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Turbulence in open field lines is an outstanding issue

in basic plasma devices...

in fusion devices...
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Properties of open field line plasma turbulence

I Lfluc ∼ Leq

I nfluc ∼ neq

I Collisional magnetized plasma

I Low frequency modes ω � ωci

I Plasma losses at the sheaths
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Magnetized plasma turbulence via drift-fluid models

I Starting from the Braginskii equations,

I Quasi-neutrality ne ' ni is assumed

I A drift ordering is usually adopted, d/dt � ωci , leading to the
ion drift approximation :

v⊥i = vExB +
b

ωci
× d0

dt
vExB
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Magnetized plasma turbulence via drift-fluid models

Continuity :
dn

dt
=

2

eB

[
Ĉ(pe)− enĈ(φ)

]
−∇||(nV||e) + Sn

∇ · j = 0 :
dω

dt
=

2B

nmi
Ĉ(pe)− V||i∇||ω +

mi Ω
2
ci

e2n
∇||j||

Ohm’s : me
dV||e
dt

=−meV||e∇||V||e −
Te

n
∇||n + e∇||φ− 1.71∇||Te + eνj||

Momentum : mi
dV||i
dt

=−miV||i∇||V||i −
1

n
∇||pe

Heat :
dTe

dt
=

4

3

1

eB

[
7

2
Te Ĉ(Te) +

T 2
e

n
Ĉ(n)− eTe Ĉ(φ)

]
+

2

3

Te

en
0.71∇||j|| −

2

3
Te∇||V||e − V||e∇||Te + ST

Need BC for n, v‖e , v‖i , Te , ω = ∇2
⊥φ and φ.
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Questions we need to answer

I How to describe the plasma-wall transition region ?

I What BC for the fluid fields at the end of the field lines ?

I How does this affect the main plasma dynamics ?
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Outline

I Motivation

I Study of the plasma-wall transition region

I Scrape-off layer simulations with the GBS code

I Sheath effects on :
I Electrostatic potential in open field lines
I Intrinsic toroidal rotation in the Scrape-off-layer
I Scrape-off-layer width in limited plasmas

I Conclusions
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Kinetic simulations
Analytical theory

What can we learn from kinetic simulations ?
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Kinetic simulations
Analytical theory

Derivation of the magnetic presheath entrance condition

I Gradients dominant along s

I Gradients along x with ε = ρs/Lx � 1

I Isothermal electrons ∂sTe = 0, Ti � Te
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Kinetic simulations
Analytical theory

Derivation of the magnetic presheath entrance condition

I Steady-state fluid equations valid in the collisional presheath :

Ion continuity
Ion parallel momentum
Electron parallel momentum

vsi∂s n + n sinα∂s v||i − ∂x n cosα∂sφ = Spi

nvsi∂s v||i + n(sinα− ∂x v||i cosα)∂sφ = S||mi

µ sinαTe∂s n − µ sinαn∂sφ = S||me

I Can write this system as a matrix system M
−→
X =

−→
S , where

−→
X =

 ∂s n
∂s v||i
∂sφ

 ,
−→
S =

 Spi

S||mi

S||me

 ,

M =

 vsi n sinα −∂x n cosα
0 nvsi n(sinα− ∂x v||i cosα)

µ sinαTe 0 −µn sinα


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Kinetic simulations
Analytical theory

Derivation of the magnetic presheath entrance condition

I In the collisional presheath, M
−→
X =

−→
S , gradients are small

and due to the presence of the sources

I At the magnetic presheath entrance, gradients become large,

∂s ∼ 1, and can be sustained without sources : M
−→
X ' 0

I Thus det(M) = 0 at the magnetic presheath entrance :

vsi = cs sinα

(
ρs

2 tanα

∂xn

n
±
√

1 +
( ρs

2 tanα

∂xn

n

)2

− ρs

2 tanα

∂xTe

Te

)
∼ cs sinα (1 + ε/α) ε = ρs/Lx

I lim
α→π/2

vsi = cs (Bohm), lim
ε→0

vsi = cs sinα (Bohm-Chodura)
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Analytical theory

Summary of the BC

v||i = cs

[
1 + θn −

1

2
θTe −

2φ

Te
θφ

]
v||e = cs

[
exp (Λ− η)− 2φ

Te
θφ + 2(θn + θTe )

]
∂φ

∂s
= −cs

[
1 + θn +

1

2
θTe

]
∂v||i
∂s

∂n

∂s
= − n

cs

[
1 + θn +

1

2
θTe

]
∂v||i
∂s

∂Te

∂s
' 0

ω = − cos2 α
[

(1 + θTe )

(
∂v||i
∂s

)2

+ cs (1 + θn + θTe/2)
∂2v||i
∂s2

]

where θA = ρs
2 tanα

∂x A
A

, and η = e(φmpe − φwall )/Te . [Loizu et al PoP 2012]
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The GBS code
Examples of 3D simulations

The GBS code, a tool to simulate open field line turbulence

I Developed by steps of increasing complexity

I Drift-reduced Braginskii equations

I Global, 3D, Flux-driven, Full-n [Ricci et al PPCF 2012]
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The GBS code
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Examples of 3D simulations
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Electrostatic potential
SOL intrinsic toroidal rotation
SOL width

Which mechanism sets the value of φ ?

