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Abstract:  Optical coherence tomography (OCT) and optical coherence
microscopy (OCM) allow the acquisition of quantitative three-dimensional
axial flow by estimating the Doppler shift caused by moving scatter-
ers. Measuring the velocity of red blood cells is currently the principal
application of these methods. In many biological tissues, blood flow is
often perpendicular to the optical axis, creating the need for a quantitative
measurement of lateral flow. Previous work has shown that lateral flow
can be measured from the Doppler bandwidth, albeit only for simplified
optical systems. In this work, we present a generalized model to analyze
the influence of relevant OCT/OCM system parameters such as light source
spectrum, numerical aperture and beam geometry on the Doppler spectrum.
Our analysis results in a general framework relating the mean and variance
of the Doppler frequency to the axial and lateral flow velocity components.
Based on this model, we present an optimized acquisition protocol and
algorithm to reconstruct quantitative measurements of lateral and axial flow
from the Doppler spectrum for any given OCT/OCM system. To validate
this approach, Doppler spectrum analysis is employed to quantitatively
measure flow in a capillary with both extended focus OCM and OCT.
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OCIS codes: (170.4500) Optical coherence tomography; (280.2490) Flow diagnostics;
(170.6900) Three-dimensional microscopy.
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1. Introduction

Optical coherence tomography (OCT) is an interferometric imaging technique that allows three-
dimensional label-free imaging of biological tissues and cells [1]. Besides structural imaging,
OCT has been used extensively for functional imaging, where blood flow imaging in living
tissue is arguably one of the most important applications. Blood flow imaging methods based
on OCT can be divided into two categories: angiographic methods that image the structure of
the vasculature in tissue [2—8], and velocimetric methods measuring the velocity of red blood
cells [9-18]. While the former techniques use some form of motion contrast to yield a qualita-
tive image of blood vessels, the latter allow a quantitative estimation of the blood flow speed.
Most quantitative methods are ultimately based on measuring the Doppler frequency shift of
light scattered by moving particles, but use different approaches to estimate the speed of the
scatterers from the acquired data. All these methods require the acquisition of a time-series of
A-scans or B-scans. Hence, the highest Doppler frequency that can be measured without alias-
ing is given by half the acquisition rate. The most straightforward approach is to evaluate the lo-
cal phase difference between time samples, from which the Doppler frequency is then obtained.
In joint spectral and time domain OCT, Fourier transformations are performed along both time
and wavenumber dimensions, yielding the spatially resolved Doppler spectrum [14,19,20]. At
each location, the Doppler shift is estimated as the frequency corresponding to the maximum
magnitude position or to the center of mass using circular statistics [21]. Autocorrelation-based
methods involve a similar acquisition scheme but calculate the Doppler shift by searching the
maximum in the power spectral density calculated as the Fourier transform of the autocorrela-
tion [16].

In all these quantitative methods, the estimated Doppler frequency is eventually used to cal-
culate the axial velocity component of moving scatterers. However, in a number of biological
applications (e.g. neurology and ophthalmology), many capillaries are oriented nearly perpen-
dicular to the optical axis, making the axial flow component too small to be measured in small
vessels such as capillaries. It is therefore crucial to provide a reliable measurement of the lateral
component.
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The lateral velocity component can be estimated from the width of the Doppler frequency
spectrum [22-24,24-27]. Indeed, because wave vectors in the beam illuminating the sample
and in the collected backscattered light have an angular spread with respect to the optical axis,
they will experience different Doppler shifts, causing broadening of the Doppler spectrum.
This effect is called spectral broadening due to beam geometry [28]. Proskurin et al. argued
that the finite transit time of scatterers through the focal volume causes spectral broadening
[25]. This effect can be shown to be equivalent to broadening due to beam geometry [28]. The
equivalence can be understood intuitively by considering the effects of increasing the numerical
aperture (NA) of an optical system. A higher NA results in a larger angular spread of wave
vectors, increasing broadening of the Doppler spectrum due to the beam geometry argument.
Equivalently, the increased angular spread of wave vectors yields an improved lateral resolution,
thereby reducing transit time through the focus, which results in broadening of the Doppler
spectrum.

A conceptually different method to measure axial and lateral flow velocity components as
well as diffusion was presented by Lee et al. [44]. Their method is based on dynamic light
scattering measurements with OCT and involves fitting the autocorrelation of the OCT signal to
a model. While this method allows to extract a large amount of information about the local flow
properties, the non-linear fitting of the model’s many parameters requires an intricate algorithm
resulting in long computation times.

Phase noise in the interferometer creates Doppler broadening even in the absence of flow,
thus imposing a limit on the minimum detectable lateral flow velocity [14,29]. Therefore, the
larger the Doppler frequency broadening for a given flow velocity vector, the better the sensi-
tivity to small flow changes. Higher NA increases Doppler broadening due to the lateral flow
component [23]. Hence, to image slow lateral flow or to detect small flow changes, a higher NA
is advantageous. In this case, optical coherence microscopy (OCM) can have an advantage over
OCT. For OCM systems employing Gaussian beams however, this results in a reduced depth of
focus. In this work, we use extended focus optical coherence microscopy (xfOCM) to counter
this problem. xfOCM uses a Bessel mode to illuminate the sample and a Gaussian mode to
collect scattered light [30]. The Bessel-Gauss configuration achieves a high lateral resolution
of 1.3 um, maintained over an extended depth of focus of 400 um.

