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Abstract

We provide necessary optimality conditions for a general class of discounted infinite-
horizon dynamic optimization problems. As part of the resulting maximum principle we
obtain explicit bounds on the adjoint variable, stronger than the transversality conditions in
Arrow—Kurz form.
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1. Introduction

Infinite-horizon dynamic optimization problems typically have an incomplete set
of necessary optimality conditions that do not allow the effective selection of good
candidates for an optimal solution. The maximum principle by Pontryagin et al.
(1962) has been extended to infinite-horizon problems by Arrow and Kurz (1970) as
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well as Halkin (1974), but transversality conditions (i.e., additional conditions on the
adjoint variable) are generally not available.' In fact, Halkin (1974) provides a
counterexample for a ‘natural’ extension of the finite-horizon transversality
conditions proposed by Arrow and Kurz.? Thus, some care is necessary when
formulating strong necessary conditions for infinite-horizon optimal control
problems. Using the method of smooth approximation (reviewed by Aseev, 1999),
it is possible to obtain a weak transversality condition in the form of ‘asymptotic
stationarity’ of the (maximized) Hamiltonian,® and positivity of the adjoint variable
(Aseev et al., 200la, b). Here, instead of imposing growth limitations and
monotonicity on state trajectories, we modify the results by Aseev et al. to suit the
common situation, where the state space is a compact invariant set. Invariance of the
state space is satisfied in many economic applications whenever finite economic
resources impose limits on the magnitude of the state variables. Under this natural
invariance condition, together with a number of technical assumptions, we are able
to obtain bounds on the adjoint variable (i.e., growth conditions), stronger than the
aforementioned Arrow—Kurz ‘natural’ transversality conditions for a general class of
systems. Such bounds can be used to show asymptotic convergence of optimal
trajectories (cf. our example in Section 5) and to approximate optimal solutions
via forward simulation of the Hamiltonian system (Lee and Markus, 1967,
Weber, 2001).

2. Statement of the problem

Let us consider the system

x = F(x)u + g(x), (1
where F = diag(f,...,f,) and (¢,f;) : X — (R", R) are continuously differentiable*
functions for i=1,2,...,n, with X C R", and n is a positive integer. Let U =

[u;, 7] x - - x [u,,u,] for some finite nonnegative u; <u;, i = 1,2,...,n. In addition
we suppose that 2: X x U — R is a continuously differentiable function denoting
current profits. Given a positive discount rate p>0 and an initial state xo € X, we
will discuss the infinite-horizon optimal control problem

(P):  maximize V(x,u) = / e h(x,u)dt,
0

"Note that a slight modification of the proof of the classical maximum principle by Pontryagin et al.
(1962) is sufficient for a translation to the infinite-horizon optimal control problem. This has been already
noted by Pontryagin et al. (on pp. 189-191) for the special case of a fixed terminal state.

2Arrow and Kurz (1970) were aware of this shortcoming (cf. their footnote 1 on p. 46).

3Asymptotic stationarity of the (maximized) Hamiltonian was first obtained by Michel (1982) using a
different technique.

“This and subsequent smoothness assumptions can be somewhat relaxed, but we here deliberately avoid
the associated technical difficulties.
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subject to (1),

x(0) = xo ()
and

ueU. 3)

We will look for solutions u in the space of bounded measurable functions. Any such
function u that satisfies the inclusion (3) for all times ¢ is an admissible control. An
admissible pair (x,u) is any admissible control u together with the corresponding
state trajectory x. Following are the main hypotheses that underlie our conclusions.

HI. The state space X is nonempty, compact and invariant with respect to (1) for
all admissible controls u satisfying the inclusion (3).
H2. There exists ¢>0 such that f;>¢ foralli=1,2,...,n.

H3. & >0

H4. The function / is strictly concave with respect to u.

H5. There exists a >0 such that if u = (u1,...,u,) € U with u; = u; for some
ief{l,...,n}, then h(x,u)< — 0. Moreover, for any x € X there is a u € U such that
h(x,u)=0.

