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Abstract. In this report, we show that facial descriptors can be used very effec-
tively in conjunction with a tracklet-based multi-person tracker both to localize
and to identify or re-identify people over long sequences. Thus, we can reliably
deliver both trajectories and identities in crowded scenes. Furthermore, the whole
approach is fast enough to be implemented in real-time. Our key insight is that
this can be done even though the faces can only be recognized relatively infre-
quently.
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1 Introduction

Multiple people tracking algorithms tend to rely on image appearance remaining rela-
tively constant over time to produce trajectories corresponding to specific individuals.
This is especially true of those trackers that depend on matching appearance attributes
from frame-to-frame. However, commonly-used features, such as soft biometrics—
height, body proportions, or gait—or color histograms, are either hard to measure in
natural environments or cannot be relied upon for identity preservation over long peri-
ods of time. This is especially true when people move in and out of the field of view.

By contrast, facial features are highly distinctive and tend to remain consistent over
time. It would therefore seem natural to use them for this purpose and face-recognition
technology should be an important component of people tracking systems. Remarkably,
it is not, probably because in video sequences such as those of Fig. 1, only a small
fraction of the faces can be recognized.

Fig. 1: Representative results on multi-camera sequences. (a) Without a priori knowl-
edge of people’s identity or appearance, we can reliably localize people and assign
a unique identifier to each one, even when they leave and come back. (b) With such
knowledge, we can keep track of people’s actual names. (c) This works even when peo-
ple’s heads are partially covered by surgical masks and hats. The corresponding videos
are supplied as supplementary material. To preserve anonymity, the names have been
intentionally changed to characters’ names from the “The Hobbit” and “The Lord of
the Rings”.

In this paper, we aim to change this by showing that facial features can nevertheless
be used to achieve accurate and efficient people tracking with reliable identity labeling.
The challenge we address is to effectively leverage sparse facial information. We de-
fine individual appearance models which are used to identify and re-identify people in
temporally distant frames and prevent our tracking algorithm from switching people’s
identities.

To this end, we exploit the ability of many current people trackers [1—4] to track
individuals over short trajectory segments, often referred to as tracklets, without knowl-
edge of their identities. Since it is much more likely that a useful identification will be
made within a tracklet than in a single temporal frame, even sparse identification data
becomes useful. This is key because, even though face identification algorithms [5—7]
can achieve high success rates when image-resolution is high enough and people look



directly at the camera, their performance drops drastically when people are not actively
cooperating. In such an uncontrolled setting, they only provide useful data once in a
while.

More specifically, we start from a recently proposed Multi-Commodity Network
Flow approach of linking tracklets [3, 8]. It is well suited to our needs because it can
exploit the kind of sparse appearance information discussed above, but it requires ap-
pearance models for individuals expected to appear in the scene to be given a priori,
which is impractical for surveillance-like applications. We overcome this limitation by
computing face descriptors [9] wherever a face can be detected and associated to a spe-
cific tracklet, clustering these descriptors, and using the resulting clusters to provide
the required appearance models. We use sequences such as those depicted by Fig. 1
and our supplementary material to demonstrate that this lets us reliably group track-
lets corresponding to the same person and, consequently, re-identify people leaving and
re-entering the visible area.

Our main contribution is a novel algorithm, which integrates a state-of-the-art track-
ing procedure with appearance measures derived from face recognition techniques, in a
unified probabilistic framework. It efficiently produces complete and reliable trajecto-
ries over long sequences in addition to identifying the people in the scene.

2 Related Work

In this section, we first discuss the need for appearance-based models for the purpose
of reliably tracking multiple people. We then briefly discuss the current state of this
technology and justify the specific choice we made of a face-recognition algorithm to
test our ideas.

2.1 People Tracking

Early approaches to finding people in images largely focused on frame-to-frame track-
ing, which involves predicting the people’s location in a frame given an estimate in the
previous one. The emphasis has now shifted to tracking-by-detection in which people
are detected in individual frames and the detections are then linked across time. This
prevents drift and provides robustness to occasional failures.

