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The correct and efficient implementation of general real-time applications remains very

much an open problem. A key issue is meeting timing constraints whose satisfaction

depends on features of the execution platform, in particular its speed. Existing rigorous

implementation techniques are applicable to specific classes of systems, for example, with

periodic tasks or time-deterministic systems.

We present a general model-based implementation method for real-time systems based on

the use of two models:

— An abstract model representing the behaviour of real-time software as a timed

automaton, which describes user-defined platform-independent timing constraints. Its

transitions are timeless and correspond to the execution of statements of the real-time

software.

— A physical model representing the behaviour of the real-time software running on a

given platform. It is obtained by assigning execution times to the transitions of the

abstract model.

A necessary condition for implementability is time-safety, that is, any (timed) execution

sequence of the physical model is also an execution sequence of the abstract model.

Time-safety simply means that the platform is fast enough to meet the timing requirements.

As execution times of actions are not known exactly, time-safety is checked for the

worst-case execution times of actions by making an assumption of time-robustness:

time-safety is preserved when the speed of the execution platform increases.

We show that, as a rule, physical models are not time-robust, and that time-determinism is a

sufficient condition for time-robustness. For a given piece of real-time software and an

execution platform corresponding to a time-robust model, we define an execution engine

that coordinates the execution of the application software so that it meets its timing

constraints. Furthermore, in the case of non-robustness, the execution engine can detect

violations of time-safety and stop execution.

We have implemented the execution engine for BIP programs with real-time constraints and

validated the implementation method for two case studies. The experimental results for a

module of a robotic application show that the CPU utilisation and the size of the model are

reduced compared with existing implementations. The experimental results for an adaptive

video encoder also show that a lack of time-robustness may seriously degrade the

performance for increasing platform execution speed.
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1. Introduction

The correct and efficient implementation of general real-time applications remains very

much an open problem. A key issue for design methodologies is meeting timing constraints,

for example, a system may be required to react within user-defined bounds such as

deadlines or periodicity. The satisfaction of timing constraints depends on features of the

execution platform, in particular its speed.

Rigorous design methodologies are model-based, that is, they explicitly or implicitly

associate with a piece of real-time application software an abstract model (in other

words, a platform-independent abstraction of the real-time system) expressing timing

constraints to be met by the implementation. The model is based on an abstract notion

of time. In particular, it assumes that actions are atomic and have zero execution times.

Implementation theory involves deciding if a given piece of application software, more

precisely, its associated model, can be implemented on a given platform, that is, for

particular execution times of actions. Implementability is usually checked for worst-case

execution times by making the assumption that timing constraints will also be met for

shorter execution times. This robustness assumption, viz. that increasing the speed of the

execution platform preserves the satisfaction of timing constraints, does not always hold,

as we will explain later in this paper.

Existing rigorous implementation techniques use specific programming models. Syn-

chronous programs (Benveniste et al. 1991; Halbwachs 1998; Halbwachs et al. 1991) can

be considered as a network of strongly synchronised components. Their execution is a

sequence of non-interruptible steps that define a logical notion of time. In each step, each

component performs a quantum of computation. An implementation is correct if the

worst-case execution times (WCETs) for steps are less than the required response time for

the system. On the other hand, for asynchronous real-time programs, for example, ADA

programs (Burns and Wellings 2001), there is no notion of an execution step. Components

are driven by events and fixed-priority scheduling policies are used to share resources

between components. Scheduling theory allows us to estimate the system response times

for components with known periods and time budgets.

Recent implementation techniques consider more general programming models (Aus-

saguès and David 1998; Ghosal et al. 2004; Henzinger et al. 2003). The proposed

approaches rely on a notion of the logical execution time (LET), which corresponds

to the difference between the release time and the due time of an action, defined in the

program using an abstract notion of time. To cope with the uncertainty of the underlying

platform, a program behaves as if its actions consume exactly their LETs: even if they

start after their release time and complete before their due time, their effect is visible

exactly at these times. This is achieved by reading for each action its input exactly at its

release time and its output exactly at its due time. Time-safety is violated if an action

takes more than its LET to execute.

For a given application and target platform, we extend this principle in the current

paper as follows:

— We assume that the application software is represented by an abstract model based on

timed automata (Alur and Dill 1994). The model only takes into account
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Fig. 1. Toolset overview.

platform-independent timing constraints expressing user-dependent requirements. The

actions of the model represent statements of the application software and are assumed

to be timeless. Using timed automata allows more general timing constraints than

LETs (for example, lower bounds, upper bounds or time non-determinism). The

abstract model describes the dynamic behaviour of the application software as a set

of interacting tasks without restriction on their type (that is, periodic, sporadic, and

so on).

— We introduce a notion of a physical model. This model describes the behaviour of the

abstract model (and thus of the application software) when it is executed on a target

platform. It is obtained from the abstract model by assigning to its actions execution

times that are upper bounds of the actual execution times for the target platform.

— We provide a rigorous implementation method, which, from a given physical model

(abstract model and given WCETs for the target platform), leads, under some

robustness assumption, to a correct implementation. The method is implemented

by a real-time execution engine, which respects the semantics of the abstract model

(see Figure 1). Furthermore, if the robustness of models cannot be guaranteed, it

checks online if the execution is correct, that is, if the timing constraints of the model

are met. In addition, it checks for the violation of essential properties of the abstract

model such as deadlock-freedom and the consistency of the timing constraints.

More formally, a physical model Mϕ is an abstract model M equipped with a function

ϕ assigning execution times to its actions. It represents the behaviour of the application

software running on a platform. The physical model Mϕ is time-safe if all its timed traces

are also timed traces of the abstract model. We show that a time-safe physical model may

not be time-robust: reducing execution times does not necessarily preserve time-safety.

A physical model Mϕ is said to be time-robust if any physical model Mϕ′ is time-safe

for all ϕ′ such that ϕ′ � ϕ. We show that, in general, non-deterministic models are not

time-robust.

The rest of the paper is concerned with the safe and correct implementation of a piece of

application software on an execution platform such that the WCETs for its actions define

a time-robust physical model. The application software consists of a set of components
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modelled as timed automata interacting by rendezvous. An interaction is a set of actions

belonging to distinct components that must be synchronised. It can be executed from a

given state only if all the involved actions are enabled. We define a real-time execution

engine that ensures component coordination by executing interactions. The real-time

execution engine proceeds in steps, where each step is the sequential composition of three

functions, which:

— Compute the time intervals in which each interaction is enabled by applying the

semantics of the abstract model. Time intervals are specified by using a global abstract

time variable t.

— Update the abstract time t by the real time tr given by the execution platform

provided tr does not exceed the earliest deadline of the enabled interactions, otherwise,

a time-safety violation is detected and execution stops.

— Schedules and executes the most urgent interaction from amongst the possible ones.

We show that our implementation method is correct for time-robust execution time

assignments. That is, for time-robust execution time assignments ϕ, the set of the timed

traces computed by the real-time execution engine is contained in the set of the timed

traces of M if the execution times of the actions are less than or equal to the execution

times defined by ϕ. If time-safety cannot be guaranteed for some ϕ, then the real-time

execution engine will stop, that is, a deadline is violated by the physical system.

1.1. Structure of the paper

The current paper extends our previous work presented in Abdellatif et al. (2010), and is

structured as follows:

— In Section 2, we propose a notion of implementation and the associated properties of

time-safety and time-robustness. We also present results on the satisfaction of these

properties for various classes of systems.

— In Section 3, we describe the implementation method.

— In Section 4, we give the experimental results illustrating the application of the method.

— Finally, in Section 5, we present some concluding remarks and discuss future work.

2. A notion of implementation and robustness

2.1. Preliminary definitions

In order to measure time progress, we use clocks, which are variables that increase

synchronously. We use � to denote the set of clock values, which can be the set of

non-negative integers � or the set of non-negative reals �+.

