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Abstract Temporary water transfers, as achievable under option contracts, capture
gains from trade that would go unrealized if only permanent transfers of water rights
were possible. This paper develops a bilateral option contracting model for water
which includes the possibility of conveyance losses and random delivery. Seller-opti-
mal and socially optimal option contracts are characterized in terms of relevant base
and strike prices, as well as contract volumes, from an ex-ante and an ex-post point of
view. Lastly, welfare gains are estimated, and actual contract prices in California are
compared to model-predicted prices.
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1 Introduction

In an economic environment with complete information and zero transaction cost, the
seminal theorem by Coase (1960) predicts that as long as property rights are well-
defined, gains from trade will be realized, leading to Pareto-efficient outcomes. In
practice, the presence of transaction cost and institutional resistance may contrive
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to make trade unprofitable, infeasible, or both. To the extent transaction cost and
institutional resistance depend on the terms of the exchange agreement between two
parties, the efficiency of outcomes can be influenced by the choice of the contract
structure.

The exchange of permanent rights to natural resources such as water is often charac-
terized by high transaction cost and significant institutional resistance. The transaction
cost comprises legal fees and administrative overhead during the contracting phase, as
well as the cost associated with the search and concomitant delays in the antecedent
matching phase. Even after a contract has been agreed upon by the trading parties, it
typically requires approval by a governing body, resulting in additional legal expense,
environmental or community mitigation fees, and other overhead. Institutional resis-
tance to a permanent rights transfer stems in part from the complex nature of due
diligence mandated by legislation (which often involves an environmental review and
third-party consultation) as well as the corresponding interaction of the different stake-
holders.1

Temporary resource transfers, or leasing agreements, can reduce the institutional
resistance and lower the transaction cost that impede permanent transfers. In so doing,
they facilitate gains from trade that would otherwise go unrealized. Temporary resource
transfers ensure the retention of the underlying resource right and therefore do not
require long-term commitments by affected stakeholders. Since they typically impose
only a small downside risk to the environment, they often enjoy an accelerated review
process. The relatively small environmental risk can also play an important role in facil-
itating community approval. Finally, the valuation of a one-time transfer is inherently
less complex than that of a perpetuity, not least of all due to the reduction in uncer-
tainty surrounding the value in use and the resource availability at future dates. This
reduces the cost in both the matching and the contracting phase. Standard agreements
can be drafted, so that resource transfers more and more resemble market rather than
nonmarket transactions. Moreover, repeated short-term agreements represent a natural
implementation of relational long-term contracting (see, e.g., Levin 2003), where at
each renewal time new information about contingencies (such as uncertainties about
the trading parties’ outside options) can be incorporated. There are examples of suc-
cessful temporary resource transfers in fishing (Newell et al. 2005), grazing (Rimbey
et al. 2007), and more recently also in water markets (cf. Section 3).

In this paper, a model for bilateral water option contracts with uncertain exercise ful-
fillment and outside options is constructed. The structure of seller-optimal contracts is
compared to that of socially optimal contracts. The impact of changes in model param-
eters on the contract design is also examined. The model is calibrated to transfers for
a large water district in the California water market whose recent option contracts are
shown to have parameters that lie in between the seller-optimal and socially optimal
choices.

1 Peluso (1992), McKean (2002), and Agrawal (2002) report community resistance to the nationalization
of forest lands in Java and India. Pinkerton (1999) gives an account of resistance to the allocation of fishing
licenses by the local community of West Coast Vancouver Island. Thompson (1993) and Hanak (2003,
2005) describe resistance to the sale of water rights by local communities in the Western United States.
Kahn (2000) reports the story of Fijian resistance to the sale of land to American and British companies for
timbering of mahogany. In 2000, a state coup was attempted to gain control of the rights to timber extraction.
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1.1 Background on the California water market

Permanent water transfers in the California water market are associated with both high
transaction cost and considerable institutional resistance (Hanak 2003, 2005; Hanak
and Howitt 2005; Zilberman and Schoengold 2005). Members of farming communities
whose livelihoods depend on crop cultivation (e.g., equipment sales- and repairmen,
marketers, and millers), and those who do not stand to gain financially from the sale
of water, may seek political means to block water transfers (Thompson 1993). In
agricultural water districts where all members have voting rights, as opposed to just
landowners, there may be sufficient political power to block transfers. Even in districts
with landowner voting rights, there is an incentive for farmers who plan to purchase
extra water to block intradistrict transfers, thereby keeping the interdistrict prices low.
The due diligence requirements, which include an assessment of third-party and com-
munity impacts and a full environmental review under the California Environmental
Quality Act (CEQA), contribute to the high transaction cost.

The expense of drafting a long-term transfer agreement is often significant. For
example, the largest urban-agricultural transfers in California to date have been
those negotiated among Imperial Irrigation District (IID), San Diego County Water
Authority (SDCWA), Metropolitan Water District of Southern California (MWD),
and Coachella Valley Water District (CVWD), as part of the Quantification Settle-
ment Agreement (QSA) on the Colorado River (Torres 2003). IID is a large irrigation
district in Southern California with first-priority rights to Colorado River water. Under
the QSA, completed in 2003, IID agrees to transfer up to 200,000 acre-feet (af) of water
to SDCWA and up to 103,000 af to MWD and CVWD in a given year, for 75 years. In
addition, SDCWA agreed to provide a community mitigation fund to offset the socio-
economic impacts of the water transfer, with an initial upfront payment of $10 million.
The time required to negotiate a large permanent water-rights transfer (for the QSA
more than five years, from 1997 to 2003) renders it difficult as a tool for short-term
supply-risk management. Another transaction cost associated with long-term contracts
is the formalization and management of the renegotiation process as environmental
and socio-economic boundary conditions evolve.

In lieu of permanent or long-term transfers, temporary water transfers can avert
costly supply shortfalls. Recognizing the importance of temporary transfers in man-
aging short-term supply risk, the Department of Water Resources (DWR) instituted the
Emergency Drought Water Bank (EDWB) during a critically dry period in the early
1990s. In the EDWB’s first year of operation, 1991, DWR purchased over 400,000
af of water from agricultural districts for $125/af and then sold the water to urban
agencies for $175/af, with the price mark-up intended to cover the transaction cost.2

The EDWB (later renamed to Dry Year Water Purchase Program) was operated again
in 1992 and 1994, and then, more recently, in 2001, 2002, and 2003. This centralized
operation has the advantage of buyer aggregation, as well as of reliable access to the
DWR-controlled infrastructure. In the long-term, however, it is doubtful that EDWB
operations can scale to adequately and efficiently meet the needs of the hundreds of

2 Just slightly over half of the water purchased was actually sold that year; a portion was stored until the
following year and sold then.
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individual water districts in California that could reasonably incorporate temporary
transfers into their water-management strategies.

Option contracts provide an alternative means for managing water supply risk by
implementing temporary transfers. In an option contract the buyer–seller interaction
takes place in two periods. In the first period, the seller announces a base price (or,
capacity-reservation price) p and a strike price s for each unit of the good, as well
as a nonnegative upper bound K for the size of the contract. The buyer subsequently
chooses a contract size Q ∈ [0, K ]. At this time both the buyer’s downstream demand
and the spot market price (representing the value of the seller’s outside option) are
uncertain. In the second period, the uncertainty about the buyer’s downstream demand
resolves, and the buyer announces the quantity z ∈ [0, Q] of options to exercise. The
seller releases the quantity z into the conveyance system, and the buyer obtains y = λz
with probabilityφ ∈ (0, 1], whereλ ∈ (0, 1] represents the conveyance-loss coeffi-
cient and 1 − φ is the probability of a complete infrastructure failure, e.g., as a result
of low priority in a critical conveyance system whose capacity is subject to random
fluctuations, such as the Bay Delta in California. An infrastructure failure (or non-con-
veyance) is typically realized after the option contract is signed but before the buyer’s
option exercise decision is made. Depending on her production lead time, the seller
uses either the quantity K − z or K − Q to produce an equal quantity of consumption
goods that are sold on a spot market at the price m.

In 2003, the Metropolitan Water District of Southern California (MWD), the larg-
est water intermediary in the state, initiated option contracts, and they have been
repeatedly used since.3 The contracts represent a shift from the focus on permanent or
long-term water transfers from agricultural to urban water districts. There have been
15 short-term option contracts signed between 2003 and 2008. In contrast to long-term
contracts, which may take several years to negotiate and millions of dollars in envi-
ronmental and community mitigation fees, these option contracts were agreed upon
and executed in the course of several months with limited administrative overhead.

1.2 Related literature

The bilateral option pricing model developed in this paper is based on earlier work by
Wu et al. (2002), Spinler (2003), and Spinler and Huchzermeir (2006) on the pricing
of capacity options for nonstorable goods such as electricity. Wu et al. (2002) propose
a two-part tariff for a risk-neutral buyer whose payoff depends on the state of the world
only through an uncertain spot market price. Spinler and Huchzermeir (2006), based in
part on Spinler (2003), consider the additional effects of demand and cost uncertainty

3 In 2003, MWD signed contracts (for a total volume of 146,230 af) with Glenn–Colusa Irrigation Dis-
trict, Western Canal Water District, Richvale Irrigation District, Reclamation District 108, River Garden
Farms, Natomas Central Mutual Water Company, Meridian Farms Mutual Water Company, Pelger Mutual
Water Company, Pleasant Grove-Verona Mutual Water Company, Sutter Mutual Water Company, and Placer
County Water Agency. Only the options from the contract with the Placer County Water Agency were ulti-
mately not called. Agency concerns with respect to the farmers who, under district-negotiations, are forced
to sell their water and then resist are probably not of great consequence. As currently arranged, the farmers
have the chance to voluntarily subscribe to the leasing agreement and to date the contracting districts have
reported a surplus of voluntary subscriptions.
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as well as the interaction of seller-optimal option contracts with a parallel spot market
for capacity. The latter interaction between supply-chain contracting and spot-market
procurement with simple separable payoff functions is explored by Mendelson and
Tunca (2007), where all market participants can also have private information. In all of
these linear pricing models (with linear pricing equilibria), the seller retains all of the
bargaining power, and the buyer’s utility is separable in the different contracting com-
ponents as well as uncertainty. Such separability is not appropriate in the water market,
where the buyer’s shortage and overage costs depend nonlinearly on the amount of
water procured and the realized demand. As a consequence, the option pricing rules in
our model are generally different from the ones proposed in earlier papers on capacity-
reservation contracts. Yet they are consistent with the standard theory of multiproduct
pricing of complementary goods by a monopolist (Baumol and Bradford 1970; Crew
and Kleindorfer 1986). An additional specific feature in water option contracting is
the possibility of transmission losses and infrastructure failures, which may ex-post
jeopardize the execution of an option contract and therefore influence its ex-ante val-
uation.