Most state-of-the-art approaches follow this tracking-by-detection paradigm and op-
erate on graphs whose nodes can either be those where a detector has fired [10, 1 1] or
tracklets, that is, short temporal sequences of consecutive detections that are very likely
to correspond to the same person [4, 8, |2—16]. On average, they are much more robust
than the earlier tracking methods but require appearance-based models to guarantee that
only individual detections or tracklets corresponding to the same individuals end up be-
ing linked. These appearance-based models typically rely on color, texture, or rough
shape of different parts of people’s bodies. However, none of these can be measured
very consistently, especially when people come in close proximity which is when the
models are most needed.

Face descriptors have been used to make monocular head tracking more robust [17,

]. The resulting algorithms can recover from long face occlusions or people exiting



and re-entering the field of view. However, they cannot provide 3D trajectories of multi-
ple people while preserving their identities, which is what we propose and demonstrate
in the paper.

2.2 Face Recognition

Image-based face recognition has been extensively researched over the past 20 years
and is usually implemented as a two-step process, first detection [19] and then recogni-
tion [20,21].

For detection purposes, the well-known Viola-Jones approach [22] remains a lead-
ing contender. It relies on Haar-like features computed at multiple scales and locations
and used to classify image patches as containing a face or not. A variation of this al-
gorithm was proposed in [23]. It relies on Binary Brightness Features (BBF) that are
computed at individual pixel locations making it faster than Viola-Jones while achiev-
ing comparable performance. More recently a unified framework [24] for multi-view
face detection, pose estimation and landmark localization was proposed, that advanced
the state-of-the-art on several standard benchmarks, on the cost of computational time.

Early approaches to face recognition tended to model the face as a whole [25, 26].
Because they use all the available image information and take geometry into account,
they are effective for aligned faces under controlled conditions but are not robust to illu-
mination, pose, and facial expression changes. More recent methods designed to handle
these difficulties rely on first extracting local features and then employing a classifier
for identifying the subject. The Local Binary Pattern (LBP) Histograms approach [9],
which encodes the gray level information of small image regions into features and then
takes into account the spatial configuration of the resulting feature vectors, is an attempt
at getting the best of both worlds. It is often used as an component of state-of-the-art
face recognition methods [7,27].

In our work, we use an LBP-based face recognition algorithm, because its perfor-
mance is sufficiently close to the state-of-the-art for our tracking purposes, while allow-
ing for real-time implementation.

3 Tracking with Sparse Facial Information

As discussed in § 2.1, one of the most promising approaches to identity-preserving peo-
ple tracking in uncontrolled environments is to first compute short trajectory segments,
or tracklets, that unambiguously describe the motion of a single individual and then to
group them into complete trajectories. However, to fulfill their full potential, such ap-
proaches require appearance-based measures that can be used to unambiguously link all
tracklets corresponding to the same person. To acquire those tracklets, we use our Lin-
ear Programming approach [28] to create complete trajectories that may include some
identity switches but can easily be segmented into single-individual tracklets [8], such
as those of Fig. 2.

In this section, we first summarize the approach used to create the tracklets. We
then discuss how to create appearance models based on facial features, which are very
reliable but at the cost of being exploitable only at distant time intervals. Finally, we
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Fig. 2: Splitting trajectories into single-identity tracklets. (a) Three trajectories that may
include identity-switches. (b) Each one is a set of vertices occupied at successive time
instants and we assign a different color to each. (c) Grid cells within a distance of 1
from the trajectories are shown in a color similar to that of the closest trajectory but
less saturated. The vertices that are close to more than one trajectory appear in yellow
and are those that could be used to connect them. (d) The yellow vertices are used as
splitting points to produce tracklets. Note that two trajectories do not necessarily have
to cross to be split; it is enough that they come close to each other. (e) The resulting
tracklets become the nodes of multi-layer Directed Acyclic Graph.

show how to use them to compute the appearance-based probabilities, that the tracking
algorithm depends on to reliably group tracklets.

