

Variant and Invariant States for Reaction Systems

S. Srinivasan, J. Billeter and <u>D. Bonvin</u> Laboratoire d'Automatique EPFL, Lausanne, Switzerland

TFMST 2013, Lyon

Outline

- Concept of Variants and Invariants
- Concept of Vessel Extents
 - Each extent linked to the corresponding rate process
 - Presence of outlet(s) → vessel extents
 - Vessel extents of reaction, mass transfer, heat transfer
- Applications
 - Model reduction
 - Static state reconstruction
 - Incremental kinetic identification
- Conclusions

Homogeneous reaction systems

Balance equations

Homogeneous reaction system consisting of S species, R independent reactions, p inlet streams, and 1 outlet stream

Mole balances for S species

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathrm{T}} \mathbf{r}_{\mathbf{v}}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t) \mathbf{n}(t), \qquad \mathbf{n}(0) = \mathbf{n}_0$$

(S)
$$(S \times R)$$
 (R) $(S \times p)$ (p)

$$\mathbf{r}_{v}(t) = V(t)\mathbf{r}(t)$$
 considered as endogenous signal

$$\omega(t) = \frac{u_{out}(t)}{m(t)}$$

Global macroscopic view

Generally valid regardless of temperature, catalyst, solvent, etc.

Reaction variants and reaction invariants in the literature¹

• Linear transformation using **N**:

$$egin{bmatrix} \mathbf{y}_{r}(t) \ \mathbf{y}_{iv}(t) \end{bmatrix} = egin{bmatrix} \mathbf{N}^{\mathrm{T}+} \ \mathbf{p}^{\mathrm{T}} \end{bmatrix} \mathbf{n}(t) \qquad ext{with} \qquad \mathbf{N} \ \mathbf{P} = \mathbf{0}_{\mathrm{R} imes (\mathrm{S}-\mathrm{R})}$$

• Reaction variants \mathbf{y}_r and reaction invariants \mathbf{y}_{iv} describe the reactor state:

$$\begin{split} \dot{\mathbf{y}}_{r}(t) &= \mathbf{r}_{v}(t) + \mathbf{N}^{\mathrm{T}+} \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t) \mathbf{y}_{r}(t) \\ \dot{\mathbf{y}}_{iv}(t) &= \mathbf{P}^{\mathrm{T}} \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t) \mathbf{y}_{iv}(t) \end{split} \qquad \mathbf{y}_{r}(0) &= \mathbf{N}^{\mathrm{T}+} \mathbf{n}_{0} \\ \mathbf{y}_{iv}(0) &= \mathbf{P}^{\mathrm{T}} \mathbf{n}_{0} \end{split}$$

- y, are reaction and flow variants
- y_{iv} are reaction invariants but flow variants
- \mathbf{y}_r are pure reaction variants and \mathbf{y}_{iv} are true invariants only for batch reactors (with $\mathbf{u}_{in} = \mathbf{0}$, $\omega = 0$)
- Can we compute pure reaction variants and true invariants for open reactors?

¹Asbjornsen et al. (1970), *Chem. Eng. Sci.*, 25:1627-1639.

Vessel extents and true invariants

• Assumption: rank ($[\mathbf{N}^{\mathrm{T}} \ \mathbf{W}_{in} \ \mathbf{n}_{0}]$) = R + p + 1. Linear transformation:

$$\mathbf{x}(t) := egin{bmatrix} \mathbf{x}_{\scriptscriptstyle in}(t) \ \mathbf{x}_{\scriptscriptstyle in}(t) \ \mathbf{x}_{\scriptscriptstyle ic}(t) \ \mathbf{x}_{\scriptscriptstyle iv}(t) \end{bmatrix} = egin{bmatrix} \mathbf{R} \ \mathbf{F} \ \mathbf{C}^{\mathrm{T}} \ \mathbf{Q} \end{bmatrix} \mathbf{n}(t) = \mathcal{T} \, \mathbf{n}(t)$$