Assumption H1 crystallizes the idea that a system that operates using only limited
resources stays in a compact set, which is then invariant. This assumption should be
naturally satisfied by virtually any real-world economic system, even though many
standard models of economic growth ignore saturation effects.” H2 guarantees a
minimum impact of input variations: a finite resource commitment of u#0 at the
state x adds at least eu to the system drift g(x). The monotonicity requirement H3
ensures the positivity of the adjoint variable. This assumption can be relaxed without
affecting the existence of bounds on the adjoint variable (cf. Proposition 2). Note
however that positive adjoint variables can be readily interpreted as shadow prices
valuing the rate of change at the current state. H4 ensures the uniqueness of the
optimal control »* as a function of x and . This assumption is important for the
existence of a solution to (P). HS requires that there be a negative net return on too
large a resource commitment in any one dimension, which is consistent with the
notion of decreasing returns to scale (at least up to a positive linear transformation
of h). In particular it imposes that the limits %; are large enough for these effects to be
noticeable.

Remark 1. A solution (x*,u*) to (P) does exist. By H1 the state space X is a compact
and invariant set with respect to system (1). Hence, all admissible trajectories are
uniformly bounded. In addition, the current value /4 of the integrand of the objective
functional V is bounded from above by

m= max h(x,u)<oo 4
(x,u)eXxU ( ) ()

>Note also that the invariance property H1 does not enter our dynamic optimization problem as a state
constraint, since it is required to hold for all admissible state trajectories.
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Thus, there exists a nonincreasing positive function o : R, — R such that®
lim w(f) =0
—0o0
and, for any admissible pair (x,u«) of system (1), subject to (2) and (3), we have

/oo e "'h(x,u)dt<o(T) ®)
T

for all T>0. With this and the uniqueness of the optimal control in terms of (x, )
(guaranteed by H4), Theorem 3.6 by Balder (1983) implies the existence of a solution
to the infinite-horizon optimal control problem (P).’

3. Auxiliary constructions

In this section, we follow the general approach by Aseev et al. (2001b)
for the construction of necessary optimality conditions for (P) by considering
a sequence of classical optimal control problems (P;), each defined on its own
finite-time interval [0, 7). Thereby Tx<Tj.; and T) — oo as k — co. We will
show that the sequence of optimal controls for (P;) converges in L, to the
optimal control for (P) entailing strong convergence of the corresponding
state trajectories. Our problem (P) thereby does not satisfy the assumptions in
Aseev et al. (2001b), so that a number of modifications are necessary. Assume that
(x*,u*) 1s an optimal pair for the original infinite-horizon optimal control problem
(P), and let 7 = max{|u|| : u € U}.® Take a sequence of continuously differentiable
functions v, : R, — R, and positive constants o <oo (with oy <oyy1), k= 1,2,...,
such that

sup llor()II<1 + 14, (6)
teRy

OO —pt k112 l
/ P og — w2 dr <~ %)
0 k

and

(T)< —— ®)

Q) S5,
S k(U o)

klim o) = 00. )

Such {vi, 01}, k= 1,2,..., exist and can be obtained using standard approximation
methods. Let us now consider the following sequence of classical finite-horizon

®Without loss of generality we can take w(r) = me™"'/p.
"An appropriate, simple and direct existence proof can also be found in Aseev et al. (2001a).
8We use || - || to denote the Euclidean 2-norm unless otherwise indicated.
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optimal control problems,
Tk _ 2
Py):  maximize Vi(x,u) = e P h(x,u) — Mo = ull” dr,
(
0 1+ ok

subject to (1), (2), and (3), for k =1,2,... . By the Filippov existence theorem
(Cesari, 1983, p. 314), there is an optimal control u; solving (P;), and we assume that
uy and its associated trajectory x; are extended in an arbitrary admissible way onto
R,, so that (xz,u;) forms an admissible pair for (P).

