

The role of the sheath in magnetized plasma fluid turbulence

J. Loizu, P. Ricci, F.D. Halpern, S. Jolliet, A. Mosetto

École Polytecnique Fédérale de Lausanne Centre de Recherches en Physique des Plasmas Association Euratom-Confédération Suisse CH-1015 Lausanne, Suisse

EPS Conference in Plasma Physics, Espoo, Finland, July 2013

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Turbulence in open field lines is an outstanding issue

in basic plasma devices...

TORPEX, SWITZERLAND

in fusion devices...

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Properties of open field line plasma turbulence

- ▶ L_{fluc} ~ L_{eq}
- $n_{fluc} \sim n_{eq}$
- Collisional magnetized plasma
- Low frequency modes $\omega \ll \omega_{ci}$
- Plasma losses at the sheaths

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Magnetized plasma turbulence via drift-fluid models

Starting from the Braginskii equations,

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Magnetized plasma turbulence via drift-fluid models

- Starting from the Braginskii equations,
 - Quasi-neutrality $n_e \simeq n_i$ is assumed
 - ► A drift ordering is usually adopted, d/dt ≪ ω_{ci}, leading to the ion drift approximation :

$$\mathbf{v}_{\perp i} = \mathbf{v}_{E \times B} + \frac{\mathbf{b}}{\omega_{ci}} \times \frac{d^0}{dt} \mathbf{v}_{E \times B}$$

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Magnetized plasma turbulence via drift-fluid models

$$\begin{aligned} \text{Continuity}: & \frac{dn}{dt} = \frac{2}{eB} \Big[\hat{C}(p_e) - en \hat{C}(\phi) \Big] - \nabla_{||} (nV_{||e}) + S_n \\ \nabla \cdot j &= 0: & \frac{d\omega}{dt} = \frac{2B}{nm_i} \hat{C}(p_e) - V_{||i} \nabla_{||} \omega + \frac{m_i \Omega_{ci}^2}{e^2 n} \nabla_{||} j_{||} \\ \text{Ohm's}: & m_e \frac{dV_{||e}}{dt} = -m_e V_{||e} \nabla_{||} V_{||e} - \frac{T_e}{n} \nabla_{||} n + e \nabla_{||} \phi - 1.71 \nabla_{||} T_e + e\nu j_{||} \\ \text{Momentum}: & m_i \frac{dV_{||i}}{dt} = -m_i V_{||i} \nabla_{||} V_{||i} - \frac{1}{n} \nabla_{||} p_e \\ \text{Heat}: & \frac{dT_e}{dt} = \frac{4}{3} \frac{1}{eB} \left[\frac{7}{2} T_e \hat{C}(T_e) + \frac{T_e^2}{n} \hat{C}(n) - eT_e \hat{C}(\phi) \right] \\ & \quad + \frac{2}{3} \frac{T_e}{en} 0.71 \nabla_{||} j_{||} - \frac{2}{3} T_e \nabla_{||} V_{||e} - V_{||e} \nabla_{||} T_e + S_T \end{aligned}$$

▲ □ ▶ ▲ □ ▶ ▲

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Magnetized plasma turbulence via drift-fluid models

$$Continuity: \qquad \frac{dn}{dt} = \frac{2}{eB} \Big[\hat{C}(p_e) - en\hat{C}(\phi) \Big] - \nabla_{||}(nV_{||e}) + S_n$$

$$\nabla \cdot j = 0: \qquad \frac{d\omega}{dt} = \frac{2B}{nm_i} \hat{C}(p_e) - V_{||i}\nabla_{||}\omega + \frac{m_i\Omega_{ci}^2}{e^2n}\nabla_{||}j_{||}$$

$$Ohm's: \qquad m_e \frac{dV_{||e}}{dt} = -m_e V_{||e}\nabla_{||}V_{||e} - \frac{T_e}{n}\nabla_{||}n + e\nabla_{||}\phi - 1.71\nabla_{||}T_e + e\nu j_{||}$$

$$Momentum: \qquad m_i \frac{dV_{||i}}{dt} = -m_i V_{||i}\nabla_{||}V_{||i} - \frac{1}{n}\nabla_{||}p_e$$

$$Heat: \qquad \frac{dT_e}{dt} = \frac{4}{3}\frac{1}{eB} \left[\frac{7}{2}T_e\hat{C}(T_e) + \frac{T_e^2}{n}\hat{C}(n) - eT_e\hat{C}(\phi) \right]$$

$$+ \frac{2}{3}\frac{T_e}{en}0.71\nabla_{||}j_{||} - \frac{2}{3}T_e\nabla_{||}V_{||e} - V_{||e}\nabla_{||}T_e + S_T$$

Need BC for n, $v_{\parallel e}$, $v_{\parallel i}$, T_e , $\omega = \nabla_{\perp}^2 \phi$ and ϕ .

