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Abstract. The thermodynamics of an electrically charged, multicomponent fluid with spontaneous electric
and magnetic dipoles is analysed in the presence of electromagnetic fields. Taking into account the chemical
composition of the current densities and stress tensors leads to three types of irreversible terms: scalars,
vectors and pseudo-vectors. The scalar terms account for chemical reactivities, the vectorial terms account
for transport and the pseudo-vectorial terms account for relaxation. The linear phenomenological relations,
derived from the irreversible evolution, describe notably the Lehmann and electric Lehmann effects, the
Debye relaxation of polar molecules and the Landau-Lifshitz relaxation of the magnetisation. This formal-
ism accounts for the thermal and electric magnetisation accumulations and magnetisation waves. It also
predicts that a temperature gradient affects the dynamics of magnetic vortices and drives magnetisation

waves.

1 Introduction

Spin caloritronics is mainly focused on studying the ef-
fects of a temperature gradient on the time evolution of
the distribution of the local spin average of a physical
system [1]. In many experimental situations, the system
can be treated as a classical continuum with magnetisa-
tion on the scale of interest where the quantum fluctua-
tions average out and the underlying microscopic struc-
ture is smoothed out. In such as case, the local system
is sufficiently large from a microscopic perspective to be
treated classically, but it is sufficiently small from a macro-
scopic perspective to be considered as infinitesimal. In
order to understand the interplay between the magneti-
sation and a temperature gradient, a consistent classical
thermodynamic theory of continuous media with magneti-
sation needs to be established. It is of interest to include
also the electric counterpart of the magnetisation, that is
the electric polarisation. The thermodynamics of continu-
ous media is presented in details in textbooks by Gurtin
et al. [2], Wilmanski [3] and Silhavy [4]. In order to ac-
count for the intrinsic rotation of the matter, we need to
introduce explicitly an intrinsic angular velocity. The in-
troduction of intrinsic rotations into the thermodynamics
of continuous media was discussed notably by Miiller [5]
and Muschik et al. [6,7]. The electrodynamics of an electri-
cally charged continuous medium interacting with electro-
magtnetic fields is detailled in textbooks by Eringen and
Maugin [8] and O’Dell [9]. Some pioneering work on the
non-equilibrium thermodynamics of a continuous medium
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with electromagnetic fields was carried out by Liu and
Miiller [10], Hutter [11] and de Groot and Mazur [12].
In the present work, we follow essentially the approach
of Stueckelberg detailed in reference [13] and extend his
formalism to describe locally the thermodynamics of an
electrically charged continuous medium with spontaneous
electric and magnetic dipoles in the presence of electro-
magnetic fields.

In order to be able to define intensive fields such as the
temperature, the chemical potential, the electrostatic po-
tential, the electric field and the magnetic induction field,
we require the local infinitesimal system to be homoge-
neous, uniform and at equilibrium.

We introduce phenomenological relations that express,
in terms of the chemical constituents of the continuous
medium, the mass density, the electric charge density, the
intrinsic angular mass density, the electric polarisation
and magnetisation, the momentum and the intrinsic an-
gular momentum. Using these phenomenological relations,
we express the electric polarisation and magnetisation cur-
rent tensors as well as the stress and angular stress ten-
sors in terms of the chemical current densities. We show
that by expressing the state fields, such as the electric
polarisation and the magnetisation, and the dynamical
fields, such as the momentum density and the intrinsic
angular momentum density, in terms of the different ele-
mentary constituents of the medium, three types of irre-
versible terms appear. First, there are scalar terms that ac-
count for the chemical reactivities and are expressed as the
product between the chemical reaction rate densities and
the chemical affinities. Second, there are vectorial terms
that account for the transport and are expressed as the
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dot product between the current densities and the forces.
Third, there are pseudo-vectorial terms that account for
the relaxation and are expressed as the dot product be-
tween the intrinsic rotation rate densities and the intrinsic
torques.

To illustrate our formalism, we derive explicit ex-
pressions for the irreversible relations characterising the
Lehmann and electric Lehmann effects, and the relax-
ation of the electric and magnetic dipoles. Furthermore,
we show how this formalism accounts for the thermal and
electric magnetisation accumulations and magnetisation
waves. We also predict how a temperature gradient affects
the dynamics of magnetic vortices and drives magnetisa-
tion waves.

The structure of this publication is the following. In
Section 2, we define the continuity equations, which de-
scribe the local time evolution for the material state vari-
ables. Then, we express the time evolution equations in
terms of the different chemical constituents. In Section 3,
using the fact that the energy is a state function, we com-
bine the time evolution equations for the internal energy,
the entropy and the other extensive material state vari-
ables. This ensures the local compatibility of the first
and second laws of thermodynamics with the laws of me-
chanics. Through symmetry arguments, we establish the
thermostatic, the reversible and irreversible thermody-
namic equations. Finally, in Section 4, we establish the
irreversible thermodynamic phenomenology and describe
some physical phenomena to illustrate our formalism, with
a particular emphasis on spintronics.

2 Thermodynamic description
2.1 Continuity equations

The state of a continuous medium is defined by a set of
matter state variables. The local state of a continuous
medium is defined by a set of matter state fields that are
function of the space and time coordinates. To keep the
notation concise, we do not explicitly write the space and
time dependence of the state fields. The local thermody-
namic state of a classical electrically charged continuous
medium consisting of N chemical substances with electric
polarisation and magnetisation interacting with electro-
magnetic fields is determined by the following state fields:

— the entropy density field s;

— the number density fields n 4 of N chemical substances,
where A € {1,...,N};

— the electric charge density field g;

— the spontaneous electric polarisation field P;

— the spontaneous magnetisation field M;

— the velocity field v;

— the intrinsic angular velocity field w.

It is important to stress that the system does not include
the electromagnetic fields in the vacuum, but only their
interaction with the matter fields. Thus, the state fields g,
P and M, accounting for the electromagnetic properties
of the matter, are purely matter fields, in contrast to our
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previous work [14,15] where the electric displacement field
D and the magnetic induction field B were accounting for
the electromagnetic properties of the matter and of the
electromagnetic fields in the vacuum.

Moreover, in this publication, we restrict our analysis
to a system with spontaneous electric polarisation P and
magnetisation M, whereas in our former work [14,15], we
considered only a system with induced electric polarisa-
tion and magnetisation.

The classical time evolution of every extensive phys-
ical property in a local infinitesimal system is expressed
by a continuity equation, which is a local detailed balance
equation. In this publication, we shall refer to the conti-
nuity equations expressed in terms of the material time
derivative as the material continuity equations.

The material continuity equation for an extensive
scalar property F' is given by reference [14],

F+(V-v)f+V i =ps, (1)

where f is the material time derivative of the scalar den-
sity f, js is the vectorial diffusive current density and py
is the scalar source density of F. Note that the frame-
independent material time derivative operator is related
to the partial time derivative operator by,

The material continuity equation for an extensive vectorial
property F is given by [14],

f+(V-v)f+V jr =pr, (2)

where f is the material time derivative of the vectorial
density f, j¢ is the rank-2 tensorial diffusive current density
and pr is the vectorial source density of F.
The material continuity equation (1) for the entropy
yields,
5+(V'V)3+V'js=ps>0» (3)

where s is the entropy density, js is the diffusive entropy
current density and p; is the entropy source density that is
positive-definite in order to satisfy locally the second law
of thermodynamics. Note that the strictly positive part,
i.e. ps > 0, accounts for the irreversibility by breaking the
symmetry of the dynamics under time inversion, which
defines a time arrow.

The material continuity equation (1) for the number
of elementary units of chemical substance A is given by,

7;LA+(V'V)NA+V'jA:ZVaAwa7 (4)

where n4 is the number density of the chemical sub-
stance A, ja is the diffusive current density and the source
density p4 is expressed explicitly as the sum over all the
chemical reactions a of the product of the stoichiometric
coefficients v, 4 and the reaction rate densities w.

The material continuity equation (1) for the electric
charge is given by,

Q+<V'V)Q+V'jq:0a (5)
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where ¢ is the electric charge density, j, is the diffusive
electric current density and there is no electric charge
source density p, since the electric charge is an invari-
ant. Note that the electric current density j is the sum of
the convective and diffusive electric current densities, i.e.

J=qv+ig (6)

The material continuity equation (2) for the spontaneous
electric dipoles is given by,

P+ (V-v)P+V-jp=) 27 xpa, (7)
A

where P is the spontaneous electric polarisation, jp is the
diffusive electric polarisation current tensor. The source
density pp of the spontaneous electric dipoles pa of the
chemical substances A is an irreversible term accounting
for the relaxation of the spontaneous electric dipoles p4.
It is due to the rotational motion of the chemical sub-
stances A, that is expressed in terms of the intrinsic ro-
tation rate densities 2" of the matter where the super-
script m stands for “matter”.

The uniformity of the local infinitesimal system implies
that there is a unique local rotation rate density 2" for
each chemical substance A, that is defined with respect to
the local frame where the electric polarisation P does not
rotate. This frame corresponds to the local frame where
the intrinsic rotation of the matter vanishes, i.e. w = 0,
since the spontaneous electric polarisation is rigidly at-
tached to the matter.

