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Infinite-horizon optimal advertising in a market
for durable goods

Thomas A. Webern,y

Department of Management Science and Engineering, Stanford University, CA, U.S.A.

SUMMARY

In this paper we analyse the optimal infinite-horizon advertising policy of a monopolist firm in a market for
durable goods, based on classic models by Vidale–Wolfe (Oper. Res. 1957; 5(3):370–381) and Nerlove–
Arrow (Economica 1962; 29(114):129–142). A set of necessary conditions for optimality generalizing
previous results is provided for the resulting non-convex system. In addition, we establish local (and in
some cases global) asymptotic convergence of an optimal trajectory towards the unique optimal steady
state. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is a substantial literature on optimal advertising tackling the problem of finding the best
advertising spending policy, possibly accompanied by other marketing mix variables such as
price. Sethi [1] and Feichtinger et al. [2] provide comprehensive reviews, and it turns out that
virtually all previous work considers the problem over a finite planning horizon T with virtually
no indication of how the length of T should be determined.1 In that case the resulting optimal
policy as well as the final state xn(T) may vary substantially with T, depending especially on the
controllability properties of the system.
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A central result of economic growth theory is the ‘turnpike property’ of capital accumulation,
essentially stating that for sufficiently large T optimal (‘balanced’ [4]) growth is achieved by
steering the system from the initial state to an optimal steady state (or ‘turnpike’), and then
leaving the turnpike towards the end of the horizon to achieve short-term unsustainable
superior growth. The turnpike property for finite-horizon optimal programs was first recognized
by Dorfman et al. [4, p. 331], formalized in discrete-time by McKenzie [5, 6], and in continuous
time among others by Cass [7], Cass and Shell [8], and Haurie [9] (see also Reference [10,
Chapters 3 and 4]). For infinite-horizon problems a natural consequence of the turnpike
property is global asymptotic convergence of the optimal trajectory, and such results have been
provided under strong convexity assumptions on the (maximized) Hamiltonian by Cass and
Shell [8], Brock and Scheinkman [11], and others. The convexity assumptions made there do not
typically hold in models for optimal advertising or product diffusion, as saturation effects
induced by a finite customer base may introduce non-convexities. Extensions of the results on
global asymptotic convergence for a class of non-convex infinite-horizon optimal control
problems have been provided by Feinstein and Luenberger [12] (who connect their algorithm for
determining an optimal steady state to an earlier finding by Rockafellar [13]), or more generally
by Carlson and Haurie [10, Chapter 6]. The latter results rest on the convexity–concavity of the
Hamiltonian in a neighbourhood of an optimal steady state and/or the existence of trajectories
supported by a convex set of system ‘velocities’. Strong assumptions on the behaviour of the
system outside a neighbourhood of the optimal steady state are needed to guarantee global
asymptotic convergence of optimal trajectories. Since these restrictions are not easily satisfied
for the optimal advertising model investigated here, we have adapted a local convergence result
by Hartman [14] to fit the situation.

As a consequence of these results, it is natural to consider the problem of finding an optimal
advertising policy over an infinite horizon, as this avoids unsustainable endpoint effects (for
longer horizons) and variations of the optimal trajectory (for shorter horizons). Moreover, a
‘going concern’ for established brands and products is consistent with an infinite-horizon
formulation of the problem. As a byproduct, one obtains an optimal steady state (i.e. the
turnpike) that, in a sense, converts the abstract problem of profit maximization for the decision
maker into a problem of most efficiently steering the system to this observable equilibrium
point.2 This steady state can very often be expressed in metrics (e.g. advertising goodwill and
installed base), for which estimation and measurement procedures can be found in the
marketing literature [15, 16].

From a technical point of view, infinite-horizon optimal control problems typically have an
incomplete set of necessary conditions that do not allow to select good candidates for an
optimal solution effectively. Even though the Maximum Principle by Pontryagin et al. [17] has
been extended to infinite-horizon problems by Arrow and Kurz [18] and Halkin [19],
transversality conditions (i.e. additional conditions on the adjoint variables) are generally not
available.3 In fact, Reference [19] provides a counterexample for a ‘natural’ extension of the
finite-horizon transversality conditions, proposed by Arrow and Kurz [18].4 Thus, some care is

2The optimal steady state is in most cases unique.
3Note that a slight modification of the proof of the classical Maximum Principle in Reference [17] is sufficient for a
translation to the infinite-horizon optimal control problem. This has been already noted in Reference [17, pp. 189–191]
(for the special case of a fixed terminal state).

4Arrow and Kurz were aware of this shortcoming (see footnote 1 on p. 46 in Reference [18]).
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necessary when formulating strong necessary conditions for infinite-horizon optimal control
problems. Using the method of smooth approximation (reviewed by Aseev [20]), it is possible to
obtain weak transversality conditions in the form of asymptotic stationarity of the (maximized)
Hamiltonian and positivity of the adjoint variables (see References [21–23]). Here, instead of
imposing growth limitations and monotonicity on state trajectories, we modify the results in
References [21–23] to suit our situation, where the state space is a compact invariant set, which
in turn allows us to drop some restrictive assumptions on the evolution of the states. Under
these natural conditions for our problem, we are able to obtain exponential bounds on the
adjoint variables (i.e. growth conditions) that are stronger than the Arrow–Kurz ‘natural’
transversality conditions mentioned earlier.

To illustrate our methods and the qualitative nature of the solutions, we have preferred a concrete
problem parametrization rather than a perhaps less intuitive (and less conclusive) treatment of the
problem in its full generality. In addition, we assume}in contrast to Reference [24]}decreasing
returns to scale in advertising to concavify the Hamilton–Pontryagin function with respect to the
control variable, leading to a unique and in most cases interior optimum in the class of admissible
controls. This also avoids an often unrealistic ‘bang–bang’ intervention of the decision maker.

Outline: The next section will state the problem, report on the existence of an optimal solution
based on Reference [25], and provide a simplifying equivalent reformulation. In Section 3, on the
basis of the finite-horizon Pontryagin Maximum Principle [17], we will construct first-order
necessary optimality conditions for our problem (P) that include growth conditions in the form of
upper and lower exponential bounds on the adjoint variables which converge to zero as time tends
towards infinity. In Section 4 we will then qualitatively discuss optimal solutions to (P) and their
local asymptotic behaviour as a function of initial conditions and parameters. Section 5 concludes.

2. STATEMENT OF THE PROBLEM

Let us consider the following simple non-linear model for the accumulation of advertising
effect (y) in the Nerlove–Arrow form [24], and the evolution of the installed base (z) in a form
suggested by Vidale and Wolfe [26], normalized to the interval ½0; 1�: We include the effect of
replacement sales due to obsolescence after a characteristic product lifetime of 1=b: The goal is
to choose advertising effort (u) such that total infinite-horizon discounted profits P are
maximized. The evolution of the advertising effect (goodwill) and the installed base are then
described by the following system of ordinary differential equations:

’y ¼ uk � ay ð1Þ

’z ¼ ð1� zÞy� bz ð2Þ

where a, b are positive constants, and the parameter k 2 ð0; 1Þ describes the effect of decreasing
returns to advertising effort. Equation (1), corresponding to the Nerlove–Arrow portion of the
model, expresses the fact that in the absence of any advertising effort (i.e. when u=0) advertising
goodwill decays exponentially with a characteristic time of 1/a. More generally, advertising
goodwill follows any step change in advertising effort exponentially with the same characteristic
time of 1/a. Equation (2), corresponding to the Vidale–Wolfe portion of the model, states that in
each time unit the change in the installed base depends positively on the sale of (1�z)y new
products and the obsolescence of bz old products. In equilibrium, the demand for new products
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D(y, z) = (1�z)y equals supply. Sales are therefore proportional to the marketing effect y and the
fraction 1�z of consumers who currently do not own the product (either because they have not yet
bought a unit or because their old product has become obsolete).5 If the market price (see footnote
7) for the product is p (assumed fixed, for simplicity) and the marginal cost of advertising effort is
equal to c, then the firm’s aim is to maximize the discounted sum P of the firm’s current-time
profit pD(y, z)�cu. If we let x=(y, z)0 be the state of the system, we can formulate the firm’s
dynamic profit-maximization problem in an optimal-control framework as follows:

Pðx; uÞ ¼
Z 1
0

e�rtðpð1� zÞy� cuÞ dt! max ð3Þ

subject to (1)–(2),

xð0Þ ¼ x0 2 Rþ � ½0; 1� ¼: X ð4Þ

and

u 2 ½0; %u� ¼: U ð5Þ

where c, p, r, %u are appropriate positive constants, and x0 ¼ ðy0; z0Þ0. Note that for any given
initial condition (4) there is a compact invariant set Y ¼ ½0; 1þ %y� � ½0; 1� � X ; where %y :¼ %uk=a:
In particular, there is a time %Tðy0Þ; so that no matter what (admissible) control variable u 2 U is
chosen, the system trajectory xðtÞ 2 Y for all t5 %T :6 The constant r denotes the discount rate,
while p represents the prevailing price in a market for durable goods, in which the firm is assumed
to be a price taker.7 We will look for solutions u in the space of bounded measurable functions.
Any such function u that satisfies the inclusion uðtÞ 2 U for all times t is an admissible control. An
admissible pair (x, u) is any admissible control u together with the corresponding trajectory x.

