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Abstract

We provide necessary optimality conditions for a general class of discounted infinite-

horizon dynamic optimization problems. As part of the resulting maximum principle we

obtain explicit bounds on the adjoint variable, stronger than the transversality conditions in

Arrow–Kurz form.
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1. Introduction

Infinite-horizon dynamic optimization problems typically have an incomplete set
of necessary optimality conditions that do not allow the effective selection of good
candidates for an optimal solution. The maximum principle by Pontryagin et al.
(1962) has been extended to infinite-horizon problems by Arrow and Kurz (1970) as
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well as Halkin (1974), but transversality conditions (i.e., additional conditions on the
adjoint variable) are generally not available.1 In fact, Halkin (1974) provides a
counterexample for a ‘natural’ extension of the finite-horizon transversality
conditions proposed by Arrow and Kurz.2 Thus, some care is necessary when
formulating strong necessary conditions for infinite-horizon optimal control
problems. Using the method of smooth approximation (reviewed by Aseev, 1999),
it is possible to obtain a weak transversality condition in the form of ‘asymptotic
stationarity’ of the (maximized) Hamiltonian,3 and positivity of the adjoint variable
(Aseev et al., 2001a, b). Here, instead of imposing growth limitations and
monotonicity on state trajectories, we modify the results by Aseev et al. to suit the
common situation, where the state space is a compact invariant set. Invariance of the
state space is satisfied in many economic applications whenever finite economic
resources impose limits on the magnitude of the state variables. Under this natural
invariance condition, together with a number of technical assumptions, we are able
to obtain bounds on the adjoint variable (i.e., growth conditions), stronger than the
aforementioned Arrow–Kurz ‘natural’ transversality conditions for a general class of
systems. Such bounds can be used to show asymptotic convergence of optimal
trajectories (cf. our example in Section 5) and to approximate optimal solutions
via forward simulation of the Hamiltonian system (Lee and Markus, 1967;
Weber, 2001).
2. Statement of the problem

Let us consider the system

_x ¼ F ðxÞuþ gðxÞ, (1)

where F ¼ diagðf 1; . . . ; f nÞ
0 and ðg; f iÞ : X ! ðRn;RÞ are continuously differentiable4

functions for i ¼ 1; 2; . . . ; n; with X � Rn; and n is a positive integer. Let U ¼

½u1; u1� � � � � � ½un; un� for some finite nonnegative uioui; i ¼ 1; 2; . . . ; n: In addition
we suppose that h : X �U ! R is a continuously differentiable function denoting
current profits. Given a positive discount rate r40 and an initial state x0 2 X ; we
will discuss the infinite-horizon optimal control problem

ðPÞ : maximize V ðx; uÞ ¼

Z 1
0

e�rthðx; uÞdt,
1Note that a slight modification of the proof of the classical maximum principle by Pontryagin et al.

(1962) is sufficient for a translation to the infinite-horizon optimal control problem. This has been already

noted by Pontryagin et al. (on pp. 189–191) for the special case of a fixed terminal state.
2Arrow and Kurz (1970) were aware of this shortcoming (cf. their footnote 1 on p. 46).
3Asymptotic stationarity of the (maximized) Hamiltonian was first obtained by Michel (1982) using a

different technique.
4This and subsequent smoothness assumptions can be somewhat relaxed, but we here deliberately avoid

the associated technical difficulties.
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subject to (1),

xð0Þ ¼ x0 (2)

and

u 2 U . (3)

We will look for solutions u in the space of bounded measurable functions. Any such
function u that satisfies the inclusion (3) for all times t is an admissible control. An
admissible pair ðx; uÞ is any admissible control u together with the corresponding
state trajectory x. Following are the main hypotheses that underlie our conclusions.

H1. The state space X is nonempty, compact and invariant with respect to (1) for
all admissible controls u satisfying the inclusion (3).