In the case of the electricity market, the seller is interested in offloading excess
generation capacity rather than selling the underlying asset (the generation facility).
The buyer is interested in short-term access to additional generation capacity. Outright
purchase of the generation facility by the buyer may be neither financially viable nor
desirable. The analogy to contracting in the water market is direct: the seller is inter-
ested in offloading water in a given period but disinterested in selling her underlying
water right. The buyer contracts to meet a short-term supply shortage. A slight differ-
ence in the contracting problem is with regard to the buyer’s and the seller’s outside
option. The treatment of capacity options in the electricity market, with potential
applications to the chemical and plastics industries, has assumed the presence of a
spot market. There is as of yet no spot market for water.4 Hence, the water option
pricing model considered here treats contracting in its absence.

The distinction between the pricing of a capacity option and a financial option,
e.g., a stock option, lies in the nature of the underlying asset. The no-arbitrage pricing
model for a stock option, as developed by Black and Scholes (1973), requires, in addi-
tion to perfect competition on the market, two separate price processes—that of the
stock and that of the option.5 In the case of a capacity option, a stand-alone valuation
can be obtained using a real-options framework (cf. Dixit and Pindyck 1994; Paddock
et al. 1988; Trigeorgis 1996), without the need for a market, or, equivalently, a price
process for the underlying capital-intensive asset. Kleindorfer and Wu (2003) describe
the trading of capacity options on business-to-business exchanges in the presence of
an active spot market. In the context of water markets there is no price process defin-
ing the value of a share of a water right. In the context of agricultural futures and

4 Such spot markets are beginning to develop worldwide, e.g., under the National Water Initiative in
Australia (ACCC 2008).
5 A ‘real options’ framework (cf. Dixit and Pindyck 1994; Paddock et al. 1988; Trigeorgis 1996) can be
used to describe the (sequential, irreversible) investment in risky projects, which require an initial capi-
tal outlay, corresponding to an option fee (or, e.g., ‘capacity-reservation price’), and possibly additional
sequential outlays to continue the project in the future, corresponding to one or multiple strike prices.

123



112 C. D. Tomkins, T. A. Weber

options on futures, Aase (2004) applies the Black–Scholes results to the pricing of
an option on a crop future. This is achieved through construction of a second price
process based on the prices of yield insurance on the Chicago Board of Trade. The
Aase model implies that if a separate insurance market for fluctuations in annual water
deliveries were developed, then the standard financial pricing model could be usefully
applied to water options.6

1.3 Outline

The rest of the paper is organized as follows. Section 2 introduces the bilateral option
contracting model. Section 2.1 characterizes seller-optimal contracts, and Section 2.2
discusses efficiency properties of the contract, comparing the seller-optimal contract to
the ex-post and ex-ante welfare-optimal contracts. Section 2.3 treats surplus extraction
by the seller. Section 2.4 investigates the sensitivity of the optimal contract to param-
eter shifts in the buyer’s and seller’s value functions. The possibility of an outside
option available to the buyer at a fixed price arises here. Finally, Section 2.5 considers
standard linear and quadratic model specifications as simple examples. The applica-
tion of the contracting model to the California water market is the subject of Section 3.
Section 3.1 introduces the model specification. In Section 3.2, the social welfare gains
under contracting are estimated. In Section 3.3, option-price trends in the Califor-
nia market are discussed. The welfare gains under contracting are sensitive to the
assumptions regarding both the expected commodity price and the marginal cost of
electricity used in the north–south conveyance of water. Section 4 offers conclusions
and directions for future research.

2 Model

A buyer (“he”) and a seller (“she”) enter into an option contract for a divisible good
such as water. The buyer is an intermediary who needs to cover an uncertain future
downstream demand for the good or derivatives thereof. The seller enters into the
contract as an alternative to using the good as an input to her own production of con-
sumables (e.g., crops), which are sold on a spot market at a future date. In the context
of water, the setting is as follows: the seller, a farmer, has access to a market for the
crop that she cultivates, with water as a production input. The buyer, an urban water
intermediary, has no access to a spot market for water. There are two cases of interest.
In the first, the buyer has no outside supply option. In the second, the buyer possesses
an outside supply option at a fixed unit price. Analogous to capacity options for elec-
tricity, water delivery options are an alternative to a direct purchase of the production
technology (here the water right).

Our bilateral option contracting model allows for uncertainty with regard to both
the buyer’s and the seller’s reservation values, where the former’s is a function of

6 Another approach to the pricing of water options is Luenberger (2001, 2002) zero-level pricing method,
based on the Capital Asset Pricing Model, that relies on a geometric projection of the prices of similar
traded assets.
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uncertain demand for water and the associated shortage cost of water, and the latter’s
is a function of the spot market price for the consumption good, e.g., the crop. In accor-
dance with the realities in the California water market, the analysis assumes symmetry
of information; the seller, who moves first by announcing the terms of the option con-
tract, possesses a description of the buyer’s value function. The model captures the
possibility of infrastructure failure (or non-conveyance), the reality of system losses
suffered during conveyance, and the presence of a conveyance (or delivery) cost.

2.1 Seller-optimal contracting

As in Wu et al. (2002) the buyer and seller play a Stackelberg leader-follower game,
where the seller first announces a base price p and a strike price s for each unit of the
good, as well as a nonnegative upper bound K for the size of the contract. However,
unlike in Wu et al., where buyer and seller face the same source of uncertainty in the
form of the future spot market price, in this situation the buyer and seller have to deal
with different sources of uncertainty. The buyer’s uncertain downstream demand D̃
follows a cumulative distribution function (cdf) F onR+ with finite mean and var-
iance. The uncertain spot market price m̃ has the cdf G onR+ with finite mean m̄.
Note that D̃ and m̃ may be jointly distributed (i.e., correlated), in which case F and G
are to be interpreted as the relevant marginal cdf’s. In the second period, the buyer
announces the quantity z ∈ [0, Q] of options to exercise, which the seller releases
into the conveyance system provided that (with probability 1 − φ ∈ (0, 1]) there is
no infrastructure failure. For simplicity, we assume that the infrastructure failure and
the random vector (D̃, m̃) are statistically independent. Upon the release of z into the
system the buyer obtains the quantity y = λz, whereλ ∈ (0, 1] represents the convey-
ance-loss coefficient.7 An infrastructure failure is realized after the option contract is
signed but before the buyer’s option exercise decision.

In the second period, the buyer’s downstream demand D realizes. Given the exercise
price s and the available quantity of options Q, the buyer solves the problem

V (Q, D, s) = max
z∈[0,Q] {v(λz, D) − sz} , (1)

wherev(y, D) is the buyer’s (smooth) second-period gross payoff, given an amount y
of the good and a downstream demand of D. It is assumed that the buyer’s second-
period payoff functionv(y, D) is concave in y, locally nonsatiated in y (such that
vy > 0) and has nondecreasing differences in (y, D), so that

vyy ≤ 0 ≤ vy D. (2)

7 More generally, it is possible to modelλ as the realization of a random variable λ̃ describing the state of
the infrastructure. Since this leads to a more complex formalism with very similar results, we have opted
for this simpler variant to capture the notion of random fulfillment. For example, the San Diego County
Water Authority currently assesses a 50% probability of non-fulfillment of its contracts due to restrictions
on water exports through the San Francisco Bay Delta.
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Concavity corresponds to the notion of nonincreasing marginal utility, while
nondecreasing differences (or supermodularity) means that the marginal utility (e.g.,
determined by the set downstream price) weakly increases as downstream demand for
the good increases. The concavity and supermodularity assumptions are satisfied for
all of the model specifications below (cf. Section 2.5). Note that in general, the buyer’s
payoff is not monotonic in the second argument because there can be an overage cost
of having too much of the good and an underage cost when not enough is available.
An optimal solution to (1) is given by

z(Q, D, s) = sup{q ∈ [0, Q] : λvy(λq, D) ≥ s}, (3)

where we set sup ∅ = 0. The optimal second-period exercise z(Q, D, s) corresponds
to the largest quantity such that the buyer’s expected marginal utility for the good
exceeds the strike price. The buyer’s expected first-period payoff when choosing an
available contract of size Q is therefore

V̄ (Q, s) = φE
[

V (Q, D̃, s)
∣∣∣ Q, s

]
+ (1 − φ)V̄0, (4)

where V̄0 = E
[
v(0, D̃)

]
is the buyer’s (expected) reservation value. Note that

since the maximized objective function in (1) is nondecreasing in Q, the expected
first-period utility V̄ must also be nondecreasing in Q. Given the contract-parameter
tuple (p, s, K ), the buyer’s first-period problem is to maximize his expected net payoff,

max
Q∈[0,K ]{V̄ (Q, s) − pQ}. (5)

Using the envelope theorem on the buyer’s maximized second-period objective func-
tion V in (1) it is

∂ V̄ (Q, s)

∂ Q
= φE

[
∂V (Q, D̃, s)

∂ Q

∣∣∣∣∣ Q, s

]
= φE

[
κ(Q, D̃, s)

∣∣∣ Q, s
]

≡ φκ̄(Q, s),

(6)

whereκ(Q, D, s) = [λvy(λQ, D) − s]+ is the Lagrange-multiplier in problem (1),8

associated with the constraint z ≤ Q. Since by assumptionvy D ≥ 0, the optimal solu-
tion z(Q, D, s) must be nondecreasing in D, so that (setting inf ∅ = ∞ and sup ∅ = 0)

D̄(Q, s) = inf{D ≥ 0 : λvy(λQ, D) ≥ s}, (7)

D
¯
(s) = sup

{
D ≥ 0 : λvy(0, D) ≤ s

}
(8)

8 For any x ∈ R, we define [x]+ = max{0, x}.
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are demand thresholds beyond which the buyer would exercise either all available
options or no options at all, i.e.,

D ≥ D̄(Q, s) ⇒ z(Q, D, s) = Q,

D ≤ D
¯
(s) ⇒ z(Q(p, s, K ), D, s) = 0.