The material continuity equation (2) for the sponta-
neous magnetic dipoles yields,

M+ (V-v)M+V - ju=

Z ('yAnA (mA X B)Jrﬂjlvl X mA>, (8)
A

where M is the spontaneous magnetisation, jy is the diffu-
sive magnetisation current tensor. The source density pm
of the spontaneous magnetic dipoles m 4 of the chemical
substances A consists of two terms. The first term is a
reversible term accounting for the precession of the mag-
netic dipoles my around the magnetic induction field B
that is expressed in terms of their gyromagnetic ratios v 4.
The second term is an irreversible term accounting for the
relaxation of the magnetic dipoles m4 with respect to the
magnetic induction field B that is expressed in terms of
the intrinsic rotation rate densities .Q}lVI where the super-
script M stands for “magnetisation”. These rotation rate
densities consist of two contributions. The first contribu-
tion corresponds to the micromagnetic hypothesis [16],
that accounts for the fact that electrons are point-like
particles that have no known substructure and thus no
intrinsic angular mass. The second contribution accounts
for the rotational motion of the chemical substances A.
The second contribution is generally much smaller than
the first.

The uniformity of the local infinitesimal system implies
that there is a unique local rotation rate density £2M for
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each chemical substance A, that is defined with respect
to the local frame where the magnetisation M does not
rotate. In contrast to the case of the electric polarisation,
this frame does not correspond to the local frame where
the intrinsic rotation of the matter vanishes, since the
spontaneous magnetisation is not rigidly attached to the
matter. Note that by symmetry, only axial vectors such
as the magnetic dipoles my4 are allowed to precess. Thus,
no precession of the electric dipoles p4 is to be expected.

The material continuity equation (2) for the momen-
tum is given by,

p+(V-v)p— V.o=f, (9)

where p is the momentum density, o is the stress ten-
sor and f ! is the external force density. The momentum
density p (na,v) of the matter is proportional to the ve-
locity v, i.e.

P (na,v) =m(na) v, (10)

where m (n4) is the mass density.
The material continuity equation (1) for the mass
yields,
(11)

There is no diffusive mass current density j,,, by definition
of the local centre of mass and there is no mass source
density p,, since the mass is a non-relativistic invariant.
Substituting the relation (10) and the continuity equa-
tion (11) for the mass into the continuity equation (9) for
the momentum, the latter yields Newton’s second law of
motion, i.e.

m+ (V-v)m=0.

mv=Ff*4+V.o. (12)

The material continuity equation (2) for the intrinsic an-
gular momentum yields,

$+(V-v)s— V-0 =1 (13)
where s is the intrinsic angular momentum density, @ is
the intrinsic angular stress tensor and 7' is the intrinsic
torque density. The local infinitesimal system is consid-
ered as a homogeneous sphere. Thus, the intrinsic angular
momentum density s (n4,w) of the matter is proportional
to the intrinsic angular velocity w, i.e.

s(na,w)=1(na) w, (14)
where I (ny4) is the intrinsic angular mass density, which
is a scalar density. For a homogeneous sphere of constant
infinitesimal radius dr, the intrinsic angular mass density
I is related to the mass density m by,

2
)

I="mdr (15)
Thus, the material continuity equation (11) for the mass
and the relation (15) imply that the material continuity
equation (1) for the intrinsic angular mass is given by:
I+(V-v)I=0. (16)
There is no diffusive intrinsic angular mass current den-
sity jr and no intrinsic angular mass source density pr
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since for a homogeneous local system the intrinsic an-
gular mass density I is totally determined by the mass
density m.

Substituting the relation (14) and the continuity equa-
tion (16) for the intrinsic angular mass into the continuity
equation (13) for the intrinsic angular momentum, the lat-
ter yields Newton’s second law in intrinsic rotation, i.e.

[o=7"1V.0. (17)

The material continuity equation (1) for the energy is
given by,

E+(V-v)e+V jo=f* v+ 7w, (18)

where e is the energy density, je is the diffusive energy
current density and the energy source density p. is the
power density due to the external force densities f°** and
external intrinsic torque densities 7°**. The energy den-
sity e (s,na,q, P, M, v,w) is the sum of the translational

kinetic energy density, i.e. % mv?2, the intrinsic rotational

kinetic energy density, i.e. é Iw?, and the internal energy
density, i.e. u (s,n4,q,P,M),

1 1
2mv2+ 2Iw2
+u(87n147q’P7M)3

€ (S’ nA? q7 P? M? v7w) =
(19)

where the internal energy density is the energy density in
the local rest frame where v. = 0 and w = 0. Using the
continuity equations for the mass (11) and the intrinsic
angular mass (16), Newton’s second law in translation (12)
and in intrinsic rotation (17), the time derivative of the
relation (19) yields,

ée=ut+(V-v)(u—e)+(V-0) v+ (V-0) w
+EX v T, (20)

Substituting the relation (20) into the continuity equa-
tion (18) for the energy and using the vectorial identities

(V-o) v=V4s-(o-v)—0c-(VOV),
(V-:O) w=Vg:- (O w)—0 - (Vow),

yields the material continuity equation (1) for the internal
energy density, i.e.

t+(V-v)u+V-j,=0-(VoOv)+ 60 - (Vow), (21)

where the symbol ® denotes a symmetrised tensorial prod-
uct ® and the indices 5 or @ denote that there is a dot
product between the covariant differential operator V and
the contravariant components of the stress tensors o and
®, respectively.

The internal energy current density j, is related to the
energy current density j. by:

(22)

Note that the source density terms o - (V ®v) and
O - (V ®w) in the continuity equation (21) for the inter-
nal energy account for the elastic expansion or contraction
of the matter and for the dissipative translational and ro-
tational viscous friction. The dissipation is defined as the
irreversible part of the internal energy source density py,.

je=ju—0-v—- 0 w.
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2.2 Dynamics in terms of the chemical composition
2.2.1 Time evolution of the electric charge density

The electric charge density ¢ is defined as the product of
the number density n4 and the electric charge ¢4 carried
by the elementary units of chemical substances A [14], i.e.

=Y naga
A

In order to characterise physically the time evolution of
the electric polarisation, we substitute the expression (23)
for the chemical composition of the electric charge density
and the continuity equation for the chemical substance (4)
into the continuity equation (5) for the electric charge. The
latter then becomes,

(23)

Z(—(V'jA) ga+ VaAWaQA) +V-j,=0. (24)
A a

Using the fact that the electric charge g4 is an invariant,
ie.

(V-ja) ga =V - (qaja),

the continuity equation (24) for the electric charge can be
recast as:

Z VoA Wq Ga + V - (jq* Z quA> =0.
A

a,A

(25)

The continuity equation (25) has to hold for any current
flow, which yields an explicit expression for the diffusive
electric current density, i.e.

jq = Z C]AjA~
A

Moreover, it has to hold for every chemical reaction a,
which implies that

(26)

(27)

Z Vaa da =0,
A

and means that the chemical reaction a preserves the total
electric charge in the local infinitesimal system.

2.2.2 Time evolution of the electric dipoles

The electric polarisation P is defined as the product of the
number density n4 and the electric dipoles p 4 carried by
the elementary units of chemical substances A, i.e.

P=> napa. (28)
A

In order to characterise physically the dynamics of the
electric polarisation, we substitute the expression (28) for
the chemical composition of the electric polarisation and
the continuity equation for the chemical substance (4) into
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the continuity equation (7) for the electric dipoles. The
latter then becomes,

Z(nAI.)A* (VjA)pA+Z VaAWapA> +VJP
A a

= 2% xpa. (29)
A

Using the vectorial identity,
(V-ja)pa=V; - (pa®ja) = (a-V)pa,

where the index j denotes that there is a dot product be-
tween the covariant differential operator V and the con-
travariant current density j4, the continuity equation (29)
for the electric dipoles can be recast as,

Z(nApA_ 25 ><PA+(J'A-V)PA)
A

+>  Vaawapa+ V- (JP -~ > pa @jA> =0. (30)
a,A A

The continuity equation (30) has to hold for any current
flow, which yields an explicit expression for the electric
polarisation current tensor, i.e.
P=> Pa®ia (31)
A

The condition (31) implies that the continuity equa-
tion (30) reduces to:

> (nA Pa— 25 xpat(ja-V)pat)y  vaaws PA) =0,
A a
(32)
which describes the time evolution of the electric dipoles
pa of all the chemical substances.
The local time evolution of the electric dipoles pa of
a specific chemical substance A is given by:

napa=—Pax 2P~ (ja-V)pa— Y Veawapa, (33)

where the first, second and third terms on the RHS de-
scribe, respectively, the relaxation, the transport and the
chemistry of the electric dipoles pa. Note the intrinsic
rotation rate densities 25" are functions of the electric
dipoles of all the chemical substances. They account for
the dissipative couplings between the electric dipoles of
the different chemical substances.

2.2.3 Time evolution of the magnetic dipoles

The magnetisation M is defined as the product of the
number density n4 and the magnetic dipoles m 4 carried
by the elementary units of chemical substances A, i.e.