H2. There exists e40 such that f iXe for all i ¼ 1; 2; . . . ; n:
H3. qh

qx
40:

H4. The function h is strictly concave with respect to u.
H5. There exists a d40 such that if u ¼ ðu1; . . . ; unÞ

0
2 U with ui ¼ ui for some

i 2 f1; . . . ; ng; then hðx; uÞp� d:Moreover, for any x 2 X there is a u 2 U such that
hðx; uÞX0:

Assumption H1 crystallizes the idea that a system that operates using only limited
resources stays in a compact set, which is then invariant. This assumption should be
naturally satisfied by virtually any real-world economic system, even though many
standard models of economic growth ignore saturation effects.5 H2 guarantees a
minimum impact of input variations: a finite resource commitment of ua0 at the
state x adds at least eu to the system drift gðxÞ: The monotonicity requirement H3
ensures the positivity of the adjoint variable. This assumption can be relaxed without
affecting the existence of bounds on the adjoint variable (cf. Proposition 2). Note
however that positive adjoint variables can be readily interpreted as shadow prices
valuing the rate of change at the current state. H4 ensures the uniqueness of the
optimal control u� as a function of x and c: This assumption is important for the
existence of a solution to (P). H5 requires that there be a negative net return on too
large a resource commitment in any one dimension, which is consistent with the
notion of decreasing returns to scale (at least up to a positive linear transformation
of h). In particular it imposes that the limits ui are large enough for these effects to be
noticeable.

Remark 1. A solution ðx�; u�Þ to (P) does exist. By H1 the state space X is a compact
and invariant set with respect to system (1). Hence, all admissible trajectories are
uniformly bounded. In addition, the current value h of the integrand of the objective
functional V is bounded from above by

m ¼ max
ðx;uÞ2X�U

hðx; uÞo1 (4)
5Note also that the invariance property H1 does not enter our dynamic optimization problem as a state

constraint, since it is required to hold for all admissible state trajectories.
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Thus, there exists a nonincreasing positive function o : Rþ ! R such that6

lim
t!1

oðtÞ ¼ 0

and, for any admissible pair ðx; uÞ of system (1), subject to (2) and (3), we haveZ 1
T

e�rthðx; uÞdtpoðTÞ (5)

for all T40: With this and the uniqueness of the optimal control in terms of ðx;cÞ
(guaranteed by H4), Theorem 3.6 by Balder (1983) implies the existence of a solution
to the infinite-horizon optimal control problem (P).7
3. Auxiliary constructions

In this section, we follow the general approach by Aseev et al. (2001b)
for the construction of necessary optimality conditions for (P) by considering
a sequence of classical optimal control problems ðPkÞ; each defined on its own
finite-time interval ½0;Tk�: Thereby TkpTkþ1 and Tk !1 as k!1: We will
show that the sequence of optimal controls for ðPkÞ converges in L2 to the
optimal control for (P) entailing strong convergence of the corresponding
state trajectories. Our problem (P) thereby does not satisfy the assumptions in
Aseev et al. (2001b), so that a number of modifications are necessary. Assume that
ðx�; u�Þ is an optimal pair for the original infinite-horizon optimal control problem
(P), and let u ¼ maxfkuk : u 2 Ug:8 Take a sequence of continuously differentiable
functions vk : Rþ ! Rm; and positive constants sko1 (with skpskþ1), k ¼ 1; 2; . . . ;
such that

sup
t2Rþ

kvkðtÞkp1þ u, (6)

Z 1
0

e�rtkvk � u�k2 dtp
1

k
(7)

and

oðTkÞp
1

kð1þ skÞ
, (8)

lim
k!1

sk ¼ 1. (9)

Such fvk;skg; k ¼ 1; 2; . . . ; exist and can be obtained using standard approximation
methods. Let us now consider the following sequence of classical finite-horizon
6Without loss of generality we can take oðtÞ ¼ me�rt=r:
7An appropriate, simple and direct existence proof can also be found in Aseev et al. (2001a).
8We use k � k to denote the Euclidean 2-norm unless otherwise indicated.
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optimal control problems,

ðPkÞ : maximize V kðx; uÞ ¼

Z Tk

0

e�rt hðx; uÞ �
kvk � uk2

1þ sk

� �
dt,

subject to (1), (2), and (3), for k ¼ 1; 2; . . . : By the Filippov existence theorem
(Cesari, 1983, p. 314), there is an optimal control uk solving ðPkÞ; and we assume that
uk and its associated trajectory xk are extended in an arbitrary admissible way onto
Rþ; so that ðxk; ukÞ forms an admissible pair for (P).