3.1 Creating the Tracklets

Given image sequences acquired by multiple synchronized cameras such as those of
Fig. 1, we customize our publicly available software [28, 29] to generate trajectories
on a discretized grid by solving a Linear Program, as depicted by Fig. 2(b). This algo-
rithm reliably finds all people but completely ignores appearance information. Thus, the
trajectories often include identity switches, especially at locations where two of them
come close to each other. As suggested in [8], we handle this by finding all the loca-
tions that could be used to connect one trajectory to the other, such as the yellow grid
cells of Fig. 2(c). In practice, these cells are the only places where an identity switch
could occur and we therefore take the trajectory fragments connecting them to be our
tracklets.



Assuming the number L of identifiable people present in the scene to be known
a priori, we duplicate each tracklet L + 1 times so that tracklet 7! stands for subject
following the corresponding trajectory, for 0 <[ < L, where [ = 0 denotes unidentified
people. To link back these tracklets into complete identity-preserving trajectories, we
first build a directed acyclic graph (DAG) whose nodes are the tracklets and edges
represent potential connections between tracklets that share an endpoint. To each edge
is associated a flow fil’ ; that can be either zero or one to indicate if a person [ went from
7! to TJl-. The tracklets are also connected to a source and sink to allow people to enter
and leave the area of interest, which results in the full graph depicted by Fig. 2(e). Note
that there are no edges connecting tracklets 7/ to T]’? if [ # k because identity switches
are not allowed along trajectories.

Given this DAG, the maximum a posteriori probability flows fi{ ; are those that

maximize
Y SEDA; (1)
LijEN (i)
subject to a set of linear constraints that ensure flow conservation [&]. In this equation
S(7}) stands for the log likelihood of tracklet 7; being the trajectory of person [ and is

taken to be
S(ri) = log(h ()L +1)) 2)

VR ET;

where the vy, € 7; stand for the grid cells that compose 7; and gpk (t) is an appearance-
based probability that the person occupying grid cell vy, at time ¢ is person .

Note that if no appearance-based information is available for any of the vertices
of tracklet 7;, all the ¢! will be 1/(L + 1) indicating that the identity could be any
of the L + 1 available ones with equal probability. In such a case, all the S(7}) will
zero, thus also making all connections equally likely. By contrast, even if appearance-
based information is available for only one single grid cell, it will favor one connection
over the others. This formulation is therefore very good at making use of appearance
information that is only available once in a while as opposed to in every consecutive
frame.

Since the fily ; can only be zero or one, this amounts to solving an Integer Program.
This is NP-complete, but can be relaxed into a multi-commodity network flow (MCNF)
problem of polynomial complexity by making the variables real numbers between zero
and one. Its solution is not guaranteed to be integral. In theory, real values that are
far from either zero or one may occur. In practice this happens only when appearance
information is completely lacking over several tracklets. Since this only rarely happens,
we simply round off non-integer results in our experiments.

3.2 From Faces to Appearance-Based Probabilities

The solution of the Integer Program of Eq. 1 depends critically on the quality of the
¢! appearance-based probabilities that the identity of the person occupying grid cell vy,
is [, with 0 < [ < L where L is assumed to be known. In some cases, such as when
a limited number of people are known to be present, L can be assumed to be given a
priori and representative feature vectors, or prototypes, learned offline for each person.



Fig. 3: Some of the patches detected in the sequence of Fig. 1(b). There is much varia-
tion in lighting and head pose. The non-frontal views are shown in red on the left and
the frontal ones in green on the right. Both are used in the Face Identification scenario
but only the latter in the Face Re-identification one.

However, in more general surveillance settings, both L and the representative feature
vectors must be estimated online.

In the first scenario, our run-time system estimates the desired probabilities by com-
paring the feature vectors it extracts from the images to the prototypes, assumed to be
known prior to processing of the sequence, thus performing what we will refer to as
Face Identification. In the second scenario, it will first create the prototypes by clus-
tering the feature vectors and only then estimate the probabilities, an approach we will
refer to as Face Re-Identification. In the Face Identification case, people’s identities are
known while in Face Re-Identification all that can be known is that different tracklets
correspond to the same person. The latter is of course more challenging than the former.

