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Abstract

Ultra-wideband (UWB) localization is a recent technolobgittperforms competitively with many
indoor localization methods currently available. Desjiisedesirable traits, such as potential high
accuracy and high material penetrability, the resolutibnan-line-of-sight (NLOS) signals remains
a very hard problem and has a significant impact on the lattéiz performance. In this work, we
address the peculiarities of UWB error behavior by buildimgdels that capture the spatiality as well
as the multimodal statistics of the error behavior. Our faark utilizes tessellated maps that associate
probabilistic error models to localities in space. In aidditto our UWB localization strategy (which
provides absolute position estimates), we investigateffieets of collaboration in the form of relative
positioning. To this means, we develop a relative range aatilg model, and, together with the
UWB model, present a unified localization technique based particle filter framework. We test our
approach experimentally on a group of ten mobile robotsmgmpd with UWB emitters and extension
modules providing inter-robot relative range and bearirepsurements. Our experimental insights
highlight the benefits of collaboration, which are congistever numerous experimental scenarios.
Also, we show the relevance, in terms of positioning acoyratour multimodal UWB measurement
model by performing systematic comparisons with two alive measurement models. Our final
results show median localization errors below 10 cm in eheid environments, using a modest set of
50 particles in our filter.

1 Introduction

Due to its large frequency spectrum, UWB is able to penethataigh objects in NLOS scenarios, and
thus alleviates the LOS constraint imposed by other segpestrelying on media such as infrared, ul-
trasound, visible light or narrow-band radio. This advagetaltimately enables localization over large
ranges and in dynamic environments, which makes UWB arcéttescandidate for indoor applications
such as asset management, inventory tracking and asseantttpl¢c for a variety of different industries
(Liu et all,[2007] Sahinoglu etal., 2008). NeverthelessQSLscenarios may cause biases in the sig-
nal propagation times, which leads to significant localimaerrors. In order to guarantee reliable and
accurate performance, these biases need to be addresseéffgctive localization strategy.

In this paper, we consider the problem of absolute locatimaif a team of mobile robots for unknown
initial conditions. Since we aim for a portable, miniatadite, cost-effective solution, with centimeter-
level accuracy, we choose to solve the localization prohiétim a hybrid approach that combines UWB
localization with collaborative localization. Our UWB lalization strategy uses time-difference-of-
arrival (TDOA) measurements from two or more base stationspalVe address the peculiarities of




UWSB signal propagation with models that capture the sggtiak well as the multimodality of the error
statistics. Simultaneously, we take care to develop annlyidg error model that is compact and that
can be calibrated by means of efficient algorithms. Our bolative localization strategy distinguishes
itself from prior work by emphasizing cost-efficiency, fdkcentralization, and scalability. The localiza-
tion method is based on relative positioning and uses twaotifiess: relative range and relative bearing.
This work investigates the combined roles of collaboralaalization and UWB localization. Our ex-
periments are able to validate our overall localizatioatstyy, and show that the performance can be
significantly improved when using collaboration: our irfgggindicate that relative positioning—even if
through noisy sensors—is a useful tool to reduce absolgsdifmtion errors. Since the fusion of UWB
positioning sensors with exteroceptive sensors has h&@y considered so far, our studies present
pioneering work in this domain.

1.1 Related Work

Since our approach combines methods from two separate sw#id® of localization research, we sum-
marize the respective literature separately, in the twWofiohg subsections.

1.1.1 UWB Localization

UWSB is a radio technology which is characterized by its vargé bandwidth compared to conventional
narrowband systems, and in particular features high jpogitg accuracy (due to a time resolution in the
order of nanoseconds), and high material penetrabilitg {da bandwidth typically larger than 0.5 GHz).
Despite these desirable traits, the resolution of muliganals remains a hard problem—the complexity
of implementing state-of-the-art direct signal path détecalgorithms is exacerbated by the necessity of
maintaining very high sampling rates, in the order of seM@téz (Sahinoglu et al., 2008).

Recently, UWB has received some attention within the raisatommunity,_Hollinger et al. (2012)
use UWB range data from five fixed base stations to track a matiilot, which carries an UWB emitter.
Their underlying UWB error model is based on the Gaussiatmibligion, and is tested in three forms:
an offset Gaussian, Gaussian Processes, and a mixture s§i@ast The experimental tracking scenario
tests ranging through walls, and does not rely on the fusfaadditional odometry measurements for
localization. The final results show room-level accuradye tudy performed hy Gonzalez et al. (2009)
develops a probabilistic model for biased UWB range measents which is based on an offset Gaus-
sian. This offset (ranging bias) is modeled within an augieestate particle filter that does not take
LOS/NLOS path conditions into account explicitly. Shorperments (of about 6 minutes duration) are
performed using a significantly large particle set (15’0@@tigsles), employing a mobile robot carrying
an UWB transceiver and three fixed UWB transceivers. LOS ixyaats yield an accuracy of 5 cm, and
NLOS experiments yield an accuracy of 20 cm. A similar apphoia taken by Jourdan etlal. (2005),
where the ranging bias is also modeled in an augmented stetel@ filter. The bias is sampled from a
fixed-width uniform distribution at regular intervals. Tihexperimental setup employs a mobile agent
carrying an UWB emitter, one real receiver station, and amelsited receiver station, and uses the com-
puted range data with odometry data. The authors demoastfarformance of roughly 50 cm accuracy
in a NLOS office environment. Lastly, Segura et al. (2010)etlgy their own UWB positioning system
based on TDOA measurements. Their system is composed of a td@éiver board mounted on the
robot, and three external UWB emitter beacons at fixed lonatiThe authors compute the robot position
via constrained least squares minimization of the TDOA tmsing equations, thus, without modeling
the UWB error and without fusing robot odometry. The positig accuracy is tested (statically) at five
different locations in the experimental space, with eriotthe order of 20 cm.

Indeed, when using UWB for localization, the basic measgrehtity is time-of-flight. In practice,
however, time-of-arrival (TOA) systems are rarely implettesl due to the complexity induced by the




required synchronization of a mobile node with the baseostat Instead, it is a common choice to
implement time-difference-of-arrival (TDOA) systems whiare significantly more practical, since only
the synchronization among base stations is required. htayn, enables a significant miniaturization
of the emitter boards (to an order of a few centimeters in)saewell as a reduction of the consumption

power (to an order oftW (Mercier et al., 2008)).

1.1.2 Collaborative Localization

There is abundant literature discussing various stragegieard solving the multi-robot localization prob-
lem. Our approach distinguishes itself by respecting thieviang design goals: cost-efficiency, full de-
centralization and scalability (Prorok and Martiholi, 20Prorok et al. c). Our work relates to the
body of literature that takes @ecentralizedapproach to the multi-robot localization problem, where a
robot maintains an estimate of only its own pose, versud-afgtem state estimate (including all robots’
individual pose estimates). We relate to the latter asuti-centralizedapproachl (Prorok et al., 2012b;
Nerurkar and Roumeliotis, 2010)).

The category of work representing tbecentralizedapproach has the following take on the collab-
orative localization problem: each robot maintains amestie of only its own pose, and fuses relative
observations in an opportunistic fashimtmo‘ﬁ@) introduced a multi-robot Monte-Carlo
localization algorithm foiglobal localization, that also relaxes noise assumptions as wefitar-robot
dependencies. They propose a method in which robots myaichronize their position beliefs upon
detection, and show successful global localization on ®a robots. However, the method has limited
scalability due to overconfidence occurring upon multigleat detections, and no analysis is provided
of the algorithm’s processing requiremerits._Bahr 21 al0g&() develop a decentralized localization al-
gorithm, based on the extended Kalman filter framework, ihaspecially well suited for autonomous
underwater vehicles with very low data exchange rates. Mkifiod, however, allows cyclic updates and,
thus, may suffer from overconfidence. In an addition to th)'.b), the authors remedy
the overconfidence problem, but at the cost of a computdhoeepensive solution (in particular for a
large number of robots and a high frequency of relative olagems).

1.2 Contributions of this Paper

This work is a culmination of our ongoing research effortthie domain of indoor localization, and com-
bines two complementary components: an UWB system capélaesolute positionind (Prorok etlal.,
[2012¢ 20101), and a collaborative multi-robot system clepafrelative observations (Prorok and Martiholi,
12011 Prorok et all, 201Pa). The current paper goes beyongrevious works on various fronts. In par-
ticular, to the best of our knowledge, this work is among thet fio perform the fusion of UWB with
on-board exteroceptive sensors—in our case, infraredebiadative positioning sensors. Our contribu-
tions are enumerated as follows.

e We develop a compact, closed-form TDOA measurement moe@elitha mixture of Gaussian
and log-normal distributions. To the best of our knowledng, model is the first UWB TDOA
measurement model for mobile robot localization.

e The closed-form TDOA measurement model enables the dawelopof an efficient estimation
algorithm based on Expectation Maximization (EM) to detieerthe values of the model param-
eters. We show how the algorithm is applied in a batch modeedisas in an online mode, and
evaluate the performance of the estimation algorithm dtznely to show that it performs very
well in comparison with an alternative, standard optimaamethod.

e We develop a mapping technique that allows us to tesseltateesinto discrete areas, and where
each area is associated with a unique UWB measurement midebxploit the ability of our model



to capture and adapt to all types of UWB propagation, andayatustomize the parametrization
of this model using the underlying tessellation.

e \We present an algorithm that configures the map of UWB measememodels in real-time, as a
function of incoming data.

e We test our multimodal UWB measurement model against twmmamodels (a Gaussian model
and a discrete histogram model) and discuss the advantagedisadvantages of these model
alternatives with respect to practicality and performance

e We review the formalisms of our previous works to presenta oeified framework that combines
UWB and collaborative localization methods.

e \We test our approach on a team of ten robots in a room-sizad setluding obstacles that induce
significant NLOS signal propagation. Our evaluations testdffect of varying collaboration fre-
guencies, in order to better understand the impact of velaisitioning on the overall localization
accuracy.