Proposition 1. Let T40: Then uk ! u� in L2½0;T � as k!1:

Proof. Fix e;T40 and integer k0 such that TXTk0
: Then we have for kXk0:

V kðxk; ukÞ ¼

Z Tk

0

e�rt hðxk; ukÞ �
kvk � ukk

2

1þ sk

� �
dt

p
Z Tk

0

e�rthðxk; ukÞdt�
e�rT

1þ sk

Z T

0

kvk � ukk
2 dt.

Hence, by optimality of ðxk; ukÞ for ðPkÞ and by optimality of ðx�; u�Þ for (P) as well
as using (5) and (7):

e�rT

1þ sk

Z T

0

kvk � ukk
2 dtp

Z Tk

0

e�rthðxk; ukÞdt� V kðx
�; u�Þ

p
Z Tk

0

e�rthðxk; ukÞdt

� V ðx�; u�Þ � oðTkÞ �

Z 1
0

e�rt kvk � u�k2

1þ sk

dt

� �

pV ðxk; ukÞ þ oðTkÞ � V ðx�; u�Þ � oðTkÞ �
1

kð1þ skÞ

� �

pV ðxk; ukÞ � V ðx�; u�Þ þ
3

kð1þ skÞ

p
3

kð1þ skÞ
.

Therefore for kXmaxfk0; 16 erT=e2g we have using (7):

kuk � u�kL2½0;T �pkuk � vkkL2½0;T � þ kvk � u�kL2½0;T �p
ð1þ 3Þ

ffiffiffiffiffiffiffi
erT
p

ffiffiffi
k
p pe,

which concludes the proof. &

As a consequence of Proposition 1 we have for any T40; as k!1:

uk ! u� in L2½0;T �, (10)

xk4x� on ½0;T �, (11)

_xk ! _x� weakly in L1½0;T �. (12)
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Without loss of generality (by selecting a subsequence if necessary) we can
assume that ukðtÞ!

a:e:
u�ðtÞ: The strong convergence in (11) is then a consequence

of (10), the absolute continuity of x and the boundedness of system equation (1)
(see e.g., Filippov, 1988, Theorem 7, p. 12). The weak convergence in (12) is
due to the Dunford–Pettis property of L1 (Dunford and Schwartz, 1958, IV.8.9,
p. 292).
4. A maximum principle

We will now formulate a set of necessary conditions that generalize for our class of
systems the infinite-horizon maximum principle proved by Pontryagin et al. (1962,
pp. 189–191) as well as its later versions mentioned above. First, consider the
current-value Hamilton–Pontryagin function

Hðx; u;c0;cÞ ¼ c0hðx; uÞ þ hc;F ðxÞuþ gðxÞi, (13)

where c0
X0 is a constant, and cðtÞ is the (current-value) adjoint variable for this

problem. Whenever c040 it is possible, without loss of generality, to take c0
¼ 1;

just by renormalizing the adjoint variable c: This simplification (to ‘normal form’)
will be rigorously justified in our proof of the necessary optimality conditions
below.9 Everywhere below it is assumed that c0

¼ 1: The (maximized) Hamiltonian
function is defined as

Hðx;cÞ ¼ sup
u2U

Hðx; u;cÞ

and straightforward maximization of H gives u�ðx;cÞ as H is single-peaked by
assumption. The next proposition provides necessary optimality conditions for our
problem (P), including bounds that imply the transversality condition and
asymptotic stationarity of the Hamiltonian obtained by Aseev et al. (2001b).

