error behavior. Our framework utilizes tessellated maps that associate
probabilistic error models to localities in space. In addition to our UWB localization strategy (which
provides absolute position estimates), we investigate theeffects of collaboration in the form of relative
positioning. To this means, we develop a relative range and bearing model, and, together with the
UWB model, present a unified localization technique based ona particle filter framework. We test our
approach experimentally on a group of ten mobile robots equipped with UWB emitters and extension
modules providing inter-robot relative range and bearing measurements. Our experimental insights
highlight the benefits of collaboration, which are consistent over numerous experimental scenarios.
Also, we show the relevance, in terms of positioning accuracy, of our multimodal UWB measurement
model by performing systematic comparisons with two alternative measurement models. Our final
results show median localization errors below 10 cm in cluttered environments, using a modest set of
50 particles in our filter.

1 Introduction

Due to its large frequency spectrum, UWB is able to penetratethrough objects in NLOS scenarios, and
thus alleviates the LOS constraint imposed by other sensor types relying on media such as infrared, ul-
trasound, visible light or narrow-band radio. This advantage ultimately enables localization over large
ranges and in dynamic environments, which makes UWB an attractive candidate for indoor applications
such as asset management, inventory tracking and assembly control, for a variety of different industries
(Liu et al., 2007; Sahinoglu et al., 2008). Nevertheless, NLOS scenarios may cause biases in the sig-
nal propagation times, which leads to significant localization errors. In order to guarantee reliable and
accurate performance, these biases need to be addressed by an effective localization strategy.

In this paper, we consider the problem of absolute localization of a team of mobile robots for unknown
initial conditions. Since we aim for a portable, miniaturizable, cost-effective solution, with centimeter-
level accuracy, we choose to solve the localization problemwith a hybrid approach that combines UWB
localization with collaborative localization. Our UWB localization strategy uses time-difference-of-
arrival (TDOA) measurements from two or more base station pairs. We address the peculiarities of
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UWB signal propagation with models that capture the spatiality as well as the multimodality of the error
statistics. Simultaneously, we take care to develop an underlying error model that is compact and that
can be calibrated by means of efficient algorithms. Our collaborative localization strategy distinguishes
itself from prior work by emphasizing cost-efficiency, fulldecentralization, and scalability. The localiza-
tion method is based on relative positioning and uses two quantities: relative range and relative bearing.
This work investigates the combined roles of collaborativelocalization and UWB localization. Our ex-
periments are able to validate our overall localization strategy, and show that the performance can be
significantly improved when using collaboration: our insights indicate that relative positioning—even if
through noisy sensors—is a useful tool to reduce absolute localization errors. Since the fusion of UWB
positioning sensors with exteroceptive sensors has hardlybeen considered so far, our studies present
pioneering work in this domain.

1.1 Related Work

Since our approach combines methods from two separate subdomains of localization research, we sum-
marize the respective literature separately, in the two following subsections.

1.1.1 UWB Localization

UWB is a radio technology which is characterized by its very large bandwidth compared to conventional
narrowband systems, and in particular features high positioning accuracy (due to a time resolution in the
order of nanoseconds), and high material penetrability (due to a bandwidth typically larger than 0.5 GHz).
Despite these desirable traits, the resolution of multipath signals remains a hard problem—the complexity
of implementing state-of-the-art direct signal path detection algorithms is exacerbated by the necessity of
maintaining very high sampling rates, in the order of several GHz (Sahinoglu et al., 2008).

Recently, UWB has received some attention within the robotics community. Hollinger et al. (2012)
use UWB range data from five fixed base stations to track a mobile robot, which carries an UWB emitter.
Their underlying UWB error model is based on the Gaussian distribution, and is tested in three forms:
an offset Gaussian, Gaussian Processes, and a mixture of Gaussians. The experimental tracking scenario
tests ranging through walls, and does not rely on the fusion of additional odometry measurements for
localization. The final results show room-level accuracy. The study performed by Gonzalez et al. (2009)
develops a probabilistic model for biased UWB range measurements which is based on an offset Gaus-
sian. This offset (ranging bias) is modeled within an augmented state particle filter that does not take
LOS/NLOS path conditions into account explicitly. Short experiments (of about 6 minutes duration) are
performed using a significantly large particle set (15’000 particles), employing a mobile robot carrying
an UWB transceiver and three fixed UWB transceivers. LOS experiments yield an accuracy of 5 cm, and
NLOS experiments yield an accuracy of 20 cm. A similar approach is taken by Jourdan et al. (2005),
where the ranging bias is also modeled in an augmented state particle filter. The bias is sampled from a
fixed-width uniform distribution at regular intervals. Their experimental setup employs a mobile agent
carrying an UWB emitter, one real receiver station, and one simulated receiver station, and uses the com-
puted range data with odometry data. The authors demonstrate a performance of roughly 50 cm accuracy
in a NLOS office environment. Lastly, Segura et al. (2010) develop their own UWB positioning system
based on TDOA measurements. Their system is composed of an UWB receiver board mounted on the
robot, and three external UWB emitter beacons at fixed locations. The authors compute the robot position
via constrained least squares minimization of the TDOA positioning equations, thus, without modeling
the UWB error and without fusing robot odometry. The positioning accuracy is tested (statically) at five
different locations in the experimental space, with errorsin the order of 20 cm.

Indeed, when using UWB for localization, the basic measuredquantity is time-of-flight. In practice,
however, time-of-arrival (TOA) systems are rarely implemented due to the complexity induced by the
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required synchronization of a mobile node with the base stations. Instead, it is a common choice to
implement time-difference-of-arrival (TDOA) systems which are significantly more practical, since only
the synchronization among base stations is required. This,in turn, enables a significant miniaturization
of the emitter boards (to an order of a few centimeters in size), as well as a reduction of the consumption
power (to an order ofµW (Mercier et al., 2008)).

1.1.2 Collaborative Localization

There is abundant literature discussing various strategies toward solving the multi-robot localization prob-
lem. Our approach distinguishes itself by respecting the following design goals: cost-efficiency, full de-
centralization and scalability (Prorok and Martinoli, 2011; Prorok et al., 2012c). Our work relates to the
body of literature that takes adecentralizedapproach to the multi-robot localization problem, where a
robot maintains an estimate of only its own pose, versus a full-system state estimate (including all robots’
individual pose estimates). We relate to the latter as amulti-centralizedapproach (Prorok et al., 2012b;
Nerurkar and Roumeliotis, 2010)).

The category of work representing thedecentralizedapproach has the following take on the collab-
orative localization problem: each robot maintains an estimate of only its own pose, and fuses relative
observations in an opportunistic fashion. Fox et al. (2000)first introduced a multi-robot Monte-Carlo
localization algorithm forglobal localization, that also relaxes noise assumptions as well as inter-robot
dependencies. They propose a method in which robots mutually synchronize their position beliefs upon
detection, and show successful global localization on two real robots. However, the method has limited
scalability due to overconfidence occurring upon multiple robot detections, and no analysis is provided
of the algorithm’s processing requirements. Bahr et al. (2009a) develop a decentralized localization al-
gorithm, based on the extended Kalman filter framework, thatis especially well suited for autonomous
underwater vehicles with very low data exchange rates. Thismethod, however, allows cyclic updates and,
thus, may suffer from overconfidence. In an addition to this work (Bahr et al., 2009b), the authors remedy
the overconfidence problem, but at the cost of a computationally expensive solution (in particular for a
large number of robots and a high frequency of relative observations).

1.2 Contributions of this Paper

This work is a culmination of our ongoing research efforts inthe domain of indoor localization, and com-
bines two complementary components: an UWB system capable of absolute positioning (Prorok et al.,
2012c, 2011), and a collaborative multi-robot system capable of relative observations (Prorok and Martinoli,
2011; Prorok et al., 2012a). The current paper goes beyond our previous works on various fronts. In par-
ticular, to the best of our knowledge, this work is among the first to perform the fusion of UWB with
on-board exteroceptive sensors—in our case, infrared-based relative positioning sensors. Our contribu-
tions are enumerated as follows.

• We develop a compact, closed-form TDOA measurement model that is a mixture of Gaussian
and log-normal distributions. To the best of our knowledge,our model is the first UWB TDOA
measurement model for mobile robot localization.

• The closed-form TDOA measurement model enables the development of an efficient estimation
algorithm based on Expectation Maximization (EM) to determine the values of the model param-
eters. We show how the algorithm is applied in a batch mode as well as in an online mode, and
evaluate the performance of the estimation algorithm quantitatively to show that it performs very
well in comparison with an alternative, standard optimization method.

• We develop a mapping technique that allows us to tessellate space into discrete areas, and where
each area is associated with a unique UWB measurement model.We exploit the ability of our model
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to capture and adapt to all types of UWB propagation, and spatially customize the parametrization
of this model using the underlying tessellation.

• We present an algorithm that configures the map of UWB measurement models in real-time, as a
function of incoming data.

• We test our multimodal UWB measurement model against two variant models (a Gaussian model
and a discrete histogram model) and discuss the advantages and disadvantages of these model
alternatives with respect to practicality and performance.

• We review the formalisms of our previous works to present a new, unified framework that combines
UWB and collaborative localization methods.

• We test our approach on a team of ten robots in a room-sized setup including obstacles that induce
significant NLOS signal propagation. Our evaluations test the effect of varying collaboration fre-
quencies, in order to better understand the impact of relative positioning on the overall localization
accuracy.

The following text will elaborate the details of our contributions. After presenting the general frame-
work, we first present our work on UWB localization (Sections3—5). Subsequently, we present our
collaborative localization approach (Section 6), as well as our final localization algorithm (Algorithm 5)
that fuses the information from the two regarded sensing modalities. We conclude this paper by discussing
the limitations of our approach and by bringing our work intoa more general perspective.

