The role of the sheath in magnetized plasma fluid turbulence

J. Loizu, P. Ricci, F.D. Halpern, S. Jolliet, A. Mosetto

École Polytechnique Fédérale de Lausanne
Centre de Recherches en Physique des Plasmas
Association Euratom-Confédération Suisse
CH-1015 Lausanne, Suisse

EPS Conference in Plasma Physics, Espoo, Finland, July 2013
Turbulence in open field lines is an outstanding issue

in basic plasma devices...

in fusion devices...
Properties of open field line plasma turbulence

- $L_{\text{fluc}} \sim L_{\text{eq}}$
- $n_{\text{fluc}} \sim n_{\text{eq}}$
- Collisional magnetized plasma
- Low frequency modes $\omega \ll \omega_{ci}$
- Plasma losses at the sheaths
Magnetized plasma turbulence via drift-fluid models

▶ Starting from the Braginskii equations,
Magnetized plasma turbulence via drift-fluid models

- Starting from the Braginskii equations,
 - Quasi-neutrality $n_e \approx n_i$ is assumed
 - A drift ordering is usually adopted, $d/dt \ll \omega_{ci}$, leading to the ion drift approximation:
 $$v_{\perp i} = v_{ExB} + \frac{b}{\omega_{ci}} \times \frac{d^0}{dt} v_{ExB}$$
Magnetized plasma turbulence via drift-fluid models

Continuity:
\[
\frac{dn}{dt} = \frac{2}{eB} \left[\hat{\mathcal{C}}(p_e) - en\hat{\mathcal{C}}(\phi) \right] - \nabla_{||}(nV_{||e}) + S_n
\]

\nabla \cdot j = 0:
\[
\frac{d\omega}{dt} = \frac{2B}{nm_i} \hat{\mathcal{C}}(p_e) - V_{||i} \nabla_{||} \omega + \frac{m_i \Omega_{ci}^2}{e^2 n} \nabla_{||} j_{||}
\]

Ohm’s:
\[
m_e \frac{dV_{||e}}{dt} = - m_e V_{||e} \nabla_{||} V_{||e} - \frac{T_e}{n} \nabla_{||} n + e \nabla_{||} \phi - 1.71 \nabla_{||} T_e + e \nu j_{||}
\]

Momentum:
\[
m_i \frac{dV_{||i}}{dt} = - m_i V_{||i} \nabla_{||} V_{||i} - \frac{1}{n} \nabla_{||} p_e
\]

Heat:
\[
\frac{dT_e}{dt} = \frac{4}{3} \frac{1}{eB} \left[\frac{7}{2} T_e \hat{\mathcal{C}}(T_e) + \frac{T_e^2}{n} \hat{\mathcal{C}}(n) - e T_e \hat{\mathcal{C}}(\phi) \right] + \frac{2}{3} \frac{T_e}{en} 0.71 \nabla_{||} j_{||} - \frac{2}{3} T_e \nabla_{||} V_{||e} - V_{||e} \nabla_{||} T_e + S_T
\]
Magnetized plasma turbulence via drift-fluid models

Continuity:
\[
\frac{dn}{dt} = \frac{2}{eB} \left[\hat{C}(p_e) - en\hat{C}(\phi) \right] - \nabla_{||}(nV_{||e}) + S_n
\]

\[\nabla \cdot j = 0:\n\]
\[
\frac{d\omega}{dt} = \frac{2B}{nm_i} \hat{C}(p_e) - V_{||i} \nabla_{||}\omega + \frac{m_i\Omega_c^2}{e^2 n} \nabla_{||}j_{||}
\]

Ohm's:
\[
m_e \frac{dV_{||e}}{dt} = -m_e V_{||e} \nabla_{||}V_{||e} - \frac{T_e}{n} \nabla_{||}n + e \nabla_{||}\phi - 1.71 \nabla_{||}T_e + e\nu j_{||}
\]

