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Abstract. Geneticists prefer to store patients’ aligned, raw genomic data, in addition to
their variant calls (compact and summarized form of the raw data), mainly because of
the immaturity of bioinformatic algorithms and sequencing platforms. Thus, we propose
a privacy-preserving system to protect the privacy of aligned, raw genomic data. The raw
genomic data of a patient includes millions of short reads, each comprised of between 100
and 400 nucleotides (genomic letters). We propose storing these short reads at a biobank
in encrypted form. The proposed scheme enables a medical unit (e.g., a pharmaceutical
company or a hospital) to privately retrieve a subset of the short reads of the patients
(which include a definite range of nucleotides depending on the type of the genetic test)
without revealing the nature of the genetic test to the biobank. Furthermore, the proposed
scheme lets the biobank mask particular parts of the retrieved short reads if (i) some parts
of the provided short reads are out of the requested range, or (ii) the patient does not give
consent to some parts of the provided short reads (e.g., parts revealing sensitive diseases).
We evaluate the proposed scheme to show the amount of unauthorized genomic data leakage
it prevents. Finally, we implement the proposed scheme and assess its practicality.
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1 Introduction

Genomics holds great promise for better predictive medicine and improved diagnoses.
However, genomics also comes with a risk to privacy [1,2] (e.g., revelation of an individ-
ual’s genetic properties due to the leakage of his genomic data). An increasing number
of medical units (pharmaceutical companies or hospitals) are willing to outsource the
storage of genomes generated in clinical trials. Acting as a third party, a biobank could
store patients’ genomic data that would be used by the medical units for clinical trials.
In the meantime, the patient can also benefit from the stored genomic information by
interrogating his own genomic data, together with his family doctor, for specific genetic
predispositions, susceptibilities and metabolical capacities. The major challenge here is
to preserve the privacy of patients’ genomic data while allowing the medical units to
operate on specific parts of the genome (for which they are authorized).

Sequence alignment/map (SAM and its binary version BAM) files are the de facto

standards used to store the aligned4, raw genomic data generated by next-generation
DNA sequencers and bioinformatic algorithms. There are hundreds of millions of short

⋆ A shorter version of this work appeared in the proceedings of 8th DPM International Workshop on
Data Privacy Management.

4 Alignment is with respect to the reference genome, which is assembled by the scientists.
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reads (each including between 100 and 400 nucleotides) in the SAM file of a patient.
Typically, each nucleotide is present in several short reads in order to have sufficiently
high coverage of each patient’s DNA. In the rest of this paper, we present our work
focusing on the SAM files, as it is clearer to present the proposed methods by using this
human-readable format. However, the proposed scheme has no reliance on this particular
format; our proposed algorithms can also be applied to other data formats that are used
to store the raw genomic data (e.g., BAM).

Bioinformatic algorithms for variant calling are currently not yet mature. Thus, the
bioinformatic tools that geneticists require to assess the reliability of a variant call es-
sentially necessitate keeping the read-level information available (e.g., in the SAM files).
Moreover, DNA sequencing platforms are not error-free. For example, error rates for the
commercially available DNA sequencing platforms, per nucleotide in a short read, are
around 0.4% for the Illumina platforms, 1.78% for Ion Torrent and 13% for PacBio se-
quencing [3]. Thus, geneticists prefer to observe each nucleotide in several short reads and
to make conclusions based on the different values of a particular nucleotide in different
short reads. Furthermore, if a patient carries a disease, which causes specific variations
in the diseased cells (e.g., cancer), his DNA sequence in his healthy cells will be different
from those diseased. Hence, when such a patient is sequenced from his diseased cells, it
is crucial to store all his short reads, in addition to his variant calls. The short reads of
such a patient involve both sequencing errors and mutations due to the corresponding
disease, hence such mutations can be misclassified as sequencing errors by only looking
at the patient’s variant calls (rather than his short reads). Finally, the rapid evolution in
the field of genomics produces new discoveries at a constantly accelerating pace, which
cause significant advancements. Therefore, at this stage, geneticists do not know enough
to decide which information should really be kept and what is superfluous, hence they
prefer to store all outcome of the sequencing process as SAM files.

To the best of our knowledge, none of the existing works on genomic privacy addresses
the issue of private processing of aligned, raw genomic data (i.e., SAM files), which is
crucial to enable the use of genomic data in clinical trials. Therefore, in this paper, we
propose a privacy-preserving system for the storage, retrieval and processing of the SAM
files. In a nutshell, the proposed scheme stores the encrypted SAM files of the patients at
a biobank and it provides the requested range of nucleotides (on the DNA sequence) to a
medical unit while protecting the patients’ genomic privacy. It is important to note that
the proposed scheme enables the privacy-preserving processing of the SAM files both for
individual treatment (when the medical unit is embodied in a hospital) and for genetic
research (when the medical unit is embodied in a pharmaceutical company). The main
contributions of this paper are summarized in the following:

1. We develop a privacy-preserving framework for the retrieval of encrypted short reads
(in the SAM files) from the biobank without revealing the scope of the request to the
biobank.

2. We develop an efficient system for obfuscating (i.e., masking) specific parts of the
encrypted short reads that are out of the requested range of the medical unit (or
that the patient prefers to keep secret) at the biobank before providing them to the
medical unit.
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3. We show the benefit of masking by evaluating the information leak to the medical
unit, with and without the masking is in place.

4. We implement the proposed privacy-preserving system by using real genomic data,
evaluate its efficiency, and show its practicality.

We note that all these privacy-preserving properties only require a simple consent of
the patient (via a smartphone application, or through a key manager), which is a big
usability bonus.

The rest of the paper is organized as follows: In the next section, we summarize the
existing work on genomic privacy. In Section 3, we give a brief background on genomics
(particularly on SAM files). In Section 5, we give an overview of the proposed scheme.
In Section 6, we discuss the potential options and constraints about the design of our
proposed scheme. In Section 7, we discuss the threat model and our security considera-
tions. In Section 8, we describe the proposed scheme in detail. In Section 9, we evaluate
our proposed scheme using real genomic data. In Section 10, we discuss about the im-
plementation of the proposed scheme and its practicality. In Section 11, we conclude the
paper.

2 Related Work

We can put the research on genomic privacy in three main categories: (i) private string
searching and comparison, (ii) private release of aggregate data, and (iii) private clinical
genomics.

Troncoso-Pastoriza et al. [4] propose a protocol for string searching (using a finite

state machine), which is then re-visited by Blanton and Aliasgari [5]. To compute the
similarity of DNA sequences, Jha et al. [6] propose techniques for privately comput-
ing the edit distance of two strings by using garbled circuits. Bruekers et al. [7] pro-
pose a privacy-enhanced comparison of DNA profiles by using homomorphic encryption.
Kantarcioglu et al. [8] propose using homomorphic encryption to perform scientific in-
vestigations on integrated genomic data. In one of their recent works, Baldi et al. [9]
make use of both medical and cryptographic tools for privacy-preserving paternity tests,
personalized medicine, and genetic compatibility tests. Then, in their follow-up work, De
Cristofaro et al. propose an implemented toolkit, called GenoDroid [10]. Instead of using
public key encryption, Canim et al. [11] propose securing the biomedical data by us-
ing cryptographic hardware. Finally, we propose privacy-preserving schemes for medical
tests and personalized medicine methods that use patients’ genomic data [12–14].5

When releasing databases consisting of aggregate genomic data, it is shown that
known privacy-preserving approaches (e.g., de-identification) are ineffective on (un-
encrypted) genomic data [15, 16]. Homer et al. [17] prove that the presence of a spe-
cific individual in a case group can be determined. In another recent study, Gymrek et

al. [18] report that they exposed the identity of 50 individuals whose DNA was donated
anonymously for scientific study through consortiums such as the 1000 Genomes Project.
Zhou et al. [19] study the privacy risks of releasing the aggregate genomic data. Recently,

5 More information about our activities in the field of genomic privacy can be found at:
http://lca.epfl.ch/projects/genomic-privacy/.
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the use of differential privacy has been proposed by Fienberg et al. [20] to ensure that
two aggregated genomic databases have indistinguishable statistical features.