Proposition 2 (Maximum Principle). Assume that H1 through H5 hold. Let u� be an

optimal solution of (P), and x� be the corresponding trajectory. Then there exists an

absolutely continuous function c : Rþ ! R2 such that the following conditions are

satisfied:
(i)
9A

by H
The function c is a solution to the adjoint equation

_c ¼ rc�
qHðu�;x�;cÞ

qx
. (14)
(ii)
 The maximality condition

Hðx�ðtÞ; u�ðtÞ;cðtÞÞ ¼a:e:Hðx�ðtÞ;cðtÞÞ (15)

holds a.e. on Rþ:
n example of an infinite-horizon optimal control problem where c0
¼ 0 is optimal has been provided

alkin (1974).
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(iii)
10I

on a
The function cðtÞ is strictly positive and bounded on Rþ: In particular, there exist

c;cX0 such that

cpcðtÞpc (16)

for all t 2 Rþ:
Proof. Consider the sequence of classical optimal control problems ðPkÞ constructed
above. Let uk be an optimal solution of ðPkÞ and xk the corresponding trajectory for
k ¼ 1; 2; . . . : By the Pontryagin maximum principle (Pontryagin et al., 1962) there
exists an absolutely continuous function ck ¼ ðc1;k; . . . ;cn;kÞ

0 : Rþ ! Rn such that
the following necessary optimality conditions for ðPkÞ hold:

_ck ¼ rck �
qHk

qx
ðxk; uk;ckÞ, (17)

HkðxkðtÞ; ukðtÞ;ckðtÞÞ ¼
a:e:

HkðxkðtÞ;ckðtÞÞ, (18)

ckðTkÞ ¼ 0, (19)

where we have used the expression Hk for the current-value Hamilton–Pontryagin
function in normal form,10

Hkðxk; uk;ckÞ ¼ hðxk; ukÞ �
kvk � ukk

2

1þ sk

þ hck;F ðxkÞuk þ gðxkÞi

and Hk for the corresponding (maximized) Hamiltonian,

Hkðxk;ckÞ ¼ sup
u2U

Hkðxk; u;ckÞ

with respect to problem ðPkÞ: We will now concentrate on proving part (iii) of the
proposition and first establish the boundedness of the sequence fkckð0Þkg for large k,
which confirms that c0

¼ 1 is an admissible choice. From the boundary condition
(19) and adjoint Eq. (17) it is clear that ckðtÞ is strictly positive in ½0;TkÞ: Indeed,
using H3 we have

_ci;kðTkÞ ¼ �
qh

qxi;k
ðxkðTkÞ; ukðTkÞÞo0

for all i ¼ 1; 2; . . . ; n: Thus, ci;kðtÞ40 in a left-neighborhood of Tk: This implies that
ci;k must be strictly positive on all of ½0;TkÞ; since otherwise there would need to
exist a ti;k 2 ½0;TkÞ such that ci;kðti;kÞ ¼ 0 and _ci;kðti;kÞ40; which cannot be true
due to H3 and (17). Let f x; hx; hu be defined as in (24)–(26). If ci;k4� hu=e; then
t is possible to take the normal form (i.e., c0
k ¼ 1) without loss of generality, since ðPkÞ is a problem

fixed time interval ½0;Tk� with free terminal state, and thus c0
ka0:
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(using H2 and the definition of hu)

qHk

quk

ðxk; uk;ckÞ ¼
qh

quk

ðxk; ukÞ þ
2kvk � ukk

1þ sk

þ hck;F ðxkÞi

Xhu þ e
Xn

i¼1

ci;k40 ð20Þ

which implies ui;k ¼ ui: Let us consider the longest time interval ½0;Tk�; 0pTkpTk;
on which at least one component of the adjoint variable ck is larger than some
critical lower bound,11

ci;k4� hu=e. (21)