Momentum:
\[
m_i \frac{dV_{||i}}{dt} = -m_i V_{||i} \nabla_{||}V_{||i} - \frac{1}{n} \nabla_{||}p_e
\]

Heat:
\[
\frac{dT_e}{dt} = \frac{4}{3} \frac{1}{eB} \left[\frac{7}{2} T_e \hat{C}(T_e) + \frac{T_e^2}{n} \hat{C}(n) - eT_e \hat{C}(\phi) \right]
\]
\[
+ \frac{2}{3} \frac{T_e}{en} 0.71 \nabla_{||}j_{||} - \frac{2}{3} T_e \nabla_{||}V_{||e} - V_{||e} \nabla_{||}T_e + S_T
\]

Need BC for \(n, v_{||e}, v_{||i}, T_e, \omega = \nabla_{\perp}^2 \phi \) and \(\phi \).

J. Loizu et al. 5 / 24 The role of the sheath in magnetized plasma fluid turbulence
Questions we need to answer

- How to describe the plasma-wall transition region?
- What BC for the fluid fields at the end of the field lines?
- How does this affect the main plasma dynamics?
Outline

- Motivation
- Study of the plasma-wall transition region
- Scrape-off layer simulations with the GBS code
- Sheath effects on:
 - Electrostatic potential in open field lines
 - Intrinsic toroidal rotation in the Scrape-off-layer
 - Scrape-off-layer width in limited plasmas
- Conclusions
What can we learn from kinetic simulations?
What can we learn from kinetic simulations?

\[\phi \]

\[\frac{n_i - n_e}{n_{se}} \]

\[V_- \]

\[\rho_s \]

COLLISIONAL PRE-SHEATH
MAGNETIC PRE-SHEATH
DEBYE SHEATH

DRIFT VELOCITY

DRIFT-REDUCED MODEL VALID
DRIFT APPROXIMATION BREAKS

J. Loizu et al.

8 / 24

The role of the sheath in magnetized plasma fluid turbulence
Derivation of the magnetic presheath entrance condition

\[\nabla \cdot B = 0, \quad T_i \ll T_e \]

\[\frac{\partial s}{\partial x} T_e = 0, \quad T_i \ll T_e \]
Derivation of the magnetic presheath entrance condition

- Gradients dominant along s
Derivation of the magnetic presheath entrance condition

- Gradients dominant along s
- Gradients along x with $\epsilon = \rho_s/L_x \ll 1$
Derivation of the magnetic presheath entrance condition

- Gradients dominant along s
- Gradients along x with $\epsilon = \rho_s/L_x \ll 1$
- Isothermal electrons $\partial_s T_e = 0$, $T_i \ll T_e$
Derivation of the magnetic presheath entrance condition

- Steady-state fluid equations valid in the collisional presheath:
Derivation of the magnetic presheath entrance condition

- Steady-state fluid equations valid in the collisional presheath:

 Ion continuity

 Ion parallel momentum

 Electron parallel momentum
Derivation of the magnetic presheath entrance condition

- Steady-state fluid equations valid in the collisional presheath:

Ion continuity

\[\nu_{si} \partial_s n + n \sin \alpha \partial_s \nu_i - \partial_x n \cos \alpha \partial_s \phi = S_{pi} \]

Ion parallel momentum

\[n \nu_{si} \partial_s \nu_i + n (\sin \alpha - \partial_x \nu_i \cos \alpha) \partial_s \phi = S_{\parallel mi} \]

Electron parallel momentum

\[\mu \sin \alpha T_e \partial_s n - \mu \sin \alpha n \partial_s \phi = S_{\parallel me} \]
Derivation of the magnetic presheath entrance condition

- Steady-state fluid equations valid in the collisional presheath:

 Ion continuity

 \[\nu_{si} \partial_s n + n \sin \alpha \partial_s v_{||i} - \partial_x n \cos \alpha \partial_s \phi = S_{pi} \]

 Ion parallel momentum

 \[n \nu_{si} \partial_s v_{||i} + n(\sin \alpha - \partial_x v_{||i} \cos \alpha) \partial_s \phi = S_{||mi} \]