The following text will elaborate the details of our contrtions. After presenting the general frame-
work, we first present our work on UWB localization (Secti@hsH). Subsequently, we present our
collaborative localization approach (Sectidn 6), as welbar final localization algorithm (Algorithid 5)
that fuses the information from the two regarded sensingatitées. \We conclude this paper by discussing
the limitations of our approach and by bringing our work iatmore general perspective.

2 Problem Statement

We consider a system composed of multiple mobile robotsukatabsolute UWB positioning data as
well as relative range and bearing data to localize in anlatesscoordinate system. In particular, we
develop an algorithm that fuses UWB TDOA measurements dative positioning measurements with
dead-reckoning information. The following paragraphsestair system and outline the notation for our
two core elements, UWB positioning and relative positignioy introducing probability densitigsandq
that implement the measurement models for the respectigs@seodalities. The first goal of this paper is
to developp andq, and to detail how these models are practically employe@alrobots. Subsequently,
our goal is to detail our mapping method and to present arritigo that, when deployed on robots,
builds UWB measurement model maps in real-time. Finally,gnal is to show how the models for our
two sensor modalities are embedded in an efficient loc#izéitter, and to test the resulting performance
through extensive experimental work.

2.1 General Framework and Performance Metric

Our multi-robot system is composed N, robots%1, #»,...,%n,,. Given its efficiency in solving the
localization problem for unknown initial conditions and #bility to accommodate arbitrary probability
density functions, our method of choice is the particleffi{teherwise known as Monte Carlo Localiza-
tion (Thrun et al., 2005)). Indeed, as we will see in Sect@rad®, the model describing the relative
range and bearing measurements is non-linear, and the rdedefibing UWB measurements is both
non-linear and multimodal. Hence, each robot runs an iddafiinstance of the filter that keeps track of
the current position estimate. The belief of a robot’s pedeimulated as

Bel(Xnt) ~ { (Xt W) i = 1, ..., M} = Xog (1)



whereM is the number of particlesgmt is a sample of the random variablg, = [Xnt,Ynt, YUnt] T, the
state of the robo#,, (wherexn; andyn; are Euclidian coordinates anih; is the orientation), amzl/mt

is its weight. The symbaX,; refers to the set of particle(x,[ﬂt,wwﬁ at timet belonging to robot%,.

In order to discuss the localization performance in termthefabsolute positioning error (distance to
ground truth position), we define a performance metric. Fgivan robotZ, at timet, the positioning
error is the distance from the center of mass of all its piagito the true positiorn;:

1 M
|5

2.2 Localization with UWB TDOA Measurements

We consider a pair of UWB base statio(®,, %), both fixed and well-localized in an absolute co-
ordinate system, and a rohet,, equipped with an UWB emitter tag, at positigg;, as illustrated in
Figure[I(d). At any given timg the robotZ, may receive a measured TDOA valfign; from any pair

of base station$%,, Zv). We denote bylh = {(Tuynt, (Bu, Bv))|3(PBu, By) € B} the set of TDOA
measurements received by a robft at a given time;, whereB is the set of all base station pairs. The
TDOA measurement erré¥t,yn for robot%, and base station pajfd,, %) is defined as the difference
between the nominal (error-free) TDOA value at the actulbt@osition and the measured TDOA value:

: (2)

ATuynt = ATuv(Tuunt: Xnt) = Tuunt — Tuv(Xn), 3)

wheretuy(Xnt) = ru(Xnt) — 'v(Xnt), andry(x,;) is the distance between base statispandx,; at time

t. In order to model the UWB error behavior, we take accountpattiality by defining a set/, of

a numbema areasZuy = {(Aa, Buwa)|a=1,...,Na} whereByya is a parameter vector, amg, C R2,
Note that the areas are disjojnAa = 0 and their union J, Ay covers the whole space. In other words,
each ared\, is associated with a parameter vedBua, as illustrated in Figurg I(b). We refer i, as

the mapfor base station paif%y, %v), and denote the set of all maps.a8 = {.#,v|3(Bu, Bv) € B}.
Furthermore, we define a function,, : R? — © that maps to any position in two-dimensional space a
parameter vector in the finite s8t:

mUV(Xn,t) = euv,a, St
3<Aa7 euv,a> € My, with Xn,t € Aa. (4)

Finally, we model the erroAtyyn; for a given base station pai{4,, #y) with a probability density
functionp that covers an aref&, (such thak, ; € As) and that depends on the parameter vege. We
define our error model as '

P(ATyynt; euv,a) = p(ATuv,n,t; Myv(Xnt))- (5)

This concludes our problem formulation for UWB localizatioThe development ob is elaborated in
detail in SectiofB.

2.3 Localization with Relative Range and Bearing Measuremds

Our collaboration strategy exploits associated, intdetoelative range and bearing observations, which
are evaluated by a dedicated detection model to form pagistimates. Let us consider our multi-robot
system ofNy, robots (the numbeNy, does not necessarily need to be known by the robots), degploye
with noisy relative range and bearing sensors. Fifjuré lig@}riates such a system, indicating the nom-
inal (error-free) range quantity,,, and the nominal bearing quantigy,,. We use the notion of neigh-
borhoods: at time, a robotZ%n, is in the set of neighborsiy; of robot%, if robot %, is able to take a
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Figure 1: (a) System dfl; = 2 robots at positions,,, X, and two well-localized UWB base statios4,
and %y. The figure shows the true rangegx,,) andry(x,) of robot#, to the respective base stations,
as well as a segment of the hyperbola resulting from the raif(erencer,,,. The figure also depicts
the relative robot rangen, = rnm, and the relative bearing valugg, and g (b) Distinct UWB error
modelsp(Atyynt; Ouva) are mapped to individual areAs.

range measuremergn: and bearing measuremeimm of robot#,. Thus, at every momentin time, the
neighborhood topology is defined by the physical constsajiten by the relative observation sensors
deployed on the robots. Also, #m € .#nt, we make the assumption that the robgf can communi-
cate with the robot#Z, to send detection data. The range and bearing measuremanst fer robotsz,,
and % are defined as the difference between the nominal range anthgeralues at the actual robot
positionsx,,; andxy,; and the measured valugg,; andq&mt

Ar (fmn,tvxm,taxn,t) = Amn,t - r(Xm,taxn,t)
Aqo(qamntvxm,taxn,t) = Gont — qo(xm,taxn,t)v (6)

where range and bearing are described as functions of @esij,; andx;, representing a transforma-
tion from Euclidean to polar coordinates:

mn N _ r(xm, s Xn, ) _ \/(Xn —Xm)2 + (Yn — Ym)?
[ (th::t ] = Te(tm,xa) = [ q’(xm,ttvxn,tt) ] B { atanZ(yn — Ym), (Xn —Xm)) — ¥m | @

In the context of the particle filter, we evaluate these déffee values for a given partiokéL] belonging
to the belief of the detecting robg#,,.. We define

At 2 A1 (Frongs Xkt Xng) ®
A(Pr%t = A(p((hnntaxlw,tvxn,t)- 9)
Thus, we define a probability densigy!! that depends on a parameter &eand which describes the
likelihood of positionx, for a single particlamt in the belief of robotZm, given measurements,;,
(,?Jmm as
ol (A e, D@ €). (10)

Finally, by considering all particles belonging to robgt, we define the robot detection modgwhich
describes the probability that rob@t, detects robo#, at positionx,,; as

IO B €) =1+ Y ol (A e, D@ €) - Wil (11)
<th Wil EXmt



wheren is a normalization factor, am¥r,,; = {Arr[ﬂ]]m“ =1,...,M} is the sets of all the range difference

values, and\@nn; = {Aqqgﬁj,]mu =1,...,M} is the set of all the bearing difference values, for all péet
of robot%n,. This concludes our problem formulation for collaboratvealization. The development of
g is elaborated in detail in Sectién 6.1.

3 UWSB Error Model

In this section, we develop our UWB error model. As the read#mremember, a UWB measurement
is based on time-of-flight measurements. A direct range orea®ent thus corresponds to a TOA mea-
surement. We previously highlighted, however, that TOAteys are potentially cumbersome due to
the required synchronization of emitter and receiver bgaiks a consequence, the implementation of
TDOA systems is common and popular. Hence, our modelingosapralso addresses TDOA systems
by extending our baseline TOA error model. The followingt&ets will display our thought process and
derivations, leading to a final UWB TDOA error model that ibsequently used throughout our work.

3.1 General UWB TDOA Measurement Model

For the sake of brevity, our following derivations omit theébscriptt. We begin by detailing a general
model p*(Atuyn;-), Which, however, is analytically non-tractable. The sufosmt subsection develops
an approximation to this general model, producing the cldsem modelp(Atyynt; Ouva) (introduced in
Sectior Z.R). Our baseline error model for the reﬁ\getween a base statios, and a target node (robot
) at positionxp is

fun £ ru(x,) +€+Yh, (12)

wherery(xn) represents the true distandsg,is a non-negative distance bias introduced by a NLOS sig-
nal propagation, and ~ p_,-(0,0%,) is a zero-mean Gaussian measurement noise with var@afice
common to all base stations. The random variablgualifies the occurrence of a NLOS signal path
and follows a Bernoulli distribution. Explicitly, it takethe value 1 with probabilitf1l —P.,) and the
value 0 with probability B,, where R, is the probability of measuring a LOS path, and correspagigin
(1—Py,) is the probability of measuring a NLOS path.

