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Abstract— A new frequency-domain robust control toolbox
is introduced and compared with some features of the robust
control toolbox of Matlab. A summary of the theoretical
background for H∞ controller design using the spectral models
is given. The main advantage of this toolbox is that almost
all types of model uncertainties like unmodelled dynamics,
multimodel uncertainty, spectral uncertainty and parametric
uncertainty can be taken into account without conservatism.
As a result, the uncertain parametric or frequency-domain
identified models of the identification toolbox of Matlab can
be used directly for computing robust controllers. The main
commands of the new toolbox are briefly explained and the
performance of the designed controllers are illustrated via some
simulation and experimental results.

I. INTRODUCTION

Robust control problem has been among interesting re-
search problems in control system community for more
than three decades. Robust control methods aim to design
a controller for an uncertain model belonging to a bounded
set. A large amount of research papers and books have been
published in this subject and research is still in progress
to develop new algorithms with less conservatism. The
conservatism can be related to the uncertainty modeling,
specially during conversion of one type of uncertainty to one
that can be treated by the robust control design algorithm.

The H∞ control problem was first formulated by Zames
in [1]. Then, several elegant solutions to H∞ loop shaping
[2] and optimal H∞ control using Riccati equations [3]
and Linear Matrix Inequalities (LMIs) [4] in state space
framework were proposed. In these approaches the model
uncertainty is presented by some weighting filters and they
usually lead to high order controllers and so a controller
order reduction should follow the design.

The most efficient and established algorithms for robust
control analysis and design are gathered in Robust Control
Toolbox of Matlab together with additional commands for
closed-loop and controller structure definition, weighting
filter design for performance and uncertainty and controller
reduction commands. The main robust control synthesis com-
mands are used for H∞ loop shaping, optimal H∞ control,
µ-synthesis [5] and H∞ fixed-structure controller tuning [6].
Some simulation examples are also included that shows how
different types of uncertainty can be converted to weighting
filters and used to compute optimal robust controllers based
on the provided commands. However, these methods are
optimal with respect to their prescribed criterion and does
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not represent the best controller in terms of conventional
performance measures and the real model uncertainty.

Recently, a new method for fixed-order robust controller
design using the nonparametric frequency-domain models
is proposed [7]. This method computes fixed-order linearly
parameterized controllers with H∞ performance by con-
vex optimization. It has been shown that multimodel and
frequency-domain uncertainty can be taken into account with
no conservatism. Since only the frequency-domain data are
used for controller design, input delay and nonparametric
identified models can be used directly for controller design.

In this paper, we introduce a new toolbox based on the
approach in [7]. Moreover, we show that how parametric
uncertainty in a stochastic framework can be taken into ac-
count in the proposed approach with almost no conservatism.
As a result, the identified models of Identification Toolbox
of Matlab, spectral models or parametric models, together
with their uncertainty covariance matrix can be used directly
in the new toolbox for computing robust controllers. The
performance of the proposed approach is compared with that
of some examples from Robust Control Toolbox of Matlab.
In addition, its full compatibility with the uncertain models
of Identification Toolbox is illustrated via some experimental
results on a laboratory setup.

It should be mentioned that the Frequency-Domain Robust
Control (FDRC) toolbox is available for free in [8]. This
toolbox can be used to compute H∞ decoupling controllers
for MIMO systems as well as gain scheduled controllers
based on [9] and [10], respectively. It can also be used for
PID controller design with constraints on the gain margin,
phase margin and the crossover frequency [11]. However, in
this paper we do not aim to presents all obtains and abilities
of this toolbox and we limit ourself to robust controller
design for SISO systems with H∞ performance.

The paper is organized as follows. Next section recalls the
basic framework of the proposed approach. Then, in Section
III, we show how different types of model uncertainty can
be taken to account in the proposed approach with almost no
conservatism. The commands of FDRC toolbox are briefly
explained and followed by some simulation examples and
experimental results. The results are compared, when is
possible, with those of Robust Control Toolbox of Matlab
in Section IV. Finally, Section V gives some concluding
remarks.