Utilizing a public cloud, Chen et al. [21] propose a secure and efficient algorithm to
align short DNA sequences to a reference DNA sequence. Furthermore, Wang et al. [22]
propose a privacy-protection framework for important classes of genomic computations
(e.g., search for homologous genes).

As we discussed before, none of the aforementioned efforts on genomic privacy focus
on the processing of aligned, raw genomic data. Therefore, in this work, we focus on
private storage, retrieval, and processing of raw genomic data.

3 Genomic Background

3.1 SAM Files

The DNA sequence data produced by DNA sequencing consists of millions of short reads,
each typically including between 100 and 400 nucleotides (A,C,G,T), depending on the
type of sequencer. These reads are randomly sampled from a human genome. Each read is
then bioinformatically treated and positioned (aligned) to its genetic location to produce
a so-called SAM file. There are hundreds of millions of short reads in the SAM file of
one patient. In Fig. 1, we illustrate the format of a short read in a SAM file.

Fig. 1. Format of a short read in a SAM file.

The privacy-sensitive fields of a short read are (i) its position with respect to the
reference genome (digital nucleic acid sequence database, assembled by scientists as a
representative example of a species’ set of genes), (ii) its cigar string (CS), and (iii) its
content (including the nucleotides from {A,T,G,C}).6 For the simplicity of the presen-
tation, from here on, we focus on these three fields only. We note that the rest of the
short read does not contain privacy sensitive information about the patient, hence the
rest of the short read can be encrypted as a vector and provided to the medical unit,
along with the aforementioned privacy-sensitive fields.

A short read’s position denotes the position of the first aligned nucleotide in its
content, with respect to the reference genome. The position of a short read is in the form
Li,j = 〈xi|yj〉, where xi represents the chromosome number (xi ∈ [1, 23] as there are 23

6 The numbers and letters after the content in Fig. 1 represent the sequencing quality of the nucleotides
in the content.
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Posi�on 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Reference A G C A T G T T A G A T A A G A T * * A G C T G T G C T A G T A

Content of the SR a t g T A A * A T G C . . . T A T G C G A G

3S

a t gg T A A A T G C T A T G C G A GT GT G

3M 1D 2M 2I 3N 8MCigar String (CS) 3S 3M 1D 2M 2I 3N 8M

Fig. 2. Content of a short read (SR) and its Cigar String (CS) with respect to the reference genome.
The position of the short read corresponds to the first aligned nucleotide in its content and it is 12 in
this example. The CS of the short read includes 7 pairs, each indicating an operation from Table 1 and
the number of nucleotides involved in the corresponding operation. The non-aligned nucleotides (the 3
nucleotides represented with the operation “S” in the CS) are represented in lowercase letters (i.e., a).
The dots (at positions 18− 20) and star (at position 15) represent a skipped region and a deletion in the
SR, respectively, and they are not present in the actual content.

chromosomes in the human genome) and yj represents the position of its first aligned
nucleotide on chromosome xi (yj ∈ [1, 240M] as the maximum number of nucleotides on
a chromosome is around 240 million). The cigar string (CS) of a short read expresses the
variations in the content of the short read. The CS includes pairs of nucleotide lengths
and the associated operations. The operations in the CS indicate some properties about
content of the short read such as which nucleotides align with the reference, which are
deleted from the reference, and which are insertions that are not in the reference (without
revealing the content of the short read). We illustrate descriptions of common operations
in the CS in Table 1. Finally, the content of a short read includes the nucleotides. In Fig. 2,
we illustrate how the content of a short read looks and how the CS of the corresponding
short read is generated. We note that the actual content only includes nucleotides; the
dots (at positions 18−20) and star (at position 15) in Fig. 2 are not present in the content,
and they are understood from the CS of the short read. In practice, the position of a
short read is in the form Li,j = 〈xi|yj〉, where xi represents the chromosome (xi ∈ [1, 23])
and yj represents the position of the short read on chromosome xi (yj ∈ [1, 240M]). For
the clarity of the example in Fig. 2, we simplified the representation of the position.

Opera�on Descrip�on

M alignment match (can be a sequence match or mismatch)

I inser!on to the reference

D dele!on from the reference

N skipped region from the reference

S
so" clipping (misalignment), clipped sequences (i.e., 

misaligned nucleo!des) present in the content

H
hard clipping (misalignment), clipped sequences (i.e., 

misaligned nucleo!des) NOT present in the content

P padding (silent dele!on from padded reference)

Table 1. Operations in the Cigar String (CS) of a short read [23].
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3.2 Single Nucleotide Polymorphism (SNP)

There are several types of DNA variations in the human genome, among which the
single nucleotide polymorphism (SNP) is the most common. A SNP is a position in the
genome holding a nucleotide that varies between individuals. Recent discoveries show that
the susceptibility of a patient to several diseases can be computed from his SNPs [24].
Thus, we also consider the SNPs of a patient when evaluating the information leakage
in Section 9.

SNP positions might carry a different nucleotide than the reference genome. For
example, in the short read in Fig. 2, position 22 can be a SNP position, because, even
though there is an alignment match between the short read and the reference genome,
the nucleotide in the short read is different from the reference.

4 Cryptographic Tools

Order Preserving Encryption (OPE)

Order-preserving symmetric encryption (OPE) is a deterministic encryption scheme
whose encryption function preserves numerical ordering of the plaintexts. OPE was ini-
tially proposed by Agrawal et al. [25] and recently re-visited by Boldyreva et al. [26] and
Popa et al. [27]. Following [26], we briefly introduce OPE next.

For A,B ⊆ N with |A| ≤ |B|, a function f : A → B is order-preserving if for
all i, j ∈ A, f(i) > f(j) iff i > j. We say that a deterministic encryption scheme
with plaintext and ciphertext-spaces D, R is order-preserving if EOPE(K, ·) is an order-
preserving function from D to R for all K ∈ K (where K is the key space).

Stream Cipher (SC)

A stream cipher is a symmetric key cipher, where plaintext digits are combined with a
pseudorandom cipher digit stream (key stream). In a stream cipher each plaintext digit
is encrypted one at a time with the corresponding digit of the key stream, to give a
digit of the ciphertext stream. In general, a digit is typically a bit and the encryption
operation is an XOR. For example, the message m is encrypted as H(key, nonce) ⊕m,
where H is a pseudorandom function.

5 Overview of the Proposed Solution

In this work, we develop a privacy-preserving system for the storage, retrieval and pro-
cessing of the SAM files (details are in Section 8).

We assume that the sequencing and encryption of the genomes are done at a certified

institution (CI), which is a trusted entity. We note that having such a trusted entity
cannot be avoided as the sequencing has to be done at some institution to obtain the
SAM files of the patients. Each part (position, CS, and content) of each short read (in
the SAM file) is encrypted (via a different encryption scheme) after the sequencing, and
encrypted SAM files of the patients are stored at a biobank. We assume that SAM files
are stored at the biobank by using pseudonyms; this way, the biobank cannot associate
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the conducted genetic tests and the medical unit (MU), which conduct these tests, with
the real identities of the patients. We note that a private company (e.g., cloud storage
service) or the government could play the role of the biobank. There are potentially
multiple MUs in the system, and each MU is an approved institution (by the medical
authorities). Furthermore, we assume that an MU is a broad unit consisting of many
sub-units (e.g., physicians or specialized clinics) that can potentially request nucleotides
from any parts of a patient’s genome.