Despite the complexity of NLOS error patterns, current waidcusses the suitability of a variety of
statistical models with exponential behavior, supportethe semi-infinite interval (G»)
20091 Qi[ 2004). In particuldr, Alsindi et al. (2009) showeicomprehensive measurement campaign that
the log-normal distribution best characterizes the NLQOS8rdvehavior. Thus, we resort to a biagsthat
is modeled as a log-normal random variable~ pin_s» (U, Ou), supported on the semi-infinite interval
(0,0), and which is associated uniquely to a base sta#anFor a range error defined as

Aryn = fun—ru(Xn) (13)

the TOA measurement modp|, describes the likelihood dfr,, occurring when a robot measures a
certain range distanag , from a base statio, at an actual positior, with a nominal (actual) range
ru(Xn). Thus, the probability density of an errér,, occurring in a NLOS everit,,, can be written as

pu(Aru,n|Eu) = (pln./V,u * p-/V)(ArU,n) (14)

which is the convolution of the probability density fungtiof the bias value, with the probability density
function of the Gaussian noise value. Correspondingly, arewrite the probability density of an error

1The terms TOA and TDOA are used interchangeably with thedeange and range difference, respectively, as they differ
only by a constant factor (signal propagation speed).



Aryn, occurring in a LOS everlty, as

Pu(Arynllu) = p.y (Ary) (15)

Finally, with use of the total probability theorem, we comdihe above equations to obtain the probabil-
ity density ofAry, as

Pu(Aryn) = pu(ArylLy) - Pu, 4 pu(BrulLy) - (1= P). (16)

In practice, TOA systems are rarely implemented due to thgxexity induced by the required synchro-
nization of a mobile node with the base stations. Instead,atcommon choice to implement TDOA
systems which are significantly more practical, since ohb/ $ynchronization among base stations is
required. Thus, the direct range measurement between demalie and a base station is replaced by the
difference between two individual range measurements &d&em at a different base station. Extending
the TOA formalism shown above, we define the difference ramdige (i.e. TDOA) between two base
stations#, and %4, to a target node as

Tuvn

£ fun—Fun a7)

and then easily model the TDOA errar, as previously shown in Equatiof] (3). Simultaneously, we
can describe the TDOA error as the difference between thgerarrors occurring at the individual base
stations%, and %, as described in Equation (12), resulting in

ATUV,I'\ = ArU,n - Ar\/,n (18)

Finally, we describe the probability density of a given TD@wasurement errdytyy, as the probability
density of the subtraction of two random variables drawmftbe probability densities describing the
TOA error models of the two respective base stations. Weheseesults of EquationE (1L6) arid{18) to
model this resulting probability density as

P*(ATuyn) = (Pu* Py ) (ATuyn) (19)

which is a convolution of the probability density of the rangrrorAr, , and the mirrored probability
density ofAryy, (i.e., py (Aryn) = pv(—Aryn)).

3.2 Efficient TDOA Measurement Model

Although numerical implementations for the TDOA measuretmaodel of Equation[{19) are easily
found, they imply nested integrals which may incur a suliEiboomputational overhead when deploying
the model on a real embedded platform for real-time operafdso, the model itself is analytically non-
tractable, which causes difficulties when deriving vialbdéreators. For these reasons, we perform a
closed-form approximation to simplify the TDOA measuretmandel of Equation[(19).

Using basic algebraic properties of the convolution anerisg Equation[(1]6) into Equatioh (119),
we have

" (Aun) = (PLPL (Py # P )+ PL (L= PL) Py Py % Py )+
PLv(li PLu)(p/V * p;V * plnf/,u)ﬁL
(L1=PL)(1—PL,)(py* Py * Piny u* pﬂ,m\,)) (ATyyn)- (20)



Itis well-knownthatp 4 +p_,, = p, 5 ,, wherep 5 , is the density of a normal distributiort” (0, ZG_EV).
Hence, Equatiori (20) can be rewritten as

p*(ATUV,n) = (PLuPLv p\/é/V+ PLu(l_ PLV)(p\/Z/V * pa/VN)‘i‘
PL(1- PLu)(p\/Z/V * pInL/V,u)‘f'
(1-P,)(1~ PLv)(p\/Z/V * Piny u* pﬁ/,v)) (ATyyn)- (21)

UWB measurement campaigns have shown ¢hat< 1 (Alsindi et al., 2009; Prorok et al., 2011). Thus

Pyz 4 * Piny ~ Piny since the standard deviationf , is much larger thaw , . Furthermore, as was
numerically verified inl(Prorok et al.. 2012@n s u * P}, 4, can be approximated by the density func-
tion p > of a normal distribution# ({1, §2), under reasonable assumptions for the parameter ranges. Th
parametergi, 62 are obtained by matching the moments (and thus minimiziahlback-Leibler di-
vergence) as follows: Lé¢, ~ In.# (uy, 02) andX, ~ In.# (uy, 62) be independent. For the megrand

the varianc&?, the Kullback-Leibler divergence is minimizedfif= E[X, — X,] andd? = Var(X, — X,).

This leads to

[l = E[X,— %] = et oi/2_ givtay/2
5'2 = Var(Xu) + Var(—X\,) = e2Uu+05 (905 _ 1) + e2I1v+0'\,2 (ea\? . 1) (22)

Finally, using the results obtained above, we further sifyEiquation [21) and redefine the densi,
our TDOA error model, in closed-form as a sum of four terms:

p(ATuv,n; euv,a) = (PLu P, p\/EJVJ’_ P,(1-P,) pl?]%/,v'i_
PLv(l - PLu) p|n</V,U + (1 - PLu)(l - PLV) p/f) (ATU\Ln) (23)
where we introduce the parameter vedigya as

euv,a = [I-'luv Ou, Hy, Oy, PLw PLV]T

andpy, iy € R, oy,0y € RT, and R,P, € [0,1]. The parameterg andd are defined as in Equation
(22) to complete the modd[ (23). We note that in the final fofnower model [28), each of the four
possible signal propagation configurations for a baseostaair—LOS-LOS, NLOS-LOS, LOS-NLOS,
and NLOS-NLOS—is represented by a term of its own. Fiflirec®igies an intuition of the multimodal
nature of TDOA error data, and illustrates how our error madeposes to capture this. In particular,
Figure[2(D) illustrates how each of the four terms of Equa{@3) represents one of the four possible
modes of operation for a base station pair.

3.3 Localization using UWB Measurements

The previous section established the UWB error mqu@tyyny; Ouya). The reader will recall from
Section 2.2 that, in addition to a UWB measurement model,noodeling approach includes a set of
maps.#. Now let us assume that the set of magsSis known. Thus, for a given positiox,, and

a base station pait%,, %,), we apply our mapping function of Equatidd (4) to retrieve frarameter
vectorB,a used to formulate the probability density functipf tuyny; Ouva). Hence, for a set of TDOA

measurements,; taken at time, the likelihood of a given pose sampdEt is
P(th) =n- |_| p(ATUV(fuv,n,thmt); nhV(XI[’Ht))v (24)
(Tuunt,(Bu,Bv))ETnt
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Figure 2: (a) Example of the multimodal nature of TDOA erratad The data was collected by a robot
driving through an indoor environment with obstacles. Th&adoints in the white (non-shaded) area
exhibit a multimodal behavior. (b) We consider a base statiair (%1, %>). The plot illustrates the four
modes which form the complete multimodal probability dgnfinction shown in Eq.[{23). The model
parameters are settp; = —0.43,u, = -0.2,00=06,0,=0.7,A, =0.3,R, =0.5.

wheren is a normalization constant. This likelihood function igrfmlated algorithmically in Algo-
rithm [, and is embedded in the overall localization filtersaen later in Algorithni]5, on lingl 4. In
practice, the application of the measurement model is pietby a mapping step, whittuildsthe maps
in .. We will discuss how to construct these maps later, in Seio

Algorithm 1 Measurement_Model_Map(Tnyt,///,Xg]!t,wmtil)

1: wmt — wg}til . P(xmt)

2: returnwmt

4 Estimation of Model Parameters

Due to its efficiency in achieving the Cramér-Rao lower bibdior data set sizes tending to infinity,
our approach to estimat,y, is based on Maximum Likelihood Estimation (MLE). Althougévsral
methods can be used to obtain the maximum likelihood estimat implement an EM approach. Indeed,
for our model, the closed-form solution to the maximum likebd problem does not exist. The following
derivations will show how our model is reformulated as a mnigtmodel, and how this reformulation
leads to an efficient implementation of the EM algorithm. ur particular case, we will show that our
EM formalism produces a compact, elegant closed-form esgwa. This constitutes one of our most
important results, as the existence of such a compact femailtimately enables the portability of our
method onto computationally constrained devices. In tlieviing, we will derive an online as well as a
batch (offline) expression.
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4.1 Derivation

For brevity, we omit the robot indexin the following derivationsK denotes the number of observations,
andk denotes the observation index. Note that here (and in wiiatvg) there is no dependency &n
since the observations are i.i.d. The maximum likelihodahestor for our model is defined by