Given a set of clocks X, a valuation of the clocks v : X → � is a function associating

with each clock x its value v(x). Given a subset of clocks X′ ⊆ X and a clock value l ∈ �,

we use v[X′ �→ l] to denote the valuation defined by

v[X′ �→ l](x) =

{
l if x ∈ X′

v(x) otherwise.
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Following Bornot and Sifakis (2000), given a set of clocks X, guards are finite

conjunctions of typed intervals. Guards are used to specify when actions of a system

are enabled. They are expressions of the form [l � x � u]τ, where x is a clock, l ∈ �,

u ∈ � ∪ {+∞} and τ is an urgency type, that is, τ ∈ { l, d, e }, where l is used for lazy

actions (that is, non-urgent actions), d is used for delayable actions (that is, actions that

are urgent just before they become disabled) and e is used for eager actions (that is,

actions that are urgent whenever they are enabled). We write [x = l]τ for [l � x � l]τ. We

consider the following simplification rule (Bornot and Sifakis 2000):

[l1 � x1 � u1]
τ1 ∧ [l2 � x2 � u2]

τ2 ≡ [(l1 � x1 � u1) ∧ (l2 � x2 � u2)]
max τ1 ,τ2 ,

where we assume that urgency types are ordered by l < d < e. By application of this rule,

any guard g can be put into the form

g =
[ n∧
i=1

li � xi � ui

]τ
.

The predicate of g on clocks is given by the expression

n∧
i=1

li � v(xi) � ui.

The predicate urg[g] characterising the valuations of clocks for which g is urgent is also

defined by

urg
[
g
]
⇐⇒

⎧⎨
⎩

false if g is lazy (that is, τ = l)

g ∧ ¬(g>) if g is delayable (that is, τ = d)

g if g is eager (that is, τ = e),

where g> is a notation for the predicate defined by

g>(v)⇐⇒ ∃ε > 0 . ∀δ ∈ [0, ε] . g(v + δ).

We use G(X) to denote the set of guards over a set of clocks X.

2.2. Abstract model

Definition 2.1 (abstract model). An abstract model is a timed automaton M = (A,Q,X,−→)

such that:

— A is a finite set of actions;

— Q is a finite set of control locations;

— X is a finite set of clocks;

— −→ with

−→⊆ Q× (A× G(X)× 2X)× Q

is a finite set of labelled transitions. A transition is a tuple (q, a, g, r, q′) where a is an

action executed by the transition, g is a guard over X and r is a subset of clocks that

are reset by the transition. We write q
a,g,r
−→ q′ for (q, a, g, r, q′) ∈−→.
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An abstract model describes the behaviour of the application without considering any

platform. Timing constraints, that is, the guards of transitions, only take into account

requirements (for example, deadlines or periodicity). The semantics assumes the timeless

execution of actions.

Definition 2.2 (abstract model semantics). An abstract model M = (A,Q,X,−→) defines

a transition system TS . States of TS are of the form (q, v), where q is a control location

of M and v is a valuation of the clocks X. We have:

— Actions:

We have

(q, v)
a−→ (q′, v[r �→ 0])

if q
a,g,r
−→ q′ in the abstract model and g(v) is true.

— Time steps:

For a waiting time δ ∈ �, δ > 0, we have

(q, v)
δ−→ (q, v + δ)

if for all transitions q
a,g,r
−→ q′ of M and for all δ′ ∈ [0, δ[, we have ¬urg[g](v + δ′).

Given an abstract model M = (A,Q,X,−→), we use wait(q, v) to denote the maximal

waiting time allowed at state (q, v), which is defined by

wait(q, v) = min
({

δ � 0
∣∣∣ ∨

q
ai ,gi ,ri−→ qi

urg[gi](v + δ)
}
∪ { +∞ }

)
.

Note that we have

wait(q, v + δ) = wait(q, v)− δ

for all δ ∈ [0,wait(q, v)]. A waiting time δ > 0 is allowed in M at state (q, v), that is,

(q, v)
δ−→ (q, v + δ), if and only if δ � wait(q, v).

A finite (respectively, infinite) execution sequence of M from an initial state (q0, v0) is a

sequence of actions and time-steps

(qi, vi)
σi−→ (qi+1, vi+1)

of M, σi ∈ A ∪� and i ∈ { 0, 1, 2, . . . , n } (respectively, i ∈ �).

In contrast to other models of timed automata (Alur et al. 1995), for abstract models,

it is always possible to execute a transition from a state (Bornot and Sifakis 2000). If no

action is possible, only time can progress. We call this situation a deadlock. From now on,

we only consider abstract models M = (A,Q,X,−→) such that any circuit in the graph

−→ has at least a clock that is reset and tested against a positive lower bound, that is, M

is structurally non-zeno (Bornot et al. 2000). This class of abstract models does not have

time-locks, that is, time always eventually progresses.

Example 2.3. Figure 2 gives an example of an abstract model

M = (A, {q0, q1, q2}, {x},−→)
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q0

q1

q2

a
[0 ≤ x ≤ +∞]e

∅

[50 ≤ x ≤ 60]d
b

∅ ∅
[0 ≤ x ≤ 50]l
c

i
[100 ≤ x ≤ 120]d

{x}

Fig. 2. Example of an abstract model.

with a set of actions A = {a, b, c, i}, a single clock x and the following set of transitions:

−→ = { (q0, a, [0 � x � +∞]e, ∅, q1),

(q1, b, [51 � x � 60]d, ∅, q2),

(q1, c, [0 � x � 50]l, ∅, q2),

(q2, i, [100 � x � 120]d, {x}, q0) }.

Consider the execution sequences of M from the initial state (q0, 0). Since the only

transition leaving the initial control location q0 of M is eager and its guard is always

true, only action a is possible from the initial state (q0, 0), that is, (q0, 0)
a−→ (q1, 0). At

state (q1, 0), the system cannot wait for more than wait(q1, 0) = 60 time units due to the

delayable guard of b. The waiting time δ1 at (q1, 0) must satisfy 50 � δ1 � 60 if b is

executed, and 0 � δ1 � 50 if c executed. The execution of b or c leads to state (q2, δ1). At

state (q2, δ1), time must progress by δ2 time units before executing i, so

100− δ1 � δ2 � wait(q2, δ1) = 120− δ1,

that is,

100 � δ1 + δ2 � 120.

Action i is then executed, leading back to the initial state (q0, 0).

This demonstrates that execution sequences of M are infinite repetitions of sequences

of the following forms:

(q0, 0)
a−→ (q1, 0)

δ1−→ (q1, δ1)
b−→ (q2, δ1)

δ2−→ (q2, δ1 + δ2)
i−→ (q0, 0)(1)

where

50 � δ1 � 60

100− δ1 � δ2 � 120− δ1

(q0, 0)
a−→ (q1, 0)

δ1−→ (q1, δ1)
c−→ (q2, δ1)

δ2−→ (q2, δ1 + δ2)
i−→ (q0, 0)(2)



Rigorous implementation of real-time systems – from theory to application 889

M

q0

q1

{x}
[x = P ]d

period execute
[x ≤ P ]d

∅

Fig. 3. Simple periodic task model.

where

0 � δ1 � 50

100− δ1 � δ2 � 120− δ1.

2.3. Physical model

A key issue for a correct implementation from an abstract model is the correspondence

between abstract time and physical time. There are different ways to establish such a

correspondence, as discussed below.

2.3.1. Drift between physical and abstract time. Consider an abstract model M of a

periodic task (see Figure 3) with period P . This consists of two control locations q0 and

q1, a single clock x, and two transitions. Its behaviour involves a cyclic execution of the

actions execute and period. Action execute corresponds to the execution of the task. It

is guarded by the timing constraint x � P to enforce execution before the next activation

of the task. Action period corresponds to the activation of the task, that is, it is executed

when x = P . Its effect is to reset the clock x so that x measures the time elapsed since the

last activation of the task. At initialisation, the value of the clock x is 0 and the control

location is q0. We assume that the task is executed with an Operating System (OS) that

provides timers and mechanisms for waiting for a timeout and resetting a timer. We also

assume that they give an exact value of physical time.