In the remainder of this section, we first introduce our approach to exploiting our
tracklets to extract relevant LBP features from all camera views simultaneously. We
then discuss their use both for Face Identification and Re-Identification.

Extracting Relevant LBP Features Once the tracklets are created, we run a face detector
in each camera view. The face detector relies on Binary Brightness Features (BBF) [30]
and a cascade of strong classifiers built using a variant of AdaBoost. Instead of running
the detector on the full frame, we limit its search window only to locations where a head
is expected to be found.

Recall that the detections of the people are located on a discretized grid. The al-
gorithm [29] we use to compute them relies on background subtraction for its initial
processing of the images and models people as 1.75m tall cylinders that project to
bounding boxes in the camera views. For each occupied grid cell, we only search for
a face in the restricted area where the head might project to. This greatly reduces the
false positive rate and allows the detector to run faster than real-time. To further elim-
inate false positives we enforce geometrical constraints on the faces’ size given their
distances from the camera. On the sequence of Fig. 1(b), this reduces the 29.15% false
positive rate that standard BBF produces to a much smaller 2.5% while being 12 times
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Fig.4: (a) Comparison (in terms of recognition rate) of the 4 classification methods
used for face recognition on the Seq3-8p sequence: Nearest-Neighbors (1-NN and 3-
NN), multi-class Boosting [33] and multi class RBF-SVM. The RBF-SVM performs
slightly better than the Multi-Class Boosting. (b) Comparison of the 4 clustering meth-
ods on the fronal faces of Seq3-8p and Seq1-6p sequences: DBSCAN, K-means, Spec-
tral, K-medoids. The DBSCAN methods performs perfectly while being able to discard
outliers.

faster and allowing for real-time performance. More information about the feature ex-
traction process can be found in [31].

For each detected face such as those of Fig. 3, we extract a vector of histograms
of uniform Local Binary Pattern (LBP) features [9]. We rescale the face patches to
50 x 50 pixels, and extract 4 x 4 histograms of LBP, each of size 59. This produces a
944-dimensional floating-point vector per detected face.

Face Identification At training-time, we acquire L sequences, each one featuring a
single person walking and looking at the cameras for about two minutes. We run our
face-detection procedure and automatically obtain about 300 patches and extract face
descriptors of his face in various orientations, which constitutes his face model.

We assign each resulting face model to one of the L identity labels. These face
models constitute a train set for a multi-class RBF SVM [32] which produces an L-
dimensional response vector. By combining the LBP features with the SVM classi-
fier, the identification method becomes robust to pose variations and facial expressions.
We evaluated the multi-class RBF SVM [32] against K-Nearest-Neighbors(K-NN) and
multi-class boosting [33] on all the faces extracted from the Seq3-8p sequence (de-
scribed in section 4.1), the results are provided in Fig. 4(a). A high threshold on the
confidence score of the classifier leads to a recognition rate of 0.99, while retaining on
average 36% of the detected faces.

At run-time, at each location ¢ and time ¢ where a face is detected, the same L-
dimensional vector is computed and converted into probability ¢k (¢) for 0 < l <L
using the algorithm of [34]. In the absence of a face detection, we set ! (t) for
all [.

to L+1

Face Re-Identification We generate the appearance groups required by the algorithm of
§. 3.1 by clustering the face descriptors into L groups, where L is not provided a priori.



Clustering the whole set of detected patches yielded unsatisfactory results, due to the
extended variation in head pose. To overcome this issue, we first employ a state-of-the-
art face pose estimator [24] to prune the non-frontal face detections. Fig. 3 illustrates
some frontal and non-frontal patches, as classified by the pose estimator, that were
extracted from our test sequences.