II. H∞ CONTROLLER DESIGN

In this section the class of linearly parameterized con-
trollers are recalled and it is shown that H∞ performance
constraints can be linearized using this type of controllers.



A. Class of controllers:

Linearly parameterized controllers are given by :

K(ρ) = φT ρ (1)

where ρT = [ρ1, ρ2, . . . , ρn], is the vector of the con-
troller parameters and φ is a vector of known orthogonal
basis functions. There are some standard orthogonal basis
functions that are used generally in the context of function
approximation in system identification and controller design.
The simplest one which has only one parameter is Laguerre
basis function:

φ1(s) = 1, φi(s) =

√
2ξ(s− ξ)i−2

(s+ ξ)i−1
, i = 2, . . . , n

for continuous-systems and:

φ1(z) = 1, φi(z) =

√
1− a2

z − a

(
1− az

z − a

)i−2

, i = 2, . . . , n

for discrete-time systems, where ξ > 0, and −1 < a < 1.
The special case with a = 0 leads to the FIR (Finite Impulse
Response) controller.

The main reason to chose linearly parameterized con-
trollers (with fixed denominator) instead of classical rational
transfer functions is that the optimization problem for con-
troller design that will be defined later becomes convex in
the controller parameters and can be solved efficiently. In
fact, with this parametrization, every point on the Nyquist
diagram of the open-loop transfer function L(jω, ρ) can be
written as a linear function of the controller parameters ρ :

L(jω, ρ) = G(jω)K(jω, ρ) = G(jω)φT (jω)ρ (2)

The other reason is that the most used controllers in
industry, i.e. the proportional-integral-derivative (PID) con-
trollers, are linearly parameterized. The last reason is that
any controller represented by a rational transfer function can
be approximated with good accuracy by a high-order linearly
parameterized controller if the elements of φ are chosen from
a set of orthogonal basis functions. In other words, it can
be shown that for any stable rational finite order transfer
function F and for arbitrary ε > 0 there exists a sufficiently
large n such that

‖F − φT ρ‖p < ε for 0 < p < ∞

The quality of this approximation for a finite n, however,
depends on the difference between the poles of F and the
poles of φ.

B. H∞ constraints

A very standard robust control problem is to design a
controller that satisfies ‖W1S‖∞ < 1 for a set of models,
where W1(s) is the performance weighting filter and S =
(1 + L)−1 is the sensitivity function. For a nominal model,
this can be written as a set of non-convex constraints in the
frequency domain:

|W1(jω)| < |1 + L(jω, ρ)| ∀ω (3)

Let the left side be multiplied by |1+Ld(jω)|, where Ld(s)
is the desired open-loop transfer function, and the right side
by |1 + Ld(−jω)|. Then, one gets:

|W1(jω)||1 +Ld(jω)| < |1 + Ld(−jω)||1 + L(jω, ρ)| ∀ω

Next, using the fact that

Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} ≤
|[1 + Ld(−jω)][1 + L(jω, ρ)]| (4)

a sufficient condition for ‖W1S‖∞ < 1 can be derived:

|W1(jω)||1 + Ld(jω)|−
Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} < 0 ∀ω (5)

However, these constraints do not guarantee the stability of
the closed-loop system. A solution to this problem can be
found by investigating (4). It is clear that if this constraint
is satisfied the second term is strictly positive :

Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} > 0 ∀ω (6)

Therefore:

wno{[1 + Ld(−jω)][1 + L(jω, ρ)]} = 0 (7)

where wno stands for winding number of the Nyquist plot
around the origin. Thus we can conclude that:

wno[1 + Ld(jω)] = wno[1 + L(jω, ρ)] (8)

Thus, if Ld meets the Nyquist stability criterion, and the
constraints in (4) are satisfied, the closed-loop system will
be stable. Moreover, the behavior of Ld should be the same
as L at the vicinity of the poles of L on the imaginary axis
such that the number of encirclement can be verified at all
ω except those corresponding to the pole on the imaginary
axis. For a formal stability proof see [7].

