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Abstract We consider the general problem of finding fair constrained resource
allocations. As a criterion for fairness we propose an inequality index, termed “fair-
ness ratio,” the maximization of which produces Lorenz-undominated, Pareto-optimal
allocations. The fairness ratio does not depend on the choice of any particular social
welfare function, and hence it can be used for an a priori evaluation of any given
feasible resource allocation. The fairness ratio for an allocation provides a bound on
the discrepancy between this allocation and any other feasible allocation with respect
to a large class of social welfare functions. We provide a simple representation of the
fairness ratio as well as a general method that can be used to directly determine optimal
fair allocations. For general convex environments, we provide a fundamental lower
bound for the optimal fairness ratio and show that as the population size increases, the
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optimal fairness ratio decreases at most logarithmically in what we call the “inhomo-
geneity” of the problem. Our method yields a unique and “balanced” fair optimum for
an important class of problems with linear budget constraints.

Keywords Fairness · Inequality · Lorenz-dominance · Social justice

JEL Classification C61 · C63 · D63 · I30

Nothing is more fairly distributed than common sense:
No one thinks he needs more of it than he already has.
– René Descartes

1 Introduction

In many economic situations it is desirable to allocate a limited amount of resources
in a “fair” manner among a collection of individuals. As a criterion for fairness we
propose an inequality index, termed “fairness ratio.” The fairness ratio is robust with
respect to a large class of social welfare functions, providing a bound on the discrep-
ancy between the social value of a given allocation and any other feasible allocation.
The fairness ratio has a simple representation which makes it attractive for practical
applications. A maximization of the fairness ratio over all feasible allocations yields
Lorenz-undominated, Pareto-optimal allocations which we refer to as optimal fair
allocations.

It is often difficult to justify which allocations in particular should be considered
fairest among the set of all Pareto-optimal allocations. Judging collective actions by
the utility levels achieved, there is a longstanding debate about which of the feasible
allocations are most preferable from a social planner’s perspective. Since ranking fea-
sible allocations corresponds to evaluating them by a social welfare function (mapping
each allocation to a real number), the social planner’s question is therefore about which
“fair” social welfare function to select. While two prominent social welfare functions
are the utilitarian (sum of all utilities) and the egalitarian (minimum of all utilities),1

it is clear that in fact any Pareto-optimal allocation can become the maximizer of an
appropriately chosen social welfare function. Hence, choosing a fair allocation can
be viewed as essentially equivalent to the problem of choosing an appropriate social
welfare function. The latter tends to be thought of as a value judgement in and of
itself. We therefore consider an entire class of “canonical” social welfare functions
with respect to which we define and characterize the fairness ratio. It minimizes the
maximum deviation with respect to any social welfare function in the class (of which
only a simple finite-dimensional “extremal base” is needed), naturally handling com-
plex feasibility constraints such as limits of the available resources or distributional
losses.

1 Mill (1863, p. 110), in his essay on “utilitarianism,” advocates “social utility” to decide the social planner’s
preference over allocations, while Rawls (1971, pp. 118–123) argues from an egalitarian viewpoint that
fair resource allocations should be chosen from behind a “veil of ignorance,” maximizing the wealth of the
poorest individual.
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It is useful to consider a simple example to illustrate these points. When deciding
about how much water to allocate to a number of geographically dispersed farmers, a
social planner may want to take into account the location of wells, water requirements
for different farmers, their pre-existing water rights, their respective crop produc-
tivity, return-flow externalities, as well as transportation losses. A fair allocation of
the available water resources would need to balance concerns for equality against
utilitarian objectives, the latter being tied to the aggregate economic output of the
farmers using the water. Even if the farmers’ productivities are the same, by just
dividing the available water equally among them a substantial amount of water might
be wasted in transit, thus potentially leading to an undesirable outcome. To trade
off these concerns and achieve a “fair” resource allocation, we construct an inequal-
ity index, which we term fairness ratio (or relative fairness), based on the familiar
Lorenz-dominance order. Since the fairness ratio we propose does not depend on
any particular social welfare function (including itself), it is possible to obtain an
a priori preference ordering over feasible allocations, even when their associated
Lorenz curves cross. Its maximization leads in many practical cases to a unique most
preferred Lorenz-undominated allocation. Furthermore, a fairness ratio that is attained
by a particular allocation represents (by construction) in fact a lower bound for the
discrepancy between this allocation and any other allocation, when evaluated using
any element of the class of symmetric, increasing, concave social welfare functions.

1.1 Literature

The approach of using indices to measure inequality has a considerable tradition.2

Lorenz (1905) proposed measuring the concentration of resources for any given fea-
sible allocation x by plotting the resources of the poorest k individuals, Pk(x), against
the proportion k/n these individuals represent of the total size-n population, resulting
in so-called Lorenz curves. He pointed out that

“[w]ith an unequal distribution, the curves will always begin and end in the
same points as with an equal distribution, but they will be bent in the middle;
and the rule of interpretation will be, as the bow is bent, concentration increases.”
(p. 217)

Dalton (1920) showed that a principle of transfers holds, in the sense that starting
from x an appropriate transfer from a richer individual to a poorer individual reduces
the extent of the inequality, so that the Lorenz curve of the new allocation x̂ better
approximates a perfectly fair allocation represented by the 45-degree line. If the aver-
age wealth is the same under both allocations, x̂ is said to Lorenz-dominate x , i.e.,
x̂ Lx . Kolm (1969) and Atkinson (1970) build on the Lorenz-dominance order, and
show that more generally a principle of progressive transfers holds: any allocation x ,
which is Lorenz-dominated by x̂ , can be obtained from x̂ by a finite sequence of

2 See Foster (1985), Moyes (1999), or Dutta (2002) for an overview.
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progressive transfers.3 This amounts to satisfying the Pigou–Dalton condition which
is frequently employed as a fundamental test for any meaningful measure of inequality,
for instance by Sen (1973/1997).4

The Lorenz-dominance relation x̂ Lx can be used to establish a quasi order over
feasible allocations x, x̂ with the same total resources (i.e., for which Pn(x) = Pn(x̂)).5

Atkinson (1970) realized the drawbacks inherent in a mere quasi order over feasible
allocations, as the set of undominated allocations may be potentially large and leaves
unanswered the question of how to select any particular undominated allocation over
another. He proposes a class of utilitarian (i.e., additively separable) social welfare
functions based on a power law, of which Sen (1973/1997) discusses a number of
variations to address the inherent difficulties in the utilitarian approach. This method,
often referred to as the “Atkinson–Kolm–Sen approach,” was somewhat broadened
by Dasgupta et al. (1973), who realize that Lorenz-dominance can be characterized
using a seminal result by Hardy et al. (1929) in terms of the inequality V (x) ≤ V (x̂),
which needs to hold for all symmetric concave functions V . To be able to compare
allocations with different population means (i.e., when Pn(x) �= Pn(x̂)) we use “weak
Lorenz-dominance,” denoted by x̂ Lwx .6 The latter can be stated equivalently using a
result by Tomić (1949) in terms of the same inequality as before, but which now needs
to hold only for all nonnegative-valued, symmetric, increasing, concave functions V ,
which we term canonical. For any canonical V and any element x of a set of feasible
allocations X , the ratio between V (x) ≥ 0 and the maximum attainable welfare
V ∗ = supξ∈X V (ξ) > 0 is a measure of the inequality induced by x . A similar ratio
has already been suggested by Dalton (1920) to measure inequality for completely
symmetric or unconstrained welfare maximization problems (cf. Sen (1973/1997,
p. 37) for a brief discussion). Nevertheless, any evaluation of inequality based on such
a “Dalton ratio” would heavily depend on the particular social welfare function V that is
chosen. Our approach builds on an analogue of the Dalton ratio which accounts for the
resource constraints, but achieves a measure of fairness that is essentially independent
of the particular choice of a social welfare function. Our fairness measure implies a
strict partial order over all allocations and turns out to offer much more resolution than
weak Lorenz-dominance, which we demonstrate using a simple example.