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Questions we need to answer

- How to describe the plasma-wall transition region?
- What BC for the fluid fields at the end of the field lines?
- How does this affect the main plasma dynamics?

The plasma-wall transition GBS turbulence simulations Sheath effects on turbulence Conclusions

Outline

- Motivation
- Study of the plasma-wall transition region
- Scrape-off layer simulations with the GBS code
- Sheath effects on :
 - Electrostatic potential in open field lines
 - Intrinsic toroidal rotation in the Scrape-off-layer
 - Scrape-off-layer width in limited plasmas
- Conclusions

Kinetic simulations Analytical theory

What can we learn from kinetic simulations?

J. Loizu et al. 8 / 24 The role of the sheath in magnetized plasma fluid turbulence

イロト イボト イヨト イヨト

Kinetic simulations Analytical theory

What can we learn from kinetic simulations?

J. Loizu et al. 8 / 24 The role of the sheath in magnetized plasma fluid turbulence

Kinetic simulations Analytical theory

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Gradients dominant along s

Kinetic simulations Analytical theory

- Gradients dominant along s
- Gradients along x with $\epsilon = \rho_s / L_x \ll 1$

Kinetic simulations Analytical theory

- Gradients dominant along s
- Gradients along x with $\epsilon = \rho_s/L_x \ll 1$
- ▶ Isothermal electrons $\partial_s T_e = 0$, $T_i \ll T_e$

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Steady-state fluid equations valid in the collisional presheath :

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Steady-state fluid equations valid in the collisional presheath :

lon continuity lon parallel momentum Electron parallel momentum

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Steady-state fluid equations valid in the collisional presheath :

lon continuity lon parallel momentum Electron parallel momentum $\begin{aligned} v_{si}\partial_{s}n + n\sin\alpha\partial_{s}v_{||i} - \partial_{x}n\cos\alpha\partial_{s}\phi &= S_{pi} \\ nv_{si}\partial_{s}v_{||i} + n(\sin\alpha - \partial_{x}v_{||i}\cos\alpha)\partial_{s}\phi &= S_{||mi} \\ \mu\sin\alpha T_{e}\partial_{s}n - \mu\sin\alpha n\partial_{s}\phi &= S_{||me} \end{aligned}$

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Steady-state fluid equations valid in the collisional presheath :

lon continuity lon parallel momentum Electron parallel momentum $\begin{aligned} v_{si}\partial_{s}n + n\sin\alpha\partial_{s}v_{||i} - \partial_{x}n\cos\alpha\partial_{s}\phi &= S_{pi} \\ nv_{si}\partial_{s}v_{||i} + n(\sin\alpha - \partial_{x}v_{||i}\cos\alpha)\partial_{s}\phi &= S_{||mi} \\ \mu\sin\alpha T_{e}\partial_{s}n - \mu\sin\alpha n\partial_{s}\phi &= S_{||me} \end{aligned}$

• Can write this system as a matrix system $\mathbf{M}\overrightarrow{X}=\overrightarrow{S}$, where

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Steady-state fluid equations valid in the collisional presheath :

lon continuity lon parallel momentum Electron parallel momentum $\begin{aligned} v_{si}\partial_{s}n + n\sin\alpha\partial_{s}v_{||i} - \partial_{x}n\cos\alpha\partial_{s}\phi &= S_{pi} \\ nv_{si}\partial_{s}v_{||i} + n(\sin\alpha - \partial_{x}v_{||i}\cos\alpha)\partial_{s}\phi &= S_{||mi} \\ \mu\sin\alpha T_{e}\partial_{s}n - \mu\sin\alpha n\partial_{s}\phi &= S_{||me} \end{aligned}$