M:ZnAmA. (34)
A
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In order to characterise physically the time evolution of
the magnetisation, we substitute the expression (34) for
the chemical composition of the magnetisation and the
continuity equation for the chemical substance (4) into
the continuity equation (8) for the magnetic dipoles. The
latter then becomes,

Z(NAD'HA— (V'jA)mA+Z VaAwamA) +V-jm
A a

:Z (’yAnAmA xB+ M xmA)- (35)
A

Using the vectorial identity,
(V-ja)ma=V; - (ma0ja) — (ja V)ma,

the continuity equation (35) for the magnetic dipoles can
be recast as,

Z(TLA(I‘hAf’)/AmA XB)*.Q}‘VIX mAJr(jA'V)mA)
A

+) Vaawama + Vj - (jM -> mA®jA> =0.
a,A A
(36)

The continuity equation (36) has to hold for any current
flow, which yields an explicit expression for the magneti-
sation current tensor, i.e.
M=) my0ja. (37)
A
Note that this expression for the magnetisation current
tensor is the classical counterpart of the tensorial “spin-

current” used in spintronics [17]. The condition (37) im-
plies that the continuity equation (36) reduces to,

Z(NA(mA_ yamy x B) — 23" xmy
A

+ (.]A . V) my + Z VoA Wq mA) = 07 (38)

which describes the local time evolution of the magnetic
dipoles of all the chemical substances.

In order to establish the local time evolution of the
magnetic dipoles m 4 of a specific chemical substance A
in the presence of other chemical substances B carrying
magnetic dipoles mp, we need to take explicitly into ac-
count the local magnetic torque that couples m4 and mp.
This torque is antisymmetric under the permutation of dif-
ferent chemical substances A and B, which implies that
the torque density vanishes after summation over all the
chemical substances, i.e.

ZWABnAnB(mAXmB):O, (39)
A,B

where v4p a the symmetric coupling coefficient. Note that
the magnetic torques do not affect the magnetisation M,
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which is defined as the density of magnetic dipoles of
all the chemical substances. Thus, they do not affect the
Larmor energy of the local system. Note that by sym-
metry, the interaction torques are allowed only for axial
vectors such as the magnetic dipoles m4 and mp. Thus,
no interaction torque of the electric dipoles p4 and pp is
to be expected.

Equations (38) and (39) imply that the local time evo-
lution of the magnetic dipoles my of a specific chemical
substance A is given by,

nAr'nA =7YAMNA (mA X B) — my X Q}AVI — (jA-V)mA

- Z VgAd Wq My ~+ Z Yapna(Ma X npmpg),
a B
(40)

where the first, second, third and fourth terms on the RHS
describe, respectively, the precession, the relaxation, the
transport and the chemistry of the magnetic dipoles m 4,
and the last term describes the local interaction of the
magnetic dipoles m4 with the magnetic dipoles mp of
the other chemical substances B. Note the intrinsic ro-
tation rate densities $2M are functions of the magnetic
dipoles of all the chemical substances. They account for
the dissipative couplings between the magnetic dipoles of
the different chemical substances.

2.2.4 Time evolution of the mass density

The mass density m is defined as the product of the num-
ber density n4 and the mass m 4 carried by the elementary
units of chemical substances A [14], i.e.

m = E naAmMA.
A

In order to characterise physically the time evolution of
the mass density, we substitute the expression (41) for the
chemical composition of the mass density and the continu-
ity equation for the chemical substance (4) into the conti-
nuity equation (11) for the mass. The latter then becomes,

Z(f(v'jA) mAJrZ VaA(.uamA> =0.

A

(41)

(42)
Using the fact that the mass m4 is a non-relativistic in-
variant, i.e.

(V-ja) ma=V-(maja),

the continuity equation (42) for the mass can be recast as,
> veawama— V(D maja) =0 (43)
a,A A

The continuity equation (43) has to hold for any current
flow, which defines a set of frames where the local centre
of mass of the matter element is at rest, i.e.

Z maja=0.
A

(44)
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Moreover, it has to hold for every chemical reaction a,
which implies that

ZVaAmAZOa (45)
A

and means that the chemical reaction a preserves the total
mass in the local infinitesimal system.

2.2.5 Time evolution of the momentum

The momentum density p = m v is defined as the density
of momentum carried by the elementary units of chemical
substances A of velocities v 4, i.e.

p:ZnAmAVA- (46)
A

It consists of convective part and a diffusive parts accord-
ing to,

E nAmAvAzg nAmAv—i—E MAJA-
A A A

Thus, using the relation (44), the velocity of the matter
element is found to be,

-1
VvV = (Z TLAmA> (Z TLAmAVA>, (48)
A A

and represents the velocity of the local centre of mass.

In order to characterise physically the time evolution
of the momentum, we substitute the expression (46) for
the chemical composition of the momentum density and
the continuity equation for the chemical substance (4) into
the continuity equation (9) for the momentum. The latter
then becomes,

(47)

Z (TLA mava— (V-ja)mava+ Z VaA Wa M A VA)
A a

— V.o =f" (49)

Using the vectorial identity,
(V- ja)va=V;-(va©®ja)— (ja-V)va,

and the extensivity of the force, i.e.
fext _ Z fAext,
A
ext

where f§*' represents the external force density acting on
the chemical substance A, the continuity equation (49) for
the momentum can be recast as,
Z(nAmA‘.’AJFmA (jA~V)VA7 fXXt> (50)
A

+ZVaAwamAVA_ V;- (0‘+ZmAVA @jA) =0.
a,A A
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The matter stress tensor o is split into a reversible part
due to the pressure P and an irreversible part 6 accord-
ing to,

o=-P1+5, (51)

which implies that the continuity equation (50) is recast
as:

Z(nAmAifA—i-mA (ja-V)va— f;;xt) +VP
A
+Z VgAWamava— Vj- (5’—1—2 mava @jA) =0.
a,A A
(52)

The continuity equation (52) has to hold for any current
flow, which yields an explicit expression for the irreversible
part of the stress tensor, i.e.

&Z—ZmAVAQjA- (53)
A

Moreover, every chemical reaction preserves the total mo-
mentum in the local infinitesimal system, i.e.

E VagAMTMMAVA = 0.
A

(54)

Taking into account the fact that the pressure P of the
continuous medium is the sum of the partial pressures P4
of the different chemical substances A multiplied by the
dimensionless fugacity coefficients ¢ 4 [18], i.e.

P=3"¢aPu, (55)

A

and using the conditions (53) and (54), the continuity
equation (52) reduces to,

Z(nAmA Va+ma(Ga-V)va— fXXt+V (pa PA)) =0,
A

(56)
which describes the local time evolution of all the chemical
substances. Note that the dimensionless fugacity coef-
ficient ¢4 in the relation (55) accounts for the local
interactions between the constituents of the chemical
substance A.

In order to establish the local time evolution of a spe-
cific chemical substance A in the presence of other chem-
ical substances B, we need to take explicitly into account
the local internal force densities fi' , exerted by the
chemical substances B on the chemical substance A. These
force densities do not change the local internal energy
of the system, which means that they are the densities
of conservative forces accounting for elastic collisions or
scattering. Newton’s third law implies that the sum of the
internal force densities over all the chemical substances

vanishes, i.e.
S, =o. (57)
A,B

Page 7 of 19

Equations (56) and (57) imply that the local time evolu-
tion of a specific chemical substance A is given by,

nama¥a =54~V (pa Pa)—ma (ja-V)va+y 54,
B

(58)
where the first, second and third terms on the RHS de-
scribe, respectively, the action of the external forces, of the
fugacity gradient and of the transport, and the last term
describes the action of the internal forces due to the lo-
cal interaction of the chemical substance A with the other
chemical substances B.

2.2.6 Time evolution of the intrinsic angular momentum

The intrinsic angular momentum density s = I w is de-
fined as the density of intrinsic angular momentum car-
ried by the elementary units of chemical substances A of
intrinsic angular velocities wy, i.e.

s = E nalawa,
A

where n4 I4 represent the intrinsic angular mass density
of the elementary units of chemical substance A and the
relations (15) and (41) imply that

(59)

2
nAIA:5nAmAdr2. (60)
The intrinsic angular momentum density s consists of con-

vective and diffusive parts according to,
Z nalgwyg = Z TLAIAw+Z Ia .ngn,
A A A

where the sum of the diffusive intrinsic angular momenta
of all the chemical substances A vanish, i.e.

ZIAQX]:O,
A

which defines a set of frames where the matter has no aver-
age intrinsic rotational motion. Thus, the intrinsic angular
velocity of the matter element is found to be,

w = (Z nAIA> (Z TLAIA(UA>, (63)
A A

and represents the average intrinsic angular velocity
around the local centre of mass.