For our purpose, we found the DBSCAN clustering algorithm [35] superior to the
others we tried — K-means, K-medoids, Spectral clustering — for several reasons.
The two most important ones are that it is robust to outliers and can cope with greatly
uneven cluster sizes, which are recurrent issues in our experiments. In addition, the
number of clusters does not need to be specified a priori, a critical requirement of our re-
identification scenario. The distance measure that proved most effective in conjunction
with DBSCAN is the chi-squared statistic (x?), which is consistent with the findings
of [9]. A comparison of the four clustering methods is presented in Fig. 4(b).

4 Experiments

We use several multi-camera sequences to demonstrate that using appearance mod-
els based on facial features results in significantly more identity-preserving trajectories
than either using no appearance-based information or using color-based appearance
models. This is equally true both in the Identification and Re-Identification scenarios
we introduced in § 3.2, that is, whether or not we have any prior knowledge of people’s
appearance.

In the remainder of this section, we first describe the four video sequences we use,
we then introduce two baseline methods, and finally we present our comparative results.

4.1 Datasets
We present our results on four long multi-camera sequences of increasing difficulty.

— Seq1-6p . We first recorded a relatively simple 3500-frame sequence using 6 syn-
chronized cameras capturing 1032 x 768 pixels images at 30 fps. It features six
people entering a 7m X 8m empty room one by one and walking around.

— Seq2-masks . We used the same setup to acquire a more challenging 3150-frame
sequence. It features only four people but they enter, leave, and re-enter the room.
Furthermore, as can be seen in Fig. 1(c), they wear surgical masks and hats, mean-
ing that half of their faces is hidden. We ran this experiment because we are in-
volved in a research project whose ultimate goal is to track members of a surgical
team in an operating room. Since they usually all wear green scrubs, color-based
features are uninformative and we wanted to check that our approach is applicable
in this context.

— Seq3-8p . To further challenge the algorithm, we increased the number or people
from four to eight and acquired a 7500-frame sequence. In the small space we are
dealing with, this means that people start occluding each other very significantly in
all camera views, as can be seen in Fig. 1(b).



— Seq4-MVL [36]. The final 7840-frame sequence comes from a publicly available
dataset acquired using 4 synchronized cameras. It features 5 subjects walking, en-
tering, and leaving a furnished room. As can be seen in Fig. 1(a), the furniture
often partially occludes the people and also forces them to walk close to each other.
Furthermore, they all wear dark clothing and there is an abrupt change in lighting
conditions in the middle of the sequence, thus making appearance-based tracking
difficult.

Sequence |Frames|People|Tracklets|Detected| Re-Identification Identification
Name Faces |Faces|Faces/Frame|Faces| Faces/Frame
Seql-6p 3500 6 883 744 367 0.104 285 0.08
Seq2-masks| 3150 4 586 572 88 0.027 261 0.083
Seq3-8p 7500 8 2040 2379 | 663 0.088 790 0.105
Seq4-MVL | 7840 5 10237 5981 |1115 0.142 N/A N/A

Table 1: Characteristics of the sequences we used for evaluation purposes. We also list
the number of tracklets found, of detected faces, and among those of faces that are iden-
tified in both of our scenarios. The “Faces / Frame” ratio is the average number of faces
identified in each frame, to be compared with the number of people actually present,
listed in the third column. Note that for the Seq4-MVL sequence, there is no training
data. We could therefore not test the identification scenario and the corresponding cells
are marked as N/A.

The characteristics of these four sequences are summarized by Table 1. We used the
sequences without any additional training data to test the Face Re-identification sce-
nario of § 3.2 in which no appearance models are available a priori. We also annotated
the sequences manually to generate ground-truth data and evaluate our algorithm’s ac-
curacy.

Additionally, to test the Face Identification scenario, which requires appearance
models to be learned during a training phase, we acquired 30 training sequences featur-
ing a single person walking around the capture volume and looking at the cameras once
in a while. Each one of these sequences is for a different individual, including the people
who actually appear in the Seql-6p and Seq3-8p sequences. In other words, we learn
L = 30 different models and let the algorithm decide which subset actually appears in
the scene. We used almost the same procedure for the Seq2-masks sequence and learn
L = 15 different models. The only modification is that we used only the upper parts of
the faces to compute the descriptors. To this end, we built a color-based surgical-mask
detector that in our experiments classified correctly 99% of the faces.

