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Abstract— Models of chemical reactors can be quite complex as mass and heat transfers, inlets, outlets, as well as vasabl
they include information regarding the reactions, the transfer of  that areinvariant and can be discarded. Note that some of the
species between phases, the transfer of energy, and the inid  gia16 yariables are often redundant, as there are typicealhe

outlet flows. Furthermore, the effects of the various phenomana o .
are quite intertwined and thus difficult to quantify from mea - states (conserved quantities) than there are indepenol@nes

sured data. This paper proposes a mathematical transformaon ~ Of variability (reactions, exchange terms). Hence, oneldou
of the balance equations that allows viewing a complex reaictn  like to have a systematic way of discarding the redundant
system via decoupled dynamic variables, each one assocthteith  variables, thereby reducing the dimensionality of the nhode
a partlgglar phenomenon such as a single chemical reaction, Asbjgrnsen and co-workers [2], [3], [4] introduced the
a specific mass transfer or heat transfer between the reactor . . : ; .
and the jacket. Three aspects are investigated, namely, (the concept of reaction variants and invariants and used it for
decoupling of mole balance equations, (i) the decouplingfo reactor modeling and control. However, for open reactdres, t
mole and heat balance equations, and (iii) the applicabilit of reaction variants proposed in the literature are also ity
the decoupling transformation for model reduction, static state  the inlet and outlet flows and therefore represent more then t
reconstruction and |ngremental kinetic identification. _ _reaction contributions. Friedly [5], [6] proposed to corteu
Keywords: Reaction systems, state decoupling, reactioe extents of “equivalent batch reactions”, associatiregre-
variants, invariants, model reduction, kinetic identifieR,  mgainder to transport processes. He then used them to describ
incremental identification. the dynamics of flow through porous media accompanied
by chemical reactions [7]. For open homogeneous reaction
systems, Srinivasan et al. [8] developed a nonlinear toansf
The (bio)chemical industry utilizes reaction processes tmation of the numbers of moles to reaction variants, flow
convert raw materials into desired products that includeariants, and reaction and flow invariants, thereby sejparat
polymers, organic chemicals, vitamins, vaccines and drugsée effects of reactions and flows. Later, Amrhein et al. [9]
If these processes deal with chemical reactions, they migtdfined that transformation to make it linear and therefore
also involve (i) material exchange via inlet/outlet flowsass simpler (at the price of losing the one-to-one property)eyrh
transfers, convection, diffusion, and (ii) energy exctew@g also showed that, for a reactor with an outlet flow, the cohcep
heating and cooling. Modeling reaction systems is esdentiaf vessel extens most useful, as it represents the amount of
for improved process understanding, design and operation.material associated with a given process (reaction, tatisp
Models of reaction processes are typically first-pringplethat is still in the vessel. Bhatt et al. [10] extended thatazpt
models that describe the state evolution (the concenmigtio to heterogeneous G-L reaction systems for the case of no
the temperature, the mass) by means of conservation equeaction and no accumulation in the film, the result being
tions of differential nature (molar balances, heat balancedecoupled vessel extents of reaction, mass transfer, anigt
continuity equation) and constitutive equations of algébr outlet, as well as true invariants (i.e. identically equatéro).
nature (e.g. equilibrium relationships, rate expresgiofsese Various implications of reaction variants/invariants éav
models include information regarding the underlying rigext  been studied in the literature. For example, Srinivasan et
(e.g. stoichiometries, heats of reaction, reaction kasgtithe al. [8] discussed the implications of reaction and flow vari-
transfers of mass within and between phases, the transferasfts/invariants for control-related tasks such as model re
energy, and the operating conditions. A reliable desanipti duction, state accessibility, state reconstruction amrdifack
of reaction kinetics and transport phenomena represests tinearizability. Control laws using reaction variants baveen
main challenge in building first-principles models for chieah  proposed for continuous stirred-tank reactors in [11],],[12
reaction systems. In practice, such a description is coctstd [13].
from experimental data collected both in the laboratory and On the other hand, the fact that reaction invariants are
during production [1]. independent of reaction progress has been exploited for
The various phenomena are tightly coupled, which makewocess analysis, design and control. For example, reactio
analysis difficult. The analysis would be greatly simplifiednvariants have been used to study the state controlkabilit
if one could somehow separate the effect of the varioumnd observability of continuous stirred-tank reactors [44].
phenomena and investigate each phenomenon individualReaction invariants have also been used to automate the task
Ideally, one would like to have specific variables (calledf formulating mole balance equations for the non-reacting
variantg to describe the dynamic behavior of the reactiongart (such as mixing and splitting operations) of complex
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processes, thereby helping determine the number of degrdms rather as theendogenous time signals,(¢). In fact,
of freedom for process synthesis [15]. Furthermore, Waller, (t) = V(¢) r(c(t),7'(t)), but the concentration and temper-
and Makila [12] demonstrated the use of reaction invdasianature dependencies are not modeled explicitly. It follokst t
to control pH, assuming that the equilibrium reactions amgyv the kinetics are not included in Eq. (1), which thereforedisol
fast. Gruner et al. [16] showed that, through the use ofti@ac independently of the kinetic laws and operating conditions
invariants, the dynamic behavior of reaction-separatiom p  The flowratesu,,(¢) and u,,,.(t) are considered as inde-
cesses with fast (equilibrium) reactions resembles thaayo  pendent (input) variables in Eq. (1). The way these vari@ble
behavior of corresponding non-reactive systems in a retlucare adjusted depends on the particular experimental igityat
set of transformed variables. Aggarwal et al. [17] consider for example, in a semi-batch reactor, some elementa,pf
multi-phase reactors operating at thermodynamic equilibr can be adjusted to control the temperature; alternativelg,
and were able to use the concept of reaction invariants,iwhi¢onstant-volume reactou,,,,, is a function of the inlet flows.
they labeled invariant inventories, to reduce the orderhef t The continuity equation (or total mass balance) is given by:
dynamic model and use it for control.