6., = arg ma>ﬁ< z log p(ATuyk; Buva)- (25)

uva

First, let us simplify our mode[(23) by reformulating itsuicterms as

f1(X% Oua) = Pz 4 (X Ouva) = P 3 4 (X)

fa( ) = Pin_y v(X Ouva) = Py (X Hy, 0V)

f3(X; Buva) = Pin.yu(X Buva) = Pin.y u(X; Hu, Ou)

fa(X Ouva) = P (X Ouva) = P 7 (X [1,0). (26)

X 6uva

By defininga; = PP, 02 =P, (1-P,), a3 =P, (1—P,,), andas = (1—P_,)(1—P,), we can
rewrite the modep in the form of a standard mixture model

IN

p(x; euv,a) = aj fj (x euv,a)- (27)
=1

Thus, by assuming that every observatibn,, originates from arfj, we postulate the existence of a
latent variableZ = (Z3,...,Zy) whereZy, = j with probabilityorJ andj € {1,2,3,4}. Z specifies which
f; the k-th observation corresponds to, thus, givgn= j, the observatiol\t,,, has densityf;.

other words, any given data sample corresponds to the pilibpdensity defined by two base statlons in
either LOS-LOS, NLOS-NLOS, LOS-NLOS, or NLOS-LOS configiwma. For anyk, the likelihood of
(ATyyk, Zk) is

4
(X,Z Oua) = Z ajofj(X Ouva) (28)

with &,j = 1 if z= j, andd,; = 0 otherwise. Our new formulation is a mixture model, witspecifying
the mixture component that a data point belongs to.

Given our new formulation, we can conveniently leverage B framework to estimate our pa-
rameter vectoBya. The following notations follow the conventions introdddey! Cappé and Moulines
(2009). We are now able to writein exponential family form:

f(X,Z Ouva) = h(x,2) exp (E Sj(x,2) (Guwa)> (29)
=1

whereh(x,z) =0 if z=2 andx > 0, orz= 3 andx < 0, andh(x,z) = 1 otherwise.S= (S, ...,S11) and
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o= (@,...,1) are defined as follows:
S(%,2) =[5, X*81, X(-e,0)(X) 32, X(-,0)(X)109(~X) 52,
X0 (%)109(—X)282, X(0.)(¥)8s, X(0.)(¥)109(¥)8z,
X(0.0) (X)109(X)? 83, Gz, X 8y, X2 84"

) T
(@1, @] (Buva) = _Iog(al) ~log(2/m0), %}

[ 2 w177
020007 (Buva) = |~ loa(2703) +log(a) - 4e, ~1+ 58— 05

7
2 T
T u IJU 1
(@01 " (Busa) = |~ l0g(2vic) +logier) — s, ~1+58 |
262’ 62’ 252

wherey( is the indicator function for a given interval. We define wew; (x; 0.a) obtained through
Bayes’ theorem as

- ~9 ~ T
(. 010, 012] (Buya) = | — log(2y/75) + log(as) — 1oy, é} (30)

aj (X Ouva)
Y me1 0mfm(X Buya)

which is equal to the probability thak = j givenAt,yx = x. Then fors(x; Buya) := Eg,,, [S(ATuyk, Zk) | ATuyk =
x| we have '

Wj (X; Ouya) := (32)

S(%; Buva) =[W1(X; Buva), Wa(X; Buya)X®, Wa(X; Buya),
Wa(X; Buva) 10g(—X), Wa(X; Buya) log(—x)?,
Wa(X; Ouva), Wa(X; Buya)l0g(X), Wa(X; Ouya)log(x)?,
Wa(X; Ouva), Wa(X; Ouya)X, Wa(X; Ouya)¥?] . (32)
Finally, for a given vectos € R* we define the functioh(s; Buya) = ¥ 11 5j @ (Buva). Through straight-

forward calculation we can derive conditionssso that we can define the functi@owa(s) =argmax,,, | (s, Ouva),
which leads to '

5uv,a(s) =

S | St %% W 52+8355 510 §0+59811
%5 % ) %5 )
S+ Ss S+ S ]T 33)
SI+S3+S+S% Si+S+S%+S]
We note that Equationg(B1) aid {32) relate to the E-steplaatdquation[(33) relates to the M-step of

a standard, offline EM algorithm. As we will see in the next tpavagraphs, the implementations of the
batch and online estimation algorithms now only requirestveduation of these closed-form vectors.

4.2 Batch Estimation Algorithm

Using the notations introduced above, fddata samples, thie+1-th parameter estlmaﬁ m the
batch EM algorithm is given by

Ak a1 ). ak

e =0 <N i;s(m&o, euma)> . (34)

12
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Figure 3: (a) Online EM estimation of model parameters foea base station pait#,, %), for a
number ofN = 2000 data points sampled in a hm areaA; in our experimental setup, and=
1/k%%5. The batch estimates (in green) agg:= 0.28, i, = 1.32,01 = 0.36,0, = 0.21,R, = 0.56, and
R, = 0.98. Parameterg and& (not shown here) are defined as in E[q.]1(22) to form the full petar
vectorB121. (b) Normalized histogram of the data points. We superirajtbs estimated models (online
and batch).

4.3 Online Estimation Algorithm

For some applications, it is beneficial to use an estimatigorghm that produces estimates in real-time.
For this reason, we resort to the results of Cappé and MeI([009), who present an online formalism

for the EM problem. For observatiofAtyy1,...,ATyyk), the k+1-th parameter estima@ﬂf,;l) in the
online EM algorithm takes the form

gk+1) y(k+l [ (ATUV,k;éEK/?a) 7§(k)}
A k l —
Bine = Bua(§Y) (35)

whereyktD is a user-defined step size. Variationg/$f = 1/k have shown to produce good convergence
speed—typically, the choice gfdefines the trade-off between adaptability and stabilitthefestimate
(the work by Cappé and Moulinels (2009) demonstrates thgbtseline online EM framework almost
surely converges). In particular, boundipdrom below can ensure continuous adaptation of the model.

We note that since the second and third term of our mixtureaha defined by densities that are only

supported on a semi-infinite interval, we do not update tha’emofékjé WhenAr(k“) € (0,00) and

similarly of sﬂ‘jgl whenATyki1 € (—,0). Finally, we refer the reader to Algorithim 2, where Ide 6

corresponds to the application of Equatibnl (35). The rigaé-stimation of UWB error maps constitutes
an example application of the online EM algorithm.

4.4 Performance

We perform several tests to assess the efficiency of ourastimalgorithms. In order to do this, we will
assume that any set of true UWB model parameter values liginanges reported in Talile 1 (an as-
sumption supported by the experimental measurement cgmgppérformed by Alsindi et al. (2009) and
IProrok et al.[(2011)). We note that these parameter rangelsecinterpreted physically, as the resulting
density functions quantify the occurrence of actual eradugs (e.g., a system with a maximum range

13



Model parameter| Ly oy P,
Parameter range|| [-3,0] | [0.2,0.8] | [0.01, 0.99]

Table 1: Model parameter ranges for a base sta#gn
of 10 m will not have errors beyond that value). In other wotte parameter ranges can be estimated
by considering the size of the space in which the UWB systearaips, and the duration of the frames
within which incoming signals can be detected, and can h®wad down for any given setup and system
implementation. Ultimately, the existence of such parametnges facilitates the task of calibrating our
models.

Ouir first test consists of a qualitative comparison of thenendnd batch estimation algorithms, on
a set of 2000 data points gathered in our experimental sefigure[3(d) illustrates the convergence
of the online EM parameter estimates. In this example, beg®is #4; is in moderate NLOS, with
R, = 0.56, and base statio#, is in LOS withR , = 0.98. Due to the large spread of NLOS data points,
parameters associated to base sta#rundergo larger oscillations than those associated to haers
%». Figure[3(b) summarizes the resulting estimated proliptminsity functions, and superimposes
the normalized histogram of the collected data points. Téreepshows a qualitatively good fit to the
underlying samples.

Figure[4 quantifies the efficiency of the online and batch rtlgms. We performed a set of 1000
simulations, where for each simulation, true paramefigys were sampled randomly in the intervals as
reported in Tablgl1, and used in the non-approximated mdgtghation[(19), to generate a sample size of
N = 1000. For the online algorithm, the final estimatefqi is found by averaging the last 50 estimates.
The results confirm good estimation of the model parametédrs Kolmogorov-Smirnov distance shown
in Figure[4(b) indicates that both estimation algorithndorce a good model of the underlying data, and
that the batch algorithm is slightly more efficient than tidiree algorithm.

In order to assess the computational efficiency of our bastimation algorithm, we perform a test
that compares its performance to that of a standard nunh@jtinization algorithm. As above, we
sample true parametefhya in the intervals as reported in Talleé 1, and draw a sampleddi2¢ =
1000. Figuréb shows the comparison of our method with a Se@l€uadratic Programming (SQP)
algorithm, evaluated over 100 simulations. Figure]5(apshthat, for an equal number of maximum
iterations, the batch estimation algorithm produces ficanitly lower Kolmogorov-Smirnov distance
values. Moreover, Figufe 5(b) shows that running the batdhiEsignificantly faster than running the
SQP algorithm.