• Can write this system as a matrix system $\mathbf{M} \overrightarrow{X} = \overrightarrow{S}$, where

$$\vec{X} = \begin{pmatrix} \partial_{s}n \\ \partial_{s}v_{||i} \\ \partial_{s}\phi \end{pmatrix}, \qquad \vec{S} = \begin{pmatrix} S_{pi} \\ S_{||mi} \\ S_{||me} \end{pmatrix},$$

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

Steady-state fluid equations valid in the collisional presheath :

lon continuity lon parallel momentum Electron parallel momentum $\begin{aligned} v_{si}\partial_{s}n + n\sin\alpha\partial_{s}v_{||i} - \partial_{x}n\cos\alpha\partial_{s}\phi &= S_{pi} \\ nv_{si}\partial_{s}v_{||i} + n(\sin\alpha - \partial_{x}v_{||i}\cos\alpha)\partial_{s}\phi &= S_{||mi} \\ \mu\sin\alpha T_{e}\partial_{s}n - \mu\sin\alpha n\partial_{s}\phi &= S_{||me} \end{aligned}$

• Can write this system as a matrix system $\mathbf{M} \overrightarrow{X} = \overrightarrow{S}$, where

$$\vec{X} = \begin{pmatrix} \partial_s n \\ \partial_s v_{||i} \\ \partial_s \phi \end{pmatrix}, \qquad \vec{S} = \begin{pmatrix} S_{pi} \\ S_{||mi} \\ S_{||me} \end{pmatrix},$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{v}_{si} & n\sin\alpha & -\partial_{\mathbf{x}}n\cos\alpha \\ 0 & n\mathbf{v}_{si} & n(\sin\alpha - \partial_{\mathbf{x}}\mathbf{v}_{||i}\cos\alpha) \\ \mu\sin\alpha T_e & 0 & -\mu n\sin\alpha \end{pmatrix}$$

Kinetic simulations Analytical theory

Derivation of the magnetic presheath entrance condition

► In the collisional presheath, $\mathbf{M}\overrightarrow{X} = \overrightarrow{S}$, gradients are small and due to the presence of the sources

Kinetic simulations Analytical theory

- ► In the collisional presheath, $\mathbf{M}\overrightarrow{X} = \overrightarrow{S}$, gradients are small and due to the presence of the sources
- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources : $\mathbf{M} \overrightarrow{X} \simeq \mathbf{0}$

Kinetic simulations Analytical theory

- ► In the collisional presheath, $\mathbf{M}\overrightarrow{X} = \overrightarrow{S}$, gradients are small and due to the presence of the sources
- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources : $\mathbf{M} \overrightarrow{X} \simeq \mathbf{0}$
- Thus det(M) = 0 at the magnetic presheath entrance :

Kinetic simulations Analytical theory

- ► In the collisional presheath, $\mathbf{M}\overrightarrow{X} = \overrightarrow{S}$, gradients are small and due to the presence of the sources
- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources : $\mathbf{M} \overrightarrow{X} \simeq \mathbf{0}$
- Thus det(M) = 0 at the magnetic presheath entrance :

$$\begin{split} \mathbf{v}_{si} &= \mathbf{c}_{s} \sin \alpha \left(\frac{\rho_{s}}{2 \tan \alpha} \frac{\partial_{x} \mathbf{n}}{\mathbf{n}} \pm \sqrt{1 + \left(\frac{\rho_{s}}{2 \tan \alpha} \frac{\partial_{x} \mathbf{n}}{\mathbf{n}} \right)^{2} - \frac{\rho_{s}}{2 \tan \alpha} \frac{\partial_{x} T_{e}}{T_{e}}} \right) \\ &\sim \mathbf{c}_{s} \sin \alpha \left(1 + \epsilon / \alpha \right) \qquad \epsilon = \rho_{s} / \mathcal{L}_{x} \end{split}$$