Furthermore, the concept of extent of reaction is useful to 1 (t) = Ly Wi (t) — tous (t) m(0) =mo, (2
describe the dynamic behavior of a chemical reaction since

a reaction rate can be expressed directly as the derivatiy@ere1, is thep-dimensional vector filled with ones and,

of the corresponding extent of reaction. Bonvin and Rippifne initial mass. Note that the masst) can also be computed
[18] used batch extents of reaction to identify stoichiameet from the numbers of moles as

models without the knowledge of reaction kinetics. Reactio
extents have been used extensively for the kinetic ideatifin m(t) = 15 My, n(t), 3)
of both homogeneous and G-L reaction systems [19].

The paper is organized as follows. Section Il presents gnich indicates that Eqns (1) and (2) are in fact linearly
novel wayof computing the vessel extents of reaction, masgependent. Hence, the continuity equation is not needed per
transfer and flow for homogeneous reactors with an outlel 1t it s often used to express the mass as a function of the
flow. Sections Il and IV generalize the transformation tQ,s rather than the numbers of moles. The volur{é) can
heterogeneous reactors and to models including a heatdgalar, . inferred from the mass () upon knowledge of the density,
respectively. Section V discusses selected applicationseo \yphich jtself is a function of concentrations and temperatifr

decoupling technique, while Section VI concludes the PapPeheeded, the concentrations are computee{&is= n(t)/V (t).

Il. DECOUPLINGMOLE BALANCE EQUATIONS IN ] ]
HOMOGENEOUSREACTION SYSTEMS B. Decoupling Transformation

This section first presents the computation of the extents of We look for a linear transformatioh that decomposes(t)
reaction and flow for an homogeneous reaction system withto the four parts,.(t), x,,(t), z:.(t) andx,,(t):
several inlets and one outlet. The reactor is general and not

L - R
limited to a constant-volume CSTR. Although the computed ;(((tg) F
extents are exactly the same as those in Amrhein et al. [©], th zie(t)| = |c” n(t) =7 n(t), (4)
computational approach is different and provides conaialer Xio(t) Q

insight in the transformation. )
g such that the dynamic model (1) becomes:

A. Mole Balance Equations N
. %, (t) = RNT 1y (t) + RW,,, w,,, () — w(t) %, (¢ ~(0)=0
The mole balance equations for an homogeneous reactlc))(n( ) Sy @) —_" () = w(t) x- (1) x-(0) = Or

. . . . . Ir 0
system involvingS species,R reactionsp inlet streams and . -
. in(®) = FNT £y () + FWi, win (8) — w(t) Xin (¢ in(0) =0
one outlet stream can be written as follows: Xin (1) \O/-/r ( )+H,—’u () = w®)xin () xin(0) =0y
IP
.ic t) = TNT v(t TWin in(t) — t ic(t ic 0)=1
A(t) = N'ry(t) + Woouon(t) —w(®)nt)  n0)=no, (1) 0 7EL —" M+ e Winuin®) —w®melt)  2:e(0)
0
Xiu(t) = QNT 1y (t) + QWin uin(t) — w(t) X0 (t) Xiv (0) = Og,
wheren is the S-dimensional vector of numbers of moles, - 5

r, = V r with V the volume and the R-dimensional reaction

rate vectoru,, the p-dimensional inlet mass flowrate vector,WhereR, F andQ are matrices of dimensions x S, p x S,

w = Xeut the inverse of the reactor residence time withthe andg x S, respectively, and is a S-dimensional vector, with
mass of the reaction mixture and,, the outlet mass flowrate, ¢ =S — R — p — 1 being the number of invariant quantities.
N the R x S stoichiometric matrix, W,, = M, 'W,, Choosing the transformation

the S x p inlet-composition matrixM,, the S-dimensional
diagonal matrix of molecular weightdV,,, = [w, - W]
with w7, being theS-dimensional vector of weight fractions
of the jth inlet flow, andn, the S-dimensional vector of where the matrixP of dimension S x ¢ is such that
initial numbers of moles. Note that the reaction rates arB™ [NT W.. no} = Oyx(5—q), gives the conditions shown
not modeled as functions of concentrations and temperatutender the braces in Eq. (5), namely:

T = [N" W,, no P] ', ®)



[NT W,, ny P], which leads to:

R Ir 0 O O
CFT N" W, noP]= |5 & 00 ©6) n(t) = NTx, (t) + Winxin (1) + 10 ic(2). ©)
Q 0 0 01,

It follows thatN" R + W, F+noc™ + P Q = Is, where D, Representation in Reaction-Variant Forms
o . . .
N'R represents thé&-dimensional reaction subspadd/,..F We present two different ways of eliminating the effect of

the p dlmer)spnall inlet subspace, c” the one dlmenS|0_n§1I. ﬁhe inlet and outlet flows in the measured numbers of moles.
subspace indicating the effect of the outlet on the initial

conditions, and® Q theq—d_imens_ional invar_iant subspace. All 1 peaction-variant formRe-writting Eq. (1) as:
subspaces add up to tsedimensional species spaie . Note

that the invariant subspace is orthogonal to the other sudesp | .

by construction, while the other subspaces are typically ng*(?) = Win win(t) +w(®)n(t) = N'ru(t),  n(0) =no,  (10)
orthogonal to each other.

and integrating gives:
C. Vessel Extents

If rank ((N™ W, ng]) = R+ p + 1, the linear transfor- n(t) — no — W, ' W, (1) dr + /tw(T) n(r)dr
mation (4) brings the dynamic model (1) to: 0 0 (11)
= NT/ ry(7)dT.
0
X, (t) =1y (t) —w(t) x.(t) x.(0)=0r (7a3) - . , :
o () = 1 () — w(t) %00 (1) %, (0)=0, (7h) Defining the numbers of moles in reaction-variaR#{) form,
'ict:* t icll ic():l 7c t t
Tie(t) w(t) zic(t) zc(0) (7c) n®(t) ;== n(t) —ng — W, i, (7) dr+/ w(r)n(r) dr,
X = 0g , (7d) 0 0 12)