In order to characterise physically the time evolution
of the intrinsic angular momentum, we substitute the ex-
pression (59) for the chemical composition of the intrinsic
angular momentum density and the continuity equation
for the chemical substance (4) into the continuity equa-
tion (13) for the intrinsic angular momentum. The latter
then becomes,

(61)

(62)

> (nAIAu'JA —(Vja) lawat ) VaAwaIAwA>
A a

V-0 =7 (64)
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Using the vectorial identity,
(V-ja)wa =V (wa®ja)— (ja - V)wa,

and the extensivity of the torque, i.e.
Text — Z zjt’
A
ext

where 74" represents the external torque density acting
on the chemical substance A, the continuity equation (64)
for the intrinsic angular momentum is recast as:

Z (nA Tawa+1a(ja-V)wa— "'AeXt)
A

+Z VoA wWglawy — Vj- (@—i—z Tgwy @jA) =0.
a,A A
(65)

The continuity equation (65) has to hold for any current
flow, which yields an explicit expression for the irreversible
part of the intrinsic angular stress tensor, i.e.

@Z—ZIAWAQjA- (66)
A

Moreover, every chemical reaction preserves the total in-
trinsic angular momentum in the local infinitesimal sys-

tem, i.e.
Z VoA lawa = 0.
A

The conditions (66) and (67) imply that the continuity
equation (65) reduces to,

(67)

Z(TLAIALUA—FIA (jA-V)wA— TXXt) =0,
A

(68)

which describes the local intrinsic time evolution of all the
chemical substances.

In order to establish the local intrinsic time evolution
of a specific chemical substance A in the presence of other
chemical substances B, we need to take explicitly into ac-
count the local internal intrinsic torque densities 7 ,
exerted by the chemical substances B on the chemical sub-
stance A. These torque densities do not change the local
internal energy of the system, which means that they are
the densities of conservative torques accounting for elastic
collisions or scattering. Newton’s third law in intrinsic ro-
tation implies that the sum of the internal torque densities
over all the chemical substances vanishes, i.e.

2 int o
TB_}A —_— .
A,B

Equations (68) and (69) imply that the local intrinsic time
evolution of a specific chemical substance A is given by,

(69)

nalaoa =75 Ia(ja-Vwa+ . T, (70)
B
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where the first and second terms on the RHS describe,
respectively, the action of the external torques and of the
transport, and the last term describes the action of the in-
ternal torques due to the local interaction of the chemical
substance A with the other chemical substances B.

3 Thermostatics and thermodynamics

3.1 Thermostatic equation, reversible and irreversible
thermodynamic equations

The thermostatics and thermodynamics of the contin-
uous medium are contained within the internal en-
ergy balance (21). Since the internal energy density
u(s,na,q, P, M) is a state function in the local rest frame,
the time derivative of the internal energy density field is
given by, i.e.

W=T§+» pana+Vi—E-P-B-M,
A

(71)

where the temperature 7', the chemical potential pa of
the substance A, the electric potential V', the opposite of
the electric field — E and the opposite of the magnetic
induction field — B are defined as the intensive conjugate
fields of the extensive state fields s, na, ¢, P and M,
respectively [19,20], i.e.

ou ou ou
T = = V =
s ’ HA 87'LA ) aq )
ou ou
—E:aP, 7B:8M' (72)

Note that these intensive fields can only be defined locally
if the system satisfies the local equilibrium hypothesis.

Using the relation (62), the continuity equations for
the entropy (3), the density of the chemical substance
A (4), the electric charge density (5), the electric polarisa-
tion (7) and the magnetisation (8), the continuity equation
for the internal energy (21) is recast as,

T(ps— (V-v)s— V-js>
+Z,UA<Z VoA Wq — (V'V)nAf VJA)
A a
+V(=(V-v)a- Vi,
_E(Z NP X py—
A
_B.(Z(yAnA(mAxB)—i—Q}‘VIxmA)
A
~(V-V)M = V-ju)

+(V-vIu+V . j,=0-(VOVv)+O - (Vow). (73)
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Using the vectorial identities,

T(V'Js)*v'(Tjs)fjs'VTa
pa(V-ja) =V - (paja) — ja - Vua,
V(V-j) =V (V)= s VV,
E-(V.jp)=V-(jp-E)—jp- (VOE)
B-(V-jm)=V-(m-B) -(VoB)
E-(.Q;;ﬂ><p,4)=.(lX1 (pAXE),
B- ('yAnA(mAXB)) 0,
B (2} xmy) =02} (my xB),

the splitting (51) of the stress tensor into a reversible
and an irreversible part, and expressing the chemical irre-
versibility in terms of the chemical affinities A, i.e.

-Aa == Z Vg A (*
A

the internal energy balance equation (73) is recast as,

(74)

(u—Ts—i—P—ZuAnA—qV+P-E+M~B)(V-v)
A
+ V- (ju=Ti =Y paja =i,V +ip-E+iu-B)
A
+Tpe— > waha+js VT+D ja-Via—j,VV
a A
5 (Vov)— 0 (Vow)

—jp-(VOE) -

_ZQA

M- (V©OB)

(Pa x E) — ZQA (my xB) =

(75)

Using the expressions (23), (28) and (34) for the chemi-
cal composition of the electric charge density, the electric
polarisation and magnetisation, we deduce the identities,

gV =2 qaVna,
A

P-E=) (pa-E)na,
A

M-B=) (ms-B)na. (76)
A

Moreover, using the expressions (26), (31) and (37) for the
diffusive electric current density vector, the electric polari-
sation and the magnetisation current tensors, respectively,
we obtain the identities,

3aV=>_qaVia,
A

jp-E=) (pa-E)ja,
A

jM'B:Z(mA'B
A

(77)
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Furthermore, using the expressions (53), (66), (31)
and (37), for the momentum and intrinsic angular mo-
mentum stress tensors as well as for the electric polarisa-
tion and the magnetisation current tensors, respectively,
we obtain the identities,

ZJA (

O (Vow) = JA (—IAwAVw>
ZJA (pAVE>

Z_]A (mAVB).

At this point it is useful to introduce the generalised chem-
ical potential fi4 that is defined as:

(Vov) = mAvAVV>,

-(VOE) =

(Vo B) (78)

pa=pAa+qaV —pa-E—my-B. (79)

Using the identities (76)—(78) and the definition (79), the
internal energy balance equation (75) is recast explicitly
in terms of the physical properties of the chemical com-
ponents, i.e.

(u— TS+P—ZﬂAnA) (VV)
A
*ZﬂAJA)
A
Zwa-Aa_js'(_

- ia- ( Via — CIAVV)

LV. (ju— T
+Tps — vT)

A
- ZL&'(* mavaVv— IAwAVw>
— Z_]A (pAVE+mAVB)

A

*ZQE'([’AXE Z'QA
A

Firstly, the internal energy balance equation (80) has to
hold locally for all flows. This implies that the terms in the
first brackets have to vanish, which yields the thermostatic
equilibrium equation for the continuous medium, i.e.

(my x B) = 0. (80)

U= TS—P+Z (/LAJrqA V—paE—- mA'B) na. (81)
A

Secondly, the internal energy balance equation (80) has to
hold locally for all currents. This implies that the terms
in the second brackets have to vanish, which yields the
reversible thermodynamic evolution equation for the con-
tinuous medium, i.e.

Ju=Ti+Y (Ha+aaV = pa-E-ma-B)ja (82)
A
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Thirdly, the thermostatic equilibrium equation (81) and
the reversible thermodynamic evolution equation (82) im-
ply that the internal energy balance equation (80) yields
the irreversible thermodynamic evolution equation for the
continuous medium, i.e.

Ps = ;{ZwaAa'i_js'(_VT)
+ZjA'(_ Via — (JAVV)
A
+ZjA'(— mavaVv— IAwAVw>
A

+> s+ (PAVE+m, VB)
A

+Z QXI'(PAXE)—FZ Q}M-(mAXB)}.
A A (83)

Finally, note that the time derivative of the thermostatic
equation (81) and the expression (71) for the time deriva-
tive of the internal energy determines a generalised Gibbs-
Duhem relation that yields the time evolution of the in-
tensive fields (72), i.e.

sT—P—l—ZnA;lA—i—qV—P-E— M-B=0. (84)
A

4 Thermodynamical phenomenology

4.1 Linear phenomenological relations and Onsager
matrix elements

In order to deduce the linear phenomenological relations,
we extend the approach developed by Onsager [21,22] to
include intrinsic rotations. The expression (83) can be
formally split into a scalar, a vectorial and a pseudo-
vectorial part, which are irreducible representations of the
Euclidean group and have different symmetries. Thus, the
entropy source density (83) is expressed formally as,

ps = ; ZwaAa+Zja~Fa+Z 0L-TL
a « Ai

(85)
where w, is a scalar chemical reaction rate density, A, is
a scalar chemical affinity, j, is a vectorial current density,
F, is a vectorial force, 2} is a pseudo-vectorial intrinsic
rotation rate density and T} is a pseudo-vectorial intrinsic
torque.

In the relation (85), there are two types of vectorial
current densities and forces (i.e. a € {5, a}). First, there
is a thermal current density js and an irreversible thermal
force Fs = — V T'. Second, there are current densities j4
for the chemical substances A and irreversible forces F 4

Eur. Phys. J. B (2013) 86: 318

acting on these substances. The expression for the forces
F 4 is given by the irreversible relation (83), i.e.