Kinetic simulations Analytical theory

- ► In the collisional presheath, $\mathbf{M}\overrightarrow{X} = \overrightarrow{S}$, gradients are small and due to the presence of the sources
- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources : $\mathbf{M} \overrightarrow{X} \simeq \mathbf{0}$
- Thus det(M) = 0 at the magnetic presheath entrance :

$$\begin{aligned} \mathbf{v}_{si} &= \mathbf{c}_s \sin \alpha \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x \mathbf{n}}{\mathbf{n}} \pm \sqrt{1 + \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x \mathbf{n}}{\mathbf{n}} \right)^2 - \frac{\rho_s}{2 \tan \alpha} \frac{\partial_x T_e}{T_e}} \right) \\ &\sim \mathbf{c}_s \sin \alpha \left(1 + \epsilon/\alpha \right) \qquad \epsilon = \rho_s/L_x \end{aligned}$$

$$\blacktriangleright \lim_{\alpha \to \pi/2} v_{si} = c_s \text{ (Bohm)},$$

Kinetic simulations Analytical theory

- ► In the collisional presheath, $\mathbf{M}\overrightarrow{X} = \overrightarrow{S}$, gradients are small and due to the presence of the sources
- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources : $\mathbf{M} \overrightarrow{X} \simeq \mathbf{0}$
- Thus det(M) = 0 at the magnetic presheath entrance :

$$\begin{split} \mathbf{v}_{\mathsf{s}\mathsf{i}} &= \mathsf{c}_{\mathsf{s}} \sin \alpha \left(\frac{\rho_{\mathsf{s}}}{2 \tan \alpha} \frac{\partial_{\mathsf{x}} \mathbf{n}}{\mathbf{n}} \pm \sqrt{1 + \left(\frac{\rho_{\mathsf{s}}}{2 \tan \alpha} \frac{\partial_{\mathsf{x}} \mathbf{n}}{\mathbf{n}} \right)^2 - \frac{\rho_{\mathsf{s}}}{2 \tan \alpha} \frac{\partial_{\mathsf{x}} T_{\mathsf{e}}}{T_{\mathsf{e}}}} \right) \\ &\sim \mathsf{c}_{\mathsf{s}} \sin \alpha \left(1 + \epsilon / \alpha \right) \qquad \epsilon = \rho_{\mathsf{s}} / \mathcal{L}_{\mathsf{x}} \end{split}$$

$$\lim_{\alpha \to \pi/2} v_{si} = c_s \text{ (Bohm)}, \lim_{\epsilon \to 0} v_{si} = c_s \sin \alpha \text{ (Bohm-Chodura)}$$

Kinetic simulations Analytical theory

CRPP

Summary of the BC

$$\begin{split} \mathbf{v}_{||i} &= c_s \left[1 + \theta_n - \frac{1}{2} \theta_{T_e} - \frac{2\phi}{T_e} \theta_\phi \right] \\ \mathbf{v}_{||e} &= c_s \left[\exp\left(\Lambda - \eta\right) - \frac{2\phi}{T_e} \theta_\phi + 2(\theta_n + \theta_{T_e}) \right] \\ \frac{\partial \phi}{\partial s} &= -c_s \left[1 + \theta_n + \frac{1}{2} \theta_{T_e} \right] \frac{\partial \mathbf{v}_{||i}}{\partial s} \\ \frac{\partial n}{\partial s} &= -\frac{n}{c_s} \left[1 + \theta_n + \frac{1}{2} \theta_{T_e} \right] \frac{\partial \mathbf{v}_{||i}}{\partial s} \\ \frac{\partial T_e}{\partial s} &\simeq 0 \\ \omega &= -\cos^2 \alpha \left[\left(1 + \theta_{T_e} \right) \left(\frac{\partial \mathbf{v}_{||i}}{\partial s} \right)^2 + c_s \left(1 + \theta_n + \theta_{T_e}/2 \right) \frac{\partial^2 \mathbf{v}_{||i}}{\partial s^2} \right] \end{split}$$

where $\theta_A = \frac{\rho_s}{2 \tan \alpha} \frac{\partial_x A}{A}$, and $\eta = e(\phi_{mpe} - \phi_{wall})/T_e$. [Loizu et al PoP 2012]

The GBS code Examples of 3D simulations

The GBS code, a tool to simulate open field line turbulence

Developed by steps of increasing complexity

Helimak, USA

- Drift-reduced Braginskii equations
- Global, 3D, Flux-driven, Full-n

[Ricci et al PPCF 2012]

The GBS code Examples of 3D simulations

Examples of 3D simulations

CRPP

(日)

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Which mechanism sets the value of ϕ ?