C. Choice of Ld

In fact the inequality in (4) and the role of Ld is very
crucial in this approximation. It is clear that if Ld(s) =
L(s, ρ) there is no conservatism and (5) is equivalent to (3).
Therefore, a good choice of Ld(s) should have the following
properties:

• Ld(s) should be as close as possible to L(s) to reduce
the conservatism. For example it is better that it contains
the unstable poles of the plant model as well as the pure
time delay, which cannot be canceled by the controller.

• A very good choice for stable systems, in continuous-
time as well as in discrete-time, and the controller
structures with integral action is Ld(s) = ωc/s. This
choice is coherent with the choice of desired open-
loop transfer function in the classical open-loop shaping
methods that suggest the magnitude of the open-loop
transfer function should be large at low frequencies and
small at high frequencies.

• The number of counterclockwise encirclements of
Ld(s) around the critical point should be equal to the



number of unstable poles of the plant model to ensure
the closed-loop stability.

• Ld(s) should contain all poles of L(s) on the imaginary
axis.

• For systems with known unstable poles, a good choice
for Ld(s) is:

Ld(s) =
ωc

s

∏
i

s− αi

s+ αi
(9)

where αi are unstable poles of the plant model. How-
ever, it should be verified that Ld satisfies the Nyquist
criterion.

• If the first choice of Ld(jω) leads to a non feasible
set, the iterative windsurfing approach can be used to
compute an appropriate Ld(s). In this approach we
start with modest specifications by reducing the gain
of W1 so that a feasible solution ρ1 is obtained. Then
Ld(jω) = L(jω, ρ1) is chosen and the specifications
will be tightened by increasing the gain of W1. A
feasible solution ρ2 for the second feasibility problem
will be used to compute a new Ld(jω) = L(jω, ρ2).
Although the convergence of this iterative approach to
the optimal solution cannot be proved, good results
in practice can be obtained. This approach is used in
FDRC Toolbox when a bisection algorithm is used to
minimize ‖W1S‖∞.

• If a stabilizing controller K0(jω) is available,
Ld(jω) = G(jω)K0(jω) is a good choice to compute
a robust low-order linearly parameterized controller.

III. MODEL UNCERTAINTY

A. Unmodeled Dynamics

If the set of models is represented by multiplicative
uncertainty, i.e.

G̃(s) = G(s)[1 +W2(s)∆(s)] with ‖∆‖∞ < 1,

the necessary and sufficient condition for robust performance
is given by [12]:

‖|W1S|+ |W2T |‖∞ < 1 (10)

where T = L(1 + L)−1 is the complementary sensitivity
function.

The basic idea is to represent the robust performance
constraints in (10) as a set of linear or convex constraints.
Let us write (10) in the frequency domain :

|W1(jω)S(jω)| + |W2(jω)T (jω)| < 1 ∀ω (11)

Multiplying the robust performance condition in (11) by |1+
L(jω, ρ)| gives:

|W1(jω)|+ |W2(jω)L(jω, ρ)| < |1 + L(jω, ρ)| ∀ω (12)

Note that |1 + L(jω, ρ)| is the distance between the critical
point and L(jω, ρ). Hence, this constraint is satisfied if
and only if there is no intersection in the Nyquist diagram
between a circle centered at the critical point with a radius
of |W1(jω)| and a circle centered at L(jω, ρ) with a radius
of |W2(jω)L(jω, ρ)| for all ω.