4.2 Baselines

We compare the results we obtain using our LBP-based appearance models to two base-
lines algorithms:



— No Appearance. We completely ignore appearance information and only run the
Linear Programming approach of [28] to produce full trajectories, which is the first
step of our processing pipeline in any event.

— Color Identification and Re-Identification. We replace the LBP-based appear-
ance models by color-based appearance ones, while retaining the rest of the al-
gorithm. By analogy and depending on whether we have a priori knowledge of
people’s appearance, we will refer to this approach as Color Identification or Color
Re-Identification.

When using color, we take our feature vectors to be color histograms in CIE-LAB
color space. They are obtained by averaging those computed in all views in which the
person is visible. We compute distances between them in terms of the Jensen-Shannon
divergence, both because it is always defined and because it returns a value between
zero and one that can be converted into a probability of corresponding to the same
person.

As discussed in § 3.2, the ground plane is represented by a discretized grid and our
tracklets define which grid cells are occupied. Furthermore, to each occupied one in
each camera view, corresponds a bounding box such as the colored rectangles overlaid
on Fig. 1. We therefore build the color histogram corresponding to a person occupying
a cell using the foreground pixels found by the background subtraction we use for our
initial image processing [29] within the corresponding box. To increase robustness to
occlusions, we use the bounding boxes corresponding to all occupied cells to compute
an occlusion map, which we use to discount pixels likely to be occluded.

In both the Color Re-Identification and Color Identification scenarios, we use the
same approach as for the LBP-vectors to either cluster the descriptors into L separate
identities or to use the L predefined color templates. As opposed to the Face Identi-
fication, for colors we do not have training data. Therefore, we generated the color
templates from the sequences themselves.

4.3 Results

The top of Fig. 5 depicts our results and those of our baselines in terms of the MOTA
CLEAR metric [37], which is designed to evaluate performance both in terms of track-
ing accuracy and identity preservation. MOTA stands for Multiple Object Tracking Ac-
curacy and is defined as

> (me + fpe +mmey)

Zt gt ’

where g, is the number of ground truth detections, m, the number of misdetections, fp;
the false positive count and mme, the number of instantaneous identity switches. The
MOTA values are plotted as functions of the ground-plane distance threshold we use
to assess whether a detection corresponds to a ground-truth person. They are uniformly
high for all 4 sequences because this metric is not discriminative enough. To see why,
consider a case where the identities of two subjects are switched in the middle of a
sequence. The MOTA score is decreased because mme; is one instead of zero, but not
by much even though the identities are wrong half of the time.

MOTA =1 —

3
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Fig.5: MOTA (top) and GMOTA (bottom) scores for the four sequences described in
§ 4.1. Dashed black curves depict the no-appearance baseline, dashed red ones the color-
based baseline, and the solid blue ones our approach. The circles denote the identifica-
tion scenario and the rectangles the re-identification one, which is more challenging.
Because the MOTA scores are relatively insensitive to a few identity switches, they are
very similar for all scenarios. By contrast the GMOTA scores show a marked improve-
ment when the facial descriptors are used, as discussed in § 4.3.

To remedy this, we use the more demanding GMOTA metric [8], which is defined

as
Yo (my + fpe + gmmey)

Zt gt ’

where gmme; now is the number of times in the sequence where the identity is wrong.
The bottom of Fig. 5 depicts the GMOTA values for the four sequences and we discuss
them individually below.

GMOTA =1 —

“

— Seq1-6p . Since the people enter the room one by one and do not exit, the baseline
algorithm that computes tracklets while ignoring appearance cues does very well.
As aresult, introducing appearance does not improve the tracking results. However,
by using facial cues the system can now keep track of people’s identities. What this
example also shows is that the LP approach we use to compute our tracklets is
quite effective and therefore forms a good basis on which to build the rest of our
approach.