Hence,

κ̄(Q, s) =
∞∫

D̄(Q,s)

κ(Q, D, s)d F(D) =
∞∫

D̄(Q,s)

(
λvy(λQ, D) − s

)
d F(D) ≥ 0,

(9)

and, using the Leibniz rule as well as Eq. 7,

∂κ̄(Q, s)

∂ Q
= λ2

∞∫

D̄(Q,s)

vyy(λQ, D)d F(D). (10)

The buyer’s maximized objective function in (1) is therefore concave in Q, and the
optimal solution to the buyer’s first-period problem (5) is

Q(p, s, K ) = sup{q ∈ [0, K ] : φκ̄(q, s) ≥ p}. (11)

It is best for the buyer to purchase the largest quantity of options, up to a maximum
of K , such that his first-period expected net payoff is nonnegative at the margin.

Lemma 1 The buyer’s demand Q(p, s, K ) for options in Eq.11 is nonincreasing in
(p, s,−K ). Moreover, ifv is strictly concave in y, then, as long as0 < Q(p, s, K )

< K ,

Q p = 1/(φκ̄Q) < 0 and Qs = −κ̄s/κ̄Q < 0, (12)

where κ̄Q = λ2
∫ ∞̄

D vyy(λQ, D)d F(D) < 0 and κ̄s = −(1 − F(D̄)).

Proof All proofs are provided in the Appendix.

From Lemma 1 an option contract can be viewed as a standard non-Giffen good, for
which the buyer’s demand is decreasing in the base price p and strike price s. Similarly,
as the following lemma shows, the buyer’s expected exercise quantity in the second
period,

z̄(p, s, K ) = φE
[

z(Q(p, s, K ), D̃, s)
∣∣∣ p, s, K

]
, (13)

can also be viewed as a non-Giffen demand for option exercise.
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Lemma 2 The expected number of options z̄(p, s, K ) exercised by the buyer in Eq.13
is nonincreasing in (p, s,−K ). Moreover, as long as 0 < z̄(p, s, K ) < K , it is

z̄ p = φ(1 − F(D̄)) Q p < 0 and z̄s = φ(1 − F(D̄))

1 − δ
Qs < 0, (14)

whereδ = (1/z̄s)
∫ D̄

D
¯

zs(Q, D, s) d F(D) ∈ (0, 1).

Based on the last two lemmas, it is natural to view the seller’s option pricing problem
as a classical multi-product pricing problem. The seller’s revenue comes from the
initial sale and subsequent exercise of the options, while her cost is composed of an
expense for the transport (conveyance) of the good to the buyer and of an opportunity
cost from not being able to use the good herself, either ex ante or ex post relative to
the option exercise date. The seller-optimal pricing problem is therefore

max
p,s

{pQ(p, s, K ) + sz̄(p, s, K ) − C(Q(p, s, K ), z̄(p, s, K ))} ,

s.t. 0 ≤ Q(p, s, K ) ≤ K , (15)

where the seller’s expected total cost is

C(Q, z̄) = E[c(Q, z(Q, D̃, s), D̃, m̃)|p, s, K ] = A(Q) + B(Q)z̄, (16)

with A(Q) and B(Q) nondecreasing, differentiable, convex functions. For this we
assume that the seller’s cost function c(Q, z, D, m) is quasi-linear in z, so that

c(Q, z, D, m) = a(Q, D, m) + b(Q, D, m)z (17)

for all admissible (Q, D, m) ≥ 0, where a(·, D, m), b(·, D, m) are nondecreasing,
differentiable, convex functions, and b ≥ 0. This implies that the marginal expected
cost with respect to both Q and z̄ is nonnegative, i.e., CQ, Cz̄ ≥ 0.

Remark 1 The following two forms of the seller’s total cost are common. First, if
the seller must forgo productive use of the good under contract in the first period,
then only K − Q units of the finished good are available for sale on her market, at the
random price m̃, so that in expectation C(Q, z̄) = −(m̄ − c̄)(K − Q) + wz̄, i.e.,

A(Q) ≡ −(m̄ − c̄)(K − Q) and B(Q) ≡ w, (18)

where c̄ corresponds to a (constant) marginal production cost, w is the cost of con-
veyance (or delivery), and m̄ is the seller’s expected market price for his own finished
goods. Second, if the seller—e.g., because her production lead times are relatively
short—can employ all goods for which options are not exercised in the second period,
then C(Q, z̄) = −(m̄ − c̄)(K − z̄) + wz̄, i.e.,

A(Q) ≡ −(m̄ − c̄)K and B(Q) ≡ m̄ + w − c̄ (19)
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with the same constants as before. Of course, the seller’s expected cost could in
principle be of a different form. For example, it may be possible that c(Q, z, D, m)

depends nonlinearly on z, so that the expected cost is no longer quasi-linear in z̄. In that
case, the following analysis remains applicable but the results are more complex, since
it is not possible to restrict attention to the expected option exercise quantity when
analyzing the seller’s optimal option pricing decision. In the practice of the California
water market, the seller’s total cost is well approximated by an expected-cost function
that is quasi-linear in z̄.

Proposition 1 (Seller-optimal contract) (i)At an interior solution, where
0 < Q(p, s, K ) < K , the seller-optimal option contract (p, s, K ) is such that

p =
(

(1 − δεs)εp

εp + εs − (1 + δεpεs)

) (
CQ + φ(1 − F(D̄))

1 − δεs
Cz̄

)
≥ 0,

s =
(

(1 − δεp)εs

εp + εs − (1 + δεpεs)

) (
1 − δ

1 − δεp

CQ

φ(1 − F(D̄))
+ Cz̄

)
≥ Cz̄,

and K is all of the seller’s available capacity, whereεp = −pQ p/Q andεs = −sz̄s/z̄
are the own-price elasticities of the buyer’s demand for option contracts and for his
expected option exercise, respectively. (ii)The solution for Q(p, s, K ) = q ∈ {0, K }
is determined by

p = φκ̄ ≥ 0,

s =
(

δεs

1 − δεs

)(
1 − δ

δεp

κ̄

1 − F(D̄)
− Cz̄

)
≥ Cz̄,

with the same notation as in part (i), and κ̄ = κ̄(q, s) is obtained from Eq.9.

Proposition 1 defines the optimal contract prices in terms of the own-price elasticities
of the options Q and the expected option-exercise quantity z̄. A seller facing a nonneg-
ative marginal cost for sold and exercised options (with CQ, Cz̄ ≥ 0) never subsidizes
the purchase or exercise of such options. In particular, the strike price s is never strictly
less than the seller’s marginal cost Cz̄ of fulfillment. The proof (cf. Appendix) shows
that as long as there is a difference between the expected option-exercise quantity, z̄,
and the expected full contract delivery, φ

(
1 − F(D̄)

)
Q, e.g., because of intermediate

demand realizations, the strike price exceeds Cz̄ . This extends the logic of Wu et al.
(2002), who (under the implicit assumption thatvy D = 0) establish equality between s
and Cz̄ , to the case where the buyer’s payoffv is not additively separable in D and y.
The complementarity between Q and z̄ from the buyer’s point of view implies that,
while p is always nonnegative, it is possible that p < CQ , i.e., the marginal opportunity
cost of reserving capacity may exceed the capacity-reservation price.

Using a number of simple algebraic manipulations (which are omitted), the seller-
optimal contract in Proposition 1 can be formulated in terms of two standard markup
rules for a multiproduct monopolist with complementary goods (Baumol and Bradford
1970; Crew and Kleindorfer 1986).
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Corollary 1 (Seller-optimal markup rule) (i)At an interior solution, i.e., when 0 <

Q(p, s, K ) < K , the relative markups of the seller-optimal contract (p, s, K ) satisfy

p − CQ

p
= 1

εp
− εp

ε̄p

sz̄

pQ

(
s − Cz̄

s

)
≤ 1

εp
,

and

s − Cz̄

s
= 1

εs
− ε̄s

εs

pQ

sz̄

(
p − CQ

p

)
� 1

εs
,

where ε̄p = −pz̄ p/z̄ and ε̄s = −s Qs/Q are positive cross-price elasticities. (ii)When
Q(p, s, K ) = 0 (resp. Q(p, s, K ) = K ), each equality is replaced by an inequality,
≤ (resp.≥).

Remark 2 In the case where the buyer’s downstream demand is perfectly known,
i.e., when D̃ = D0 for some D0 ≥ 0, a monopoly pricing rule holds with respect
to the all-inclusive tariff r ≡ p + φs. The resulting contract is a simple forward
agreement under which the product is delivered with the positive probabilityφ. By
considering the buyer’s second-period problem (1) we obtain the shadow valueκ =
κ̄ = [

λvy(λQ, D0) − s
]
+ for the constraint z ≤ Q, and (for z = z(Q, D0, s) > 0)

the optimality conditionλvy(λz, D0) = s +κ . Similarly, the buyer’s first-period prob-
lem (5) yields (for Q = Q(p, s, K ) ∈ (0, K )) thatλvy(λQ, D0) = s + (p/φ). Since
in the absence of demand uncertainty it is z = Q, we obtain the seller’s profit-maxi-
mization problem in the form9

max
r

{r Q − C(Q, φQ)} , subject to φλvy(λQ, D0) = r.

The resulting monopoly pricing rule becomes

r − MC(Q)

r
= −Q

∂ ln vy(λQ, D0)

∂ Q

(
= −λQ

vyy(λQ, D0)

vy(λQ, D0)

)
,

where MC(Q) = CQ(Q, φQ) + φCz̄(Q, φQ) is the seller’s marginal cost of provid-
ing the quantity Q of the good which will be called in the future with probabilityφ. �	
When does a nontrivial seller-optimal contract exist (under which the buyer expects
to exercise a positive number of options)? The simple answer to this question is that
an agreement of concern is formed between the two parties whenever there are gains
from trade. However, the seller-optimal contract will in general not realize all the
available gains from trade, as a result of the seller’s opportunistic behavior, which
aims at extracting the maximum possible surplus from the buyer.