Relation (21) implies as shown in (20) that the ith component of the optimal control
uk must be maximal, i.e., ui;k ¼ ui: This in turn implies by H5 that hp� d; which
means that there is a finite negative contribution to the objective function of �d
multiplied by the length of the time interval for which (21) is satisfied.12 Clearly, due
to H5, the optimal profit cannot be negative and

0p
Z Tk

0

e�rthðxk; ukÞdtp�
d
r

1� e�rTk

� �
þ oðTkÞ,

whence with oðTkÞ ¼ me�rTk=r and Tk !1 we obtain that the Tk’s are uniformly
bounded, TkpT 0; with

T 0 ¼
1

r
ln 1þ

m

d

� �
. (22)

Thus, there is a bounded sequence13 tk 2 ½0;T
0�; k ¼ 1; 2; . . . ; such that ci;kðtkÞp

�hu=e for all i ¼ 1; 2; . . . ; n: By (17) and (24) and (25)

_ci;kXrci;k � hx � f x

Xn

j¼1

cj;k

holds on ½0;Tk�; so that after solving this differential inequality with boundary
condition ci;kðT

0Þp� hu=e; we have that

ci;kðtÞp
hx

nf x � r
eðnf x�rÞðT

0�tÞ � 1
� �

�
hu

e
eðnf x�rÞðT

0�tÞ
11The lower bound is independent of k. There may be more than one interval on which (21) holds, but

we are only interested in the longest, the length of which is defined as the supremum of the lengths of all

such intervals.
12Due to the principle of optimality (Bellman, 1957, p. 83) we can take, without loss of generality, the

beginning of the time interval to be zero. Otherwise just consider a new problem of type (P) with the initial

state equal to the state at the time when ci;kX� hu=e in the original problem.
13Of course tkoTk since ci;kðTkÞ ¼ 0 by (19), but this is immaterial to the discussion, since the sequence

of Tk’s, k ¼ 1; 2; . . . ; is unbounded.
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for all t 2 ½0;minfTk;T
0g� as long as nf x4r:14 Hence with (22)

kckð0Þkp
ffiffiffi
n
p hx

nf x � r
1þ

m

d

� �ðnf x=rÞ�1
� 1

� �
�

hu

e
1þ

m

d

� �ðnf x=rÞ�1
" #

,

i.e., kckð0Þk is uniformly bounded (independent of k). Consider now the increasing
sequence of time intervals I j ¼ ½0;Tj�; j ¼ 1; 2; . . . ; and on each I j consider the
sequences fukg; fxkg; and fckg: Given I j ; the sequence fkckð0Þkg is uniformly
bounded. By virtue of the Bellman–Gronwall Lemma (Sontag, 1998, pp. 474–475)
and the adjoint equation (17) one can assume, without loss of generality, that there
exists an absolutely continuous function ck : Rþ ! Rn such that (as k!1)

ck4c on I j,

_ck !
_c weakly in L1ðI jÞ.

Given the sequence fI jg we can pass on each I j ; j ¼ 1; 2; . . . ; from the sequence fckg

to a subsequence converging to c: By selecting a diagonal subsequence, there is an
absolutely continuous function c : Rþ ! R such that, for any T40; we have (as
k!1):

ck4c on ½0;T �,

_ck !
_c weakly in L1½0;T �.

By Proposition 1 and the discussion thereafter, we have that uk ! u� strongly in
L2½0;T � as k!1; and xk4x� uniformly on ½0;T � as k!1: Using the Mazur
theorem (e.g., Mordukhovich, 1988), the absolutely continuous function c is a
solution to the adjoint Eq. (17) on any time interval ½0;T �; T40: This proves part (i).

The maximality condition (15) follows from passing to the limit in (18). This
proves part (ii).