wherex, is the R-dimensional vector of extents of reaction _
expressed in kmolx,, the p-dimensional vector of extents and the batch extents of reaction,

of inlet flow expressed in kgy;. the scalar extent of initial ¢

conditions that varies betwednand 0 and indicates the part £(t) 12/0 ry(7)dT, (13)
of the initial conditions that is still in the vessel, and, gives:

the vector of invariants. Note that each extent or transéatm : n"™ (t) = NT£(t). (14)

variable is affected by its corresponding rate process and,
in the presence of an outlet (# 0), also by the inlet and
outlet flows. Hence, since each extent represents the amoy
of material associated with the corresponding rate thatills s
in the vessel, it is called “vessel extent”.

n%' Vessel reaction-variant formlf the inlet and outlet
owrates u,,(t) and u,,,(t) are known, one can compute
x,,(t) andz;.(t) according to Eqns (7b)-(7c) with the conti-
nuity equation (2). The contribution of the reactions, labe
The transformed variables can be classified as follows: the numbers of moles in vessel reaction-variam¥’) form,
1) The invariantsx;, are identically equal to zero and cancan be computed as follows from Eq. (9):
be discarded from the dynamic model. The invariant re-
lationshipsQ n(¢) = 0, represent constraints prevailing
among the variablea(t).
2) The flows extentst,, (t) and z;.(t) can be computed Which gives:
from u,,(t) and u,,.(t) in Egns (7b)-(7c) and the

n"™(t) == n(t) — WinXin(t) — no 40 (t), (15)

vRV _ T
continuity equation (2). n" (1) = N (8). (16)
3) The extents of reaction and the continuity equation form
the following decoupled system: Note thatn**" (¢) # n"V(¢) in the presence of an outlet.
X, (t) = ro(t) — w(t)x.(t) x,.(0) = Og 1. DECOUPLINGMOLE BALANCE EQUATIONS IN
m(t) = 1w () — Uous (t) m(0) = mo. (8) FLUID-FLUID REACTION SYSTEMS

This section extends the results obtained in the previous

With the knowledge of the independent variabies(t)  section for homogeneous reaction systems to heterogeneous

and .., (t), the continuity equation can be integratedyid-fluid (F-F) reaction systems.
to compute the massn(¢). Each extent of reaction | et us consider a reaction system consisting of two phases,
x,.i(t) relates to the corresponding reaction rafe(t)  namely, theG and L phases. The two phases are modeled
and the inlet and outlet flows and is independent of th§eparately, with the mass-transfer ragesonnecting the two
other extents. phases. Thd. phase contains; species,p; inlets and one

] To reconstruct th_e numbers of m0|@$t) from the var- 1Although G and L are often the gas and liquid phases, they can also refer
ious extents, one simply pre-multiplies Eq. (4) By ' = to two distinct liquid phases.



outlet, while theG phase contains$, speciesp, inlets and _ _ _
one outlet. There arg,, mass transfers taking place betweetVhere@ = mc, T'is an energy variable with" the reactor
the two phases. Reactions occur in both phases, with temperature and, the heat capacity of the reaction mixture,

reactions in phasé and R, reactions in phasé. ge is the heat flow from the jacket to the reaction mixture,
T;n,; the p-dimensional vector of heat of the inlet streams

A. Mole Balance Equations W]|Ith Tin,j = Cpyin,j Tinj and_Tiw» Fhe temperature of t.he

The differential mole balance equations for butk B € | inlet, and(—AH) the R-dimensional vector of reaction

{G, L}, read: enthalpies. For simplicity, let us assume that the inletthea
T,, are constant.