 Electron parallel momentum

 \[\mu \sin \alpha T_e \partial_s n - \mu \sin \alpha n \partial_s \phi = S_{||me} \]

- Can write this system as a matrix system \(\mathbf{M} \mathbf{X} = \mathbf{S} \), where
Derivation of the magnetic presheath entrance condition

- Steady-state fluid equations valid in the collisional presheath:

 Ion continuity
 \[\nu_{si} \partial_s n + n \sin \alpha \partial_s v_{||i} - \partial_x n \cos \alpha \partial_s \phi = S_{pi} \]

 Ion parallel momentum
 \[n \nu_{si} \partial_s v_{||i} + n (\sin \alpha - \partial_x v_{||i} \cos \alpha) \partial_s \phi = S_{||mi} \]

 Electron parallel momentum
 \[\mu \sin \alpha T_e \partial_s n - \mu \sin \alpha n \partial_s \phi = S_{||me} \]

- Can write this system as a matrix system \(\mathbf{M} \vec{X} = \vec{S} \), where

 \[
 \vec{X} = \begin{pmatrix}
 \partial_s n \\
 \partial_s v_{||i} \\
 \partial_s \phi
 \end{pmatrix},
 \quad
 \vec{S} = \begin{pmatrix}
 S_{pi} \\
 S_{||mi} \\
 S_{||me}
 \end{pmatrix}.
 \]
Derivation of the magnetic presheath entrance condition

- Steady-state fluid equations valid in the collisional presheath:

 - Ion continuity
 \[v_{si} \partial_s n + n \sin \alpha \partial_s v_{||i} - \partial_x n \cos \alpha \partial_s \phi = S_{pi} \]

 - Ion parallel momentum
 \[n v_{si} \partial_s v_{||i} + n(\sin \alpha - \partial_x v_{||i} \cos \alpha) \partial_s \phi = S_{||mi} \]

 - Electron parallel momentum
 \[\mu \sin \alpha T_e \partial_s n - \mu \sin \alpha n \partial_s \phi = S_{||me} \]

- Can write this system as a matrix system \(\mathbf{M} \bar{\mathbf{X}} = \bar{\mathbf{S}} \), where

 \[\bar{\mathbf{X}} = \begin{pmatrix} \partial_s n \\ \partial_s v_{||i} \\ \partial_s \phi \end{pmatrix}, \quad \bar{\mathbf{S}} = \begin{pmatrix} S_{pi} \\ S_{||mi} \\ S_{||me} \end{pmatrix}, \]

 \[\mathbf{M} = \begin{pmatrix} v_{si} & n \sin \alpha & -\partial_x n \cos \alpha \\ 0 & n v_{si} & n(\sin \alpha - \partial_x v_{||i} \cos \alpha) \\ \mu \sin \alpha T_e & 0 & -\mu n \sin \alpha \end{pmatrix} \]
Derivation of the magnetic presheath entrance condition

- In the collisional presheath, $\mathbf{M} \vec{X} = \vec{S}$, gradients are small and due to the presence of the sources.
Derivation of the magnetic presheath entrance condition

- In the collisional presheath, $\mathbf{M}\vec{X} = \vec{S}$, gradients are small and due to the presence of the sources

- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources: $\mathbf{M}\vec{X} \sim 0$
Derivation of the magnetic presheath entrance condition

▶ In the collisional presheath, $M\vec{X} = \vec{S}$, gradients are small and due to the presence of the sources

▶ At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources: $M\vec{X} \sim 0$

▶ Thus $\text{det}(M) = 0$ at the magnetic presheath entrance:
Derivation of the magnetic presheath entrance condition

- In the collisional presheath, $\mathbf{M}\mathbf{X} = \mathbf{S}$, gradients are small and due to the presence of the sources.

- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources: $\mathbf{M}\mathbf{X} \sim 0$.