2.1. Reformulation of the problem

To simplify the resulting necessary optimality conditions, we rewrite the cost functional using (2)8

Pðx; uÞ ¼
Z 1
0

e�rtðp’z� rpzþ ðbþ rpÞz� cuÞ dt ¼ �pz0 þ c

Z 1
0

e�rtðgz� uÞ dt

where g :¼ ðbþ rpÞ=c: Thus, we obtain the following equivalent formulation (P) of the firm’s
infinite-horizon optimal control problem:

ðPÞ : Jðx; uÞ ¼
Z 1
0

e�rtðgz� uÞ dt! max ð6Þ

subject to (1)–(2) and (4)–(5). Economically speaking, the reformulation states that instead of
maximizing discounted profits directly, it is possible to focus just on maximizing the discounted

5Note that consumers are assumed to be ‘without memory’ in the sense that after their old copy of the product becomes
obsolete they need to be persuaded to buy a new copy of the product just as if they had never owned that product. This
justifies the firm’s ongoing interest in advertising and may be interpreted as a natural result of overlapping successive
product generations in the absence of reputation effects other than those induced by advertising goodwill.

6 It is clear that %T ¼ 0 for y041þ %y; for y0 > 1þ %y one can use %Tðy0Þ ¼ 1
a lnðy0 � %y� 1Þ:

7More precisely, at non-zero unit costs p is the constant absolute profit margin per unit sold. For simplicity one may
think of p as price in the case of zero unit cost.

8Here we use the fact that z is uniformly bounded, as can be easily seen from (2); in fact, z 2 ½0; 1�:
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sum of the difference between weighted installed base and advertising expenditures. The constant
positive weight g of the installed base versus advertising expenditures (measured, for instance, in
amount per time unit) increases with price (or markup) p, discard rate b, and discount rate r.

2.2. Existence of an optimal solution

As pointed out before, the state space X contains a compact invariant subset Y that is reached in
finite time, and thus all admissible trajectories are uniformly bounded. In addition, the current
value of the integrand of the objective functional J

hðz; uÞ :¼ gz� u

is bounded, since for any ðz; uÞ 2 ½0; 1� �U

�%u4hðz; uÞ4g ð7Þ

Thus, there is a non-increasing positive function o : Rþ ! R such that

lim
t!1

oðtÞ ¼ 0

and, for any admissible pair ðx; uÞ of system (1)–(2), subject to (4)–(5), we haveZ 1
T

e�rtjhðz; uÞj dt4oðTÞ ð8Þ

for all T>0. In view of (7), we can put without loss of generality

oðTÞ ¼
me�rT

r

where m :¼ maxf%u; gg: With this, Theorem 3.6 in Reference [25] guarantees the existence of
a solution to the infinite-horizon optimal control problem (P).9

3. SMOOTH APPROXIMATION OF NECESSARY OPTIMALITY CONDITIONS

In this section we follow the general approach by Aseev et al. [23] and construct necessary
optimality conditions for our problem (P) by considering a sequence of classical optimal
control problems (Pk) where each is each defined on its own finite time interval ½0;Tk�;
where 05Tk4Tkþ1; and Tk !1 as k!1: Our problem (P) does not satisfy the assumptions
in Reference [23] directly, so that a number of modifications need to be made. The resulting
maximum principle contains growth conditions in the form of exponential bounds on the
adjoint variables that are stronger than the asymptotic stationarity of the Hamiltonian as
obtained in Reference [23], and stronger than the ‘natural’ transversality conditions by
Arrow and Kurz [18], limt!1 cðtÞ ¼ 0: We also characterize the latter in terms of the initial
values c(0).

9An appropriate, simple and direct existence proof can also be found in Reference [21].
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3.1. Auxiliary constructions

Assume that (xn; un) is an optimal pair for the original infinite-horizon optimal control problem
(P). Take a sequence of real-valued functions vk 2 C1ðRþÞ; and positive constants sk51 (with
sk4skþ1), k ¼ 1; 2; . . . ; such that

jjvkjj141þ %u ð9Þ

Z 1
0

e�rtðvk � unÞ
2 dt4

1

k
ð10Þ

jj’vkjj14sk ð11Þ

and

oðTkÞ4
1

kð1þ skÞ
ð12Þ

lim
k!1

sk ¼ 1 ð13Þ

Such a sequence fvk;skg exists and can be obtained using standard approximation methods. Let
us now consider a sequence of the following classical optimal control problems (Pk):

ðPkÞ : Jkðx; uÞ ¼
Z Tk

0

e�rt hðz; uÞ �
ðvk � uÞ2

1þ sk

� �
dt! max ð14Þ

subject to (1)–(2) and (4)–(5), k ¼ 1; 2 . . . : By the Filippov Existence Theorem [27, p. 314], there
exists an optimal control uk solving (Pk), and we assume that uk and its associated trajectory
xk ¼ ðyk; zkÞ

0 are extended in an arbitrary admissible way onto Rþ; so that (xk, uk) forms an
admissible pair for (P).

Proposition 1

Let T > 0: Then

uk ! un in L2½0;T � as k!1

Proof

Fix e, T > 0 and an integer k0 such that T5Tk0 : Then we have for k5k0

Jkðxk; ukÞ ¼
Z Tk

0

e�rt hðzk; ukÞ �
ðvk � ukÞ

2

1þ sk

� �
dt

4
Z Tk

0

e�rthðzk; ukÞ dt�
e�rT

1þ sk

Z T

0

ðvk � ukÞ
2 dt
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Hence, by optimality of (xk, uk) for (Pk) and by optimality of (xn, un) for (P) as well as using (8)
and (10)

e�rT

1þ sk

Z T

0

ðvk � ukÞ
2 dt4

Z Tk

0

e�rthðzk; ukÞ dt� Jkðxn; unÞ

4
Z Tk

0

e�rthðzk; ukÞ dt� Jðxn; unÞ � oðTkÞ �
Z 1
0

e�rt
ðvk � unÞ

2

1þ sk
dt

� �

4 Jðxk; ukÞ þ oðTkÞ � Jðxn; unÞ � oðTkÞ �
1

kð1þ skÞ

� �

4 Jðxk; ukÞ � Jðxn; unÞ þ
3

kð1þ skÞ

4
3

kð1þ skÞ

Therefore, for k5maxfk0; 16 erT=e2g we have using (10)

jjuk � unjjL2½0;T �4jjuk � vkjjL2½0;T � þ jjvk � unjjL2½0;T �4
ð1þ 3Þ

ffiffiffiffiffiffiffi
erT

p
ffiffiffi
k

p 4e

which concludes the proof. &

Remark

Proposition 1 guarantees that for any T > 0; as k!1

uk ! un in L2½0;T � ð15Þ

xk4xn on ½0;T � ð16Þ

’xk ! ’xn weakly in L1½0;T � ð17Þ

Without loss of generality (by selecting a subsequence if necessary) we can assume that
ukðtÞ a:e:

�! unðtÞ: The strong convergence in (16) is then a consequence of (15), the absolute
continuity of x and the boundedness of system equations (1)–(2) (see e.g. Reference [28,
Theorem 7, p. 12]). The weak convergence in (17) is due to the Dunford–Pettis property of L1

[29, IV.8.9, p. 292].