2 Problem Statement

We consider a system composed of multiple mobile robots thatuse absolute UWB positioning data as
well as relative range and bearing data to localize in an absolute coordinate system. In particular, we
develop an algorithm that fuses UWB TDOA measurements and relative positioning measurements with
dead-reckoning information. The following paragraphs state our system and outline the notation for our
two core elements, UWB positioning and relative positioning, by introducing probability densitiesp andq
that implement the measurement models for the respective sensor modalities. The first goal of this paper is
to developp andq, and to detail how these models are practically employed on real robots. Subsequently,
our goal is to detail our mapping method and to present an algorithm that, when deployed on robots,
builds UWB measurement model maps in real-time. Finally, our goal is to show how the models for our
two sensor modalities are embedded in an efficient localization filter, and to test the resulting performance
through extensive experimental work.

2.1 General Framework and Performance Metric

Our multi-robot system is composed ofNR robotsR1, R2,. . . , RNR
. Given its efficiency in solving the

localization problem for unknown initial conditions and its ability to accommodate arbitrary probability
density functions, our method of choice is the particle filter (otherwise known as Monte Carlo Localiza-
tion (Thrun et al., 2005)). Indeed, as we will see in Sections3 and 6, the model describing the relative
range and bearing measurements is non-linear, and the modeldescribing UWB measurements is both
non-linear and multimodal. Hence, each robot runs an individual instance of the filter that keeps track of
the current position estimate. The belief of a robot’s pose is formulated as

Bel(xn,t)∼ {〈x[i]n,t ,w
[i]
n,t〉|i = 1, ...,M}= Xn,t (1)
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whereM is the number of particles,x[i]n,t is a sample of the random variablexn,t = [xn,t ,yn,t ,ψn,t ]
T, the

state of the robotRn, (wherexn,t andyn,t are Euclidian coordinates andψn,t is the orientation), andw[i]
n,t

is its weight. The symbolXn,t refers to the set of particles〈x[i]n,t ,w
[i]
n,t〉 at timet belonging to robotRn.

In order to discuss the localization performance in terms ofthe absolute positioning error (distance to
ground truth position), we define a performance metric. For agiven robotRn at timet, the positioning
error is the distance from the center of mass of all its particles to the true positionxn,t :

E =

∥

∥

∥

∥

∥

(

1
M

M

∑
i

x[i]n,t

)

− xn,t

∥

∥

∥

∥

∥

. (2)

2.2 Localization with UWB TDOA Measurements

We consider a pair of UWB base stations〈Bu,Bv〉, both fixed and well-localized in an absolute co-
ordinate system, and a robotRn, equipped with an UWB emitter tag, at positionxn,t , as illustrated in
Figure 1(a). At any given timet, the robotRn may receive a measured TDOA valueτ̂uv,n,t from any pair
of base stations〈Bu,Bv〉. We denote byTn,t = {〈τ̂uv,n,t ,〈Bu,Bv〉〉|∃〈Bu,Bv〉 ∈ B} the set of TDOA
measurements received by a robotRn at a given timet, whereB is the set of all base station pairs. The
TDOA measurement error∆τuv,n,t for robotRn and base station pair〈Bu,Bv〉 is defined as the difference
between the nominal (error-free) TDOA value at the actual robot position and the measured TDOA value:

∆τuv,n,t , ∆τuv(τ̂uv,n,t ,xn,t) = τ̂uv,n,t − τuv(xn,t), (3)

whereτuv(xn,t) = ru(xn,t)− rv(xn,t), andru(xn,t) is the distance between base stationBu andxn,t at time
t. In order to model the UWB error behavior, we take account of spatiality by defining a setMuv of
a numberNA areasMuv = {〈Aa,θθθuv,a〉|a = 1, . . . ,NA} whereθθθ uv,a is a parameter vector, andAa ⊂ R

2.
Note that the areas are disjoint

⋂

nAa = /0 and their union
⋃

nAa covers the whole space. In other words,
each areaAa is associated with a parameter vectorθθθ uv,a, as illustrated in Figure 1(b). We refer toMuv as
themapfor base station pair〈Bu,Bv〉, and denote the set of all maps asM = {Muv|∃〈Bu,Bv〉 ∈ B}.
Furthermore, we define a functionmuv : R2 7→ Θ that maps to any position in two-dimensional space a
parameter vector in the finite setΘ :

muv(xn,t) = θθθ uv,a, s.t.

∃〈Aa,θθθ uv,a〉 ∈Muv, with xn,t ∈ Aa. (4)

Finally, we model the error∆τuv,n,t for a given base station pair〈Bu,Bv〉 with a probability density
functionp that covers an areaAa (such thatxn,t ∈ Aa) and that depends on the parameter vectorθθθ uv,a. We
define our error model as

p(∆τuv,n,t ;θθθ uv,a) = p(∆τuv,n,t ;muv(xn,t)). (5)

This concludes our problem formulation for UWB localization. The development ofp is elaborated in
detail in Section 3.

2.3 Localization with Relative Range and Bearing Measurements

Our collaboration strategy exploits associated, inter-robot relative range and bearing observations, which
are evaluated by a dedicated detection model to form position estimates. Let us consider our multi-robot
system ofNR robots (the numberNR does not necessarily need to be known by the robots), deployed
with noisy relative range and bearing sensors. Figure 1(a) illustrates such a system, indicating the nom-
inal (error-free) range quantityrmn, and the nominal bearing quantityφmn. We use the notion of neigh-
borhoods: at timet, a robotRm is in the set of neighborsNn,t of robotRn if robot Rm is able to take a
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Figure 1: (a) System ofNR = 2 robots at positionsxn, xm and two well-localized UWB base stationsBu

andBv. The figure shows the true rangesru(xn) andrv(xn) of robotRn to the respective base stations,
as well as a segment of the hyperbola resulting from the range-differenceτuv,n. The figure also depicts
the relative robot rangermn= rnm, and the relative bearing valuesφmn andφnm. (b) Distinct UWB error
modelsp(∆τuv,n,t ;θθθ uv,a) are mapped to individual areasAa.

range measurement ˆrmn,t and bearing measurementφ̂mn,t of robotRn. Thus, at every moment in time, the
neighborhood topology is defined by the physical constraints given by the relative observation sensors
deployed on the robots. Also, ifRm ∈Nn,t , we make the assumption that the robotRm can communi-
cate with the robotRn to send detection data. The range and bearing measurement errors for robotsRn

andRm are defined as the difference between the nominal range and bearing values at the actual robot
positionsxn,t andxm,t and the measured values ˆrmn,t andφ̂mn,t

∆r (r̂mn,t ,xm,t ,xn,t) = r̂mn,t − r(xm,t ,xn,t)

∆φ (φ̂mn,t ,xm,t ,xn,t) = φ̂mn,t −φ(xm,t ,xn,t), (6)

where range and bearing are described as functions of positionsxm,t andxn,t , representing a transforma-
tion from Euclidean to polar coordinates:

[

rmn,t

φmn,t

]

, Tp
e(xm,xn) =

[

r(xm,t ,xn,t)
φ(xm,t ,xn,t)

]

=

[ √

(xn− xm)2+(yn− ym)2

atan2((yn− ym),(xn− xm))−ψm

]

. (7)

In the context of the particle filter, we evaluate these difference values for a given particlex[ j ]m belonging
to the belief of the detecting robotRm. We define

∆r [ j ]mn,t , ∆r (r̂mn,t ,x
[ j ]
m,t ,xn,t) (8)

∆φ [ j ]
mn,t , ∆φ (φ̂mn,t ,x

[ j ]
m,t ,xn,t). (9)

Thus, we define a probability densityq[ j ] that depends on a parameter setξ , and which describes the

likelihood of positionxn,t for a single particlex[ j ]m,t in the belief of robotRm, given measurements ˆrmn,t ,
φ̂mn,t as

q[ j ](∆r [ j ]mn,t ,∆φ [ j ]
mn,t ;ξ ). (10)

Finally, by considering all particles belonging to robotRm, we define the robot detection modelq, which
describes the probability that robotRm detects robotRn at positionxn,t as

q(∆rmn,t ,∆φmn,t ;ξ ) = η · ∑
〈x[ j]m,t ,w

[ j]
m,t〉∈Xm,t

q[ j ](∆r [ j ]mn,t ,∆φ [ j ]
mn,t ;ξ ) ·w[ j ]

m,t (11)
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whereη is a normalization factor, and∆rmn,t = {∆r [ j ]mn,t | j = 1, ...,M} is the sets of all the range difference

values, and∆φmn,t = {∆φ [ j ]
mn,t | j = 1, ...,M} is the set of all the bearing difference values, for all particles

of robotRm. This concludes our problem formulation for collaborativelocalization. The development of
q is elaborated in detail in Section 6.1.

3 UWB Error Model

In this section, we develop our UWB error model. As the readerwill remember, a UWB measurement
is based on time-of-flight measurements. A direct range measurement thus corresponds to a TOA mea-
surement. We previously highlighted, however, that TOA systems are potentially cumbersome due to
the required synchronization of emitter and receiver boards. As a consequence, the implementation of
TDOA systems is common and popular. Hence, our modeling approach also addresses TDOA systems
by extending our baseline TOA error model. The following sections will display our thought process and
derivations, leading to a final UWB TDOA error model that is subsequently used throughout our work.

3.1 General UWB TDOA Measurement Model

For the sake of brevity, our following derivations omit the subscriptt. We begin by detailing a general
model p∗(∆τuv,n; ·), which, however, is analytically non-tractable. The subsequent subsection develops
an approximation to this general model, producing the closed-form modelp(∆τuv,n,t ;θθθ uv,a) (introduced in
Section 2.2). Our baseline error model for the range1 between a base stationBu and a target node (robot
Rn) at positionxn is

r̂u,n , ru(xn)+ ε +Ybu (12)

whereru(xn) represents the true distance,bu is a non-negative distance bias introduced by a NLOS sig-
nal propagation, andε ∼ pN (0,σ2

N
) is a zero-mean Gaussian measurement noise with varianceσ2

N
,

common to all base stations. The random variableY qualifies the occurrence of a NLOS signal path
and follows a Bernoulli distribution. Explicitly, it takesthe value 1 with probability(1−PLu) and the
value 0 with probability PLu, where PLu is the probability of measuring a LOS path, and correspondingly,
(1−PLu) is the probability of measuring a NLOS path.