3 Allocation x is obtained from x̂ by a single progressive transfer if Pn(x) = Pn(x̂) and a positive amount
of resources is moved from individual j to individual i , such that x̂ j > xi > x̂i . Atkinson (1970) further
showed that (strict) Lorenz-dominance is equivalent to second-order stochastic dominance as introduced
by Rothschild and Stiglitz (1970).
4 Dalton (1920) suggested this condition, which equivalently stated says that a transfer from a wealthy to a
poor individual cannot increase inequality. In formulating his condition he referred to an earlier suggestion
by Pigou (1912).
5 A quasi order is a binary relationship that is reflexive and transitive (Fishburn 1970).
6 Shorrocks (1983) uses weak Lorenz-dominance to define “generalized Lorenz curves,” which he applies
to an inter-country income comparison. Davies and Hoy (1995) consider the ranking of allocations for which
the Lorenz curves intersect. Consequently, their ranking based on mean-variance-preserving transformations
is somewhat weaker (i.e., more general) than weak Lorenz-dominance, since it can account for multiple
intersections of Lorenz curves. However, their approach is quite different from ours in that they do not
consider distributional losses and are not concerned with finding constrained-optimal fair allocations.
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Remark 1 A number of approaches to fairness reside in the theory of cooperative
games. Axiomatic frameworks for cooperative bargaining (Roth 1979; Moulin 1988),
for instance, point to particular allocations as a function of the individuals’ endow-
ments and the set of feasible allocations. One prominent example is the Shapley value
for cooperative games with transferable utility (Shapley 1953), which can be given a
probabilistic interpretation. For cooperative games with nontransferable utility, gener-
alizations have been proposed by Harsanyi (1963) and Shapley (1969). The Harsanyi
NTU value stresses an egalitarian allocation, whereas the Shapley NTU value tends
to produce a utilitarian allocation. In the two-player case they both coincide with
Nash’s (1950) cooperative bargaining solution.7 Other approaches to fair allocations
(Varian 1974, 1975), e.g., realizing Foley’s (1967) notion of envy-freeness, suggest
first an appropriate (re-)distribution of the individuals’ endowments before employing
a Walrasian trading procedure to arrive at “fair” (market) outcomes.

These different approaches not only isolate generally different fair allocations, but
also—and at least as importantly—are in most cases not applicable in truly general
settings, which would contain nonconvexities in the set of feasible allocations and/or
externalities between individuals. Our approach, based on what we term relative fair-
ness (as indexed by the fairness ratio), can be applied in such general settings, and it
is also robust with respect to the class of canonical social welfare functions (including
the utilitarian and egalitarian, for instance).

1.2 Outline

In this paper, we propose an inequality index ϕ(x) (the “fairness ratio” or “relative fair-
ness”), which we define (roughly stated) as the infimum of the constrained Dalton ratio
over the whole class of canonical social welfare functions. We show that ϕ(·) is con-
cave, so that given a compact set of feasible allocations, there exists a most preferred
efficient (i.e., Pareto-optimal) fair allocation, x∗. We establish a simple representation
of the fairness ratio and provide a general method for computing an optimal fair allo-
cation as well as the optimal fairness ratio. If a solution to a fair welfare maximization
problem is known to be “balanced” (satisfying n − 1 linear optimality conditions), it
becomes easier to find an optimal fair allocation. As an important case in point, we
show that any solution to a welfare maximization problem with a single linear (cost-
ordered) budget constraint is balanced and is unique. For a convex utility possibility
set we establish a fundamental lower bound for the optimal fairness ratio, ϕ∗ = ϕ(x∗),
which scales gracefully with O(log2 In) as the population size n increases, where In

denotes the inhomogeneity of the problem. Finally we discuss the implementation of
fair resource allocations. To illustrate our approach we examine a simple application
before summarizing our results and providing directions for further research.

2 The model

Consider a social planner who faces a decision about which allocation x = (x1, . . . , xn)

of m transferable resources (such as wealth) for a collection of n ≥ 2 individuals to

7 The surveys by Winter (2002) and McLean (2002) provide an overview of the related literature.
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choose. We assume that the set of feasible resource allocations X ⊂ R
mn+ is non-

empty (with at least two elements) and compact. Suppose in addition that individual
i’s preferences over allocations in X have a known representation in the form of
a continuous, nondecreasing and concave utility function ui : R

mn+ → R, for all
i ∈ N = {1, . . . , n}. The vector u = (u1, . . . , un) could also denote a collection of
welfare weights with which the social planner evaluates objective individual resource
needs.8 Let Y = u(X ) − u(0) be the set of all attainable utility improvements
y = u(x)− u(0), which we also term utility possibility set. Since X is compact and
u(·) continuous, Y is compact. In what follows we will refer to elements of both X
and Y simply as “allocations.” Whenever misunderstandings might arise, we call the
former resource allocations and the latter utility allocations. Throughout this paper,
we maintain the assumption of complete information, in which no private information
is held by any individuals in the economy.

2.1 The fair welfare maximization problem

If the social planner’s preferences over resource allocations can be represented by
a continuous and concave social welfare function (SWF) W : R

n+ → R, then his
problem becomes that of finding

y∗ ∈ arg max
y∈Y

W (y). (1)

By the Weierstrass theorem (Magaril-Il’yaev and Tikhomirov 2003, p. 29) a solution
of the constrained welfare maximization problem (1) exists, for W is continuous and
Y is compact (Lang 1993, p. 36). For any y ∈ Y and j ∈ N we denote by y( j) the j th
smallest component of y. The function Pk(y) = ∑k

j=1 y( j) is the k-th prefix of y. As
outlined in Sect. 1, to determine an optimal resource allocation the social planner uses
weak Lorenz-dominance as a concept of fairness for ranking different alternatives.

Definition 1 Allocation ŷ weakly Lorenz-dominates allocation y, i.e., ŷLw y, if

Pk(ŷ) ≥ Pk(y), (2)

for all k ∈ N .

In other words, if ŷ is to be preferred to y, then any k poorest individuals are
collectively at least as well off under ŷ as under y. Weak Lorenz-dominance implies a

8 We assume that the social planner is able to make (very limited!) interpersonal comparisons. From
d’Aspremont and Gevers (1977) we know that any social welfare functional which does not allow inter-
personal comparisons of utility, i.e., which is invariant with respect to independent changes of origin and
units across individuals, is necessarily dictatorial, implementing the preferences of one of the individuals
in N . As Sen (1973/1997, pp. 12–13) points out, “the attempt to handle social choice without interpersonal
comparability or cardinality ha[s] the natural consequence of the social welfare function being defined on
the set of individual orderings. And this is precisely what makes this framework so remarkably unsuited
to the analysis of distributional questions” (cf. also our discussion preceding Example 2 in Sect. 2). More
recently, Fleurbaey and Maniquet (2008) discuss social preferences for the allocation of private goods that
depend only on ordinal preferences.
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preference quasi order of resource allocations in Y , which is equal to the weak Lorenz-
dominance order discussed earlier.9 Let V denote the set of all symmetric, increasing,
continuous and concave SWFs V : R

n+ → R with V (0) = 0, which we call admissible.
The following classical result characterizes the weak Lorenz-dominance order in terms
of a “simultaneous” representation over the class of admissible SWFs V .

Proposition 1 (Hardy et al. 1929; Tomić 1949)

ŷLw y ⇔ V (ŷ) ≥ V (y) ∀ V ∈ V .

Since any V ∈ V is continuous and the set of feasible utility allocations Y is
compact, the maximum

V ∗ = max
y∈Y

V (y) (3)

exists. Since Y contains at least two elements, we have V ∗ > 0 by monotonicity of
V .10 In other words, the social planner strictly prefers the optimal allocation to the
origin. With this, the following inequality index, which we refer to as “fairness ratio”
(or “relative fairness”), is well defined.

Definition 2 For any allocation y ∈ Y we denote by

ϕ(y) = inf
V ∈V

V (y)

V ∗ (4)

its fairness ratio (or relative fairness).

We observe that the fairness ratio ϕ(y) evaluated at any feasible allocation y ∈ Y
constitutes a lower bound of the Dalton ratio that can be attained for any canonical
SWF at that allocation. It follows directly from the definition of relative fairness (4) that
ϕ(y) ∈ [0, 1] for all y ∈ Y . The following result collects other useful properties of ϕ.

Proposition 2 (i) The fairness ratio ϕ is symmetric, increasing, continuous and con-
cave on Y with ϕ(0) = 0, so that ϕ ∈ V . (ii) Relative fairness is invariant with
respect to changes in the origin of individuals’ utility functions. (iii) Relative fairness
is invariant with respect to common changes of units of individuals’ utility functions.
(iv) A common increasing concave transformation of individuals’ utility functions
cannot decrease the fairness ratio, i.e., if z = (ψ(y1), . . . , ψ(yn)), with ψ : R → R,
ψ(0) = 0, continuous, increasing and concave, then ϕ(z) ≥ ϕ(y).

Part (i) of the last proposition states that relative fairness is by itself an admissible
SWF as it induces an ordering of feasible allocations (i.e., of social states). Since

9 In the statistics literature weak Lorenz-dominance is generally referred to as “weak majorization,”
cf. Marshall and Olkin (1979, pp. 9–11).
10 In fact, only local nonsatiation of V around the origin is needed to guarantee that the fairness index is
well defined; away from the origin V may be nondecreasing instead of increasing (cf. also Footnote 22).
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we have emphasized initially that the fairness ratio was introduced for its robustness
with respect to the class V of all admissible SWFs, of which it turns out to be an
element, the resulting seemingly tautological statement requires explanation. Indeed,
since ϕ ∈ V it figures on both sides of its definition (4) and is therefore the single
most robust admissible SWF with respect to all elements of V . Parts (ii) and (iii)
of Proposition 2 imply that when individuals’ utilities ui undergo a positive linear
transformation to ûi = αui + βi for some constants α > 0 and βi ∈ R, correspond-
ingly ϕ(ŷ; Ŷ ) = ϕ(y;Y ) for all ŷ ∈ Ŷ = αY and y ∈ Y . For individuals with
homothetic preferences, relative fairness is therefore invariant with respect to different
representations in terms of Von Neumann–Morgenstern utility functions. Part (iv) of
Proposition 2 implies that if individuals’ risk aversion increases by a common con-
cave transformation of their respective utility functions (Pratt 1964), then the relative
fairness of any feasible allocation (weakly) increases. In other words, if all individuals
become more risk averse, their sensitivity for resource differences decreases.