5 Mapping UWB Error Models

Now that we are able to calibrate UWB error models as a funatiounderlying data, let us consider
the problem of creating the maps .i¥, which include multiple, spatially anchored error modefs
stated in our problem formulation (Section]2.2), our magipproach consists of tessellating space into
a fixed number olNa areas. For simplicity, we will consider a fixed grid tesd@ia such as the one
depicted in Figurg€l6. Each area is associated to an errorImetieh is initialized with parameters
randomly sampled from the ranges reported in Table 1. Theetaamhn be calibrated using either our
online method or our batch method.

5.1 Online Mapping

At each pass through an area, a robot samples data pointk at@chen used to refine the associated
error model in real-time. When a robot passes through an @semeasurements contribute to online
updates of the model parameters. Every subsequent timelio¢ passes through the same area and
takes measurements, the estimation algorithm picks up titeehin the state when the robot last exited
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Figure 4. Comparison of batch and online EM estimation algors, evaluated over 1000 simulations.
For the online algorithm, the final estimate@jy» is found by averaging the last 50 estimates (a) Squared-
error (0 — éi)z, with 8 resulting from the batch and the online estimation algarih(b) Kolmogorov-
Smirnov statistic for the online and batch estimation atpars. The boxplots mark the median, and the
25th and 75th percentiles.
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Figure 5: Comparison of a standard numerical optimizatigorthm and our proposed batch EM es-
timation algorithm, evaluated over 100 simulations. Thadard numerical optimization is performed
using SQP based on the non-approximated model of Equat@n The maximum number of iterations

are marked by a number following the algorithm acronym (éog.a maximum of 5 iterations: EM 5 and

SQP 5). (a) Kolmogorov-Smirnov distance of true and resgléstimated models. (b) Computational
time for one optimization. The boxplots show the medianh2Btd 75th percentiles.
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Figure 6: lllustration of the online estimation algorithén excerpt of the robot path is shown, passing
through area#\; andA,, which belong to an evenly tessellated map. Five measursnfeertical red
lines) from base station§%,, %y) are taken during the time intervét.ts), which are succeeded by
online updates of the error mod@IATyy; Muy(Xt, ), - - -, P(ATuy; Muv(Xts)) (blue curves).

16



that area, and applies the new updates to this model. HigilitesBates a simple example of how two
models are updated. Let us describe this process formdilnfapping function in Equatiofl(4) returns
the parameter vectd,, for a given base station pajgd,, %y) andx,. In order to estimate the entries
of Buya, K measurements, i are gathered at timeg, k= 1,...,K, with x;, € Aa. Thus, for every new
data pointATyyk £ ATyv(Tuvk, Xy, ), we update the featur@\s, Buya) Of map.#,y according to our online
estimation algorithm. This routine is illustrated in Alggom[2. Line[® refers to the online estimation
algorithm, which we elaborated in detail in the previousagaaphs (and showed in Equatifnl(35)).

Algorithm 2 Update Map(Xy,, T, #—1)
1 My = My
2: for all (Tuyk, (Bu, %v)) € Ty do
3 < VA \<//uv
4. <Aa, euv’a> < F:Lnd(<lAa7 mJV(th)> S %UV)
5:
6
7

My — ///uv\ <Aa, eﬂl,a>
Ouya < Online EM(Oyya, ATyyk)
L AU (A, 9uv,a>
8 My — MU My
9: end for
10: return.;

5.2 Offline Mapping

The offline mapping approach differs from the online mapmpgroach in that it estimates the error
models a posteriori, using the batch EM algorithm. Let usulis this approach on hand of a practical
example. To this means, we will consider two variant obstadnfigurations: configuratiof, as de-
picted in Figurg¢ 9(&), and configurati@ as depicted in Figufe 9(b) (the experimental setup is ldetai
in Sectior Z.11).

Since our experimental setup uses three base station padss#1), (A3, $1), (Ba,B1)), A is
composed of three map#>1, .#31, and.Z41. We collect a data set comprising TDOA valugs,
for each base station p&i,, %y) (over 58’000 values for configuratioh, and over 69’000 values for
configuratiorB, per base station pair), and record the associated groutidaositionsx,; guaranteeing
full coverage of our experimental arena. For each TDOA messantiuynt, we then calculate the
ground truth TDOA valueruv(xn,t), which, in turn, allows us to compute the TDOA error valMgynt =
ATuy(Tuunt, X, ) (See Section 212). For each cal, a< {1,...,Na} defined by our grid map, and for each
of the three base station pairs, we associate all data pinis; to the cell area they were taken in, and
define the set

Tiva = {DTuynt | Y%n, With X, € Aa}. (36)

For all cellsA;, we can now estimate the model parameﬁy@ that define a unique TDOA error model
per cell, using the batch EM algorithm (Equatibnl(34)).

Figure[T shows the collected data sets for configuratrimop half) andB (bottom half), in two
variant visualizations as a function of space. The pangiesent an overhead view of the experimental
arena, for the three base station pairs (we perform 2D srimapttith a Gaussian kernel on a grid map of
150x 250 cells). The black shapes in the center correspond taa$tade placements and the numbered
circles in the panel corners schematically indicate theguitzents of the base stations with respect to the
layout of the experimental arena. For a given grid égll the two visualization variants shof the
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calculated average TDOA error values (rows 2 and 4),

1

ATyya = ATyynt, (37)

| %V,al ATyynt € Ava

and(ii) calculated entropy values (rows 1 and 3),

Huva = z p(ATuv,n,t; éuv,a) log

SR S (38)
Atyynt€ Ava p(ATuv,n,t , euv,a)

In (i), we observe the higher bias averages of ugr2om in the vicinity of the obstacle (note that TDOA
errors are positive as well as negative). Also, we note titadagh this figure helps us identify strongly
biased areas, the plotted average error values do not aelguepresent the full multimodal error behav-
ior. We now look at the entropy maji§), which provide an alternate interpretation of the dataebd

by computing the entropy values for each grid cell, we gaiinaight on how areas are affected by the
signal path: low entropy values indicate areas with highsuesment predictability, physically related to
LOS measurements, and likewise, high entropy values itelaaas with low measurement predictabil-
ity, physically related to NLOS measurements. In this patéir experimental scenario, we clearly see
the qualitative correspondence with the average TDOA srréhis points to the fact that for both con-
figurationsA andB there are significant modes of the error distributions nateed around zero, and
that the distributions in NLOS areas are either clearly imddtal, or have a very large spread (i.e., the
distribution has a high entropy). In both of our scenarias also note the relation of the geometry of the
setup to the NLOS patterns: higher absolute errors and higfteopy tend to lie in areas where direct
LOS rays are occluded by the obstacles.

6 Collaborative Localization

In what follows, we present a robot detection model basedaisymrelative range and bearing measure-
ments, which builds upon the notation introduced in Se@i&n In addition to using the detection model
for updating the belief representatiBel(x,t), our approach utilizes eeciprocalsampling method. Fi-
nally, in Sectiol 6.3, we present the complete localizagiigiorithm.

6.1 Range & Bearing Model

The detection mode|(Ar e, Anne; € ) of Equation[(1]l) describes the probability that rolayf detects
robot%n at positionx, ;. For such a collaboration to take place, rol# needs to communicate its range
and bearing measuremeng,, qﬁnm as well as its set of particloéy: to robotZ#, (confer Equations
(©—(10)). Thus, a communication message composethas— <rAmm,(21mt,Xm’t> is sent from robot
Zm 10 robotZ,. If several robots in a neighborhood;; communicate with robo#,, the received
information is the set of all relative observations madehmse robots at timg as well as the belief rep-
resentation¥m; of all detecting robotszm, € 4. We denote this data set Bg; = {dmnt|%m € Int}-
The collaborative aspect of this formalism thus lies in thiegration of robotZm's belief into that of
robot%.

The probability density functiog is applied to the ensemble of particles in the belief of roletin
order to adjust their weights to current relative obseoreti Given the nature of relative observations,
we use for each particlgin Xmt a Gaussian probability density function in polar coordésatentered at

[i] .
Xt

el At ) = & (T2 | B0 | £) 9
n
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whered(+; 4, &) is the Gaussian probability density function with mgaand covariance matrig. In
practice, we use a homogenous set of calibrated hardwaserserand thus, we use one value for the
range standard deviatian, and one value for the bearing standard deviatignThe covariancg is

2
=9 ] “

where we assume the independence of range and bearing er@asits. This assumption is supported by
empirical work fronLG_Oﬂal_aﬂdMaLtmL(_!_Oiﬁl) which pralgs experimental evidence for our platform
showing that a range measurement and a bearing measureehavedike two independent Gaussian
variables.

We note that, for the purpose of our case-study, we use asi@glssian in polar coordinates, but
all reasonings are valid for completely arbitrary disttibos, which are equally well accommodated by
our presented formalism. Indeed, since we use a partice, filte can keep the same framework for any
possible underlying range and bearing hardware not falfiithe Gaussian noise assumption. For a set

of relative observationBy; taken at time, the likelihood of a given pose sampdEt is

Q(Xg]t) =n- q(ArmntaA%nt; E) (41)

dmnEDntt

wheren is a normalization factor. The detection model incorpaigithe detection data from multiple
detecting robots can be formulated as the update equatiavnsin Algorithm[3.

Algorithm 3 Detection_Model(Dnyt,Xt[i],v_vt[i])
1 Wm,t — V_Vg]t : Q(th)
2: returnwﬁ',],t

We note that foiM patrticles, Algorithn{B has a complexity 6¥(|.#|M) by itself, and when en-
capsulated in our global algorithm (which is shown in thédiwing chapter), leads to a complexity of
O(|.#4|M?). This can be prohibitively costly for a large number of paes. Also, communication con-
straints may make sending large particle sets infeasilsvidus work [(Prorok et al., 2012a) elaborates
a clustering strategy to mitigate these effects, ultinyatetiucing the overall complexity 0(|41|MK)
whereK is a design parameter (humber of clusters).