There exist two alternatives in order that this condition to
be satisfied for all models in the uncertainty set represented
by a circle centered at L(jω, ρ). The first alternative is to
approximate the uncertainty circle by a polygon of q > 2
vertices. Then, the robust performance condition in (11) is
satisfied if all vertices are located in the right side of d(ω).
This can be represented by the following linear constraints :

|W1(jω)[1 + Ld(jω)]|
−Re{[1 + Ld(−jω)][1 + Li(jω, ρ)]} < 0 ∀ω (13)

and i = 1, . . . , q where Li(jω, ρ) = Gi(jω)K(jω, ρ) and

Gi(jω) = G(jω)

[
1 +

|W2(jω)|
cos(π/q)

ej2πi/q
]

(14)

It can be observed that the number of linear constraints are
multiplied by q when the uncertainty circle is approximated
by a polygon of q vertices.

The second alternative is to increase the radius of the
performance circle by |W2(jω)L(jω, ρ)| which leads to the
following convex constraints:

|W1(jω)[1+Ld(jω)]|+ |W2(jω)L(jω, ρ)[1+Ld(jω)]|−
Re{[1 + Ld(−jω)][1 + L(jω, ρ)]} < 0 ∀ω (15)

This alternative has less constraints and no conservatism
but leads to a slightly more complex convex optimization
problem (convex constraints instead of linear constraints).

B. Multimodel Uncertainty

The results can be extended to the case of multimodel
uncertainty as well. In this case the constraints in (15) should
be repeated for all models Gi(jω) from i = 1, . . . ,m. If the
desired open-loop transfer function and the performance and
uncertainty filters are different for each model, i.e. we have
Ldi ,W1i and W2i, that can be used in (15).

Since the constraints in (15) are convex with respect
to Gi(jω) for the case of multimodel uncertainties, they
will also guarantee the robust performance for the convex
combinations of the models defined by:

G(λ, jω) =

m∑
i=1

λiGi(jω)

C. Spectral Uncertainty

Consider the input signal u(t) and the output signal y(t)
of a discrete-time system G(q−1) are available for a finite
number of t = 1, . . . , N , where q−1 is the backward shift
operator. Assume that the data are noise-free and the initial
and final conditions for u and y are zero, i.e u(t) = y(t) = 0
for t ≤ 0 and t > N . Then

Ĝ(e−jω) =
Y (ω)

U(ω)
(16)

where U(ω) and Y (ω) are the periodograms of u(t) and y(t)
defined by :

U(ω) =
1√
N

N∑
t=1

u(t)e−jωt



Y (ω) =
1√
N

N∑
t=1

y(t)e−jωt

For noisy data (16) gives a spectral model which is asymptot-
ically unbiased. The estimates Re{Ĝ(ejω)} and Im{Ĝ(ejω)}
are asymptotically uncorrelated and normally distributed
with a variance of Φv(ω)/2|U(ω)|2, where Φv(ω) is the
spectrum of the disturbance v(t) at the output of the plant
[13]. Since v(t) is not measurable, it can be estimated
using the unbiased estimate of the plant model, i.e., v̂(t) =
y(t)− Ĝ(q−1)u(t). So its spectrum is given by:

Φv̂(ω) = Φy(ω)−
|Φuy(ω)|2
Φu(ω)

(17)

In order to see the shape of this uncertainty in the Nyquist
diagram we can define a random variable vector Ĝv(ω) as

Ĝv(ω) = [Re{Ĝ(e−jω)} Im{Ĝ(e−jω)}] (18)

This vector has a joint normal distribution with a diagonal
covariance matrix (because of the uncorrelation of real and
imaginary parts of the estimates):

CG(ω) = cov
(
Ĝv(ω)

)
=

Φv̂(ω)

2|U(ω)|2

[
1 0
0 1

]
(19)

Therefore, the true plant model G(e−jω) belongs to the
following disk in the Nyquist diagram with a probability of
1− α:[

x−Re{Ĝ}
y − Im{Ĝ}

]T
C−1

G (ω)

[
x−Re{Ĝ}
y − Im{Ĝ}

]
≤ X 2

2 (α)

(20)
where X 2

2 is the chi-square distribution with two degrees
of freedom. For a confidence interval of 0.95 (α = 0.05),
we have X 2

2 (0.05) = 5.99. This uncertainty set can be
represented by multiplicative model uncertainty given by:

G̃(e−jω) = Ĝ(e−jω)[1 +W2(jω)∆] ; ω ∈ [0
π

Ts
]

where Ts is the sampling period and

W2(jω) =
1

Ĝ(e−jω)

√
5.99Φv̂(ω)

2|U(ω)|2

is the uncertainty frequency function for 0.95 probability.