Despite the complexity of NLOS error patterns, current workdiscusses the suitability of a variety of
statistical models with exponential behavior, supported on the semi-infinite interval (0,∞) (Alsindi et al.,
2009; Qi, 2004). In particular, Alsindi et al. (2009) show ina comprehensive measurement campaign that
the log-normal distribution best characterizes the NLOS error behavior. Thus, we resort to a biasbu that
is modeled as a log-normal random variablebu ∼ plnN (µu,σu), supported on the semi-infinite interval
(0,∞), and which is associated uniquely to a base stationBu. For a range error defined as

∆ru,n , r̂u,n− ru(xn) (13)

the TOA measurement modelpu describes the likelihood of∆ru,n occurring when a robot measures a
certain range distance ˆru,n from a base stationBu at an actual positionxn with a nominal (actual) range
ru(xn). Thus, the probability density of an error∆ru, occurring in a NLOS eventLu, can be written as

pu(∆ru,n|Lu) = (plnN ,u∗ pN )(∆ru,n) (14)

which is the convolution of the probability density function of the bias value, with the probability density
function of the Gaussian noise value. Correspondingly, we can write the probability density of an error

1The terms TOA and TDOA are used interchangeably with the terms range and range difference, respectively, as they differ
only by a constant factor (signal propagation speed).
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∆ru,n, occurring in a LOS eventLu, as

pu(∆ru,n|Lu) = pN (∆ru) (15)

Finally, with use of the total probability theorem, we combine the above equations to obtain the probabil-
ity density of∆ru,n as

pu(∆ru,n) = pu(∆ru|Lu) ·PLu + pu(∆ru|Lu) · (1−PLu). (16)

In practice, TOA systems are rarely implemented due to the complexity induced by the required synchro-
nization of a mobile node with the base stations. Instead, itis a common choice to implement TDOA
systems which are significantly more practical, since only the synchronization among base stations is
required. Thus, the direct range measurement between a mobile node and a base station is replaced by the
difference between two individual range measurements eachtaken at a different base station. Extending
the TOA formalism shown above, we define the difference rangevalue (i.e. TDOA) between two base
stationsBu andBv to a target node as

τ̂uv,n , r̂u,n− r̂v,n (17)

and then easily model the TDOA error∆τuv as previously shown in Equation (3). Simultaneously, we
can describe the TDOA error as the difference between the range errors occurring at the individual base
stationsBu andBv as described in Equation (12), resulting in

∆τuv,n = ∆ru,n−∆rv,n. (18)

Finally, we describe the probability density of a given TDOAmeasurement error∆τuv,n as the probability
density of the subtraction of two random variables drawn from the probability densities describing the
TOA error models of the two respective base stations. We use the results of Equations (16) and (18) to
model this resulting probability density as

p∗(∆τuv,n), (pu∗ p−v )(∆τuv,n) (19)

which is a convolution of the probability density of the range error∆ru,n and the mirrored probability
density of∆rv,n (i.e., p−v (∆rv,n) = pv(−∆rv,n)).

3.2 Efficient TDOA Measurement Model

Although numerical implementations for the TDOA measurement model of Equation (19) are easily
found, they imply nested integrals which may incur a substantial computational overhead when deploying
the model on a real embedded platform for real-time operation. Also, the model itself is analytically non-
tractable, which causes difficulties when deriving viable estimators. For these reasons, we perform a
closed-form approximation to simplify the TDOA measurement model of Equation (19).

Using basic algebraic properties of the convolution and inserting Equation (16) into Equation (19),
we have

p∗(∆τuv,n) =
(

PLuPLv(pN ∗ p−
N
)+ PLu(1−PLv)(pN ∗ p−

N
∗ p−lnN ,v)+

PLv(1−PLu)(pN ∗ p−
N
∗ plnN ,u)+

(1−PLu)(1−PLv)(pN ∗ p−
N
∗ plnN ,u ∗ p−lnN ,v)

)

(∆τ̂uv,n). (20)
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It is well-known thatpN ∗ p−
N

= p√2N
, wherep√2N

is the density of a normal distributionN (0,2σ2
N
).

Hence, Equation (20) can be rewritten as

p∗(∆τuv,n) =
(

PLuPLv p√2N
+ PLu(1−PLv)(p√2N

∗ p−lnN ,v)+

PLv(1−PLu)(p√2N
∗ plnN ,u)+

(1−PLu)(1−PLv)(p√2N
∗ plnN ,u∗ p−lnN ,v)

)

(∆τuv,n). (21)

UWB measurement campaigns have shown thatσN ≪ 1 (Alsindi et al., 2009; Prorok et al., 2011). Thus
p√2N

∗ plnN ≈ plnN , since the standard deviation ofplnN is much larger thanσN . Furthermore, as was
numerically verified in (Prorok et al., 2012c),plnN ,u∗ p−lnN ,v can be approximated by the density func-

tion p ˜N
of a normal distributionN (µ̃ , σ̃2), under reasonable assumptions for the parameter ranges. The

parameters̃µ , σ̃2 are obtained by matching the moments (and thus minimizing the Kullback-Leibler di-
vergence) as follows: LetXu∼ lnN (µu,σ2

u ) andXv∼ lnN (µv,σ2
v ) be independent. For the meanµ̃ and

the variancẽσ2, the Kullback-Leibler divergence is minimized ifµ̃ = E[Xu−Xv] andσ̃2 = Var(Xu−Xv).
This leads to

µ̃ = E[Xu−Xv] = eµu+σ2
u/2−eµv+σ2

v /2

σ̃2 = Var(Xu)+Var(−Xv) = e2µu+σ2
u (eσ2

u −1)+e2µv+σ2
v (eσ2

v −1). (22)

Finally, using the results obtained above, we further simplify Equation (21) and redefine the densityp∗,
our TDOA error model, in closed-form as a sum of four terms:

p(∆τuv,n;θθθ uv,a) =
(

PLuPLv p√2N
+ PLu(1−PLv)p

−
lnN ,v+

PLv(1−PLu)plnN ,u+ (1−PLu)(1−PLv)p ˜N

)

(∆τuv,n) (23)

where we introduce the parameter vectorθθθ uv,a as

θθθ uv,a = [µu,σu,µv,σv,PLu,PLv]
T

andµu,µv ∈ R, σu,σv ∈ R
+, and PLu,PLv ∈ [0,1]. The parameters̃µ andσ̃ are defined as in Equation

(22) to complete the model (23). We note that in the final form of our model (23), each of the four
possible signal propagation configurations for a base station pair—LOS-LOS, NLOS-LOS, LOS-NLOS,
and NLOS-NLOS—is represented by a term of its own. Figure 2 provides an intuition of the multimodal
nature of TDOA error data, and illustrates how our error model proposes to capture this. In particular,
Figure 2(b) illustrates how each of the four terms of Equation (23) represents one of the four possible
modes of operation for a base station pair.

3.3 Localization using UWB Measurements

The previous section established the UWB error modelp(∆τuv,n,t ;θθθ uv,a). The reader will recall from
Section 2.2 that, in addition to a UWB measurement model, ourmodeling approach includes a set of
mapsM. Now let us assume that the set of mapsM is known. Thus, for a given positionxn,t and
a base station pair〈Bu,Bv〉, we apply our mapping function of Equation (4) to retrieve the parameter
vectorθθθuv,a used to formulate the probability density functionp(∆τuv,n,t ;θθθ uv,a). Hence, for a set of TDOA

measurementsTn,t taken at timet, the likelihood of a given pose samplex[i]n,t is

P(x[i]n,t) = η · ∏
〈τ̂uv,n,t ,〈Bu,Bv〉〉∈Tn,t

p(∆τuv(τ̂uv,n,t ,x
[i]
n,t);muv(x

[i]
n,t)), (24)
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Figure 2: (a) Example of the multimodal nature of TDOA error data. The data was collected by a robot
driving through an indoor environment with obstacles. The data points in the white (non-shaded) area
exhibit a multimodal behavior. (b) We consider a base station pair〈B1,B2〉. The plot illustrates the four
modes which form the complete multimodal probability density function shown in Eq. (23). The model
parameters are set to:µ1 =−0.43,µ2 =−0.2, σ1 = 0.6, σ2 = 0.7, PL1 = 0.3, PL2 = 0.5.

whereη is a normalization constant. This likelihood function is formulated algorithmically in Algo-
rithm 1, and is embedded in the overall localization filter asseen later in Algorithm 5, on line 4. In
practice, the application of the measurement model is preceded by a mapping step, whichbuildsthe maps
in M. We will discuss how to construct these maps later, in Section 5.