Remark 2 The fairness ratio (in a somewhat different form) and associated optimiza-
tion techniques for resource allocation and stochastic scheduling were proposed by
Goel and Meyerson (2003). They build on a long series of results, most notably those
of Kleinberg et al. (2001) and Megiddo (1977). They also provide a detailed list of
references to prior research on related algorithmic techniques. Regarding an axiomatic
base for the fairness ratio, we show below (cf. Remark 3) that the fairness ratio is related
to the Kalai–Smorodinsky bargaining solution and can in some sense be interpreted as
a generalization thereof, which in contrast to standard bargaining is applicable even
when the utility possibility set is nonconvex.

Based on the definition of relative fairness we now introduce a strict partial order
of resource allocations.11

Definition 3 Let ŷ, y ∈ Y be two feasible allocations. Allocation ŷ is (relatively)
fairer than allocation y (denoted ŷ 
 y), if ϕ(ŷ) > ϕ(y), i.e.,

ŷ 
 y
def⇔ ϕ(ŷ) > ϕ(y). (5)

The strict partial order induced by relative fairness allows us to rank different
resource allocations. By Proposition 2 the fairness ratio ϕ is concave on Y , so that
the fair welfare maximization problem,

y∗ ∈ arg max
y∈Y

ϕ(y) ≡ f (Y ), (6)

has a convex compact solution set f (Y ), as a consequence of Berge’s (1963) maximum
theorem.12 The set-valued function f maps any compact subset Y of R

n+ to a compact

11 A strict partial order is a binary relation that is irreflexive and transitive (Fishburn 1970).
12 The set f (Y ) of all optimal fair allocations does not have to be a singleton. As an example, consider
the convex constraint set Y = {(y1, y2, y3, y4) ∈ R

4+ : 2y1 + y4 = 3 and y2 + y3 = 2}, which implies

(using the representation (8) below) that y∗ = {y ∈ R
4+ : y = (5/6, y2, 2− y2, 8/6) and 5/6 ≤ y2 ≤ 7/6}

contains a continuum of elements.
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subset f (Y ) (in the boundary) of Y . If we denote by P the Pareto-frontier of the
utility possibility set,

P = {
y ∈ Y : � (ŷ, i) ∈ Y × N such that

(
ŷ ≥ y and ŷi > yi

)}
,

and by L the set of Lorenz-undominated utility allocations,

L = {
y ∈ Y : � (ŷ, k) ∈ Y × N such that Pk(ŷ) > Pk(y)

}
,

then the relation

f (Y ) ⊂ L ⊂ P ⊂ ∂Y (7)

expresses the apparent fact that the set of fair allocations is by construction Pareto-
optimal and Lorenz-undominated. For generically f (Y ) � L , the prescriptive power
of the solution of the fair welfare maximization problem (6) is larger than weak Lorenz-
dominance, so that we are interested in implementing the social welfare correspon-
dence f .

2.2 Representation of relative fairness

To solve the fair welfare maximization problem (6), the following representation (8) is
essential as it transforms the infinite-dimensional optimization problem based on (4)
into an equivalent finite-dimensional optimization problem, which can be efficiently
solved if the set of constraints is a linear program or satisfies some additional regularity
conditions [e.g., existence of a separation oracle, cf. Grötschel et al. (1993)]. The
underlying idea of constructing an extremal base to solve optimization problems goes
back at least to Chebychev (1859); it is frequently employed in the theory of minmax
problems (see e.g., Dem’yanov and Malozemov 1974).

Proposition 3 For any feasible allocation y ∈ Y , the fairness ratio can be repre-
sented in the form

ϕ(y) = min
k∈N

Pk(y)

P∗
k
, (8)

where P∗
k = maxy∈Y Pk(y).

The representation (8) is strikingly simple: rather than determining the infimum
over uncountably many SWFs V ∈ V , one needs only to take the minimum over the
finitely many prefix functions Pk ∈ V , k ∈ N , which constitute an extremal base.
Relative fairness corresponds to the k poorest individuals’ collective wealth when
divided by the maximum wealth that would be feasible for any poorest k individuals.
The intuition for one direction of the proof of Proposition 3 is immediate: the right-
hand side (RHS) of (8) cannot be smaller than the relative fairness ϕ, since the infimum
is taken over only a (finite) subset of V . On the other hand, ifΦ(y) = mink∈N

Pk (y)
P∗

k
,
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then for any SWF V ∈ V one can show that V (y)/Φ(y) ≥ V (y/Φ(y)) ≥ V ∗; this
restricted result is sufficient to conclude that the RHS of (8) cannot be larger than ϕ.

Example 1 Consider the question of how to allocate a given unit of food among a set
of two individuals N = {1, 2}. The first individual’s cardinal utility for an amount
x1 of food is u1(x1) = √

x1, while the second individual’s cardinal utility for her
amount of food x2 is u2(x2) = √

x2/2. The total amount of food rations cannot
exceed the available supply, i.e., x1 + x2 ≤ 1. The social planner faces the problem of
maximizing the relative fairness ϕ(y), where y = (y1, y2) with yi = ui (xi ) − ui (0)
represents a particular utility allocation in the convex feasible set

Y = {y ∈ R
2+ : (y1)

2 + 4(y2)
2 ≤ 1}.

Maximizing the fairness ratio using its simpler representation (8) yields

y∗ ∈ arg max
y∈Y

{

min

{
P1(y)

P∗
1
,

P2(y)

P∗
2

}}

= arg max
y∈Y

{

min

{
y2

1/
√

5
,

y1 + y2√
5/2

}}

= (3/5, 2/5),

so that we obtain the unique optimal fair allocation of food, x∗ = (9/25, 16/25) =
(0.36, 0.64), which achieves the optimal fairness ratio ϕ∗ = 2/

√
5 ≈ 0.89. This solu-

tion compromises between the optimal Rawlsian allocation x1 = (1/5, 4/5) (maxi-
mizing P1(y)) and the utilitarian optimum x2 = (4/5, 1/5) (maximizing P2(y)).

In his Nicomachean Ethics Aristotle suggests that13

“equals should be treated equally, and unequals unequally, in proportion to rel-
evant similarities and differences.”

For instance, consider the situation in which N represents a poor country in which
some people are close to starvation, whereas ˆN denotes a rich country in which
individuals are well-fed. When thinking about how to fairly allocate an additional
amount of food, identical for both countries, there is no particular reason to believe—
even from a normative point of view—that the optimal fair allocations y and ŷ for both
countries are the same or should be the same. For instance, if marginal utilities for
additional food vary across the two countries, a larger dispersion of marginal utilities
in one country means that differences in additional resources matter more, so that the
optimal fair resource allocation favors poorer individuals for whom small increments
of resources make a larger difference. If on the other hand the dispersion in marginal
utilities is low, this prompts the social planner to increase the emphasis on overall
utility (i.e., larger prefixes as will become clear below) when maximizing relative
fairness, leading to more symmetric allocations. Provided that utility functions are
concave, a decrease in the dispersion of marginal utilities is achieved when there is an

13 Here as quoted by Moulin (2003, p. 1); different translations (such as the one by D.P. Chase published
by Dover, New York, NY, in 1998) provide different English versions for that passage, which are, however,
in the same vein.
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increase in the reference resource allocation. The next example illustrates that in the
Aristotelian spirit a change in the individuals’ circumstances can influence the optimal
fair allocation, for the relative differences between individuals also change.

Example 2 Consider the situation in the last example with a change in reference level
and thus marginal utility for food. We show that a fair resource allocation in a country
where people are well-fed may be quite different from a fair resource allocation in
a country where individuals’ nourishment is poor. For this assume—in contrast to
the preceding result example—that individuals are now well-fed, i.e., that one unit
of food is distributed to each individual before the social planner decides about how
to allocate an additional unit of food: the individuals’ respective utilities are thus
û1(x1) = u(x1 + 1) = √

x1 + 1 and û2(x2) = u2(x2 + 1) = √
x2 + 1/2, so that the

set of attainable utility improvements becomes

Ŷ =
{

ŷ ∈ R
2+ : (ŷ1 + 1)2 + (2 ŷ2 + 1)2 ≤ 3

}
,

resulting in P̂∗
1 = (

√
14 − 3)/5 with x̂1 = ((4

√
14 − 7)/25, (32 − 4

√
14)/25), and

P̂∗
2 = √

2 − 1 with x̂2 = (1, 0). We thus obtain x̂∗ ≈ (0.47, 0.53) as the unique
optimal fair allocation of food in the rich country (achieving ϕ̂∗ ≈ 0.80). The increase
in the reference wealth and concomitant decrease in the difference of marginal utilities
allows for a more symmetric allocation to be justifiable in terms of relative fairness.