• Vessel extents of reaction \mathbf{x}_r and flow \mathbf{x}_{in} , discounting factor x_{ic} , and invariants \mathbf{x}_{iv} :

$$\dot{\mathbf{x}}_{r}(t) = \underbrace{\mathbf{R}\mathbf{N}^{\mathrm{T}}}_{\mathbf{I}_{R}} \mathbf{r}_{v}(t) + \underbrace{\mathbf{R}\mathbf{W}_{in}}_{\mathbf{0}} \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{x}_{r}(t) \qquad \mathbf{x}_{r}(0) = \mathbf{0}_{R}$$

$$\dot{\mathbf{x}}_{in}(t) = \underbrace{\mathbf{F}\mathbf{N}^{\mathrm{T}}}_{\mathbf{0}} \mathbf{r}_{v}(t) + \underbrace{\mathbf{F}\mathbf{W}_{in}}_{\mathbf{I}_{p}} \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{x}_{in}(t) \qquad \mathbf{x}_{in}(0) = \mathbf{0}_{p}$$

$$\dot{\mathbf{x}}_{ic}(t) = \underbrace{\mathbf{c}^{\mathrm{T}}\mathbf{N}^{\mathrm{T}}}_{\mathbf{0}} \mathbf{r}_{v}(t) + \underbrace{\mathbf{c}^{\mathrm{T}}\mathbf{W}_{in}}_{\mathbf{0}} \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{x}_{ic}(t) \qquad \mathbf{x}_{ic}(0) = 1$$

$$\dot{\mathbf{x}}_{i\nu}(t) = \underbrace{\mathbf{Q}\mathbf{N}^{\mathrm{T}}}_{\mathbf{0}} \mathbf{r}_{\nu}(t) + \underbrace{\mathbf{Q}\mathbf{W}_{in}}_{\mathbf{0}} \mathbf{u}_{in}(t) - \omega(t) \mathbf{x}_{i\nu}(t) \qquad \mathbf{x}_{i\nu}(0) = \mathbf{0}_{q}$$

$$q = S - R - p - 1$$

Four subspaces

S-dimensional space, R + p + 1 variants

$$\mathbf{x}(t) = \mathbf{\mathcal{T}} \, \mathbf{n}(t)$$
 $\mathbf{\mathcal{T}} = \left[\mathbf{N}^{\mathrm{T}} \, \mathbf{W}_{_{in}} \, \mathbf{n}_{0} \, \mathbf{P} \right]^{-1}$

 ${f P}$ orthogonal to ${f N}^{\scriptscriptstyle {
m T}}$, ${f W}_{\scriptscriptstyle \it in}$ and ${f n}_0$

$$\dot{x}_{r,i}(t) = r_{v,i}(t) - \omega(t) x_{r,i}(t) \quad x_{r,i}(0) = 0$$

$$\dot{x}_{in,j}(t) = u_{in,j}(t) - \omega(t) x_{in,j}(t) \quad x_{in,j}(0) = 0$$

$$\dot{x}_{ic}(t) = -\omega(t)x_{ic}(t)$$
 $x_{ic}(0) = 1$

$$\mathbf{x}_{iv} = \mathbf{P}^{\mathrm{T}} \, \mathbf{n}(t) = \mathbf{0}_q$$

amount that is still in the reactor

$$\mathbf{n}(t) = \mathbf{N}^{\mathrm{T}} \, \mathbf{x}_{r}(t) + \mathbf{W}_{in} \, \mathbf{x}_{in}(t) + \mathbf{n}_{0} \, \mathbf{x}_{ic}(t)$$

¹ Bhatt et al. (2010), *I&EC Research*, 49:7704-7717

Homogeneous CSTR - Experimental data

- Ethanolysis reaction with seven species (S=7), three reactions (R=3), two inlets (p=2) and one outlet
- Stoichiometric matrix (N) and inlet-composition matrix (W_{in}):

$$\mathbf{N} = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix} \quad \mathbf{W}_{in} \quad = \begin{bmatrix} w_{in,A} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w_{in,B} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$

Reaction extents?

