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Abstract— Models of chemical reactors can be quite complex as
they include information regarding the reactions, the transfer of
species between phases, the transfer of energy, and the inlet and
outlet flows. Furthermore, the effects of the various phenomena
are quite intertwined and thus difficult to quantify from mea -
sured data. This paper proposes a mathematical transformation
of the balance equations that allows viewing a complex reaction
system via decoupled dynamic variables, each one associated with
a particular phenomenon such as a single chemical reaction,
a specific mass transfer or heat transfer between the reactor
and the jacket. Three aspects are investigated, namely, (i)the
decoupling of mole balance equations, (ii) the decoupling of
mole and heat balance equations, and (iii) the applicability of
the decoupling transformation for model reduction, static state
reconstruction and incremental kinetic identification.

Keywords: Reaction systems, state decoupling, reaction
variants, invariants, model reduction, kinetic identification,
incremental identification.

I. I NTRODUCTION

The (bio)chemical industry utilizes reaction processes to
convert raw materials into desired products that include
polymers, organic chemicals, vitamins, vaccines and drugs.
If these processes deal with chemical reactions, they might
also involve (i) material exchange via inlet/outlet flows, mass
transfers, convection, diffusion, and (ii) energy exchange via
heating and cooling. Modeling reaction systems is essential
for improved process understanding, design and operation.

Models of reaction processes are typically first-principles
models that describe the state evolution (the concentrations,
the temperature, the mass) by means of conservation equa-
tions of differential nature (molar balances, heat balances,
continuity equation) and constitutive equations of algebraic
nature (e.g. equilibrium relationships, rate expressions). These
models include information regarding the underlying reactions
(e.g. stoichiometries, heats of reaction, reaction kinetics), the
transfers of mass within and between phases, the transfer of
energy, and the operating conditions. A reliable description
of reaction kinetics and transport phenomena represents the
main challenge in building first-principles models for chemical
reaction systems. In practice, such a description is constructed
from experimental data collected both in the laboratory and
during production [1].

The various phenomena are tightly coupled, which makes
analysis difficult. The analysis would be greatly simplified
if one could somehow separate the effect of the various
phenomena and investigate each phenomenon individually.
Ideally, one would like to have specific variables (called
variants) to describe the dynamic behavior of the reactions,

mass and heat transfers, inlets, outlets, as well as variables
that areinvariant and can be discarded. Note that some of the
state variables are often redundant, as there are typicallymore
states (conserved quantities) than there are independent source
of variability (reactions, exchange terms). Hence, one would
like to have a systematic way of discarding the redundant
variables, thereby reducing the dimensionality of the model.

Asbjørnsen and co-workers [2], [3], [4] introduced the
concept of reaction variants and invariants and used it for
reactor modeling and control. However, for open reactors, the
reaction variants proposed in the literature are also affected by
the inlet and outlet flows and therefore represent more than the
reaction contributions. Friedly [5], [6] proposed to compute
the extents of “equivalent batch reactions”, associating the re-
mainder to transport processes. He then used them to describe
the dynamics of flow through porous media accompanied
by chemical reactions [7]. For open homogeneous reaction
systems, Srinivasan et al. [8] developed a nonlinear transfor-
mation of the numbers of moles to reaction variants, flow
variants, and reaction and flow invariants, thereby separating
the effects of reactions and flows. Later, Amrhein et al. [9]
refined that transformation to make it linear and therefore
simpler (at the price of losing the one-to-one property). They
also showed that, for a reactor with an outlet flow, the concept
of vessel extentis most useful, as it represents the amount of
material associated with a given process (reaction, transport)
that is still in the vessel. Bhatt et al. [10] extended that concept
to heterogeneous G–L reaction systems for the case of no
reaction and no accumulation in the film, the result being
decoupled vessel extents of reaction, mass transfer, inletand
outlet, as well as true invariants (i.e. identically equal to zero).

Various implications of reaction variants/invariants have
been studied in the literature. For example, Srinivasan et
al. [8] discussed the implications of reaction and flow vari-
ants/invariants for control-related tasks such as model re-
duction, state accessibility, state reconstruction and feedback
linearizability. Control laws using reaction variants have been
proposed for continuous stirred-tank reactors in [11], [12],
[13].