- Thus $\text{det} (\mathbf{M}) = 0$ at the magnetic presheath entrance:

$$v_{si} = c_s \sin \alpha \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x n}{n} \pm \sqrt{1 + \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x n}{n} \right)^2 - \frac{\rho_s}{2 \tan \alpha} \frac{\partial_x T_e}{T_e}} \right)$$

$$\sim c_s \sin \alpha \left(1 + \epsilon/\alpha \right) \quad \epsilon = \rho_s/L_x$$
Derivation of the magnetic presheath entrance condition

- In the collisional presheath, $\mathbf{M} \mathbf{X} = \mathbf{S}$, gradients are small and due to the presence of the sources.

- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources: $\mathbf{M} \mathbf{X} \sim 0$.

- Thus $\text{det}(\mathbf{M}) = 0$ at the magnetic presheath entrance:

\[
\nu_{si} = c_s \sin \alpha \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x n}{n} \pm \sqrt{1 + \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x n}{n} \right)^2 - \frac{\rho_s}{2 \tan \alpha} \frac{\partial_x T_e}{T_e}} \right)
\]

\[
\sim c_s \sin \alpha \left(1 + \frac{\epsilon}{\alpha} \right) \quad \epsilon = \frac{\rho_s}{L_x}
\]

- $\lim_{\alpha \to \pi/2} \nu_{si} = c_s$ (Bohm).
Derivation of the magnetic presheath entrance condition

- In the collisional presheath, $\mathbf{M}\vec{X} = \vec{S}$, gradients are small and due to the presence of the sources.

- At the magnetic presheath entrance, gradients become large, $\partial_s \sim 1$, and can be sustained without sources: $\mathbf{M}\vec{X} \approx 0$.

- Thus $\text{det}(\mathbf{M}) = 0$ at the magnetic presheath entrance:

 $$v_{si} = c_s \sin \alpha \left(\frac{\rho_s}{\tan \alpha} \frac{\partial_x n}{n} \pm \sqrt{1 + \left(\frac{\rho_s}{2 \tan \alpha} \frac{\partial_x n}{n} \right)^2 - \frac{\rho_s}{2 \tan \alpha} \frac{\partial_x T_e}{T_e}} \right)$$

 $$\sim c_s \sin \alpha \left(1 + \frac{\epsilon}{\alpha} \right), \quad \epsilon = \frac{\rho_s}{L_x}$$

- $\lim_{\alpha \to \pi/2} v_{si} = c_s$ (Bohm), $\lim_{\epsilon \to 0} v_{si} = c_s \sin \alpha$ (Bohm-Chodura).
Summary of the BC

\[v_{\parallel i} = c_s \left[1 + \theta_n - \frac{1}{2} \theta T_e - \frac{2\phi}{T_e} \theta \phi \right] \]

\[v_{\parallel e} = c_s \left[\exp(\Lambda - \eta) - \frac{2\phi}{T_e} \theta \phi + 2(\theta_n + \theta T_e) \right] \]

\[\frac{\partial \phi}{\partial s} = -c_s \left[1 + \theta_n + \frac{1}{2} \theta T_e \right] \frac{\partial v_{\parallel i}}{\partial s} \]

\[\frac{\partial n}{\partial s} = -\frac{n}{c_s} \left[1 + \theta_n + \frac{1}{2} \theta T_e \right] \frac{\partial v_{\parallel i}}{\partial s} \]

\[\frac{\partial T_e}{\partial s} \simeq 0 \]

\[\omega = -\cos^2 \alpha \left[(1 + \theta T_e) \left(\frac{\partial v_{\parallel i}}{\partial s} \right)^2 + c_s (1 + \theta_n + \theta T_e/2) \frac{\partial^2 v_{\parallel i}}{\partial s^2} \right] \]

where \(\theta_A = \frac{\rho_s}{2 \tan \alpha} \frac{\partial x A}{A} \), and \(\eta = e(\phi_{mpe} - \phi_{wall})/T_e \). [Loizu et al PoP 2012]
The GBS code, a tool to simulate open field line turbulence