To date, the models developed to analyze Doppler broadening in OCT have all assumed
Gaussian modes and light source spectra. In this work, we develop a model that allows arbitrary
light source spectra, and arbitrary illumination and detection modes. This allows modeling of
arbitrary axial and lateral parts of the point spread function, respectively. Given the optical
system’s parameters, our model can be used to correctly combine the measured central Doppler
frequency and Doppler broadening to provide quantitative images of axial and lateral flow
velocities. To validate the model, we perform quantitative imaging of lateral and axial flow in a
capillary channel using both an OCT system with Gaussian modes and an xfOCM instrument.

2. Theory

2.1.  Fourier domain coherent imaging for static scattering

Typical Fourier domain implementations of OCT record an interferogram as a function of
wavenumber at each position in a lateral raster scan. After background subtraction and as-
suming the backscattered light intensity is small compared to the reference light intensity, the
signal of interest in each wavenumber channel is

1(k) o< R{U; (k)Un(K)] (D

where U, is the reference field amplitude and U, the scattered field amplitude measured by the
system. Each wavenumber channel can be treated as being monochromatic. The optical system
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is characterized by its (achromatic) illumination mode m;(a,b) and detection mode my4(a,b),
parametrized in the entrance principal plane with coordinates p = (a,b), as in Fig. 1(a).

(a) illumination
detection
~., low NA
S
high NA

Fig. 1. Schematic representations of wave vectors and the principal planes of an objective.
(a) The axes and definitions used in the model. P and Q are the entrance and exit principal
planes of the objective, respectively. (b) A low NA system has a small angular spread of
wave vectors; lateral flow is therefore not detected because the flow velocity vector v,
is then perpendicular to K = k;(p;) — ks(py). Equal Gaussian illumination and detection
modes are shown in the schematic. (c) Higher NA systems have a larger angular spread
of wave vectors and the scalar product is no longer always zero, allowing the detection of
lateral flow.

We will assume that the objective lens obeys Abbe’s sine condition [31]. For scalar waves and
under the Debye approximation [32], the incident light field in the focal volume at a position r
measured from the focal point, can be written as a superposition of plane waves with different
angular directions [33]:

o Jk : 2
Un(r:K) = 575(6) [ mi(ps) expl—jr -1e(pi)] &, @)
P

where f is the focal length of the objective, k;(p;) describes the illumination wave vectors at
the exit principal plane and S(k) is the spectral envelope of the field. In the notation Uy, (r;k),
r is a variable for the function U;, whereas k is a parameter indicating the (monochromatic)
wavenumber channel. The direction cosines of k; are functions of p; = (a;,b;):

a; bl’
ai:?a ﬁi:?a %:m (3)

The plane waves are scattered upon interaction with the sample. Using the first order Born
approximation [34], the scattered field in the principal plane is

exp (—klra(pa) )

4
Ira(pa) — 1| " @

Us(pask) = /U,-,,(r;k)F(r;k)
4

where ry(py) describes the exit principal plane of the objective (as shown in Fig. 1(a)) and
F(r;k) is the scattering potential. The scattering potential can be expressed in terms of the
sample susceptibility (assumed to be non-dispersive):

K K

Frk) = §x(r) =

(n(r)—1) (5)

#186931 - $15.00 USD Received 17 Apr 2013; revised 29 Jun 2013; accepted 12 Jul 2013; published 17 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21, No. 15| DOI:10.1364/0OE.21.017711 | OPTICS EXPRESS 17715



Because [ry| = f > |r|, we can write

—Jjkf
Us(pack) ~ [ Un(esk)F (e explie - ()] &' ©®
\4

Finally, the coupling into the detection mode needs to be considered:

Unk) = [ 124(p)Us(Pa )PP ™
P

For a detailed analysis of the tomogram reconstruction from Eq. (7), we refer to the works of
Villiger et al. [35] and Sheppard et al. [36]. In the case of NA — 0, both k; and k; are parallel to
the optical axis, as shown in Fig. 1(b). Then, k; = —k; = k1, and hence the measured scattered
field would be:

o< kS(k / F(r;k)exp (—2jkz) d’r. (8)

If the scattering potential is taken to be a set of scattering layers, the classical layer model for
OCT image formation is retrieved. In this work however, we will start from Eq. (7) without
further approximation because the NA is crucial to measure lateral and axial flow components.