On the other hand, the fact that reaction invariants are
independent of reaction progress has been exploited for
process analysis, design and control. For example, reaction
invariants have been used to study the state controllability
and observability of continuous stirred-tank reactors [4], [14].
Reaction invariants have also been used to automate the task
of formulating mole balance equations for the non-reacting
part (such as mixing and splitting operations) of complex



processes, thereby helping determine the number of degrees
of freedom for process synthesis [15]. Furthermore, Waller
and Mäkilä [12] demonstrated the use of reaction invariants
to control pH, assuming that the equilibrium reactions are very
fast. Grüner et al. [16] showed that, through the use of reaction
invariants, the dynamic behavior of reaction-separation pro-
cesses with fast (equilibrium) reactions resembles the dynamic
behavior of corresponding non-reactive systems in a reduced
set of transformed variables. Aggarwal et al. [17] considered
multi-phase reactors operating at thermodynamic equilibrium
and were able to use the concept of reaction invariants, which
they labeled invariant inventories, to reduce the order of the
dynamic model and use it for control.

Furthermore, the concept of extent of reaction is useful to
describe the dynamic behavior of a chemical reaction since
a reaction rate can be expressed directly as the derivative
of the corresponding extent of reaction. Bonvin and Rippin
[18] used batch extents of reaction to identify stoichiometric
models without the knowledge of reaction kinetics. Reaction
extents have been used extensively for the kinetic identification
of both homogeneous and G–L reaction systems [19].

The paper is organized as follows. Section II presents a
novel wayof computing the vessel extents of reaction, mass
transfer and flow for homogeneous reactors with an outlet
flow. Sections III and IV generalize the transformation to
heterogeneous reactors and to models including a heat balance,
respectively. Section V discusses selected applications of the
decoupling technique, while Section VI concludes the paper.

II. D ECOUPLINGMOLE BALANCE EQUATIONS IN

HOMOGENEOUSREACTION SYSTEMS

This section first presents the computation of the extents of
reaction and flow for an homogeneous reaction system with
several inlets and one outlet. The reactor is general and not
limited to a constant-volume CSTR. Although the computed
extents are exactly the same as those in Amrhein et al. [9], the
computational approach is different and provides considerable
insight in the transformation.

A. Mole Balance Equations

The mole balance equations for an homogeneous reaction
system involvingS species,R reactions,p inlet streams and
one outlet stream can be written as follows:

ṅ(t) = N
T

rv(t) + Win uin(t) − ω(t)n(t) n(0) = n0, (1)

wheren is the S-dimensional vector of numbers of moles,
rv = V r with V the volume andr theR-dimensional reaction
rate vector,uin the p-dimensional inlet mass flowrate vector,
ω = uout

m
the inverse of the reactor residence time withm the

mass of the reaction mixture anduout the outlet mass flowrate,
N the R × S stoichiometric matrix,Win = M−1

w W̌in

the S × p inlet-composition matrix,Mw the S-dimensional
diagonal matrix of molecular weights,̌Win = [w̌1

in
· · · w̌p

in]
with w̌

j
in being theS-dimensional vector of weight fractions

of the jth inlet flow, andn0 the S-dimensional vector of
initial numbers of moles. Note that the reaction rates are
not modeled as functions of concentrations and temperature,

but rather as theendogenous time signalsrv(t). In fact,
rv(t) = V (t) r

(

c(t), T (t)
)

, but the concentration and temper-
ature dependencies are not modeled explicitly. It follows that
the kinetics are not included in Eq. (1), which therefore holds
independently of the kinetic laws and operating conditions.

The flowratesuin(t) and uout(t) are considered as inde-
pendent (input) variables in Eq. (1). The way these variables
are adjusted depends on the particular experimental situation;
for example, in a semi-batch reactor, some elements ofuin

can be adjusted to control the temperature; alternatively,in a
constant-volume reactor,uout is a function of the inlet flows.
The continuity equation (or total mass balance) is given by:

ṁ(t) = 1T

p uin(t) − uout(t) m(0) = m0, (2)

where1p is thep-dimensional vector filled with ones andm0

the initial mass. Note that the massm(t) can also be computed
from the numbers of moles as

m(t) = 1T

S Mw n(t), (3)

which indicates that Eqns (1) and (2) are in fact linearly
dependent. Hence, the continuity equation is not needed per
se, but it is often used to express the mass as a function of the
flows rather than the numbers of moles. The volumeV (t) can
be inferred from the massm(t) upon knowledge of the density,
which itself is a function of concentrations and temperature. If
needed, the concentrations are computed asc(t) = n(t)/V (t).