The cryptographic keys of the patients are stored on a key manager by using the
patient’s pseudonym (which does not require the participation of the patient in the
protocol). From here on, we assume the existence of a masking and key manager (MK)
in the system to store the cryptographic keys of the patients. The MK can also be
embodied in the government or a private company.

5.1 Privacy-Preserving Retrieval of the Short Reads

When the MU requests a specific range of nucleotides (on the DNA sequence of one
or multiple patients), the biobank provides all the short reads that include at least one
nucleotide from the requested range through the MK. During this process, the patient
does not want to reveal his complete genome to the MU, to the biobank, or to the
MK. Furthermore, it is not desirable for the biobank to learn the requested range of
nucleotides (as the biobank can infer the nature of the genetic test from this requested
range). Thus, we develop a privacy-preserving system for the retrieval of the short reads
by the MU. The proposed scheme provides the short reads that include the requested
range of nucleotides to the MU without revealing the positions of these short reads to
the biobank.

To achieve this goal, we first modify the structure of the genome by permuting the
positions of the short reads, and then we use order preserving encryption (OPE) on
the positions of the short reads (in the SAM file). OPE is a deterministic encryption
scheme whose encryption function preserves numerical ordering of the plaintexts [25,27].7

Thus, OPE enables the encryption of the positions of the short reads and preserves the
numerical ordering of the plaintext positions.

5.2 Masking of the Short Reads

We prevent the leakage of extra information in the short reads to the MU by masking the
encrypted short reads at the biobank (before sending them to the MU). As each short
read includes between 100 and 400 nucleotides, some provided short reads might include
information out of the MU’s requested range of genomic data, as in Fig. 3. Similarly, some
provided short reads might contain privacy-sensitive SNPs of the patient (which would
reveal the patient’s susceptibilities to privacy-sensitive diseases such as Alzheimer’s),
hence the patient might not give consent to reveal such parts, as in Fig. 4. From here
on, the nucleotides that the patient does not consent to reveal will be referred to as the
non-consented nucleotides.

7 We briefly present the cryptographic tools we use in this paper in 4.
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Fig. 3. Parts to be masked in the short reads
for out-of-range content.

Fig. 4. Parts to be masked in a short read
based on patient’s consent. The patient does
not give consent to reveal the dark parts of the
short read.

To achieve this goal, we use stream cipher (SC) encryption on the contents of the
short reads (in the SAM file) and mask certain parts of the encrypted short reads at
the biobank, without decrypting them. In brief, the MK marks particular parts of the
requested shorts reads (which are retrieved by the biobank as discussed before) for mask-
ing, based on the patient’s consent8 and the boundaries of the requested range of nu-
cleotides. Thus, the MK creates masking vectors and passes them to the biobank. Then,
the biobank executes the masking on the previously retrieved (encrypted) short reads
by using these masking vectors and sends them to the MU, where the short reads are
decrypted and used for genetic tests. It is important to note that after the short reads
are decrypted at the MU, the MU is not able to determine the nucleotides at the masked
positions.

6 Design Constraints and Options

For security, efficiency, and availability, we propose storing the SAM files at a biobank
instead of at the MU. Extreme precaution is needed for the storage of genomic data
due to its sensitivity. We assume that the biobank is more “security-aware” than an
MU, hence it can protect the stored genomic data against a hacker better than an MU
(yet, attacks against the biobank cannot be ruled out, as we discuss next). Indeed, this
assumption is supported by recent serious medical data breaches from various MUs ((e.g.,
Howard University Hospital and TRICARE, which handles health insurance for the US
military [28]) [28]). Furthermore, by storing the SAM files at one biobank, multiple MUs
can reliably access the patients’ genomic data from it (instead of each MU individually
storing that same large amount of data) at any time.

We propose outsourcing the storage of the cryptographic keys (of the patients) to
the MK instead of storing them on a patient’s device (e.g., a smartphone) due to the
following two reasons: (i) It is not realistic to assume that all the patients will have the
sufficient precautions to protect their cryptographic keys (which will possibly be stored
in their smartphones), and (ii) if the keys are stored on a patient’s device, operations
involving the patient are done on the MU’s (e.g., the hospital) computer via the patient’s
device, hence this approach requires the involvement of the patient in the operation (e.g.,

8 The patient provides his consent to the MU for the genetic test and his consent is provided to the MK
by the MU in a pseudonymized form.
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physical presence at the hospital). Whereas, following our discussions with geneticists
and medical doctors, we conclude that the patient’s involvement in the genetic tests is
not desired for the practicality of the protocol (e.g., when a pharmaceutical company
conducts genetic research on thousands of patients).

In this work, we use OPE instead of private information retrieval (PIR), searchable
encryption [29,30], or oblivious RAM (O-RAM) storage [31] techniques for the privacy-
preserving retrieval of the short reads for the following reasons: (i) As we discussed before,
the short reads are randomly sampled from the genomes of the patients, and hence the
positions of the short reads vary in each patient’s genome. The MU typically asks for a
particular range of nucleotides on the DNA sequence of one or multiple patients. However,
these requested nucleotides reside in different short reads for each patient and the MU
does not know which nucleotide is stored in which short reads of each patient (storing the
positions of all short reads and the list of nucleotides they accommodate for each patient
at every MU requires significant storage overhead). Thus, the MU does not know exactly
which short reads to ask for, and hence PIR or searchable encryption techniques would be
impractical for our scenario. And (ii) although O-RAM techniques completely hide the
data access patterns from the server (biobank), even the most efficient implementations
of O-RAM introduce high storage overhead to the client (patient) and introduce about
25 times more overhead with respect to non-oblivious storage [32].

7 Threat Model and Security Considerations

We consider the following models for the attacker:

• A curious party at the biobank (or a hacker who breaks into the biobank), who tries
(i) to infer the genomic sequence of a patient from his stored genomic data and (ii)
to associate the type of the genetic test (e.g., the disease for which the patient is being
tested, which can be inferred from the nucleotides requested by the MU) with the patient
being tested.

• A curious party at the MK (or a hacker who breaks into the MK), who tries (i) to infer
the genomic sequence of a patient from his stored cryptographic keys and the information
provided by the biobank and (ii) to associate the type of the genetic test with the patient
being tested.

• A curious party at an MU, who can be considered either as an attacker who hacks into
the MU’s system or a disgruntled employee who has access to the MU’s database. The
goal of such an attacker is to obtain the private genomic data of a patient for which it
is not authorized.

Apart from (potentially) being curious, we assume that the biobank, the MK, and the
MUs are honest organizations. That is, the biobank, the MK, and the MUs honestly follow
the protocols and provide correct information to the other parties. In the following, we
discuss how we prevent the aforementioned attacks.

SAM files are encrypted (at the CI) and stored at the biobank to avoid the biobank
from inferring the genomic data of the patients (details about encryption are in Sec-
tion 8.1). To avoid the biobank from associating the conducted genetic tests with the
patients, we hide both the real identities of the patients (using pseudonyms) and the
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types of the conducted tests (using OPE on the positions of the short reads) from the
biobank. Note, however, that the biobank knows the real identity of an MU to make
sure that the request comes from a valid source.9 To avoid the MK from associating the
genetic tests with the patients, we do not reveal the identities of the MUs or the patients
to the MK.