2.2.  Fourier domain coherent imaging for dynamic scattering

When scatterers in the sample are moving, the scattering potential becomes a function of time
and can be separated in a static and dynamic part:

F(r;t,k) = Fy(r;k) + Fy(r;,k). )

The dependence of the dynamic term F; on the time parameter ¢ is assumed to be on a much
slower time-scale than the period of the light wave, such that the monochromatic approximation
leading to Eq. (4) remains valid. A sample containing different ensembles of uniformly moving
rigid scatterers can be modeled by:

ZFdn —Vat:k), (10)

where the v, are the velocity vectors of the ensembles and n runs over the contributing ensem-
bles. To evaluate the volume integral in Eq. (6) for each of the ensembles of moving scatterers,
we can adopt a coordinate system rp = r — v, that is moving along with the ensemble. The
time-dependent part U, (¢; k) of the measured field is then:

m(t,k) o< ZkS /d3l‘o Fyn(rosk /md Pd /ml pi)exp[—j(ro+vat) - K]d*pid®py | ,

1D
where K=K(py, p;) =k;(p;) —ks(ps)- In Eq. (11), the Fourier transformed scattering potential
can be identified:

Fyn(K) = / Fyn(ro:k)e 0Ky, (12)

From the measurement of the field U,,,, OCT systems attempt to reconstruct the depth resolved
scattering potential of the sample at each position in a lateral raster scan. Typically, an inverse
Fourier transform of Eq. (1) is calculated over k to this end. For this reconstruction to be ac-
curate at some distance from the focal point, either the range of K(py,p;) must be limited by
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mg(pg) and m;(p;) such that ry - K effectively measures the optical path length along the depth
direction (i.e. ro - K ~ 2zk), or advanced reconstruction algorithms need to be applied. The for-
mer solution is valid within good approximation in the focal volume of low NA or extended
focus systems [35]. The latter solution has been investigated under the name of interferometric
synthetic aperture microscopy (ISAM) [37-39]. In this work, we will assume either one of the
solutions is adopted to ensure correct reconstruction. Defocussing effects will therefore not be
considered.
Finally, the time-dependent part of the measured field can be rewritten as:

N .
Un(o.4) o« Y kS(K) [ ma(pa) [ mi(p) Fia(K)exp (— vt K) ity (13
n=0 P P

In this expression, the functions m,(p,) and m;(p;) can be interpreted as distribution functions
for the variables p; and p;. Integration over these variables creates the Doppler spectrum as
follows. For each realization of p; and p;, the corresponding illumination and detection wave
vectors can be found, as shown in Fig. 1(a). Their direction cosines are given by Eq. (3). Every
such pair of illumination and detection wave vectors determines a Doppler frequency shift per
wavenumber channel:

1
fD(Vnapdapi):EVH'K(pthpi)' (14)
The weight of each frequency in the Doppler spectrum is then given by:
ma(pa)mi(pi)Fan(K). (15)

In the extreme case of zero NA shown in Fig. 1(b), we find that the distribution reduces to a
single Doppler frequency, as expected. Moreover, lateral flow will not be detected in that case,
since v, - K = 0. Conversely, when the NA is increased, K spans a range of angles due to the
spread of wave vectors in the illumination and detection modes, as shown in Fig. 1(c). There-
fore, a broadened Doppler frequency distribution will be seen and lateral flow can be measured.
An analysis of the Doppler spectrum allows the measurement of both flow components, as will
now be shown.

2.3.  Doppler spectrum per wavenumber channel: mean and standard deviation

To analyze the Doppler spectrum per wavenumber channel, the weighted mean u[fp;k| and
standard deviation o|fp;k| of the Doppler frequency are evaluated:

Ip Jp 0 (Vi Pa pi)ma(pa)mi(p;)d*pid*py
k| = — , 16
Hlfo:A Ip [pma(pa)mi(p;)d®p;d®py (16)

o*fpsk] = ulfz]—u*fol. (17)

For the sake of simplicity, a single point scatterer has been taken into account (F,(K) o<
k> exp [—jr,-K]). In other words, back-scattering is approximated to be uniform within the
system’s aperture. The model in principle also allows different types of scatterers by incor-
porating Fd,n(K) in the Doppler frequency weight, but such an analysis is beyond the scope of
this work. Since most optical systems exhibit rotationally symmetric illumination and detection
modes, polar coordinates (p, 0) will be used to calculate the integrals in the entrance principal
plane. Considering one ensemble of point scatterers with velocity vector v = (v, vy,v;), we find
for the mean Doppler frequency for one wavenumber channel:

nk My; Mgy
= ) ) 1
Hlfoik] = 1. (M n Ml’d) , (1)
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where n is the refractive index of the medium and the following notation for integrals of the
illumination mode has been adopted:

R
M = [ pmip)dp, (19)

‘R
Ms; = /0 p’mi(p)dp, 20)

R
M = [/ -pomipp. @)

with R the radius of the entrance pupil. Analogous notation is used for integrals of the detection
mode. Eq. (18) confirms that the mean Doppler frequency is determined solely by the axial flow
component. Moreover, when a moderate NA objective is used, m(p) is significantly different
from zero only for p < f and therefore My ~ fM,. This approximation is further verified in
Fig. 2(b). The mean Doppler frequency then reduces to the known formula:

wlfpik] = nvk/m. (22)