B. Decoupling Transformation

We look for a linear transformationT that decomposesn(t)
into the four partsxr(t), xin(t), xic(t) andxiv(t):
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n(t) = T n(t), (4)

such that the dynamic model (1) becomes:

ẋr(t) = RNT

| {z }

IR

rv(t) + RWin
| {z }

0

uin(t) − ω(t)xr(t) xr(0) = 0R

ẋin(t) = FNT

| {z }

0

rv(t) + FWin
| {z }

Ip

uin(t) − ω(t) xin(t) xin(0) = 0p

ẋic(t) = cTNT

| {z }

0

rv(t) + cTWin
| {z }

0

uin(t) − ω(t) xic(t) xic(0) = 1

ẋiv(t) = QNT

| {z }

0

rv(t) + QWin
| {z }

0

uin(t) − ω(t) xiv(t) xiv(0) = 0q ,

whereR, F andQ are matrices of dimensionsR×S, p×S,
andq×S, respectively, andc is aS-dimensional vector, with
q = S − R − p − 1 being the number of invariant quantities.

Choosing the transformation

T =
ˆ

N
T

Win n0 P
˜−1

, (5)

where the matrixP of dimension S × q is such that
PT

[

NT Win n0

]

= 0q×(S−q), gives the conditions shown
under the braces in Eq. (5), namely:
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T
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=

2

6

4

IR 0 0 0
0 Ip 0 0
0 0 1 0
0 0 0 Iq

3

7

5
. (6)

It follows thatNT R+Win F+n0 cT +PQ = IS , where
NTR represents theR-dimensional reaction subspace,WinF

the p-dimensional inlet subspace,n0 cT the one-dimensional
subspace indicating the effect of the outlet on the initial
conditions, andPQ theq-dimensional invariant subspace. All
subspaces add up to theS-dimensional species spaceR

S . Note
that the invariant subspace is orthogonal to the other subspaces
by construction, while the other subspaces are typically not
orthogonal to each other.

C. Vessel Extents

If rank ([NT Win n0]) = R + p + 1, the linear transfor-
mation (4) brings the dynamic model (1) to:

ẋr(t) = rv(t) − ω(t) xr(t) xr(0) = 0R (7a)

ẋin(t) = uin(t) − ω(t) xin(t) xin(0) = 0p (7b)

ẋic(t) = −ω(t) xic(t) xic(0) = 1 (7c)

xiv = 0q , (7d)

wherexr is the R-dimensional vector of extents of reaction
expressed in kmol,xin the p-dimensional vector of extents
of inlet flow expressed in kg,xic the scalar extent of initial
conditions that varies between1 and0 and indicates the part
of the initial conditions that is still in the vessel, andxiv

the vector of invariants. Note that each extent or transformed
variable is affected by its corresponding rate process and,
in the presence of an outlet (ω 6= 0), also by the inlet and
outlet flows. Hence, since each extent represents the amount
of material associated with the corresponding rate that is still
in the vessel, it is called “vessel extent”.

The transformed variables can be classified as follows:

1) The invariantsxiv are identically equal to zero and can
be discarded from the dynamic model. The invariant re-
lationshipsQn(t) = 0q represent constraints prevailing
among the variablesn(t).

2) The flows extentsxin(t) and xic(t) can be computed
from uin(t) and uout(t) in Eqns (7b)-(7c) and the
continuity equation (2).

3) The extents of reaction and the continuity equation form
the following decoupled system:

ẋr(t) = rv(t) − ω(t)xr(t) xr(0) = 0R

ṁ(t) = 1T

p uin(t) − uout(t) m(0) = m0.
(8)

With the knowledge of the independent variablesuin(t)
and uout(t), the continuity equation can be integrated
to compute the massm(t). Each extent of reaction
xr,i(t) relates to the corresponding reaction raterv,i(t)
and the inlet and outlet flows and is independent of the
other extents.