Algorithm 1 Measurement Model Map(Tn,t ,M ,x[i]n,t ,w
[i]
n,t−1)

1: w[i]
n,t ← w[i]

n,t−1 ·P(x
[i]
n,t)

2: returnw[i]
n,t

4 Estimation of Model Parameters

Due to its efficiency in achieving the Cramér-Rao lower bound for data set sizes tending to infinity,
our approach to estimateθθθ uv,a is based on Maximum Likelihood Estimation (MLE). Although several
methods can be used to obtain the maximum likelihood estimate, we implement an EM approach. Indeed,
for our model, the closed-form solution to the maximum likelihood problem does not exist. The following
derivations will show how our model is reformulated as a mixture model, and how this reformulation
leads to an efficient implementation of the EM algorithm. In our particular case, we will show that our
EM formalism produces a compact, elegant closed-form expression. This constitutes one of our most
important results, as the existence of such a compact formalism ultimately enables the portability of our
method onto computationally constrained devices. In the following, we will derive an online as well as a
batch (offline) expression.
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4.1 Derivation

For brevity, we omit the robot indexn in the following derivations.K denotes the number of observations,
andk denotes the observation index. Note that here (and in what follows) there is no dependency onk,
since the observations are i.i.d. The maximum likelihood estimator for our model is defined by

θ̂θθ uv = argmax
θθθuv,a

1
K

K

∑
k=1

logp(∆τuv,k;θθθ uv,a). (25)

First, let us simplify our model (23) by reformulating its four terms as

f1(x;θθθ uv,a) = p√2N
(x;θθθ uv,a) = p√2N

(x)

f2(x;θθθ uv,a) = p−lnN ,v(x;θθθ uv,a) = p−lnN ,v(x;µv,σv)

f3(x;θθθ uv,a) = plnN ,u(x;θθθ uv,a) = plnN ,u(x;µu,σu)

f4(x;θθθ uv,a) = p ˜N
(x;θθθ uv,a) = p ˜N

(x; µ̃ , σ̃). (26)

By definingα1 = PLuPLv, α2 = PLu(1−PLv), α3 = PLv(1−PLu), andα4 = (1−PLu)(1−PLv), we can
rewrite the modelp in the form of a standard mixture model

p(x;θθθ uv,a) =
4

∑
j=1

α j f j(x;θθθ uv,a). (27)

Thus, by assuming that every observation∆τuv,k originates from anf j , we postulate the existence of a
latent variableZ = (Z1, ...,ZN) whereZk = j with probabilityα j and j ∈ {1,2,3,4}. Zk specifies which
f j the k-th observation corresponds to, thus, givenZk = j, the observation∆τuv,k has densityf j . In
other words, any given data sample corresponds to the probability density defined by two base stations in
either LOS-LOS, NLOS-NLOS, LOS-NLOS, or NLOS-LOS configuration. For anyk, the likelihood of
(∆τuv,k,Zk) is

f (x,z;θθθ uv,a) =
4

∑
j=1

α j δz j f j(x;θθθ uv,a) (28)

with δz j = 1 if z= j, andδz j = 0 otherwise. Our new formulation is a mixture model, withz specifying
the mixture component that a data point belongs to.

Given our new formulation, we can conveniently leverage theEM framework to estimate our pa-
rameter vectorθθθ uv,a. The following notations follow the conventions introduced by Cappé and Moulines
(2009). We are now able to writef in exponential family form:

f (x,z;θθθ uv,a) = h(x,z)exp

(

11

∑
j=1

Sj(x,z)φ j (θθθ uv,a)

)

(29)

whereh(x,z) = 0 if z= 2 andx≥ 0, orz= 3 andx≤ 0, andh(x,z) = 1 otherwise.S= (S1, ...,S11) and
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φ = (φ1, ...,φ11) are defined as follows:

S(x,z) =[δz1, x2δz1, χ(−∞,0)(x)δz2, χ(−∞,0)(x) log(−x)δz2,

χ(−∞,0)(x) log(−x)2δz2, χ(0,∞)(x)δz3, χ(0,∞)(x) log(x)δz3,

χ(0,∞)(x) log(x)2δz3, δz4, x δz4, x2 δz4]
T

[φ1,φ2]
T(θθθ uv,a) =

[

log(α1)− log(2
√

πσ), − 1

4σ2
N

]T

[φ3,φ4,φ5]
T(θθθ uv,a) =

[

− log(2
√

πσv)+ log(α2)−
µ2

v

2σ2
v
, −1+

µv

σ2
v
,− 1

2σ2
v

]T

[φ6,φ7,φ8]
T(θθθ uv,a) =

[

− log(2
√

πσu)+ log(α3)−
µ2

u

2σ2
u
, −1+

µu

σ2
u
,− 1

2σ2
u

]T

[φ9,φ10,φ11]
T(θθθ uv,a) =

[

− log(2
√

πσ̃)+ log(α4)−
µ̃2

2σ̃2 ,
µ̃

σ̃2 , −
1

2σ̃2

]T

(30)

whereχ[.] is the indicator function for a given interval. We define weightsw j(x;θθθ uv,a) obtained through
Bayes’ theorem as

wj(x;θθθ uv,a) :=
α j f j(x;θθθ uv,a)

∑4
m=1 αm fm(x;θθθ uv,a)

(31)

which is equal to the probability thatZk = j given∆τuv,k = x. Then fors(x;θθθ uv,a) :=Eθθθuv,a[S(∆τuv,k,Zk)|∆τuv,k =
x] we have

s(x;θθθ uv,a) =[w1(x;θθθ uv,a), w1(x;θθθ uv,a)x
2, w2(x;θθθ uv,a),

w2(x;θθθ uv,a) log(−x), w2(x;θθθ uv,a) log(−x)2,

w3(x;θθθ uv,a), w3(x;θθθ uv,a) log(x), w3(x;θθθ uv,a) log(x)2,

w4(x;θθθ uv,a), w4(x;θθθ uv,a)x, w4(x;θθθ uv,a)x
2]T. (32)

Finally, for a given vectors∈R11 we define the functionl(s;θθθ uv,a) = ∑11
j=1sjφ j(θθθ uv,a). Through straight-

forward calculation we can derive conditions onsso that we can define the functionθθθuv,a(s) := argmaxθθθuv,a l(s;θθθ uv,a),
which leads to

θθθuv,a(s) =

[

s7

s6
,

√

−s2
7+ s6s8

s2
6

,
s4

s3
,

√

−s2
4+ s3s5

s2
3

,
s10

s9
,

√

−s2
10+ s9s11

s2
9

,

s1+ s3

s1+ s3+ s6+ s9
,

s1+ s6

s1+ s3+ s6+ s9

]T

. (33)

We note that Equations (31) and (32) relate to the E-step and that Equation (33) relates to the M-step of
a standard, offline EM algorithm. As we will see in the next twoparagraphs, the implementations of the
batch and online estimation algorithms now only require theevaluation of these closed-form vectors.

4.2 Batch Estimation Algorithm

Using the notations introduced above, forN data samples, thek+1-th parameter estimatêθθθ
(k+1)

in the
batch EM algorithm is given by

θ̂θθ (k+1)
uv,a = θθθ

(

1
N

N

∑
i=1

s(∆τ(i)uv ; θ̂θθ (k)
uv,a)

)

. (34)
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Figure 3: (a) Online EM estimation of model parameters for a real base station pair〈B2,B1〉, for a
number ofN = 2000 data points sampled in a 1m×1m areaA1 in our experimental setup, andγ =
1/k0.65. The batch estimates (in green) are:µ1 = 0.28,µ2 = 1.32,σ1 = 0.36,σ2 = 0.21,PL1 = 0.56, and
PL2 = 0.98. Parameters̃µ andσ̃ (not shown here) are defined as in Eq. (22) to form the full parameter
vectorθθθ12,1. (b) Normalized histogram of the data points. We superimpose the estimated models (online
and batch).

4.3 Online Estimation Algorithm

For some applications, it is beneficial to use an estimation algorithm that produces estimates in real-time.
For this reason, we resort to the results of Cappé and Moulines (2009), who present an online formalism

for the EM problem. For observations(∆τuv,1, ...,∆τuv,k), the k+1-th parameter estimatêθθθ (k+1)
uv,a in the

online EM algorithm takes the form

ŝ(k+1) = ŝ(k)+ γ(k+1)
[

s
(

∆τuv,k; θ̂θθ
(k)
uv,a

)

− ŝ(k)
]

θ̂θθ (k+1)
uv,a = θθθ uv,a(ŝ

(k+1)) (35)

whereγ(k+1) is a user-defined step size. Variations ofγ(k) = 1/k have shown to produce good convergence
speed—typically, the choice ofγ defines the trade-off between adaptability and stability ofthe estimate
(the work by Cappé and Moulines (2009) demonstrates that this baseline online EM framework almost
surely converges). In particular, boundingγ from below can ensure continuous adaptation of the model.
We note that since the second and third term of our mixture model are defined by densities that are only

supported on a semi-infinite interval, we do not update the entries of ŝ(k+1)
3,4,5 when∆τ̂(k+1)

uv ∈ (0,∞) and

similarly of ŝ(k+1)
6,7,8 when∆τuv,k+1 ∈ (−∞,0). Finally, we refer the reader to Algorithm 2, where line 6

corresponds to the application of Equation (35). The real-time estimation of UWB error maps constitutes
an example application of the online EM algorithm.

4.4 Performance

We perform several tests to assess the efficiency of our estimation algorithms. In order to do this, we will
assume that any set of true UWB model parameter values lies inthe ranges reported in Table 1 (an as-
sumption supported by the experimental measurement campaigns performed by Alsindi et al. (2009) and
Prorok et al. (2011)). We note that these parameter ranges can be interpreted physically, as the resulting
density functions quantify the occurrence of actual error values (e.g., a system with a maximum range
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Model parameter µu σu PLu

Parameter range [-3, 0] [0.2, 0.8] [0.01, 0.99]

Table 1: Model parameter ranges for a base stationBu

of 10 m will not have errors beyond that value). In other words, the parameter ranges can be estimated
by considering the size of the space in which the UWB system operates, and the duration of the frames
within which incoming signals can be detected, and can be narrowed down for any given setup and system
implementation. Ultimately, the existence of such parameter ranges facilitates the task of calibrating our
models.

Our first test consists of a qualitative comparison of the online and batch estimation algorithms, on
a set of 2000 data points gathered in our experimental setup.Figure 3(a) illustrates the convergence
of the online EM parameter estimates. In this example, base station B1 is in moderate NLOS, with
PL1 = 0.56, and base stationB2 is in LOS withPL2 = 0.98. Due to the large spread of NLOS data points,
parameters associated to base stationB1 undergo larger oscillations than those associated to base station
B2. Figure 3(b) summarizes the resulting estimated probability density functions, and superimposes
the normalized histogram of the collected data points. The panel shows a qualitatively good fit to the
underlying samples.