9 By selecting a fixed-price contract with the all-inclusive tariffr the seller can effectively determine the
buyer’s demand Q, so that this problem can be rewritten in the form maxQ∈[0,K ]{φλQvy(λQ, D0) −
C(Q, φQ)}, this time under consideration of the boundary constraints imposed by Q ∈ [0, K ].
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2.2 Socially optimal contracting

We now consider the choice of an option contract so as to maximize the buyer’s and
the seller’s expected joint surplus. In what follows the latter is also referred to as
“(expected) social welfare,” even though the surplus of the downstream consumers
and of the upstream suppliers, as well as that of ancillary agents (such as electric-
ity providers) is not explicitly considered. In finding socially optimal (i.e., social-
welfare-maximizing) contracts we maintain the assumption that the buyer and the
seller retain full autonomy, in the sense that the seller still proposes a contract with
parameters (p, s, K ) and the buyer still first decides how many options Q to purchase,
and, subsequently, how many options z to exercise, once the demand uncertainty has
realized. We refer to a welfare-maximizing contract of this form as ex-ante efficient
(or ex-ante socially optimal) contract.

An options contract is a form of coinsurance between the buyer and the seller.
According to Borch (1962) an optimal coinsurance contract is such that the ratio of
the buyer’s and seller’s marginal utilities are equalized across all states of nature.
Therefore, if one party’s expected marginal utility is constant, the other’s must also
be constant. If the seller is risk neutral, then her marginal utility is constant across
states of nature, which implies “perfect insurance” for the risk-averse buyer with
the seller taking on all of the risk. The interpretation of perfect insurance in this
setting is that the buyer’s marginal utility is also constant across states of nature.
It is clear that despite this constancy at the margin, the buyer’s absolute payoff
may vary substantially across states, unless future contingencies become contract-
able (cf. Section 2.2.2)

2.2.1 Ex-ante efficient contract

Under an ex-ante socially optimal contract (p, s, K ), the buyer solves (given any
demand realization D) a second-period optimization problem of the form (1), to which
the solution z(Q, D, s) is given by Eq. 3. In the first period, the buyer decides about
the quantity of options to purchase by solving the problem (5) with the same solu-
tion Q(p, s, K ) in (11) as under the seller-optimal contract. Hence, the expected social
welfare as a function of the contract parameters is

W̄ (p, s, K ) = V̄ (Q(p, s, K ), s) + sz̄(p, s, K ) − C(Q(p, s, K ), z̄(p, s, K )),

(20)

where V̄ and z̄ are given by Eqs. 4 and 13, respectively.

Proposition 2 (Ex-ante welfare maximization) An ex-ante socially optimal contract
(p, s, K ) is such that
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p = CQ,

s = Cz̄,

and K is all of the seller’s available capacity.10

From a social planner’s perspective, it is ex-ante optimal to have the option contract
directly reflect the seller’s opportunity cost at the margin. The socially optimal base
price p corresponds to the seller’s cost of foregoing the use of the good in her own
production process (e.g., due to long lead times). The socially optimal strike price
compensates the seller for the marginal cost of not being able to use the good at short
notice (e.g., for short-lead-time production or direct sale on a spot market). The seller-
optimal option contract in Proposition 1 is generally inefficient, as it charges a base
price above zero and also inflates the strike price over marginal cost, as established in
Proposition 1. Because of the markup over marginal cost Cz̄ , a buyer tends to exercise
an inefficiently small number of options. In the case of short production lead times
(where CQ≈0), which is of interest in the California water market, the base price is
typically positive (i.e., above marginal cost), which implies that the buyer also acquires
an inefficiently small number of options in the first place.

2.2.2 Ex-post efficient contract

In the absence of renegotiation in the second period, when uncertainty realizes, an
option contract with a rigid strike price generically fails to implement an ex-post
efficient allocation. Renegotiation is common practice in financial markets, where
physical deliveries on contracts are rarely taken. Money is exchanged in the second
period and the good is then sold on the market to the party with the highest second-
period value. This guarantees that the good is allocated to the party valuing it the
most, which is important, especially when transfers are costly due to transaction cost
(e.g., through costly conveyance, transfer losses, or random delivery contingencies).
In markets where physical delivery must be taken, a contract that may be ex-ante
efficient will generally be ex-post inefficient.

An ex-post efficient contract is of the form (p, σ, K ), whereσ(Q, D, m) is a strike-
price function that implements a first-best exercise

zFB(Q, D, m) ∈ arg max
z∈[0,Q]

{
φ̂v(λz, D) − c(Q, z, D, m)

}
, (21)

where φ̂ is either equal toφ or equal to one, depending on whether it is possible to
make the option exercise contingent on delivery failure (by default in our model) or not.

10 As pointed out in the proof of Proposition 2 (cf. Appendix), when Q(p, s, K ) ∈ {0, K } the option prices
are generally not unique. Yet the socially optimal allocation remains unaffected by this generic multiplicity.
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Hence, using the expression (3) for the buyer’s optimal solution to his second-period
problem, the strike-price functionσ is implicitly defined through

z(Q, D, σ (Q, D, m)) = zFB(Q, D, m)

= sup
{

q ∈ [0, Q] : λφ̂vy(λq, D) ≥ b(q, D, m)
}

, (22)

for any admissible Q ∈ [0, D] and demand level D, where b(Q, D, m) ≡ cz(Q, z, D,

m). An ex-post efficient base price p is such that it implements the first-best option-
purchase quantity

QFB(D, m) ∈ arg max
Q∈[0,K ]

{
φ̂v(λzFB(Q, D, m), D) − c(Q, zFB(Q, D, m), D, m)

}
.

(23)

Note that because of the state-contingency in the allocation we obtain optimal coin-
surance according to Borch’s rule, mentioned at the outset of this section. Without
ex-post contingencies it is generally impossible to efficiently trade off the two parties’
payoffs at the margin across all states of nature.

Proposition 3 (Ex-post welfare maximization) An ex-post socially optimal contract
(p, σ, K ) is such that for all Q ∈ [0, K ] and all joint realizations (D, m) it is

p = E

[ [
λφ̂vy(λQFB(D̃, m̃), D̃)

−cQ(QFB(D̃, m̃), QFB(D̃, m̃), D̃, m̃)
]
+

]
,

σ (Q, D, m) = b(zFB(Q, D, m), D, m) (≡ cz(Q, z, D, m)) ,

and K is the seller’s available capacity, where zFB(Q, D, m) and QFB(D, m) are solu-
tions to (21) and(23), respectively.

From Proposition 2, at a strike price of s = Cz̄ the buyer will exercise options up to the
point where his marginal value of execution is equal to the seller’s expected marginal
opportunity cost, plus the conveyance charge—and not the seller’s actual opportunity
cost. For instance, if the market price realizes above the expectation m̄, then the buyer
exercises too many options from a social welfare perspective. The seller’s marginal
value for the last option exercised is greater than the buyer’s. If, on the other hand,
the spot market realizes below m̄, then—depending on Q—the buyer may exercise too
few options.

2.3 Surplus extraction

The seller-optimal contract discussed in Section 2.1 extracts the buyer’s surplus subject
to the standard option-contract structure described by the tuple (p, s, K ). It is clear that
the seller can generally do even better by using a social-welfare-maximizing contract
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(as discussed in Section 2.2) and then extract all of the buyer’s expected surplus by a
(potentially negative) fixed transfer, from the buyer to the seller. This two-part tariff
option contract ensures that the seller can extract the entire ex-ante surplus.

Since the buyer’s reservation value is V̄0 as introduced after Eq. 4, the following
result is immediate.

Proposition 4 (Surplus extraction) A two-part tariff option contract (p, s, t, K ),
where p = CQ, s = Cz̄, t = V̄ (Q(p, s, K ), s) − V̄0, and K is the seller’s avail-
able capacity, is ex-ante socially optimal and extracts the buyer’s entire expected
surplus.

The seller’s reservation value is given by

�̄0 = −E
[
c(0, 0, D̃, m̃)

]
= −C(0, 0).

By adjusting the fixed transfer t in Proposition 4 between tmin = −pQ(p, s, K ) −
sz̄(p, s, K ) + C(Q(p, s, K ), z̄(p, s, K )) + �̄0 and tmax = V̄ (Q(p, s, K ), s) −
pQ(p, s, K ) − V̄0 it is possible to implement any individually-rational surplus dis-
tribution between the two parties. A necessary and sufficient condition for an option
contract of the form (p, s, K ) to exist is that there is an individually rational two-part
tariff option contract (p, s, t, K ) such that

tmin ≤ t ≤ tmax.

The inequality tmin ≤ t ≤ tmax immediately implies the following existence result
for an (individually rational) option contract (p, s, K ). Equivalently, an individually
rational two-part tariff option contract (p, s, t, K ) exists if and only if the mean trans-
fer t = (tmax − tmin)/2 ≥ 0.

Lemma 3 (Existence) A (seller-optimal or socially optimal) option contract (p, s, K )

is entered voluntarily by both parties if and only if

V̄ (Q(p, s, K ), s) + sz̄ − C(Q(p, s, K ), z̄(p, s, K )) ≥ �̄0 + V̄0,

where Q(p, s, K ) and z̄(p, s, K ) are given by Eqs.11 and13, respectively.

Remark 3 In a dyadic relationship, where the two parties exert mutual influence,
the distribution of bargaining power determines the split of surplus that the parties
may agree to, provided that the inequality in Lemma 3 is satisfied. Assuming that
the contract is binding at the outset and that there are no informational asymmetries,
one may invoke cooperative bargaining theory (Roth 1979; Moulin 1988) to predict
the outcome (e.g., the Nash bargaining solution). As is discussed at the beginning of
Section 3, the prices obtained here provide an upper bound for what can be observed
in the market, as the seller’s bargaining power is limited for a variety of reasons. �	
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2.4 Parameter sensitivity

So far, the buyer’s and seller’s value functions were assumed fixed. However, due to
changing economic conditions, e.g., because of an increase in energy prices or techno-
logical innovation, these values may be subject to substantial changes. It is therefore
useful to examine the influence of parameter dependencies. For this, we assume that the
buyer’s value function is of the form v̂(y, D, α), whereα is a real-valued parameter.11

Similarly, we assume that the seller’s cost function is of the form ĉ(Q, z, D, m, γ ),
whereγ is a real-valued parameter.