— Seq2-masks . Since here, people exit and re-enter the room, appearance informa-
tion is now required for identification and re-identification. Even though the people
wear masks, the facial descriptors boost performance in re-identification scenario,
and even more in the identification scenario as could be expected.

— Seq3-8p . Appearance information becomes even more important as the number of
people increases and identity switches become possible when people come close to
each other. As a result, the no-appearance baseline is much worse than before and
the boost delivered by the facial descriptors even more significant. By comparison,



the color descriptors also provide a boost but it is much smaller. Note also that
because the facial descriptors are much more powerful than color ones, the Face-
Reidentification curve is higher than the Color-Identification one, even though the
task is much harder.

— Seq4-MVL . This final sequence is more challenging than the others, in part be-
cause of the numerous occluders that hide the people. As a result, the curves are
all lower but their ordering remains exactly the same as before. We do not plot
the Face-Identification scores because we did not have training data we could use
to learn the required prototype. However, we were able to compute the Color-
Identification ones by manually extracting five color prototypes per person and,
again. they are worse than the face re-identification ones.

In short, whatever the scenario chosen, using the face-based features is much more
effective than using the color-based ones. And, unsurprisingly, appearance-models that
have been computed off-line during a training phase boost performance.

These results are to be considered in light of how few faces actually are identified.
As can be seen in the “Faces / Frame” columns of Table 1, even though there are 4 to
8 faces to be found in most temporal frames, only 0.027 to 0.142 are actually found on
average. In other words, only a very small fraction of the faces are recognized but this
is sufficient for our tracking algorithm.

4.4 Real-Time Implementation

We deployed a real-time version of our algorithm in one room of our laboratory. Its
performance on a quad-core 3.2 GHz PC are summarized by Table. 2. The video feed
is processed in 50-frame batches at a framerate of 15 Hz. In practice, this means that
the result is produced with a constant 3.4s delay, making it completely acceptable for
many broadcasting or even surveillance applications. The resolution of the images is
1032 x 778 pixels and we downscale them by a factor two, for people tracking while
retaining the original resolution for face identification.

Algorithm Frames / second
People Detection 30
Tracklets Construction 70.4

Face Detection 197.4

Face Identification 116.1
Multi-Commodity Network Flow Tracking 150

Table 2: Processing rate of individual components of our pipeline expressed in frames
per second.

To achieve these run-times, we optimized the publicly available code [28,29] we use
to detect people and compute the tracklets by parallelizing some parts of it and running
them in separate threads.



Batch Trajectories. Our implementation uses both color and facial information, when-
ever available. To this end, we first we first used the KSP tracker [28] to find a set of
trajectories in the current batch. We then eliminate empty grid cells from further consid-
eration and run the Multi-Commodity Network Flow (MCNF) method on the remaining
ones using color information only [8]. The required color templates are built on the fly
for each tracklet connected to the source node. We allow one extra group layer for peo-
ple who cannot be associated to a color template, possibly due to occlusions. This step
results in a set of color-labeled trajectories.

If faces can be detected and recognized, then the MCNF method can also be used
to exploit facial information as discussed above and assign trajectories to L + 1 groups,
where L is the number of uniquely identified faces in the batch. The output is a set of
trajectories with potential identities that is matched to the color-labeled trajectories of
the previous step. In short, each trajectory in the batch is given a color label and face
identity if the necessary appearance information is available.

Joining the batches To enforce temporal consistency across batches, the trajectories ex-
tracted from consecutive overlapping batches are joined together using the Hungarian
algorithm [38]. The distance between two trajectories is calculated as the sum of the
Euclidean distances in the overlapping frames plus a penalty for identity and color mis-
matches. If no appearance information is associated to the new trajectories, the labels
of the old ones are propagated to them.

5 Conclusion

We have proposed a novel and principled algorithm that combines face-recognition
technology with a state-of-the-art approach to multiple-people tracking to compute
identity-preserving trajectories over long periods of time. In this way, we proved that,
even though faces may be detected and recognized only rarely, this is sufficient to track,
identify, and re-identify individuals in a real-world scenario.
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