Remark 3 Maximizing relative fairness can be related to the theory of cooperative
bargaining. For instance, in the case of two individuals i ∈ {1, 2} with potential
maximum utility gains G1,G2 relative to their status quo, whereby 0 ≤ G1 ≤ G2
(without loss of generality), the cooperative bargaining solution K = (K1, K2) ∈ Y
proposed by Kalai and Smorodinsky (1975) is such that K ∈ P ⊂ ∂Y (Pareto-
optimality) and

K1

G1
= K2

G2
. (9)

Maximizing the fairness ratio ϕ(y) over all y ∈ Y yields

y∗
1

P∗
1

= y∗
1 + y∗

2

P∗
2

(10)

and y∗ ∈ P (cf. also Remark 6 in Sect. 2.5). Hence, the Kalai–Smorodinsky bar-
gaining solution and the optimal fair allocation coincide, i.e., K = y∗, if we set the
potential utility gains to G1 = P∗

1 and G2 = P∗
2 − P∗

1 (which implies G1 ≤ G2),
since then relations (9) and (10) are equivalent. In other words, reinterpreting our
solution in terms of bargaining amounts to viewing the potential utility gains of
“cost-ordered” individuals in terms of first-differences of optimal prefixes.14 This

14 We say that individuals are cost-ordered, if at any allocation yk ∈ arg maxy∈Y Pk (y) we have that

yk
j+1 ≥ yk

j for all j ∈ {1, . . . , n − 1}.
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observation generalizes to n individuals, as long as the optimal fair allocation y∗ is
“balanced” (cf. Sect. 2.5).

The last remark suggests that the optimal fair resource allocation in the sense
of (6), the definition and representation of which are independent of any convexity
assumptions on the utility possibility set Y , provides a natural generalization of the
Kalai–Smorodinsky bargaining solution based on the fictitious (because generally not
feasible) gains Gi . Clearly, if the fair allocation is balanced, then the interpretation
of this allocation coincides with the Kalai–Smorodinsky bargaining solution. The
latter had been proposed informally by Raiffa (1953) and Luce and Raiffa (1957,
p. 132f) to deal with criticisms of the indifference-of-irrelevant-alternatives axiom in
the well-known Nash bargaining solution. An elementary axiomatic base implying
our set of fair allocations, f (Y ), is subject to further research. Of course, one may
trivially require Lorenz-dominance (implying symmetry and Pareto-optimality) and
“robustness” in the form of the fair welfare maximization problem (6) as axioms to
characterize f (Y ).

2.3 Determining optimal fair allocations

Based on the representation (8) of relative fairness, optimal fair allocations can easily
be obtained once all the optimal prefixes P∗

1 , . . . , P∗
n are known. Since the maximiza-

tion of prefixes can be computationally burdensome and may be difficult to implement,
we provide here an equivalent formulation which contains a number of adjunct vari-
ables. Even though the reformulation increases the dimensionality of the problem, it
substantially simplifies the solution.

Proposition 4 The optimal k-th prefix can be determined as the solution of an equiv-
alent optimization problem,

P∗
k = max

(y,z,r)∈Y ×Rn×R

{
n∑

i=1

zi − (n − k)r

}

, (11)

subject to zi ≤ yi and zi ≤ r for all i ∈ N .

Given the optimal prefixes, any optimal fair allocation and associated optimal fair-
ness ratio can then be obtained in a similar manner as the solution of an augmented
equivalent optimization problem, where, in analogy to (11), each adjunct variable
contains components for each prefix.

Proposition 5 Any solution y∗ to the fair welfare maximization problem (6) can be
obtained as a solution to the equivalent optimization problem

(y∗, z∗, r∗, φ∗) ∈ arg max
(y,z,r,φ)∈Y ×Rn2 ×Rn×R

{φ}, (12)
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subject to

φ ≤ 1

P∗
k

(
n∑

i=1

zik − (n − k)rk

)

,

zik ≤ yi and zik ≤ rk for all i, k ∈ N , where the optimal fairness ratio is given by
ϕ∗ = ϕ(y∗) = φ∗.

Remark 4 If the compact set Y of feasible utility allocations can be described by
l ≥ 1 linear constraints, i.e., if

Y = {
y ∈ R

n+ : Ay ≤ b
}
,

where A is a full-rank (l × n)-matrix and b ≥ 0 is an l-dimensional vector, then the
equivalent formulation (12) of the fair welfare maximization problem (6) becomes
a linear program, for which computationally efficient algorithms exist. Even when
Y is a general convex set, computationally efficient algorithms exist if an efficient
separation oracle can be found (Grötschel et al. 1993).

2.4 A lower bound on the optimal fairness ratio

Let us now turn our attention to the behavior of the optimal fairness ratio as the
number n of individuals increases: it is possible to obtain a fundamental lower bound
on the optimal fairness ratio. Naturally, depending on the particular resource allocation
problem, the set of feasible allocations Yn may vary with n in a variety of ways. It
could, for instance, be in line with Peter T. Bauer’s well-known remark that “for every
new mouth to feed, there are two hands to produce,” in which case the total available
resources would increase in a linear fashion. Or, it could be that “although two hands
come into the world with every new mouth, it becomes, to use the language of John
Stuart Mill, ‘harder and harder for the new hands to supply the new mouths’ ” (George
1879, IV. 2). In the extreme, the total amount of allocable resources may even be fixed
(e.g., in a pure division problem when Yn = {y ∈ Rn+ : y1 + · · · + yn ≤ 1}). Without
committing to any particular rule for the growth of the feasible set of allocations with
the population size n, we provide here a robust lower bound for the optimal fairness
ratio ϕ∗

n which depends only on what we term the inhomogeneity In of the fair welfare
maximization problem.

Definition 4 For any n ≥ 2 the inhomogeneity of the fair welfare maximization
problem (6) is given by In = P∗

n /(n P∗
1 ).

The inhomogeneity In ≥ 1 of the problem depends on Yn . For any fair welfare
maximization problem it is minimal (i.e., In = 1) whenever the maximizer yn of the
n-th prefix Pn is symmetric, i.e., yn

1 = · · · = yn
n , since then y1 = yn and P∗

k /k =
P∗

n /n for all k ∈ N , where we denote the maximizer of the k-th prefix by

yk ∈ arg max
y∈Y

Pk(y). (13)
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Otherwise the inhomogeneity increases with the average wealth of an economically
efficient allocation (P∗

n /n) and decreases with individual wealth in a purely Rawlsian
allocation.

Convexity Assumption. (i) Y is convex, or (ii) X is convex and ui is concave
for all i ∈ N .

Indeed, if (i) holds, then (1) is a convex optimization problem, so that the set of all
y∗ is convex. If only (ii) holds, then let Z = X × {y ∈ R

n+ : y ≤ u(x), x ∈ X }
with elements z = (x, y), and consider the relaxed welfare maximization problem of
finding

z∗ ∈ arg max
(x,y)∈Z

W (y). (1’)

One can readily verify that the relaxed problem (1’) is convex15 and that at the optimal
z∗ = (x∗, y∗) it is y∗ = u(x∗), just as in the original problem (1) with convex
Y . In what follows, we require that our convexity assumption holds and limit our
attention (without loss of generality) to the case where (i) is satisfied, so that the welfare
maximization problem (1) is convex. Furthermore, we concentrate our discussion on
(utility) allocations y, knowing that by the monotonicity of u there is a correspondence
between utility allocations y and equivalent resource allocations x ∈ u−1(y).

Proposition 6 If the convexity assumption is satisfied, thenϕ(y∗)≥(2+2�log2 In�)−1,
where In = P∗

n /(n P∗
1 ).

The main idea of the proof is as follows: we first consider the allocations which
maximize the average wealth of the k poorest individuals, yk ∈ arg max Pk(y)/k. Then
we take the average over some of these allocations, which by convexity of Y is feasible.
The trick is to carefully select the yk’s to include in the average. Since (as we show in
the appendix) the average wealth αk = max Pk(Y )/k is nondecreasing in the index k,
it is possible to select only indices in N which increase this ratio by at least a factor of
two. This reduces the number of elements to be averaged over to 2+2�log2 In�, where
In = αn/α1 is the inhomogeneity of the fair welfare maximization problem introduced
earlier. We note at this point (as will become clear with the example discussed in Sect. 3)
that even though the proposed bound may not be tight, its logarithmic decrease with the
inhomogeneity In as n increases cannot be improved upon in general. Our fundamental
lower bound in Proposition 6 is also substantially better than the alternative lower
bounds 1/n or 1/In which can be easily obtained.

2.5 Balanced solutions

The particular form of the representation (8) suggests that at an optimal fair allocation
y∗, which by definition maximizes relative fairness, the corresponding prefix ratios
R∗

k = Pk(y∗)/P∗
k are all equal, i.e.,

15 The constraint set Z is thereby closed and bounded from above, which (together with the continuity of
W ) guarantees the existence of z∗. It is also convex, which is implied by the concavity and monotonicity
of v.
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P1(y∗)
P∗

1
= · · · = Pn(y∗)

P∗
n

. (14)

If (14) is satisfied, the allocation y∗ and the prefix ratios R∗
k are referred to as balanced.