D. Parametric Uncertainty

In many practical applications a model of the system is
available, but its parameters are not exactly known. In most
cases the parameters can be considered as random variables
with known mean, variance and distribution. This is the case
for parametric models obtained by system identification from
a set of noisy data. In physical modeling of the systems,
the parameters are measured by an instrument that has some
accuracy. Therefore, the measured value can be considered as
a random variable whose mean and variance can be estimated
by repeating measurements. Even in the deterministic case
when each parameter belongs to an interval, a stochastic
approach can be used to represent the uncertainty.

In a stochastic framework the covariance of Ĝv(ω) in
(18) can be estimated from the covariance of its parameters
using a linear approximation. It can be shown that if the
parametric uncertainty comes from the noise effect in system
identification, this approximation is accurate for large data
length [14]. In this case we have:

CG(ω) =

(
∂Ĝv(ω)

∂θ

)
cov(θ)

(
∂Ĝv(ω)

∂θ

)T

(21)

This covariance is computed in Identification Toolbox of
Matlab and can be used to compute an uncertainty model
set for robust controller design.

Note that the covariance matrix in this case is not diagonal,
so in the Nyquist diagram, this uncertainty is represented
by an ellipse. In this case, the spectral model cannot be
represented directly by a multiplicative uncertainty model.
However, an nq-side polygon of minimum area can be
computed that circumscribes each ellipse. Therefore, the
uncertainty set, e.g. for a probability of 0.95, can be ap-
proximated by the convex combination of the vertices of the
polygon.

G(λ) =

nq∑
k=1

λiG̃k(e
−jω) : (22)

where

G̃k(e
−jω) = Ĝ(e−jω)+[1 j]

√
5.99CG(ω)

[
cos(2πk/nq)
cos (π/nq)
sin(2πk/nq)
cos (π/nq)

]

The last vector in the above equation gives the coordinates
of a vertex of a polygon circumscribing the unit circle
and

√
5.99CG is a 2 × 2 matrix that defines the size and

direction of the uncertainty (for 0.95 probability). In fact√
5.99CG projects the unit circle to an ellipse with the

size of uncertainty and consequently it projects the polygon
circumscribed the unit circle to a polygon circumscribed
about the ellipse.

Therefore, the uncertainty ellipse in the frequency domain
related to stochastic parametric uncertainty can be com-
pletely covered with multimodel uncertainty including nq

models.

IV. SIMULATION EXAMPLES AND COMPARISON

A. FDRC Toolbox

The Frequency-Domain Robust Controller Design Tool-
box is a tool for designing robust linearly parameterized
controllers in the Nyquist diagram. It can be used to design
linearly parameterized controllers of any order for parametric
models or nonparametric models obtained for example by the
identification toolbox of MATLAB. The robust controllers
are designed in terms of H∞ performance or classical
robustness margins such as the gain and phase margin, for
single/multi-model, SISO/MIMO systems. The toolbox also
supports designing gain-scheduled controllers.

In all of design cases, linear or convex optimization
problems are solved. For linear and quadratic optimization
the well-known linprog or quadprog (depending on



the problem) commands of the Optimization toolbox of
MATLAB are used. While convex optimization problems are
formulated with YALMIP [15] and can be solved with all
available solvers. Many commands of the Control toolbox
of MATLAB are used as well.