Consider a naive implementation of M (see Figure 4) as an infinite loop that executes a

block of code f() sequentially, sets a timeout at P for a timer x, waits for this timeout, and

then resets the timer x. The execution of a ‘wait for a timeout’ is implemented classically

as follows:

(1) The CPU is released to the OS by performing a context switch to let the OS execute

as long as the task is ‘asleep’.

(2) When the timer x equals the period P, an interruption is triggered and handled in

order to notify the OS that a timeout has occurred.

(3) The OS then switches the context to let the task execute.

Although the OS can be interrupted exactly when the timer timeouts, operations (2) and

(3) take time, at least several CPU cycles. Resetting the timer can also take some time. This

means that the effect of the reset on the timer x is delayed by ε > 0 time units. Typically,

ε is at least a few CPU cycles. Assuming this delay is constant, the execution period of



T. Abdellatif, J. Combaz and J. Sifakis 890

void main() {

Timer x();

while(true) {

f();

x.setTimeout(P);

x.waitTimeout();

x.reset();

}

}

1 2 3 4 5 6

ε
2ε
3ε
4ε

0

5ε

instant of the

of T
ith activation

of x

drift

x.reset()

x.waitTimeout()

x.setTimeout(P)

f()

P P PP

time
actual

4PP 2P0 3P

ε ε

task:
OS:

interrupt:

ε

f()

4ε

ε

f() f() f() f()

Fig. 4. Naive implementation and its corresponding execution.
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time

g
t

t + ε

t t + ε

a

{x}

physical

time

abstract
time

g

t t + ε

t

t + ε

a
ε

{x}

physical

time

Fig. 5. Execution based on the continuous mapping of the physical time (left) compared with

frozen clocks (right).

the periodic task becomes P + ε instead of P (see Figure 4). The difference between the

abstract time and the physical time for executing the transition period is given by

t
ε

P + ε
,

where t denotes the global physical time elapsed. It can become arbitrarily large as t tends

to +∞.

Consider an action a that resets a clock x at the global abstract time t, and assume

that the reset of x takes ε > 0 time units in the physical model, meaning that the reset of

x starts at t and completes at t+ ε. A naive approach is to continuously map the physical

time onto the value of the clock x. Since x is reset at the actual time t + ε (see Figure 5),

using this approach leads to a drift of ε between the abstract model and the physical
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model – there are approaches for analysing how clock drifts may affect properties of an

abstract model (Altisen and Tripakis 2005; Dima 2007; Wulf et al. 2005).

In our approach, it is possible to ensure a correct tracking of physical time and

completely avoid this kind of drift between abstract time and physical time. The proposed

semantics for physical models considers that the clock x is reset exactly at model time t.

This is implemented by freezing the values of the clocks during the execution of an action,

and by updating the clocks afterwards to take the action execution time into account.

That is, the clock x is considered to be reset at the model time t even if x is reset at the

actual time t + ε. The abstract time is then updated with respect to actual time at t + ε,

that is, the current value of x at the actual time t+ ε is ε, which complies with the abstract

model (see Figure 5).

2.3.2. The definition of physical models. Physical models are abstract models that have

been modified to take non-null execution times into account. They represent the behaviour

of the application software running on a platform. We consider that a physical model is

time-safe if its execution sequences are execution sequences of the corresponding abstract

model, that is, execution times are compatible with timing constraints. Furthermore, a

physical model is time-robust if reducing the execution times preserves this time-safety

property.

Since actions are timeless in abstract models, timing constraints are applied at the

instants they occur. In a physical model, the start and completion times of an action

may not coincide. We consider timing constraints to be applied to the start times of

actions. As explained above, we also assume that the clock resets associated with each

action behave exactly as if they were carried out at the action start time. This allows

us to consider timing constraints that are equalities for non-instantaneous actions. Such

constraints are useful for modelling exact synchronisation with time, for example, for

describing a periodic execution.

Definition 2.4 (physical model). Let M = (A,Q,X,−→) be an abstract model and ϕ : A→
� be an execution time function that gives for each action a its execution time ϕ(a).

The physical model Mϕ = (A,Q,X,−→, ϕ) corresponds to the abstract model M modified

so that each transition (q, a, g, r, q′) of M is decomposed into two consecutive transitions

(see Figure 6):

(1) The first transition (q, a, g, r ∪ {xa}, waita) models the beginning of the execution of

the action a. It is triggered by guard g and it resets the set of clocks r exactly as

(q, a, g, r, q′) in M. It also resets an additional clock xa, which is used for measuring

the execution time of a.

(2) The second transition (waita, enda, gϕ(a), ∅, q′) models the completion of a. It is con-

strained by gϕ(a) ≡ [xa = ϕ(a)]d, which enforces the waiting time ϕ(a) at control

location waita, which is the time elapsed during the execution of the action a.

Note that if (q, v) is a state of the abstract model, then (q, v, v′) is a state of the physical

model such that v′ is a valuation of clocks { xa | a ∈ A }. We compare the behaviour of

Mϕ from initial states of the form (q0, v0, 0) with the behaviour of M from corresponding
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q′

∅
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g
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[xa = ϕ(a)]d

Transition in M . Corresponding transitions in Mϕ.

Fig. 6. From abstract model to physical model.

initial states (q0, v0). In the above definition, an abstract model M and its corresponding

physical model Mϕ coincide if actions are timeless, that is, if ϕ = 0. In a physical model

Mϕ, every execution of an action a is followed by a wait for ϕ(a) time units, which can

be abbreviated by

(q, v)
a,ϕ(a)
−→ (q′, v[r �→ 0] + ϕ(a)).

This is equivalent to the following execution of the corresponding abstract model M:

(q, v)
a−→ (q′, v[r �→ 0])

ϕ(a)
−→ (q′, v[r �→ 0] + ϕ(a)).

Note that a time step

(q′, v[r �→ 0])
ϕ(a)
−→ (q′, v[r �→ 0] + ϕ(a))

of Mϕ may not be a time step of M if there is a transition q′
a′ ,g′ ,r′

−→ q′′ such that

urg[g′](v[r �→ 0]+ δ) and δ ∈ [0, ϕ(a)[, that is, the execution time ϕ(a) of a is greater than

the maximal waiting time allowed at state (q′, v[r �→ 0]), in other words,

ϕ(a) � wait(q′, v[r �→ 0]).

In this case, the physical model violates the timing constraints defined in the corresponding

abstract model.

We only consider execution sequences of physical models Mϕ such that the waiting

times for the actions are minimal, that is,

(q, v)
δ−→ (q, v + δ)

a,ϕ(a)
−→ (q′, (v + δ)[r �→ 0] + ϕ(a))

is an execution sequence of Mϕ if

δ = min { δ′ � 0 | g(v + δ′)}

where g is the guard of the action a at control location q (see Figure 7).

Definition 2.5 (time-safety and time-robustness). A physical model

Mϕ = (A,Q,X,−→, ϕ)
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time
waiting

0
a2

a3a1

guard of a2 guard of a3guard of a1

Fig. 7. The minimal waiting time for action execution.

Mϕ

Mϕ′

M

Mϕ

Mϕ′

M

Mϕ is time-robust. Mϕ is only time-safe.

Fig. 8. Illustration for robustness (ϕ′ < ϕ).

is time-safe if for any initial state (q0, v0), the set of the execution sequences of Mϕ is

contained in the set of the execution sequences of M. A physical model Mϕ is time-robust if

Mϕ′ is time-safe for all execution time functions ϕ′ � ϕ. An abstract model is time-robust

if all of its time-safe physical models are time-robust.