FAZ—VMA— qAVV— mAvAVv— IAwAVw
+paVE+my VB, (86)

where the first term on the RHS is the chemical force, the
second term is the Coulomb force, the third and the fourth
terms are the viscous forces, the fifth term is the electric
polarisation force and the sixth term is the magnetisation
force. Note that in a stationary regime, the viscous forces,
the electric polarisation force and the magnetisation force
generate dielectrophoresis and magnetophoresis.

In the relation (85), there are also two types of pseudo-
vectorial intrinsic rotation rate densities and torques (i.e.
i€ {1, M}) associated to the chemical substances A.
First, there are intrinsic rotation rate densities 23" and
irreversible torques T} associated with the intrinsic ro-
tational motion of the matter. Second, there are intrinsic
rotation rate densities £2M and irreversible torques T}
associated with micro-magnetism and matter. The expres-
sion for the torques T is given by the irreversible rela-
tion (83), i.e.

TX]ZPAXE,

TM =m, x B. (87)
The local expression of the second law (3) requires the
entropy source density to be locally positive definite, i.e.
ps = 0. Extending Onsager’s approach, in the neighbour-
hood of a local thermodynamic state where the scalar
affinities A,, the vectorial forces F, and the pseudo-
vectorial intrinsic torques T are sufficiently small, the
entropy source density can be expressed formally as the
sum of quadratic forms of A,, F, and T%, which ensures
that it is positive definite, i.e.

1
ps = T(Z; LabAaAb+Zﬁ Lag - (Fo © Fp)
+3 L (ThoTh)) >0,
A, B

Y]

(83)

where the phenomenological components are the Onsager
matrix elements, which are of two different types: scalars
Los and rank-2 tensors L,g and LXB. The symmetries of
the Onsager matrices are given by the Onsager reciprocity
relations, i.e.

Lab (SanA7Qa Pa M) = Lba (S,’nA, Q»P» - M)7
Laﬁ (S,TLA,Q,P,M) = Lﬁa (SanA7QaPa _M)7

L:L4JB (SvnAquPvM) = L,j41B (SvnAv(LP?*M)? (89)
which cannot be derived within a thermodynamic ap-
proach but require a statistical treatment since they are
a consequence of the time reversibility of the microscopic
dynamics [21]. The inequality (88) has to hold for each
part, which implies that each quadratic form has to be
positive definite.
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Thus, the chemical reaction rate densities w, are re-
lated to the chemical affinities A, through scalar linear
phenomenological relations, i.e.

wa =Y Lap Ap, (90)
b
where the Onsager matrix has to satisfy,
' (L} >0 (91)
T aby = Y,

in order for the scalar quadratic form in the relation (88)
to be positive definite. The scalar linear phenomenolog-
ical relations (90) account for the irreversibility due to
the chemistry. Note that these linear relations are only
accurate provided that the chemical affinities A; are suf-
ficiently small compared to the thermal excitation, i.e.
Ap < kpT where kg is Boltzmann’s constant, as pointed
out by Glansdorf and Prigogine [23] and de Groot and
Mazur [12].

Similarly, the vectorial current densities j, are related
to the vectorial forces Fg through vectorial linear phe-
nomenological relations, i.e.

ja = Lap-Fy, (92)
B
where the Onsager matrix has to satisfy,
L ilsr >0 (93)
T (Xﬁ = ’

in order for the vectorial quadratic form in the rela-
tion (88) to be positive definite. The vectorial linear phe-
nomenological relations (92) are expressed explicitly in
terms of the currents densities js and j4 and forces Fy
and F 4 as,

Js =L (=VT)+> Lip-Fp

B
ja=Llas- (=VT)+) Lap-Fp
B

(94)

where the Onsager matrix (93) is positive definite, i.e.

1 I—ss LsB

> 0. (95)

T \Laslag) ~

The vectorial linear phenomenological relations (94) ac-
count for the irreversibility due to the transport.

Likewise, the pseudo-vectorial intrinsic rotation rate

densities 2} are related to the pseudo-vectorial torques

T é, through pseudo-vectorial linear phenomenological re-

lations, i.e.
Q4= Lig- T}, (96)
B,j
where the Onsager matrix has to satisfy,
{Lis} >0 (97)
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in order for the pseudo-vectorial quadratic form in the re-
lation (88) to be positive definite. The pseudo-vectorial
linear phenomenological relations (96) are expressed ex-
plicitly in terms of the intrinsic rotation rate densities £2}

and torques T}, as,

2y =3 (L35 (pp x B) + L3N - (mp x B) )
B
QY = Z(LAMén -(pp X E) + LY3" - (mp x B))
B
(98)
where the Onsager matrix (97) is positive definite, i.e.

1 [ LAE LAY (99)

T\ L LB
The pseudo-vectorial linear phenomenological rela-
tions (98) account for the irreversibility due to the re-
laxation. They also represent the classical counterpart of
the spin-orbit coupling, since they couple the rotation rate
density £2M of the magnetisation with the rotation rate
density of the matter £2}".

It is worth emphasising that although the scalar (90),
the vectorial (94) and the pseudo-vectorial (98) linear phe-
nomenological relations are structurally independent, they
are coupled through the time evolution equations. The
chemical affinities A, defined in relation (74) couple the
scalar (90) and vectorial (94) linear phenomenological re-
lations. This coupling has interesting applications for spin-
tronics, some of which were investigated in reference [24].

In the particular case of a continuous medium made
of a single chemical substance A, the scalar linear re-
lations (90) vanish, the vectorial linear relations (94)
become,

.js :Lss'<_VT)+LsA'FA

. (100)
ja=Las - (=VT)+Laa-Fy

and the pseudo-vectorial linear relations (98) reduce to,

Q7 =133 (pax BE)+ L3 - (ma x B)

(101)
2} =LY (pa x E) + LY - (ma x B).

4.2 Physical applications
4.2.1 Lehmann effect

In 1900, Lehmann [25] observed that droplets of liquid
crystals, that have a chiral cholesteric structure, were set
in rotation by a temperature gradient. The explanation
given by Leslie [26] is now questioned [27] by recent ob-
servations. Here, we show how our formalism accounts for
the Lehmann effect.

It is worth mentioning that the irreversible thermo-
dynamics of a continuum of nematic liquid crystals has
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been examined by Miiller [5], Blenk and Muschik [28], and
Muschik et al. [29], even though these authors did not ex-
plicitly deduce the Lehmann effect from their formalism.
The “director” vector field they introduced corresponds
to the preferred axis f of the continuum of liquid crystals.
In contrast to them, we do not enlarge the spatial mani-
fold to account for f. Instead, we require the net electric
polarisation P, which is a state field, to be collinear to fi.

We consider a uniform continuum made of identical lig-
uid crystals that are oriented in the same direction. The
continuum of liquid crystals is gyrotropic since the chiral-
ity of the liquid crystals defines a preferred axis of unit vec-
tor fi. Each liquid crystal is helicoidal and made of iden-
tical elements A that are dielectrics, i.e. g4 = 0, and have
electric dipoles p4 orthogonal to the helix axis [30]. Thus,
in the absence of an external interaction, the liquid crys-
tals have no net electric polarisation. On a macroscopic
scale, the continuum is homogeneous, i.e. V g = 0. We
assume that the viscosity can be neglected, i.e. Vv4 =0
and Vwy = 0. The liquid crystals are trapped in an ex-
perimental set-up such that they have no translational
motion, i.e. j4 = 0. Moreover, a temperature gradient
V T is applied along a direction that is different from the
preferred axis of the crystals.

In such a case, the linear phenomenological rela-
tion (100) reduces to,

paVE= (L} Las) VT, (102)

where the temperature gradient V T' induces an electric
field E and the electric dipoles p 4 rotate in an asymmet-
ric manner in order to lower the Debye energy —p4 - E.
Thus, a net electric polarisation P is generated along the
preferred axis 1, i.e.

P=nspa=mna(pa-h)Af, (103)
and the linear relation (102) is recast as,
PVE= (nalyy Las) VT (104)

The spatial symmetry requires the electric polarisation
force P V E and the thermal force — V T to be collinear,
i.e.

PVE=naL,4Las VT, (105)

where L = L34 1 and L4y, = La,1. Thus, the phe-
nomenological relation (105) can be recast as:

PVE=AnskpVT, (106)
where A is a dimensionless parameter given by:
LY Las
A= AATAS (107)
kg

In the absence of an applied magnetic field, i.e. B = 0,
the electric field E is expressed in terms of the electric
potential V as,

E=-VV. (108)
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The electric polarisation force density P V E satisfies the
vectorial identity,

PVE=(P V)E+Px (VxE)=(P-V)E
—Vp-(POE)+ (- V-P)E, (109)

where we used Faraday’s law (108) and the index p de-
notes that there is a dot product between the covariant
differential operator V and the electric polarisation P.
The term Vp - (P ® E) in the identity (109) corresponds
to a surface contribution after integration over the volume
of the liquid crystal continuum [31]. Thus, it can be ne-
glected in the bulk of the continuum where the electric
polarisation force density P V E is expressed as,

PVE=(-V-P)E. (110)

Moreover, using the definition of the bound electric charge
density g¢p, i.e.

gp=—-V-P, (111)
the electric polarisation force density (110) is recast
as [31],

PVE=¢E, (112)

which shows that it is the analog of the electric part of the
Lorentz force density for bound charges. Substituting the
expression (112) in the linear relation (106), the latter can
be expressed as a Seebeck effect for bound electric charges
in an electric insulator, i.e.