To reconstruct the numbers of molesn(t) from the var-
ious extents, one simply pre-multiplies Eq. (4) byT −1 =

[

NT Win n0 P
]

, which leads to:

n(t) = N
T

xr(t) + Winxin(t) + n0 xic(t). (9)

D. Representation in Reaction-Variant Forms

We present two different ways of eliminating the effect of
the inlet and outlet flows in the measured numbers of moles.

1. Reaction-variant form. Re-writting Eq. (1) as:

ṅ(t) − Win uin(t) + ω(t)n(t) = N
T

rv(t), n(0) = n0, (10)

and integrating gives:

n(t) − n0 − Win

Z t

0

uin(τ ) dτ +

Z t

0

ω(τ )n(τ ) dτ

= N
T

Z t

0

rv(τ ) dτ.

(11)

Defining the numbers of moles in reaction-variant (RV ) form,

n
RV (t) := n(t) − n0 − Win

Z t

0

uin(τ )dτ +

Z t

0

ω(τ )n(τ ) dτ,

(12)

and the batch extents of reaction,

ξ(t) :=

Z t

0

rv(τ ) dτ , (13)

gives:
n

RV (t) = N
T

ξ(t). (14)

2. Vessel reaction-variant form. If the inlet and outlet
flowrates uin(t) and uout(t) are known, one can compute
xin(t) andxic(t) according to Eqns (7b)-(7c) with the conti-
nuity equation (2). The contribution of the reactions, labeled
the numbers of moles in vessel reaction-variant (vRV ) form,
can be computed as follows from Eq. (9):

n
vRV (t) := n(t) − Winxin(t) − n0 xic(t), (15)

which gives:

n
vRV (t) = N

T

xr(t). (16)

Note thatnvRV (t) 6= nRV (t) in the presence of an outlet.

III. D ECOUPLINGMOLE BALANCE EQUATIONS IN

FLUID -FLUID REACTION SYSTEMS

This section extends the results obtained in the previous
section for homogeneous reaction systems to heterogeneous
fluid-fluid (F-F) reaction systems.

Let us consider a reaction system consisting of two phases,
namely, theG and L phases.1 The two phases are modeled
separately, with the mass-transfer ratesζζζ connecting the two
phases. TheL phase containsSl species,pl inlets and one

1AlthoughG andL are often the gas and liquid phases, they can also refer
to two distinct liquid phases.



outlet, while theG phase containsSg species,pg inlets and
one outlet. There arepm mass transfers taking place between
the two phases. Reactions occur in both phases, withRl

reactions in phaseL andRg reactions in phaseG.

A. Mole Balance Equations

The differential mole balance equations for bulkB, B ∈
{G, L}, read:

ṅb(t) = N
T

b rv,b(t) ± Wm,b ζζζ(t) + Win,b uin,b(t)

− ωb(t) nb(t) nb(0) = nb0,
(17)

with a positive sign (+) for phaseL and a negative sign (-) for
phaseG, and where the subscript(.)b is used to denote the
B phase withb ∈ {g, l}. The pm mass transfers are treated
as pseudo inlets with the unknown ratesζζζ, and Wm,b =
M−1

w,bĚm,b is the Sb × pm mass-transfer matrix,̌Em,b =
[

ě1
m,b

· · · ě
pm

m,b

]

with ě
j
m,b being theSb-dimensional vector

with the elements corresponding to thejth transferring species
equal to unity and the other elements equal to zero.

B. Decoupling Transformation

For phaseB, the linear transformationTb =
[

NT

b ±

Wm,b Win,b nb0 Pb

]−1
decomposesnb(t) into the five parts

xr,b(t), xm,b(t), xin,b(t), xic,b(t) andxiv,b(t):
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xr,b(t)
xm,b(t)
xin,b(t)
xic,b(t)
xiv,b(t)

3

7

7

7
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=
ˆ

N
T

b ± Wm,b Win,b nb0 Pb

˜−1

nb(t). (18)

C. Vessel Extents

If rank ([NT

b ± Wm,b Win,b nb0]) = Rb + pm + pb + 1,
the linear transformation (18) brings Eq.(17) to:

ẋr,b(t) = rv,b(t) − ωb(t) xr,b(t) xr,b(0) = 0Rb

ẋm,b(t) = ζζζ(t) − ωb(t) xm,b(t) xm,b(0) = 0pm

ẋin,b(t) = uin,b(t) − ωb(t) xin,b(t) xin,b(0) = 0pb

ẋic,b(t) = −ωb(t) xic,b(t) xic,b(0) = 1 .