1y (£) = NE 1oy () £ Woo C(8) + Wi W (1) The model can be written in compact form using ¢5e-1)-

) 5 i, 1M, 17
— wy(t) my(t) ny(0) = ny0, () dimensional state vecta(t) = {5((?)}

with a positive sign (+) for phask and a negative sign (-) for
phaseG, and where the subscrift), is used to denote the 2(t) = Aro(t) + b gea(t) + Cuin(t) —w(t) 2(t)  2(0) = 2o,

. 22
B phase withb € {g, I}. The p,, mass transfers are treated (22)
as pseudo inlets with the unknown rat¢sand W,,, = . _ N* _ |0s Wi
- . L™ with A = , b= andC = | &' |.
M;}bEm,b is the S, x p,, mass-transfer matrixg,,, = A (-AH)" 1 Ty,
.1 ~ D . i . . .
[em,b em,b} with &/, , being theS,-dimensional vector
with the elements corresponding to tftl transferring species B. Vessel Extents
equal to unity and the other elements equal to zero. If rank ([A b C 2z0]) = R+ p + 2, there exists a linear
_ _ transformation that decomposes the state veztor into the
B. Decoupling Transformation five partsx, (t), e (t), X, (t), zic(t) andx,,(t) and brings
For phaseB, the linear transformatiory, = [Ng + Eg. (22) to:
—1 . .
W,.., W.., my P;] ~ decomposen,(t) into the five parts %, (t) = 1o(t) — w(t) x.(t) x,(0) = Og
X b(t)y X (1) Xin (1), Ticp(t) @andx;, p(t): Gen(t) = qen(t) — w(t) Tealt Zer(0) =0
® Xin(t) = Wi () — w(t) Xin(t x,(00=0, (23
;‘ni ) die(t) = —w(t) ie(t) zie(0) =1
Xinp ()| = [NF + W, Wiy mpo Py] "my(t).  (18) X =0y ,
ic t . .
iz((t; wherez., is the extent of heat exchange expressed in kJ. Note

that the extentx,, x,, andz;. in Eq. (23) are those in Eqns
(7a)-(7c), which confirms the fact that the transformed nhode
(7a)-(7c) can be used to describe the reactions and flows also
If rank (N7 =W, , Wi, 5 my0]) = Ry +pm + o+ 1. in the absence of a heat balance.
the linear transformation (18) brings Eq.(17) to: The numbers of moles(t) and the energy)(t) can be
reconstructed from the transformed variables as follows:

C. Vessel Extents

XT,b(t) = I‘mb(t) - wb(t) XT,b(t) me(O) = oRb

X b (t) = C(t) — wp(t) Xoms(t) Xm,5(0) = Op,, (19) z(t) = AX.(t) + bxex(t) + Cxin(t) + 2o wic(t).  (24)
Xinb(t) = Winp(t) — ws(t) Xin,b(t) Xinb(0) = Op,

Bicp(t) = —wo(t) Tie,p(t) Ticp(0) = 1. A possible use of this decoupling regards the estimation

of ¢..(t) or the identification of heat-transfer coefficients,
independently of any kinetic informatiofrom discrete mea-
surements o&(t) and computation of. (t).

The reconstruction of the numbers of moiegt) reads:

0y (t) = Nj X, 5(t) & W X o (t)

20
+ Wi b Xin,b(t) + Dpo Tic,p(t). (20)

V. APPLICATION OF THEDECOUPLING TRANSFORMATION

The decoupling transformation can be used for two different
IV. DECOUPLINGMOLE AND HEAT BALANCE EQUATIONS  types of application, namely, (i) to simplify the dynamic deb
IN HOMOGENEOUSREACTION SYSTEMS and its analysis (see model reduction below), and (i) to
Let us consider an open non-isothermal homogeneous regcocess measured data for the purpose of modeling (see stati
tor that involves heat exchange via a heating/cooling jacke state reconstruction and kinetic identification below).

A. Model Equations A. Model Reduction
The model includes the mole balance equations (1) and a| et us consider an homogeneous reaction system and its
heat balance around the reactor [20]: transformed version, Eqns (7a)-(7c). Oity-p+1 differential
N equations need to be integrated to compute the trajectories
n(t) = N"ry(t) + Win win(t) —w(@)n(t)  n(0) =mno n(t) given the initial conditionsy. The dimensionality of the