Most of the techniques for analysing the schedulability of real-time systems are based

on worst-case estimates of execution times. They rely on the assumption that the global

worst-case behaviour of a system is achieved by assuming local worst-case behaviour.

Unfortunately, this assumption is not valid for systems that are prone to timing anomalies,

that is, a faster local execution may lead to a slower global execution (Reineke et al. 2006).

A time-robust abstract model is a system without such timing anomalies, that is, if it is

time-safe for execution time function ϕ, then it is time-safe for execution time functions

less than or equal to ϕ.

Example 2.6. Consider the abstract model M given in Example 2.3 together with a family

of execution time functions ϕ such that

ϕ(a) = ϕ(b) = K

ϕ(c) = 2K

ϕ(i) = 0.

The behaviour of the corresponding physical models Mϕ from initial state (q0, 0) is

analysed below and summarised in Figure 9.
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α ϕ(α)

a K

b K

c 2K

i 0
0 10 20 30 40 50 60

K

Mϕ is time-safe (only)

Mϕ is time-safe (and time-robust)

Fig. 9. Time-safe physical models Mϕ.

— Execution sequences of Mϕ for K � 40:

For K � 40, Mϕ has two execution sequences, which are infinite repetitions of the

following sequences:

(q0, 0)
a,K
−→ (q1, K)

c,2K
−→ (q2, 3K)

i,0
−→ (q0, 0)(1)

(q0, 0)
a,K
−→ (q1, K)

50−K−→ (q1, 50)
b,K
−→ (q2, 50 + K)

50−K−→ (q2, 100)
i,0
−→ (q0, 0).(2)

These are execution sequences of M (see Example 2.3), that is, Mϕ is time-safe for

K � 40.

— Execution sequences of Mϕ for K ∈ [41, 50]:

For K ∈ [41, 50], Mϕ has execution sequences, which are repetitions of the following

sequences:

(q0, 0)
a,K
−→ (q1, K)

c,2K
−→ (q2, 3K), which leads to a deadlock(1)

(q0, 0)
a,K
−→ (q1, K)

50−K−→ (q1, 50)
b,K
−→ (q2, 50 + K)

50−K−→ (q2, 100)
i,0
−→ (q0, 0).(2)

The infinite repetition of sequence (2) is also an execution sequence of M. However,

the other execution sequences of Mϕ for K ∈ [41, 50] are finite and lead to a deadlock,

so they are not execution sequences of M since M is deadlock-free, that is, Mϕ is not

time-safe K ∈ [41, 50].

— Execution sequences of Mϕ for K ∈ [51, 60]:

For K ∈ [51, 60], Mϕ has a single execution sequence, which is an infinite repetition

of the sequence

(q0, 0)
a,K
−→ (q1, K)

b,K
−→ (q2, 2K)

i,0
−→ (q0, 0),

which is an execution sequence of M, that is Mϕ is time-safe M for K ∈ [50, 60].

However, Mϕ is not time-robust since Mϕ is not time-safe for K ∈ [41, 50].

— Execution sequences of Mϕ for K > 60:

For K > 60, Mϕ has the single execution sequence

(q0, 0)
a,K
−→ (q1, K),

which leads to a deadlock, so this is not an execution sequence of M since M is

deadlock-free, that is, Mϕ is not time-safe K > 60.
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Hence, we have shown that the abstract model M is not time-robust since it has physical

models Mϕ, K ∈ [51, 60] that are time-safe but not time-robust. However, the physical

models Mϕ for K � 40 are time-robust (see Figure 9).

Definition 2.7 (time-determinism). An abstract model is time-deterministic if all of its

guards are eager (or delayable) equalities.

Time-deterministic abstract models are such that if two execution sequences have the

same corresponding sequences of actions, then they are identical. That is, time instants

for the execution of the actions are the same. Time-deterministic abstract models are

time-robust, as shown below.

Proposition 2.8. Time-deterministic abstract models are time-robust.

To prove this, we need the following lemma.

Lemma 2.9. Given a time-deterministic abstract model M = (A,Q,X,−→) and a state

(q, v) of M, the only waiting time allowed at (q, v) is the maximal waiting time wait(q, v),

that is, for all δ ∈ [0,wait(q, v)[, no action is enabled at (q, v + δ).

Proof. Let (q, v) be a state of a time-deterministic abstract model M = (A,Q,X,−→).

Since M only contains guards that are eager (or delayable) equalities, transitions q
ai,gi,ri−→ qi,

1 � i � n, leaving q are such that the guard gi is of the form gi ≡ [xi = li]
e. Hence, we

have ∨
1�i�n

gi(v + δ) ⇐⇒
∨

1�i�n

urg[gi](v + δ)

⇐⇒ δ ∈ Δ = { δi � 0 | 1 � i � n },

where δi = li − v(xi). Applying the definition of wait(q, v) (see Section 2.2), we have

wait(q, v) = min Δ,

and for all δ ∈ [0,wait(q, v)[, the actions ai are not enabled at (q, v + δ) since δ /∈ Δ.

Note that Lemma 2.9 also holds for abstract models that only contain eager guards,

that is, such that their actions are urgent when they are enabled.

Proof of Proposition 2.8. Let M = (A,Q,X,−→) be a time-deterministic abstract model

that is time-safe for an execution time function ϕ. Consider an execution time function

ϕ′ such that ϕ′ � ϕ. We show by induction that each execution sequence of Mϕ′ is also

an execution sequence of Mϕ. By the induction hypothesis, we consider a state (q, v) of

both Mϕ′ and Mϕ, and a transition q
a,g,r
−→ q′ executed at (q, v) in Mϕ′ , that is,

Mϕ′ : (q, v)
a,ϕ′(a)
−→ (q′, v′ + ϕ′(a))

δ′−→ (q′, v′ + ϕ′(a) + δ′),

where v′ = v[r �→ 0] and δ′ is the waiting time for the execution of the next action in Mϕ′ .

Since g(v) is true, action a is also enabled in Mϕ at (q, v):

Mϕ : (q, v)
a,ϕ(a)
−→ (q′, v′ + ϕ(a))

δ−→ (q′, v′ + ϕ(a) + δ),
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where δ is the waiting time for the execution of the next action in Mϕ. As Mϕ is time-safe

and ϕ′(a) � ϕ(a), we have

ϕ′(a) � ϕ(a) � wait(q′, v′).

Using the properties of wait (see Section 2.2), we have

wait(q′, v′ + ϕ(a)) = wait(q′, v′)− ϕ(a)

wait(q′, v′ + ϕ′(a)) = wait(q′, v′)− ϕ′(a).

By application of Lemma 2.9, we obtain

δ = wait(q′, v′)− ϕ(a)

δ′ = wait(q′, v′)− ϕ′(a),

that is,

ϕ(a) + δ = ϕ′(a) + δ′.

This demonstrates that the execution of a at state (q, v) leads to the same state

(q′, v′ + ϕ′(a) + δ′) = (q′, v′ + ϕ(a) + δ)

in Mϕ and Mϕ′ before executing the next action. By induction, the execution sequences of

Mϕ′ are execution sequences of Mϕ.

In Ghosal et al. (2004), Henzinger et al. (2003) and Aussaguès and David (1998), the

execution times of actions have fixed values, which are called the logical execution times

(LETs), specified in the program. LETs define the difference between the release time and

the due time of the actions. A program behaves as if its actions consume exactly their

LETs: even if they start after their release time and complete before their due time, their

effect is visible exactly at these times. This is achieved by reading for each action its input

exactly at its release time and its output exactly at its due time. A program based on LETs

defines a time-deterministic abstract model, which is a timed automaton for which actions

occur at fixed times. This ensures time-determinism: if two execution sequences execute

the same sequence of actions, then corresponding actions occur at the same time instants.