E=cp VT, (113)
where the Seebeck coefficient for bound electric charges,
o A na kB
Ep = .
ap

Moreover, the liquid crystals are subjected to an external
electric torque (87) that sets them in rotational motion.
Thus, the external torque density is given by,

T =n, T =P x E. (114)

Using equation (113) for the Seebeck effect, the torque
density 7! is recast as,

T =ep(PxVT). (115)

The rotation occurs in the plane spanned by the electric
polarisation P and the temperature gradient V T" around
the local centre of mass of the liquid crystals. Taking into
account the absence of a matter current, i.e. ® = 0, and
substituting the expression (115) for the torque density
into Newton’s seond law in intrinsic rotation (17), the lat-
ter accounts for the Lehmann effect, i.e.
o= glf’ (P xVT), (116)
where [ is the intrinsic angular mass density of the liquid
crystals. The intensity of this effect is expressed as

ep PVT
I

where 6 is the angle between the electric polarisation
P and the temperature gradient VT, ie. |P x VT| =
PV T sinb.

6= sin 6, (117)
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4.2.2 Electric Lehmann effect

In 1974, de Gennes [32] noticed that liquid crystals were
set in rotation by an electric field. This effect is called
the electric Lehmann effect [33] since it corresponds to
a Lehmann effect where the driving force is an electric
force instead of a thermal force. Here, we show how our
formalism accounts for the electric Lehmann effect.

We consider the same continuum of liquid crystals as
in Section 4.2.1. In contrast to the Lehmann effect, the
electric Lehmann effect is an isothermal effect. The tem-
perature gradient V T is replaced by an electric potential
gradient V V' that is applied along a direction that is dif-
ferent from the preferred axis of the liquid crystals. By
analogy with the Lehmann effect, the electric field must
be inhomogeneous in order to generate an electric polari-
sation force density (112).

In the presence of an applied electric potential gradi-
ent V V, the electric dipoles p 4 rotate in an asymmetric
manner in order to lower the Debye energy p4-V V', which
yields a net electric polarisation P along the preferred axis
i given in equation (103). Moreover, the liquid crystals
are subjected to an external electric torque density (114),
that sets them in rotational motion. In the absence of a
magnetic induction field B, Faraday’s law (108) implies
that the torque density (114) yields,

T = _PXxVV. (118)

The rotation occurs in the plane spanned by the electric
polarisation P and the electric potential gradient V V'
around the local centre of mass of the liquid crystals.
Taking into account the absence of a matter current, i.e.
© = 0, and substituting the expression (118) for the
torque density into Newton’s second law in intrinsic ro-
tation (17), the latter accounts for the electric Lehmann

effect, i.e.
1

w 7 (PxVYV). (119)
The intensity of this effect is expressed as
. P
0 =— ?V sin 6, (120)

where 6 is the angle between the electric polarisation P
and the electric potential gradient V'V, ie. |P x VV| =
PV YV sing.

It is useful to point out that Quincke [34] observed in
1896 that small dielectric spheres in suspension in a liquid
placed inside a parallel-plate capacitor are set in rotational
motion by charging the capacitor. The intrinsic rotational
dynamics of the Quincke effect is described by the same
time evolution equations (119) and (120) as the electric
Lehmann effect.

4.2.3 Relaxation of electric dipoles
The first model of the relaxation of electric dipoles pa

is due to Debye [35]. Here, we show how our formalism
accounts for this relaxation.
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We consider a homogeneous sample made of a single
chemical substance A, consisting of electric dipoles p4 in
the absence of a magnetic induction field, i.e. B = 0. In
the frame of sample, the chemical substance A has no
translational motion, i.e. j4 = 0.

The absence of a magnetic induction field, i.e. B = 0,
implies that the linear phenomenological relation (101)
reduces to,

Q2 =L7% - (pa < E). (121)

The process is irreversible and dissipative, which means
that the Debye energy —p4 - E has to diminish. This
implies that the intrinsic rotation of the local element,
to which the electric dipole p4 is attached, occurs in
the plane spanned by pa and E. Thus, the rotation
rate density £2}' is collinear to the torque p4 x E and

o = LR 1. Substituting the relation (121) into the
time evolution equation (33) for p4 yields an equation ac-
counting for the Debye relaxation of the electric dipoles
p4 in the presence of an electric field E, i.e.

Pa=—aapa x (pa xE), (122)

where
aa=mny LR,
is a phenomenological friction coefficient.
The electric field E is an effective field that is defined
with respect to the local infinitesimal system. It consists
of two contributions, i.e.

E = E™' 4 Bin, (123)
The first contribution E®** is due to an external field ap-
plied on the whole system. The second contribution E "t
is due to the dipolar interaction with the infinitesimal sys-
tems that are in the neighbourhood of the local system.
Note that this contribution is internal to the whole system,
but external to the local infinitesimal system. In the neigh-
bourhood of the local system, the Debye energy density
due to the dipolar interaction between the local systems is
proportional to the magnitude of the spatial variation of
the electric polarisation. Thus, the Debye energy density
can be expressed as:

~-P-E=-P-E*" - DPV?P, (124)

where D is a phenomenological parameter. Note that the
spatial variation is expressed in terms of a Laplacian V?2
and not a gradient V, since otherwise the contributions
of local neighbouring systems located on opposite sides of
the local system would cancel out. The expressions (123)
and (124) imply that the electric field E'* is given by:

E" = DV?P. (125)
For a single homogeneous sample made of a single chemi-
cal substance A, consisting of electric dipoles p 4, the elec-
tric polarisation P = ny pa. Thus, the time evolution
equation (122) becomes,

Pa=—aspax (pax E®)

— Daapa X (PA x V?(na PA))» (126)
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where the terms on the RHS describe the relaxation due
to an external electric field E' and to the interaction
with the electric dipoles in the neighbourhood of the local
system.

4.2.4 Relaxation of magnetic dipoles and magnetisation
waves

The first model of relaxation of magnetic dipoles m 4 in
the presence of a magnetic induction field B is due to
Landau and Lifshitz [36]. Later, Gilbert [37] developed
a Lagrangian formulation of this damping. Here, we show
how our formalism accounts for this relaxation and for the
magnetisation waves, which are the classical counterpart
of the “spin waves” [38].

We consider a homogeneous sample made of a single
chemical substance A, consisting of magnetic dipoles m 4
in the absence of an electric field, i.e. E = 0. In the frame
of sample, the chemical substance A has no translational
motion, i.e. j4 = 0.

The absence of an electric field, i.e. E = 0, implies that
the linear phenomenological relation (101) reduces to,

QM- MM . (m, xB). (127)

The process is irreversible and dissipative, which means
that the Larmor energy —my4 - B has to diminish. This
implies that the intrinsic rotation occurs in the plane
spanned by my and B. Thus, the rotation rate den-
sity .Q}‘VI is collinear to the torque m4 x B and LIXIAIXVI =
LYM 1. Substituting the relation (127) into the time evo-
lution equation (40) for m4 yields the Landau-Lifshitz
equation [37] accounting for the relaxation of the mag-
netic dipoles my4 in the presence of a magnetic induction
field B, i.e.

I'nA:'yAmAXB—ﬁAmAX(mAXB)a (128)

where

Ba=mny' LAY,
is a phenomenological friction coefficient. Note that the
relaxation of the magnetic dipoles is due to a mix of
bodily rotation [39] composed with Néel-type magnetic
relaxation [40].

The magnetic induction field B is an effective field that
is defined with respect to the local infinitesimal system. It
consists of two contributions, i.e.

B =B~ +B™. (129)
The first contribution B ®** is due to an external field ap-
plied on the whole system. The second contribution B ™ is
due to the ferromagnetic interaction with the infinitesimal
systems that are in the neighbourhood of the local system.
In the neighbourhood of the local system, the Larmor
energy density due to the ferromagnetic interaction be-
tween the local systems is proportional to the magnitude
of the spatial variation of the magnetisation [41]. Thus,
the Larmor energy density can be expressed as,

~-M-B=-M-B*' - AMV>M, (130)
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where A is a phenomenological parameter called the stiff-
ness constant [38]. The expressions (129) and (130) imply
that the magnetic induction field B is given by,

B = AVZM. (131)
For a single homogeneous sample made of a single chem-
ical substance A, consisting of magnetic dipoles m 4, the
magnetisation M = nymy4. Thus, the Landau-Lifshitz
equation (128) becomes,

my =vy4my X Bext — Bama X (mA X BCXt)

+ Ayamy x \% (namy)

—AﬁAmAX (mAXV2(nAmA)). (132)
The first and second terms on the RHS of the Landau-
Lifschitz equation (132) describe, respectively, the preces-
sion and relaxation due to an external magnetic induc-
tion field B, The third term describes magnetisation
waves [42] and the fourth term describes the relaxation of
magnetisation waves.