I Electric fields
I determine mean plasma flows

I regulate turbulence

I Typical relation used : φ ∼ 3Te =⇒ Er ∼ −3∂rTe

I Generalized Ohm’s law :

men
dV||e
dt

= en∇||φ−∇||pe − 0.71n∇||Te + enνj||

I Time-average, integrate along the field line

I No average current to the walls jwall = 0 =⇒ φ± ' ΛT±e

I Λ = log
(√

mi/(2πme)
)
≈ 3 for hydrogen
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Electrostatic potential
SOL intrinsic toroidal rotation
SOL width

Analytical relation φ = φ(n,Te)

eφ̄(z) =
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What is the origin of intrinsic toroidal rotation in the SOL ?

Snapshot Time-average

I There is a finite volume-averaged toroidal rotation (∼ 0.3cs)
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A theory of SOL intrinsic rotation

I Conservation of parallel momentum :

∂v||i
∂t

+ v||i∇||v||i + (vE×B · ∇)v||i +
1

min
∇||p = 0

I Time-average

I Estimate turbulent momentum flux

Γx ∼ 〈ṽ||i
∂φ̃

∂y
〉t ∼ −DI

∂v̄||i
∂x2
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2D equation for the toroidal rotation

−DI

∂2v̄||i
∂x2

+ vI

∂v̄||i
∂x︸ ︷︷ ︸

radial

+
1

Bϕ

∂φ̄

∂x

∂v̄||i
∂y︸ ︷︷ ︸

poloidal

+αv̄||i
∂v̄||i
∂y︸ ︷︷ ︸

parallel

+
α

mi n̄

∂p̄

∂y︸ ︷︷ ︸
generation

= 0

Sheath is crucial to determine

I Radial electric field

I Boundary conditions

Outcome : analytical solution v̄||i (x , y)
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GBS simulations agree with the theory

Simulation

Theory
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Simulation Theory
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Analytical solution explains observed trends

M(x , 0) = Ms︸︷︷︸
separatrix

e−x/l +
(
Msh︸︷︷︸
sheath

− Ma︸︷︷︸
asymmetry

) (
1− e−x/l

)

M (x,0)
Ma < 0

Ma > 0

Ma = 0

co‐current 

counter‐current 

I Msh = Λρs/(2αLT ) ∼ 0.5

I Co-current rotation

I Rice scaling Vϕ ∼ Te/Ip

I Ma ∼ (n+ − n−)/n0

I Co/Counter-current rotation

I Reverses with B and topology

J. Loizu et al. 22 / 24 The role of the sheath in magnetized plasma fluid turbulence



Motivation
The plasma-wall transition

GBS turbulence simulations
Sheath effects on turbulence

Conclusions

Electrostatic potential
SOL intrinsic toroidal rotation
SOL width

Analytical solution explains observed trends

M(x , 0) = Ms︸︷︷︸
separatrix

e−x/l +
(
Msh︸︷︷︸
sheath

− Ma︸︷︷︸
asymmetry

) (
1− e−x/l

)

M (x,0)
Ma < 0

Ma > 0

Ma = 0

co‐current 

counter‐current 

I Msh = Λρs/(2αLT ) ∼ 0.5

I Co-current rotation

I Rice scaling Vϕ ∼ Te/Ip

I Ma ∼ (n+ − n−)/n0

I Co/Counter-current rotation

I Reverses with B and topology

J. Loizu et al. 22 / 24 The role of the sheath in magnetized plasma fluid turbulence



Motivation
The plasma-wall transition

GBS turbulence simulations
Sheath effects on turbulence

Conclusions

Electrostatic potential
SOL intrinsic toroidal rotation
SOL width

Analytical solution explains observed trends

M(x , 0) = Ms︸︷︷︸
separatrix

e−x/l +
(
Msh︸︷︷︸
sheath

− Ma︸︷︷︸
asymmetry

) (
1− e−x/l

)