Since the biobank knows the identity of an MU, if the MU is a specialized institution
(e.g., cancer center) or a specialized physician (e.g., cardiologist), the biobank would infer
the type of the genetic test from the specialization of the MU (without even trying to
infer the requested range of nucleotides). Thus, we assume that the MU is a general unit
that can potentially request the nucleotides from any part of the patient’s genome. That
is, the sub-units of the MU (e.g., the physicians at the hospital or the specialized clinics
connected to the hospital) can access to only specific parts of the genome. However, the
combined access rights of all the sub-units of an MU cover the whole genome.10 In the
proposed protocol, the MU initially checks the access rights of the request owner, and
once the access rights are verified by the MU, the request is sent to the biobank. The
biobank verifies that the request comes from a legitimate MU. However, the biobank does
not see the original request owner (e.g., the physician at the hospital) and the access
rights of the original request owner. Therefore, knowing the identity of the MU does not
help the biobank to infer the type of the conducted genetic test.

Even though we encrypt the positions of the short reads (using OPE) to hide the
conducted genetic tests from the biobank, the biobank might still infer the approximate
positions of the short reads as a result of using OPE. The biobank does not see the
exact bounds of the queries, but it can sort all short reads of the stored genome based
on their offsets, which certainly gives it a rough idea which short read contains which
nucleotides, and hence which genetic test is being performed. To avoid this, for each
patient, we re-define the positions of the short reads before encrypting them using OPE
(as discussed in detail in Section 8.1).

We also make sure that the MK cannot infer the genomic data of the patients by using
the information it receives from the biobank and the cryptographic keys it stores. Indeed,
as we will discuss in Section 8.2, we only provide the positions and the cigar strings (CSs)
of a subset of the short reads (depending on the range of nucleotides requested by the
MU) to the MK, which is not enough to infer the nucleotides residing in the contents
of corresponding short reads (the contents of the short reads are never transferred to
the MK). By only analyzing the CS (without having access to the content), the MK can
learn the locations of some insertions and deletions in the patient’s genome (but not the
contents of these insertions or deletions). However, the MK cannot infer the locations
or contents of the patient’s privacy-sensitive point mutations (e.g., SNPs), which are
typically used to evaluate the predispositions of the patients for various diseases. These
privacy-sensitive point mutations can only be inferred when the CS is used together

9 Knowing the MU (e.g., the name of the hospital) the biobank could de-anonymize an individual using
other sources (e.g., by associating the time of the test and the location of the MU with the location
patterns of the victim). Thus, we hide the types of the conducted tests from the biobank to avoid it
associating the conducted genetic test with the individual.

10 Even if the request owner is a private-specialized clinic, we assume that the request is initially autho-
rized by a (local) MU and then sent to the biobank by the corresponding MU.
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with the content of the short read (which is not revealed to the MK). Furthermore, as
we mentioned in Section 5, by masking the encrypted short reads before providing them
to the MU, we avoid the MU acquiring more genomic data than it requests.

Collusion between the parties (i.e., the biobank, the MK, and an MU) is not allowed in
our threat model and we assume that laws could enforce this. Finally, all communication
between the parties are encrypted to protect the system from an external attacker.

8 Privacy-Preserving Processing of Raw Genomic Data

8.1 Cryptographic Keys and Encryption of the Short Reads

As we discussed before, the position of a short read is in the form Li,j = 〈xi|yj〉, where
xi represents the chromosome (xi ∈ [1, 23]) and yj represents the position of the short
read on chromosome xi (yj ∈ [1, 240M]). Therefore, we represent the position of a short
read as a 35-bit number, where the first 5 bits represent the chromosome number and
the remaining 30 bits represent the position of the short read in the corresponding chro-
mosome. If the positions of the short reads were encrypted following this representation,
the biobank could infer the approximate positions of the short reads as a result of using
OPE (as discussed in Section 7).

To avoid this, we first divide the positions on the whole genome into parts of equal
lengths, permute these parts, and then modify the positions in each part based on the
permutation. In Fig. 5, we show such an example, in which the positions on the genome
are divided into parts of length 40 million (totaling 75 parts as there are 3 billion nu-
cleotides in the human genome). For example, chromosome 1 is divided into 6 parts
(11, 12, . . . , 16), where the last part includes positions from both the first and second
chromosomes. After division, all parts are permuted and mapped to different positions.
As a result of the new mapping, the new position of a short read at Li,j = 〈xi|yj〉 be-
comes M(Li,j) = 〈k〉〈xi|yj〉, where M(.) is the mapping function for patient P, and k is
the mapping of the corresponding part. For example, the position of a short read located
in the first part of the first chromosome (part 11 in Fig. 5) becomes M(Li,j) = 〈3〉〈xi|yj〉
after the permutation and mapping. We note that as a result of the new positioning,
we add κ bits (to represent the mapping) in front of the original positions of each short
read (κ = 7 for the example in Fig. 5 as the positions on the genome are divided into
75 parts). Thus, for each patient, we re-define the positions of the short reads based on
this new positioning, before encrypting the positions of the short reads using OPE. By
doing so, we also change the ordering of the encrypted positions of the short reads. As
a consequence, a curious party at the biobank cannot infer which part of the patient’s
genome is queried by the MU from the stored (encrypted) positions of the short reads.
Finally, we assume that the MK keeps the mapping table MP (showing the mapping of
each part in each chromosome) for each patient P. Note that as the permutation is done
differently for each patient, the biobank cannot infer if two different patients are having
a similar genetic test.
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<Chromosome> | <Posi!on on the chromosome>

1 | 1-230M 2 | 1-240M …

PERMUTE

MAP

DIVIDE

1 | 200M-230M & 2 | 1-10M 1 | 1-40M 2 | 210M-240M & 3 | 1-10M 

91 122 11 26 232 81 201 221 132 171 16 43 …

11 12 13 14 15 16 21 22 23 24 25 26 …

<1> 91 <2> 122 <3> 11 <4> 26 <5> 232 <6> 81 <7> 201 <8> 221 <9> 132 <10> 171 <11> 16 <12> 43 …

<3> <1 | 1-40M>  

<4><2 | 210M-240M> & <4><3 | 1-10M> 

<11><1 | 200M-230M> & <11><2 | 1-10M> 

Fig. 5. Division, permutation and mapping of the positions on the whole genome.

The different parts of each short read are encrypted as follows: (i) The positions of the
short reads are encrypted using order preserving encryption (OPE), (ii) the cigar string
(CS) of each short read is encrypted using a semantically secure symmetric encryption
function (SE), and (iii) the content of each short read is encrypted using a stream cipher
(SC). We note that an SC also provides semantic security, and although we really need
an SC for the encryption of the content, one can also use an SC for the encryption of
the CS.