For the sake of discussion let us focus on the case where the buyer has an option of
buying the good from an alternative source at the priceα. In that case, before exercising
any option contract he determines

v̂(λz, D, α) = max
x≥0

{v(λz + x, D) − αx} .

Using the envelope theorem in the same manner as before we can compute the variation
of v̂ with respect to the outside price,

v̂α(y, D, α) = − sup
{
ξ ≥ 0 : vy(y + ξ, D) ≥ α

} ≤ 0.

It is easy to show that v̂yα = ξ ′(α) ≤ 0, so that v̂(y, D, α) is submodular in (y, α).12

Proposition 5 (Contract sensitivity) Let ĉ be such that ĉzz, ĉQ Q, ĉQz ≥ 0.13 (i) If v̂ is
submodular in (y, α), then the socially optimal option-contract parameters p(α), s(α)

are nondecreasing inα. (ii) If ĉ is supermodular in (Q, z, γ ), then the socially optimal
option-contract parameters p(γ ), s(γ ) are nondecreasing inγ .

The actual change in the contract size under an increase in the parametersα orγ
depends on the dominance of two forces. An increase in the price of the outside option
will encourage the buyer to hold more options. However, in recognition of this fact,
the seller will increase prices, which in turn lowers the demand for options.

The question remains as to how the seller’s ability to extract surplus is influenced
by changes in the parameterα or the parameterγ . For this we can turn to the rev-
enue-maximizing two-part tariff contract (p, s, t, K ) and note that the comparative
statics of p and s with respect toα, γ are identical to the socially optimal contract. The
dependence of the fixed transfer t onα is obtained by the envelope theorem,

tα = (
V̄ − V̄0

)
α

= E
[
v̂α(λz, D̃, α) − v̂α(0, D̃, α)

]
≤ 0,

11 The discussion in this section also applies, with minor changes, when parameters are vector-valued.
12 The concept of supermodularity (or submodularity) is of great importance to establish monotone com-
parative statics, as it provides necessary and (in some sense also sufficient) conditions for solutions to an
equilibrium or optimization problem to have a monotone dependence on parameters [see, e.g., Milgrom
and Shannon (1994); Topkis (1998), and, for a generalization, Strulovici and Weber (2008)].
13 Under our quasi-linearity assumption that ĉ(Q, z, D, m, γ ) = â(Q, D, m, γ ) + b̂(Q, D, m, γ )z this is
satisfied if b̂ is nondecreasing in Q.
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provided that v̂ is submodular in (y, α). Hence, for example, as the buyer’s price of his
outside option increases, the fixed transfer from the buyer to the seller cannot increase.
This makes sense, as the buyer’s expected surplus drops when the attractiveness of
his outside option diminishes. From the envelope theorem we also infer that the fixed
transfer t does not depend onγ at all. Nonetheless, a change inγ can influence the
existence of a contract (cf. Lemma 3).

2.5 Simple model parametrizations

For certain specifications of the option pricing model it is possible to obtain more con-
crete insights. Below we discuss simple linear and quadratic versions of the model.
The linear version of the model is applied to the California water market in Section 3.

2.5.1 Linear cost

If the buyer’s second-period holding and shortage cost are constant at the margin, his
payoff function is of the form

v(y, D) = − (β1[D − y]+ + β2[y − D]+) , (24)

whereβ1 denotes the shortage cost, andβ2 the holding (or storage) cost associated
with consuming a quantity y of the good given the demand realization D. From Eq. 3
we obtain the buyer’s optimal exercise quantity z(Q, D, s) = 1{s≤λβ1} min{D/λ, Q}.
Thus, by Eq. 13 the buyer’s expected second-period demand can be written in the form

z̄(p, s, K ) =
(

1

λ
E

[
D̃

∣∣∣ D̃ ≤ λQ(p, s, K )
]

+ Q(p, s, K )

) (
1 − F(λQ(p, s, K ))

)
,

where the buyer’s first-period demand for options is, using Eq. 11,14

Q(p, s, K ) =
{

min
{

K , 1
λ

F−1
(

1 − p
φ(λβ1−s)

)}
, if (p/φ) + s ≤ λβ1,

0, otherwise.

The last expression has a singularity at the price tuple (p, s) = (0, λβ1), at which the
buyer can be “convinced” (at least approximately, through appropriate limiting pro-
cesses in p and s) to buy any given quantity Q0 between zero and K . This will lead to
a profit-maximizing contract for the seller, as long asλβ1 exceeds the seller’s marginal
cost Cz̄(Q0, z) ≡ B(Q0) ∈ [B(0), B(K )].

14 The buyer solves the well-known newsvendor problem (see, e.g., Petruzzi and Dada 1999 for an over-
view), the first analyses of which date back to Edgeworth (1888) in economics and Whitin (1955) in
management science.
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2.5.2 Quadratic cost

Consider now a buyer who faces a nonlinear (quadratic) underage cost and an outside
supply, of unit priceα, so that (using the formulation in Section 2.4)

v(y, D) = maxx≥0

{
−β

2 ([D − y − x]+)2 − αx
}

=
{

−β
2 ([D − y]+)2 , if D − y < α

β
,

−α(D − y − α
2β

), otherwise,

whereα, β are positive constants. Clearly, if the costα is large compared to the
shortage-cost coefficientβ, the outside supply is not used at all. In case it is used,
however, the problem becomes quasi-linear in y. From Eq. 3 we find the buyer’s sec-
ond-period demand,

z(Q, D, s) = 1{s≤λα} min

{
Q,

1

λ

[
D − s

λβ

]

+

}
.

Sinceκ(Q, D, s) = 1{s≤λα}
[
λβ[D − λQ]+ − s

]
+, we have by Eq. 9 that

κ̄(Q, s) = 1{s≤λα}
(

λβ

(
E

[
D̃

∣∣∣ D̃ ≥ λQ+ s

λβ

]
− λQ

)
− s

)(
1−F(λQ+ s

λβ
)

)
.

If the buyer’s first-period demand Q(p, s, K ) is strictly between zero and K , then by
Eq. 11 we must have that

φκ̄(Q, s) = p.

Numerical example. Using the above quadratic specification of the buyer’s value func-
tion, and assuming that the downstream demand is uniformly distributed on [0, 1], the
buyer’s (interior) options demand Q(p, s, K ;α) ∈ (0, K ) can be determined explic-
itly as follows:

Q(p, s, K ;α) = 1{s≤λα}
1

λ

[
1 − 2p

λβ
− s

λβ

]

+
.

When the buyer has an outside supply option available at a fixed priceα, the seller
is constrained to charge a strike price belowα. As the seller, who is assumed to have
the second cost structure discussed in Remark 1 (with c̄ = w = 0 and m̄ = 0.5),
expects to make m̄ per unit of supply by selling onto the spot market, there is no
contracting whenα < m̄. There is a kink in the demand function at the point
where min{D̄(Q, s;α), 1} = 1. Indeed, for K = λ = 1 andβ = 2 the inequality

D̄(Q, s;α) = Q + α

2
= 1 − √

p − s

2
+ α

2
> 1
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Fig. 1 Dependence of option prices on buyer’s outside supply cost α

Fig. 2 Optimal option contract
volume as a function of α
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implies that

2
√

p + s < α. (25)

For prices satisfying inequality (25) the buyer does not expect to ever rely on his
outside option. Figure 1 shows the seller-optimal prices p∗(α) and s∗(α) as a func-
tion of the outside option priceα. For low values of the outside option, the seller
charges the price pair (0, α). This coincides with the ex-ante socially optimal price
structure. Hence, the presence of an outside supply option can induce the socially
optimal behavior if its priceα is sufficiently low. Asα increases, the outside option
eventually becomes too expensive to rely on. Figure 2 illustrates the optimal contract
volume Q∗(α) = Q(p∗(α), s∗(α), 1;α) as a function ofα, which is decreasing.

3 Application to the California water sector

The California water market is characterized by a number of market imperfections.
With no formal marketplace, the search costs incurred in the matching phase are

123



Option contracting in the California water market 127

fairly high. In addition, limited access to infrastructure and the existing heterogene-
ity amongst sellers, e.g., sellers with different crop regimes and therefore different
marginal products of water, limit the pool of potential contractors. As such, bilateral
contracting arises naturally, when a buyer and seller are each others’ only alternative
for a relevant trading partner.15 Thus, most market transactions in today’s water market
are accurately captured by a simple bilateral contracting model. Bilateral contracting
also occurs in a number of other imperfect markets, such as electricity (Wu et al. 2002).

Using data from the bilateral contracting that has taken place to date in the California
water market, we estimate relative welfare gains of between two and three percent. For
policy makers assessing the value of a contract market for water, this is an important
point of departure. The seller’s expected value, as articulated in Section 2, depends
on the probability of an infrastructure failure, the expected spot market price for her
production good (her crop), the production lead time, the transport cost of water, and
the buyer’s demand at the set contract prices. The buyer’s expected value depends also
on the probability of infrastructure failure and on his second-period payoff function
from delivering water to meet uncertain downstream demand, and clearly the base and
strike prices.

The prices we estimate are based on the seller’s making take-it-or-leave-it offers.
Alternative pricing and allocation rules are not treated explicitly. We do not suggest
that the prices in the seller-set model, e.g., where the seller retains all the bargaining
power, are fully predictive. Instead, they serve as an upper bound on any rational con-
tract prices. Lower market prices reflect buyer bargaining power. In addition, informa-
tional asymmetries may, at least theoretically, make it useful for the seller to consider
a nonlinear pricing scheme which provides incentives for information revelation by
leaving an information rent to the buyer, thus also resulting in lower prices. Hence, the
seller-set prices can be used as a benchmark for analyzing buyer bargaining power.
Models that estimate prices under different bargaining protocols would be useful for
investigating the range of likely outcomes in the future. In addition, models that cap-
ture the dynamics of the matching phase will be increasingly relevant as the water
market expands. The variant of the bilateral option contracting model that captures
the presence of an outside option is a first step in this direction, as the outside option
could be an alternative contract price, which in turn impacts the prices that the seller
can charge. There are also alternative contract features that merit investigation from a
welfare standpoint. For instance, the risk of conveyance loss could be shared between
the buyer and the seller.