In general, the variance of the Doppler frequency is dependent on all flow components:

212 212
2 . - n k A ) 2 n k 2
(e} [fD,k] = WE (Vx +Vy) =+ WCVZ7 (23)
with ) 5
M3 Msq My, Mig 2
A= 4p 24 B= R C=2f"—A—B. (24)
My; My M;, M,

The magnitudes of the ratios My/M; and M3/M,, are shown in Fig. 2 for Gaussian and Bessel

modes. The dependence of the Doppler broadening on A, f and B can be interpreted as follows.
As mentioned in the introduction, it has been shown that broadening of the Doppler spectrum
due to beam geometry is equivalent to broadening due to the finite transit time of scatterers
moving through the focal volume [28]. Hence, Doppler broadening due to lateral flow is higher
when the lateral resolution is higher. Higher lateral resolution requires increasing the NA, which
in turn will increase A, as shown in Fig. 2(c). This explains the presence of A in the first term of
Eq. (23). The second term measures broadening due to pure axial flow, which is caused by the
angular spread of wave vectors with respect to the axial component of the velocity vector. Wave
vectors with different angles measure different Doppler frequencies. Equivalently, this can be
interpreted by the finite depth of focus of the system, which limits the focal volume axially.
The depth of focus therefore creates Doppler broadening due to the finite axial transit time of
scatterers moving through the focal volume. For high NA Gaussian systems, the depth of focus
will be reduced and the factor C increases, as shown in Fig. 2(d). However, this effect is only
of importance when the flow is mostly axial, since C < A/2, as can be seen by comparing
Fig. 2(c) with (d). Note that for extended focus systems with ideal Bessel illumination and
detection modes (m; 4(p) = 6(p — po)), we find C = 0 for all NA.

Figure 3 shows the mean and standard deviation of the Doppler frequency calculated using
Eq. (18) and Eq. (23) for different angles of the velocity vector, and for different NAs. The mean
Doppler frequency shown in Fig. 3(c) is seen to be almost independent of the NA, as predicted
by the approximation leading to Eq. (22). For pure axial flow, however, we see that the mean
Doppler frequency is slightly lower for higher NA. This is due to the smaller mean z-component
of K for higher NA. On the other hand, a higher NA increases the Doppler broadening, as
evidenced in Fig. 3(d). When a typical OCT system of NA = 0.05 is compared to a system
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Fig. 2. (a) llumination or detection mode in the principal plane for Gaussian mode (blue)
and Bessel mode (green) in a system with NA = 0.3. (b) The ratio M /M normalized to
the focal length f for Gaussian and Bessel modes as a function of NA. For lower NA,
My /M, approach f. (c) M3/M| normalized to f? as a function of NA. (d) C =2f>—A—B
normalized to f? as a function of NA for Gaussian illumination and detection modes. Note
that C < M3/M1.

with NA = 0.3, the Doppler broadening for lateral flow is increased about sixfold. Fig. 3(d)
confirms that even for pure axial flow, some Doppler frequency broadening remains, especially
for higher NA. This is caused by the second term of Eq. (23), as explained above.

2.4.  Spatially resolved Doppler spectrum

To yield depth-resolved imaging of the Doppler spectrum, we build on the method of joint
spectral and time domain OCT (jstdOCT) [14]. After subtraction of the background spectrum,
the interferograms recorded by the spectrometer are first mapped from the wavelength to the
wavenumber space. Then, the inverse Fourier transform is calculated along the wavenumber
axis:

- 1 ,
Un(t,1) = o / Un(t,k)e/ dk, (25)

where 2/ represents optical path length, and the factor 2 takes into account the double path
due to the reflection configuration. As discussed above, we will assume that U,,(t,!) correctly
represents the depth resolved sample structure. The Doppler spectrum can be estimated from
the Fourier transform of Eq. (25) along ¢. After this Fourier transform, we have a measurement
of the Doppler spectrum for each depth resolution. Indeed, the integral over k in Eq. (25) selects
one resolution volume at depth /. More details on the full algorithm are given in section 3.4.
The integration over the k-spectrum will cause the Doppler frequency distribution to broaden.
Indeed, fp in Eq. (14) depends linearly on £, the scattering potential in the Doppler frequency
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Fig. 3. (a) The velocity vector v of a point scatterer makes an angle ¢ with the optical
axis. (b) Equal Gaussian illumination and detection modes for an optical system with f =
16.4 mm. NA = 0.05, 0.3 and 0.5 for the blue, green and red curves respectively. (¢) Mean
Doppler frequency as a function of o. Parameters: A = 780 nm, |v| = 1 mm/s, n = 1.33.
(d) Standard deviation of the Doppler frequency.

weight in Eq. (15) contains the factor k%> and upon inspection of Eq. (13), it is seen that the
additional weighting factor kS(k) must be taken into account. The effect on the weighted mean
and standard deviation of the Doppler frequency for a point scatterer as calculated in section
2.3, can now be evaluated.