J. Loizu et al. 15 / 24 The role of the sheath in magnetized plasma fluid turbulence

イロト イボト イヨト イヨト

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Which mechanism sets the value of ϕ ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence

< ロ > < 同 > < 三 > < 三 >

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Which mechanism sets the value of ϕ ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence
- Typical relation used : $\phi \sim 3T_e \implies E_r \sim -3\partial_r T_e$

(日)

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Which mechanism sets the value of ϕ ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence
- Typical relation used : $\phi \sim 3T_e \implies E_r \sim -3\partial_r T_e$
- Generalized Ohm's law :

$$m_e n \frac{dV_{||e}}{dt} = en \nabla_{||} \phi - \nabla_{||} p_e - 0.71 n \nabla_{||} T_e + en \nu j_{||}$$

< ロ > < 同 > < 三 > < 三 >

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Which mechanism sets the value of ϕ ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence
- Typical relation used : $\phi \sim 3T_e \implies E_r \sim -3\partial_r T_e$
- Generalized Ohm's law :

$$m_e n rac{dV_{||e}}{dt} = en
abla_{||} \phi -
abla_{||} p_e - 0.71 n
abla_{||} T_e + en
u j_{||}$$

- Time-average, integrate along the field line
- ▶ No average current to the walls $j_{wall} = 0 \implies \phi^{\pm} \simeq \Lambda T_e^{\pm}$

•
$$\Lambda = \log \left(\sqrt{m_i/(2\pi m_e)} \right) \approx 3$$
 for hydrogen

Electrostatic potential SOL intrinsic toroidal rotation SOL width

CRPP

$$e\bar{\phi}(z) = \underbrace{\frac{1}{2}\Lambda(T_{e}^{+}+T_{e}^{-})}_{sheath} + \underbrace{1.71\left[\bar{T}_{e}(z) - \frac{1}{2}(T_{e}^{+}+T_{e}^{-})\right] + \delta_{0}\left[\bar{n}(z) - \frac{1}{2}(n^{+}+n^{-})\right]}_{adiabaticity}$$

イロト イボト イヨト イヨト

Electrostatic potential SOL intrinsic toroidal rotation SOL width

CRPP

$$e\bar{\phi}(z) = \underbrace{\frac{1}{2}\Lambda(T_{e}^{+}+T_{e}^{-})}_{sheath} + \underbrace{1.71\left[\bar{T}_{e}(z) - \frac{1}{2}(T_{e}^{+}+T_{e}^{-})\right] + \delta_{0}\left[\bar{n}(z) - \frac{1}{2}(n^{+}+n^{-})\right]}_{adiabaticity}$$

• Limit of
$$T_e(z) \equiv T_0$$
 and $n(z) \equiv n_0$
 $e\bar{\phi} = \Lambda T_0$ (ϕ set by the sheath)

イロト イボト イヨト イヨト

Electrostatic potential SOL intrinsic toroidal rotation SOL width

CRPP

$$e\bar{\phi}(z) = \underbrace{\frac{1}{2}\Lambda(T_{e}^{+}+T_{e}^{-})}_{sheath} + \underbrace{1.71\left[\bar{T}_{e}(z) - \frac{1}{2}(T_{e}^{+}+T_{e}^{-})\right] + \delta_{0}\left[\bar{n}(z) - \frac{1}{2}(n^{+}+n^{-})\right]}_{adiabaticity}$$

► Limit of
$$T_e(z) \equiv T_0$$
 and $n(z) \equiv n_0$
 $e\bar{\phi} = \Lambda T_0$ (ϕ set by the sheath)

► Limit of
$$T_e^{\pm} = n^{\pm} = 0$$
 and $T_e/n \sim const$
 $e\bar{\phi}(z) = 2.71\bar{T}_e(z)$ (ϕ set by adiabaticity)