As discussed in Section 1, option contracts in the California water market serve as a
mechanism through which water intermediaries can coordinate uncertain supply and

15 Over time, matching could be facilitated by the introduction of an electronic marketplace and tradeable
infrastructure rights, combined with expansion of state water infrastructure (Tomkins et al. 2008). The
available benefits from contracting suggest significant welfare gains to society. Overall welfare is weakly
increasing in the number of market participants and under improved matching. As the market grows and
bilateral contracting gives way to multilateral contracting or an electronic marketplace, models that cap-
ture strategic interactions between participants will be increasingly important. This is an area for future
investigation.
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demand in dry years.16 The contracts signed to date between a water intermediary
(e.g., MWD) and an agricultural water district have usually specified the fallowing
of rice acreage in exchange for a strike payment per acre-foot of conserved water.
The conserved water to be made available for transfer to the intermediary is calcu-
lated based on consumptive crop use (defined as “evapotranspirative use,” i.e., the
estimated volume of water absorbed by the plant and evaporated from the plant and
land surface) and is distinct from the total amount of water applied to the crop.17 The
seller’s expected value from contracting is a combination of his revenue from the sale
of the options and his expected revenue from both the exercise of the options and the
offload of excess supply onto the commodity market. The seller’s reservation value is
the expected revenue from applying the water to cultivate his rice crop and offloading
the entire crop yield, or supply, onto the market.

3.1 Model identification

The seller’s value and cost are specified by Eqs. 15 and 19, respectively. The cost spec-
ification assumes that the seller can use productively all of the water not called under
the contract, so that

C(Q, z̄) = −(m̄ − c̄)(K − z̄) + wz̄, (26)

where m̄−c̄ is the marginal product of water for a crop (here rice).18 Table 1 reports the
marginal product (MP) of water for rice in 2008 based on the production cost per acre
of rice—as reported in recent USDA farm surveys—the yield per acre of cultivated
rice, as estimated by the USDA, and the consumptive-use calculation provided by the
California Department of Water Resources (DWR).19 Regarding price expectations,
each year farmers have a choice to sign a contract with a rice marketer even before

16 In the spring of 2003, the Metropolitan Water District (MWD) called options from 10 of 11 contracts
signed that year, for a net supply of 126,230 af—a volume of water approximately equal to 5% of MWD’s
average annual deliveries of two million acre-feet (maf), and just above the 100,000 af supplied under the
long-term transfer between MWD and IID. In 2005, MWD signed contracts in 2005 with Glenn–Colusa
Irrigation District, Western Canal Water District, and Richvale Irrigation District, all of which were party to
the 2003 contracts. None of these options were ever called, with spring rains alleviating the water shortage.
The total volume of water under contract was 127,275 af. Of this total, 14,780 af was contracted for by
other State Water Project contractors, with the rest of the options held by MWD. In the spring of 2008, San
Diego County Water Authority (SDCWA) called options from two contracts, for a net supply of just over
24,000 af. The contracts, signed at the beginning of March, specified a $10/af base to reserve the rights to
the water through April 2, on which date SDCWA faced a decision about whether or not to extend the option
for $40/af. The execution date was set for April 15, with a strike price of $200/af. The strike price was more
than double that set in the MWD contracts (of $90/af). SDCWA extended and executed all of the options.
17 The difference in volume between consumptive use and applied use is the volume of water that returns
to the environment in the form of runoff or recharge.
18 More precisely, m̄ − c̄ is the average contribution of water (ACW) to profit, as there are more than one
production input, including, for example, fertilizer, labor, and the (opportunity cost of the) agricultural land
being used.
19 The average cost per acre of rice cultivation for 2003 and 2005 is based on the reported cost in 2000. The
range of rice prices reported in Table 1 are based on market prices reported by the Farm Service for 2008.
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Table 1 Rice production data (DWR 2008; FAO 2008; Livezey and Foreman 2004; USDA 2008)

Parameter Unit 2003 Estimate 2005 Estimate 2008 Estimate/range

Price $/cwt 6.25 7.63 13.5–19

Subsidy $/cwt 2.35 2.35 2.35

Yield cwt/acre 71.6 71.6 71.6

Revenue $/acre 616 715 1,133–1,527

Average cost $/acre 479 479 833

Profit $/acre 137 236 300–694

Water use af/acre 3.3 3.3 3.3

MP of water $/af 41 71 91–210

planting, which locks in a payment per hundredweight (cwt) of rice.20 Alternatively,
farmers can join a marketing cooperative and receive monthly installments from coop
sales. A third option for the farmers is to wait until harvest and then sell the rice
directly to a marketer at the current price or pay storage fees and offload the rice onto
the market at a later date.

The value function of the water agency (the buyer), given in Eq. 4, depends on four
factors: the distribution of excess downstream demand for water, the shortage cost of
water, the conveyance cost and losses, and the probability of contract non-fulfillment.
A linear specification for the shortage cost, as detailed in Section 2.5, serves as an
approximation for urban water agencies in California, which face a constant marginal
cost per acre-foot for additional supply. Urban water agencies in Southern Califor-
nia can, for example, acquire additional supply from MWD in times of shortage at a
“penalty rate” of $1,347/af (in 2008). The actual cost depends on whether a shortage
is covered by the water agency through a secondary (and presumably more expensive)
supply source or whether it is passed on directly to consumers. SDCWA has a policy
to meet excess retail demand through additional water purchases, i.e., purchases at
the “penalty rate” from MWD. The penalty rate, well above the regular Tier 1 rate
that MWD charges its member agencies for contracted supply, is in effect for sup-
ply requests above the contracted level.21 The MWD penalty rate is a proxy for the
market rate for an extra acre-foot of supply. In the presence of an alternative supply
technology, a possible proxy for the shortage cost might be the cost per acre-foot of
supply via this alternative technology, e.g., desalination, which is currently estimated
at $800–900/af. If, rather than cover the excess demand, SDCWA planned to pass the
shortage on directly to consumers, the estimate for the shortage cost would need to
take into account the loss in consumer welfare, as well as the cost of a “water out-
age,” including business-interruption and landscape losses. A comprehensive study in
1993, commissioned by SDCWA and conducted by the economic consulting firm CIC,
Inc., reported high sectoral shortage costs that, when aggregated, totaled $5,554/af. As

20 In the U.S., 1 cwt = 100 lbs ≈45.359 kg.
21 The penalty rate is technically only in effect once the member agency exceeds contracted deliveries by
more than 10%.
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Table 2 Contract parameters (S. Hirsch [MWD], personal communication; MWD 2008; Campbell and
Hess 2008)

Parameter Unit 2003 Estimate 2005 Estimate 2008 Estimate

Loss coefficient (λ) % 80 80 80

Probability of NF (φ) % 50 50 50

Shortage coefficient (β1) $/af 1, 347 1, 347 1, 347

Demand distribution uniform (on) [0,146,230] [0,127,275] [0,24,038]

MP of water (m̄ − c̄) $/af (base) 42 71 151

Wheeling cost (w) $/af 253 258 278

Seller capacity (K ) af 146,230 127,275 24,038

discussed in Section 2.5, a constant shortage cost implies that the buyer fully covers
excess demand when there is available supply to do so. In other words, the buyer exer-
cises all options up to the realized demand level D, assuming fulfillment is possible.
Furthermore, the seller optimally charges a price pair (0, λβ1).

Table 2 reports the parameters for the buyer’s and seller’s value functions used to
estimate the social welfare gains under contracting in 2003, 2005, and 2008. Losses
are assumed to be uniformly distributed, with the upper bound of demand based on
the actual yearly contract size. The actual excess demand distribution assessed by the
contracting agencies is not reported in the contracts signed to date.22

There is a high probability of non-conveyance, or non-fulfillment (NF). SDCWA
reports assessing a 50% probability that the San Francisco Bay Delta pumping plant
will be over-capacitated at any given time, restricting the movement of water north–
south (SDCWA 2008a,b).23 If conveyance is possible, there is a standard charge per-
acre-foot conveyed. The unbundled MWD wheeling rate consists of three parts as
reported in Table 3. The first two fees are levied by the State Water Project for use
of the infrastructure, which they control, and the third is an environmental surcharge
levied by MWD. The current system power rate of $110/af reflects an electricity cost
of $0.05/kWh. The power contracts, negotiated by the Department of Water Resources,
are for large volumes of power and have been price-stable in the past. North–south con-
veyance requires an average of 2,200 kWh of electricity per acre-foot, which includes
the energy to pump the water south over the Tehachapi Mountains via a series of lift-
ing stations. The system access charge is levied to recoup the infrastructure cost. In

22 There are three reasons for the dramatic decrease of the seller capacity in 2008 compared to previous
years: storage levels, weather conditions, and competition for the available water. In 2008, storage levels
were high, precipitation forecasts positive, and MWD lost several contracts due to the fact that other water
districts were willing to procure water at a relatively high price.
23 The risk of non-conveyance, or non-delivery, was purely an infrastructure risk. The contracts specified
that the water to be made available through fallowing arrangements was to be water to which pre-1914 water
rights were held. Under the California Water Code, pre-1914 water rights are the most senior water rights.
As such, they are considered firm rights: there is always enough water in the system to ensure that priority
rights holders receive their allocation, with junior rights holds entitled to the rest of the annual supply, in
order of priority.

123



Option contracting in the California water market 131

Table 3 MWD’s unbundled
wheeling charges (per af)

Year Access
charge

Stewardship
charge

System
power
charge

Total

2003 $141 $23 $89 $253

2005 $152 $25 $81 $258

2008 $145 $25 $110 $278

addition, there is an associated conveyance loss. The 2003, 2005, and 2008 contracts
(the volumes of which are given in Table 4) all specified that the conveyance losses
associated with transferring water would be borne by the buyer, as would the cost of
conveyance. The north–south transfer of water via the San Francisco Bay Delta results
in significant conveyance losses, estimated at 20% (MWD 2008), due to the need for
retention of a percentage of transferred water (“carriage water”) to meet Delta water
quality standards.