We represent the key used for the semantically secure encryption scheme between
two parties i and j as Ki,j. The symmetric OPE key that is used to encrypt the posi-
tions of the short reads of patient P is represented as KO

P . Further, the master key of
patient P, which is used to generate the keys of the SC is represented as MP . We denote

K
Ci,j

P as the SC key used to encrypt the content of the short read whose position is Li,j

(where Ci,j represents the content of the short read with position Li,j). We compute

K
Ci,j

P = H(MP ,F(Li,j , Si,j), Li,j), where Li,j is the (starting) position of the correspond-
ing short read (on the DNA sequence), Si,j is a random salt to provide different keys for
the short reads with the same positions, and H is a pseudorandom function. Moreover,
F(Li,j , Si,j) is a function that generates a nonce from the position and the random salt
of the corresponding short read. We note that the random salts of the short reads are
stored in plaintext. We represent the public-key encryption of message m under the pub-
lic key of i as E(Ki,m), the encryption of message m via a semantically secure symmetric
encryption function (SE) using the symmetric key between i and j as ESE(Ki,j ,m), and
the OPE of message m using the OPE key of P as EOPE(K

O
P ,m). Furthermore, we rep-

resent the SC encryption of the content of a short read as ESC(K
Ci,j

P , Ci,j), where Ci,j

represents the content of the short read at Li,j. In Fig. 6(a), we illustrate how the content
of a short read is translated to plaintext bits and encrypted using SC (by XOR-ing the
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Posi on (on Ref.) 9 10 11 12 13 14 16 17 * * 21 22 23 24 25 26 27 28

Content of SR in 

the SAM file a t g T A A A T G C T A T G C G A G

Plaintext content 

in binary
0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1

Key stream 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0

Encrypted 

content (XOR)
1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1

Masking vector 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Random masking

string
0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1

Masked enc. 

content (XOR)
1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0

Decrypted binary

content (XOR)
0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

Decrypted 

nucleo des
T G C T A A A G G C T G A T G G C A

Proper�es of the SR
CS of the SR before masking 3S3M1D2M2I3N8M

Posi on of the SR 12

Input parameters
Requested range of nucleo des 10-20

Non-consented posi ons {3,5,11,17,21}

Output parameters CS of the SR a#er masking 3O3M1D1M1O2I3N8O

Encoding nucleo des

A 00

T 01

C 10

G 11

(a)

(b) (c)

Fig. 6. Illustrative example for the encryption, masking and decryption of the content of a short read
(SR). For the clarity of the example, we simplified the format of the short read position (which is in the
form of Li,j = 〈xi|yj〉, as discussed before). The arrows on the right show the inputs of the corresponding
XOR operation. (a) Content of the SR (the 2 stars between positions 17 and 21 represent the positions at
which the SR has insertions, G and C), its binary representation (following the encoding in (b)), the key
stream to encrypt the corresponding content, and the format of the encrypted content (after the binary
plaintext content is XOR-ed with the key stream). Furthermore, following the discussion in Section 8.2,
we illustrate the masking vector generated at the MK considering the range of the requested nucleotides
and the patient’s consent (in (c)), the random masking string for the corresponding masking vector, and
the format of the masked content (generated by XOR-ing the encrypted content with the random masking
string). Finally, we show the format of the decrypted binary content, and the corresponding decrypted
nucleotides. (b) Encoding format of the nucleotides A,T,C, and G. (c) Properties of the corresponding
short read, requested range of nucleotides by the MU, non-consented nucleotides by the patient, and
format of the CS after masking. The different letters in the CS are described in Table 1.

content with the key stream). Finally, in Fig. 7, we illustrate the format of an encrypted
short read.11

We assume that the certified institution (CI), where the patient’s DNA is sequenced
and analyzed, has KO

P , MP , and KP,CI (KP,CI is used to encrypt the CSs of the short
reads) for the initial encryption of the patient’s genomic data. These keys are then deleted
from the CI after the sequencing, alignment, and encryption. We also assume that the
patient’s cryptographic keys for symmetric encryption, OPE, and SC are stored at the
MK, and the patient does not participate in the protocol (except for giving his consent).
Thus, for patient P, the MK stores KO

P , MP , and KP,CI along with the mapping table
MP (as discussed before). Finally, the MU only stores the public key of the MK, KMK .

11 We discuss the size of each field (i.e., start and end positions of each field) in the encrypted short read
in Section 10.
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EOPE( ,POS.) ESE( ,CS) ESC( ,CONT.)
RAND. 

SALT

Fig. 7. Format of an encrypted short read. The size of each field is discussed in Section 10.

8.2 Proposed Protocol

Typically, a specialist at the MU (e.g., a physician at the hospital or a specialized clinic
connected to the hospital) requests a range of nucleotides (on the DNA sequence of one or
more patients) from the biobank (either for a personal genetic test or for clinical research).
For simplicity of the presentation, we assume that the request is for a specific range of
nucleotides of patient P. We note that when the MU is embodied in a pharmaceutical
company, the MU does not know the real identities of the patients (i.e., participants
of a clinical trial). Thus, in this case, the MU asks for a certain range of nucleotides
of several pseudonymized patients from the biobank, who consented to participate in
the corresponding clinical trial (the pseudonyms of these patients are known by the
MU or by the biobank, and the general consent for the corresponding clinical trial is
forwarded to the MK for masking). We illustrate the connections between the parties
that are involved in the protocol in Fig. 8(a). In the following, we describe the steps of
the proposed protocol (these steps are also illustrated in Fig. 8(b)).

• Step 1: The patient (P) provides a sample (e.g., his saliva) along with his permis-
sion to the certified institution (CI) for sequencing. We assume that laws prevent DNA
sequencing of a (stolen) biological sample (e.g., hair) without the patient’s permission.

• Step 2: The sample is sequenced by the CI. Next, the CI aligns the shorts reads of the
patient with respect to the reference genome and constructs the SAM file of the patient.
The short reads of the patient are also encrypted at the CI (as discussed in Section 8.1).

• Step 3: The CI sends the encrypted SAM file to the biobank along with the corre-
sponding pseudonym of the patient. The CI also sends the mapping table MP for patient
P directly to the MK. We note that the first 3 steps of the protocol are executed only
once.

• Step 4: A specialized sub-unit at the MU requests nucleotides from the range [RL, RU ]
(RL being the lower bound and RU being the upper bound of the requested range) on the
DNA sequence of patient P for a genetic test. We note that an access control unit stores
the authorizations (i.e., access rights) of the original request owners (e.g., specialist
at a hospital) to different parts of the genomic data. These access rights of different
specialists to the SAM files are defined by the medical authorities. In our setting, the
access control unit is the MU, and the MU checks the access rights of the original
request owner before forwarding the request to the biobank. Once, the MU verifies that
the original request owner has the sufficient access rights to the requested range of
nucleotides, the MU generates a one-time session key KMK,MU , which will be used for
the secure communication between the MU and the MK (as we do not reveal the real
identity of the MU to the MK, as discussed in Section 7, this key is generated for each
session). The MU encrypts this session key with the public key of the MK to obtain
E(KMK ,KMK,MU).
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(a) (b)

Pa ent CI Biobank MK MU

1) Sample

2) Sequencing and 
Encryption @ CI

3) Encrypted short reads

4) E[Requested range of nucleotides], ID of the MU, E[session key], E[consent] 

6) E[upper and lower bound of the range]

7) Private retrieval of 
the reads @ biobank

8) E[positions], E[CSs]  and random salts of short reads

9) Construction of the 
masking vectors @ MK

11) Masking @ biobank
12) E[masked short reads], E[modified CSs]

E[positions] and E[decryption keys]

10) Masking request, E[modified CSs]
E[positions] and E[decryption keys]

5) E[Requested range of nucleotides], E[session key], E[consent] 
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(MK)
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Party

Curious 

Party

Specialized
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Fig. 8. (a) Connections between the parties in the proposed protocol. (b) The operations and message
exchanges in the proposed protocol.

The MU encrypts the lower and upper bounds of the requested range with
KMK,MU to obtain ESE(KMK,MU , RL||RU ) and sends the corresponding request to the
biobank along with the pseudonym of the patient P, the identification of the MU12,
E(KMK ,KMK,MU), and ESE(KMK,MU ,ΩP ), where ΩP is the pseudonymized consent of
the patient.13 The MK uses this pseudonymized consent ΩP to generate the masking
vectors (as in Step 9).