The strict positivity of c is a direct consequence of ci;kðtÞ40 on ½0;TkÞ; for
k!1: Since T 0 is the maximum length of any time-interval in which ci;kX� hu=e;
our upper bound for kckð0Þk is also a uniform upper bound of kckðtÞk on ½0;Tk� for
all k ¼ 1; 2; . . . ; which implies (23) in Corollary 1 for k!1: Thus we have shown
part (iii), which concludes the proof. &

Corollary 1. Some a priori estimates for the bounds on the adjoint variable are given by

c ¼ 0 and c ¼ ðc1; . . . ;cnÞ
0 with

ci ¼
hx

nf x � r
1þ

m

d

� �ðnf x=rÞ�1
� 1

� �
�

hu

e
1þ

m

d

� �ðnf x=rÞ�1
(23)

for i ¼ 1; 2; . . . ; n; provided that nf x4r:15 Thereby we have set

f x ¼ max
ðx;uÞ2X�U

r
n
;
qðF ðxÞuþ gðxÞÞ

qx

����
����
1

� �
, (24)
14For nf x ¼ r it is ci;kphxðT
0 � tÞ � hu=e for all t 2 ½0;minfTk ;T

0g�:
15In the (degenerate) case when nf x ¼ r; we obtain ci ¼ ðhx=rÞ lnð1þm=dÞ � hu=e:
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hx ¼ min
ðx;uÞ2X�U
1pipn

qhðx; uÞ

qxi

� �
40, (25)

hu ¼ min
ðx;uÞ2X�U
1pipn

qhðx; uÞ

qui

� �
o0. (26)

A proof of the last assertion is a byproduct of the proof of Proposition 2. The
strict positivity of the adjoint variable in (iii) is essentially a consequence of H3. Note
that ‘reversing’ hypothesis H3 for some or all components (i.e., qh=qxio0 for some
i 2 f1; . . . ; ng) will render the corresponding components of c strictly negative (i.e.,
cio0). The existence of a lower bound c (possibly negative) is independent of H3
and can be shown in analogy to the proof of the existence of an upper bound c:

Remark 2. The state trajectory is bounded, i.e., x�ðtÞ 2 X for all t 2 Rþ: Proposition
2 provides growth conditions in the form of inequalities, stronger that the ‘natural’
transversality condition16

lim
t!1

e�rtcðtÞ ¼ 0, (27)

proposed for instance by Arrow and Kurz (1970), which is a direct consequence of
(16). Thus, condition (16) together with the boundedness of h on X �U implies the
asymptotic stationarity of the Hamiltonian,

lim
t!1

e�rtHðx�ðtÞ;cðtÞÞ ¼ 0. (28)

Remark 3. From (14) and (15) we get that

d

dt
ðe�rtHðx�ðtÞ; ertcðtÞÞÞ ¼a:e:

q
qt
ðe�rtHðx�ðtÞ; u�ðtÞ; ertcðtÞÞÞ

¼ � re�rthðx�ðtÞ; u�ðtÞÞ

which, integrated over Rþ; together with (28) yields

Hð0;x0;c0Þ ¼ r
Z 1
0

e�rthðx�; u�Þdt ¼ rV ðx�; u�Þ.

Thus, we have obtained an expression for V�:¼V ðx�; u�Þ in terms of the initial
conditions x0;c0:

V� ¼
1

r
max
u2U
fhðx0; uÞ þ hc0;F ðx0Þuþ gðx0Þig. (29)

5. Example

We now give a concrete example for the application of our result, based on a
classic model for optimal advertising spending by Vidale and Wolfe (1957). Consider
16Such a transversality condition need not hold, even for simple infinite-horizon optimal control

problems. An appropriate counterexample was given by Halkin (1974).
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the system

_x ¼ ð1� xÞak � bx (30)

with some constants b40 and k 2 ð0; 1Þ: The control variable a denotes the amount
of advertising and the state variable x the installed base, normalized to the interval
½0; 1�: The problem is, given an initial state xð0Þ ¼ x0; to maximize discounted
profits17

Pðx; aÞ ¼
Z 1
0

e�rtðð1� xÞak � caÞdt,

where c40 is the cost of advertising. Note first that after a simple integration by
parts using (30) we have Pðx; aÞ ¼ �x0 þ cV ðx; uÞ; where u ¼ ak and