イロト イボト イヨト イヨト

Electrostatic potential SOL intrinsic toroidal rotation SOL width

CRPP

$$e\bar{\phi}(z) = \underbrace{\frac{1}{2}\Lambda(T_{e}^{+} + T_{e}^{-})}_{sheath} + \underbrace{1.71\left[\bar{T}_{e}(z) - \frac{1}{2}(T_{e}^{+} + T_{e}^{-})\right] + \delta_{0}\left[\bar{n}(z) - \frac{1}{2}(n^{+} + n^{-})\right]}_{adiabaticity}$$

• Limit of
$$T_e(z) \equiv T_0$$
 and $n(z) \equiv n_0$
 $e\bar{\phi} = \Lambda T_0$ (ϕ set by the sheath)

► Limit of
$$T_e^{\pm} = n^{\pm} = 0$$
 and $T_e/n \sim const$
 $e\bar{\phi}(z) = 2.71\bar{T}_e(z)$ (ϕ set by adiabaticity)

Conclusion : It depends on the operational regime !

Electrostatic potential SOL intrinsic toroidal rotation SOL width

SOL simulations agree with the analytical prediction

J. Loizu et al. 17/24 The role of the sheath in magnetized plasma fluid turbulence

Electrostatic potential SOL intrinsic toroidal rotation SOL width

SOL simulations agree with the analytical prediction

J. Loizu et al.

Electrostatic potential SOL intrinsic toroidal rotation SOL width

What is the origin of intrinsic toroidal rotation in the SOL?

Snapshot

Time-average

• There is a finite volume-averaged toroidal rotation ($\sim 0.3c_s$)

イロト イボト イヨト イヨト

Electrostatic potential SOL intrinsic toroidal rotation SOL width

A theory of SOL intrinsic rotation

Conservation of parallel momentum :

J. Loizu et al. 19 / 24 The role of the sheath in magnetized plasma fluid turbulence

イロト イポト イヨト イヨ

Electrostatic potential SOL intrinsic toroidal rotation SOL width

A theory of SOL intrinsic rotation

Conservation of parallel momentum :

$$\frac{\partial v_{||i}}{\partial t} + v_{||i} \nabla_{||} v_{||i} + (\mathbf{v}_{E \times B} \cdot \nabla) v_{||i} + \frac{1}{m_i n} \nabla_{||} p = 0$$

イロト イポト イヨト イヨ

Electrostatic potential SOL intrinsic toroidal rotation SOL width

A theory of SOL intrinsic rotation

Conservation of parallel momentum :

$$\frac{\partial v_{||i}}{\partial t} + v_{||i} \nabla_{||} v_{||i} + (\mathbf{v}_{E \times B} \cdot \nabla) v_{||i} + \frac{1}{m_i n} \nabla_{||} p = 0$$

- Time-average
- Estimate turbulent momentum flux

$$\Gamma_{x} \sim \langle \tilde{v}_{||i} \frac{\partial \tilde{\phi}}{\partial y} \rangle_{t} \sim -D_{I} \frac{\partial \bar{v}_{||i}}{\partial x^{2}}$$

Electrostatic potential SOL intrinsic toroidal rotation SOL width

2D equation for the toroidal rotation

Sheath is crucial to determine

- Radial electric field
- Boundary conditions

Outcome : analytical solution $\bar{v}_{||i}(x, y)$

Electrostatic potential SOL intrinsic toroidal rotation SOL width

GBS simulations agree with the theory

Simulation

J. Loizu et al. 21/24 The role of the sheath in magnetized plasma fluid turbulence

(日)

Electrostatic potential SOL intrinsic toroidal rotation SOL width

GBS simulations agree with the theory

(日)

э

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Analytical solution explains observed trends

< ロ > < 同 > < 三 > < 三

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Analytical solution explains observed trends

イロト イポト イヨト イヨ

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Analytical solution explains observed trends

- Co-current rotation
- Rice scaling $V_{\varphi} \sim T_e/I_p$

(日)

Electrostatic potential SOL intrinsic toroidal rotation SOL width

Analytical solution explains observed trends

Reverses with B and topology

The role of the sheath in magnetized plasma fluid turbulence

• Rice scaling $V_{\varphi} \sim T_e/I_p$

J. Loizu et al.

22/24

Electrostatic potential SOL intrinsic toroidal rotation SOL width

The SOL width depends on the limiter position

J. Loizu et al. 23 / 24 The role of the sheath in magnetized plasma fluid turbulence

Summary of the results presented

- Provided BC for all fluid fields, thus supplying the sheath physics to drift-fluid codes
- Implemented BC in the turbulence code GBS
- Investigated sheath effects on plasma turbulence and flows :
 - Electrostatic potential in open field lines results from the combined effect of the sheath physics and the electron adiabaticity
 - Scrape-off layer intrinsic toroidal rotation driven by the sheath and transported due to the turbulence
 - Scrape-off layer width strongly depends on the limiter position

イロト イポト イラト イラ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Ξ.