• Step 5: Once the biobank verifies that request comes from a valid source14, it for-
wards ESE(KMK,MU , RL||RU ), and ESE(KMK,MU ,ΩP ), along with the pseudonym of
the patient, and the encrypted session key E(KMK ,KMK,MU ) to the MK.

• Step 6: The MK decrypts the session key to obtain KMK,MU and decrypts the request
(ESE(KMK,MU , RL||RU )) to obtain RL and RU . As we discussed before, the position of
a short read is the position of the first aligned nucleotide in its content. Let Γ be the
maximum number of nucleotides in a short read. Then, the short reads with position
in [RL − Γ, RL − 1] might also include nucleotides from the requested range ([RL, RU ])
in their contents. Thus, the MK re-defines the lower bound of the request as RL − Γ in
order to make sure that all the short reads (which include at least one nucleotide from
the requested range of nucleotides) are retrieved by the biobank (as opposed to the lower
bound, the MK does not need to re-define the upper bound of the request).

Next, the MK determines where (RL − Γ) and RU are mapped to following the
mapping table MP of patient P (as discussed in Section 8.1). If both (RL − Γ) and
RU are on the same part (e.g., in Fig. 5), then the MK computes the range of short
read positions (to be retrieved by the biobank) as [M(RL − Γ),M(RU )], where M(.)

12 We reveal the real identity of the MU to the biobank to make sure that the request comes from a valid
source.

13 ΩP denotes the positions on the patient’s genome for which the patient does not give consent to the
original request owner (e.g., specialized sub-unit at the MU). ΩP can be digitally signed by a medical
authority to make sure that its content was not tampered with.

14 We assume that the biobank has a list of valid MUs, whose requests it will answer.
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is the mapping function for patient P. Otherwise (if they are not on the same part),
due to the permutation of the parts (in Section 8.1), the MK generates multiple ranges
of short read positions to make sure all short reads including at least one nucleotide
from [RL, RU ] are retrieved by the biobank. For simplicity of the presentation, we as-
sume (RL − Γ) and RU are on the same part. Finally, the MK computes the encrypted
range [EOPE(K

O
P ,M(RL − Γ)),EOPE(K

O
P ,M(RU ))], and sends this encrypted range to

the biobank (with the pseudonym of P).

• Step 7: The biobank retrieves all the short reads (in the SAM file of pa-
tient P) whose encrypted positions (EOPE(K

O
P ,M(Li,j))) are in [EOPE(K

O
P ,M(RL −

Γ)),EOPE(K
O
P ,M(RU ))], and constructs the set ∆ = {EOPE(K

O
P ,M(Li,j)) :

EOPE(K
O
P ,M(RL − Γ)) ≤ EOPE(K

O
P ,M(Li,j)) ≤ EOPE(K

O
P ,M(RU ))}. As OPE pre-

serves the numerical ordering of the plaintext positions, the biobank constructs the set
∆ without accessing the plaintext positions of the short reads.

• Step 8: The biobank provides the encrypted positions in ∆ along with the correspond-
ing encrypted CSs and the random salt values of the short reads to the MK.

• Step 9: The MK decrypts the corresponding positions and the CSs of the retrieved
short reads by using KO

P and KP,CI in order to construct the masking vectors for the
biobank. These masking vectors prevent the leakage of out-of-range content (in Fig. 3)
and non-consented nucleotides (in Fig. 4) to the MU, as we discussed in Section 5.2.

The MK can determine the actual position of a short read from its mapped position
as the MK has the mapping table MP for patient P (i.e., it can infer Li,j from M(Li,j)
using MP ). Using the position and the CS of a short read, the MK can determine the
exact positions of the nucleotides in the content of a short read (but not the contents of
the nucleotides, because the contents are encrypted and stored at the biobank). Using
this information, the MK can determine the parts in the content of the short read that are
out of the requested range [RL, RU ]. Furthermore, the MK can also determine whether
the short read includes any nucleotide positions for which the patient P does not give
consent (the patient’s pseudonymized consent, ΩP , is provided to the MK in Step 5).
Therefore, the MK constructs binary masking vectors indicating the positions in the
contents of the short reads that are needed to be masked by the biobank before sending
the retrieved short reads to the MU.

Let ΠP be the set of nucleotide positions (on the DNA sequence) for which the
patient P does not give consent (e.g., set of positions including privacy-sensitive SNPs of
the patient). Then, the set Σ = [RL, RU ] \ ΠP includes the positions of the nucleotides
that can be provided to the MU without masking. The masking vector for a short read
(with position Li,j) is constructed following Algorithm 1. In Fig. 6(a), we illustrate how
the masking vector is constructed for the corresponding short read, when the requested
range of nucleotides is [10, 20] and for a given set of nucleotide positions (on the DNA
sequence) for which the patient P does not give consent (as in Fig. 6(c)).

The MK also modifies the CS of each short read (if it is marked for masking) according
to the nucleotides to be masked. That is, the MK modifies the CS such that the masked
nucleotides are represented with a new operation “O” in the CS.15 By doing so, when

15 Alternatively, the consent of the patient can be used by the MU instead of modifying the CS. Thus,
the MU determines the masked nucleotides from the consent.
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Algorithm 1 Construct the masking vector Vm for short read with position Li,j = 〈xi|yj〉

Inputs: Li,j = 〈xi|yj〉, CS of the short read at Li,j , Positions of authorized nucleotides (Σ)
Output: Vm {Each nucleotide is represented by 2-bits, initially all bits are set to 0}
1: Np ← # pairs in the CS of the short read
2: P0 ← yj {Assign the position of the short read on chromosome xi to P0}
3: I ← 0 {Index of the nucleotides in the content of the short read}
4: for i← 1 to Np do
5: Get the ith pair of the CS with the fields ni and ℓi
6: ℓi ← Operation noted in the ith pair of the CS (from Table 1)
7: ni ← # nucleotides following the operation noted in ℓi
8: if ℓi = H ∨ ℓi = P then
9: do nothing
10: else if ℓi = S then
11: for j ← 0 to (ni − 1) do
12: Vm(1, 2(I + j)) ← 1, Vm(1, 2(I + j) + 1) ← 1 {Mark the (I + j)th nucleotide in the content

of the short read for masking}
13: end for
14: I ← I + ni

15: else if ℓi = M then
16: for j ← 0 to (ni − 1) do
17: if (P0) /∈ Σ then
18: Vm(1, 2(I + j))← 1, Vm(1, 2(I + j) + 1)← 1
19: end if
20: P0 ← P0 + 1
21: end for
22: I ← I + ni

23: else if ℓi = I then
24: if (P0) /∈ Σ then
25: for j ← 0 to (ni − 1) do
26: Vm(1, 2(I + j))← 1, Vm(1, 2(I + j) + 1)← 1
27: end for
28: end if
29: I ← I + ni

30: else if ℓi = D ∨ ℓi = N then
31: P0 ← P0 + ni

32: end if
33: end for

the MU receives the short reads (which include the requested nucleotides), it can see
which parts of them are masked (hence which parts of them it needs to discard for its
purposes). In Fig. 6(c), we illustrate how the CS of the corresponding short read changes
as a result of the masking vector in Fig. 6(a). Then, the MK generates the decryption
keys for each short read (whose position is in ∆) by using the master key of the patient
(MP ), positions of the shorts read, and the random salt values.16

• Step 10: The MK encrypts the positions, the (modified) CSs, and the generated
decryption keys of the contents of the short reads, using KMK,MU . Then, it sends the
masking vectors along with the encrypted positions, CSs and decryption keys to the
biobank. We note that in this step, the MK encrypts the actual positions of the short

16 The generation of the decryption keys for the SC is the same as the generation of the encryption keys
as we discussed in Section 8.1.
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reads (e.g., Li,j instead of M(Li,j)) as these positions will be eventually decrypted and
used by the MU, and the MU does not need to know the mapping table MP of the
patient.