We note that in general not every fair welfare maximization problem has a balanced
solution (cf. Example 3 below), but (14) is satisfied whenever the feasible set Y can
be expressed in terms of a single linear budget constraint.

Proposition 7 Let the set of feasible allocations be of the form

Y = {y ∈ R
n+ : γ · y ≤ 1}, (15)

for some strictly positive vector of weights γ = (γ1, . . . , γn), where γ1 > · · · > γn.
(i) Then the wealth ratios Pk(y∗)/P∗

k are balanced at y∗, i.e., relation (14) is satisfied.
(ii) Furthermore, the unique optimal fair allocation is given by

y∗
(k) = y∗

k = (P∗
k − P∗

k−1)ϕ
∗, (16)

for k ∈ {2, . . . , n}, and

y∗
(1) = y∗

1 =
(

1 −
n∑

k=2

γk y∗
k

)

/γ1, (17)

with optimal fairness ratio

ϕ∗ =
(

γ1
∑n

i=1 γi
+

n∑

k=2

γk(P
∗
k − P∗

k−1)

)−1

. (18)

The balancedness condition (14) is important because by introducing n − 1 opti-
mality conditions it, together with the fact that the optimal fair allocation is Pareto-
undominated (i.e., in particular y∗ ∈ ∂Y ), simplifies the solution of (6) considerably.16

We now provide an algorithm that can be used to efficiently compute the optimal pre-
fixes P∗

k for the linear cost-ordered problem described in Proposition 7.

Algorithm. First, define the i th step allocation z(i) to be one where z(i)1 = z(i)2 =
· · · = z(i)i−1 = 0, and z(i)i = z(i)i+1 = · · · = z(i)n = (

∑n
k=i γk)

−1. Second, note that—
as in the proof of Proposition 4—for any k ∈ N there exists an index j such that
P∗

k = Pk(z( j)). Hence, the optimal k-th prefix P∗
k can be efficiently computed, as

P∗
k = max

i∈N

{
Pk(z

(i))
}
,

for any k ∈ N .

16 Note that the constants P∗
1 , . . . , P∗

n still have to be determined by solving n optimization problems
(cf. Sect. 2.2).
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Remark 5 If in Proposition 7 the vector γ is such that its elements are not strictly
cost-ordered, i.e., γ1 ≥ · · · ≥ γn , then there exists an optimal fair allocation that is
balanced, but there may be other optimal fair allocations that are not balanced.17

In the following two examples we show that the balancedness condition (14) does
not hold in general. The first example points to problems that can arise through multiple
linear constraints.

Example 3 Consider three individuals, A, B, and C , whom we assume to be risk
neutral for simplicity, so that yi = xi for all i ∈ {A, B,C}. Let the set of feasible
allocations be given by

Y =
{

y ∈ R
3+ : yA + 2yC ≤ 3 and yB ≤ 1

}
.

To determine the relative fairness ϕ(y) of any given allocation y ∈ Y , let yk be
a maximizer of the k-th prefix as in (13). With this the optimal prefixes become
(P∗

1 , P∗
2 , P∗

3 ) = (1, 2, 4), and their respective maximizers are y1 = y2 = (1, 1, 1)
and y3 = (3, 1, 0). Using the representation (8) of relative fairness, we can determine
the unique fair allocation,

y∗ ∈ arg max
y∈Y

{min {P1(y), P2(y)/2, P3(y)/4}} = (1.4, 1, 0.8).

We note now that P1(y∗)/P∗
1 = P3(y∗)/P∗

3 = 0.8, but P2(y∗)/P∗
2 = 0.9. The

reason for the lack of balancedness in this example is that individual B’s allocation is
independent of individual A’s and individual C’s, so that it is impossible to transfer
wealth from B without leaving the set of Pareto-undominated allocations.

Even when the Pareto-frontier P ⊂ ∂Y is smooth, the optimal fair allocation y∗
lies in the interior of P , and small transfers among all individuals are possible while
staying in P , it is possible that balancedness fails, as the following example with a
single nonlinear constraint illustrates.

Example 4 Consider the situation when the convex set of feasible utility allocations
is given by Y = {(y1, y2, y3) ∈ R

3+ : 4y1 + y2
2 + y2

3 ≤ 1}. Then maximizing P2 and
P3 yields y2 = y3 = (0, 1/

√
2, 1/

√
2) with P∗

2 = 1/
√

2 and P∗
3 = √

2. To obtain an
optimal fair allocation, it is possible to solve the fair welfare maximization problem
(6) sequentially, first with respect to (y2, y3) (with y1 as a parameter) and then with
respect to y1. For any given y1 the Pareto-set containing y∗ is given by P = {y ∈
R

3+ : (y2)
2 + (y3)

2 = 1 − 4y1}, so that for any given y1 clearly y∗
2 (y1) = y∗

3 (y1).
Furthermore, at any optimal fair allocation y∗ ∈ P we have that

R∗
2 = P2(y∗)

P∗
2

= y∗
1 + y∗

2

1/
√

2

17 This can be seen by modifying Step 5 of the proof of Proposition 7 (i) accordingly: with indifference
between neighboring cost coefficients it may be possible to transfer resources among individuals without
changing the optimal fairness ratio, leading to a multiplicity of solutions. Nevertheless, even when the cost
order is not strict, there always exists a balanced optimal fair allocation.
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and

R∗
3 = P3(y∗)

P∗
3

= y∗
1 + y∗

2 + y∗
3√

2
.

Using the fact that y∗
2 = y∗

3 we obtain that R∗
2 > R∗

3 = (y∗
1/

√
2)+y∗

2

√
2. The (unique)

optimal fair allocation in this example is thus not balanced.

Fair welfare maximization problems with a single linear constraint can easily be
cost-ordered (cf. Footnote 14) as in Proposition 7, where we have required that the cost
coefficients γ1, . . . , γn be labeled in a decreasing order. The corresponding optimal
fair allocation y∗ is therefore unique.18 By contrast, we would like to stress that the set
L of all undominated allocations with respect to the weak Lorenz-dominance order,

L = {
y ∈ Y : (γi ≤ γ j ⇒ yi ≥ y j ) and γ1 y1 + · · · + γn yn = 1

} ⊂ P, (19)

is generally quite large (cf. Fig. 2). By maximizing relative fairness, we obtain a unique
optimal fair allocation y∗, which substantially strengthens the normative predictions
for what constitutes an optimal fair resource allocation in this setting.

Remark 6 The precise characterization of the class of all fair welfare maximization
problems with (unique) balanced solutions remains an interesting open research ques-
tion.

2.6 Implementing fair allocations

We first maintain our assumption of complete information, so that any fair resource
allocation x∗ can be implemented by direct allocation of quantities. If the resource is a
(nonexcludable) public good, a social planner may opt for the use of permits or quotas.
Equivalently the planner may choose to impose an appropriate tax/subsidy system to
obtain the same fair distribution of resources.19 The latter may be achieved using a
standard nonuniform Pigouvian taxation (following the work of Pigou (1920)), where
individuals are generally taxed differently and corresponding to their marginal utility
at the optimal fair allocation x∗. In certain special cases it is possible to implement a
fair resource allocation via uniform taxation that differentiates only across products
but not across individuals (Diamond 1973; Green and Sheshinski 1976).

If we relax the assumption of complete information such that the social planner
(principal) may be the only one without complete information about the preferences
of the individuals (agents), an implementation of the fair social welfare correspondence
f may still be feasible. Since f satisfies Maskin’s monotonicity axiom (a necessary
condition for incentive compatibility in any exact Nash implementation), in the sense
that for any two nonempty compact utility possibility sets Y and Ŷ , generated by
utilities u and û respectively, we must have that y ∈ f (Y ) \ f (Ŷ ) ⇒ ∃(z, i) ∈

18 Cost ordering implies that furthermore y∗
(i) = y∗

i , for all i ∈ N .
19 In the presence of uncertainty this equivalence may disappear, as noted by Weitzman (1974).
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R
n+ × N such that ui (y) ≥ ui (z) and ûi (z) > ûi (y), as can be seen by choosing any

z ∈ f (Ŷ ) as a test element. If, in addition, n ≥ 3 and the individuals’ preferences
satisfy the strongly conflicting preferences assumption, which in our context requires
that each Lorenz-undominated alternative y ∈ L is the most preferred alternative for
at most n − 2 agents, then Maskin monotonicity and strongly conflicting preferences
are together sufficient to guarantee the Nash-implementability of f (see e.g., Palfrey
and Srivastava (1993)).

The design of more general mechanisms for a (robust) implementation of the fair
social welfare correspondence in the presence of asymmetric information between
individuals and social planner remains an interesting open research topic. Subsequent
to the authors’ work, Cho and Goel (2006) propose a sequential price-quantity mecha-
nism to approximately implement optimal fair allocations. Leroux and Leroux (2004)
consider the problem of implementing an envy-free division of a given resource when
individuals have (unknown) linear preference representations.