Proposition 1. Let T>0. Then u, — u* in 1,[0,T] as k — oo.
Proof. Fix g, T >0 and integer ky such that 7> T,. Then we have for k> kq:

Tk B )
Vilxw, ux) = / e ¥ (h(xk, ug) — M) dt
0 + ok

Tk e—PT T
< / e P h(xy, ur) dt — / llog — || dr.
0 1 + ox 0

Hence, by optimality of (xg, u;) for (P;) and by optimality of (x*,u*) for (P) as well
as using (5) and (7):

e rT

1+ 0%

T Ty
/ llog — well* de< / e h(xpe, ) At — Vi(ox*, u*)
0 0

Tk
S/ e P h(xy, uy) dt
0

o0 a2
_ (V(x*,u*)—w(Tk)— / oot ok =11 dt)
0

1+ ok
1
SV (i u) + o(Te) — | Vut) — o(Ty) —
(e, uge) + (T) ( (", u") — o(T) Kl +0k)>
3
<Vixp,ue) — V(X u*) + —
(i, i) — V(. ) K1+ o0
3
<—.
k(1 + oy)
Therefore for k> max{k, 16e?T /z*} we have using (7):
. (1+3)ver?
Nt — ™| Lo, ry < Ntk — vl Lopo, 1y + 1ok — w5\l o, 1y < 7 <5,
which concludes the proof. [
As a consequence of Proposition 1 we have for any 7>0, as k — o0:
ur — u* in L,[0, 77, (10)
x3x" on [0, T7, (11)

X — x* weakly in L;[0, T]. (12)
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Without loss of ageenerality (by selecting a subsequence if necessary) we can
assume that wu(f) = u*(f). The strong convergence in (11) is then a consequence
of (10), the absolute continuity of x and the boundedness of system equation (1)
(see e.g., Filippov, 1988, Theorem 7, p. 12). The weak convergence in (12) is
due to the Dunford-Pettis property of L; (Dunford and Schwartz, 1958, 1V.8.9,
p- 292).

4. A maximum principle

We will now formulate a set of necessary conditions that generalize for our class of
systems the infinite-horizon maximum principle proved by Pontryagin et al. (1962,
pp. 189-191) as well as its later versions mentioned above. First, consider the
current-value Hamilton—Pontryagin function

A (e u 90 ) = YOhCxu) + (W, F(xu + (), (13)
where 1°>0 is a constant, and (7) is the (current-value) adjoint variable for this
problem. Whenever >0 it is possible, without loss of generality, to take y° = I,
just by renormalizing the adjoint variable . This simplification (to ‘normal form’)
will be rigorously justified in our proof of the necessary optimality conditions
below.” Everywhere below it is assumed that y° = 1. The (maximized) Hamiltonian
function is defined as

HOx, ) = sup A#(x,1)

ueU
and straightforward maximization of # gives u*(x,}) as # is single-peaked by
assumption. The next proposition provides necessary optimality conditions for our
problem (P), including bounds that imply the transversality condition and
asymptotic stationarity of the Hamiltonian obtained by Aseev et al. (2001b).

Proposition 2 (Maximum Principle). Assume that H1 through H5 hold. Let u* be an
optimal solution of (P), and x* be the corresponding trajectory. Then there exists an

absolutely continuous function W : R, — R* such that the following conditions are
satisfied:

(1) The function V is a solution to the adjoint equation
OA (u*, x*, )

o (14)

= py
(i1) The maximality condition
H (1), (1), Y (1) = H(x (1), (1) (15)

holds a.e. on R,.

°An example of an infinite-horizon optimal control problem where 1//0 = 0 is optimal has been provided
by Halkin (1974).
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(iii) The function Y(¢) is strictly positive and bounded on R. In particular, there exist
Y,y >0 such that

¥ <Y<y (16)
forall t € Ry.