• Step 11: The biobank conducts the masking by XOR-ing the bits of the encrypted
content of each short read (whose position is in ∆) with a random masking string. Each
entry (bit) of the random masking string is assigned as follows: (i) If the corresponding
entry is set for masking in the masking vector, it is assigned with a random binary value,
and (ii) it is assigned with zero, otherwise. We describe this process in Algorithm 2.
Furthermore, in Fig. 6(a), we illustrate how the masked encrypted content for the cor-
responding short read is constructed by XOR-ing the random masking string with the
encrypted content.

Algorithm 2 Construct the random masking string Vs and conduct the masking for
short read with position Li,j = 〈xi|yj〉

Inputs: Vm {Masking vector for the short read with position Li,j}

ESC(K
Ci,j

P , Ci,j) {Encrypted content with (encrypted) position EOPE(K
O
P ,M(Li,j)) in ∆}

Output: M{ESC(K
Ci,j

P , Ci,j)} {The masked content}
1: Vs ← zeros(1, size(Vm, 2))
2: for i← 1 to size(Vm, 2) do
3: if Vm(i) = 1 then
4: Vs(i)← Rand {Rand generates a random number from {0, 1}}
5: end if
6: end for
7: M{ESC(K

Ci,j

P , Ci,j)} ← ESC(K
Ci,j

P , Ci,j)⊕ Vs

• Step 12: Finally, the biobank sends the encrypted positions, CSs and decryption keys
(generated in Step 10 by the MK) along with the masked contents (generated in Step 11
by the biobank) to the MU. The MU decrypts the received data and obtains the requested
nucleotides of the patient.

9 Evaluation

Focusing on the leakage of genomic data, we evaluate the proposed privacy-preserving
system by using real genomic data to show (i) how the leakage of genomic data from
the short reads threatens the genomic privacy of a patient, and (ii) how the proposed
masking technique helps to prevent this leakage. We assume that the MU requests a
specific range of nucleotides of patient P (e.g., for a genetic test) from the biobank. In
practice, the requested range can include from one to thousands of nucleotides depending
on the type of the genetic test.

First, without the masking in place, we observe the ratio of unauthorized genomic
data (i.e., number of nucleotides provided to the MU that are out of the requested
range) to the authorized data (i.e., number of nucleotides within the requested range)
for various request sizes. For simplicity, we assume that all the nucleotides within the
requested range are considered as consented data (i.e., the situation in Fig. 4 is not
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Fig. 9. Ratio of unauthorized (leaked) genomic
data to the authorized data vs. the size of the
requested range of nucleotides, when there is no
masking in place.
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Fig. 10. Number of leaked nucleotides vs. time
for various request sizes, when there is no mask-
ing in place.

considered); and only those that are out of the requested range (but still provided to
the MU via the short reads) are considered as the unauthorized data. For the patient’s
DNA profile (i.e., SAM file), we use a real human DNA profile [33] (with an average
coverage of 8, meaning each nucleotide is present, on the average, in 8 short reads in the
SAM file, and each short read includes at most 100 nucleotides) and we randomly choose
the ranges of requested nucleotides from the entire genome of the patient. We illustrate
our results in Fig. 9. We observe that for small request sizes, the amount of leakage (of
unauthorized data) is very high compared to the size of authorized data. As the leakage
vanishes (e.g., the ratio in Fig. 9 becomes 0) with the proposed masking technique, we
do not show the leakage when the proposed masking technique is in place in Figs. 9-12.

Using the same DNA profile, we also observe the evolution in the amount of leaked
genomic data over time. For simplicity of the presentation, we assume slotted time and
that the MU conducts a genetic test on the patient at each time slot (by requesting
a particular range of nucleotides from a random part of his genome). In Fig. 10, we
illustrate the amount of genomic data (i.e., number of nucleotides) that is leaked to the
MU in 100 time-slots. The jumps in the number of leaked nucleotides (at some time-slots)
is due to the fact that some requests might retrieve more short reads comprised of more
out-of-range nucleotides. As before, leakage becomes 0 when masking is in place, which
shows the crucial role of the proposed scheme.

As discussed in Section 3, leakage of the nucleotides at the single nucleotide poly-
morphisms (SNPs) positions poses more risk for the genomic privacy of the patient.
Therefore, we also study the information leakage, focusing on the leaked SNPs of the pa-
tient as a result of different sizes of requests (from random parts of the patient’s genome).
In Fig. 11, we illustrate the number of SNPs leaked to the MU in 100 time-slots. We
observe that the number of leaked SNPs is more than twice the number of authorized
SNPs (which are within the requested range of nucleotides). When the proposed masking
technique is in place, the number of leaked SNPs (outside the requested range) becomes
0 in Fig. 11.
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Finally, we study the genomic data leakage (number of leaked nucleotides and SNPs)
when the MU tests the susceptibility of the patient [33] to a particular disease (i.e., when
the MU asks for the set of SNPs of the patient that are used to test the corresponding
disease). For this study, we use real disease markers [24]. We note that for this type of test,
the size of the requested range of nucleotides (by the MU) for a single SNP is typically
1, but the SNPs are from several parts of the patient’s genome. In Fig. 12, we illustrate
the genomic data leakage of the patient as a result of various disease susceptibility tests
each requiring a different number of SNPs from different parts of the patient’s genome
(on the x-axis we illustrate the number of SNPs required for each test). We again observe
that the leaked SNPs, as a result of different disease susceptibility tests, reveal privacy-
sensitive data about the patient. For example, leaked SNPs of the patient as a result of a
test for the Alzheimer’s disease could leak information about the patient’s susceptibility
to “smoking behavior” or “diabetes”.

In Table 2, we list a small subset of the leaked SNPs, along with their clinical nature,
as a result of the disease susceptibility tests in Fig. 12.17 For the patient’s genomics data
(i.e., SAM file), we used a real DNA profile [33] including around 300 million short reads
with a coverage of 10. We also use real disease markers [24].

It is worth noting that the SNPs in Table 2 are not the ones that are used to test
the patient’s susceptibility for the corresponding disease; they are the leaked SNPs due
to the corresponding genetic test (when there is no masking in place). For example, in
Table 2, the SNP with ID “rs6265” is not required to check the patient’s susceptibility
to the Alzheimer’s disease. However, it is leaked to the MU as one of the short reads of
the patient that include a marker for Alzheimer’s, also includes “rs6265” (as each short
read includes around 100 nucleotides, a short read could include more than one SNP).

We observe that as a result of this leakage, the patient’s (i) susceptibility to certain
diseases, and (ii) physical attributes (e.g., body mass index, susceptibility to be over-
weight, etc.) are revealed. Furthermore, a SNP might reveal more than one attributes
(e.g., “rs6265” in Table 2). We emphasize that leakage of SNPs (listed in Table 2) is
avoided when the proposed masking technique (described in Section 8.2) is in place (i.e.,
similar to the previous cases, the number of leaked nucleotides and SNPs is 0 when
masking is in place).

10 Implementation and Complexity Analysis

We implemented the proposed system and assessed its storage requirement and complex-
ity on an Intel Core i7-2620M CPU with a 2.70 GHz processor under Windows 7. Our
implementation is in Java and it relies on the MySQL 5.5 database. As before, for the
patient’s SAM file, we used a real DNA profile [33] including around 300 million short
reads (each short read including at most 100 nucleotides) with a coverage of 8.