3 An example: fair water distribution

We now look at an application to a stylized water resource system in somewhat more
detail to illustrate our results. Consider n ≥ 2 farmers who own an acre of land
each. The land needs to be irrigated via a central aqueduct of capacity C > 0 acre-
feet. Transporting water from the aqueduct to a farmer may result in losses due to
inefficiencies in the transportation system. If xi units of water are allocated to farmer
i , the amount that this farmer actually receives is yi = λi xi , where λi ∈ (0, 1] for all
i ∈ N . The feasible set describing the amount of water received by each farmer is
thus given by

Y =
{

y ∈ R
n+ :

n∑

i=1

yi

λi
≤ C

}

.

The social planner’s goal is to allocate water fairly to all farmers. Note first that
the notion of fairness is somewhat nebulous here: for political reasons it might be
unacceptable to completely starve any farmer (corresponding e.g., to maximizing
minimum output, P1(y) = min{y1, . . . , yn}). On the other hand, for efficiency reasons,
farmers close to a water supply should be given more water (corresponding e.g., to
maximizing total output, Pn(y) = y1 + · · · + yn). At the same time, it might be
important to be fair in other ways, for example to ensure that the total amount of water
allocated to farmers below the median allocation is reasonable.

This is a fair welfare maximization problem with a linear budget constraint
(described in Proposition 7), as can be seen by setting γi = 1/(Cλi ). Hence, the
optimal fair allocation y∗ which maximizes ϕ(y) is unique and satisfies the balanced-
ness condition (14). Assume, without loss of generality, that the farmers are arranged
in nonincreasing order of λi . In other words, as in Proposition 7, we assume that the
individuals are cost-ordered, so that farmer 1 is the cheapest to serve and farmer n
is the most expensive to serve. To solve the fair welfare maximization problem, one
first determines the optimal prefixes P∗

1 , . . . , P∗
n , which is easily accomplished by
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Fig. 1 Behavior of P∗
1 , 1/In , ϕ

∗, and the lower bound in Proposition 6 in the fair water allocation problem,
for both the linear (a) and the hyperbolic (b) loss case

using the algorithm provided at the end of Sect. 2.5. Since P∗
1 and P∗

n can be obtained
analytically, it is possible to explicitly discuss the asymptotic behavior of the optimal
fairness ratio for increasing n in terms of the problem inhomogeneity In = P∗

n /(n P∗
1 )

(assuming here that the overall water capacity C stays constant).
To maximize the poorest farmer’s utility y(1) = y1, all farmers receive an equal

amount of water (after transportation losses), resulting in P∗
1 = C(

∑n
i=1 1/λi )

−1.
On the other hand, maximizing the utilitarian objective Pn = y1 + · · · + yn , all the
available water should be given to the first farmer, so that P∗

n = Cλ1. As a result, the
inhomogeneity of this problem is (according to Definition 4) given by

In = P∗
n

n P∗
1

= 1

n

n∑

i=1

λn

λi
. (20)

The allocation y1 which maximizes P1 attains thereby a fairness ratio ofϕ(y1) = 1/In ,
while the allocation yn which maximizes Pn attains a fairness ratio of ϕ(yn) = 0. We
note that in both cases the attained relative fairness is significantly below our lower
bound on the optimal fairness ratio in Proposition 6. For concreteness, let us illustrate
this fact here for two special cases:

1. Linear Distributional Losses (λi = i/n). The first farmer receives only a (1/n)-
fraction of the water shipped to him, whereas the n-th farmer sees no transportation
loss. Figure 1a shows the computed value of ϕ∗ as n varies; for comparison, the
value of In is also shown. Figure 1a illustrates that the optimal fairness ratio
degrades gracefully as n increases. Also, the difference between the optimal fair-
ness ratio and the fairness ratio of the allocation that maximizes P1 (recall that
this is just In) is quite significant.
In this scenario, relation (20) simplifies to In = ∑

i (1/ i) = hn . Here, hn denotes
the n-th harmonic number,20 satisfying ln n < hn < 1 + ln n. Hence, as the
population size n increases, our lower bound (from Proposition 6) on the optimal

20 It is hn = Ψ (n + 1)+ γ , where Ψ = Γ ′/Γ denotes the digamma function and γ ≈ 0.5772156649 is
the Euler constant.
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Fig. 2 Set of feasible
Lorenz-undominated allocations
L ⊂ Y in the (y1, y2)-plane
for the fair water allocation
problem (with n = 3)

2/3

2/5

0 1/3

fairness ratio degrades in proportion to 1/ ln(ln n). We expect many practical
problems to be similar in the sense that the inhomogeneity grows slowly as the
population size increases, resulting in an even slower degradation of the optimal
fairness ratio.
To build some numerical intuition and to demonstrate the normative power of our
method, we briefly consider the case when n = 3. In that case the allocations yk

which maximize the respective prefix Pk , k ∈ N , are y1 = (2/11, 2/11, 2/11),
y2 = (0, 2/5, 2/5), and y3 = (0, 0, 1), giving P∗

1 = 2/11, P∗
2 = 2/5, and

P∗
3 = 1. Using the representation (8) of the fairness ratio, we find that the unique

optimal fair allocation, y∗ = (10/81, 4/27, 11/27), compromises among the
three prefix-maximizing allocations y1, y2, and y3. The set L of all Lorenz-
undominated allocations [cf. relation (19)] is depicted in Fig. 2.

2. Hyperbolic Distributional Losses (λi = 1/(n − i + 1)). This problem has a much
higher inhomogeneity. Relation (20) simplifies to In = ∑n

i=1(i/n) = (n + 1)/2.
Figure 1b shows the computed value of ϕ∗ as a function of n; it also shows the
value of 1/In for comparison. It is clear that ϕ∗ is proportional to 1/ log2 In ,
which indicates that Proposition 6 cannot be improved other than by changing
the multiplicative and/or additive constants in the bound. One can show that in
this example we have that ϕ∗ ≤ 2/(1 + ln(In)), an inequality which cannot be
improved upon.

We note that constraints in this fair water allocation problem can easily be modified
to take into account quotas for individual farmers, selective subsidies (e.g., to poor
farmers), multiple crops, differential pricing, property rights, multiple water sources,
or consumption externalities through return flows. The Pigouvian taxes of ti = λi

mentioned in Sect. 2.6 can implement the fair resource allocation x∗ in this example,
albeit in a nonunique fashion, for at this price the farmers, due to the linearity of their
utility functions, are indifferent about the amount of water they receive.
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4 Discussion

Measures of inequality abound. Most of them either depend heavily on the choice
of a particular SWF (e.g., the Atkinson–Kolm–Sen approach) or yield a rather large
set of undominated allocations, such as when using the (weak) Lorenz-dominance
order as the criterion for social preference. We have introduced a new inequality
index, termed fairness ratio (or relative fairness), which does not depend on any
particular SWF and yields—at least when the solution is balanced—a unique pre-
diction as to which allocation should be considered fairest. Our approach can deal
with redistributional losses (or gains), for in practice feasible sets rarely admit per-
fectly symmetric and at the same time economically efficient allocations (in terms
of maximizing the sum of all utilities). The approach also very naturally accom-
modates any constraints on how resources can be allocated and allows an efficient
approximate computation, as long as the set of attainable utility vectors stays con-
vex. Such constraints might be introduced through property rights and contractual
obligations, transportation losses, capacity constraints, regulation, minimum and max-
imum resource requirements, to name just a few. We emphasize that our method
is not in the least affected by the dimensionality of the resources, provided sim-
ply that the “utility image” generated by the set of feasible resource allocations is
convex.

Even though originally defined as the infimum over a class of “canonical” (i.e.,
increasing, symmetric, and concave) SWFs, the representation of relative fairness is
strikingly simple (cf. Proposition 3): it depends only on n prefixes, which makes this
method readily implementable in practice. Propositions 4 and 5 can be directly used
to find optimal fair allocations. In addition, it is possible to reinterpret our approach
in terms of robustness: any attainable fairness ratio is in fact a lower bound for the
Dalton ratio that can be achieved by any canonical SWF. Thus, when confronted with
the question of how fair a particular allocation of resources is, the fairness ratio eval-
uated at that allocation provides an a priori index which guarantees that a certain
discrepancy between the considered allocation and an optimal allocation with respect
to any canonical SWF cannot be exceeded. Furthermore, the inhomogeneity In of the
problem (cf. Definition 4) serves as an important guide by providing a fundamental
lower bound on the optimal fairness ratio that can be obtained. The logarithmic behav-
ior of our general lower bound in Proposition 6 as a function of the inhomogeneity of
the problem cannot be improved upon, as the application discussed in Sect. 3 clearly
demonstrates.

Following a suggestion by Kenneth Arrow, we would like to note at this point that
the fairness ratio can in principle also be used to guide intertemporal fair resource
allocations, e.g., to achieve intergenerational equity (cf. Arrow et al. 2004). For
this, one would need to think of how to allocate a limited resource not to differ-
ent individuals, but instead to T different time periods or generations, indexed by
t ∈ {1, . . . , T }. The feasible set might then be implicitly defined by a technological
discount rate, which could imply redistributional gains or losses as time goes on.
Further work is needed to develop intertemporal fair resource allocation on the basis
of the fairness ratio.