Proof. Consider the sequence of classical optimal control problems (P;) constructed
above. Let u; be an optimal solution of (Py) and x; the corresponding trajectory for

k=1,2,... . By the Pontryagin maximum principle (Pontryagin et al., 1962) there
exists an absolutely continuous function ¥, = (V... .,lﬁn’k)/ : R, — R" such that
the following necessary optimality conditions for (Px) hold:
J/f
Vi = pYy — (XA, Ui, i) (17)
%k(Xk(t), uk([)a lpk(t)) {g Hk(Xk([), lpk([))a (18)
Yi(Tr) = 0, (19)

where we have used the expression ' for the current-value Hamilton—Pontryagin
function in normal form,'°

2
”Uk _uk”
1+ 0%

and Hj, for the corresponding (maximized) Hamiltonian,

Hk(Xk, lpk) = sup %k(Xk, u, lpk)
ueU

A (Xpes g, Yi.) = I(Xpe, ) — + (W, F )y + g(xi))

with respect to problem (P;). We will now concentrate on proving part (iii) of the
proposition and first establish the boundedness of the sequence {||y/,(0)||} for large &,
which confirms that ° = 1 is an admissible choice. From the boundary condition
(19) and adjoint Eq. (17) it is clear that v, (¢) is strictly positive in [0, 7). Indeed,
using H3 we have

Uil(Th) = —

foralli=1,2,...,n. Thus, ,;,(1)>0 in a left-neighborhood of T'. This implies that
W, must be strlctly positive on all of [0, T), since otherwise there would need to
exist a 7;; € [0, T)) such that Vi (tig) = 0 and lplk(r,k)>0 which cannot be true
due to H3 and (17). Let ', A, h, be defined as in (24)—(26). If ¥ — h, /¢, then

l/c

197¢ s possible to take the normal form (i.c., l//2 = 1) without loss of generality, since (Py) is a problem
on a fixed time interval [0, 7] with free terminal state, and thus 1/12 #0.
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(using H2 and the definition of #,,)

OA oh 2o — el
a—uk Xk, U, Yp) = a—uk (XK, uge) + W + (W, F(xp))
Zh,+¢ Z Yir>0 (20)
i=1

which implies u;; = u;. Let us consider the longest time interval [0, Tx], 0< Tk < T,
on which at least one component of the adjoint variable vy, is larger than some
critical lower bound, '

l//i,k > = hu/‘o (21)

Relation (21) implies as shown in (20) that the ith component of the optimal control
ur must be maximal, i.e., u;x = %;. This in turn implies by HS that A< — 6, which
means that there is a finite negative contribution to the objective function of —d
multiplied by the length of the time interval for which (21) is satisfied.'? Clearly, due
to HS, the optimal profit cannot be negative and

Tk S _
0< / e P h(xg, up) di< — = (1 — e_”T*’) + o (Ty),
0 p

whence with o(T) = me~?Tx /p and T\ — oo we obtain that the T’s are uniformly
bounded, T, < T, with

, 1 m
T _;1n(1+3). 22)
Thus, there is a bounded sequence13 7 €[0,T'], k=1,2,..., such that ,,(1x) <

—h,/e foralli=1,2,...,n By (17) and (24) and (25)
Vix=pYi —he— 1y Z Yk
J=1

holds on [0, T%], so that after solving this differential inequality with boundary
condition ¥, ,(T")< — h, /e, we have that

b ()< D (emf;—pxr—z) _ 1) _ by of o
’ nfx —p &

""The lower bound is independent of k. There may be more than one interval on which (21) holds, but
we are only interested in the longest, the length of which is defined as the supremum of the lengths of all
such intervals.

2Due to the principle of optimality (Bellman, 1957, p. 83) we can take, without loss of generality, the
beginning of the time interval to be zero. Otherwise just consider a new problem of type (P) with the initial
state equal to the state at the time when ;> — &, /¢ in the original problem.

B3Of course < T since Vi x(Tr) = 0 by (19), but this is immaterial to the discussion, since the sequence
of Ty’s, k=1,2,..., is unbounded.
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for all ¢ € [0, min{T, T'}] as long as nf > p.!* Hence with (22)

nth:p <(1 +%)('17,\»/ﬂ)—1 B 1) _%(1 +%)('!7.\»/P)—1]’

i.e., ||y, (0)|| is uniformly bounded (independent of k). Consider now the increasing
sequence of time intervals /; =[0,7;], j=1,2,..., and on each I; consider the
sequences {ur}, {xx}, and {y,}. Given [I;, the sequence {|¥;(0)||} is uniformly
bounded. By virtue of the Bellman—Gronwall Lemma (Sontag, 1998, pp. 474-475)
and the adjoint equation (17) one can assume, without loss of generality, that there
exists an absolutely continuous function ¥, : Ry — R” such that (as k — o0)

Y3y onlj,
1/}k —y weakly in Li(I)).