6.2 Reciprocal Sampling

Let us refer to the iterative process described in Algoriiminstead of sampling a new particle pose

XL] from Bel(x L]t 1) inline[I7, the reciprocal MCL routine in liie 13 samples frtive detection model,
according to EquatlorEGll) Thus, samples are drawn at pasiet are probable given reciprocal robot
observations, and which are independent of the previousfl®él(x,¢—1). By defining a reciprocal
sampling proportiorr, particles are sampled from the robot’s own belief with abaitality 1— a, and
with a probability ofa from the probability density function proposed by the détecmodel. The
advantages of this procedure are twofold. Firstly, as thigrecal sampling method exploits the infor-
mation available in the set of neighboring robots, it comtinsly creates particles in areas of the pose
space which are likely to be significant, and thus it allowsviery small particle set sizes (also shown by
IProrok and Martindlil(2011)). Secondly, by sampling newtigtes from the detection model, the method
introduces a variance proportional to that of the relatiggedtion sensors into the belief of the detected
robot (this proportion can be tuned by varyial and effectively mitigates overconfidence. Algorithin 4
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shows the routine where lifig 4 represents the sampling tegre are a multitude of methods which can
be applied to sample from a given distribution. In our paittic case (multimodal Gaussians), sampling
from the detection model is cheap. For more complex probaliénsity functions, sophisticated and

efficient methods such as slice sampli@l@OOfﬂ) cammpoyed.

Algorithm 4 Reciprocal Sampling(Dnt,Xnt)
1: if Dnt = 0 then
2. X< Sampling(Xnt)
3: else

4 X~ Q(x)

5

6

: end if
. returnx

6.3 Sensor Fusion

Algorithm [3 shows the complete localization algorithm, eding all previously developed models
and algorithms. LinEl3 shows the application of the motiomeipwhereun, represents dead-reckoning
information. Lind4 shows the application of the measuremmdel wherél,,; represents the TDOA data
and.# is the map. Lin€l5 shows the application of the robot detagtiodel, wherd®n; = {dmnt|%m €
i} is the set of all communication messages received by rghot In other words, the detected
robot will opportunistically apply the detection modelngidata received from the robots that made the
detection, if any. In addition to using the robot detectiood®l for updating the belief representation
Bel (xnt), our approach utilizes the reciprocal sampling methodwshin line[I3, with a reciprocal
sampling proportiorm < 1. In our work, we implement the sampling routine in I[né 1thathe low-
variance sampling algorithm (described|by Thrun ét al. BJp0Although many resampling algorithms
exist, this particular implementation is interesting farticle filters, as it avoids particle depletion: the
first particle is drawn according to a single random numbmad, &l subsequent draws are dependent on
the first draw (as well as the individual particle weightshisSTmethod ensures that given a uniformly
weighted particle set, the resulting sampled particleeseiains unchanged.

7 Experiments

The following sections detail our experimental setup ardcibnfigurations of our algorithm. Finally, we
report our experimental results.

7.1 Hardware Setup

Our experimental setup, shown in Figlie 9, consists of thrai elementgi) a group of ten mobile
robots,(ii) an UWB positioning system composed of four base statiorgs(iahtwo overhead cameras
with overlapping views of a §3 n? arena. To perform experiments, we use ten Khepera Il rabats
drive (randomly) in the arena at a speed of one robot sizequemsl. The robots run a Braitenberg con-
troller (Braitenberg, 1984) on-board for basic obstactsidance based on information obtained from the
robots’ infrared proximity sensors (which are located tay@® cm above the ground). The Khepera 11l
is a differential drive robot of 12cm diameter produced byiéam corporaticﬁ1 see Figur€l8. We use
the robot with a KoreBot Il extension board providing a stamdembedded Linux operating system on

2http://www.k-team.com/
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Algorithm 5 MultiRobot_UWB_IVICL(Xn,t,i, Unt, Tnt, Dnt)

1 Xng = Xnt =
2: for|—1tono

3: XL]t < Motion Model(Unt,X L]t 1)

4: WLL < Measurement Model Map(Tnt, #, Xpﬂt , ngtfl)
5: Wpﬂt — Detection_Model(Dn,t,th,v_vmt)

6: Yn,t — Yn,t + <XI[’IEUWI[’IEI>

7: end for

8: fori=1toM do

9:  r ~Uniform(0,1)
10: if r<(1—a)then
11: th < Sampling(Xnt)
12: else
13: th + Reciprocal_Sampling(Dnt,Xnt)
14:  endif _
150 Xnt < Xnt+ <tha ﬁ>
16: end for

17: returnXny

Figure 8: The Khepera Il robot is equipped with a range aratting extension module which utilizes
sixteen infrared LEDs. On top of this board, we mounted awaatarker (LED) tracking module, which
simultaneously carries the UWB emitter tag.

22



““ I\ ‘  ," f”’lﬁm,

I

() (b)

Figure 9: (a) The 53 m? experimental arena contains an obstacle (configuratjaomposed of various
elements made of brick, plaster, metal, wood, and a 2 magérthbe covered in aluminum. Four UWB
base stations are mounted on the ceiling in the corners datheoom. Two overhead cameras provide
ground truth positioning in the experimental area. (b) Eipental configuratio.

an Intel XSCALE PXA-270 processor running at 624 MHz. Comination is enabled through an IEEE
802.11b wireless card which is installed in a built-in Cowrtp#ash slot. The robot uses wheel encoders
to provide odometry readings at 5 Hz. It also uses a relatinge and bearing modth@oog),
which is set to provide the measurements used by the dateuntiael at a maximum frequency of 2 Hz
(but can operate robustly up to a frequency of 100 Hz in a systetwo robots). The modules’ noise
characteristics were empirically determined in our acsealip ¢; = 0.15-rmp, andg, = 0.15 rad). We
set its maximum detection range to be 1.75 m (the actual maxire reported to be in the range of 3.5 m).
Lastly, the robot is also equipped with an LED-based actiaeker module for tracking that also carries
the UWB emitter tag, which emits positioning pulses at adiertcy of 10 Hz. In practice, UWB position-
ing updates are received at a frequency of 2.6 Hz. The UWBiaten system employed in this work
is commercially available from Ubisen@eSeries 7000 (sensors and compact tags). It is installedeon t
ceiling, in the corners of our 40 Maboratory. The overhead camera system runs on a centassor
which also enacts the synchronization of available grouwuith tpositioning data with all incoming raw
sensor data (from the UWB system as well as from the robat®)rder to compute the ground truth robot
ositions, the camera system utilizes the open sourceingshkftwareSwisTrac ml
). The average error of the resulting ground truth ightyilcm, as reported by Prorok et é.L.(ZblO)
In order to create a NLOS setting that occludes direct sigatils between the UWB emitters carried
by the robots and the four base stations, we design an exgetansetup that includes obstacles, and
implement it in two variations. In experimental configuoatiA, we install a cross-shaped obstacle in
our arena (see Figufe 9(a)). The obstacle is 1.5 m long, 1 tmdmg 20 cm thick, and is composed
of several modules made of various materials (brick, ptastetal, wood). At its extremity, in the

Shttp:/Avww.ubisense.net
“http:/len.wikibooks.org/wiki/SwisTrack
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Figure 10: The panels show a 160 s excerpt of the trajectoopefrobot. Maximum likelihood position
estimates (calculated with the raw TDOA values) are ploittectd, and the center of mass of the robot
trajectory generated by our particle filter (usimgy 375+ Co) is plotted in green. The ground truth trajec-
tory is shown by a dashed black line. (a) Experimental cordiion A. (b) Experimental configuration
B.

center of the arena, we attach a 2 m high tube covered in aluminThese shapes and materials are
chosen in order to realistically emulate the various effexfta typical indoor environment on UWB
signal propagation. In configuratid) we rearrange the same modules to form three separate lelsstac
as depicted in Figufe 9(b), with one obstacle in the centelfao obstacles aligned with the arena walls,
creating two “doorways” for the robots to navigate through.

7.2 Experimental Configuration

As a way of validating our multimodal error model, we caldalawo additional sets of mapgi) one
composed of Gaussian distributions instead of our propesed model (Eq.[(23)), ani), one com-
posed of normalized, discrete histogram models with a fixeeskze. We label our three map types
according to the underlyingnode] i.e.,.#\y (multimodal),.#Zs (Gaussian), and#y (histogram). Also,
to test the effect of map granularity on the localizatiorfpenance, we use four different grid maps: (a)
Na = 1 with one 3«5 n? cell, (b)Na = 15 with 1x 1 n? cells, (c)Na = 60 with 0.5<0.5 n¥ cells, and (d)
Na = 375 with 0.2¢<0.2 n? cells. These two map parameters are combined, with regutiaps referred
to as.#ZmodelN, (€.9.,-#\ 375 corresponds to a multimodal map with 375 cells).

Also, we will test the effect of collaboration on the localiion performance. To this means, we will
vary the frequency with which the robots exchange detedmmta. Per default, the robots collaborate
at an average frequency of 2 Hz. Finally, we remove detectiessages from our data log a posteriori,
producing four additional data sets with collaboratioresaat 1 Hz, 0.5 Hz, 0.1 Hz, and 0 Hz (i.e., no
collaboration). In the following, these schemes are refto asC,, Cq, Cp 5, Cp.1, andCop, respectively.