Q) = (—AH) 1y (t) 4 qea(t) + Ti win(t) —w(t) Q(t) (21)  system is thereforé := R+ p+ 1. However, note that Model
Q(0) = Qo, (7a)-(7c) isnot a minimal-state representation of System (1)



since r,(F) cannot be computed solely from the reducedProof. (NT)' represents the Moore-Penrose pseudo-inverse of

statesx, (t), x;,(t) and z;.(t). Indeed, the computation of NT. It exists and is unique iN, has rank R. It follows from

F(t) needed to describe, also requires the knowledge nf  the assumption of perfect measuremenigft), u,,(¢) and

according to Eq. (9). u,..(t) that the estimation erra#(¢t) = n,(¢t) — n,(t) can be
The dimensionality isR for batch reactors and® + p evaluated from Eg. (25) as:

for both semi-batch reactors and constant-mass CSTR with

u,.(t) = 1Lyu,(t). The dimensionality can be reduced e(t) = wic(t) e(0). (26)

further by eliminating fast modes using, for example, slagu

perturbation theory [21], [22]. Since the reactions (antdthe Computing the time derivative of the error and using the

associated numbers of moles) exhibit fast or slow dynamigxpression in Eq. (7c) fai;.(t) gives:

behavior, the numbers of molegypically cannot be classified

as fast or slow states, and therefore Model (1) is not suited €(t) = Zic(t) (0) = —w(t) zic(t) e(0) = —w(t) e(t)

for application of singular-perturbation theory. In cadtr, the e(0) =Ny, (0) —nyp.

extent of reactior, ; in Eq. (7a) is a function of the reaction o ) )

rater,; and, in the presence of an outlet, alsougt), the Hence, the estimation error goes asymptotically to zerdén t

inverse of the residence time. If necessary, the effect ef tfPresence of an outletu(t) # 0). u

outlet can be filtered out using system inversion [23] so as to Note that, since the estimation errors of tig unavailable

recover the batch extedi(t), which can be used to separatei#)ecies are independent of each other, an initial error yn an

the system into fast and slow dynamics. For this, the dynam the S, species does not affect the numbers of moles
systemd.,i(t) = rvi(t) — w(t) ,.i(t) is considered, with oqinaies of the remaining species. Note also that, if the
ro(t) the unknown_lnput signal and.;(t) the measured composition of fewer thanR species are measured, then
(computed) output signal. dynamic reconstruction, such as observer techniquesncelyi
on the knowledge of reaction kinetics, should be used [24].

@7)

B. Static State Reconstruction

Eqg. (15) can be used to reconstruett) from a subset C. Kinetic Identification

of measured numbers of moles. The key idea is shaft) Kinetic identification can be performed via either rates or
andz;.(t) can be calculated from the flows using Eqns (7b)extents [19]. We will show that the route over extents has
(7c), that is, without knowledge of the kinetics since theg a certain advantages. In particular, the use of vessel exient
reaction invariants. To set the notation, let the subsdript  highly recommended in the presence of an outlet flow.
and(.),, denote the available (measured) and unavailable quan-
tities, respectively. Hencen,, contains the numbers of moles
of S, > R available species amd, the numbers of moles of

Su =5 — 5, unavailable species, With the measurement %he stoichiometry. For semi-batch and CSTR reactors, one
n,(t), the reactor extentg,.(¢) can be calculated and,, () . 2 )

. " . would need to use the numbers of moles in reaction-variant
reconstructed as shown in the next proposition. The idea S n®V (). Differentiation of Eq. (14) and solving far, (1)
similar to that of the asymptotic observer proposed by Basti_. ’ 9 g fat,

and Dochain (1990). gives:

* Rate-based kinetic identificatiofror batch reactors, the
reaction rates, (¢) can be computed through differentiation
f the measured numbers of molast) and knowledge of

Proposition 1 r,(t) = (N")"a™ (1), (28)

LetN, W,,, ng, u,,(t) andu,,,(t) be known andh,(t) be RV RV
measured. Furthermore, 126, be the(R x S,) submatrix Where, from Eq. (12)n™" (¢) can be computed as ™" (1) =
of N corresponding to thé, measured species. IN, has 1) = Wiw.. () +w(t)n(t), which requires the differentia-
rank R, the numbers of moles of the remainisg species 10N Of the sparse and noisy number of moles sign(@).
can be reconstructed without knowledge of reaction kisei& + Extent-based kinetic identificatior©One can work with
follows: either the batch extents or the vessel extents:

« The batch extents are obtained from Eq. (14),

(12) calls for the integration of the sparse and noisy
number of moles signah(t).