IOl <v/n

Given the sequence {/;} we can pass on each I;, j = 1,2,..., from the sequence {i/,}
to a subsequence converging to . By selecting a diagonal subsequence, there is an
absolutely continuous function  : Ry — R such that, for any 7>0, we have (as
k — o0):

Y3y on[0,T],
{pk — zp weakly in L]0, 7.

By Proposition 1 and the discussion thereafter, we have that u; — u* strongly in
L,[0,T] as k — oo, and x; 3 x* uniformly on [0, T] as k — oo. Using the Mazur
theorem (e.g., Mordukhovich, 1988), the absolutely continuous function y is a
solution to the adjoint Eq. (17) on any time interval [0, T], T'>0. This proves part (i).

The maximality condition (15) follows from passing to the limit in (18). This
proves part (ii).

The strict positivity of y is a direct consequence of v, ,(1)>0 on [0, Ty), for
k — oc. Since T" is the maximum length of any time-interval in which ;> — h, /e,
our upper bound for [}/, (0)| is also a uniform upper bound of |, (?)|| on [0, 7] for
all k =1,2,..., which implies (23) in Corollary 1 for kK — oo. Thus we have shown
part (iii), which concludes the proof. [

Corollary 1. Some a priori estimates for the bounds on the adjoint variable are given by

Y =0and y=y,....0,) with

— h, my (i o/p)=1 h my 0/ o/p)=1
== 1+ 1) ==(14+= 23
v nfx—p((+5) ) L(1+5) 23)
fori=1,2,...,n, provided that nf .>p."> Thereby we have set
Z P |[OF(x)u + g(x))
— : L | S A B A s 24
Jx (x,gg(xxu{n’ Ox o) (24

“For nf, = p itis Y, <h(T" — 1) — h, /e for all ¢ € [0, min{T, T'}].
In the (degenerate) case when nf . = p, we obtain ¥, = (h,/p)In(1 + m/d) — h, /.
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. Oh(x, u)

b_‘n’nn{ Ox; }>0’ (25)
. . a/’l(x, u)

b, = min {52 <0 -

I<i<n

A proof of the last assertion is a byproduct of the proof of Proposition 2. The
strict positivity of the adjoint variable in (iii) is essentially a consequence of H3. Note
that ‘reversing’ hypothesis H3 for some or all components (i.e., 04/0x; <0 for some
i €{l,...,n}) will render the corresponding components of i strictly negative (i.e.,
Y;<0). The existence of a lower bound y (possibly negative) is independent of H3
and can be shown in analogy to the proof of the existence of an upper bound .

Remark 2. The state trajectory is bounded, i.e., x*(¢) € X for all € R, . Proposition
2 provides growth conditions in the form of inequalities, stronger that the ‘natural’
transversality condition'®

lim e~"y(1) = 0, 27)

proposed for instance by Arrow and Kurz (1970), which is a direct consequence of
(16). Thus, condition (16) together with the boundedness of 7 on X x U implies the
asymptotic stationarity of the Hamiltonian,

Ilim e PTH(x*(2), (1)) = 0. (28)
Remark 3. From (14) and (15) we get that

d ae 0

T TH(x"(1),e"Y(0) = 5 (), u (1), € P(1)))

= — pe Th(x"(1),u" (1))

which, integrated over R, together with (28) yields

HOx ) =p [ &) de = p V),

0

Thus, we have obtained an expression for V*=V(x*,u*) in terms of the initial
conditions Xy, Y:

1
Ve = maxtho, )+ (o Fxou+ g(xo). (29)
5. Example

We now give a concrete example for the application of our result, based on a
classic model for optimal advertising spending by Vidale and Wolfe (1957). Consider

1Such a transversality condition need not hold, even for simple infinite-horizon optimal control
problems. An appropriate counterexample was given by Halkin (1974).
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the system
x=(1—-x)d"— px (30)

with some constants >0 and k € (0, 1). The control variable a denotes the amount
of advertising and the state variable x the installed base, normalized to the interval
[0,1]. The problem is, given an initial state x(0) = xo, to maximize discounted
profits'’

II(x,a) = /000 e (1 = x)d* — ca)dt,

where ¢>0 is the cost of advertising. Note first that after a simple integration by
parts using (30) we have II(x,a) = —x¢ + ¢V (x,u), where u = ¢* and

V(x,u) = / e (yx — u'/*)dr
0

withy = (B + p)/c. Let F(x) = 1 — x, g(x) = —f, h(x,u) = yx — u'/* and furthermore
U =1[0,u] and X = [0,X], where X = u/(f + )< 1. Thus H1 is satisfied and so is H2
fore = 1 —X. H3 and H4 can be directly verified and do hold. H5 is satisfied for any
7=y with 0 = 7'/ —9yx>0. Given xo € X we can therefore use the necessary
optimality conditions for (P) in Proposition 2.'® By the positivity of the adjoint
variable we find
u* = min{z, (x(1 — x)Y)*/17}>0
and for 7> kY we obtain the Hamiltonian system'’

i = (1= )Gy /79 — p, (31)

==+ (o B+ (e(1 = )y, (32)
This system possesses a turnpike state (%%, fp*) characterized by (x, /)| @i = 0, or
equivalently ’

. p+ ﬁ B)%* sk (1—k) /K
7= ((1 A )2*)(1—’~'2)/('€(1—K))>(ﬁx >

s (ﬁ)%*)(l_lc)/K

For u large enough there is a (unique) turnpike; a corresponding qualitative phase
portrait is shown in Fig. 1. From there it is clear that the only trajectories satisfying

""The demand is equal to the positive inflow to the installed base, (1 — x)a*. The firm is assumed to be a
price taker in a market for durable goods, where the price has been normalized to 1. The products have a
characteristic lifetime of 1/f before being discarded. The exponent x models the effect of decreasing
returns to investment in advertising.

!8Relations (24)-(26) yield f . = max{p, f + @}, h, =y, and h, = —1.

"This may seem circular as @ is used to compute 1. However, it is possible to iteratively set 7 to a lower
value and determine the corresponding a priori bound i which can then be used to correct the choice for @
upwards.
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X

Fig. 1. Phase portrait of the Hamiltonian system (31) and (32) for (x, ) € X x (0,].

the bounds on the adjoint variable y are the ones which asymptotically converge to
the turnpike. All other trajectories of the Hamiltonian system do not satisfy the
bounds on the adjoint variable. We thus remark (without detailed proof) that
uniqueness, asymptotic convergence, and the precise form of the optimal solution to
our example problem of form (P) follow in essence directly from the necessary
optimality conditions in Proposition 2.

6. Discussion

We have provided an extended set of necessary optimality conditions for a
general class of infinite-horizon dynamic optimization problems. The class of
relevant problems satisfies natural invariance and saturation assumptions,
thereby encompassing a broad range of economic problems. The maximum
principle formulated here includes bounds on the (current-value) adjoint
variables, which imply asymptotic stationarity of the (maximized) Hamiltonian
and the ‘natural’ transversality condition in Arrow—Kurz form. We have also
given some a priori estimates for these bounds, which generally can be improved
upon through more careful componentwise considerations and by using the structure
of a particular problem. The bounds on the adjoint variable can be used to generate
a grid of initial conditions of the adjoint variable for an approximation of
the optimal solution of (P) by forward simulation of the Hamiltonian system or they
may be useful as an intermediate theoretical result, for instance on the way to
establishing asymptotic convergence of the optimal trajectory (cf. the example
discussed above).
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