3.2 Welfare gains under option contracting

The social welfare gain under a contract (p, s, K ) is

V̄ (Q(p, s, K ), s) + sz̄ − C(Q(p, s, K ), z̄(p, s, K )) − �̄0 − V̄0, (27)

where C(Q(p, s, K ), z̄(p, s, K )) is given in Eq. 26, Q(p, s, K ) = K (for all s ≤ λβ1),
and z̄(p, s, K ) = φK . Table 5 below reports the expected (ex-ante) social welfare gains
under contracting in 2003, 2005, and 2008 for three possible price expectations (low,
base, and high), with the parameters as specified in Table 3. The farmers’ expectations
for the 2003, 2005, and 2008 commodity prices are unrecorded; therefore, historical
prices for rice as reported by the Food and Agriculture Organization of the United
Nations (FAO) are used in the base case in 2003 and 2005. The ‘low’ scenario reflects
an underestimate of the actual price by 25%, and the ‘high’ scenario reflects an over-
estimate, also by 25%.

As the expected commodity price increases, boosting the reservation values, the
sellers’ surplus from trade is slowly eroded. The estimated social welfare gains are

Table 4 Historical contract types and transfer volumes

Year Buyer Contract Type Volume (af) Execution (af)

2003 MWD Options 146, 230 126, 230

2005 MWD Options 112, 495 0

2005 Other SWP contractors Options 14, 780 0

2008 MWD Direct purchase 28, 674 28, 674

2008 Other SWP contractors Direct purchase 13, 493 13, 493

2008 SDCWA Options 24, 038 24, 038

SWP State Water Project
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highest in the low-price case. In 2003, the average price of rice for U.S. producers
was $6.25; in 2005, it was $7.26 (FAO 2008). The 2008 prices are based on predicted
market prices, as reported by the U.S. Farm Service. The federal subsidy on rice
production of $2.35/cwt, reported in Table 2, is also included in the calculations. The
social welfare gains in 2003 and 2005 are estimated to be upwards of $33 and $27 M,
respectively. Notably, the anticipated gains in 2008 are significantly smaller due to a
reduction in the size of the contracts.

3.3 Price trends

It appears that past contract prices have been highly favorable to the buyer. There are
three likely explanations for this fact. The first explanation is that of buyer bargaining
power. Insofar as the division of surplus is an indication of bargaining power, the
calculations in Table 5 suggest that MWD was in the stronger position. The second
explanation is one of informational asymmetry: if sellers were unaware of the true
value of the options to the buyer, they may have settled for lower prices, leaving a
buyer of ‘higher-than-expected’ demand with an information rent. Lastly, changes in
the modelling assumptions regarding the actual shortage cost of water, the distribution
of excess demand faced by the buyer, the seller’s expected commodity price, and both
the cost and probability of conveyance, as well as the one-shot nature of contracting,
would all impact the estimates in Table 5.

While the sellers collectively had an estimated expected surplus of between $1.8
and $3.3 M in 2003, MWD appropriated nearly 90% of the total surplus, or $31.4 M.
There are two important factors worth noting with regard to MWD’s bargaining power.
The first is that MWD initiated the contracts, contacting farmers regarding the sale
of options on their water. As such, MWD was also in the position to make the first
offer. If MWD credibly conveyed the threat to leave negotiations at any point, the sell-
ers may have faced an “accept/reject” offer with “accept” as the higher-value choice,
yielding a payoff above their reservation values. A second factor acknowledges the
political power held by the institutions involved in the transactions. MWD has 26
Southern California member agencies, including the utilities of the state’s two largest
cities, Los Angeles and San Diego. The political power in these two constituencies
alone is considerable. Wherever there exists an imbalance of political power, there also
exists an implicit threat of political recourse. In California, the implicit threat is that
of an involuntary reallocation of water. Agricultural water rights could be challenged

Table 5 Surplus division and social welfare gain with option contracts

Year 2003 2005 2008

Surplus Low Base High Low Base High Low Base High

Buyer (%) 90.6 92.6 94.6 90 90.3 95.2 66.9 70 73.4

Seller (%) 9.4 7.4 5.7 10 9.7 4.8 33.1 30 26.6

Total (M$) 34.7 34 33.2 29.1 29 27.5 4.81 4.59 4.37
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on efficiency grounds, as they were in IID, or water could be confiscated based on
an argument for the primacy of human (urban) use, as has been done in other states
(notably New Mexico).24

Related to the issue of buyer bargaining power is that of informational asymme-
try. While information regarding water management in California is ostensibly public
information—urban an agricultural water providers in the state are all public inter-
mediaries—an urban water agency such as MWD has some degree of operational
flexibility, making the quantification of both excess demand and the true shortage cost
of water difficult for an outside entity to estimate. For example, an urban water agency
may elect to draw down storage in a given year as opposed to relying on outside water
purchases to meet excess demand. There may also be additional transfer options from
competing sellers. Finally, there is the possibility of rationing, with the associated
implied consumer surplus losses and implementation costs.

The prices in the 2008 SDCWA contracts were higher than those in the 2003
and 2005 contracts signed by MWD. Part of the explanation for the increase in price
owes to an increase in the seller’s reservation value. The price of rice on the global
exchange increased fivefold between 2007 and 2008. At a contract offer of $10/af
upfront and $90/af upon exercise, a seller would prefer to cultivate rice than to con-
tract his water. Hence, prices necessarily adjusted upward to meet the seller’s ratio-
nality constraint. Nonetheless, a comparison of the sellers’ expected surplus in 2003
and 2005 to that under the 2008 contracts lends credence to the argument that there has
also be an increase in seller power. The percent of the expected social surplus received
by the sellers increased from less than 10% in 2003 and 2005 to above 30% in 2008.

The increase in seller power may be attributed in part to buyer competition. Not only
did SDCWA enter the option market for the first time, but there were also a number
of agricultural water districts looking to buy, willing to bid up the price of water for
application to other high-value crops. Higher contract prices may also result from a
reduction of informational asymmetry. As information regarding the high cost of urban
water shortage was disseminated, sellers may have adjusted their price estimates.

4 Conclusion

As Adler (2008) points out, “[t]here is an urgent need to develop more extensive
market institutions to manage water supplies” (p. 17). Option contracts implementing
temporary resource transfers can facilitate gains from trade that might go unrealized if
only permanent transfers of water rights were possible. Temporary transfers can lower
the institutional resistance and transaction cost of permanent transfers, enhancing the
feasibility of trade. The California water sector has encountered market frictions in
the form of both institutional resistance and high transaction cost associated with
permanent water rights transfers. The success of temporary water transfers in the
state in recent years highlights the potential of option contracting to create a more

24 Under the California Water Code, retention of a water right requires “beneficial use” of the water. Water
rights can therefore be confiscated, or amended, if the water associated with the right is being wastefully
applied. This particularly applies to agricultural users, who may be using outmoded irrigation techniques.
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active water market. The fact that transfer agreements were renewed in 2005 and 2008
suggests the economic viability of option contracting.

Thus far, activity in the California water market has been fairly limited. Prerequisites
for a more active water market include reliable access to infrastructure and a central-
ized trading platform that would further reduce buyer–seller matching costs (Tomkins
et al. 2008). Current access to infrastructure is granted on a priority basis. Market-
able infrastructure access permits would allow users with higher valuations to bid for
(and acquire) access. An effective, decentralized trading system could be jump-started
through the issuance of tradeable block permits to water districts, with each permit
specifying a time, region of access, and standard volume of water.25 Limited infra-
structure capacity would still clearly impede trade in such a system. Addressing the
capacity issue requires construction of additional transport or storage infrastructure,
where in the case of the latter the timing of water transfers on existing infrastructure
could be adjusted to increase system throughout. As suggested by a referee, the val-
uation information provided by an active contract and options market could facilitate
the decisions to invest in further storage and interregional conveyance capacities.

Block permits for infrastructure access could be traded in a centralized (e.g., online)
marketplace that can serve for trading the actual option contracts. Examples of active
online marketplaces can be found in consumer goods, timber, and electric power. Water
transfers would still be subject to environmental review and government oversight. The
degree to which these portions of the transfer process can be streamlined is an important
determinant for market liquidity. Short-term water transfers, e.g., transfers arranged
for a single year, currently enjoy expedited review in California. If subject to the
same full review under the California Environmental Quality Act (CEQA) currently
required of long-term water transfers, such transfers would no longer be viable for
covering near-term supply shortages. To the extent that environmental reviews could
be conducted in advance and standing permission for transfers granted, transfers could
still be arranged on short notice and used to cover near-term supply shortages.

As the water market expands, the design of contracts becomes an increasingly
important matter. Reforms in current design can lead to a more efficient contract mar-
ket. As discussed in Section 2.2, seller-set contracts levying a positive upfront charge
per option (base price) are inefficient if it is not set at the actual opportunity cost of
committing the contracted volume (Proposition 2). The latter is close to zero, due to
customary timing of option exercise which leaves the seller with enough flexibility
to use unclaimed water for her own crop production. The seller-optimal strike price
tends to be above the marginal cost for the seller to provide the water covered by the
option contract, in contrast to Wu et al. (2002) (cf. the discussion after Proposition 1).
In subsequent work, Wu and Kleindorfer (2005) indicate that in the context of their
model (which contains an active spot market), competition among buyers and sellers
is likely to increase the efficiency of option contracts. Extending our model to a set-
ting with multiple buyers and sellers, in the spirit of Mendelson and Tunca (2007), is
subject to further research.

25 The state and federal government own and operate much of the state’s critical infrastructure. There is
some local and regional control, e.g., the L.A. aqueduct.
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As established in Section 2.3, the seller can use a fixed transfer instead of a volumet-
ric base price to extract surplus and at the same time implement an ex-ante efficient allo-
cation of water. Contracts structured to specify a fixed upfront fee for contracting and a
strike price per option will tend to be more efficient, where the efficiency properties of
an option contract are reflected in the actual strike price charged. Market indexing of
options can further increase efficiency through the ex-post transfers based on the reali-
zation of relevant uncertainties. While the buyer’s demand realization may not be fully
contractable due to limitations concerning its observability and verifiability, the seller’s
outside market prices for crops and water could in many cases be used for indexing.