7.3 Overall localization error

Our localization algorithm is evaluated repeatedly on @ dat for each of the two configuratioAsand

B, comprising a 40 minute experiment involving ten robotgiatly randomly distributed over the arena.
Each robot runs Algorithia]5 with 50 particles, and a recipiqroportiona = 0.02 (unless otherwise
stated). Apart from the modalities described in this papeli{ding odometry), the robots use no other
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Figure 11: The graphs show the average localization err@ famction of space, over a 40 minute
experiment with ten robots. Four different map#é 1, .#ce0, -#w.1, #w60) are tested with two
different collaboration frequencie€q, C;).
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Figure 12: Normalized histograms of TDOA error data for betaion pair( %, %,). We fit a Gaussian
(in green) onto the data, as well as our proposed error mdded| 0(Z3) (in red). The data is collected
over a (a) 0.%0.5 n¥ large square, (b)21 n¥ large square, and (c)< n? large square. The areas of
data collection are indicated by the shaded cells in thersatized arena, in the top right corner of each
panel.
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Figure 13: Localization performance usingy 375, with varying bin-sizes (5 boxplots along the x-axis),
as well as#u 375 (1 boxplot spanning the x-axis, shaded in grey). The bosmbow the median, 25th
and 75th percentile of all localization errors for all robdtroughout the experiment. The plots show
results for configuratioA andB combined. The collaboration frequency increases frontdefight. (a)

Co, (b)Co.1, () Cy.

sensors to localize. We discuss the localization perfoomamterms of the positioning error (distance to
ground truth position) of the center of mass of the partigtes robot’s belief, for all ten robots used in
the experiment (as formulated in Section 2.1, Equafibn (2))

Figure[I0 shows two excerpts of the robot trajectory for esgherimental configurations, and super-
imposeqi) the maximum likelihood trilateration estimates (compuagth raw TDOA measurements),
and(ii) the center of mass of the set of particles resulting from ocalization algorithm. Finally, for
comparison, we note that the error of the maximum likelihtvddteration estimates (computed with raw
TDOA measurements and evaluated over the whole experifrenjsamounts to 0.18 m (median) and
0.48 m (mean) for configuratioh, and 0.2 m (median) and 0.45 m (mean) for configuraion

Figure[I1 shows the localization performance as a functi@pace. We note the irregularity of the
error distribution: higher errors tend to be in the vicinitiythe obstacle. The plots indicate that, for the
same resolution and same collaboration rate, our multilmoddel (% .) is better than the Gaussian
(s,.) model. They also indicate that a high resolution maf o) combined with collaboration is better
than a low resolution map#. 1) without collaboration. Moreover, the results indicatattthe improve-
ments help mitigate errors in areas prone to NLOS (confaur€[@): the right-most panelv 0+ C1)
shows a quasi constant distribution of localization ernothie range of 5 cmto 10 cm.

7.4 Evaluation of the UWB model

To illustrate the concept of our mapping strategy, Fiduresthdws fits of(i) the probability density
function proposed by our error model in Equatign] (2@), a Gaussian probability density function,
and (iii) a normalized histogram with a bin-size of 0.2 m. The threeefmpresent data gathered in
a cell of 3 difference sizes, a) 0<8.5 n?, b) 1x1 m? and c) 2«2 n?. We note that in all cases, the
multimodal approach (as proposed by our error model) suggegood fit to the data. Also, we see
that the multimodal nature of the error statistics is presgcross different scales, which is a unique
characteristic of the UWB bias.

In order to assess the relevance of our multimodal modelémtaps #y ., we compare its result-
ing localization performance with that of the Gaussian neaeployed in.#c ., and with that of the
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Figure 14: Localization performance usitgu and.Z with four grid resolution$N, (along the x-axis).
The boxplots show the median, 25th and 75th percentile &dedlization errors for all robots throughout
the experiment. The plots show results for configuraficandB combined. The collaboration frequency
increases from left to right. (&, (b) Co.1, (¢) Cs.

histogram model employed i ..

Figure I3 shows a comparison of the localization perforreaftained for#y 375, for five different
bin sizes (0.4 m, 0.2 m, 0.1 m, 0.05 m, 0.02 m), anAg 375. The plots show results for configuration
A andB combined, with an increasing collaboration frequency filefhto right. The figure shows a
significant performance difference for the histogram mpdlere the median of the non-collaborative
scheme @) in plot (a) ranges in between 0.13 m to 0.48 m, compared tedhaborative schemes in
figures (b) and (c)G.1 andC,), with a range in between 0.075 m and 0.19 m. Indeed, colédinor
plays an important role for the histogram models—even fer dptimal bin size of 0.1 m, the non-
collaborative variant produces a large number of outliefdth collaboration, the histogram models
produce a performance comparable to that of the multimodalets. Also, we note that by decreasing
the bin-size (i.e., increasing the granularity of the lisémn model), a performance improvement is not
necessarily achieved, as the histogram model begins tefibtlee data and the overall localization error
increases.

Figure[14 shows a comparison of the localization perforreariitained for#y. and.# .., for all
four grid resolutionsiN; = {1, 15, 60, 375%. Again, the plots show results for configuratidrandB com-
bined, with an increasing collaboration frequency front tefright. We see that the multimodal models
systematically produce better results. Also, for an insirgamap resolution, the localization errors tend
to decrease. In average and across all map resolutions, dtienodal models provide a 60% perfor-
mance improvement over the Gaussian models for configurétjeand a 32% performance improve-
ment for configuratiorB. Finally, we note that increasing the map granulasiygtematicallymproves
localization performance for the multimodal models, wlasréor the Gaussian models, the performance
systematically improves only in Figutel14(c), when the @lodiration rate is high. This points out that
the Gaussian model does not reliably improve performancméoeasing map granularities, showing a
fundamental mismatch of the underlying data.

7.5 Evaluation of Collaboration

A significant difference in performance is seen in Figure d3the histogram model map, where the
median of the non-collaborative schen@)(in plot (a) ranges in between 0.13 m to 0.48 m, compared
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Figure 15: Improvementin percent of the localization aacyrforcollaborativeversions of the algorithm
over thenon-collaborativeversion Cp). The data points were calculated by considering the reispec
median error values. The collaboration frequencies vamnfd.1 Hz to 2 HzCg 1, Cp 5, C1, Co. We test
(a) the Gaussian model with map#g . and (b) multimodal models with map#...

to the collaborative schemes in figures (b) and @);(andC;), with a range in between 0.075 m and
0.19 m. Indeed, collaboration plays an important role fertilstogram models—even for the optimal bin
size of 0.1 m, the non-collaborative variant produces aelamgmber of outliers. With collaboration, the
histogram models produce a performance comparable tofttta onultimodal models.

Figure[I4 qualitatively indicates that, when employing theltimodal error maps# ., a perfor-
mance increase is obtained for increasing collaboratiequencies. This result is represented quanti-
tatively in Figure_Ib: we use the non-collaborative resaksa reference and calculate the relative (to
the collaborative variants) performance improvement ircget, and we analyze the performances for
an increasing collaboration rate, for all map granulasitieet us first consider Figufe 15(a). It becomes
clear that for the Gaussian map&s ., a consistent performance increase is only obtained folothe
est collaboration frequency (0.1 Hz), over all map grarntikes; and only the highest map granularity
375 produces an consistent improvement for all collaboratiegdencies. In the worst case, the map
s, produces a 40% performance decline for a collaboratioruaqy of 2 Hz. Let us now consider
Figure[I5(0). A performance improvement is achieved fonadb granularities and collaboration fre-
guencies, with a maximum performance improvement of 16.66teaed for.# 375 at 1 Hz. The panel
also shows that an increased map granularity consistenflyaves the performance. However, we also
note that the maximum performance improvementis not aekliésr the highest collaboration frequency.
This is likely due to the reciprocal sampling method, whithn,an increased frequency, also samples an
increased number of reciprocal particles over time. Thecefif increasing the uncertainty in the particle
distribution is thereby exacerbated, and thus the potetdidine in performance. We note that this effect
can be mitigated by calibrating the reciprocal samplingoprtona as a function of the collaboration
rate.

Figure[16 shows the results over a 40 minute data set pertbfonexperimental configuratioh. A
variable number of robots receive UWB updates. The experiah€ata is evaluated over 50 iterations,
where at each iteration the set of robots that receive the UNMiRates is randomly allocated, with the
remaining robots relying on our relative positioning mettor localization. We evaluate the localiza-
tion error for all robots in the system, and for better clartmit 16 minutes worth of data points in the
plots. The results show that by providing at least one robohé team with absolute position updates,
the localization error is bounded and constant over timsoAlve note that by increasing the number of
continuously localized robots, the error decreases. dsslt also indicates the utility of a potentially
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Figure 16: Average localization error (for all robots) db&ad over 50 evaluations of a data set for an ex-
periment of 40 min duration, performed on 10 Khepera Il tshwith 50 particles each, and a reciprocal
sampling proportion ofr = 0.02. We vary the number of robots that receive UWB positionipdates.
The error bars show a 95% confidence interval.

heterogeneous robot team, where some robots are equipffedWB, and others rely purely on collab-
orative methods (on top of dead-reckoning). The resulieglization error will then depend on various
factors that affect the system’s connectivity, such as pineasl of the robots in space and the frequency
of the interactions between the heterogeneous robot types.