Extra slides : Why global ? why full-n ?

- Global vs Local?
 - ▶ Flux-tube only valid if $k_x L_{eq} \gg 1$ but $k_x L_{eq} \sim \sqrt{k_y L_{eq}} \gtrsim 1$
- Full-n vs Delta-n?
 - ▶ In the SOL $\delta n/n \sim 1$ so cannot separate \bar{n} and \tilde{n}
- Flux-driven vs Gradient-driven?
 - Need to evolve the equilibrium profile (e.g. mode saturation)

・ 同 ト ・ ヨ ト ・ ヨ

Extra slides : Effect of the source details?

- Details of the radial shape of the source not important
- Poloidal shape of the source may be important (asymmetries, recycling) - to be studied
- Effect of source strength being explored : what do we expect ?
 - If $\gamma_{\textit{lin}} > V_{\textit{ExB}}'$: no difference i.e. $L_p \sim \rho_s$
 - If source strong to make $\gamma_{\textit{lin}} \sim V_{\textit{ExB}}'$: turbulence suppression ?

[Ricci et al PRL 2007]

Extra slides : How about kinetic effects?

- SOL is fairly collisional :
 - $\lambda_{ei} \ll L_{||}$
 - $\nu^* > 1$
 - $\nu_{ei} > \gamma_L$

► Kinetic effects may be considered as a higher order correction

▶ e.g. Landau damping in Ohm's law

・ 同 ト ・ ヨ ト ・ ヨ

Extra slides : Importance of neutrals?

- For the magnetic presheath BC : inertia \gg i-n collisions?
 - Yes, as long as : $\omega_{ci} \sin \alpha \gg \nu_{in}$
- ► For the SOL equilibrium : ionization? recombination?
 - High recycling can affect the $V_{||i|}$ profile to be studied
 - ► Intrinsic rotation theory may breakdown in detached regime
- For the SOL fluctuations : effect on the turbulence ? blobs ?
 - Nature of turbulence unchanged, but can add some damping
 - Cross-field currents due to i-n collisions can affect blobs

Extra slides : Is the sheath resistive ? Ryutov's model ?

Misconception about the concept of "sheath resistivity" :

- ▶ The sheath is essentially collisionless, $\lambda_D \ll \rho_s \ll \lambda_{ie}$
- How to define an effective resistivity if $j_{||} \neq j_{||}(E_{||})$?
- Ryutov model for sheath resistivity :
 - \blacktriangleright Linearized Ohm's law written as $\nabla_{||} \tilde{\phi} = \nu \tilde{j}_{||} \sim \nu \tilde{\phi}$

Extra slides : Parallel vs Toroidal rotation?

•
$$V_{\varphi} = V_{||} \cos \alpha + V_d \sin \alpha$$

• $V_d = \frac{\mathbf{E}_x \times \mathbf{B}}{B^2} - \frac{(\nabla p_i)_x \times \mathbf{B}}{enB^2}$
• $V_d/c_s \sim \rho_s/L_{\phi} \ll 1$

(日)

Extra slides : Ion temperature effects?

- For the magnetic presheath :
 - ► FLR effects on wall absorption can affect BC to be studied
- For the SOL equilibrium :
 - ► Finite *T_i* introduces Pfirsch-Schluter flows
- ▶ For the SOL fluctuations : effect on turbulence?
 - RBM physics similar with ion temperature
 - ► ITG physics appears, but not critical for SOL

Extra slides : Electromagnetic effects?

- GBS has EM effects ideal ballooning modes present
- ► GBS could be used to get a "wall BC" for MHD codes
- Magnetic presheath BC are electrostatic to be extended

[Ricci et al PPCF 2012, Halpern et al PoP 2013]