The issues discussed in this paper are broadly applicable to developing water mar-
kets worldwide, e.g., in Australia (ACCC 2008). A move to a more active trading
regime can be expected as the increased variability and reduced availability of water
continue to drive its scarcity and increase in value. Furthermore, the infrastructure
investment required for providing the necessary conveyance capacity for the trans-
fers can be expected to decrease in significance relative to the expected gains from
improved allocative efficiency and risk management.
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Appendix: Proofs

Proof of Lemma1 From Eq. 11 we obtain immediately that Q(p, s, K ) is nonincreas-
ing in−K . Regarding the monotonicity of the buyer’s demand for options, consider
first the interior case where 0 < Q(p, s, K ) < K . Equation 11 implies that

φκ̄(Q(p, s, K ), s) = p.

The relations in (12) then follow immediately by differentiating the last equality
implicitly with respect to p and s, respectively, taking into account (2) and (9). In the
case where Q(p, s, K ) = 0, the previous inequalities imply that demand cannot take
a positive value for any ( p̂, ŝ) > (p, s). Lastly, in the case where Q(p, s, K ) = K ,
demand cannot increase as a direct consequence of Eq. 11, restricting it to the inter-
val [0, K ]. �	

Proof of Lemma2 Note first that Eq. 13 immediately implies that z̄ is nonincreasing
in−K . The buyer’s expected exercise volume as a function of the contract-parameter
tuple (p, s, K ) is
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z̄(p, s, K ) = φ

⎛
⎜⎝(1 − F(D̄))Q(p, s, K ) +

D̄∫

D
¯

z(Q(p, s, K ), D, s)d F(D)

⎞
⎟⎠

(28)

where the threshold levels D̄ = D̄(Q(p, s, K ), s) and D
¯

= D
¯
(s) are defined in Eqs. 7

and 8, respectively. By differentiating both sides of Eq. 28 with respect to p and s, and
using the fact that by Lemma 1 it is Q p, Qs < 0, we obtain the results in (14) as long
as 0 < z̄(p, s, K ) < K . Note that

0 < δ =
∫ D̄

D
¯

zs(Q, D, s)d F(D)

z̄s
=

∫ D̄
D
¯

zs(Q, D, s)d F(D)

φ(1 − F(D̄))Qs + ∫ D̄
D
¯

zs(Q, D, s)d F(D)
< 1,

since zs < 0 on [D
¯
, D̄], and thus z̄s < 0. The situations in which z̄(p, s, K ) ∈ {0, K }

are treated analogously to the boundary cases in the proof of Lemma 1. �	

Proof of Proposition1 The first-order necessary optimality conditions with respect to
the base price p and the strike price s in the seller-optimal pricing problem (15) are

pQ p + Q + sz̄ p − CQ Q p − Cz̄ z̄ p = (µ − ν)Q p,

pQs + z̄ + sz̄s − CQ Qs − Cz̄ z̄s = (µ − ν)Qs,

where µ, ν are the Lagrange multipliers associated with the constraints Q ≤ K
and Q ≥ 0, respectively. Using the direct relation between (Q p, Qs) and (z̄ p, z̄s) pro-
vided in Lemma 2, these two equations are equivalent to

p − CQ + φ(1 − F(D̄))(s − Cz̄)

p
= 1

εp
+ µ − ν

p
(29)

and

s − Cz̄ + 1−δ

φ(1−F(D̄))

(
p − CQ

)

s
= 1

εs
+ 1 − δ

φ(1 − F(D̄))

µ − ν

s
, (30)

where δ, εp, εs are as in Lemma 2. When 0 < Q(p, s, K ) < K , the expressions
for p, s in part (i) of the proposition follow as the unique solution to the linear system
of equations 29–30 withµ = ν = 0. In the case where Q(p, s, K ) = K , it isν = 0
and, by Eq. 9, φκ̄(K , s) = p. Similarly, in the case where Q(p, s, K ) = 0, it isµ = 0
andφκ̄(0, s) = p. The equalities in part (ii) obtain by substituting p = φκ̄(q, s)
forq ∈ {0, K } in Eqs. 29–30 and eliminating the Lagrange multipliers (one of which
is zero).
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The inequalities in parts (i) and (ii) follow from the fact that p = κ̄(Q, s), which
implies that p is nonnegative, and that, by virtue of Eqs. 28–30 and Lemma 2,

δ (s − Cz̄) =
(

− z̄

z̄s

) (
1 − φ(1 − F(D̄))Q

z̄

)
≥ 0,

which implies that s ≥ Cz̄ .
To understand the behavior of the seller’s payoff with respect to K , we first observe

that a dependence of the optimal prices on K only arises when the capacity constraint
is binding, i.e., when Q(p, s, K ) = K . In that case, the shadow valueµ of this con-
straint is nonnegative, so that it cannot be better for a seller to voluntarily announce
an available capacity K̂ that is strictly less than K . �	

Proof of Proposition2 The first-order necessary optimality conditions for the prob-
lem of maximizing the expected social welfare in (20) subject to the constraint 0 ≤
Q(p, s) ≤ K are

V̄Q Q p + sz̄ p − CQ Q p − Cz̄ z̄ p = (µ − ν)Qs,

V̄Q Qs + V̄s + z̄ + sz̄s − CQ Qs − Cz̄ z̄s = (µ − ν)Q p,

where µ, ν are the Lagrange multipliers associated with the constraints Q ≤ K
and Q ≥ 0, respectively. Using Lemma 2 and Eq. 6 these conditions can be rewrit-
ten in the form

φκ̄ + φ(1 − F(D̄))s = (
CQ + µ − ν

) + φ(1 − F(D̄))Cz̄, (31)

1 − δ

1 − F(D̄)
κ̄ + s = 1 − δ

φ(1 − F(D̄))

(
CQ + µ − ν

) + Cz̄, (32)

where D̄ = D̄(Q, s) is defined in Eq. 7, and

κ̄ =
∞∫

D̄

(
λvy(λQ, D) − s

)
d F(D) =

(
λE

[
vy(λQ, D̃)

∣∣∣ D̃ ≥ D̄
]

− s
) (

1 − F(D̄)
)
.

The unique solution to Eqs. 31 and 32 is given by s = Cz̄ andφκ̄ = CQ + µ − ν, i.e.,

λE
[
vy(λQ, D̃)

∣∣∣ D̃ ≥ D̄
]

= CQ + µ − ν

φ(1 − F(D̄))
+ Cz̄ .

From Eq. 11 we therefore obtain that p = φκ̄ = CQ , as long as Q(p, s, K ) ∈ (0, K ).
When, at a given base price p, Q(p, s, K ) = K then from Eq. 11 it is possible
thatφκ > p. In this case the price that society imposes on the buyer is too low
compared to the marginal cost, but because of the capacity constraint the allocation
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remains unaffected as long as p is small enough. In particular, the welfare maxi-
mizer can choose the largest possible price p, which equalsφκ̄ .26 A similar discussion
applies to the other boundary case, where Q = 0. We also conclude that it is never
optimal for a social-welfare maximizer to artificially constrain the contract volume to
a level K̂ < K when K > 0 is the seller’s actual capacity. �	
Proof of Proposition3 The buyer’s optimal exercise policy in Eq. 3 and the implicit
definition of the strike-price function σ in Eq. 22 imply that

sup{q ∈ [0, Q] : λφ̂vy(λq, D) ≥ σ(Q, D, m)}
= sup

{
q ∈ [0, Q] : λφ̂vy(λq, D) ≥ b(q, D, m)

}

for all Q ∈ [0, K ] and all demand realizations D. Sincevy(Q, D) is by the concavity
assumption in (2) strictly decreasing, we have that (as long as 0 < zFB(Q, D, m) <

Q):

σ(Q, D, m) = λφ̂vy(λzFB(Q, D, m), D) = b(zFB(Q, D, m), D, m).

The first-best second-period allocation is also implemented by the strike-price func-
tion σ(Q, D, m) if we simply extend the last equality to the cases when zFB(Q, D, m)

is either zero or Q. Using the envelope theorem to differentiate the maximand in (21)
we obtain the first-order necessary optimality condition of problem (23) in the form

cQ(Q, zFB(Q, D, m), D, m) = κFB(Q, D, m),

where

κFB(Q, D, m) =
[
λφ̂vy(λQ, D̃) − cQ(Q, Q, D̃, m)

]
+

is the Lagrange multiplier associated with the inequality constraint z ≤ Q in (21).
Thus, by letting κ̄FB(Q) be the expectation ofκFB(Q, D, m) with respect to the random
demand, we can write the solution to (23) in the form

QFB = sup
{

q ∈ [0, K ] : φκ̄FB(q) ≥ p
}

,

in analogy to Eq. 11. We therefore obtain the socially optimal price p as claimed. As
in the proof of Proposition 2 it is optimal to set K to the actual available capacity in
order to avoid inefficient allocations. �	
Proof of Proposition5 (i) By differentiating the expected social welfare W̄ in Eq. 20
with respect to both p and s, and evaluating the result at the ex-ante socially optimal
prices (as in Proposition 2), we obtain

W̄ps = −CQz̄ Qs Q p − (BQz̄s + CQ Q Qs)Q p ≤ 0,

26 Note that the concavity assumption (2) together with Eq. 10 implies that∂κ̄/∂ Q < 0.
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as a consequence of Lemma 1 and 2 as well as the assumptions on ĉ (which are invariant
with respect to taking the expectation). In addition, one can show that W̄sα ≤ 0 ≤ W̄pα

at the socially optimal prices. Hence, by implicitly differentiating the first-order nec-
essary optimality conditions with respect toα (cf. Proof of Proposition 2) one obtains
that

[
p′(α)

s′(α)

]
= −

[
W̄ss −W̄ps

−W̄ps W̄pp

] [
W̄pα

W̄sα

]

W̄ppW̄ss − W̄ 2
pα

≥ 0.

(ii) The proof of this part proceeds analogously to the proof of part (i) and is therefore
omitted. �	
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