When execution times are less than the LETs, the abstract model and its corresponding

physical model define exactly the same execution sequences, that is, the behaviour of the

program is platform independent.

Example 2.10. Consider the time-deterministic abstract model M given in Figure 10

obtained from the abstract model of Example 2.3. The execution sequences of M are

infinite repetitions of the following sequence:

(q0, 0)
a−→ (q1, 0)

50−→ (q1, 50)
c−→ (q2, 50)

70−→ (q2, 120)
i−→ (q0, 0).

The physical models Mϕ corresponding to M are time-safe if and only if

ϕ(a) � 50

ϕ(c) � 70

ϕ(i) = 0.
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q0

q1

q2

a
[x = 0]d

∅

[x = 60]d
b

∅ ∅
[x = 50]d
c

i
[x = 120]d

{x}

Fig. 10. Time-deterministic abstract model M.

Note that for

51 � ϕ(a) � 60

ϕ(b) � 60

ϕ(i) = 0,

Mϕ remains deadlock-free but it is not time-safe.

Note that time-determinism is a sufficient but is not a necessary condition for time-

robustness – the following example shows a time-robust abstract model that is not

time-deterministic.

Example 2.11. Consider the abstract model M given in Figure 11, which is obtained

from the abstract model of Example 2.3 by replacing the guard [50 � x � 60]d of b

by [0 � x � 50]d. Execution sequences of M are infinite repetitions of sequence of the

following form:

(q0, 0)
a−→ (q1, 0)

δ1−→ (q1, δ1)
b−→ (q2, δ1)

δ2−→ (q2, δ1 + δ2)
i−→ (q0, 0)(1)

where

0 � δ1 � 50

100− δ1 � δ2 � 120− δ1

(q0, 0)
a−→ (q1, 0)

δ1−→ (q1, δ1)
c−→ (q2, δ1)

δ2−→ (q2, δ1 + δ2)
i−→ (q0, 0)(2)

where

0 � δ1 � 50

100− δ1 � δ2 � 120− δ1.

Consider an execution time function ϕ for which Mϕ is time-safe. If ϕ(a) > 50, then

the physical model Mϕ deadlocks at state (q1, ϕ(a)) after the execution of a. Since M
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q0

q1

q2

a
[0 ≤ x ≤ +∞]e

∅

[0 ≤ x ≤ 50]d
b

∅ ∅
[0 ≤ x ≤ 50]l
c

i
[100 ≤ x ≤ 120]d

{x}

Fig. 11. Time-robust abstract model M.

is deadlock-free and Mϕ is time-safe, Mϕ is also deadlock-free. As a result, we have

ϕ(a) � 50. Similarly, we have

ϕ(a) + ϕ(b) � 120

ϕ(a) + ϕ(c) � 120

ϕ(i) = 0.

Conversely, consider the set Φ of execution time functions defined by

Φ = { ϕ : A→ � | ϕ(a) � 50 ∧ ϕ(a) + ϕ(b) � 120 ∧ ϕ(a) + ϕ(c) � 120 ∧ ϕ(i) = 0 }.

It is easy to show that Mϕ is time-safe for all execution time functions ϕ of Φ. Moreover,

Φ statisfies ϕ ∈ Φ⇒ ϕ′ ∈ Φ for all ϕ′ < ϕ. This demonstrates time-robustness for M.

Definition 2.12 (action-determinism). An abstract model is action-deterministic if there is

at most one transition leaving each control location.

If a time-deterministic abstract model is also action-deterministic, it has a single

execution sequence from a given initial state (q0, v0). Such models were considered in

Ghosal et al. (2004), Henzinger et al. (2003) and Aussaguès and David (1998). Their time-

robustness allows us to check time-safety for worst-case execution times only. In addition,

for these systems, checking time-safety boils down to checking deadlock-freedom, as shown

in the following proposition.

Proposition 2.13. If M is an abstract model that is action-deterministic, deadlock-free and

contains only delayable guards, then a physical model Mϕ is time-safe if and only if it is

deadlock-free.
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Proof. Let M = (A,Q,X,−→) be a deadlock-free action-deterministic abstract model

containing only delayable guards. We will show that Mϕ is time-safe if and only if Mϕ is

deadlock-free:

— Mϕ is time-safe ⇒ Mϕ is deadlock-free:

If the physical model Mϕ is time-safe, its execution sequences are execution sequences

of the deadlock-free abstract model M, that is, they are deadlock-free.

— Mϕ is deadlock-free ⇒ Mϕ is time-safe:

We prove by contradiction that Mϕ is time-safe if Mϕ is deadlock-free. Assume that

time-safety is violated for an action a at a state (q, v) of an execution sequence of Mϕ,

that is,

(q, v)
a,ϕ(a)
−→ (q′, v[r �→ 0] + ϕ(a))

such that a transition q′
a′ ,g′ ,r′

−→ q′′ satisfies

urg[g′](v[r �→ 0] + δ),

for δ ∈ [0, ϕ(a)[, that is,

ϕ(a) > wait(q′, v[r �→ 0]).

Since M is action-deterministic, q′
a′ ,g′ ,r′

−→ q′′ is the only transition issued from q′, and

its guard g′ is a delayable conjunction of intervals, that is, g′ is of the form

g′ ≡
[ ∧

1�i�n

[li � xi � ui]
]d

.

Consequently,

urg[g′](v[r �→ 0] + δ)⇒ ∀δ′ > δ . ¬g′(v[r �→ 0] + δ′),

that is, no action can be executed from

(q′, v[r �→ 0] + ϕ(a)).

This establishes that Mϕ has a deadlock at state (q′, v[r �→ 0] + ϕ(a)).

Example 2.14. In this example, we modify the time-deterministic abstract model given in

Example 2.10 so that it is also action-deterministic (see Figure 12). Its execution sequence

is the infinite repetition of the sequence

(q0, 0)
a−→ (q1, 0)

50−→ (q1, 50)
c−→ (q2, 50)

70−→ (q2, 120)
i−→ (q0, 0).

The corresponding physical model Mϕ is time-safe if and only if

ϕ(a) � 50

ϕ(c) � 70

ϕ(i) = 0,

and deadlocks otherwise.
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q0

q1

q2

a
[x = 0]d

∅
i
[x = 120]d

{x}

∅
[x = 50]d
c

Fig. 12. Deterministic abstract model M.

3. Implementation method

In this section we will use the concepts and definitions of the previous section to define

an implementation method for a given physical model. If the model is robust, the

implementation is time-safe. Otherwise, the method detects violations of time-safety

and stops execution. We consider the application software to be a set of interacting

components. Each component is represented by an abstract model. Thus, the abstract

model M corresponding to the application is the parallel composition of the timed

automata representing the components.

Given a physical model Mϕ corresponding to the abstract model M, the implement-

ation method defines a real-time execution engine that executes the interactions of the

components by taking into account their timing constraints. We prove that the method is

correct in two steps:

(1) We define an execution engine for the abstract model M and show that it correctly

implements its semantics.

(2) We define a real-time execution engine and show that it correctly implements the

semantics of Mϕ.

3.1. Execution engine for abstract models

Definition 3.1 (composition of abstract models). Let Mi = (Ai,Qi,Xi,−→i), for 1 � i � n,

be a set of abstract models with disjoint sets of actions and clocks, that is, for all i �= j,

we have

Ai ∩ Aj = ∅
Xi ∩ Xj = ∅.

A set of interactions γ is a subset of 2A, where A =
⋃n

i=1 Ai, such that any interaction

a ∈ γ contains at most one action of each component Mi, that is, a = { ai | i ∈ I } where
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Fig. 13. Abstract model execution engine.

ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. We define the composition of the abstract models Mi as the

abstract model M = (A,Q,X,−→γ) over the set of actions γ as follows:

— Q = Q1 × Q2 × . . .× Qn

— X = X1 ∪ X2 ∪ . . . ∪ Xn

— For a = { ai | i ∈ I } ∈ γ, we have

(q1, q2, . . . , qn)
a,g,r
−→γ (q′1, q

′
2, . . . , q

′
n)

in M if and only if

g =
∧
i∈I

gi

r =
⋃
i∈I

ri

qi
ai,gi,ri−→ q′i in Mi for all i ∈ I

q′i = qi for all i /∈ I.

The composition M = (A,Q,X,−→γ) of abstract models Mi, 1 � i � n, corresponds to

a general notion of product for the timed automata Mi. We define an execution engine

that computes sequences of interactions by applying the above operational semantics rule

(see Figure 13). For given states (qi, vi) of the components Mi and corresponding lists of

transitions { qi
aj ,gj ,rj−→ q′j }j leaving qi, the execution engine computes the set of enabled

interactions, chooses one (enabled) interaction using a real-time scheduling policy and

executes it.

To check the enabledness of interactions, the execution engine expresses the timing

constraints involving local clocks of components in terms of a single clock t measuring

the absolute time elapsed, that is, t is never reset. For this, we use a valuation w : X→ �
to store the absolute time w(x) of the last reset of each clock x with respect to the clock t.

The valuation v of the clocks X can be computed from the current value of t and w using

the equality v = t−w. Thus, the execution engine considers states of the form s = (q, w, t)

where:
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— q = (q1, q2, . . . , qn) ∈ Q is a control location of M;

— w : X→ � is valuation for clocks representing their reset times; and

— t ∈ � is the value of the current (absolute) time.

We rewrite each atomic expression l � x � u involved in a guard using the global clock

t and reset times w, that is,

l � x � u ≡ l + w(x) � t � u + w(x).

This allows us to reduce the conjunction of guards from synchronising components into

a guard of the form
∧
j

[
lj � t � uj

]τj =
[
(maxj lj) � t � (minj uj)

]max τj
.

Thus, the guard g associated with an interaction a at a given state s = (q, w, t) can be put

in the form

g = [l � t � u]τ.

We associate with an interaction a such that its guard g = [l � t � u]τ satisfies l � u,

its next activation time nexts(a) and its next deadline deadlines(a). Values nexts(a) and

deadlines(a) are computed from g = [l � t � u]τ as follows:

nexts(a) =

{
max { t, l } if t � u

+∞ otherwise,

deadlines(a) =

⎧⎪⎪⎨
⎪⎪⎩

u if t � u ∧ τ = d

l if t < l ∧ τ = e

t if t ∈ [l, u] ∧ τ = e

+∞ otherwise.

Note that we have

nexts(a) � deadlines(a).

Given a state

s = (q, w, t)

q = (q1, . . . , qn),

the execution engine computes the next interaction to be executed as follows.

(1) It first computes the set of enabled interactions γs ⊆ γ at state s = (q, w, t) from given

sets of transitions leaving qi for each component Mi. According to Definition 3.1, An

interaction

a = { ai | i ∈ I } ∈ γ

is enabled at state s if

(q1, . . . , qn)
a,g,r
−→γ (q′1, . . . , q

′
n)

and

g = [l � t � u]τ
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satisfies l � u. According to Definition 3.1, g is the conjunction of the guards gi of

actions ai and r is the union of the resets ri of actions ai, that is,

g =
∧
i∈I

gi

r =
⋃
i∈I

ri

qi
ai,gi,ri−→ q′i in Mi for all i ∈ I

q′i = qi for all i /∈ I.

(2) It chooses an interaction

a = { ai | i ∈ I } ∈ γs

enabled at state s = (q, w, t), that is, such that there exists a time instant t′ � t at

which the guard a holds (that is, nexts(a) < +∞), and no timing constraint is violated,

that is,

nexts(a) � D = mina∈γs deadlines(a).

The choice of a depends on the real-time scheduling policy used. For instance, the

EDF (Earliest Deadline First) scheduling policy can be used by taking an interaction

a such that deadlines(a) = D. It executes a with minimal waiting time, that is, at

time instant nexts(a). The execution of a involves the execution of all actions ai,

i ∈ I , followed by the computation of a new valuation w and the update of control

locations.

Algorithm 1 gives an implementation of the execution engine for abstract composite

models. Basically, it consists of an infinite loop that first computes enabled interactions

at current state s of the model (line 1). It then stops if no interaction is possible from s

(that is, deadlock) at line 1. Otherwise, it chooses an interaction a (line 1), and executes a

with minimal waiting time (lines 1 and 1). Finally, the state s is updated in order to take

into account the execution of a (lines 1 and 1).

3.2. Real-time execution engine

Definition 3.2 (composition of physical models). Consider abstract models Mi, 1 � i � n,

and corresponding physical models Mi
ϕi

= (Ai,Qi,Xi,−→i, ϕi), with disjoint sets of actions

and clocks.

Given a set of interactions γ, and an associative and commutative operator ⊕ : �×�→
�, the composition of physical models Mi

ϕi
is the physical model Mϕ corresponding to

the abstract model M that is the composition of Mi, 1 � i � n, with the execution time

function ϕ : γ → � such that ϕ(a) =
⊕

i∈I ϕi(ai) for interactions a = { ai | i ∈ I } ∈ γ,

ai ∈ Ai.

This definition is parameterised by an operator ⊕ used to compute the execution time

ϕ(a) of an interaction a from execution times ϕ(ai) of the actions ai involved in a. The

choice of this operator depends on the parallelism in the execution of components. For



T. Abdellatif, J. Combaz and J. Sifakis 904

Algorithm 1 Abstract model execution engine

Require: abstract models Mi = (Qi,Xi,−→i), 1 � i � n, initial control location (q1
0 , . . . , q

n
0),

set of interactions γ

1: s = (q1, . . . , qn, w, t) ← (q1
0 , . . . , q

n
0 , 0, 0) // initialisation

2: loop

3: γs = EnabledInteractions(s)

4:

5: if ∃a ∈ γs . nexts(a) < +∞ then

6: D ← mina∈γs deadlines(a) // next deadline

7: a = { ai | i ∈ I } ← RealT imeScheduler(γs)

8:

9: t ← nexts(a) // consider minimal waiting time

10:

11: for all i ∈ I do

12: Execute(ai) // execute involved component

13: w ← w[ri �→ t] // reset clocks

14: qi ← q′i // update control location

15: end for

16: else

17: exit(DEADLOCK)

18: end if

19: end loop

instance, for a single processor platform (that is, with sequential execution of actions), ⊕
is addition. If all components are executed in parallel, ⊕ is max.

As a rule, it is difficult to obtain execution times for the actions (that is, the blocks of

code) of a piece of application software. Execution times vary a lot from one execution

to another, depending on the contents of the input data and the dynamic state of

the hardware platform (pipeline, caches, and so on). However, there are techniques for

computing the upper bounds of the execution time of a block of code, that is, estimates

of the worst-case execution times (Wilhelm et al. 2010). Given abstract models Mi, and

functions ϕi specifying the WCETs for the actions of Mi, the abstract composition M can

be safely implemented if the physical composition Mϕ (defined above) is time-robust.