(19)

The reconstruction of the numbers of molesnb(t) reads:

nb(t) = N
T

b xr,b(t) ± Wm,b xm,b(t)

+ Win,b xin,b(t) + nb0 xic,b(t).
(20)

IV. D ECOUPLINGMOLE AND HEAT BALANCE EQUATIONS

IN HOMOGENEOUSREACTION SYSTEMS

Let us consider an open non-isothermal homogeneous reac-
tor that involves heat exchange via a heating/cooling jacket.

A. Model Equations

The model includes the mole balance equations (1) and a
heat balance around the reactor [20]:

ṅ(t) = N
T

rv(t) + Win uin(t) − ω(t)n(t) n(0) = n0

Q̇(t) = (−∆H)T rv(t) + qex(t) + Ť
T

in uin(t) − ω(t)Q(t)

Q(0) = Q0,

(21)

whereQ = m cp T is an energy variable withT the reactor
temperature andcp the heat capacity of the reaction mixture,
qex is the heat flow from the jacket to the reaction mixture,
Ťin,j the p-dimensional vector of heat of the inlet streams
with Ťin,j = cp,in,j Tin,j and Tin,j the temperature of the
jth inlet, and(−∆H) the R-dimensional vector of reaction
enthalpies. For simplicity, let us assume that the inlet heats
Ťin are constant.

The model can be written in compact form using the(S+1)-

dimensional state vectorz(t) =

[

n(t)
Q(t)

]

:

ż(t) = A rv(t) + b qex(t) + C uin(t) − ω(t) z(t) z(0) = z0,

(22)

with A =

[

NT

(−∆H)T

]

, b =

[

0S

1

]

andC =

[

Win

ŤT

in

]

.

B. Vessel Extents

If rank
([

A b C z0

])

= R + p + 2, there exists a linear
transformation that decomposes the state vectorz(t) into the
five partsxr(t), xex(t), xin(t), xic(t) andxiv(t) and brings
Eq. (22) to:

ẋr(t) = rv(t) − ω(t) xr(t) xr(0) = 0R

ẋex(t) = qex(t) − ω(t) xex(t) xex(0) = 0

ẋin(t) = uin(t) − ω(t) xin(t) xin(0) = 0p

ẋic(t) = −ω(t) xic(t) xic(0) = 1

xiv = 0q ,

(23)

wherexex is the extent of heat exchange expressed in kJ. Note
that the extentsxr, xin andxic in Eq. (23) are those in Eqns
(7a)-(7c), which confirms the fact that the transformed model
(7a)-(7c) can be used to describe the reactions and flows also
in the absence of a heat balance.

The numbers of molesn(t) and the energyQ(t) can be
reconstructed from the transformed variables as follows:

z(t) = Axr(t) + bxex(t) + C xin(t) + z0 xic(t). (24)

A possible use of this decoupling regards the estimation
of qex(t) or the identification of heat-transfer coefficients,
independently of any kinetic information, from discrete mea-
surements ofz(t) and computation ofxex(t).

V. A PPLICATION OF THEDECOUPLINGTRANSFORMATION

The decoupling transformation can be used for two different
types of application, namely, (i) to simplify the dynamic model
and its analysis (see model reduction below), and (ii) to
process measured data for the purpose of modeling (see static
state reconstruction and kinetic identification below).