3.2. Necessary optimality conditions for (P)

We will now formulate a set of necessary conditions that generalize the Maximum Principle
proved by Pontryagin et al. [17, pp. 189–191]. Our approach here, as in the last subsection, closely
follows the approach in Reference [23]. First, consider the Hamilton–Pontryagin function

Hðt;x; u;c0;cÞ ¼ c0e�rtðgz� uÞ þ lðuk � ayÞ þ mðð1� zÞy� bzÞ ð18Þ
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where c050 is a constant, and cðtÞ ¼ ðlðtÞ;mðtÞÞ0 are the adjoint variables for this problem.
Whenever c0 > 0 it is possible, without loss of generality, to take c0 ¼ 1; just by renormalizing
the adjoint variables l, m. This simplification (to normal form) will be rigorously justified in our
proof of the necessary optimality conditions below.10 Everywhere below it is assumed that
c0 ¼ 1: The (maximized) Hamiltonian function is defined as

Hðt;x;cÞ ¼ sup
u2U

Hðt; x; u;cÞ

and straightforward maximization of H gives

un ¼
minf%u; ðklertÞ1=1�kg; l50

0; l50

(
ð19Þ

The next proposition provides necessary optimality conditions for our problem (P), including a
growth condition that implies the transversality condition and asymptotic stationarity of the
Hamiltonian obtained in Reference [23].

Proposition 2 (Necessary optimality conditions)

Let un be an optimal solution of (P), and xn ¼ ðyn; znÞ
0 the corresponding trajectory. Then there

exists an absolutely continuous function c : Rþ ! R2 such that the following conditions are
satisfied:

(i) The function c ¼ ðl;mÞ0 is a solution to the adjoint system ’c ¼ �@Hðt;un ;xn;cÞ
@x ; i.e.

’l ¼ al� mð1� znÞ ð20Þ

’m ¼ �ge�rt þ mðbþ ynÞ ð21Þ

(ii) The maximality condition

Hðt; xnðtÞ; unðtÞ;cðtÞÞ
a:e:
¼¼Hðt;xnðtÞ;cðtÞÞ ð22Þ

holds a.e. on Rþ:
(iii) The functions l(t), m(t) are strictly positive on Rþ: Moreover, the following growth

conditions are satisfied for all t 2 Rþ

gð1�maxfz0; %zgÞe�rt

ðrþ aÞðrþ bþmaxfy0; %ygÞ
4lðtÞ4

ge�rt

ðrþ aÞðrþ bÞ
ð23Þ

and

ge�rt

rþ bþmaxfy0; %yg
4mðtÞ4

ge�rt

rþ b
ð24Þ

where %z :¼ %y=ðbþ %yÞ:

10This is not always possible, and an example of an infinite-horizon optimal control problem where c0 ¼ 0 is optimal has
been provided by Halkin [19].
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Remark

(a) The growth conditions (23)–(24) can be written in the following more compact form:

lðtÞ 2 ½
%
l; %l�e�rt; mðtÞ 2 ½

%
m; %m�e�rt for all t 2 Rþ ð25Þ

with obvious definitions of the constants
%
l; %l;

%
m; %m: Clearly these growth conditions imply

the transversality conditions in Arrow–Kurz form.
(b) Relation (19) together with part (iii) of Proposition 2 can be used to rewrite the state

equations (1)–(2) to

’y ¼ ðklertÞk=1�k � ay ð26Þ

’z ¼ ð1� zÞy� bz ð27Þ

as long as

%u5ðk%lÞ1=1�k ð28Þ

If on the other hand %u4ðk
%
lÞ1=1�k; then the optimal control is constant, un ¼ %u; and the

corresponding optimal state trajectory can be given explicitly.11 In the intermediate case
where %u1�k=k 2 ð

%
l; %lÞ; the right-hand side of system equation (1) can in principle exhibit

non-smooth behaviour, as the optimal control may intermittently go into saturation.
(c) The (maximized) Hamiltonian is not concave in x (and not convex). For instance, the

second derivative of H with respect to y vanishes, and thus the two eigenvalues of the
Hessian of H cannot have the same (negative) sign. More precisely, from (18) using (19)
we have that12

Hðt;x;cÞ ¼ �mzyþ ‘ðt;x;cÞ

where ‘ : Rþ � X � R2 ! R is a smooth function, affine in x ¼ ðy; zÞ0: Clearly, along the
line z ¼ y the Hamiltonian H is concave, while along the line y ¼ 1� z it is convex, since
then H ¼ mz2 � mzþ ‘:

Proof

Considering the sequence of classical optimal control problems (Pk) constructed above, let uk be
an optimal solution of (Pk) and xk ¼ ðyk; zkÞ

0 the corresponding trajectory for k ¼ 1; 2; . . . : By
the Pontryagin Maximum Principle [17] there exists an absolutely continuous function ck ¼
ðlk;mkÞ

0 : Rþ ! R2 such that the following necessary optimality conditions for (Pk) hold:
’lk ¼ alk � mkð1� zkÞ ð29Þ

’mk ¼ �ge�rt þ mkðbþ ykÞ ð30Þ

11A discussion of trajectories under constant controls can be found in Section 6.1.
12By part (iv) of Proposition 2 the adjoint variables l, m are positive.
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Hkðt;xkðtÞ; ukðtÞ;ckðtÞÞ
a:e:
¼¼Hkðt;xkðtÞ;ckðtÞÞ ð31Þ

ckðTkÞ ¼ 0 ð32Þ

where we have used the expression Hk for the Hamilton–Pontryagin function in normal
form13

Hkðt; xkðtÞ; ukðtÞ;ckðtÞÞ ¼ e�rthðzk; ukÞ þ lðukk � aykÞ þ mðð1� zkÞyk � bzkÞ

and Hk for the corresponding (maximized) Hamiltonian

Hkðt;xk;ckÞ ¼ sup
u2U

Hkðt; xk; u;ckÞ

with respect to problem (Pk). We will now concentrate on proving part (iii) of the proposition.
From the boundary condition (32) and adjoint equation (30) we have by the variation-of-
constants formula [30, pp. 75–76]

mkðtÞ ¼ g
Z Tk

t

exp �ry�
Z y

t

ðbþ ykðsÞÞ ds
� �

dy > 0 ð33Þ

for all t 2 ½0;TkÞ: Therefore

mkðtÞ4g
Z Tk

t

expð�ry� bðy� tÞÞ dy ¼
g

rþ b
ðe�rt � e�rTke�bðTk�tÞÞ4

ge�rt

rþ b
ð34Þ

and also

mkðtÞ5g
Z Tk

t

expð�ry� ðbþmyÞðy� tÞÞ dy ¼
gðe�rt � e�rTke�ðbþmyÞðTk�tÞÞ

rþ bþmy
ð35Þ

for all t 2 ½0;TkÞ; where we have set my :¼maxfy0; %yg: Similarly, we obtain from (30), (32),
and (33)

lkðtÞ ¼ eat
Z Tk

t

e�aymkðyÞð1� zkðyÞÞ dy > 0 ð36Þ

for all t 2 ½0;TkÞ; since zkðtÞ51 on (0, Tk). Using the above bounds on mk, given by (34)–(35), this
implies

lkðtÞ4eat
Z Tk

t

e�aymkðyÞ dy4
gðe�rt � e�rTk�aðTk�tÞÞ
ðrþ aÞðrþ bÞ

4
ge�rt

ðrþ aÞðrþ bÞ
ð37Þ

13 It is possible to take the normal form (i.e. c0
k ¼ 1) without loss of generality, since (Pk) is a problem on a fixed time

interval ½0;Tk� with free terminal state, and thus c0
k=0:
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and if we use the abbreviation mz :¼ maxfz0; %zg

lkðtÞ5
gð1�mzÞeat

rþ bþmy

Z Tk

t

e�ayðe�ry � e�rTke�ðbþmyÞðTk�yÞÞ dy

5
gð1�mzÞeat

rþ bþmy

e�ðrþaÞt � e�ðrþaÞTk

aþ r
�

e�rTk

rþ aþmy
ðe�at � e�aTke�ðbþmyÞðTk�tÞÞ

� �

¼
gð1�mzÞ
rþ bþmy

e�rt � e�aTke�rðTk�tÞ

rþ a
�

e�rTkð1� e�ðaþbþmyÞðTk�tÞÞ
rþ aþmy

� �
ð38Þ

for all t 2 ½0;Tk�:
14

Consider now the increasing sequence of time intervals Ij ¼ ½0;Tj�; j ¼ 1; 2; . . . ; and on each Ij
consider the sequences fukg; fxkg; and fckg: Given Ij ; the sequence fjjckð0Þjjg is uniformly
bounded. Using the Bellman–Gronwall Lemma [31, pp. 474–475] and the adjoint equations
(29)–(30) one can assume without loss of generality that there exists an absolutely continuous
function c ¼ ðlk; mkÞ