Homogeneous CSTR - Computation of extents

Extension to fluid-fluid reaction systems

For one of the phases

 $[\]mathbf{n}(t) = \mathbf{N}^{\mathrm{T}} \mathbf{x}_{r}(t) + \mathbf{W}_{m} \mathbf{x}_{m}(t) + \mathbf{W}_{in} \mathbf{x}_{in}(t) + \mathbf{n}_{0} x_{ic}(t)$

 $R + p_m + p + 1$ variants

¹ Bhatt et al. (2010), *I&EC Research*, 49:7704-7717

Extension to reaction systems with heat balance equation

$$\mathbf{x}(t) := \mathcal{T} \begin{bmatrix} \mathbf{n}(t) \\ m(t) c_p \ \mathcal{T}(t) \end{bmatrix}$$
 dimension $S+1$

• "Decoupled" system

$$\dot{\mathbf{x}}_{r}(t) = \mathbf{r}_{v}(t) - \omega(t) \, \mathbf{x}_{r}(t) \qquad \mathbf{x}_{r}(0) = \mathbf{0}_{R} \\
\dot{\mathbf{x}}_{ex}(t) = \mathbf{q}_{ex}(t) - \omega(t) \, \mathbf{x}_{ex}(t) \qquad \mathbf{x}_{ex}(0) = 0 \\
\dot{\mathbf{x}}_{in}(t) = \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{x}_{in}(t) \qquad \mathbf{x}_{in}(0) = \mathbf{0}_{p} \\
\dot{\mathbf{x}}_{ic}(t) = -\omega(t) \, \mathbf{x}_{ic}(t) \qquad \mathbf{x}_{ic}(0) = 1 \\
\mathbf{x}_{iv} = \mathbf{0}_{q}$$

• Application: estimation of $q_{\rm ex}(t)$ or identification of heat-transfer coefficients independently of any kinetic information

Model reduction

- Dimensionality
 - d := R + p + 1, min(S, d) differential equations
 - However, transformation assumes knowledge of \mathbf{n}_0 , i.e., S initial conditions
- Elimination of fast modes via singular perturbation

The reactions (and not the associated numbers of moles) exhibit fast or slow dynamic behavior

→ transformed decoupled model is well suited for input estimation:

$$\dot{x}_{r,i}(t) = r_{v,i}(t) - \omega(t) x_{r,i}(t) \qquad x_{r,i}(0) = 0$$

Incremental kinetic identification via rates or extents

Computation of rates and extents

Rates

$$r_{v,i}(t) = (\mathbf{N}^{\mathrm{T}^{\dagger}})_i \dot{\mathbf{n}}_a^{RV}(t)$$
 (at least R measured species) with $\dot{\mathbf{n}}_a^{RV}(t) = \dot{\mathbf{n}}_a(t) - \mathbf{W}_{in,a} \mathbf{u}_{in}(t) + \omega(t) \mathbf{n}_a(t)$

 \rightarrow differentiation of sparse and noisy signal $\mathbf{n}_a(t)$

Vessel extents

$$\begin{aligned} \mathbf{x}_{r,i}(t) &= \left(\mathbf{N}^{\mathrm{T}^{\dagger}}\right)_{i} \mathbf{n}_{a}^{\mathsf{vRV}}(t) & \text{(at least R measured species)} \\ \text{with } \mathbf{n}_{a}^{\mathsf{vRV}}(t) &:= \mathbf{n}_{a}(t) - \mathbf{W}_{\mathsf{in},a} \, \mathbf{x}_{\mathsf{in}}(t) - \mathbf{n}_{0,a} \, x_{\mathsf{ic}}(t) \\ \\ \mathbf{x}_{r,i}(t) &= \mathbf{R}_{i} \, \mathbf{n}_{a}(t) & \text{(at least $R+p+1$ measured species)} \end{aligned}$$

ightarrow neither integration nor differentiation of the sparse and noisy signal $\mathbf{n}_a(t)$

Conclusions

- Transformation of numbers of moles to "decoupled" vessel extents
 - Transformation uses structural information $\mathbf{N}, \mathbf{W}_{in}, \mathbf{W}_{m}$ and knowledge of \mathbf{n}_{0}
 - Effect of outlets is accounted for → concept of vessel extent
 - Rates considered as time signals, e.g. $\mathbf{r}_{\nu}(t)$ and not $\mathbf{r}_{\nu}(\mathbf{c},T)$
- Possible applications
 - Homogeneous and fluid-fluid reaction systems
 - Model reduction
 - Static state reconstruction
 - Incremental kinetic identification
 - Heterogeneous catalytic reaction systems?
 - Distributed reaction systems?