We have defined and implemented a real-time execution engine that does not need any

a priori knowledge of execution time functions ϕi. It ensures the real-time execution of a

component-based application on the target platform, and stops if the implementation is

not time-safe (that is, a deadline is missed during the execution). Algorithm 2 describes

an implementation of the real-time execution engine for a single processor platform. It

differs from Algorithm 1 at lines 7, 13 and 24. It updates the current value of abstract

time t with respect to the current value of physical time tr (line 7) to take account of the

execution time of interactions for the execution platform under consideration. It stops if

time-safety is violated, that is, if t is greater than the next deadline D (line 24). It also
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Algorithm 2 Real-time execution engine

Require: abstract models Mi = (Qi,Xi,−→i), 1 � i � n, initial control location (q1
0 , . . . , q

n
0),

interactions γ

1: s = (q1, . . . , qn, w, t) ← (q1
0 , . . . , q

n
0 , 0, 0) // initialisation

2: loop

3: γs = EnabledInteractions(s)

4:

5: if ∃a ∈ γs . nexts(a) < +∞ then

6: D ← mina∈γs deadlines(a) // next deadline

7: t ← tr // update engine clock w.r.t. actual time

8: if t � D then

9: if ∃a ∈ γs . nexts(a) < +∞ then

10: a = { ai | i ∈ I } ← RealT imeScheduler(γs)

11:

12: t ← nexts(a) // update engine clock

13: wait tr � t // real-time wait

14:

15: for all i ∈ I do

16: Execute(ai) // execute involved component

17: w ← w[ri �→ t] // reset clocks

18: qi ← q′i // update control location

19: end for

20: else

21: exit(DEADLOCK)

22: end if

23: else

24: exit(DEADLINE MISS)

25: end if

26: else

27: exit(DEADLOCK)

28: end if

29: end loop

waits for the physical time to reach the next activation time (nexts(a)) of the chosen

interactions a (line 13).

4. Case studies

We have implemented the proposed method in the BIP component framework (Basu

et al. 2006). This implementation consists of RT-BIP, which is an extension of the BIP

language for modelling real-time systems together with a real-time engine used for their

execution. The real-time engine computes the schedules meeting the timing constraints of

the application, depending on the actual time provided by the platform’s real-time clock.
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Fig. 14. Real-time execution engine.

In the following sections, we present two case studies. The first is a module for a robotics

application for which we show the benefits of using RT-BIP in terms of CPU utilisation

and the simplification of the corresponding model compared with an implementation

using BIP, where time progresses by the synchronous execution of ticks. In the second

case study, we investigate the time-safety and time-robustness for a non-trivial multimedia

application – an adaptive MPEG video encoder modelled in BIP. We will show that the

application is not time-robust and explain how time-robustness can be enforced using two

different methods.

4.1. The BIP famework

BIP (Behaviour Interaction Priority) is a framework for building systems consisting of

heterogeneous components. A component only has local data, and its interface is given by

a set of communication ports, which are action names. The behaviour of a component is

given by an automaton whose transitions are labelled by ports and can execute C++ code

(that is, local data transformations). Connectors between the components’ communication

ports define a set of enabled interactions, which are synchronisations between components.

Interactions are obtained by combining two types of synchronisation: rendezvous and

broadcast. The execution of interactions may involve the transfer of data between the

synchronising components. Priority is a mechanism for conflict resolution that allows the

direct expression of the scheduling policies between interactions. Maximal progress is

usually considered to be the default priority relation. It favours the execution of larger

interactions (in the sense of the inclusion of sets of ports). Components, connectors and

priorities are used to build new (compound ) components hierarchically.
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BIP models can be compiled to C++ code. The generated code is executed by a

dedicated engine implementing the semantics of BIP. We have extended the BIP compiler

for RT-BIP and implemented a real-time engine for its execution based on the results

given in Section 3.

4.2. Antenna module for the Dala rover

The functional level of the Dala rover (Bensalem et al. 2009c) includes the robot’s

basic built-in actions and perception capacities (for example, image processing, obstacle

avoidance and motion planning). These are encapsulated in controllable communicating

modules. Each module provides a set of services, which can be invoked by the decisional

level. The services are managed by execution tasks, which are triggered periodically for

launching and executing activities associated with the services. Each module may export

posters for communicating with other modules. The posters store data produced by the

module.

We have conducted experiments on Dala’s Antenna module, which is responsible for

communication with an orbiter, and provides the following services:

— The Init service initialises the communication. It fixes the time window for the

communication between the application and the orbiter, given as parameter.

— The Communication service starts the communication with the orbiter. It has a

parameter defining the duration of the communication.

— The StopCom service terminates the on-going communication between the application

and the orbiter.

BIP implementations are obtained by translating an Antenna specification (Bensalem

et al. 2009a; Bensalem et al. 2009b), which was used by LAAS in implementing the

robot and corresponds to 10000 lines of C code. We have considered two Antenna

implementations in BIP.

The first implementation is derived using the BIP language, which does not support the

real-time extension proposed in this paper. In this implementation, time is measured using

ticks. The Timer components implementing periodic activations are strongly synchronised

using a MasterTimer component through the tick ports (see Figure 15). MasterTimer

ensures that there are at least 10 ms between two consecutive synchronisations of the Timer

components. This is achieved by calling the platform’s sleep primitives in MasterTimer

when executing a tick. Timer components trigger other components at fixed periods,

which are given as parameters in terms of ticks. The periodic execution of Timer is

enforced by a guard involving an integer variable Counter incremented at each tick. The

Age component measures the freshness of Poster with a period of 5 ticks (50 ms). The

MessageBox component checks for the presence of requests using a period of 10 ticks

(100 ms). The Scheduler component executes activities after each period of 60 ticks

(600 ms).

The second implementation is based on the real-time engine proposed in this paper. It

is derived from an RT-BIP model and does not need MasterTimer and Timer components

(see Figure 16). Instead, it uses clocks:
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Fig. 15. (Colour online) Antenna module implementing timing constraints using ticks.
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Fig. 16. (Colour online) Antenna module using the real-time execution engine.

(1) a clock Ageclk in the Age component measuring the freshness of Poster;

(2) a clock Mclk in the MessageBox component is used to enforce a period of 100 ms;

(3) a clock Pclk in the Scheduler component is used to enforce a period of 600 ms.

4.2.1. Comparison of the implementations. On comparing the performance of the two

implementations, we found that CPU utilisation is almost 3 times higher for the first

implementation compared with the second one (see Table 1). The main reason is that the

BIP engine executes ticks every 10 ms, even in states where the application is waiting for the

enabledness of a guard or the arrival of a message, whereas the real-time engine is sleeping

(processor is idle) for the same states. The latter directly schedules the interactions at

time instants meeting the timing constraints, avoiding the need for strong synchronisation

between the components when they execute a tick.

Table 1. CPU utilisation for antenna.

real(s) user(s) sys(s) CPU utilisation(%)

1st implementation (using ticks) 22.6 0.2 0.1 1.32

2nd implementation (using the real-time engine) 22.6 0.05 0.08 0.45
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Fig. 17. Adaptive video encoder architecture.

The implementation based on ticks suffers from some additional limitations. First,

executing the tick at a given period P requires the execution times of interactions to be

bounded by P , which is a strong and restrictive assumption. Second, each execution of

tick involves a strong synchronisation of all components, and the resulting model may

easily deadlock: a local deadlock of a single component leads to a global deadlock of the

system.

4.3. Adaptive video encoder

In our second case study, we consider an adaptive MPEG video encoder componentised

in BIP (Bozga et al. 2009) (15000 lines of code) and running on an STm8010 board

from STMicroelectronics. It takes streams of frames of 320 × 144 pixels as an input,

and computes the corresponding encoded frames (see Figure 17). Since input frames are

produced by a camera at a rate of 10 frames/s (that is, every 100 ms), encoding each

frame must be done within D = 100 ms.

4.3.1. Description of the application. The adaptive MPEG video encoder consists of two

main components:

— The Encoder corresponds to the functional part of the video encoder, that is, it

involves no time constraint. Input frames are treated by GrabFrame. Each frame is

split into N = 180 macroblocks of 16 × 16 pixels, which are individually encoded by

EncodeMB for given quality levels qi ∈ Q = { 0, 1, . . . , 8 }. The higher the quality levels

are, the better the video quality. A bitstream corresponding to the encoded frames is

produced by OutputFrame.