The mean Doppler frequency can be calculated using the law of total expectation:

_ JRS(k)ulfp: Kk

Bl = sk (26)
In the case of point scatterers, we can substitute Eq. (18) for u[fp;k],
n Mfi Mfd fk4S(k)dk

= — : ’ . 27

ulfol = 577 (MU- M17d> TI3S(k)dk @7

As before, for moderate NA, My ~ fM;. When § (k) is a Gaussian function with mean ko and
standard deviation kg, the moments of S(k) can easily be calculated. Moreover, k3 < k3 for
typical OCT/OCM spectra, which allows to simplify the ratio of the fourth to the third moment
of S(k) to ko. With these two approximations, Eq. (27) reduces again to nv,ko /7.

Similarly, the variance is found using the law of total variance:

_ JKS(k)o?[fp:k]dk

TESH)dk + 07 [ fp3K]]- (28)

o’ [fp]
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Substituting Eq. (23) for 62[fp;k],

2 A KS(k)dk
o’[fp] = Jﬁ (2 (V§+V§)+Cv§> fk%‘gkidk

[S(k)dk [ [K*S(R)dkN\Z) [ n [ My, My 2 09
3 - ——V e .
J i3S (k)dk J i3S (k)dk 2nf S\ Mi; Mg
To interpret the different terms of Eq. (29), we first assume S(k) to be Gaussian with central

wavenumber ko, standard deviation ks and k2 < k(z), which is valid for typical OCT/OCM
spectra. Finally, with My ~ fM; for moderate NA we find:

2,2 2.2
n-k, A n-y
o’(fp] ~ Wz;z (2 (vi+v3) +Cv§) + k2 71:21 . (30)
———
T n

The two terms of Eq. (30) can be interpreted as follows. The first term 7; is the standard de-
viation for a single wavenumber channel at the central wavenumber as given by Eq. (23); it
accounts for broadening due to the angular spread of incident and scattered wave vectors, as
discussed above. Note that 77 is independent of spectral width. The second term 7, measures an
extra broadening due to the axial flow component, and depends on the spectral width ks. It can
be interpreted using the transit time argument: a larger spectral bandwidth creates a higher axial
resolution, resulting in a shorter axial transit time, and therefore a larger Doppler broadening.
Indeed, the axial resolution is given by the coherence length [, = 1/(nks).

Figure 4 shows the mean and standard deviation (from Eq. (29)) of the Doppler frequency for
different NA and light source bandwidth. The mean Doppler frequency is independent of these
two parameters, as seen in Fig. 4(a) and (c), and as predicted by the approximations. The behav-
ior of the standard deviation in Fig. 4(b) and (d) can be understood in terms of spatial resolution
and the transit time argument. When axial resolution (determined by the source spectrum) and
lateral resolution (determined by the NA) are equal, the Doppler frequency broadening is equal
for axial and lateral flow components, since the transit time through the focal volume is then in-
dependent of flow direction. Conversely, an asymmetric focal volume will have higher Doppler
broadening for either axial flow (better axial than lateral resolution) or for lateral flow (better
lateral than axial resolution).

2.5.  Approximations for Gaussian modes and low NA

To compare our formula in Eq. (30) to previous work [23,24,27], we need to set the illumination
and detection modes to narrow (low NA) and equal Gaussians with waist wg < R at the principal
plane. Under this condition, A = 2w(2) and C ~ 0. The beam waist after focussing by the objective

is then WZ) = 2f/(nkowy), yielding for the Doppler broadening:

2 2
2fp] % —Lg + =5, G31)
EZWO T lc
where v; = (v)% + vg) 1/2 is the transverse flow component. The first term in Eq. (31) corresponds
to the formula for Doppler broadening as given by Ren et al. [23] and Piao etal. [24]. Their
works do not include broadening due to the axial flow component. Srinivasan et al. calculate
the broadening from the field autocorrelation for equal axial and lateral resolution [27]; their
result is equivalent to Eq. (31). In conclusion, with the right approximations for low NA OCT,
our model reduces to the results in previously published work. Table 1 summarizes the different
approximations for the mean and standard deviation of the Doppler spectrum.
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Fig. 4. (a) Mean Doppler frequency for a system with equal Gaussian illumination and
detection modes (Gauss-Gauss). Parameters: NA = 0.05, |[v| = 1 mm/s, Ay = 780 nm, n =
1.33. Color code for the graphs is given in panel b. (b) Standard deviation of the Doppler
frequency for different spectral bandwidths AA (full-width at half-maximum of Gaussian
S(A)). NA = 0.05. (c) Mean Doppler frequency for a Gauss-Gauss system with NA = 0.3.
(d) Standard deviation of the Doppler frequency. NA = 0.3.

Table 1. Approximations and corresponding equations for pi[fp] and 62 [fp).