Figure 4 quantifies the efficiency of the online and batch algorithms. We performed a set of 1000
simulations, where for each simulation, true parametersθθθ uv,a were sampled randomly in the intervals as
reported in Table 1, and used in the non-approximated model ,Equation (19), to generate a sample size of
N = 1000. For the online algorithm, the final estimate ofθ̂θθuv,a is found by averaging the last 50 estimates.
The results confirm good estimation of the model parameters.The Kolmogorov-Smirnov distance shown
in Figure 4(b) indicates that both estimation algorithms produce a good model of the underlying data, and
that the batch algorithm is slightly more efficient than the online algorithm.

In order to assess the computational efficiency of our batch estimation algorithm, we perform a test
that compares its performance to that of a standard numerical optimization algorithm. As above, we
sample true parametersθθθ uv,a in the intervals as reported in Table 1, and draw a sample sizeof N =
1000. Figure 5 shows the comparison of our method with a Sequential Quadratic Programming (SQP)
algorithm, evaluated over 100 simulations. Figure 5(a) shows that, for an equal number of maximum
iterations, the batch estimation algorithm produces significantly lower Kolmogorov-Smirnov distance
values. Moreover, Figure 5(b) shows that running the batch EM is significantly faster than running the
SQP algorithm.

5 Mapping UWB Error Models

Now that we are able to calibrate UWB error models as a function of underlying data, let us consider
the problem of creating the maps inM, which include multiple, spatially anchored error models.As
stated in our problem formulation (Section 2.2), our mapping approach consists of tessellating space into
a fixed number ofNA areas. For simplicity, we will consider a fixed grid tessellation such as the one
depicted in Figure 6. Each area is associated to an error model, which is initialized with parameters
randomly sampled from the ranges reported in Table 1. The models can be calibrated using either our
online method or our batch method.

5.1 Online Mapping

At each pass through an area, a robot samples data points which are then used to refine the associated
error model in real-time. When a robot passes through an area, its measurements contribute to online
updates of the model parameters. Every subsequent time the robot passes through the same area and
takes measurements, the estimation algorithm picks up the model in the state when the robot last exited
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Figure 4: Comparison of batch and online EM estimation algorithms, evaluated over 1000 simulations.
For the online algorithm, the final estimate ofθ̂θθuv,a is found by averaging the last 50 estimates (a) Squared-
error(θθθ i− θ̂θθ i)
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Smirnov statistic for the online and batch estimation algorithms. The boxplots mark the median, and the
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Figure 5: Comparison of a standard numerical optimization algorithm and our proposed batch EM es-
timation algorithm, evaluated over 100 simulations. The standard numerical optimization is performed
using SQP based on the non-approximated model of Equation (19). The maximum number of iterations
are marked by a number following the algorithm acronym (e.q., for a maximum of 5 iterations: EM 5 and
SQP 5). (a) Kolmogorov-Smirnov distance of true and resulting estimated models. (b) Computational
time for one optimization. The boxplots show the median, 25th and 75th percentiles.
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Figure 6: Illustration of the online estimation algorithm.An excerpt of the robot path is shown, passing
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that area, and applies the new updates to this model. Figure 6illustrates a simple example of how two
models are updated. Let us describe this process formally. The mapping function in Equation (4) returns
the parameter vectorθθθ uv,a for a given base station pair〈Bu,Bv〉 andxn. In order to estimate the entries
of θθθ uv,a, K measurementŝτuv,k are gathered at timestk, k = 1, . . . ,K, with xtk ∈ Aa. Thus, for every new
data point∆τuv,k , ∆τuv(τ̂uv,k,xtk), we update the feature〈Aa,θθθ uv,a〉 of mapMuv according to our online
estimation algorithm. This routine is illustrated in Algorithm 2. Line 6 refers to the online estimation
algorithm, which we elaborated in detail in the previous paragraphs (and showed in Equation (35)).

Algorithm 2 Update Map(xtk ,Tt ,Mt−1)

1: Mt = Mt−1

2: for all 〈τ̂uv,k,〈Bu,Bv〉〉 ∈ Tt do
3: Mt ←Mt \Muv

4: 〈Aa,θθθ uv,a〉 ← Find(〈Aa,muv(xtk)〉 ∈Muv)

5: Muv←Muv\ 〈Aa,θθθ uv,a〉
6: θθθ uv,a← Online EM(θθθuv,a,∆τuv,k)
7: Muv←Muv∪〈Aa,θθθ uv,a〉
8: Mt ←Mt ∪Muv

9: end for
10: returnMt

5.2 Offline Mapping

The offline mapping approach differs from the online mappingapproach in that it estimates the error
models a posteriori, using the batch EM algorithm. Let us discuss this approach on hand of a practical
example. To this means, we will consider two variant obstacle configurations: configurationA, as de-
picted in Figure 9(a), and configurationB, as depicted in Figure 9(b) (the experimental setup is detailed
in Section 7.1).

Since our experimental setup uses three base station pairs (〈B2,B1〉, 〈B3,B1〉, 〈B4,B1〉), M is
composed of three mapsM21, M31, andM41. We collect a data set comprising TDOA valuesτ̂uv,t ,
for each base station pair〈Bu,Bv〉 (over 58’000 values for configurationA, and over 69’000 values for
configurationB, per base station pair), and record the associated ground truth positionsxn,t guaranteeing
full coverage of our experimental arena. For each TDOA measurementτ̂uv,n,t , we then calculate the
ground truth TDOA valueτuv(xn,t), which, in turn, allows us to compute the TDOA error value∆τuv,n,t =
∆τuv(τ̂uv,n,t ,xn,t) (see Section 2.2). For each cellAa, a∈ {1, ...,NA} defined by our grid map, and for each
of the three base station pairs, we associate all data points∆τuv,n,t to the cell area they were taken in, and
define the set

Tuv,a = {∆τuv,n,t | ∀Rn, with xn,t ∈ Aa}. (36)

For all cellsAa, we can now estimate the model parametersθ̂θθuv,a that define a unique TDOA error model
per cell, using the batch EM algorithm (Equation (34)).

Figure 7 shows the collected data sets for configurationsA (top half) andB (bottom half), in two
variant visualizations as a function of space. The panels represent an overhead view of the experimental
arena, for the three base station pairs (we perform 2D smoothing with a Gaussian kernel on a grid map of
150×250 cells). The black shapes in the center correspond to the obstacle placements and the numbered
circles in the panel corners schematically indicate the placements of the base stations with respect to the
layout of the experimental arena. For a given grid cellAa, the two visualization variants show(i) the
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calculated average TDOA error values (rows 2 and 4),

∆τuv,a =
1

|Tuv,a|
· ∑

∆τuv,n,t∈Tuv,a

∆τuv,n,t , (37)

and(ii) calculated entropy values (rows 1 and 3),

Huv,a = ∑
∆τuv,n,t∈Tuv,a

p(∆τuv,n,t ; θ̂θθ uv,a) log
1

p(∆τuv,n,t ; θ̂θθ uv,a)
. (38)

In (i), we observe the higher bias averages of up to±2 m in the vicinity of the obstacle (note that TDOA
errors are positive as well as negative). Also, we note that although this figure helps us identify strongly
biased areas, the plotted average error values do not accurately represent the full multimodal error behav-
ior. We now look at the entropy maps(ii) , which provide an alternate interpretation of the data. Indeed,
by computing the entropy values for each grid cell, we gain aninsight on how areas are affected by the
signal path: low entropy values indicate areas with high measurement predictability, physically related to
LOS measurements, and likewise, high entropy values indicate areas with low measurement predictabil-
ity, physically related to NLOS measurements. In this particular experimental scenario, we clearly see
the qualitative correspondence with the average TDOA errors. This points to the fact that for both con-
figurationsA andB there are significant modes of the error distributions not centered around zero, and
that the distributions in NLOS areas are either clearly multimodal, or have a very large spread (i.e., the
distribution has a high entropy). In both of our scenarios, we also note the relation of the geometry of the
setup to the NLOS patterns: higher absolute errors and higher entropy tend to lie in areas where direct
LOS rays are occluded by the obstacles.

6 Collaborative Localization

In what follows, we present a robot detection model based on noisy relative range and bearing measure-
ments, which builds upon the notation introduced in Section2.3. In addition to using the detection model
for updating the belief representationBel(xn,t), our approach utilizes areciprocalsampling method. Fi-
nally, in Section 6.3, we present the complete localizationalgorithm.

6.1 Range & Bearing Model

The detection modelq(∆rmn,t ,∆φmn,t ;ξ ) of Equation (11) describes the probability that robotRm detects
robotRn at positionxn,t . For such a collaboration to take place, robotRm needs to communicate its range
and bearing measurements ˆrmn,t , φ̂mn,t as well as its set of particlesXm,t to robotRn (confer Equations
(6)—(10)). Thus, a communication message composed asdmn,t =

〈

r̂mn,t , φ̂mn,t ,Xm,t
〉

is sent from robot
Rm to robotRn. If several robots in a neighborhoodNn,t communicate with robotRn, the received
information is the set of all relative observations made by those robots at timet, as well as the belief rep-
resentationsXm,t of all detecting robotsRm∈Nn,t . We denote this data set asDn,t = {dmn,t |Rm∈Nn,t}.
The collaborative aspect of this formalism thus lies in the integration of robotRm’s belief into that of
robotRn.

The probability density functionq is applied to the ensemble of particles in the belief of robotRn, in
order to adjust their weights to current relative observations. Given the nature of relative observations,
we use for each particlej in Xm,t a Gaussian probability density function in polar coordinates centered at

x[ j ]m,t :

q[ j ](∆r [ j ]mn,t ,∆φ [ j ]
mn,t ;ξ ) = Φ

(

Tp
e(x

[ j ]
m,t ,xn,t);

[

r̂mn
φ̂mn

]

,ξ
)

(39)
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whereΦ(·;µµµ ,ξ ) is the Gaussian probability density function with meanµµµ and covariance matrixξ . In
practice, we use a homogenous set of calibrated hardware sensors, and thus, we use one value for the
range standard deviationσr , and one value for the bearing standard deviationσφ . The covarianceξ is

ξ =

[

σ2
r 0
0 σ2

φ

]

(40)

where we assume the independence of range and bearing measurements. This assumption is supported by
empirical work from Gowal and Martinoli (2011), which provides experimental evidence for our platform
showing that a range measurement and a bearing measurement behave like two independent Gaussian
variables.