4.2.5 Thermally driven magnetisation current

The relaxation of magnetic dipoles in a ferroelectric metal,
established in Section 4.2.4, rests on the assumption that
the chemical units carrying the magnetic dipoles are at
rest. Here, we consider a ferromagnetic conductor made
of a fixed lattice and conduction electrons. The magnetic
dipoles are carried by the core electrons of the lattice and
the conduction electrons (e.g. ‘d-f’ and ‘s-p’ electrons, re-
spectively). On the scale of interest, the core electrons
of the lattice are described as a continuum of chemical
type A at rest and the conduction electrons as a fluid
of chemical type B. The core electrons carry a magnetic
dipole m 4 and the conduction electrons a magnetic dipole
mp. A quasi-uniform and constant magnetic induction
field B and temperature gradient V T" are applied on the
ferromagnetic conductor. No electric field is applied, i.e.
E=-VV=0.

Since the core electrons are at rest on the scale of in-
terest, the current density of the core electron continuum
vanishes, j4 = 0. In our formalism, we neglect the “chem-
ical reactions” a between the core and conduction elec-
trons, i.e. w, = 0. Thus, the time evolution equation (40)
for the magnetic dipoles m4 of the core electron contin-
uum A reduces to,

. M
nAmA:’yAnA(mAXB)— mAXQA

+v4aBMA (mA X?’LBmB). (133)

The absence of electric field, i.e. E = 0, implies that the
linear phenomenological relation (98) for the core electron
continuum reduces to,

QM =1YM. (ms xB) + LY. (mp xB). (134)

The effect on the rotation of the core electrons of the mag-
netic torque mp x B of the conduction electrons is negligi-
ble compared to the effect of the magnetic torque m4 x B
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of the core electrons, i.e. Lap < Laa, which yields the
phenomenological equation (127). The magnetic induction
field B consists of two contributions as established in equa-
tion (129) where the magnetisation M = ny my+np mp,
ie.

B=B™" 4+ AV?(nama +npmp). (135)
Following the same lines of thought as in Section 4.2.4,
the local time evolution equation (133) for the magnetic
dipoles of the core electron continuum is found to be,

my = ya (mA X BCXt) — Bamy X (mA X BCXt)
+ Ayamy x V¥ (namy +npmp)
— ABamy X (mA x V2 (nAmA—i—anB))

+7ap (m4 X npmp). (136)

The last term on the RHS of equation (136) is expected
to lead to the magnetisation transfer torque, which is the
classical counterpart of the “spin transfer torque”, gener-
ated by the magnetic dipoles mp of the conduction elec-
tron fluid on the magnetic dipoles my4 of the core elec-
tron continuum [43]. Note that the time evolution of the
magnetic dipoles m 4 of the core electron continuum has
no explicit dependence on the temperature gradient be-
cause these electrons do not undergo transport. However,
as shown below, the dynamics of the magnetic dipoles mp
depends on the temperature gradient.

Since we neglect the “chemical reactions” a between
the core and conduction electrons, i.e. w, = 0, the time
evolution equation (40) for the magnetic dipoles mp of
the core electron continuum B is given by:

TLBI‘hB = YBNB (mB X B) — mp X Qg/{ — (jBV)mB
+yBanp(mp X namy). (137)

Following the same procedure as for the core electrons,
we recast the local time evolution equation (133) for the
magnetic dipoles of the conduction electron fluid as:

mp =yp (mp x B™) — fgmp x (mp x B™)
+ Aypmp x V2 (namy +npmp)
— AfBpmp x (mB x V2 (nAmA+anB))
—ng (- V)mp+ypa(mp x namy). (138)

In order to find an explicit expression for the third term on
the RHS of the time evolution equation (138), we describe
the transport of the conduction electron fluid in the pres-
ence of a uniform magnetic induction field B and a tem-
perature gradient V T'. In the absence of an electric field,
i.e. VV = 0, the linear phenomenological relation (100)
reduces to,

1
jB:_ O'B'€B'VT, (139)

qB

where the isothermal electric conductivity tensor op
and the thermopower tensor ep are defined, respectively
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as [19],
o5 =qp Les,

1
qB

ep = Lgp-Lps, (140)

and satisfy the following symmetries [44],

where the exponent T stands for transpose. Thus, these
phenomenological tensors can be split into symmetric and
antisymmetric parts according to,

O'B-a:oBHa—i—oBJ_(Bxa),

sB.a:gBHa—l—EBJ_(BXa), (141)

where the magnetic induction field B = B B and a is an
arbitrary vector. By symmetry the collinear factors op
and ep| are independent of the intensity B of the mag-
netic induction field. The Hall and Nernst effects [19,44]
require the orthogonal factors op; and ep | respectively
to be inversely proportional to B, i.e. op; o« B~! and
ep1 o B7!. Using the splittings (141), the linear phe-
nomenological relation (139) becomes,

_ 9B|| EB| VT —
qB qB

BxVT

(142)
where the first term on the RHS describes the Soret ef-
fect [19] for the component of the magnetic induction field
B that is collinear to the temperature gradient V1" and
does not affect the transport, and the second term de-
scribes the Ettingshausen effect [19] per unit of electric
charge gp for the components of the magnetic induction
field B that are orthogonal to the temperature gradient
V T and affect the transport.

Since the core electrons A do not participate to the
transport, the magnetisation current density tensor jm
is entirely due to the transport of the conduction elec-
trons B. Using the relations (37) and (142), ja is found
to be,

. OB||€EBL T OBLEB| (#
JB

_9B|€B|
B
_ 0| €Lt OBLER
qB

M= mpOVT

mp ® (B X VT> . (143)
Substituting the linear phenomenological equation (142)

into the local time evolution equation (138) for the mag-
netic dipoles mp of the conduction electron fluid B, the
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latter becomes,

IhB =B (mB X BCXt) — ﬂB mp X (mB X BCXt)
+A’meB ><V2(TLAII1A+TLBIIIB)
— AfBpmp x (mB x V2 (nAmA—i—anB))

g e
—i—’yBA(menAmA)Jr Bll B”VT'VIIIB
g NpB

(B x VT) Vmg,
(144)

i OB|€BL T 0B1ER|
qBNB

where the first and second terms on the RHS account re-
spectively for the precession and the relaxation of the mag-
netic dipoles mpg. The third and fourth terms account re-
spectively for the magnetisation waves and the relaxation
of the magnetisation waves. The fifth term accounts ac-
counts for the interaction between the magnetic dipoles
my and mp of the core and conduction electrons respec-
tively. The sixth and seventh terms account for the trans-
port of mp and describe the magnetisation accumulation,
which is the classical counterpart of the “spin accumula-
tion”, generated by the temperature gradient V1" in the
presence of a magnetic induction field B. The sixth term
describes the magnetisation accumulation collinear to the
temperature gradient and the seventh term describes the
magnetisation accumulation orthogonal to the tempera-
ture gradient and the magnetic induction field.

The times scales associated to the precession and the
relaxation of the conduction electrons are much smaller
than the time scales associated to the magnetisation ac-
cumulation and the magnetisation transfer torque. Thus,
on the latter time scales, the first, second, third and fourth
terms on the RHS of the time evolution equation (144) can
be neglected, i.e.

9B|| EB|| VT -Vmp
gBNpB

+ A
n O'BH EBL OBl EBH (B % VT) . VmB- (145)

mp =7vypa(Mp X namy)+

qBMNB

4.2.6 Electrically driven magnetisation current

The time evolution of the magnetic dipoles of a ferro-
magnetic conductor, made of a fixed lattice and conduc-
tion electrons, in the presence of a quasi-uniform magnetic
field B and a temperature gradient V T was established in
Section 4.2.5. Here we consider an isothermal conductor,
i.e. VI = 0, in the presence of a quasi-uniform electric
field, i.e. E = — V V. On the scale of interest, the core
electrons of the lattice are described as a continuum of
chemical type A at rest and the conduction electrons as a
fluid of chemical type B. The core electrons carry a mag-
netic dipole m 4 and the conduction electrons a magnetic
dipole mp.

The core electron continuum is at rest and the local
time evolution equation (136) for the magnetic dipoles
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m 4 is independent of the transport. The time evolution
for the magnetic dipoles mp of the conduction electron
fluid is given by equation (138).

In order to find an explicit expression for the third
term on the RHS of the time evolution equation (138), we
describe the transport of the conduction electron fluid in
the presence of a magnetic induction field B and an elec-
tric potential gradient V V. In the absence of a temper-
ature gradient, i.e. VT = 0, the linear phenomenological
relation (100) reduces to,

1
jB:, O'B'VV.

o (146)

Using the first splitting (141), the linear phenomenological
relation (146) becomes,

:_UBH vV _ oB1L

147
aB qB ( )

is (Bxvv)
where the first term on the RHS is Ohm’s law [19] per unit
of electric charge gp for the component of the magnetic
induction field B that is collinear to the electric potential
gradient V'V and does not affect the transport, and the
second term describes the Hall effect [19] per unit of elec-
tric charge ¢p for the components of the magnetic induc-
tion field B that are orthogonal to the electric potential
gradient V V' and affect the transport.