V ðx; uÞ ¼

Z 1
0

e�rtðgx� u1=kÞdt

with g ¼ ðbþ rÞ=c: Let F ðxÞ ¼ 1� x; gðxÞ ¼ �b; hðx; uÞ ¼ gx� u1=k and furthermore
U ¼ ½0; u� and X ¼ ½0;x�; where x ¼ u=ðbþ uÞo1: Thus H1 is satisfied and so is H2
for e ¼ 1� x: H3 and H4 can be directly verified and do hold. H5 is satisfied for any
uXgk with d ¼ u1=k � gx40: Given x0 2 X we can therefore use the necessary
optimality conditions for (P) in Proposition 2.18 By the positivity of the adjoint
variable we find

u� ¼ minfu; ðkð1� xÞcÞk=ð1�kÞg40

and for u4kc we obtain the Hamiltonian system19

_x ¼ ð1� xÞ1=ð1�kÞðkcÞk=ð1�kÞ � bx, (31)

_c ¼ �gþ ðrþ bÞcþ ðkð1� xÞÞk=ð1�kÞc1=ð1�kÞ. (32)

This system possesses a turnpike state ðx̂�; ĉ
�
Þ characterized by ð _x; _cÞj

ðx̂�;ĉ
�
Þ
¼ 0; or

equivalently

kg ¼
rþ b

ð1� x̂�Þ1=k
þ

bx̂�

ð1� x̂�Þð1�k
2Þ=ðkð1�kÞÞ

 !
ðbx̂�Þð1�kÞ=k,

ĉ
�
¼
ðbx̂�Þð1�kÞ=k

kð1� x̂�Þ1=k
.

For u large enough there is a (unique) turnpike; a corresponding qualitative phase
portrait is shown in Fig. 1. From there it is clear that the only trajectories satisfying
17The demand is equal to the positive inflow to the installed base, ð1� xÞak: The firm is assumed to be a

price taker in a market for durable goods, where the price has been normalized to 1. The products have a

characteristic lifetime of 1=b before being discarded. The exponent k models the effect of decreasing

returns to investment in advertising.
18Relations (24)–(26) yield f x ¼ maxfr;bþ ug; hx ¼ g; and hu ¼ �1:
19This may seem circular as u is used to compute c: However, it is possible to iteratively set u to a lower

value and determine the corresponding a priori bound c which can then be used to correct the choice for u

upwards.
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Fig. 1. Phase portrait of the Hamiltonian system (31) and (32) for ðx;cÞ 2 X � ð0;c�:
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the bounds on the adjoint variable c are the ones which asymptotically converge to
the turnpike. All other trajectories of the Hamiltonian system do not satisfy the
bounds on the adjoint variable. We thus remark (without detailed proof) that
uniqueness, asymptotic convergence, and the precise form of the optimal solution to
our example problem of form (P) follow in essence directly from the necessary
optimality conditions in Proposition 2.
6. Discussion

We have provided an extended set of necessary optimality conditions for a
general class of infinite-horizon dynamic optimization problems. The class of
relevant problems satisfies natural invariance and saturation assumptions,
thereby encompassing a broad range of economic problems. The maximum
principle formulated here includes bounds on the (current-value) adjoint
variables, which imply asymptotic stationarity of the (maximized) Hamiltonian
and the ‘natural’ transversality condition in Arrow–Kurz form. We have also
given some a priori estimates for these bounds, which generally can be improved
upon through more careful componentwise considerations and by using the structure
of a particular problem. The bounds on the adjoint variable can be used to generate
a grid of initial conditions of the adjoint variable for an approximation of
the optimal solution of (P) by forward simulation of the Hamiltonian system or they
may be useful as an intermediate theoretical result, for instance on the way to
establishing asymptotic convergence of the optimal trajectory (cf. the example
discussed above).
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