The procedure of design comprises three steps. First the
type (or structure) of the controller is determined. Then the
desired performance characteristics are specified, and finally
a controller with the desired type and required performance
is designed. In the following comes a brief description of
these three steps with corresponding commands.

1) Determining controller structure: The first step of
design is determining the desired controller type. By defining
the controller type in fact the vector of basis transfer func-
tions φ is specified. In the following command the controller
type and subsequently the vector φ are specified by the user.

phi = conphi (ConType , ConPar , CorD , F)

where ConType can be ’Laguerre’ or other basis func-
tions which are explained in the user’s manual of the toolbox
[8]. The parameters of the basis functions are defined in
ConPar, e.g. for Laguerre basis function, [100 4] defines
a fourth order controller with ζ = 100. The choice of
continuous-time or discrete time basis functions is defined
by CorD that can be ’s’ or ’z’, respectively. Finally, F is
a fixed term in the controller, e.g. 1/s to have an integrator.

2) Determining control performance: The desired control
performance are determined by the following command:

per = conper (PerType , par , Ld)

where PerType can be Hinf or ’LS’ for H∞ or loop
shaping performance. For H∞ performance par defines the
weighting filters and for loop shaping the modulus margin.
The desired open-loop transfer function is given by Ld.

3) Controller Design: The controller is designed by the
following command:

K = condes (G , phi , per , options)

where G can be a cell containing multiple models with any
acceptable format of LTI models in Matlab. The options and
their default values are given in the user’s manual of the
toolbox [8]. The specific options used in this paper will be
explained in the following examples.

B. Example 1: Unmodeled Dynamics

Consider the family of plants described by the following
multiplicative uncertainty model [16]:

G̃(s) =
(s+ 1)(s+ 10)

(s+ 2)(s+ 4)(s− 1)
[1 +W2(s)∆(s)]

where

W2(s) = 0.8
1.1337s2 + 6.8857s+ 9

(s+ 1)(s+ 10)

The nominal performance is defined by ‖W1S‖∞ < 1 with :

W1(s) =
2

(20s+ 1)2

The Robust Control Toolbox of Matlab leads to an unstable
7-th order controller for this problem using the following
codes:

s=tf('s');
G=(s+1)*(s+10)/((s+2)*(s+4)*(s-1));
W{1}=2/(20*s+1)ˆ2;
W{2}=0.8*(1.1337*sˆ2+6.8857*s+9)/((s+1)*(s+10));

P=augw(G,W{1},[],W{2});
C=hinfsyn(P);

This optimal controller gives:

‖[W1S W2T ]‖∞ = 0.6793 (23)
‖|W1S|+ |W2T |‖∞ = 0.8363 (24)

The same problem is solved to design a third-order con-
troller using the FDRC toolbox with the following codes:

phi=conphi('Laguerre',[100 2],'s',1/s);
Ld=10*(s+1)/s/(s-1);
hinfper=conper('Hinf',W,Ld);
opt=condesopt('nq',[],'gamma',[0.01 2 0.001],...
'lambda',[1 1 0 0]);
K=condes(G,phi,hinfper,opt)

The resulting stable controller

K(s) =
2430.3(s+ 25.19)(s+ 1.08)

s(s+ 100)2
(25)

gives:

‖[W1S W2T ]‖∞ = 0.7201 (26)
‖|W1S|+ |W2T ]|‖∞ = 0.7203 (27)

Remarks:
• Since hinfsyn minimizes ‖[W1S W2T ]‖∞, a

smaller value is obtained with respect to the result of
FDRC toolbox. However, better results in terms of the
true robust performance criterion in (10) is obtained by
the new toolbox.

• The variable opt shaws the options taken for the
controller design. nq=[] indicates that no approx-
imation of the uncertainty circle by a polygon is
considered. gamma=[0.01 2 0.001] initializes re-
spectively the minimum, maximum and tolerance of
γ in a bisection algorithm. Finally, lambda=[1 1
0 0] indicates that ‖|W1S| + |W2T ]|‖∞ should be
minimized.