Furthermore, consider the case with significant uncegtamt  « The vessel extents are obtained from Eq. (16),

the initial numbers of moles of the unmeasured spenies.

Xin(t) = Win(t) — w(t) xin(t) Xin(0) = 0p N
Eie(t) = —w(t) zic(t) zic(0) =1 E@)=(IN")"'n™" (). (29)
02"V (1) = ng(t) — Win,a Xin (t) — Da 0 Tic(t) (25) . _
x,(t) = (NI 2 (¢) Note that the computation ai? (¢) according to Eq.
)

_ T vRV
Letn,(t) andn,(t) denote the true and reconstructed numbers x,(t) = (NT)'n""" (2). (30)
of moles. Ifn,,(t) and the exchange terms can be measured with
negligible error, then the estimation eregt) := 1, (t) —n,,(t) Neither integration nor differentiation of the sparse num-

converges asymptotically to zero in the presence of anioutle bers of molesa(t) is required, which represents a sig-
flow. nificant experimental advantage. Alternatively, one can



compute the vessel extents(¢) directly from the mea-
sured numbers of molas(¢) using the transformatiof
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Kinetic identification is then performed by comparing the
rates or extents computed above to modeled values [19]. Thig)
comparison can be done individually for each reaction. This
way, several rate expressions can be compared to expedimen
data, one at the time, until the correct expression has been
found and the corresponding parameters identified. [3]

[4]
VI. CONCLUSIONS

The concept of reaction variants and invariants has beef3]
around for nearly 60 years. However, its applicability has
been limited to specific reactor arrangements with negligi-
ble overlap of the reaction and transport phenomena. Th§]
reaction invariants, which are typically computed from the
knowledge of stoichiometry (or, almost equivalently, from g
the atomic matrix) do not vary with the progress of the
reactions. The reaction variants are often chosen ortraigon (9]
the reaction invariants. Unfortunately, a reaction variaay
also be affected by other phenomena such as flows or mass
transfers. Similarly, although a reaction invariant isfieeted 1]
by reaction, it may sense the effect of flows and mass tramsfer

This paper has addressed the computation of variant aHdl
invariant quantities for open reaction systems. The canakp [12]
reaction variants and invariants used extensively in theed
of batch processing has been extended to take into account
the effects of inlet and outlet flows, and of mass transfe
between phases. Note that the invariants are true invariant
that are identically equal to zero and can be discarded fhem t[14]
dynamic model. Isolation of the various phenomena is imple;
mented via decoupling of the balance equations throughidine
transformation. The transformation uses structural imfation
about the reaction process, in particular the stoichioym#ie
inlet composition, the initial conditions, and the idetif
the species that transfer between phases. If this strlictul&!
information is constant, the transformation is globallyidia
and straightforward to implement. Otherwise, things areemo1s]
complicated and may not even be possible.

The significance of this work is twofold: (i) at the scientific[lg]
level, the separation of reaction and transport phenomena
will have significant implications for kinetic identificain
[19], model reduction [25], state reconstruction, and willyy
lead to a better understanding of heterogeneous chemical
reaction systems, and (ii) at the application level, a syate

. . . S . [21]
procedure will be available for developing kinetic modeis i
the laboratory and design targeted control and optiminatig22]
scheme for production. Both aspects will improve process
operation in the long run. 23]

The results in this paper summarize the efforts that have
been done in the last decade to extend the basic conc?ﬁﬁ
of reaction variants/invariants, originally defined fortdia
homogeneous reactors, to multi-phase reaction systenfs wi2s]
inlets and outlets. More efforts are needed to push the yheor
further and, for example, make it applicable to heterogaaeo
catalytic systems.

[16]

rinivasan.
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