Since the core electrons A do not participate to the
transport, the magnetisation current density tensor jng
is entirely due to the transport of the conduction elec-
trons B. Using the relations (37) and (147), jam is found
to be,

g g
Bl mpOVV— BL
qB 4B

M= — mpo (Bx VV). (143)

Substituting the linear phenomenological equation (147)
into the local time evolution equation (138) for the mag-
netic dipoles mp of the conduction electron fluid B, the
latter becomes,

IhB =B (mB X BCXt) — ﬁB mp X (mB X BCXt)

+A’)/B mp X V2 (TLAmA +npg mB)

— ABpmp x (mB XVQ(nAmA—i—anB))

g
+vpa(mp X nymy) + Bl VV-Vmp
qBnp
4 Bt (vav)-va, (149)
qBnp

where the sixth and seventh terms account for the trans-
port of mp and describe the magnetisation accumulation
generated by the electric potential gradient V V' in the
presence of a magnetic induction field B. The seventh term
describes the magnetisation accumulation collinear to the
electric potential gradient and the fifth term describes the
magnetisation accumulation orthogonal to the electric po-
tential gradient and the magnetic induction field.
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On the time scales associated to the magnetisation
accumulation and the magnetisation transfer torque, the
time evolution equation (149) reduces to, i.e.

g
mp =7ypa(mp X ngmy) + qBE;HB VV.-Vmpg
+ 7Bt (B X Vv) Vmp. (150)
qBNpB

4.2.7 Thermodynamics of magnetic vortices

The magnetic counterpart of electrically polarised lig-
uid crystals are magnetic vortices or skyrmions [45].
Skyrmions were observed recently [46] in the insulating
ferromagnet Cus0OSeO3. Our formalism predicts the pre-
cession and relaxation of magnetic vortices in the presence
of a temperature gradient.

We consider magnetic vortices that can be treated as
a continuum. They form a gyromagnetic medium with a
vorticity axis of unit vector ii. We assume that fi is uni-
form. The magnetic vortices are made of ions and core
electrons and are considered as an electrically neutral sub-
stance of type A, i.e. ¢4 = 0. In the absence of an exter-
nal interaction, the vortices have no net magnetisation.
On a macroscopic scale, the continuum is homogeneous,
ie. Vg = 0. We assume that the viscosity can be ne-
glected, i.e. Vv, = 0 and V wy = 0. Moreover, since the
magnetic dipoles are carried by the electrons, that have
no intrinsic angular mass, we do not consider the rotation
of the matter but we take into account only the rotation
of the magnetisation. In an electrical insulator, the mag-
netic vortices have no translational motion, i.e. j4 = 0.
Furthermore, a temperature gradient V 7' is applied along
a direction that is different from the vorticity axis of the
magnetic vortices.

In this case, the linear phenomenological relation (100)
reduces to:

maVB= (L} Las) VT, (151)

where the temperature gradient V7' induces a magnetic
induction field B and the magnetic dipoles m 4 rotate in
an asymmetric manner in order to lower the Larmor en-
ergy —my4 - B. Thus, a net magnetisation M is generated
along the vorticity axis A, i.e.

M:nAmA:nA(mA-ﬁ)ﬁ, (152)
and the linear relation (151) is recast as:
MVB = (naly} Las) VT (153)

The spatial symmetry requires the magnetisation force
MV B and the thermal force — V T to be collinear, i.e.
MVB=nsL,4LasVT, (154)

where L = L3 1 and Ly = Las1. Thus, the phe-
nomenological relation (154) can be recast as,

MVB=AnkpVT, (155)
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where ) is a dimensionless parameter by the relation (107).
The magnetisation force density M V B satisfies the vec-
torial identity,

MVB=V (M-B)- BVM- B x (V xM)
=-Vum - MOB-—(M-B)1)+ (V xM)xB
(156)

where we used Thomson’s law, i.e.

V-B =0, (157)
and the index pg denotes that there is a dot product be-
tween the covariant differential operator V and the mag-
netisation M. The term V- (M © B — (M - B) 1) in the
identity (156) corresponds to a surface contribution after
integration over the volume of the continuum of magnetic
vortices [31]. Thus, it can be neglected in the bulk of the
continuum where the magnetisation force density M 'V B
is expressed as:

MVB = (V x M) x B. (158)

Moreover, using the definition of the bound electric cur-
rent density jm, i.e.

jm =V x M, (159)

the magnetisation force density (158) is recast as [31],

MVB = ju x B, (160)

which shows that it is the analog of the magnetic part of
the Lorentz force density for bound currents. Substituting
the expression (160) in the linear relation (154), the latter
becomes,

jMXB:)\nAkBVT, (161)
which implies that
M x (jm xB)=Anakp (jm x VT), (162)

and that the thermally induced magnetic induction field
B is orthogonal to the bound current jn, i.e.

jm-B=0.
Using the vectorial identity
im X (jm x B) = (jum - B) jm — ¥ B = —j{1 B,

the linear relation (162) describing the magnetic field B
induced by a temperature gradient V T" on magnetic vor-
tices jm can be recast as a magnetic Seebeck effect for
bound currents in an electric insulator, i.e.

B=emx VT, (163)

where the magnetic Seebeck vector for bound electric
currents,

EM = —/\nA kB.]K/[l
Note that the magnetic Seebeck effect (163) is the mag-

netic analog of the Seebeck effect (113) in an electric
insulator.
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Substituting the expression (163) for the induced mag-
netic field B into the local time evolution equation of the
magnetic dipoles (128), we obtain an expression for the
thermally induced dynamics of the magnetic vortices, i.e.

IhA:’)/AmA X (&'M XVT)

— Bamy x (mA X (em X VT)), (164)

where the first term and second terms on the RHS de-
scribe, respectively, the precession and the relaxation of
the magnetic dipoles of the core electrons of the magnetic
vortices due to magnetic field B induced by a temperature
gradient V T'.

4.2.8 Thermally driven magnetisation waves

We consider a ferromagnetic insulator made of a fixed lat-
tice with core electrons that carry a magnetic dipole m 4.
A constant external magnetic induction field B®** and a
temperature gradient V T are applied. The time evolution
of the magnetic dipoles is given by the Landau-Lifschitz
equation (128).

The magnetic induction field B appearing in the time
evolution equation (128) is an effective field that is defined
with respect to the local infinitesimal system. It consists
of three contributions, i.e.

B =B Bint | gind, (165)
The first contribution B ®** is due to an external field ap-
plied on the whole system. The second contribution B ™*
is due to the ferromagnetic interaction with the infinites-
imal systems that are in the neighbourhood of the local
system. For a core electron continuum, the magnetisation
M = nym, and the expression for B follows from
equation (131), i.e.
B = AV?(namy). (166)
The third contribution B is induced by the temper-
ature gradient V T. For a core electron continuum, the
expression for B4 follows from equation (163), i.e.

B =gy x VT, (167)
where the bound current density yields,
jM:VX (nAmA). (168)

Note that the magnetic induction field B™4 is induced
only in the presence of a bound current density jag. This
current density arises in the presence of magnetisation
waves generated by the applied external magnetic field
cht.

Substituting the expressions (166) and (167) for the
different contributions to the effective magnetic field
B into the Landau-Lifschitz equation (128), the latter
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becomes,
IhA = YA (mA X BCXt) — BA my X (mA X BCXt)

+y7amy X (AV2 (nAmA)+€M X VT)

— Bamy X (mAx (AV2 (namy) +enm X VT)),
(169)

where the third and fourth terms describe, respectively,
how magnetisation waves and their relaxation are driven
by a temperature gradient VT. The effect is maximal
when the temperature gradient is orthogonal to the bound

current jy generated by the applied external magnetic
field B *<t,

5 Conclusion

The thermodynamics of irreversible processes is consid-
ered for an electrically charged continuous medium con-
taining spontaneous electric and magnetic dipoles in the
presence of electromagnetic fields. Expressing the exten-
sive matter state fields in terms of their chemical con-
stituents yields explicit expressions for the current den-
sities. Three types of irreversible terms are derived from
these expressions. These are scalar, vectorial and pseudo-
vectorial terms that describe, respectively, irreversible
chemical processes, irreversible transport processes and
irreversible relaxation processes. These processes are cou-
pled through the time evolution equations. Note that with
such an approach, the mathematical structure of the irre-
versible thermodynamics is uncovered physically without
imposing it a priori using irreducible representations of
the Euclidean group.

As an illustration of our formalism, we describe no-
tably the Lehmann and electric Lehmann effects, the re-
laxation of the electric and magnetic dipoles. In particular,
we are able to predict the effect of a temperature gradient
on the time evolution of the magnetic dipoles of conduc-
tion electrons interacting with core electrons, which leads
to precise expressions for the thermal and electronic mag-
netisation accumulations. We also predict the precession
and relaxation of magnetic vortices induced by a tempera-
ture gradient in the absence of an applied magnetic induc-
tion field, which is very innovative. Finally, in the presence
of an applied magnetic induction field, we show explicitly
how a temperature gradient drives magnetisation waves.

The authors would like to thank Frangois A. Reuse for theo-
retical guidance.
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