• A Laguerre orthogonal basis function is used for the
linearly parameterized controller. The pole of this basis
function is chosen as ζ = 100 and one integrator is
fixed in the controller. We will use the same choice in
the next example.

• The choice of Ld is based on the remarks of Section
II-C. A desired crossover frequency of ωc = 10 rad/s
and the existence of an unstable pole in the plant model
leads to

Ld(s) =
10

s

s+ 1

s− 1



Since, in this example an iterative method is used
to improve the performance, the final results is not
sensitive to the choice of Ld(s). By changing ωc from
2 to 100, very similar results are obtained.

C. Example 2: Multimodel Uncertainty

This example is taken from Robust Control Toolbox of
Matlab. A first order unstable model is considered :

P0(s) =
2

s− 2
(28)

This model is perturbed by different type of uncertainty like
extra lag, high frequency resonance, time delay and pole/gain
migration to obtain the following models:

P1(s) = P0(s)
1

0.06s+ 1
, P4(s) = P0(s)

−0.02s+ 1

0.02s+ 1

P2(s) = P0(s)
502

s2 + 10s+ 502
, P5(s) =

2.4

s− 2.2

P3(s) = P0(s)
702

s2 + 28s+ 702
, P6(s) =

1.6

s− 1.8

The performance weighting filter is chosen as a first order
low-pass filter with a static gain of 500 and a bandwidth of
ωc = 4.5 rad/s :

Wperf(s) =
0.33s+ 4.248

s+ 0.008496
(29)

A noise filter is also defined as:

Wnoise(s) =
0.1975s2 + 0.6284s+ 1

7.901e−5s2 + 0.2514s+ 400
(30)

The control objective is to obtain

‖Wperf S‖∞ < γ and ‖Wnoise T ‖∞ < γ

with γ < 1 for all 7 models.
In Robust Control Toolbox of Matlab, the multimodel

uncertainty is converted to multiplicative uncertainty and a
shaping filter that covers the relative behavior of the plant is
designed. Then the µ-synthesis approach is used to compute
an 18-th order controller that meets the performance for all
models with γ = 1.024. The order of this model is then
reduced to 6 by an order reduction algorithm that ensures
almost the same performance. Figure 1a shows the step
disturbance response of this controller.

The same problem is solved with the new toolbox. An (n+
1)-th order controller with integral action is designed using
a Laguerre basis function of order n with a high frequency
pole at ζ = 100. The desired open-loop transfer function
is chosen according to the rules in Section II-C. Then the
following code is used to compute the controller:

w=logspace(-2,3,1000);
opt=condesopt('w',w,'gamma',[0.1,4,0.001]);
Ld=4.5*(s+2)/s/(s-2);
W{1}=Wperf;W{2}=Wnoise;
per=conper('Hinf',W,Ld);
phi=conphi('Laguerre',[100 n],'s',1/s);
K=condes(p,phi,per,opt);

For n = 8 (9-th order controller), the resulting controller
achieves better performance than 18-th order optimal con-
troller with γ = 0.8341. Figure 1b shows the step disturbance
response of the 7 models. Comparing with the optimal
solution of the µ-synthesis approach in Fig. 1a, it has less
undershoot and shorter settling time. For n = 4, a 5th-order
controller gives γ = 1.076 and achieves similar results as
the µ-synthesis controller.

Remarks:
• The main reason to obtain better performance than the

µ-synthesis method is the conservatism in the multi-
model uncertainty approximation with a weighting filter
in the the µ-synthesis approach. The multimodel uncer-
tainty is taken into account without any conservatism in
FDRC toolbox.

• In this example pure time delay in the model P4(s)
is introduced by a first-order Pade approximation. It
should be mentioned that time delay can be considered
in FDRC toolbox without any approximation.