Finally, we perform an assessment of our reciprocal samg@irategy. To this means, we evaluate
our localization algorithm, using 50 particles, runningldhrobots, on our data set of 40 min duration—
once with reciprocal samplingx(= 0.02), and once without reciprocal samplirg £ 0). We vary the
number of robots that receive UWB updates. Fidure 17 repoetsesults. In Figurg I7{a) we see that
for very few robots (1 or 2) receiving UWB updates, the staddampling routine performs better, since
the probability that reciprocal particles are sampled fimadly localized robots is greater. For 4 or more
robots receiving UWB updates, the reciprocal samplingetinraimproves over the standard sampling
strategy. A clear performance difference is noticeableiguife[I7(b), which reports the standard devi-
ation of all localization errors. For nine out of ten resuttee reciprocal sampling strategy produces a
smaller standard deviation. Moreover, the standard dewiaecreases asymptotically for an increasing
number of robots that receive UWB updates. This indicatasttte reciprocal sampling strategy provides
the means to increase robustness.

8 Discussion

Our results show that, with our method, an effective sofutian be found that leads to accurate local-
ization with UWB, even in potentially cluttered indoor erasiments. In comparison with state-of-the-art
works employing UWB on robots (Hollinger etlal., 2012; Golezzet al.| 2009; Jourdan et al., 2005), in
terms of localization accuracy, our method performs verl wiile bearing a small computational load.

Additionally, we show quantitatively how our method comgmamwith a baseline technique (maximum
likelihood), reducing the error by a factor of 2.5.

The main trade-off of our method is that it requires a onestienpriori mapping step: in order to solve
this, a mobile device with reliable localization capai®t (other than UWB) needs to profile the entire
space of interest. A similar approach is suggested by Quéglal. (2010), where the indoor environment
is profiled a priori to build probabilistic sensor modelsasated to space. Analogously, in artlcular in
the domain of radio localization, a priori profiling is comnitp know asfingerprinting“
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Figure 17: Localization error (for all robots, throughdut twhole run) obtained over 50 evaluations of a
data set for an experiment of 40 min duration performed on ié€gé€ra Ill robots with 50 particles each.
We test our algorithm with and without reciprocal sampling,, once with a proportion aff = 0.02,
and once witho = 0. We vary the number of robots that receive UWB positionipdates. (a) Mean
localization error. (b) Standard deviation of localizaterrors.

In order to reduce the cost of building a priori error mapssmauld explore the simultaneous localization
and mapping of UWB measurement models. An extension of otinadenould bear similarities to the
FastSLAM algorithm|(Montemerlo etlal., 2002). Another ®anff of our method is that we assume
our base stations to be well-localized. Possible extessiorthis work could consider an augmented
parameter set (including the unknown base station positiolt still remains to be explored, however,
if our EM estimation framework is able to account for the diddial variables, and whether it will still
remain robust to local minima. Additionally, Kalman-bag#ering techniques remain to be considered,
at the cost of, however, altering a number of features béhgrim our current methodology. Firstly, our
reciprocal sampling strategy is inherently built on a méetifilter based approach, and no straight-forward
equivalent for Kalman-based methods is known at this p&atondly, a linearization of our multimodal
measurement model will very likely result in poorer perfame (as pointed out M)@bom
Finally, our quantitative comparisons to Maximum Likeldtbpositioning estimates (in Sectibn17.3),
as well as our comparisons with the Gaussian model maps (itio8€7.4) indicate that the usage of
(unimodal) Gaussian measurement models leads to pooferpance. Indeed, numerous measurement
campaignd (Alsindi et al., 2009; Prorok et al., 2011) haashthat the more physical space is covered,
the higher the variability in NLOS biases, and the hardes fbor a Gaussian model to capture the error
statistics (the log-normal distribution is a heavy-tagtdbution and, thus, can cope with such cases).
The more UWB data s collected, the finer the resolution ofélssellation, and the better the resulting
map. On the one hand, the return on investment is very stréagivard. On the other hand, it is to
be assumed that low resolution maps may be equally goodn ghet the cell separations faithfully
separate LOS from NLOS areas, as well as separate diffeti@S\ells from each other. Such advanced
tessellation methods promise to significantly reduce thepimg effort (by allowing coarser granularities)
while maintaining the same level of localization accuragyrther, the validity of our static model still
needs to be investigated for highly dynamic environmentds to be assumed that moderately busy
environments would only produce very sporadic anomaliedtlaat the overall localization quality would
be maintained. In highly dynamic environments, howeveratld be of great interest to investigate the
role of collaboration, to determine whether and to whatmités able to compensate for the static maps.
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In terms of localization performance, our proposed multiadanodel has shown clear benefits. Its
general form avoids overfitting (as seen with the histograsdel), yet it provides enough information to
clearly distinguish itself from a basic Gaussian model. Astéance of the multimodal model requires the
determination of six parameters. The total memory needstbte a complete map is then obtained by
multiplying this number by the number of base station paing$ the number of cells defined by a given
tessellation. These parameters can be configured easilyghiour online estimation algorithm, which is
incremental in its nature and can effectively be impleménteresource constrained platforms. It remains
to be questioned whether other physically motivated moahbish have not yet been explored may result
in better fits. Also, although we have empirically shown im previous work|(Prorok et al., 2012c) that
for initial conditions sampled in a pre-defined, physicédlgsible range, our estimation algorithm always
converges, exceptions may happen and need to be taken dardc Finally, in this work we have
considered two alternative models with which to comparenouitimodal model: a histogram model and
a Gaussian model. Other approaches (such as those beldogimg class of non-parametric models)
could have been considered in place, and may have provithed imisights. However, we have chosen
those two models in particular because they are efficientcamdbe implemented easily on resource
constrained platforms, thus representing viable altaresit Indeed, we consider that the set of non-
parametric models do not present viable alternatives fgthie large number of data points and our
computational restrictions), unless heavily constrained

Lastly, this work has discussed the effect of collaboratiothe form of relative positioning on the
overall localization accuracy. We have shown that the bollation rate has an important impact on the
localization accuracy, and that determining the optimtd re.relevant. How, however, optimal collabo-
ration rates are to be defined remains to be explored. Eqtiad\effect of heterogeneity in robot teams
also remains to be explored in greater depth (beyond thdtsesported in Figure_16). By varying the
proportion of robots with UWB sensors versus those withantadditional degree of system configura-
bility is provided, and should be examined in conjunctiothwiariable collaboration rates, and variable
robot connectivity.

9 Conclusion

Although, in theory, UWB localization has the potential obpiding centimeter-level accuracy, in prac-
tice, sophisticated strategies are necessary to mitigateffect of NLOS biases. Our experiments showed
that the error behavior of UWB measurements based on tirfkigbt is dependent on the configuration
of the environment, and thus, can be modeled as a functigmaaies This work constitutes the first steps
towards studying the effects of collaboration on UWB lozation. In conclusion, this work has allowed
us to make two main insightgt) Accurate localization with UWB in cluttered environmerggiossible,
and can be achieved methodically. The degree of accuramniigarable at a user level. The result-
ing framework is efficient, and can be deployed on very resmaonstrained embedded platforn(i)
Collaboration in the form of relative positioning imprové® overall localization, provided the UWB
measurement model (which is used in conjunction) faitgfaliptures the underlying UWB data. The
integration of cheap relative positioning hardware isvafe and feasible, and represents a cost-efficient
way of improving absolute positioning systems.
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A Notation

Table 2: Robot System

Notation Description
D Robotn
Ny Number of robots
Xnt State of robotZ, at timet
M Number of particles
Xn Set of particles belonging t@,,
xmt State of particlé of robotZ, at timet
WPEt Weight of particle of robot#%, at timet
Bel, Belief of robot%,
Table 3: UWB System
Notation  Description
By Base statiom
(%4, %y) Base station pair
B Set of all base station pairs
Ly Event that%, is in LOS
Ly Event that#, is in NLOS
R, Probability that#,, is in LOS
My Map belonging to base station p&i&,, %)
M Set of all maps for all base station pairs in system
Aq Delimited area in map
Na Number of areas in map
Myy Mapping function
Ouva Vector of model parameters for base station &, %) and areah\y
éuv’a Estimated vector of model parameters
Piny u Log-normal distribution associated to base statign
Uy, Oy Scale and shape parameters of log-normal distribugiom
Tuvnt TDOA measurement between base station p#iy, 4,), at positionxn,t
Tuynt True TDOA between base station p&i#,, %), at positionx,,
ATyyny TDOA error for base station pa{8,, %), at positionx,, '
Tht Set of all TDOA measurements received by raf#tat timet
Tuva Set of all TDOA measurements associated to &gand base station pajd,, %)
p UWB measurement model
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Table 4: Relative Positioning System

Notation  Description

Frnnt Relative range measurement between raBgtand robotZ, at timet

Fmnt True relative range between roldst, and robot%, at timet

Grnt Relative bearing measurement between reBgtand robot%, at timet
Grnt True relative bearing between rolsst, and robot%, at timet

JA g Relative range measurement error between réhpand robot%,, at timet
D@nt Relative bearing measurement error between rghpand robotZ%, at timet
o Standard deviation of relative range measurements

Oy Standard deviation of relative bearing measurements

3 Covariance matrix of range and bearing measurements

Omnt Detection data sent from rob&, to robot#, at timet

Dy Set of all detection data made of rolsg} at timet

q Robot detection model
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