Approximations | Equations

Scalar fields, point scatterers Eq. (27), Eq. (29)
+ moderate NA (<~ 0.5) Eq. (22), Eq. (29)
+ Gaussian spectrum S(k), k%, < k(% Eq. (22), Eq. (30)

+ low NA (<~ 0.05), equal Gaussian modes | Eq. (22), Eq. (31)

2.6.  Doppler spectrum: numerical simulation

To investigate the shape of the Doppler spectrum, a numerical simulation is performed. In the
entrance principal plane, two sets of uniformly distributed random coordinates are chosen: p;
for the illumination mode and p, for the detection mode. For each combination of p; and py,
the Doppler frequency and its weight are calculated using Eq. (14) and Eq. (15), including the
spectral weighting factor for point scatterers k*S(k) for a Gaussian spectrum. This calculation
is repeated for each wavenumber channel. The resulting data are then binned according to their
frequency and represented in a weighted histogram. Figure 5 reveals how the Doppler spectrum
changes as a function of flow angle for a system with equal Gaussian modes and a system
with a Bessel illumination mode and Gaussian detection mode. It is seen that the Bessel-Gauss
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configuration slightly increases the Doppler broadening for the same NA.
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Fig. 5. (a) Mean Doppler frequency as a function of flow velocity angle o. Blue and green
curves represent a system with equal Gaussian modes (GG) and a system with Bessel il-
lumination mode and Gaussian detection mode (BG) respectively. Asterisks correspond to
values obtained by the numerical simulations shown in panels ¢ and d, and solid lines are
calculated using Eq. (27) and Eq. (29). Parameters: NA = 0.3, |[v| = 1 mm/s, Ay = 780 nm,
AA =120 nm, n = 1.33. (b) Standard deviation of the Doppler frequency. (c) Doppler spec-
tra for different flow velocity angles o, calculated by numerical simulation for a system
with equal Gaussian modes. (d) Doppler spectra for a system with a Bessel illumination
mode and Gaussian detection mode, NA = 0.3.

3. Methods
3.1. xfOCM

The xfOCM set-up is based on a Mach Zehnder interferometer and has decoupled illumi-
nation and detection paths. Light from a broad-bandwidth source (Ti-Sa laser, Femtolasers,
Ao = 780 nm, AL = 120 nm) is collimated and split into reference and sample beams. In the
sample arm, the beam passes through an axicon lens and a telescope. The resulting Bessel-like
illumination beam is guided through a relayed beam scanning system. The scanned beam enters
a microscope stage, consisting of a tube lens and a 10x Zeiss Neofluar objective with a NA of
0.3. The Bessel-like illumination beam provides a uniform, high lateral resolution (1.3 um) over
an extended depth of field (400 um). The axial resolution in tissue is 2.5 um. The system op-
erates with a Bessel illumination mode and a Gaussian detection mode, as shown in Fig. 2(a).
A custom-built spectrometer with a high-speed line detector (Basler Sprint spL.4096-140km)
records the interference spectrum. For the flow measurements presented here, an A-scan rate of
20 kHz was used.
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3.2. OCT

The OCT system is based on a Michelson interferometer with equal Gaussian illumination
and detection modes and employs a broad-bandwidth source (Ti-Sa laser, Femtolasers, Ao =
780 nm, AA = 120 nm). The sample objective lens has a focal length of f = 25 mm. The
Gaussian mode has a full width at half maximum of 2.4 mm in the back focal plane of this
lens, creating a lateral resolution of 10 um. A custom-built spectrometer with a high-speed
line detector (Basler Sprint spL.4096-140km) records the interference spectrum. For the flow
measurements, an A-scan rate of 100 kHz was used. More details about this set-up can be
found in a previous publication [40].

3.3.  Flow system

The flow system consists of a glass capillary tube with a measured cross-section of 4.95 x
10* um? for xfOCM and 3.14 x 10* um? for OCT experiments. A syringe pump allows to set
a constant flow speed through the capillary. The system is filled with a solution of polystyrene
beads (diameter 0.2 um) in water for the XfOCM-based measurements and with an intralipid
solution for the OCT-based measurements.

3.4. Data acquisition & algorithm

A lateral raster scan is performed with oversampling (xfOCM: 16x Nyquist frequency; OCT:
125 Nyquist frequency) along the fast scan axis. Due to the oversampling, repeated A-scans
are taken within the same lateral resolution volume such that they can be seen as separated in
time, not space. The acquired interference spectra I (A,x()) from each lateral resolution vol-
ume are first windowed along the time-dimension using a Hanning window, yielding 1,,(A,x,7).
Then, following the joint spectral and time-domain method [14], the spectral background is
subtracted, the spectra are mapped to the wavenumber domain and the absolute value of the
two-dimensional fast Fourier transform (2D-FFT) is calculated, yielding the Doppler frequency
distribution as a function of depth. Figure 6 summarizes the data acquisition protocol and al-
gorithm. For the xfOCM measurements a time-window size of 32 points is used, for OCT 256
points. To estimate the mean Doppler frequency, the center of mass of the Doppler spectrum is
calculated using circular statistics [21]. The Doppler frequency standard deviation can be esti-
mated by calculating the weighted standard deviation directly, but we have found the following
fitting procedure to be more reliable in the presence of noise. First, to prevent aliased Doppler
frequencies from biassing the fit, each Doppler spectrum is circularly shifted to have its center
of mass at 0 Hz. Then, the Doppler spectrum is fitted with a non-linear least squares algorithm
(Matlab, The Mathworks, Inc.) to

p(fp) = aexp (—f3/b* — fi/c*) +d. (32)