0 : Rþ ! R2 such that (as k!1)

ck4c on Ij

and

’ck ! ’c weakly in L1ðIjÞ

Given the sequence fIjg we can pass on each Ij ; j ¼ 1; 2; . . . ; from the sequence fckg to a
subsequence converging to c: By selecting a diagonal subsequence, one can assume that there is
an absolutely continuous function c : Rþ ! R such that, for any T > 0; we have (as k!1)

ck4c on ½0;T �

’ck ! ’c weakly in L1½0;T �
ð39Þ

By Proposition 1 and the discussion thereafter, we have that uk ! un strongly in L2½0;T � as
k!1; and xk4xn uniformly on ½0;T � as k!1:Using the Mazur theorem (see e.g. Reference
[32]), the absolutely continuous function c is a solution to the adjoint system (29)–(30) on any
time interval ½0;T �; T > 0: This proves part (i).

The maximality condition (22) follows from passing to the limit in (31). This proves part (ii).
The strict positivity of c is a direct consequence15 of (35) and (38) for k!1: Similarly,

relations (23)–(24) are obtained from (34)–(35) and (37)–(38) by passing to the limit for k!1:
Thus we have shown part (iii), which concludes the proof. &

Remark

(a) The state trajectory is bounded, i.e. xnðtÞ 2 ½0;maxfy0; %yg� � ½0;maxfz0; %zg� for all t 2 Rþ:
Thus the growth conditions (23)–(24), together with the boundedness of h, imply the

14Note in particular that my ¼ maxfy : ðy; zÞ0 2 Rðx0Þg and mz ¼ maxfz : ðy; zÞ0 2 Rðx0Þg; where the set of from x0
reachable states, Rðx0Þ; is given in Appendix A by (A7)–(A8).

15 In the special case where z0 ¼ 1; note that mz ¼ 1; but also that nevertheless znðtÞ51 for all t > 0; since ’z50 for z > %z
by (2) and %z51:
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asymptotic stationarity of the Hamiltonian,

lim
t!1

Hðt; xnðtÞ; cðtÞÞ ¼ 0 ð40Þ

(b) From (20)–(22) we get that

d

dt
Hðt;xnðtÞ;cðtÞÞ

a:e:
¼¼
@H

@t
ðt;xnðtÞ; unðtÞ;cðtÞÞ ¼ �re�rthðznðtÞ; unðtÞÞ

which, integrated over Rþ; together with (40) yields

Hð0; x0;cð0ÞÞ ¼ r
Z 1
0

e�rthðzn; unÞ dt ¼ rJðxn; unÞ

Thus, we have obtained an expression for Jn :¼ Jðxn; unÞ in terms of the initial conditions
xð0Þ ¼ ðy0; z0Þ

0; cð0Þ ¼ ðl0;m0Þ
0

Jn ¼
1

r
max
u2U
fhðz0; uÞ þ l0ðuk � ay0Þ þ m0 ð1� z0Þy0 � bz0ð Þg

¼
gz0
r
þ

1

r
ðl0 minf%uk; ðkl0Þ

k=1�kg �minf%u; ðkl0Þ
1=1�kg � al0y0Þ

þ
m0
r
ðð1� z0Þy0 � bz0Þ ð41Þ

In the special case where (28) holds, we have

Jn ¼
bz0 þ ð1k� 1Þðkl0Þ

1=1�k � al0y0
r

þ
m0
r
ð1� z0Þy0 � bz0ð Þ for %u5ðk%lÞ1=1�k

Proposition 2 provides growth conditions in the form of inequalities, stronger than the ‘natural’
transversality condition16

lim
t!1

cðtÞ ¼ 0 ð42Þ

proposed for instance by Arrow and Kurz [18], which is a direct consequence of (23)–(24). We
will now provide a characterization of the ‘natural’ transversality (42) in terms of initial values
of the adjoint variable c:

Proposition 3 (‘Natural’ transversality)

Let ðxn; unÞ be an optimal pair for (P) and cðtÞ ¼ ðlðtÞ; mðtÞÞ0 an adjoint variable satisfying the
conditions in Proposition 2. The ‘natural’ transversality condition (42) holds if and only if the

16Such a transversality condition need not hold, even for simple infinite-horizon optimal control problems. An
appropriate counterexample was given by Halkin [19].
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following two relations are true:

lð0Þ ¼ lim
t!1

Z t

0

e�aymðyÞð1� znðyÞÞ dy ð43Þ

mð0Þ ¼ g lim
t!1

Z t

0

exp �ðrþ bÞy�
Z y

0

ynðsÞ ds
� �

dy ð44Þ

Proof
‘)’: Given initial conditions lð0Þ and mð0Þ; the solutions of the system (20)–(21) have the
form

lðtÞ ¼ eat lð0Þ �
Z t

0

e�aymðyÞð1� znðyÞÞ dy
� �

ð45Þ

mðtÞ ¼ mð0Þ � g
Z t

0

exp �ðrþ bÞy�
Z y

0

ynðsÞ ds
� �

dy
� �

exp

Z t

0

ðbþ ynðyÞÞ dy
� �

ð46Þ

Thus, relations (43)–(44) are an immediate consequence of (42).
‘(’: Starting from (46) let us first examine the limit of mðtÞ as t!1

lim
t!1

mðtÞ ¼ lim
t!1

mð0Þ � g
R t
0 expð�ðrþ bÞy�

R y
0 ynðsÞ dsÞ dy

expð �
R t
0
ðbþ ynðyÞÞ dyÞ

Both the numerator and denominator of the right-hand side of the last expression tend towards
zero as t!1: Thus, by L’Hospital’s rule we have

lim
t!1

mðtÞ ¼ lim
t!1

�g expð�rt�
R t
0 ðbþ ynðyÞÞ dyÞ

�ðbþ ynðtÞÞ expð�
R t
0 ðbþ ynðyÞÞ dyÞ

¼ lim
t!1

ge�rt

bþ ynðtÞ
¼ 0 ð47Þ

Based on (45), let us compute the limit of lðtÞ as t!1

lim
t!1

lðtÞ ¼ lim
t!1

eat lð0Þ �
Z t

0

e�aymðyÞð1� znðyÞÞ dy
� �

¼ lim
t!1

lð0Þ �
R t
0 e
�aymðyÞð1� znðyÞÞ dy

e�at

Again both the numerator and denominator of the last expression tend towards zero as t!1;
so that we obtain by L’Hospital’s rule and (47)

lim
t!1

lðtÞ ¼ lim
t!1

�e�atmðtÞð1� znðtÞÞ
�ae�at

¼ lim
t!1

mðtÞ
a
ð1� znðtÞÞ ¼ 0

which concludes the proof. &

Remark

(a) The second part of the proof (‘(’) indeed uses the transversality condition (42), as it is the
prerequisite for the application of l’Hospital’s rule.
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(b) The proof tacitly uses the fact that X contains a bounded and invariant set Y which is
reached in finite time, so that znðtÞ in particular is uniformly bounded (only the positivity
of ynðtÞ matters in the proof).

4. SOLUTION OF THE INFINITE-HORIZON OPTIMAL CONTROL PROBLEM

The best equilibrium state x0b maximizes the integrand h of the objective function J for all times t,
subject to leaving system (1)–(2) at rest. On the other hand, a system that starts at the
best equilibrium state may increase the value of the objective function by leaving the best
equilibrium state tending towards an optimal steady state that provides maximum growth of
discounted profits, allowing for intertemporal increases in profits by passing through non-
equilibrium states. For a zero discount rate ðr ¼ 0Þ both concepts coincide. In the following, we
explicitly determine these states and provide sufficient conditions for the asymptotic
convergence of an optimal trajectory towards the optimal steady state, provided one starts
close enough to that state. In addition, we discuss the synthesis of an optimal, profit-maximizing
advertising policy.