We note that, for the purpose of our case-study, we use a simple Gaussian in polar coordinates, but
all reasonings are valid for completely arbitrary distributions, which are equally well accommodated by
our presented formalism. Indeed, since we use a particle filter, we can keep the same framework for any
possible underlying range and bearing hardware not fulfilling the Gaussian noise assumption. For a set

of relative observationsDn,t taken at timet, the likelihood of a given pose samplex[i]n,t is

Q(x[i]n,t) = η · ∏
dmn∈Dn,t

q(∆rmn,t ,∆φmn,t ;ξ ) (41)

whereη is a normalization factor. The detection model incorporating the detection data from multiple
detecting robots can be formulated as the update equation shown in Algorithm 3.

Algorithm 3 Detection Model(Dn,t ,x
[i]
t ,w[i]

t )

1: w[i]
n,t ←w[i]

n,t ·Q(x[i]n,t)

2: returnw[i]
n,t

We note that forM particles, Algorithm 3 has a complexity ofO(|Nn|M) by itself, and when en-
capsulated in our global algorithm (which is shown in the following chapter), leads to a complexity of
O(|Nn|M2). This can be prohibitively costly for a large number of particles. Also, communication con-
straints may make sending large particle sets infeasible. Previous work (Prorok et al., 2012a) elaborates
a clustering strategy to mitigate these effects, ultimately reducing the overall complexity toO(|Nn|MK)
whereK is a design parameter (number of clusters).

6.2 Reciprocal Sampling

Let us refer to the iterative process described in Algorithm5: instead of sampling a new particle pose

x[i]n,t from Bel(x[i]n,t−1) in line 11, the reciprocal MCL routine in line 13 samples fromthe detection model,
according to Equation (41). Thus, samples are drawn at poseswhich are probable given reciprocal robot
observations, and which are independent of the previous belief Bel(xn,t−1). By defining a reciprocal
sampling proportionα, particles are sampled from the robot’s own belief with a probability 1−α, and
with a probability ofα from the probability density function proposed by the detection model. The
advantages of this procedure are twofold. Firstly, as the reciprocal sampling method exploits the infor-
mation available in the set of neighboring robots, it continuously creates particles in areas of the pose
space which are likely to be significant, and thus it allows for very small particle set sizes (also shown by
Prorok and Martinoli (2011)). Secondly, by sampling new particles from the detection model, the method
introduces a variance proportional to that of the relative detection sensors into the belief of the detected
robot (this proportion can be tuned by varyingα), and effectively mitigates overconfidence. Algorithm 4
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shows the routine where line 4 represents the sampling step.There are a multitude of methods which can
be applied to sample from a given distribution. In our particular case (multimodal Gaussians), sampling
from the detection model is cheap. For more complex probability density functions, sophisticated and
efficient methods such as slice sampling (Neal, 2003) can be employed.

Algorithm 4 Reciprocal Sampling(Dn,t ,Xn,t)

1: if Dn,t = /0 then
2: x← Sampling(Xn,t)
3: else
4: x ∼Q(x)
5: end if
6: returnx

6.3 Sensor Fusion

Algorithm 5 shows the complete localization algorithm, embedding all previously developed models
and algorithms. Line 3 shows the application of the motion model, whereun,t represents dead-reckoning
information. Line 4 shows the application of the measurement model whereTn,t represents the TDOA data
andM is the map. Line 5 shows the application of the robot detection model, whereDn,t = {dmn,t |Rm∈
Nn,t} is the set of all communication messages received by robotRn. In other words, the detected
robot will opportunistically apply the detection model using data received from the robots that made the
detection, if any. In addition to using the robot detection model for updating the belief representation
Bel (xn,t), our approach utilizes the reciprocal sampling method, shown in line 13, with a reciprocal
sampling proportionα ≤ 1. In our work, we implement the sampling routine in line 11 with the low-
variance sampling algorithm (described by Thrun et al. (2005)). Although many resampling algorithms
exist, this particular implementation is interesting for particle filters, as it avoids particle depletion: the
first particle is drawn according to a single random number, and all subsequent draws are dependent on
the first draw (as well as the individual particle weights). This method ensures that given a uniformly
weighted particle set, the resulting sampled particle set remains unchanged.

7 Experiments

The following sections detail our experimental setup and the configurations of our algorithm. Finally, we
report our experimental results.

7.1 Hardware Setup

Our experimental setup, shown in Figure 9, consists of threemain elements(i) a group of ten mobile
robots,(ii) an UWB positioning system composed of four base stations, and (iii) two overhead cameras
with overlapping views of a 5×3 m2 arena. To perform experiments, we use ten Khepera III robotsthat
drive (randomly) in the arena at a speed of one robot size per second. The robots run a Braitenberg con-
troller (Braitenberg, 1984) on-board for basic obstacle avoidance based on information obtained from the
robots’ infrared proximity sensors (which are located roughly 2 cm above the ground). The Khepera III
is a differential drive robot of 12cm diameter produced by K-Team corporation2, see Figure 8. We use
the robot with a KoreBot II extension board providing a standard embedded Linux operating system on

2http://www.k-team.com/
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Algorithm 5 MultiRobot UWB MCL(Xn,t−1,un,t ,Tn,t ,Dn,t)

1: Xn,t = Xn,t = /0
2: for i = 1 toM do
3: x[i]n,t ← Motion Model(un,t ,x

[i]
n,t−1)

4: w[i]
n,t ← Measurement Model Map(Tn,t ,M,x[i]n,t ,w

[i]
n,t−1)

5: w[i]
n,t ← Detection Model(Dn,t ,x

[i]
n,t ,w

[i]
n,t)

6: Xn,t ← Xn,t +
〈

x[i]n,t ,w
[i]
n,t

〉

7: end for
8: for i = 1 toM do
9: r ∼ Uniform(0,1)

10: if r ≤ (1−α) then
11: x[i]n,t ← Sampling(Xn,t)
12: else
13: x[i]n,t ← Reciprocal Sampling(Dn,t ,Xn,t)
14: end if
15: Xn,t ← Xn,t +

〈

x[i]n,t ,
1
M

〉

16: end for
17: returnXn,t

Figure 8: The Khepera III robot is equipped with a range and bearing extension module which utilizes
sixteen infrared LEDs. On top of this board, we mounted an active marker (LED) tracking module, which
simultaneously carries the UWB emitter tag.
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(a) (b)

Figure 9: (a) The 5×3 m2 experimental arena contains an obstacle (configurationA) composed of various
elements made of brick, plaster, metal, wood, and a 2 meter high tube covered in aluminum. Four UWB
base stations are mounted on the ceiling in the corners of thelab room. Two overhead cameras provide
ground truth positioning in the experimental area. (b) Experimental configurationB.

an Intel XSCALE PXA-270 processor running at 624 MHz. Communication is enabled through an IEEE
802.11b wireless card which is installed in a built-in CompactFlash slot. The robot uses wheel encoders
to provide odometry readings at 5 Hz. It also uses a relative range and bearing module (Pugh et al., 2009),
which is set to provide the measurements used by the detection model at a maximum frequency of 2 Hz
(but can operate robustly up to a frequency of 100 Hz in a system of two robots). The modules’ noise
characteristics were empirically determined in our actualsetup (σr = 0.15· rmn, andσφ = 0.15 rad). We
set its maximum detection range to be 1.75 m (the actual maximum is reported to be in the range of 3.5 m).
Lastly, the robot is also equipped with an LED-based active marker module for tracking that also carries
the UWB emitter tag, which emits positioning pulses at a frequency of 10 Hz. In practice, UWB position-
ing updates are received at a frequency of 2.6 Hz. The UWB localization system employed in this work
is commercially available from Ubisense3, Series 7000 (sensors and compact tags). It is installed on the
ceiling, in the corners of our 40 m2 laboratory. The overhead camera system runs on a central processor
which also enacts the synchronization of available ground truth positioning data with all incoming raw
sensor data (from the UWB system as well as from the robots). In order to compute the ground truth robot
positions, the camera system utilizes the open source tracking softwareSwisTrack4 (Lochmatter et al.,
2008). The average error of the resulting ground truth is roughly 1cm, as reported by Prorok et al. (2010).

In order to create a NLOS setting that occludes direct signalpaths between the UWB emitters carried
by the robots and the four base stations, we design an experimental setup that includes obstacles, and
implement it in two variations. In experimental configuration A, we install a cross-shaped obstacle in
our arena (see Figure 9(a)). The obstacle is 1.5 m long, 1 m high and 20 cm thick, and is composed
of several modules made of various materials (brick, plaster, metal, wood). At its extremity, in the

3http://www.ubisense.net
4http://en.wikibooks.org/wiki/SwisTrack
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Figure 10: The panels show a 160 s excerpt of the trajectory ofone robot. Maximum likelihood position
estimates (calculated with the raw TDOA values) are plottedin red, and the center of mass of the robot
trajectory generated by our particle filter (usingMM,375+C0) is plotted in green. The ground truth trajec-
tory is shown by a dashed black line. (a) Experimental configurationA. (b) Experimental configuration
B.

center of the arena, we attach a 2 m high tube covered in aluminum. These shapes and materials are
chosen in order to realistically emulate the various effects of a typical indoor environment on UWB
signal propagation. In configurationB, we rearrange the same modules to form three separate obstacles,
as depicted in Figure 9(b), with one obstacle in the center, and two obstacles aligned with the arena walls,
creating two “doorways” for the robots to navigate through.