This empirical function was found to produce a good fit for both OCT and xfOCM Doppler
frequency distributions, as shown in Fig. 6(e) for typical xfOCM data. The fitting parameter c is
included to fit the (broader) xfOCM distributions; for OCT we use ¢ — o. Indeed, the numerical
simulations in Fig. 5(c) and Fig. 5(d) show that Doppler spectra in xfOCM are broader than in
OCT. The Doppler frequency standard deviation is then calculated using p(fp) as the weighting
function. Lateral and axial flow components can then be found from the mean and standard
deviation of the Doppler frequency using Eq. (27) and Eq. (29). To calculate the system-related
parameters (i.e. the spectrum, illumination and detection modes) needed in these equations, we
used the design parameters of the systems. A Matlab implementation of the above algorithm
is provided, see the supporting information for details. Note that the same principles can be
applied along the slow scan axis, by acquiring repeated B-scans; see Grulkowski et al. for a
detailed description of scan protocols [20].
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Fig. 6. (a) Overview of the algorithm used to obtain functional tomograms containing spa-
tially resolved Doppler frequency spectra and flow velocity components. (b) The inter-
ference spectra I(A,x) are acquired in an over-sampled lateral (x) scan. 8x represents the
lateral resolution. (c) A window is applied around each x-position in the lateral scan such
that the windowed data represent time samples I,,(A,¢) at that position. (d) Spatially re-
solved Doppler spectra I(z, fp) are obtained after spectral background subtraction, A to k
mapping and 2D FFT. (e) The center of mass u of the measured Doppler spectrum (blue
graph) is calculated and the re-centered data are fitted to Eq. (32) (green graph). The stan-
dard deviation o of the Doppler spectrum is calculated using the fitted curve as weighting
function. (f) u and o are converted to lateral and axial flow components v; and v, using
Eq. (27) and Eq. (29), or their appropriate approximations.

4. Experimental results

To validate the model and algorithm, we performed flow measurements at different flow rates
set by a syringe pump through a glass capillary using two optical set-ups: xftOCM and OCT.
The lateral scanning was perpendicular to the flow direction, such that its influence on Doppler
broadening could be removed using v? = ¥? —v2, where ; is the true transverse flow velocity, ¥,
the transverse velocity measured from the Doppler broadening and v, the scan speed. Another

solution would be to make vy < vy, or to stop the scan at each lateral position.

4.1. xfocM

Figure 7(a) shows a structural tomogram of the capillary, and Fig. 7(b) and (c) show tomograms
of the mean u[fp| and standard deviation &[fp] of the Doppler frequency for a flow rate of
F =0.45 ml/h and angle o = 81°. As can be seen in 7(a), the capillary is somewhat asymmetric,
with an elliptic cross-section. The axial diameter is 200 um, but the lateral diameter is larger,
accounting for a larger cross-section. The intensity gradient over the depth of the flow channel
seen in 7(a) is due to three reasons. Firstly, although the extended focus maintains the lateral
resolution over 400 um, it does not have constant intensity over the whole depth, a well-known
property of Bessel beams [42]. Secondly, the Gaussian detection mode employed by xfOCM
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Fig. 7. (a) xtOCM tomogram of the capillary used for flow measurements, dynamic range
is 20dB. The channel has an angle @ = 81° and the flow rate is F = 0.45 ml/h. The lat-
eral sampling frequency is 16 times the Nyquist frequency. (b) XfOCM tomogram of the
mean Doppler frequencies. (c) xtOCM tomogram of the standard deviation of the Doppler
frequencies. 10 B-scans were averaged for the images in (b) and (c).
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Fig. 8. Depth profiles at the center of the capillary (¢ = 81°) measured with xfOCM of
(a) the axial flow component and (b) the lateral flow component, for different flow rates.
Parabolae are fitted to the measurements, assuming v = 0 at the capillary wall. The maxima
of the parabolae are extracted and compared with the expected velocity set by the syringe
pump under laminar flow conditions for (c) the axial flow velocity component and (d) the
lateral component. Error bars represent £ standard deviation over 10 measurements.
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Fig. 9. Depth profiles at the center of the capillary (o¢ = 87°) measured with OCT of (a)
the axial flow component and (b) the lateral flow component, for different flow rates. The
maxima of the parabolae are compared with the expected velocity set by the syringe pump
for (c) the axial flow velocity component and (d) the lateral component. Error bars represent
=+ standard deviation over 10 measurements.

creates and additional intensity gradient over depth. Thirdly, scattering of the illumination beam
by the sample reduces the intensity with depth.