123



486 A. Goel et al.

Appendix

Proof of Proposition 1 21 ⇐: Since V (ŷ) ≥ V (y) for all canonical SWFs V ∈ V and
Pk ∈ V for all k ∈ N , we have that Pk(ŷ) ≥ Pk(y) for all k ∈ N . Thus, by Defini-
tion 1 allocation ŷ weakly Lorenz-dominates allocation y, i.e., ŷLw y. ⇒: Suppose now
that allocation ŷ is at least as fair as y, i.e., ŷLw y. We will use the following lemma,
which is essentially due to Muirhead (1903), Hardy et al. (1934/1952, p. 47), Mirsky
(1959), and Chong (1976). A similar formulation in terms of T -transformations and
doubly superstochastic matrices can be found in Marshall and Olkin (1979, Lemma
B.1 and Proposition D.2.a on p. 21, 30 respectively).

Lemma 1 If ŷLw y, then there exists an allocation z ∈ R
n+ (not necessarily feasible),

so that zLy and ŷ − z ∈ R
n+.

In other words, weak Lorenz-dominance can be decomposed into Lorenz-
dominance (which requires that ŷLw y and Pn(ŷ) = Pn(y)) and a nonnegative
transfer δ = ŷ − z, which generalizes the principle of transfers related to (strict)
Lorenz-dominance. Now consider any SWF V ∈ V . Since V is increasing,22 we have
by Lemma 1 that V (ŷ) ≥ V (z). Moreover, since V is symmetric and concave (i.e.,
also Schur-concave) we can apply a standard result on Lorenz-dominance, namely
that zLy implies that V (z) ≥ V (y) (cf. Marshall and Olkin 1979, Proposition C.2,
p. 67), which completes our argument.

Proof of Proposition 2 (i) Let θ ∈ (0, 1). Then for any two feasible allocations
y, ŷ ∈Y we have that (using the concavity of any V in V )

ϕ(θy + (1 − θ)ŷ) ≥ inf
V ∈V

θV (y)+ (1 − θ)V (ŷ)

V ∗ ≥ θϕ(y)+ (1 − θ)ϕ(ŷ),

which implies that ϕ is concave. The symmetry, monotonicy and continuity of ϕ
follows directly from the representation (8) in Proposition 3. (ii) This part follows
immediately from the definition of yi = ui (x) − ui (0). (iii) Consider a common
positive linear transformation of individuals’ utility functions, so that z = αy for
some constant α > 0. If we set U (y) = V (αy), then U ∈ V if and only if V ∈ V .
As a result,

ϕ(z;αY ) = inf
V ∈V

V (αy)

max V (αY )
= inf

U∈V

U (y)

max U (Y )
= ϕ(y;Y ).

21 Our statement of Proposition 1 combines a number of well-known results. Its proof is provided here
with the intent of showing how the different pieces in the literature fit together to obtain this particular
convenient formulation. We also note that a formulation of an analogous result for strict Lorenz-dominance
is provided by Sen (1973/1997, p. 64).
22 Note that it does not matter if V is allowed to be nondecreasing. Adding piecewise constant functions to
the class V of canonical SFWs does not change the fairness, since any symmetric nondecreasing concave
function can be approximated by a sequence of (increasing) canonical SWFs, so that the infimum in (4)
remains unaffected.
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(iv) Consider a common increasing concave transformation of individuals’ utilities,
so that z = (ψ(y1), . . . , ψ(yn)) for some continuous increasing concave function ψ :
R

n+ → R withψ(0) = 0. For any V ∈ V the function U (y) = V (ψ(y1), . . . , ψ(yn))

is also an element of V .

Proof of Proposition 3 Fix an arbitrary feasible allocation y ∈ Y and let

Φ(y) = min
k∈N

Pk(y)/P∗
k .

(i) We have that ϕ(y) ≤ Φ(y), since Pk ∈ V for all k ∈ N . (ii) To show that also
ϕ(y) ≥ Φ(y), assume without loss of generality that Φ(y) > 0 (if Φ(y) = 0 then
ϕ(y) ≥ Φ(y) trivially). Note that for any feasible allocation ŷ ∈ Y by definition of
Φ:

Pk(ŷ) ≤ Pk(y)/Φ(y). (21)

If we set z = y/Φ(y), then Pk(z) = Pk(y)/Φ(y) and by (21) we have that Pk(ŷ) ≤
Pk(z), for all ŷ ∈ Y . Fix any V ∈ V . By Proposition 1, it is necessarily true that
V (ŷ) ≤ V (z), and thus23

V ∗ ≤ V (z). (22)

Since V is concave and Φ(y) ∈ (0, 1], we have by Jensen’s inequality that

(1 −Φ(y))V (0)+Φ(y)V (z) ≤ V ((1 −Φ(y)) · 0 +Φ(y) · z) = V (y),

whence using (22),

Φ(y) ≤ V (y)

V (z)
≤ V (y)

V ∗

for all V ∈ V . Taking the infimum over all V ∈ V then yields using (4) that Φ(y) ≤
ϕ(y) on Y , which completes our proof.

Proof of Proposition 4 This proof is constructive and a feasible solution to the opti-
mization problem (11) is shown to exist below (in Step 2). Let (y, z, r) be such a
solution and let

πk =
n∑

i=1

zi − (n − k)r

be the value of the objective function at the optimum. The remainder of the proof
proceeds in two steps.

23 Note that z ∈ R
n+ may not be feasible.
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Step 1: πk ≤ P∗
k . Indeed, since zi ≤ r , we have that necessarily

πk =
n∑

i=1

zi − (n − k)r ≤ Pk(z).

Furthermore, since zi ≤ yi it is Pk(z) ≤ Pk(y) ≤ P∗
k , which implies that πk ≤ P∗

k .

Step 2: πk ≥ P∗
k . Since larger values of the zi ’s can only increase the objective

function, the constaints zi ≤ min{yi , r} must be binding at the optimum, so that
zi = min{yi , r} for all i ∈ N . Consider now the feasible solution (y, z, r) =
(yk,min{y, (r, r, . . . , r)}, r) of (11), where

yk ∈ arg max
y∈Y

Pk(y),

and r = yk
(k). We note that z(i) = yk

(i), if i ≤ k and z(i) = r otherwise. Hence,

πk ≥
n∑

i=1

zi − (n − k)r =
n∑

i=1

z(i) − (n − k)r

=
k∑

i=1

yk
(i) +

n∑

i=k+1

r − (n − k)r

= P∗
k .

As a result, πk ≥ P∗
k .

Steps 1 and 2 together imply that πk = P∗
k , i.e., the program (11) produces indeed

the optimal k-th prefix, as desired.

Proof of Proposition 5 The equivalence of the program (12) to the fair welfare maxi-
mization problem (6) follows directly from our representation of the fairness ratio (8)
as well as program (11) in Proposition 4. We omit the details.

Proof of Proposition 6 The proof proceeds in three steps.

Step 1: P∗
k /k is nondecreasing in k. Fix k, j ∈ N with k < j , and let

yk ∈ arg max
y∈Y

Pk(y).

Arranging the components of yk in nondecreasing order, we have that yk
( j) ≥ yk

( j−1) ≥
. . . ≥ yk

(1). Hence, the average share of the k poorest individuals under yk cannot

exceed the average share of the j poorest individuals under the same allocation yk , so
that

P∗
k

k
= 1

k

k∑

i=1

yk
(i) ≤ 1

j

j∑

i=1

yk
(i) ≤ P∗

j

j
.
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Step 2: Iteratively construct a set S of allocations yk ∈ arg maxy∈Y Pk(y), k ∈ N

with |S | = 2 + 2�log2 In�. The set S contains at most n elements. Put y1 as first
element in the set, and define αk = P∗

k /k for k ∈ N . The construction proceeds for
i = 1, 2, . . . , n − 1 according to the following algorithm. Start with i = 1. (a) If yi

is not in S , or if yi is already in S and αn ≤ 2αi , then stop. (b) Otherwise, if yi is
in S , then find the smallest j > i such that α j > 2αi and add x j to S . Increase the
index i by one and continue with (a).

Upon completion of the construction of S , let

ȳ = 1

|S |
∑

y∈S

y

be the arithmetic average of all allocations in S . Since Y is convex by assumption,
ȳ ∈ Y is feasible. Moreover, by construction of ȳ we have that

ȳ ≥ yk

|S | , (23)

for all k ∈ N . Let ρ = 1/(2|S |) = (2 + 2�log2 In�)−1 with In = αn/α1.