D. Example 3: Spectral Uncertainty

In this example a laboratory setup is used to show how
the spectral uncertainty can be taken into account in robust
controller design by the proposed toolbox. The laboratory
setup is an electro-mechanical flexible transmission system.
The plant consists of a drive motor (servo actuator) which
is coupled via a timing belt to a drive disk with variable
inertia. Another timing belt connects the drive disk to the
speed reduction assembly while a third elastic belt completes
the drive train to the load disk. A proportional feedback
controller is used to control the position of the load disk. The
input of the system is the position reference of the load disk
which is measured by a high resolution incremental encoder.
The input of the system is excited with a PRBS signal with
a sampling period of Ts = 40ms and a data length of 765.
A picture of the plant and the input/output data are given in
Fig. 2.

A spectral model is identified using spafdr command
of Identification toolbox of Matlab. The Nyquist diagram of
this spectral model together with the uncertainty circles of
0.95 probability are given in Fig. 3a. This spectral model can
be used directly in the FDRC toolbox to compute a digital
robust controller by using the following codes:

data=iddata(y,u,Ts);
G=spafdr(data);

phi=conphi('Laguerre',[Ts , 0 , 4],'z',z/(z-1));
Ld=15/s;
per=conper('LS',0.5,Ld);
K=condes(G,phi,per);

The discrete-time Laguerre basis functions of order 4 with
a = 0 (FIR controller) and an integrator are used for the con-
troller structure. The controller is designed by loopshaping
method with guaranteeing a modulus margin of 0.5. In this
method the weighted two-norm of the difference between L
and Ld is minimized under the constraint on the modulus
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Fig. 1. Step disturbance response of Example 2 with the controller of (a) Robust Control toolbox of Matlab, (b) FDRC toolbox.
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Fig. 2. Flexible transmission system (a) Picture of the plant (b) Identification data.

margin (the open-loop Nyquist plot will not enter a circle of
radius 0.5 centered at the critical point). Figure 3b shows the
open-loop Nyquist diagram of the designed controller. It can
be observed that the Nyquist plot and its uncertainty disks
meet the performance specifications.

E. Example 4: Parametric Uncertainty

Based on the acquired data in Example 3, a fourth order
parametric model can be identified using the identification
toolbox of Matlab. The prediction error method with output
error structure is used to identify the model parameters
and their covariance matrix. Figure 3c shows the Nyquist
diagram of the identified parametric model together with
the uncertainty ellipses. The identified model is directly
used by the FDRC toolbox to compute a robust controller
with the same structure and performance specification as in
Example3. The following codes are used:

G=oe(data,[4 4 1])

phi=conphi('Laguerre',[Ts , 0 , 4],'z',z/(z-1));
Ld=15/s;
per=conper('LS',0.5,Ld);
K=condes(G,phi,per);

The Nyquist plot of the open-loop transfer function is given
in Fig. 3d. It can be seen that the specifications are satisfied
in all frequencies. The results are a bit better than those of
Example 3, because the uncertainties are smaller.

V. CONCLUSIONS

All robust controller design methods suffer from con-
servatism. The conservatism can be in different parts of
the design procedure from the optimization criterion, mod-
eling uncertainty and convexification of the optimization
constraints. In this paper a new toolbox for robust controller
design based on the frequency domain models is introduced.
The main advantage of this toolbox is that almost all types
of model uncertainty can be taken into account with almost
no conservatism. In fact, the conservatism is moved to the
convexification of the H∞ constraints via the choice of the
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Fig. 3. (a) Nyquist diagram of the spectral model together with the uncertainty circles. (b) Nyquist plot of the designed open-loop system for the spectral
model. (c) Nyquist diagram of the the identified parametric model together with the uncertainty ellipses. (d) Nyquist plot of the designed open-loop system
for the parametric model.

basis functions and the desired open-loop transfer function.
It has been shown, with some examples, that the new
toolbox may provide better performance than the established
robust control algorithms. Moreover, full compatibility of
the toolbox with the identified uncertain models makes it
appealing for data-driven approaches.
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