A. Model Reduction

Let us consider an homogeneous reaction system and its
transformed version, Eqns (7a)-(7c). OnlyR+p+1 differential
equations need to be integrated to compute the trajectories
n(t) given the initial conditionsn0. The dimensionality of the
system is therefored := R+p+1. However, note that Model
(7a)-(7c) isnot a minimal-state representation of System (1)



since rv(F) cannot be computed solely from the reduced
statesxr(t), xin(t) and xic(t). Indeed, the computation of
F(t) needed to describerv also requires the knowledge ofn0

according to Eq. (9).
The dimensionality isR for batch reactors andR + p

for both semi-batch reactors and constant-mass CSTR with
uout(t) = 1T

puin(t). The dimensionality can be reduced
further by eliminating fast modes using, for example, singular-
perturbation theory [21], [22]. Since the reactions (and not the
associated numbers of moles) exhibit fast or slow dynamic
behavior, the numbers of molesn typically cannot be classified
as fast or slow states, and therefore Model (1) is not suited
for application of singular-perturbation theory. In contrast, the
extent of reactionxr,i in Eq. (7a) is a function of the reaction
rate rv,i and, in the presence of an outlet, also ofω(t), the
inverse of the residence time. If necessary, the effect of the
outlet can be filtered out using system inversion [23] so as to
recover the batch extentξi(t), which can be used to separate
the system into fast and slow dynamics. For this, the dynamic
systemẋr,i(t) = rv,i(t) − ω(t) xr,i(t) is considered, with
rv,i(t) the unknown input signal andxr,i(t) the measured
(computed) output signal.

B. Static State Reconstruction

Eq. (15) can be used to reconstructn(t) from a subset
of measured numbers of moles. The key idea is thatxin(t)
andxic(t) can be calculated from the flows using Eqns (7b)-
(7c), that is, without knowledge of the kinetics since they are
reaction invariants. To set the notation, let the subscript(.)a

and(.)u denote the available (measured) and unavailable quan-
tities, respectively. Hence,na contains the numbers of moles
of Sa ≥ R available species andnu the numbers of moles of
Su = S − Sa unavailable species, With the measurement of
na(t), the reactor extentsxr(t) can be calculated andnu(t)
reconstructed as shown in the next proposition. The idea is
similar to that of the asymptotic observer proposed by Bastin
and Dochain (1990).

Proposition 1
Let N, Win, n0, uin(t) anduout(t) be known andna(t) be
measured. Furthermore, letNa be the(R × Sa) submatrix
of N corresponding to theSa measured species. IfNa has
rank R, the numbers of moles of the remainingSu species
can be reconstructed without knowledge of reaction kinetics as
follows:

ẋin(t) = uin(t) − ω(t)xin(t) xin(0) = 0p

ẋic(t) = −ω(t)xic(t) xic(0) = 1

n
vRV

a (t) = na(t) − Win,a xin(t) − na,0 xic(t)

xr(t) = (NT

a )† n
vRV

a (t)

nu(t) = N
T

uxr(t) + Win,u xin(t) + nu,0 xic(t).

(25)

Furthermore, consider the case with significant uncertainty in
the initial numbers of moles of the unmeasured speciesnu,0.
Letnu(t) andn̂u(t) denote the true and reconstructed numbers
of moles. Ifna(t) and the exchange terms can be measured with
negligible error, then the estimation errore(t) := n̂u(t)−nu(t)
converges asymptotically to zero in the presence of an outlet
flow.

Proof. (NT

a)† represents the Moore-Penrose pseudo-inverse of
NT

a . It exists and is unique ifNa has rank R. It follows from
the assumption of perfect measurement ofna(t), uin(t) and
uout(t) that the estimation errore(t) = n̂u(t)− nu(t) can be
evaluated from Eq. (25) as:

e(t) = xic(t) e(0). (26)

Computing the time derivative of the error and using the
expression in Eq. (7c) foṙxic(t) gives:

ė(t) = ẋic(t) e(0) = −ω(t)xic(t)e(0) = −ω(t)e(t)

e(0) = n̂u(0) − nu,0 .
(27)

Hence, the estimation error goes asymptotically to zero in the
presence of an outlet (ω(t) 6= 0). �

Note that, since the estimation errors of theSu unavailable
species are independent of each other, an initial error in any
of the Su species does not affect the numbers of moles
estimates of the remaining species. Note also that, if the
composition of fewer thanR species are measured, then
dynamic reconstruction, such as observer techniques relying
on the knowledge of reaction kinetics, should be used [24].

C. Kinetic Identification

Kinetic identification can be performed via either rates or
extents [19]. We will show that the route over extents has
certain advantages. In particular, the use of vessel extents is
highly recommended in the presence of an outlet flow.