Step 3: For any k ∈ N : Pk(ȳ) ≥ ρP∗
k . To show this, it is useful to consider two

alternatives. (1) If yk ∈ S , then from (23) we obtain that ȳ ≥ yk/|S | and thus
Pk(ȳ) ≥ ρP∗

k . 2. If yk /∈ S, then choose the largest index i ∈ N such that i < k and
yi ∈ S . This index exists, since y1 ∈ S . By construction of S it is necessarily true
that αk ≤ 2αi , i.e., P∗

k /k ≤ 2P∗
i / i . In addition,

P∗
i / i = Pi (x

i )/ i ≤ Pk(x
i )/k ≤ Pk(ȳ)|S |/k,

by (23) and a similar reasoning as in Step 1. As a result we obtain that P∗
k /k ≤

2|S |Pk(ȳ)/k, or in other words Pk(ȳ) ≥ ρP∗
k .

Our assertion in Proposition 6 then follows directly by applying Proposition 3,
which completes our argument.

Proof of Proposition 7 (i) The proof proceeds in five steps. Let y∗ ∈ Y be an optimal
fair allocation and let R∗

k = Pk(y∗)/P∗
k be the k-th optimal prefix ratio for any k ∈ N .

Step 1: P∗
k − P∗

k−1 is nondecreasing in k ∈ {2, . . . , n}. Let k ∈ N \ {1} and yk be a
maximizer of the k-th prefix Pk on Y as in (13). Then yk

(k) = Pk(yk)− Pk−1(yk) and

yk
(k+1) = Pk+1(yk)− Pk(yk). Since yk

(k+1) ≥ yk
(k), we have that

Pk+1(y
k)− Pk(y

k) ≥ Pk(y
k)− Pk−1(y

k),

or equivalently

Pk+1(y
k)+ Pk−1(y

k) ≥ 2Pk(y
k) = 2P∗

k .
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Hence,

P∗
k+1 + P∗

k−1 ≥ 2P∗
k ,

so that indeed P∗
k − P∗

k−1 is nondecreasing in k ∈ {2, . . . , n}.
Since by representation (8) we have that at the optimal fair allocation y∗

ϕ∗ = ϕ(y∗) = min
k∈N

R∗
k ,

there must be an index j in N for which the optimal prefix ratio equals the optimal
fairness ratio, i.e., ϕ∗ = R∗

j . Let j be the largest such “tight” index.24 Clearly, if j = n,
then the solution y∗ is balanced and relation (14) is satisfied. Let us thus assume in
what follows that j < n.
Step 2: y∗

j < y∗
j+1. We show this by induction. For j = 1 we have that R∗

2 > R∗
1 = ϕ∗.

Hence,

y∗
1 + y∗

2

P∗
2

>
y∗

1

P∗
1
,

or equivalently

y∗
2 > y∗

1

(
P∗

2

P∗
1

− 1

)

.

On the other hand, since P∗
k /k is nondecreasing in k (for a proof see Step 1 of the proof

of Proposition 6), it is P∗
2 ≥ 2P∗

1 , so that we can conclude using the previous inequality
that y∗

2 > y∗
1 . Similarly, for j > 1 we have that R∗

j+1 > R∗
j = ϕ∗ and at the same time

ϕ∗ = R∗
j ≤ R∗

j−1. The latter inequality is equivalent to Pj−1(y∗)/P∗
j−1 ≥ Pj (y∗)/P∗

j
and thus

Pj−1(y∗)+ y∗
j

P∗
j−1 + (P∗

j − P∗
j−1)

≥ y∗
j

P∗
j − P∗

j−1
.

This implies that25

y∗
j

P∗
j − P∗

j−1
≤ Pj−1(y∗)

P∗
j−1

and thus

Pj−1(y∗)+ 2y∗
j

P∗
j−1 + 2(P∗

j − P∗
j−1)

≤ Pj−1(y∗)+ y∗
j

P∗
j−1 + (P∗

j − P∗
j−1)

= R∗
j .

24 We refer to an optimal prefix ratio R∗
j or associated index j as tight whenever R∗

j = ϕ∗.
25 Here we use that for any positive numbers a, b, c, d, e, f it is ((a + c)/(b + d) ≤ a/b ⇔ c/d ≤ a/b)
and (a/b, c/d ≤ e/ f ⇒ (a + c)/(b + d) ≤ (e + c)/( f + d)).
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By Step 1 we have that P∗
j+1 − P∗

j ≥ P∗
j − P∗

j−1, so that

Pj (y∗)+ y∗
j

P∗
j+1

≤ R∗
j .

On the other hand, since R∗
j+1 > R∗

j , we obtain

Pj (y∗)+ y∗
j+1

P∗
j+1

>
Pj (y∗)+ y∗

j

P∗
j+1

,

which implies that y∗
j+1 > y∗

j as claimed.

Step 3: the nth optimal prefix ratio is tight, i.e., R∗
n = ϕ∗. This can be shown by

contradiction. Suppose therefore that Rn > ϕ∗, so that j ≤ n − 1. From Step 2 we
obtain that y∗

j+1 > y∗
j , so that a positive amount can be transferred from the individual

with index j + 1 (under y∗) to all individuals with indices i ≤ j . More precisely, if
we set

ε = min

{

y∗
j+1 − y∗

j , min
j+1≤i≤n

{
Pi (y

∗)− ϕ∗ P∗
i

}
}

,

it is possible to transfer an amount ε/2 from individual j + 1 and increase y∗
i by the

amount (ε/2)γ j+1/(γ1 + · · · + γ j ) for all i ∈ {1, . . . , j}. Note thereby that ε > 0
by the definition of j and Step 2. The new allocation ŷ∗ obtained after executing the
transfers is feasible, since γ · ŷ∗ ≤ 1 as can easily be verified. In addition, observe that
all new prefix ratios R̂∗

k = Pk(ŷ∗)/P∗
k are “slack,”26 which contradicts the optimality

of y∗. Hence, the n-th optimal prefix ratio at y∗ must be tight, i.e., j = n.
As a direct consequence of Step 3 it must be the case that the last several (at least one)

optimal prefix ratios are tight. Let l < n be the largest slack index, for which R∗
l > ϕ∗.

Step 4: l ≤ n − 2 ⇒ y∗
l+2 > y∗

l+1. We show this by contradiction. Suppose
that y∗

l+2 = y∗
l+1 (for y∗

l+2 < y∗
l+1 is clearly impossible). By assumption we have

R∗
l > ϕ∗ = R∗

l , so that (again using Footnote 25 and Step 1)

R∗
l > ϕ∗ = Pl(y∗)+ y∗

l+1

P∗
l + (P∗

l+1 − P∗
l )
>

Pl(y∗)+ 2y∗
l+1

P∗
l + 2(P∗

l+1 − P∗
l )

≥ Pl(y∗)+ 2y∗
l+1

P∗
l + (P∗

l+1 − P∗
l )+ (P∗

l+2 − P∗
l+1)

.

The right-hand side of the last inequality can be rewritten in the form (using our
hypothesis that y∗

l+2 = y∗
l+1)

26 We refer to an optimal prefix ratio R∗
l or associated index l as slack whenever R∗

l > ϕ∗.
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Pl+1(y∗)+ y∗
l+1

P∗
l+2

= Pl+1(y∗)+ y∗
l+2

P∗
l+2

= R∗
l+2.

Hence, we have shown that ϕ∗ > R∗
l+2, i.e., it implies that R∗

l+2 is “supertight,” clearly
in violation of the optimality of y∗.

Step 5: the optimal fair allocation y∗ is balanced. If y∗ is unbalanced, we know by
Step 3 that the optimal prefix ratios must be of the form “ …, tight, slack, slack, …,
slack, tight, tight, …,tight.” With l < n as before denoting the highest slack index,
it is possible to make a small positive transfer from l to l + 1 and obtain the feasible
allocation ŷ∗ (analogously to the transfer in Step 3). By Step 4, the order y∗

l+1 ≤
y∗

l+2 ≤ · · · ≤ y∗
n remains preserved after the transfer, i.e., ŷ∗

l+1 ≤ ŷ∗
l+2 ≤ · · · ≤ ŷ∗

n ,
since y∗

l+2 > y∗
l+1 (for l = n − 1 Step 4 is not needed). After the transfer l + 1 is

now the highest slack index and the transfer process can be repeated until reaching a
contradiction (with respect to Step 3) as soon as the n-th prefix ratio becomes slack.27

We can thus conclude that the optimal fair allocation y∗ must be balanced.

(ii) Since γ1 > · · · > γn (strict cost ordering), it is clear that y∗
(k) = y∗

k for all k ∈ N .
From this and the balancedness of the wealth ratios we obtain immediately that y∗

k =
(P∗

k − P∗
k−1)ϕ

∗ for all k ∈ {2, . . . , n} and from (15) that y∗
1 = (1 − ∑n

i=2 γi y∗
i )/γ1.

After noting that P∗
1 = (

∑n
i=1 γi )

−1, the expression for ϕ∗ results directly from the
balancedness of the wealth rations,

ϕ∗ = y∗
1

P∗
1

=
(

1 −
n∑

k=2

γk(P
∗
k − P∗

k−1)ϕ
∗
)(

n∑

i=1

γi

γ1

)

=
(

γ1
∑n

i=1 γi
+

n∑

k=2

γk(P
∗
k − P∗

k−1)

)−1

,

which completes our proof.
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