4.1. Best equilibrium state x0b

Consider first the set of possible stationary states S, where necessarily ’x ¼ 0: Using (1)–(2) and
(5) we obtain

S ¼ ðy; zÞ 2 X : z ¼
y

bþ y
; y 2 ½0; %y�

� �
ð48Þ

Clearly we have that S is a one-dimensional compact manifold, with @S ¼ f0; %xg:We would like
to determine a maximizer of the integrand of Jðx; uÞ in (3) on S, which we term best equilibrium
state x0b (Figure 1). For this fix t50 and rewrite the integrand in (6) on S subject to ’x ¼ 0

fhðz; uÞ : ðy; zÞ 2 S; uk ¼ ayg{
gy

bþ y
� ðayÞ1=k ¼: hSðyÞ

where hS : Rþ ! R is a smooth function. The necessary condition for an interior optimum can
be written in the form

h0SðyÞ ¼
gb

ðbþ yÞ2
�

a1=k

k
y1�k=k ¼ 0

and together with

h00SðyÞ ¼ �2
gb

ðbþ yÞ3
þ

a1=k

k
1

k
� 1

� �
y1�2k=k

� �
50

we are guaranteed to have a unique maximizer of hS on ½0; %y�

y0b ¼ minfy : y1�kðbþ yÞ2k ¼ k or y ¼ %yg ð49Þ
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where k :¼ ðkgbÞk=a: Thus z0b ¼ y0b=ðbþ y0bÞ is also uniquely determined, and

x0b ¼ y0b;
y0b

bþ y0b

� �
ð50Þ

4.2. Asymptotic behaviour and optimal steady state x0
n

Consider a constant admissible pair ðx0
n
; u0

n
Þ 2 S �U; with x0

n
¼ ðy0

n
; z0

n
Þ0; that satisfies the

necessary optimality conditions in Proposition 2. Then, according to (20)–(21), we have

’l ¼ al� mð1� z0
n
Þ ð51Þ

’m ¼ �ge�rt þ mðbþ y0
n
Þ ð52Þ

Furthermore, the system equations (1)–(2) give

0 ¼ ðu0
n
Þk � ay0

n
ð53Þ

0 ¼ ð1� z0
n
Þy0

n
� bz0

n
ð54Þ

With Proposition 2, parts (ii) and (iii), and using (19), the optimal control u0
n

is of
the form,

u0
n
¼ minf%u; ðklertÞ1=1�kg ð55Þ

Figure 1. Set of stationary states S, including the best equilibrium state x0b and optimal steady state x0
n
:
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From (46) we know that

mðtÞ ¼ mð0Þ �
g

rþ bþ y0n

� �
eðbþy

0
nÞt þ

g
rþ bþ y0n

e�rt

so that by Proposition 2, part (iii), and Proposition 3 necessarily mð0Þ ¼ g=ðrþ bþ y0
n
Þ:

Substituting the resulting expression for mðtÞ into (51) we have

’l ¼ al� mð1� z0
n
Þ ¼ al�

gð1� z0
n
Þ

rþ bþ y0n
e�rt

whence with (45)

lðtÞ ¼ lð0Þ �
gð1� z0

n
Þ

ðrþ aÞðrþ bþ y0nÞ

� �
exp

gð1� z0
n
Þt

rþ bþ y0n

� �
þ

gð1� z0
n
Þe�rt

ðrþ aÞðrþ bþ y0nÞ

As before lð0Þ is determined uniquely by the necessary optimality conditions, so that we obtain

lðtÞ ¼
gð1� z0

n
Þe�rt

ðrþ aÞðrþ bþ y0nÞ
; mðtÞ ¼

ge�rt

rþ bþ y0n

Rewriting (55) it is then

u0
n
¼ min %u;

kgð1� z0
n
Þ

ðrþ aÞðrþ bþ y0nÞ

� �1=1�k( )
ð56Þ

and thus, using (53)–(54)

y0
n
¼ minfy : y1�kðrþ bþ yÞkðbþ yÞk ¼ kn or y ¼ %yg ð57Þ

where we have set

kn :¼
ðkgbÞk

a1�kðrþ aÞk

The following proposition summarizes these results.

Proposition 4 (Optimal steady state)

Let ðxn; unÞ be an optimal pair for (P). If

ðxnðtÞ; unðtÞÞ ¼ ðxnð0Þ; unð0ÞÞ for all t 2 Rþ

then ðxn; unÞ ¼ ðx0n; u
0
n
Þ; where u0

n
is given by (56), and xn

0 ¼ ðy
0
n
; y0

n
=ðbþ y0

n
ÞÞ with y0

n
determined

by (57).

Remark

(a) We refer to a constant optimal pair ðx0
n
; u0

n
Þ as an optimal steady state (or more precisely:

optimal steady state-control tuple). We have shown above that there is only one
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candidate for optimal steady state that satisfies the necessary optimality conditions
of Proposition 2. Optimality of that state will be a consequence of Proposition 6
below.

(b) Comparing (49) with (57) and noting kn5k; it follows that 05x0
n
5x0b (see

Figures 2 and 3). In other words, x0
n
lies in S between the origin and the best equilibrium

state xn
b:

(c) Note that as r tends to zero from above, one obtains the best equilibrium state
as a limit, i.e.

lim
r!0þ

x0
n
¼ lim

r!0þ
x0b ð58Þ

since limr!0þ kn ¼ k (see Figure 3).
(d) From (53)–(54) and (56) we can immediately conclude that

lim
r!1

x0
n
¼ 0 ð59Þ

Figure 2. Illustration of the first-order conditions for determining y0
n
5y0b5%y:

Figure 3. Comparison of y0
n
and y0b as a function of r:
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Therefore for r large enough, the optimal steady state x0
n
will be an interior point of

S � X :
(e) It is possible to obtain the optimal steady state x0

n
¼ ðy0

n
; z0

n
Þ and associated equilibrium

control u0
n
as the solution of Feinstein and Luenberger’s [12] ‘implicit programming

problem,’ ðx0
n
; u0

n
Þ ¼ arg maxððy;zÞ;uÞ2X�Uhðz; uÞ; subject to uk � ay ¼ rðy� y0

n
Þ and ð1�

zÞy� bz ¼ rðz� z0
n
Þ: In this paper we have opted for a (computationally equivalent) direct

method to find x0
n
; since it employs the Hamiltonian system which is needed for our

formulation of an infinite-horizon maximum principle and is used in the discussion of
asymptotic stability below.

The optimal steady state-control tuple ðx0
n
; u0

n
Þ is unique. However, it is not an easy

task to guarantee that any optimal trajectory asymptotically converges towards that
state, since the Hamiltonian is not convex–concave. Also, more delicate results for non-convex
systems, such as the ones by Rockafellar [13] (reported in Reference [12]) or more
generally Haurie [33], may be unsuitable, for they rely on convexity–concavity of the
(maximized) Hamiltonian in a neighbourhood of the optimal steady state or the existence of ‘G-
supported trajectories’ (where G(x) corresponds to the set of system velocities at state x),
respectively.

To investigate the local behaviour around the optimal steady state x0
n
; let us first rewrite the

Hamiltonian system in current-value form. For this we set lcv :¼ lert and mcv :¼ mert; and
obtain an equivalent set of autonomous equations

’y ¼ minf%uk; ðklcvÞ
k=1�kg � ay ð60Þ

’z ¼ ð1� zÞy� bz ð61Þ

’lcv ¼ ðrþ aÞlcv � mcvð1� zÞ ð62Þ

’mcv ¼ �gþ mcvðrþ bþ yÞ ð63Þ

Note that the unique equilibrium point of this system is ðy0
n
; z0

n
; l0cv; m

0
cvÞ
0; where

l0cv ¼
gð1� z0

n
Þ

ðrþ aÞðrþ bþ y0nÞ
; m0cv ¼

g
rþ bþ y0n

ð64Þ

and ðy0
n
; z0

n
Þ as determined earlier. To avoid non-smooth behaviour in the neighbourhood of the

equilibrium point, it is sufficient to assume that the optimal steady state x0
n
is an interior point of

the set of all possible steady states S.17

17This implies that ðklcvÞ1=1�k5%u for all lcv in a neighbourhood of l0cv; whence the smoothness of the system (60)–(63) in
a neighbourhood of ðx0

n
;c0

cvÞ:
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Assumption 1

The optimal steady state x0
n
lies in the interior of S, i.e. x0

n
5 %x:

Remark

It is clear that Assumption 1 is weaker than (28), since it does not impose global restrictions on
the magnitude of un for instance.