⋆ Rate-based kinetic identification.For batch reactors, the
reaction ratesrv(t) can be computed through differentiation
of the measured numbers of molesn(t) and knowledge of
the stoichiometry. For semi-batch and CSTR reactors, one
would need to use the numbers of moles in reaction-variant
form nRV (t). Differentiation of Eq. (14) and solving forrv(t)
gives:

rv(t) = (NT)† ṅ
RV (t), (28)

where, from Eq. (12),̇nRV (t) can be computed aṡnRV (t) =
ṅ(t)−Winuin(t) + ω(t)n(t), which requires the differentia-
tion of the sparse and noisy number of moles signaln(t).

⋆ Extent-based kinetic identification.One can work with
either the batch extents or the vessel extents:

• The batch extents are obtained from Eq. (14),

ξ(t) = (NT)† n
RV (t). (29)

Note that the computation ofnRV (t) according to Eq.
(12) calls for the integration of the sparse and noisy
number of moles signaln(t).

• The vessel extents are obtained from Eq. (16),

xr(t) = (NT)† n
vRV (t). (30)

Neither integration nor differentiation of the sparse num-
bers of molesn(t) is required, which represents a sig-
nificant experimental advantage. Alternatively, one can



compute the vessel extentsxr(t) directly from the mea-
sured numbers of molesn(t) using the transformationT
of Eq. (5), provided the number of available (measured)
species is sufficient, i.e.Sa ≥ R + p + 1.

Kinetic identification is then performed by comparing the
rates or extents computed above to modeled values [19]. This
comparison can be done individually for each reaction. This
way, several rate expressions can be compared to experimental
data, one at the time, until the correct expression has been
found and the corresponding parameters identified.

VI. CONCLUSIONS

The concept of reaction variants and invariants has been
around for nearly 60 years. However, its applicability has
been limited to specific reactor arrangements with negligi-
ble overlap of the reaction and transport phenomena. The
reaction invariants, which are typically computed from the
knowledge of stoichiometry (or, almost equivalently, from
the atomic matrix) do not vary with the progress of the
reactions. The reaction variants are often chosen orthogonal to
the reaction invariants. Unfortunately, a reaction variant may
also be affected by other phenomena such as flows or mass
transfers. Similarly, although a reaction invariant is unaffected
by reaction, it may sense the effect of flows and mass transfers.

This paper has addressed the computation of variant and
invariant quantities for open reaction systems. The concept of
reaction variants and invariants used extensively in the context
of batch processing has been extended to take into account
the effects of inlet and outlet flows, and of mass transfers
between phases. Note that the invariants are true invariants
that are identically equal to zero and can be discarded from the
dynamic model. Isolation of the various phenomena is imple-
mented via decoupling of the balance equations through linear
transformation. The transformation uses structural information
about the reaction process, in particular the stoichiometry, the
inlet composition, the initial conditions, and the identity of
the species that transfer between phases. If this structural
information is constant, the transformation is globally valid
and straightforward to implement. Otherwise, things are more
complicated and may not even be possible.

The significance of this work is twofold: (i) at the scientific
level, the separation of reaction and transport phenomena
will have significant implications for kinetic identification
[19], model reduction [25], state reconstruction, and will
lead to a better understanding of heterogeneous chemical
reaction systems, and (ii) at the application level, a systematic
procedure will be available for developing kinetic models in
the laboratory and design targeted control and optimization
scheme for production. Both aspects will improve process
operation in the long run.

The results in this paper summarize the efforts that have
been done in the last decade to extend the basic concept
of reaction variants/invariants, originally defined for batch
homogeneous reactors, to multi-phase reaction systems with
inlets and outlets. More efforts are needed to push the theory
further and, for example, make it applicable to heterogeneous
catalytic systems.
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[14] G. Bastin and J. Lévine. On state accessibility in reaction systems.IEEE
Transactions Automatic Control, 38(5):733–742, 1993.

[15] S. B. Gadewar, M. F. Doherty, and M. F. Malone. Reaction invariants and
mole balances for plant complexes.Industrial & Engineering Chemistry
Research, 41:3771–3783, 2002.
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