M (x,0)
Ma < 0

Ma > 0

Ma = 0

co‐current 

counter‐current 

I Msh = Λρs/(2αLT ) ∼ 0.5

I Co-current rotation

I Rice scaling Vϕ ∼ Te/Ip

I Ma ∼ (n+ − n−)/n0

I Co/Counter-current rotation

I Reverses with B and topology

J. Loizu et al. 22 / 24 The role of the sheath in magnetized plasma fluid turbulence



Motivation
The plasma-wall transition

GBS turbulence simulations
Sheath effects on turbulence

Conclusions

Electrostatic potential
SOL intrinsic toroidal rotation
SOL width

Analytical solution explains observed trends

M(x , 0) = Ms︸︷︷︸
separatrix

e−x/l +
(
Msh︸︷︷︸
sheath

− Ma︸︷︷︸
asymmetry

) (
1− e−x/l

)

M (x,0)
Ma < 0

Ma > 0

Ma = 0

co‐current 

counter‐current 

I Msh = Λρs/(2αLT ) ∼ 0.5

I Co-current rotation

I Rice scaling Vϕ ∼ Te/Ip

I Ma ∼ (n+ − n−)/n0

I Co/Counter-current rotation

I Reverses with B and topology

J. Loizu et al. 22 / 24 The role of the sheath in magnetized plasma fluid turbulence



Motivation
The plasma-wall transition

GBS turbulence simulations
Sheath effects on turbulence

Conclusions
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SOL width

The SOL width depends on the limiter position
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Summary of the results presented

I Provided BC for all fluid fields, thus supplying the sheath
physics to drift-fluid codes

I Implemented BC in the turbulence code GBS

I Investigated sheath effects on plasma turbulence and flows :

I Electrostatic potential in open field lines results from the
combined effect of the sheath physics and the electron
adiabaticity

I Scrape-off layer intrinsic toroidal rotation driven by the sheath
and transported due to the turbulence

I Scrape-off layer width strongly depends on the limiter position
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Extra slides : Why global ? why full-n ?

I Global vs Local ?
I Flux-tube only valid if kxLeq � 1 but kxLeq ∼

√
kyLeq & 1

I Full-n vs Delta-n ?
I In the SOL δn/n ∼ 1 so cannot separate n̄ and ñ

I Flux-driven vs Gradient-driven ?
I Need to evolve the equilibrium profile (e.g. mode saturation)
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Extra slides : Effect of the source details ?

I Details of the radial shape of the source not important

I Poloidal shape of the source may be important (asymmetries,
recycling) - to be studied

I Effect of source strength being explored : what do we expect ?
I If γlin > V

′

ExB : no difference i.e. Lp ∼ ρs

I If source strong to make γlin ∼ V
′

ExB : turbulence suppression ?

[Ricci et al PRL 2007]
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Extra slides : How about kinetic effects ?

I SOL is fairly collisional :
I λei � L||

I ν∗ > 1

I νei > γL

I Kinetic effects may be considered as a higher order correction
I e.g. Landau damping in Ohm’s law
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Extra slides : Importance of neutrals ?

I For the magnetic presheath BC : inertia � i-n collisions ?
I Yes, as long as : ωci sinα� νin

I For the SOL equilibrium : ionization ? recombination ?
I High recycling can affect the V||i profile - to be studied

I Intrinsic rotation theory may breakdown in detached regime

I For the SOL fluctuations : effect on the turbulence ? blobs ?
I Nature of turbulence unchanged, but can add some damping

I Cross-field currents due to i-n collisions can affect blobs

J. Loizu et al. 24 / 24 The role of the sheath in magnetized plasma fluid turbulence



Motivation
The plasma-wall transition

GBS turbulence simulations
Sheath effects on turbulence

Conclusions

Extra slides : Is the sheath resistive ? Ryutov’s model ?

I Misconception about the concept of ”sheath resistivity” :
I The sheath is essentially collisionless, λD � ρs � λie

I How to define an effective resistivity if j|| 6= j||(E||) ?

I Ryutov model for sheath resistivity :
I Linearized Ohm’s law written as ∇||φ̃ = ν j̃|| ∼ νφ̃
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Extra slides : Parallel vs Toroidal rotation ?

I Vϕ = V|| cosα + Vd sinα

I Vd = Ex×B
B2 − (∇pi )x×B

enB2

I Vd/cs ∼ ρs/Lφ � 1
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Extra slides : Ion temperature effects ?

I For the magnetic presheath :
I FLR effects on wall absorption can affect BC - to be studied

I For the SOL equilibrium :
I Finite Ti introduces Pfirsch-Schluter flows

I For the SOL fluctuations : effect on turbulence ?
I RBM physics similar with ion temperature

I ITG physics appears, but not critical for SOL
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Extra slides : Electromagnetic effects ?

I GBS has EM effects - ideal ballooning modes present

I GBS could be used to get a ”wall BC” for MHD codes

I Magnetic presheath BC are electrostatic - to be extended

[Ricci et al PPCF 2012, Halpern et al PoP 2013]
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