To shift the unique equilibrium of our Hamiltonian system to the origin, we introduce new
co-ordinates f ¼ ðf1;f2;f3;f4Þ

0;

f :¼

y� y0
n

z� z0
n

l� l0cv

m� m0cv

2
666664

3
777775

so that (60)–(63) can be written equivalently as a perturbed linear system

’f ¼ Afþ f ðfÞ ð65Þ

where

A ¼

�a 0 l1 0

1� z0
n
�ðbþ y0

n
Þ 0 0

0 m0cv rþ a �ð1� z0
n
Þ

m0cv 0 0 rþ bþ y0
n

2
666664

3
777775; f ðfÞ ¼

l2f
2
3 þOðf3

3Þ

�f1f2

�f2f4

f1f4

2
666664

3
777775

and

l0 ¼ ay0
n
; l1 ¼

k
1� k

ðkl0cvÞ
k=1�k

l0cv
; l2¼

kð2k� 1Þ

2ð1� kÞ2
ðkl0cvÞ

k=1�k

ðl0cvÞ
2

are the first terms in the Taylor series expansion

ðkðf3 þ l0cvÞÞ
k=1�k ¼

X1
k¼0

lkf
k
3

around f3 ¼ 0:We note that the eigenvalues a1; a2; a3; a4 of the system matrix A are all distinct,
two of them (a1; a2) with negative real part and the other two (a3; a4) with positive real part.
They are given by

a1=2 ¼
r
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ aÞ2 þ 2ðrþ bþ y0nÞðbþ y0nÞ þ a2� 2

ffiffiffiffi
D

pq
ð66Þ

a3=4 ¼
r
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ aÞ2 þ 2ðrþ bþ y0nÞðbþ y0nÞ þ a2� 2

ffiffiffiffi
D

pq
ð67Þ
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where we have set

D :¼ ðy0
n
Þ4 þ 2ðrþ 2bÞðy0

n
Þ3 þ ðrðr� 2aÞ þ 6bðrþ bÞ � 2a2Þðy0

n
Þ2

þ 2ððb� aÞr2 þ ð4b2 � ðaþ bÞ2Þrþ 2bða2 þ b2Þ � 4l1m0cvð1� z0
n
ÞÞy0

n

þ ða� bÞ2r2 þ 2ððaþ bÞðb� aÞ2 � 2l1m0cvð1� z0
n
ÞÞrþ ðb2 � a2Þ2 � 8l1m0cvð1� z0

n
Þ

Next we would like to find a similarity transform S that brings the linear part A of system
(65) into the Jordan form J ¼S�1AS: The resulting (block-) diagonal system matrix J allows
us, provided the perturbation function satisfies a Lipschitz condition, to guarantee
the convergence of trajectories to the optimal steady state (namely the origin in the trans-
formed co-ordinates). Given an appropriate similarity transform S that brings A into Jordan
form, we introduce (following Reference [14, pp. 68–69]) new co-ordinates j ¼ ðx; ZÞ0 such
that

f ¼Sj; det S=0

Then (65) can be written in the new co-ordinates,

’j ¼ JjþS�1f ðSjÞ; J ¼S�1AS ð68Þ

The transformed system (68) is, however, not properly defined in all cases. In particular, the
eigenvalues of A may be complex, whence complex entries in S may render the expression
f ðSjÞ meaningless. In our case, we can see from (66)–(67) that either all four eigenvalues
a1; . . . ; a4 are real, or they form two conjugate pairs a1=2 and a3=4: In the latter case we follow
Reference [14, p. 69], introducing the matrix

S0 ¼
I iI

I �iI

" #

where I is the 2� 2 identity and i ¼
ffiffiffiffiffiffiffi
�1

p
: Then the change of variables f ¼SS0w transforms

(68) into the real system

’w ¼S�10 JS0wþS�10 S�1f ðSS0wÞ

or equivalently, by taking linear combinations with constant coefficients 1 or � i

ð ’S0wÞ ¼ JðS0wÞ þSf ðSðS0wÞÞ ð69Þ

Thus, interpreting (68) if necessary as (69) we can write the perturbed system in the block-
diagonal form

’x ¼ Pxþ F1ðx; ZÞ ð70Þ

’Z ¼ QZþ F2ðx; ZÞ ð71Þ

where (in case a1; . . . ; a4 are real) P :¼ diagfa1; a2g; Q :¼ diagfa3; a4g; and ðF1;F2Þ
0 ¼

S�1f ðSjÞ which contains only higher powers of j ¼ ðx; ZÞ0: The following proposition by
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Hartman [14] allows us to conclude about the asymptotic behaviour near the optimal
steady state

Proposition 5 (Asymptotic integration; Hartman [14, pp. 294–296])

Let a system of differential equations have the form (70)–(71), where

(i) the eigenvalues p1; p2 and q1; q2 of P and Q satisfy

ReðpjÞ4s; ReðqkÞ > s ð72Þ

for some real s50;
(ii) F ¼ ðF1;F2Þ is continuous and satisfies

jjFðjÞjj
jjjjj

! 0; as ðt;jÞ ! ð1; 0Þ ðj ¼ ðx; ZÞ0Þ ð73Þ

Then the following conclusions hold:

(A) There exist T > 0 and d > 0 such that for every t0 > T and x0 satisfying jjx0jj5d there is a
Z0 such that the initial value problem (70)–(71) with

xðt0Þ ¼ x0; Zðt0Þ ¼ Z0

has a solution for t5t0 satisfying either jðtÞ ¼ ðxðtÞ; ZðtÞÞ � 0 or xðtÞ=0 for t5t0; and

jjZðtÞjj ¼ oðjjxðtÞjjÞ as t!1 ð74Þ

lim sup
t!1

logjjjðtÞjj
t

4s ð75Þ

(B) If in addition, F satisfies

jjFðj1Þ � Fðj2Þjj
jjj1 � j2jj

! 0 as ðt;j1;j2Þ ! ð1; 0; 0Þ ð76Þ

when j1
=j2; then there exists a small d0 > 0 with the property that if t0 is sufficiently

large and jjx0jj is sufficiently small, there is a unique Z0 ¼ gðt0; x0Þ such that the solution
jðtÞ ¼ ðxðtÞ; ZðtÞÞ0 of the above initial value problem exists and satisfies
jjjðtÞjj5d for t50: Furthermore, the function gðt0; x0Þ is of the same smoothness as F.

Remark

All the hypotheses of Proposition 6 are evidently satisfied, by construction. In particular,
F is clearly analytic in the neighbourhood of the origin, so that g is at least infinitely
differentiable.

To exclude limit cycles at least locally, Proposition 6 per se is not sufficient, as for a given x0
there might be two different initial conditions c1

0=c2
0; such that the associated state trajectory
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converges to x0
n
for cð0Þ ¼ c1

0 and to a limit cycle for cð0Þ ¼ c2
0: If the optimal trajectory is

unique, such behaviour is not possible.

Assumption 2 (Uniqueness of optimal trajectories)

For any given initial condition x0; the optimal pair ðxn; unÞ for (P) is unique.

Remark

In Remark (c) after Proposition 2 we pointed out that the (maximized) Hamiltonian
for (P) is not concave in the state variable, and thus standard uniqueness results, such as the
one provided by Mangasarian [34], and the generalization thereof for infinite-horizon
problems by Arrow and Kurz [18] do not hold. In our particular problem (P) it is
possible to use the concavity in u of the Hamilton–Pontryagin function together with the
maximality condition in Proposition 2 to guarantee the uniqueness of an optimal trajectory for
every specific initial condition ðx0;c0Þ: However, since c0 by (43)–(44) in turn depends on the
optimal trajectory, ensuring uniqueness remains a non-trivial task; Assumption 2 is therefore
restrictive and needs to be proved or disproved as a property of the system.