— The Controller is a controller for Encoder, which chooses the quality levels qi for

encoding macroblocks so as not to exceed the time budget of D = 100 ms for

encoding a frame. To keep the overhead due to the computation of Controller low,

the quality levels are only computed every 20 macroblocks, that is, there are 9 control

points in a frame.

The Encoder and Controller components interact as follows. At each control point

i ∈ { 0, . . . , 8 }, Controller triggers Encoder to encode the next 20 macroblocks at a

quality level qi. The computation of qi is based on the time t elapsed since the beginning
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Table 2. Estimates of average execution times (ms).

q 0 1 2 3 4 5 6 7 8

Cq 4 4.6 5.4 6 8.2 10 12 14.4 16
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Fig. 18. Controller component.

of the encoding of the current frame and estimates of the average execution times Cq for

encoding 20 macroblocks at quality level q. Average execution times have been obtained

by profiling techniques using different input streams of frames (see Table 2). Cq increases

with the quality level q. A quality level q is only enabled at control point i if

t + (9− i)Cq � D,

where (9 − i)Cq is an estimate of the average execution time for encoding the remaining

macroblocks of the current frame. This condition is equivalent to the guard

gq(i) ≡ [t � D − (9− i)Cq]
d.

In order to maximise video quality, we give higher priority to higher quality levels, that

is, for all q ∈ {0, . . . , 7} we have

Enc(q + 1) > Enc(q)

(see Figure 18). The chosen quality level qi is transmitted by Controller to Encoder

through the port Enc. After encoding the last 20 macroblocks (that is, i = 9), Controller

waits for the next frame, that is, for t = D.

4.3.2. Time-safety. As execution times of the video encoder may vary a lot from one

frame to another (Isovic et al. 2003), we studied time-safety for a family of execution

time functions Kϕ, where the parameter K ranges in [0.001, 2], and where ϕ denotes an

execution time function corresponding to the actual execution of the video encoder on

the target platform for a particular frame.

Figure 19 shows that the average quality levels chosen for different values of the

parameter K increase as K decreases. Time-safety is violated for K = 1.7 and K = 1.4,
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even if time-safety is guaranteed for K ∈ [0.9, 1.3] (that is, lower execution times). That is,

the application is not time-robust. This is due to the fact that the controller uses estimates

of execution times that can be different from the actual execution times. This difference

depends on the chosen quality levels, that is, on the value of K . Therefore, increasing the

platform speed (that is, reducing K) does not guarantee time-safety: time-safety violations

occur for K = 0.7 and K = 0.8 (see Figure 19).

When time-safety is violated by the video encoder, the current frame is skipped, which

is equivalent to encoding all its macroblocks at quality level 0. This leads to a drastic

degradation of the video quality.

Time-robustness is a desirable property for an application since it allows greater

predictability of its behaviour, that is, a time-robust application is time-safe for any

execution times provided it is time-safe for the worst-case execution times. We will now

consider two methods of enforcing time-robustness for the adaptive video encoder.

4.3.3. Enforcing time-robustness by time-determinism. As explained in Proposition 2.8,

time-robustness can be guaranteed by enforcing time-determinism. This can be achieved

by modifying all the inequalities involved in guards gq(i) of Controller into delayable

equalities

g′q(i) ≡ [t = D − (9− i)Cq]
d.

Using the g′q(i) equalities instead of the gq(i) inequalities for Controller leads to the

following execution. In the intial state (ENCODE, 0), Controller waits for the enabledness

of a transition issued from ENCODE. As D − (9 − i)Cq is minimal for q = 8, Controller

executes action Enc(8) after waiting for D − 9C8. Actions Enc(0), Enc(1), . . . , Enc(7)

cannot be chosen from the initial state since Enc(8) is urgent at D − 9C8, that is, the

chosen quality level at the first iteration is q0 = 8. This leads to the control location LOOP

at which only Next20MBs is enabled when t reaches D− (9−1)C0, leading back to control

location ENCODE with t = D − (9− 1)C0. That is, only the minimal quality level can be
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chosen (that is, q1 = 0). Similarly, the minimal quality level is chosen for the remaining

iterations (that is, for i > 1, qi = 0).

The time-deterministic video encoder chooses the same quality levels (that is, q0 = 8,

qi = 0 for i > 0) for all considered values of K , that is, there is no adaptation of the

quality levels with respect to actual execution times Kϕ. Time-robustness leads to a severe

reduction in the quality of the video, as shown in Figure 19.

4.3.4. Enforcing time-robustness using WCETs. Time-robustness can also be achieved by

enforcing time-safety for the component Controller using worst-case execution times

(WCETs) Cwc
q , as explained in Combaz et al. (2008). Note that these values satisfy

Cq � Cwc
q . The principle is to strengthen guards gq(i) for transitions based on a WCET

analysis of the controlled system. Given a quality level q chosen for an iteration i, an

estimate of the worst-case execution time of the controlled video encoder for encoding the

remaining macroblocks of the current frame is Cwc
q + (8− 1)Cwc

0 . That is, we consider the

worst-case estimates at quality level q for the next iteration, and the worst-case estimates

at minimal quality level q0 for the remaining iterations. Following Combaz et al. (2008),

we consider a controller using guards

g′′q (i) ≡ t � D −max { (9− i)Cq , (Cwc
q + (8− 1)Cwc

0 ) }

that combine both estimates of worst-case execution times and average execution times.

These ensure that there is always a strategy for completing before the deadline – in the

worst case, the minimal quality level is chosen, even if actual execution times are equal to

estimates of the worst-case execution times.

As shown in Figure 19, this conservative approach guarantees time-robustness with a

slight reduction in the chosen quality levels with respect to the ones chosen by the initial

video encoder. This is due to the use of stronger guards g′′q (i), which are more conservative.

This is a better approach for enforcing time-robustness than using time-determinism.

5. Conclusions

In this paper, we have presented an implementation method for real-time applications.

The method is new and innovative in several respects:

— It does not suffer the limitations of existing methods regarding the behaviour of the

components or the type of timing constraints. The real-time applications considered

include not only periodic components with deadlines but also components with non-

deterministic behaviour and actions subject to interval timing constraints.

— It is based on a formally defined relation between application software written in

high-level languages with atomic and timeless actions and its execution on a given

platform. The relation is formalised using two models:

(1) abstract models, which describe the behaviour of the application software as well

as the timing constraints on its actions;

(2) physical models, which are abstract models equipped with an execution time

function specifying the WCETs for the actions of the abstract model running on

a given platform.
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Time-safety is a property of physical models guaranteeing that they respect timing

constraints. Time-robust physical models have the property of remaining time-safe

when the execution times of their actions decrease. Non-robustness is a timing anomaly

that appears in time non-deterministic systems.

— It proposes a concrete implementation method using a real-time execution engine

that faithfully implements physical models. That is, if a physical model defined from

an abstract model and a target platform is time-robust, the engine coordinates the

execution of the application software so that it meets the real-time constraints. The

real-time execution engine is correct-by-construction. It executes an algorithm that

directly implements the operational semantics of the physical model.

The method generalises existing techniques: in particular, those based on LETs. These

techniques consider fixed LETs for actions, that is, time-deterministic abstract models.

In addition, their models are action-deterministic, that is, only one action is enabled

in a given state. For these models, time-robustness boils down to deadlock-freedom for

WCETs, as shown in Proposition 2.13.

To the best of our knowledge, the concept of time-robustness is new. It can be used to

characterise timing anomalies caused by time non-determinism. These timing anomalies

have different causes in principle from timing anomalies observed for WCETs (Reineke

et al. 2006).

Results on time-safety and time-robustness allow a deeper understanding of the causes

of anomalies. They argue for time-determinism as a means of achieving time-robustness.

An interesting question is the loss in performance when the interval constraints in a model

are replaced by equalities on their upper bound. Time-robustness is then achieved through

time-determinisation, but entails some performance penalty. We are currently studying

the performance trade-offs for transformations guaranteeing time-robustness.
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