7.2 Experimental Configuration

As a way of validating our multimodal error model, we calculate two additional sets of maps:(i) one
composed of Gaussian distributions instead of our proposederror model (Eq. (23)), and(ii) , one com-
posed of normalized, discrete histogram models with a fixed bin-size. We label our three map types
according to the underlyingmodel, i.e.,MM (multimodal),MG (Gaussian), andMH (histogram). Also,
to test the effect of map granularity on the localization performance, we use four different grid maps: (a)
NA = 1 with one 3×5 m2 cell, (b)NA = 15 with 1×1 m2 cells, (c)NA = 60 with 0.5×0.5 m2 cells, and (d)
NA = 375 with 0.2×0.2 m2 cells. These two map parameters are combined, with resulting maps referred
to asMmodel,Na (e.g.,MM,375 corresponds to a multimodal map with 375 cells).

Also, we will test the effect of collaboration on the localization performance. To this means, we will
vary the frequency with which the robots exchange detectiondata. Per default, the robots collaborate
at an average frequency of 2 Hz. Finally, we remove detectionmessages from our data log a posteriori,
producing four additional data sets with collaboration rates at 1 Hz, 0.5 Hz, 0.1 Hz, and 0 Hz (i.e., no
collaboration). In the following, these schemes are referred to asC2, C1, C0.5, C0.1, andC0, respectively.

7.3 Overall localization error

Our localization algorithm is evaluated repeatedly on a data set for each of the two configurationsA and
B, comprising a 40 minute experiment involving ten robots, initially randomly distributed over the arena.
Each robot runs Algorithm 5 with 50 particles, and a reciprocal proportionα = 0.02 (unless otherwise
stated). Apart from the modalities described in this paper (including odometry), the robots use no other
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Figure 11: The graphs show the average localization error asa function of space, over a 40 minute
experiment with ten robots. Four different maps (MG,1, MG,60, MM,1, MM,60) are tested with two
different collaboration frequencies (C0, C1).
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Figure 12: Normalized histograms of TDOA error data for basestation pair〈B1,B2〉. We fit a Gaussian
(in green) onto the data, as well as our proposed error model of Eq. (23) (in red). The data is collected
over a (a) 0.5×0.5 m2 large square, (b) 1×1 m2 large square, and (c) 2×2 m2 large square. The areas of
data collection are indicated by the shaded cells in the schematized arena, in the top right corner of each
panel.
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Figure 13: Localization performance usingMH,375, with varying bin-sizes (5 boxplots along the x-axis),
as well asMM,375 (1 boxplot spanning the x-axis, shaded in grey). The boxplots show the median, 25th
and 75th percentile of all localization errors for all robots throughout the experiment. The plots show
results for configurationA andB combined. The collaboration frequency increases from leftto right. (a)
C0, (b)C0.1, (c)C1.

sensors to localize. We discuss the localization performance in terms of the positioning error (distance to
ground truth position) of the center of mass of the particlesin a robot’s belief, for all ten robots used in
the experiment (as formulated in Section 2.1, Equation (2)).

Figure 10 shows two excerpts of the robot trajectory for bothexperimental configurations, and super-
imposes(i) the maximum likelihood trilateration estimates (computedwith raw TDOA measurements),
and(ii) the center of mass of the set of particles resulting from our localization algorithm. Finally, for
comparison, we note that the error of the maximum likelihoodtrilateration estimates (computed with raw
TDOA measurements and evaluated over the whole experimental run) amounts to 0.18 m (median) and
0.48 m (mean) for configurationA, and 0.2 m (median) and 0.45 m (mean) for configurationB.

Figure 11 shows the localization performance as a function of space. We note the irregularity of the
error distribution: higher errors tend to be in the vicinityof the obstacle. The plots indicate that, for the
same resolution and same collaboration rate, our multimodal model (MM,·) is better than the Gaussian
(MG,·) model. They also indicate that a high resolution map (M·,60) combined with collaboration is better
than a low resolution map (M·,1) without collaboration. Moreover, the results indicate that the improve-
ments help mitigate errors in areas prone to NLOS (confer Figure 7): the right-most panel(MM,60+C1)
shows a quasi constant distribution of localization errorsin the range of 5 cm to 10 cm.

7.4 Evaluation of the UWB model

To illustrate the concept of our mapping strategy, Figure 12shows fits of(i) the probability density
function proposed by our error model in Equation (23),(ii) a Gaussian probability density function,
and (iii) a normalized histogram with a bin-size of 0.2 m. The three panels present data gathered in
a cell of 3 difference sizes, a) 0.5×0.5 m2, b) 1×1 m2 and c) 2×2 m2. We note that in all cases, the
multimodal approach (as proposed by our error model) suggests a good fit to the data. Also, we see
that the multimodal nature of the error statistics is preserved across different scales, which is a unique
characteristic of the UWB bias.

In order to assess the relevance of our multimodal model in the mapsMM,·, we compare its result-
ing localization performance with that of the Gaussian model employed inMG,·, and with that of the
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Figure 14: Localization performance usingMM andMG with four grid resolutionsNa (along the x-axis).
The boxplots show the median, 25th and 75th percentile of alllocalization errors for all robots throughout
the experiment. The plots show results for configurationA andB combined. The collaboration frequency
increases from left to right. (a)C0, (b)C0.1, (c)C1.

histogram model employed inMH,·.
Figure 13 shows a comparison of the localization performance obtained forMH,375, for five different

bin sizes (0.4 m, 0.2 m, 0.1 m, 0.05 m, 0.02 m), andMM,375. The plots show results for configuration
A andB combined, with an increasing collaboration frequency fromleft to right. The figure shows a
significant performance difference for the histogram model, where the median of the non-collaborative
scheme (C0) in plot (a) ranges in between 0.13 m to 0.48 m, compared to thecollaborative schemes in
figures (b) and (c) (C0.1 andC1), with a range in between 0.075 m and 0.19 m. Indeed, collaboration
plays an important role for the histogram models—even for the optimal bin size of 0.1 m, the non-
collaborative variant produces a large number of outliers.With collaboration, the histogram models
produce a performance comparable to that of the multimodal models. Also, we note that by decreasing
the bin-size (i.e., increasing the granularity of the histogram model), a performance improvement is not
necessarily achieved, as the histogram model begins to over-fit the data and the overall localization error
increases.

Figure 14 shows a comparison of the localization performance obtained forMM,· andMG,·, for all
four grid resolutions,Na = {1, 15, 60, 375}. Again, the plots show results for configurationA andB com-
bined, with an increasing collaboration frequency from left to right. We see that the multimodal models
systematically produce better results. Also, for an increasing map resolution, the localization errors tend
to decrease. In average and across all map resolutions, the multimodal models provide a 60% perfor-
mance improvement over the Gaussian models for configuration A, and a 32% performance improve-
ment for configurationB. Finally, we note that increasing the map granularitysystematicallyimproves
localization performance for the multimodal models, whereas for the Gaussian models, the performance
systematically improves only in Figure 14(c), when the collaboration rate is high. This points out that
the Gaussian model does not reliably improve performance for increasing map granularities, showing a
fundamental mismatch of the underlying data.

7.5 Evaluation of Collaboration

A significant difference in performance is seen in Figure 13 for the histogram model map, where the
median of the non-collaborative scheme (C0) in plot (a) ranges in between 0.13 m to 0.48 m, compared
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Figure 15: Improvement in percent of the localization accuracy forcollaborativeversions of the algorithm
over thenon-collaborativeversion (C0). The data points were calculated by considering the respective
median error values. The collaboration frequencies vary from 0.1 Hz to 2 Hz:C0.1, C0.5, C1, C2. We test
(a) the Gaussian model with mapsMG,· and (b) multimodal models with mapsMM,·.

to the collaborative schemes in figures (b) and (c) (C0.1 andC1), with a range in between 0.075 m and
0.19 m. Indeed, collaboration plays an important role for the histogram models—even for the optimal bin
size of 0.1 m, the non-collaborative variant produces a large number of outliers. With collaboration, the
histogram models produce a performance comparable to that of the multimodal models.

Figure 14 qualitatively indicates that, when employing themultimodal error mapsMM,·, a perfor-
mance increase is obtained for increasing collaboration frequencies. This result is represented quanti-
tatively in Figure 15: we use the non-collaborative resultsas a reference and calculate the relative (to
the collaborative variants) performance improvement in percent, and we analyze the performances for
an increasing collaboration rate, for all map granularities. Let us first consider Figure 15(a). It becomes
clear that for the Gaussian mapsMG,·, a consistent performance increase is only obtained for thelow-
est collaboration frequency (0.1 Hz), over all map granularities, and only the highest map granularity
MG,375 produces an consistent improvement for all collaboration frequencies. In the worst case, the map
MG,1 produces a 40% performance decline for a collaboration frequency of 2 Hz. Let us now consider
Figure 15(b). A performance improvement is achieved for allmap granularities and collaboration fre-
quencies, with a maximum performance improvement of 16.5% achieved forMM,375 at 1 Hz. The panel
also shows that an increased map granularity consistently improves the performance. However, we also
note that the maximum performance improvement is not achieved for the highest collaboration frequency.
This is likely due to the reciprocal sampling method, which,for an increased frequency, also samples an
increased number of reciprocal particles over time. The effect of increasing the uncertainty in the particle
distribution is thereby exacerbated, and thus the potential decline in performance. We note that this effect
can be mitigated by calibrating the reciprocal sampling proportionα as a function of the collaboration
rate.

Figure 16 shows the results over a 40 minute data set performed for experimental configurationA. A
variable number of robots receive UWB updates. The experimental data is evaluated over 50 iterations,
where at each iteration the set of robots that receive the UWBupdates is randomly allocated, with the
remaining robots relying on our relative positioning method for localization. We evaluate the localiza-
tion error for all robots in the system, and for better clarity, omit 16 minutes worth of data points in the
plots. The results show that by providing at least one robot in the team with absolute position updates,
the localization error is bounded and constant over time. Also, we note that by increasing the number of
continuously localized robots, the error decreases. This result also indicates the utility of a potentially
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Figure 16: Average localization error (for all robots) obtained over 50 evaluations of a data set for an ex-
periment of 40 min duration, performed on 10 Khepera III robots with 50 particles each, and a reciprocal
sampling proportion ofα = 0.02. We vary the number of robots that receive UWB positioningupdates.
The error bars show a 95% confidence interval.

heterogeneous robot team, where some robots are equipped with UWB, and others rely purely on collab-
orative methods (on top of dead-reckoning). The resulting localization error will then depend on various
factors that affect the system’s connectivity, such as the spread of the robots in space and the frequency
of the interactions between the heterogeneous robot types.