We are now able to provide our result on local asymptotic convergence of any optimal
trajectory starting close enough to x0

n
:

Proposition 6 (Local asymptotic convergence)

If assumptions 1 and 2 hold, then there is a d > 0 such that for every x0 2 X with jjx0 � xn
0 jj5d; the

optimal trajectory xnðtÞ with respect to (P) converges to the optimal steady state x0
n
as t!1:

Proof

Given x0 in a small enough neighbourhood of x0
n
; Proposition 5 guarantees the existence of a

unique initial condition cð0Þ ¼ c0 such that ðxnðtÞ;cðtÞertÞ ! ðx0n;c
0
cvÞ; where c0

cv ¼ ðl
0
cv;m

0
cvÞ
0;

as determined previously in (64). Assumption 2 ensures the uniqueness of the optimal pair, and
thus by Proposition 3 there cannot be any other trajectory ðxðtÞ;cðtÞÞ of the Hamiltonian system
(60)–(63) that satisfies the necessary optimality conditions of Proposition 2. Indeed,
limt!1 cðtÞ ¼ 0 if and only if cð0Þ ¼ ðlð0Þ;mð0ÞÞ0 is given by (43)–(44). Hence, it is indeed the
(by Assumption 2 unique) optimal trajectory xnðtÞ (not any other trajectory of the Hamiltonian
system) that converges to x0

n
as t!1: This concludes the proof. &

Remark

(a) Proposition 6 implies the optimality of x0
n
: To see this, it is enough to take any particular

optimal trajectory xnðtÞ (unique by Assumption 2) that converges to x0
n
; and then consider

the sequence of problems with initial conditions xnðTkÞ; where Tk5Tkþ1 !1 as k!1:
For each k the optimal solution xk satisfies xkðtÞ ¼ xnðtþ TkÞ by the optimality principle,
so that in the limit limk!1 xkðtÞ ¼ x0

n
strongly.18

18 Indeed, for any e > 0 there is a TðeÞ > 0 such that jjxnðtÞ � x0
n
jj5e for all t5TðeÞ: Thus, considering a sequence

ek > 0; k ¼ 1; 2; . . . ; with ek ! 0 and TðekÞ ¼: Tk !1 (w.l.o.g. Tkþ1 > Tk), as k!1; it is jjxkðtÞ � x0
n
jj4ek for all

t50 and k51: Hence xkðtÞ ! x0
n
uniformly on Rþ as k!1:
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(b) Assume that there exists a (global) limit cycle L that is an optimal trajectory, i.e. there is
an optimal pair ðxn; unÞ for (P) such that

xnð0Þ 2 L, xnðtÞ 2 L for all t 2 Rþ

and there is a finite T > 0 such that

xnðtÞ ¼ xnðtþ nTÞ for all n 2 N; t 2 ½0;TÞ ð77Þ

Consequently, un needs to be also T-periodic, i.e.

unðtÞ ¼ unðtþ nTÞ for all n 2 N; t 2 ½0;TÞ ð78Þ

Let c ¼ ðl;mÞ0 be an adjoint variable satisfying the necessary optimality conditions of
Proposition 2. The T-periodicity of the state trajectory (77) implies the T-periodicity of
lcvðtÞ and mcvðtÞ; with initial conditions (from (43)–(44))19

lcvð0Þ ¼
1

1� e�rT

Z T

0

e�rtmðtÞð1� znðtÞÞ dt ð79Þ

mcvð0Þ ¼

R T
0 expð�ðrþ bÞt�

R t
0 ynðyÞ dyÞ dt

1� expð�ðrþ bÞT �
R T
0 ynðyÞ dyÞ

ð80Þ

In addition, we know that L� X (if it exists) must be oriented positively around x0
n
; and

by Assumption 2 cannot intersect itself. Indeed if there were any intersection points an
optimal trajectory starting at such an intersection would not be unique. L denotes the
projection of a one-dimensional limit cycle C � X � R2

þ onto X, which thus in principle
could exhibit intersections, even though C possesses none. Thus, if it can be shown that
for the particular initial condition x0 ¼ 0 the optimal trajectory xnðtÞ with respect to (P)
converges to x0

n
; then there cannot exist any limit cycle.20

(c) If x0
n
¼ %x; i.e. if Assumption 1 does not hold, then there cannot exist a (non-trivial) limit

cycle. This follows directly from (b). Hence in this case, we have even global asymptotic
convergence of any optimal trajectory xnðtÞ to x0

n
as t!1:Moreover, this global result does

not depend on Assumption 2 at all. Economically this corresponds to the situation of a tight
restriction on the rate of advertising spending (%u small), so that it is essentially optimal to
spend as much as possible on advertising in order to maximize discounted profits.

5. DISCUSSION

Having a complete picture of an optimal policy is very important for any decision maker,
allowing her to simplify decision rules and implement feedback that moves her system along an

19Taking (43) for instance, we can write lcvð0Þ ¼ lð0Þ ¼
R1
0 e�rtmðtÞð1� znðtÞÞ dt ¼

P1
k¼0

R ðkþ1ÞT
kT

R T
0 e�rtmðt� kTÞ�

ð1� znðt� kTÞÞ dt ¼
P1

k¼0 e
�rkT

R T
0 e�rtmðtÞð1� znðtÞÞ dt ¼ ð1� e�rT Þ�1

R T
0 e�rtmðtÞð1� znðtÞÞ dt:

20For a particular parameter vector ða;b; g; k; r; %uÞ a ‘proof’ that there is asymptotic convergence towards x0
n
can thus be

obtained via numerical methods. Of course this assumes that in the spirit of LaSalle’s theorem (Theorem 3.4 in
Reference [35, p. 117], a Lyapunov function VðxÞ has been found that decreases along any optimal trajectory and can
stay constant only on an optimal limit cycle or the optimal steady state, so that asymptotically any optimal trajectory
needs to converge towards either a limit cycle or the optimal steady state.
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optimal path. In addition, the assertion of global asymptotic convergence of optimal trajectories
enables the decision maker, instead of constantly attempting to measure the value of her
objective function, to concentrate on steering the system to the optimal steady state in an
efficient manner. We have laid the groundwork to provide such a complete picture (relating, for
instance, optimal trajectories to initial points of the state space) for the problem of maximizing
discounted profits as a response to advertising for and sales of durable goods, based on a
combination of classic models by Vidale–Wolfe [26] and Nerlove–Arrow [24].

In particular, we have analysed the synthesis and asymptotic behaviour of an optimal infinite-
horizon advertising spending policy. An infinite-horizon formulation of the optimal advertising
problem naturally represents a ‘going concern’ for the promotion of durable products in a fixed-
price environment. To obtain necessary optimality conditions that allow the effective selection
of candidates for an optimal policy, it is possible (using the method of smooth approximation)
to construct a version of the Pontryagin Maximum Principle (Proposition 2) that includes
growth conditions, stronger than the ‘natural’ transversality conditions proposed by Arrow and
Kurz [18]. In addition, we find the (unique) optimal steady state x0

n
; which generally does not

coincide with the global static maximizer x0b of current-value profits over all equilibrium states.
This is because starting from, say, the best equilibrium state x0b; it may be optimal for the
decision maker to steer the system first to some unsustainable but more profitable states before
reaching x0

n
: Indeed, such a policy is always optimal when starting close enough to the optimal

steady state and it is optimal for any initial state if there is no limit cycle. Limit cycles can be
excluded for a certain subset of parameters corresponding to an ‘underfunded’ situation with a
too restrictive upper bound %u on the advertising spending rate u. If in addition, for a given
parameter vector ða;b; g;k;r; %uÞ it can be shown numerically (with an appropriate bound on
errors) that the optimal trajectory tends from x0 ¼ 0 to x0

n
; then the optimal trajectory from any

initial state x0 2 X must also converge to x0
n
:

Non-linear infinite-horizon optimal control problems with non-convex Hamiltonian, such as
the one considered here, arise frequently in economics, such as, e.g. in optimal advertising or,
more generally, in optimal product diffusion problems. Results on the asymptotic convergence
of optimal trajectories typically available in the literature require strong curvature properties of
the Hamiltonian that are not satisfied for non-convex systems. Even results based on sufficient
optimality conditions available for certain classes of non-convex systems such as in Reference
[33] do not appear useful in our context, since they need strong assumptions on the global
system behaviour outside a neighbourhood of the optimal equilibrium state. Our approach is a
local one, and the growth condition of Proposition 2 part (iii) helps ensure asymptotic
convergence of the Hamiltonian system of differential equations towards the optimal
equilibrium state. Most results obtained in this paper can be expected to hold for a larger
class of systems (including, for instance, price as a decision variable) that preserve the existence
of a compact invariant set which is reached in finite time by all trajectories.