For each lateral scan position, (t[fp] and o[ fp] are converted to lateral and axial flow profiles
as a function of depth, as shown in Fig. 8(a) and (b) for the center of the capillary. By assuming
laminar flow, the volume flow rate F set by the syringe pump is converted to flow velocities in
the capillary. The maximum velocity v,,,, of the parabolic flow profile in a cylindrical capillary
is then found from vy,,x = 2F /S, with S the measured cross-section of the capillary. The flow
velocities set by the syringe pump can now be compared to the velocities measured using our
model and algorithm, as shown in Fig. 8(c) and (d) for an angle o = 81°. The measurements of
both axial and lateral flow components are seen to be consistent with the values expected from
the flow system parameters. The measured flow speeds in Fig. 8(a) and (b) show some deviation
from the parabolic flow profiles most likely due to experimental noise and/or deviations from
the supposed laminar flow profile. Also, note that when a particular axial velocity is higher
than the expected value, the corresponding transverse velocity component is higher as well,
indicating that these errors are most probably due to an inaccuracy in the actual flow rates set
by the syringe pump.
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4.2. OCT

Figure 9(a) and (b) shows the depth profiles measured with the OCT system on a capillary
with angle o = 87°. Due to the lower lateral resolution of this system (i.e. smaller Doppler
broadening), it is not as sensitive to slow lateral flow velocities as xfOCM. Hence, the flow
rates used for these measurements were about ten times higher and the flow angle smaller to
create larger lateral flow velocities. Nevertheless, the measurements of both axial and lateral
flow components in Fig. 9(c) and (d) are again seen to match the values expected from the flow
system parameters.

5. Discussion & Conclusion

We have introduced a general model for the Doppler frequency spectrum caused by moving
scatterers that is applicable to any OCT or OCM system, given its parameters. Once all sys-
tem related factors have been calculated (this must be done only once per set-up), Eq. (27) and
Eq. (29) (or their appropriate approximations, see table 1) yield a straightforward relation be-
tween mean and standard deviation of the Doppler spectrum and the flow velocity components.

For the specific case of low NA OCT and Gaussian source spectra, our model yields the
same equations as previously published models [23,24,27]. The model presented here therefore
provides a generalization of these earlier models to arbitrary point spread functions, through the
possibility of arbitrary illumination and detection modes, and light source spectra, respectively.
This generalization is important for high NA OCM systems as well as xfOCM and dark-field
OCM [45]. Additionally, the model does not make assumptions about the flow angle.

While point scatterers were investigated here, the effect of different types of scatterers could
be investigated by including the scattering potential Fd_n (K) as a weight in the calculation of
the mean and standard deviation of the Doppler spectrum. In this way, the Doppler spectrum
created by moving erythrocytes in blood could be investigated.

The model assumes that the scattering structures are rigid bodies, moving with a constant
velocity during the acquisition time. This assumption excludes effects such as Brownian motion
or significant velocity gradients within a resolution volume. For the model to be valid, these
effects must be small in comparison to the average velocity.

To measure the Doppler spectrum, we presented an algorithm building on the joint spectral
and time domain method, thereby adopting the advantages of this method in terms of precision
and signal-to-noise ratio over phase-resolved methods [14]. To estimate the mean frequency of
the Doppler spectrum, either circular statistics or the standard definitions can be used [21]. A
fitting procedure was used to allow a reliable estimation of the Doppler frequency standard de-
viation. For an interesting comparison of Doppler frequency estimators in the presence of noise,
we refer to the recent work by Chan et al. [41]. An interesting subject for future research would
be to evaluate and compare the performance of OCT/OCM systems in terms of quantitative
flow imaging. To this end, the influence of noise should be included in the model.

Our model and algorithm were successfully applied to image axial and lateral flow in a cap-
illary using two different system configurations. No system modifications (digital or optical)
to the point spread function are needed to use our method, only the scan protocol needs to
be adapted for over-sampling of the lateral resolution. As mentioned before, the scan proto-
col can be modified to perform Doppler spectral analysis along the slow scan axis, allowing
to concentrate on a lower set of velocities [20,27]. By allowing arbitrary pupil functions, this
work now enables high resolution extended-focus systems to be used for quantitative imaging
of both axial and lateral flow components. Especially the ability to quantify the lateral flow
component will be instrumental in a number of biological applications, such as retina or brain
imaging where blood vessels are often oriented perpendicular to the optical axis. Furthermore,
xfOCM has been shown to achieve a resolution and penetration depth comparable to multi-
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photon microscopy but with significantly faster acquisition rates [43]. The additional capability
to quantify blood flow velocities will allow the investigation of the three-dimensional vascular
functionality at speeds currently unattainable by multiphoton microscopy. Our future work will
therefore be focused on the quantitative imaging of lateral and axial flow in biological tissue
using the concepts developed here.

Supporting information

A Matlab implementation of the algorithm developed here together with example data can be
downloaded from our website at http://lob.epfl.ch/ under “Research/Quantitative flow imaging”.
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