Finally, we perform an assessment of our reciprocal sampling strategy. To this means, we evaluate
our localization algorithm, using 50 particles, running on10 robots, on our data set of 40 min duration—
once with reciprocal sampling (α = 0.02), and once without reciprocal sampling (α = 0). We vary the
number of robots that receive UWB updates. Figure 17 reportsthe results. In Figure 17(a) we see that
for very few robots (1 or 2) receiving UWB updates, the standard sampling routine performs better, since
the probability that reciprocal particles are sampled frombadly localized robots is greater. For 4 or more
robots receiving UWB updates, the reciprocal sampling strategy improves over the standard sampling
strategy. A clear performance difference is noticeable in Figure 17(b), which reports the standard devi-
ation of all localization errors. For nine out of ten results, the reciprocal sampling strategy produces a
smaller standard deviation. Moreover, the standard deviation decreases asymptotically for an increasing
number of robots that receive UWB updates. This indicates that the reciprocal sampling strategy provides
the means to increase robustness.

8 Discussion

Our results show that, with our method, an effective solution can be found that leads to accurate local-
ization with UWB, even in potentially cluttered indoor environments. In comparison with state-of-the-art
works employing UWB on robots (Hollinger et al., 2012; Gonzalez et al., 2009; Jourdan et al., 2005), in
terms of localization accuracy, our method performs very well while bearing a small computational load.
Additionally, we show quantitatively how our method compares with a baseline technique (maximum
likelihood), reducing the error by a factor of 2.5.

The main trade-off of our method is that it requires a one-time, a priori mapping step: in order to solve
this, a mobile device with reliable localization capabilities (other than UWB) needs to profile the entire
space of interest. A similar approach is suggested by Quigley et al. (2010), where the indoor environment
is profiled a priori to build probabilistic sensor models associated to space. Analogously, in particular in
the domain of radio localization, a priori profiling is commonly know asfingerprinting(Liu et al., 2007).
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Figure 17: Localization error (for all robots, throughout the whole run) obtained over 50 evaluations of a
data set for an experiment of 40 min duration performed on 10 Khepera III robots with 50 particles each.
We test our algorithm with and without reciprocal sampling,i.e., once with a proportion ofα = 0.02,
and once withα = 0. We vary the number of robots that receive UWB positioning updates. (a) Mean
localization error. (b) Standard deviation of localization errors.

In order to reduce the cost of building a priori error maps oneshould explore the simultaneous localization
and mapping of UWB measurement models. An extension of our method would bear similarities to the
FastSLAM algorithm (Montemerlo et al., 2002). Another trade-off of our method is that we assume
our base stations to be well-localized. Possible extensions to this work could consider an augmented
parameter set (including the unknown base station positions). It still remains to be explored, however,
if our EM estimation framework is able to account for the additional variables, and whether it will still
remain robust to local minima. Additionally, Kalman-basedfiltering techniques remain to be considered,
at the cost of, however, altering a number of features belonging to our current methodology. Firstly, our
reciprocal sampling strategy is inherently built on a particle-filter based approach, and no straight-forward
equivalent for Kalman-based methods is known at this point.Secondly, a linearization of our multimodal
measurement model will very likely result in poorer performance (as pointed out by Ho and Xu (2004)).
Finally, our quantitative comparisons to Maximum Likelihood positioning estimates (in Section 7.3),
as well as our comparisons with the Gaussian model maps (in Section 7.4) indicate that the usage of
(unimodal) Gaussian measurement models leads to poorer performance. Indeed, numerous measurement
campaigns (Alsindi et al., 2009; Prorok et al., 2011) have shown that the more physical space is covered,
the higher the variability in NLOS biases, and the harder it is for a Gaussian model to capture the error
statistics (the log-normal distribution is a heavy-tail distribution and, thus, can cope with such cases).

The more UWB data is collected, the finer the resolution of thetessellation, and the better the resulting
map. On the one hand, the return on investment is very straight forward. On the other hand, it is to
be assumed that low resolution maps may be equally good, given that the cell separations faithfully
separate LOS from NLOS areas, as well as separate differing NLOS cells from each other. Such advanced
tessellation methods promise to significantly reduce the mapping effort (by allowing coarser granularities)
while maintaining the same level of localization accuracy.Further, the validity of our static model still
needs to be investigated for highly dynamic environments. It is to be assumed that moderately busy
environments would only produce very sporadic anomalies, and that the overall localization quality would
be maintained. In highly dynamic environments, however, itwould be of great interest to investigate the
role of collaboration, to determine whether and to what extent it is able to compensate for the static maps.
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In terms of localization performance, our proposed multimodal model has shown clear benefits. Its
general form avoids overfitting (as seen with the histogram model), yet it provides enough information to
clearly distinguish itself from a basic Gaussian model. An instance of the multimodal model requires the
determination of six parameters. The total memory needed tostore a complete map is then obtained by
multiplying this number by the number of base station pairs times the number of cells defined by a given
tessellation. These parameters can be configured easily through our online estimation algorithm, which is
incremental in its nature and can effectively be implemented on resource constrained platforms. It remains
to be questioned whether other physically motivated modelswhich have not yet been explored may result
in better fits. Also, although we have empirically shown in our previous work (Prorok et al., 2012c) that
for initial conditions sampled in a pre-defined, physicallyfeasible range, our estimation algorithm always
converges, exceptions may happen and need to be taken into account. Finally, in this work we have
considered two alternative models with which to compare ourmultimodal model: a histogram model and
a Gaussian model. Other approaches (such as those belongingto the class of non-parametric models)
could have been considered in place, and may have provided other insights. However, we have chosen
those two models in particular because they are efficient andcan be implemented easily on resource
constrained platforms, thus representing viable alternatives. Indeed, we consider that the set of non-
parametric models do not present viable alternatives (given the large number of data points and our
computational restrictions), unless heavily constrained.

Lastly, this work has discussed the effect of collaborationin the form of relative positioning on the
overall localization accuracy. We have shown that the collaboration rate has an important impact on the
localization accuracy, and that determining the optimal rate is relevant. How, however, optimal collabo-
ration rates are to be defined remains to be explored. Equally, the effect of heterogeneity in robot teams
also remains to be explored in greater depth (beyond the results reported in Figure 16). By varying the
proportion of robots with UWB sensors versus those without,an additional degree of system configura-
bility is provided, and should be examined in conjunction with variable collaboration rates, and variable
robot connectivity.

9 Conclusion

Although, in theory, UWB localization has the potential of providing centimeter-level accuracy, in prac-
tice, sophisticated strategies are necessary to mitigate the effect of NLOS biases. Our experiments showed
that the error behavior of UWB measurements based on time-of-flight is dependent on the configuration
of the environment, and thus, can be modeled as a function of space. This work constitutes the first steps
towards studying the effects of collaboration on UWB localization. In conclusion, this work has allowed
us to make two main insights:(I) Accurate localization with UWB in cluttered environments is possible,
and can be achieved methodically. The degree of accuracy is configurable at a user level. The result-
ing framework is efficient, and can be deployed on very resource constrained embedded platforms.(II)
Collaboration in the form of relative positioning improvesthe overall localization, provided the UWB
measurement model (which is used in conjunction) faithfully captures the underlying UWB data. The
integration of cheap relative positioning hardware is relevant and feasible, and represents a cost-efficient
way of improving absolute positioning systems.
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A Notation

Table 2: Robot System
Notation Description
Rn Robotn
NR Number of robots
xn,t State of robotRn at timet
M Number of particles
Xn Set of particles belonging toRn

x[i]n,t State of particlei of robotRn at timet

w[i]
n,t Weight of particlei of robotRn at timet

Beln Belief of robotRn

Table 3: UWB System
Notation Description
Bu Base stationu
〈Bu,Bv〉 Base station pair
B Set of all base station pairs
Lu Event thatBu is in LOS
Lu Event thatBu is in NLOS
PLu Probability thatBu is in LOS
Muv Map belonging to base station pair〈Bu,Bv〉
M Set of all maps for all base station pairs in system
Aa Delimited area in map
NA Number of areas in map
muv Mapping function
θθθ uv,a Vector of model parameters for base station pair〈Bu,Bv〉 and areaAa

θ̂θθ uv,a Estimated vector of model parameters
plnN ,u Log-normal distribution associated to base stationBu

µu, σu Scale and shape parameters of log-normal distributionplnN ,u

τ̂uv,n,t TDOA measurement between base station pair〈Bu,Bv〉, at positionxn,t
τuv,n,t True TDOA between base station pair〈Bu,Bv〉, at positionxn,t
∆τuv,n,t TDOA error for base station pair〈Bu,Bv〉, at positionxn,t
Tn,t Set of all TDOA measurements received by robotRn at timet
Tuv,a Set of all TDOA measurements associated to areaAa and base station pair〈Bu,Bv〉
p UWB measurement model
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Table 4: Relative Positioning System
Notation Description
r̂mn,t Relative range measurement between robotRm and robotRn at timet
rmn,t True relative range between robotRm and robotRn at timet
φ̂mn,t Relative bearing measurement between robotRm and robotRn at timet
φmn,t True relative bearing between robotRm and robotRn at timet
∆rmn,t Relative range measurement error between robotRm and robotRn at timet
∆φmn,t Relative bearing measurement error between robotRm and robotRn at timet
σr Standard deviation of relative range measurements
σφ Standard deviation of relative bearing measurements
ξ Covariance matrix of range and bearing measurements
dmn,t Detection data sent from robotRm to robotRn at timet
Dn,t Set of all detection data made of robotRn at timet
q Robot detection model
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