APPENDIX A: REACHABILITY AND TIME-OPTIMAL CONTROL

In this appendix, we discuss reachability and the related problem of steering the system from an
initial state to a terminal state within the set of reachable states. It turns out that for each initial
state the set of reachable states contains an invariant subset, independent of the initial state. In
principle, those are the states on which to focus discussion, and only they should provide
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plausible initial conditions, unless there has been a switch in the modelling conditions since the
inception of the product. Such a switch may occur as, e.g. product diffusion models typically
contain additional terms (see e.g. References [36,37]), for instance a ‘word-of-mouth effect,’
which might change and/or become ineffective over time.

A.1. Reachability

We are interested in obtaining an expression for the set of all states RðxiÞ that can be reached
from a given initial state xi: Let us first consider the trajectories passing through a given state
ð#y; #zÞ in the interior of X applying a constant control u0 2 U: From the system (1)–(2) we obtain,
using the abbreviation v0 ¼ ðu0Þk,

dzðyÞ
dy
¼
ð1� zÞy� bz

v0 � ay
ðA1Þ

provided that v0=ay: The (unique) solution of (A1) with initial condition

zð#yÞ ¼ #z ðA2Þ

is then given by

zðyÞ ¼ #zeðy�#yÞ=a
v0 � ay
v0 � a#y

� �abþv0=a2
þ
Z y

#y

v0 � ay
v0 � as

� �abþv0=a2
seðy�sÞ=a

v0 � as
ds ðA3Þ

From (48) and (A1) we note that

dzðyÞ
dy
¼ 0, ðy; zðyÞÞ 2 S

or more precisely

sgn
dzðyÞ
dy

� �
¼ sgn

y

bþ y
� zðyÞ

� �
ðA4Þ

which means that all trajectories ‘above’ S are downward sloping, while all trajectories ‘below’ S
are upward sloping (see Figure A1). Moreover,

zðv0=aÞ ¼
v0

abþ v0
ðA5Þ

and ðv0=a; v0=ðabþ v0Þ 2 S; implying that a constant control u0 2 U moves the system
(1)–(2) asymptotically to a well-specified stationary point in S, independent of the initial
state, i.e.

lim
t!1

xðtÞ ¼
v0

a
;

v0

abþ v0

� �
2 S if uðtÞ � u0 for t5T ðA6Þ

Since the set of possible velocities at any point of the state-space is convex, we can limit
ourselves to constant controls u0 2 @U ¼ f0; %ug:Given an initial state xi 2 X ; the set of reachable
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states RðxiÞ is described by21

RðxiÞ ¼ fx 2 X : z�ðyÞ4minfzðy; xi; 0Þ; zðy; xi; %uÞgg [V ðA7Þ

for zi > yi=ðbþ yiÞ; and

RðxiÞ ¼ fx 2 X : maxfzðy; xi; 0Þ; zðy; xi; %uÞg4zþg [V ðA8Þ

for zi4yi=ðbþ yiÞ: We have defined z�ðyÞ as the z-co-ordinate of the trajectory starting at the
origin under constant control u ¼ %u; and zþðyÞ correspondingly as the z-co-ordinate of the
trajectory starting at ð%y; %y=ðbþ %yÞÞ under constant control u ¼ 0: Furthermore,

V ¼ fx 2 X : z�ðyÞ4z4zþðyÞg ðA9Þ

is a compact invariant subset of the state-space for the system (1)–(2), i.e. any trajectory starting
at a point in V is bound to stay in V: Using (A6), we see that

S �V

and any trajectory xðtÞ starting in X will eventually enter V; i.e. there exists a time T, such that
xðtÞ 2V for all t5T : In addition, the system is completely controllable inV; and we construct a
corresponding time-optimal controller that reaches any state in V in the shortest time possible.

Figure A1. Time-optimal control from xi to xf 2 RðxiÞ via a single switching point xsþ.

21To clarify our short notation: in the description of RðxiÞ; zðyÞ denotes trajectories under arbitrary controls u 2 U
starting at xi 2 X :
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A.2. Time-optimal control

Consider the time-optimal control problem ðP0Þ of steering the system (1)–(2) in minimal time
from an initial state xi 2 X to a final state xf 2 RðxiÞ\@X in minimal time T51: More
specifically, ðP0Þ can be written as

ðP0Þ :
Z T

0

�1 dt! max ðA10Þ

subject to (1)–(2), (5), and

xð0Þ ¼ xi; xðTÞ ¼ xf ðA11Þ

where T50 is free, and assumed to be finite. The adjoint equations for the problem ðP0Þ are
simply the ‘stationary limit’ of (20)–(21)

’l ¼ al� mð1� zÞ ðA12Þ

’m ¼ mðyþ bÞ ðA13Þ

Maximization of the associated Hamilton–Pontryagin function yields that the optimal control
for ðP0Þ is bang–bang, i.e.

un ¼ bang½0; %u; l� ðA14Þ

Since the end-time T is free in this problem and subject to optimization, at the optimal time Tn

the (maximized) Hamiltonian for ðP0Þ vanishes, i.e.

HðTn;x
f ;cðTnÞÞ ¼ �1þmaxf0; lðTnÞ%ukg � alðTnÞyf þ mðTnÞðð1� zf Þyf � bzf Þ ¼ 0 ðA15Þ

For the synthesis of the time-optimal controller, let us first focus on the number of possible
switches. However, before we formulate and prove our result, we first of all state a well-known
result from the theory of ordinary differential equations.

Proposition A.1

Any solution un to the time-optimal control problem ðP0Þ is bang–bang with at most one switch.

Proof

From (A14) it is clear that un is bang–bang taking only values in @U ¼ f0; %ug: Consider now the
adjoint equations (A12)–(A13). Given an initial value for m; the solution of (A13) can be written
according to the variation-of-constants formula as

mðtÞ ¼ mð0Þexp
Z t

0

yðyÞ dyþ bt
� �

Note that the sign of m does not change and depends on mð0Þ

sgnðmðtÞÞ ¼ sgnðmð0ÞÞ ¼ const ðA16Þ
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Similarly, given an initial value of l; we can employ again the variation-of-constants formula
[30] and obtain an expression for lðtÞ; whose changes of sign directly determine the number of
switches according to (A14):

lðtÞ ¼ eat lð0Þ �
Z t

0

e�aymðyÞð1� zðyÞÞ dy
� �

Thus,

’lðtÞ ¼ eat a lð0Þ �
Z t

0

e�aymðyÞð1� zðyÞÞ dy
� �

� e�atmðtÞð1� zðtÞÞ
� �

> 0 ðA17Þ

if and only if

lð0Þ >
Z t

0

mðyÞð1� zðyÞÞ dyþ
e�at

a
mðtÞð1� zðtÞÞ ¼: BðtÞ ðA18Þ

Consider the time derivative of the right-hand side of the last inequality,

’B ¼ mð1� zÞ þ
e�at

a
d

dt
ðmð1� zÞÞ � amð1� zÞ

� �

and note that

d

dt
ðmð1� zÞÞ ¼ ’mð1� zÞ � m’z ¼ mðbþ yÞð1� zÞ � mðð1� zÞy� bzÞ ¼ m

using (2) and (A13). Therefore

’B ¼ m ð1� zÞ ð1� e�atÞ þ
e�at

a

� �

which implies with (A16) that

sgn ’B ¼ sgn mð0Þ ¼ const

Going back to (A17) and (A18) we remark

sgn ’l ¼ sgnðlð0Þ � BÞ

from which we conclude that because of the monotonicity of B; ’l cannot change sign more than
once. Therefore l cannot vanish more than once, so that the number of switches is at most one,
which proves the proposition. &

Based on Proposition A.1, we know that the final state xf will be reached either by first
applying u ¼ %u up to the switching time tþ; and from then on u ¼ 0 up to time Tþ or using first
u ¼ 0 up to the switching time t� and from then on u ¼ %u up to time T�:
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