We used the Salsa20 stream cipher [34] for its efficiency and security. We also used
the implementation of OPE from [35]. Finally, we used CCM mode of AES (with key
size of 256-bits) for the secure communication between the MK and the MU by using

17 We used the Ensembl database (http://www.ensembl.org/info/docs/variation/index.html) to deter-
mine the clinical nature of the leaked SNPs.
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ent diseases when there is no masking in place.
The values on the right y-axis correspond to
the number of leaked nucleotides.

the session key (in Section 8.2), and RSA (with key size of 2048-bits) for the public-key
encryption (Step 4 in Section 8.2). We note that the security of the proposed scheme relies
on the security of its underlying cryptographic protocols: (i) Salsa20 stream cipher [34]
is proven to be a semantically secure encryption algorithm, (ii) the security of RSA
relies on the problem of factoring large numbers and the RSA problem, and (iii) the
security of OPE is recently analyzed by Popa et al. [27] to prove that the ciphertext
values reveal no additional information about the plaintext values besides their order
(i.e., IND-OCPA [35]).18 As discussed, we also prevent the security flaws (specific to
genomic data) due to the knowledge of the orders of the encrypted positions by mapping
the positions of the short reads to new values.

We structured the fields in the encrypted short read (in Fig. 7) as follows: We reserved
the first 8-bytes for the encrypted position of the short read (via OPE). To save storage,
we devoted the next 64-bytes of the encrypted short read to the CS and the content of
the short read. As the input size of the stream cipher is 64-bytes, we encrypted the CS
together with the content and other (header) information of the short read using the
stream cipher. That is, out of the 64-byte input of the stream cipher, we allocated the
first 20-bytes for the CS, the next 25-bytes for the content (as each short read in the
used DNA profile includes at most 100 nucleotides), and the remaining 19-bytes for the
remaining information about the short read (or padding). Finally, the last byte of the
short read includes the plaintext random salt. Consequently, we computed the storage
cost as 21.6 GB per patient. We note that stream cipher encryption does not increase
the size of the data as it is the XOR of the key stream with the plaintext. The storage
overhead (due to the proposed privacy-preserving scheme) is due to the encryption of

18 Even though we used [35] for the implementation of OPE, a more recent version of OPE is shown to
be more secure and faster [27]. We did not use the version of OPE in [27] due to the non-availability
of a public implementation, but we are planning to integrate it in the future.
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DISEASE TESTED LEAKED SNP NATURE OF THE LEAKED SNP

Alzheimer's Disease

'rs4420638' Coronary Artery Disease

'rs4420638' Type II Diabetes

'rs6265' Smoking behavior

'rs6265' Weight

Breast Cancer
'rs2273535' Suscep!bility to Colon Cancer

'rs12255372' Type II Diabetes Mellitus

Cardiovascular Disease
'rs3091244' Ischemic Stroke

'rs599839' LDL Cholesterol

Crohn’s Disease
'rs17234657' Alzheimer's Disease

'rs1893217' Type 1 Diabetes

Ischemic Stroke
'rs10757278' Familial Abdominal Aor!c Aneurysm

'rs10757278' Suscep!bility to Coronary Heart Disease

Leukemia
'rs13397985' Crohn’s Disease

'rs872071' Interferon Regulatory Factor

Lung Cancer

'rs2273535' Suscep!bility to Colon Cancer

'rs1051730' Nico!ne Dependence

'rs1051730' Smoking Behavior

Mul!ple Sclerosis
'rs6897932' Type 1 Diabetes

'rs12722489' Crohn's Disease

Parkinson's Disease 'rs356219' Alpha Synuclein

Type II Diabetes Mellitus

'rs1801282' Alzheimer's Disease

'rs1801282' Early Onset Extreme Obesity

'rs1042713' Suscep!bility to Asthma, Nocturnal

'rs1042714' Suscep!bility to Obesity

'rs7901695' Coronary Heart Disease

Table 2. Nature of the leaked SNPs as a result of various genetic tests for different diseases.

the positions of the short reads by using OPE. A plaintext position is around 40 bits
(depending the number of parts in Fig. 5) and an encrypted position is 8-bytes using the
implementation of OPE in [35] (an encrypted position is 40-bytes using the more recent
and secure version of OPE in [27]).

We also evaluated the computation times for different steps of the proposed scheme
(following the operations in Fig. 8(b)) in Table 3. As shown in Table 3, the computation
time of the whole process is dominated by the retrieval of the reads at the biobank.
However, we observed that the time required for the retrieval of the reads does not
change with the size of the request. We note that encryption of the SAM file at the CI
(Step 2) is a one-time operation and the encryption time is dominated by the execution
of OPE. We used the implementation in [35] for the OPE. However, the OPE encryption
and decryption are shown to be about 80 times faster using the more recent and secure
version of the OPE in [27].

Overall, it takes approximately 5 seconds for the MU to receive the requested range
of nucleotides of the patient (Steps 4-12) after privacy-preserving retrieval and masking
(for a range size of 100, which includes on the average 23 short reads), which shows the
efficiency and practicality of the proposed scheme. We note that the computation time
of the whole process is dominated by the retrieval of the reads at the biobank (which
does not involve any cryptographic operations). Therefore, we can easily claim that the
cost of cryptographic operations is not a bottleneck for the proposed protocol.
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Encryp�on at the CI (Step 2) Request of nucleo�des at the MU (Step 4)

OPE encryp�on: 7 ms/SR SC encryp�on: 0.00048 ms/SR RSA encryp�on: 0.216 ms AES encryp�on: 0.064 ms

Private retrieval at the MK (Step 6) Private retrieval at the biobank (Step 7)

RSA decryp�on: 

7.8 ms

AES decryp�on: 

0.031 ms

2 x OPE encryp�on: 

14 ms

Search and retrieve:

4.5 sec. (for a request size of 100)

Construc�ng the masking vectors at the MK (Steps 9 and 10)

OPE decryp�on: 

7 ms/SR

SC decryp�on (for CS): 

0.00048 ms/SR

Construct the masking vector: 

0.016 ms/SR

Generate decryp�on keys for SC: 

0.026 ms/SR

Encrypt posi�ons (using AES): 

0.029 ms/SR

Encrypt CSs (using AES): 

0.028 ms/SR

Encrypt the decryp�on keys: 

0.030 ms/SR

Masking at the biobank (Step 11)

Masking: 0.015 ms/SR

Decryp�on at the MU (a!er Step 12)

AES decryp�on (for posi�ons): 

0.018 ms/SR

AES decryp�on (for CSs): 

0.017 ms/SR

AES decryp�on (for decryp�on 

keys): 0.016 ms/SR

SC decryp�on (for the 

content): 0.00048 ms/SR

Table 3. Computation times at different steps of the proposed scheme (following the steps in Fig. 8(b)),
where SR stands for the short read.

11 Conclusion

In this paper, we have introduced a privacy-preserving system for the storage, retrieval,
and processing of aligned, raw genomic data (i.e., SAM files). The proposed scheme
stores the SAM files of the patients at a biobank and lets the medical units (hospitals or
pharmaceutical companies) privately retrieve the data (they are authorized for) from the
biobank for genetic tests. We have shown that the proposed scheme efficiently prevents
the leakage of genomic data and preserves the genomic privacy of the patients. We are
confident that the proposed scheme will accelerate genomic research, because clinical-
trial participants will be more willing to consent to the sequencing of their genomes if
they are ensured that their genomic privacy is preserved.
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