- Developed by steps of increasing complexity
- Drift-reduced Braginskii equations
- Global, 3D, Flux-driven, Full-n
Examples of 3D simulations

\[n \]
\[T_e \]
\[\phi \]
\[v_{||i} \]
\[v_{||e} \]
\[\omega \]
Which mechanism sets the value of ϕ?
Which mechanism sets the value of ϕ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence
Which mechanism sets the value of ϕ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence

- Typical relation used: $\phi \sim 3T_e \implies E_r \sim -3\partial_r T_e$
Which mechanism sets the value of ϕ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence

- Typical relation used: $\phi \sim 3T_e \implies E_r \sim -3\partial_r T_e$

- Generalized Ohm’s law:

$$m_e n \frac{dV_{||}}{dt} = en\nabla_{||} \phi - \nabla_{||} p_e - 0.71n\nabla_{||} T_e + en\nu j_{||}$$

$\Lambda = \log(\sqrt{m_i/(2\pi m_e)}) \approx 3$ for hydrogen.
Which mechanism sets the value of ϕ?

- Electric fields
 - determine mean plasma flows
 - regulate turbulence
- Typical relation used: $\phi \sim 3T_e \implies E_r \sim -3\partial_r T_e$
- Generalized Ohm’s law:
 \[
 m_e n \frac{dV_e}{dt} = en\nabla||\phi - \nabla||p_e - 0.71n\nabla||T_e + en\nu j||
 \]
 - Time-average, integrate along the field line
 - No average current to the walls $j_{wall} = 0 \implies \phi^\pm \sim \Lambda T_e^\pm$
 - $\Lambda = \log \left(\sqrt{m_i/(2\pi m_e)} \right) \approx 3$ for hydrogen
Analytical relation $\phi = \phi(n, T_e)$

\[
e^{-\phi(z)} = \frac{1}{2} \Lambda(T_e^+ + T_e^-) + 1.71 \left[\bar{T}_e(z) - \frac{1}{2}(T_e^+ + T_e^-) \right] + \delta_0 \left[\bar{n}(z) - \frac{1}{2}(n^+ + n^-) \right]
\]
Analytical relation $\phi = \phi(n, T_e)$

$$e\bar{\phi}(z) = \frac{1}{2}\Lambda(T_e^+ + T_e^-) + 1.71 \left[\bar{T}_e(z) - \frac{1}{2}(T_e^+ + T_e^-) \right] + \delta_0 \left[\bar{n}(z) - \frac{1}{2}(n^+ + n^-) \right]$$

- **Limit of** $T_e(z) \equiv T_0$ and $n(z) \equiv n_0$

 $$e\bar{\phi} = \Lambda T_0 \quad \text{(}\phi \text{ set by the sheath)}$$
Analytical relation $\phi = \phi(n, T_e)$

$$e\bar{\phi}(z) = \frac{1}{2}\Lambda(T_e^+ + T_e^-) + 1.71\left[\bar{T}_e(z) - \frac{1}{2}(T_e^+ + T_e^-)\right] + \delta_0\left[\bar{n}(z) - \frac{1}{2}(n^+ + n^-)\right]$$

- **Limit of $T_e(z) \equiv T_0$ and $n(z) \equiv n_0$**
 $$e\bar{\phi} = \Lambda T_0 \quad (\phi \text{ set by the sheath})$$

- **Limit of $T_e^\pm = n^\pm = 0$ and $T_e/n \sim \text{const}$**
 $$e\bar{\phi}(z) = 2.71 \bar{T}_e(z) \quad (\phi \text{ set by adiabaticity})$$
Analytical relation $\phi = \phi(n, T_e)$

$$e\phi(z) = \frac{1}{2} \Lambda(T^+ + T^-) + 1.71 \left[\bar{T}_e(z) - \frac{1}{2}(T^+ + T^-) \right] + \delta_0 \left[\bar{n}(z) - \frac{1}{2}(n^+ + n^-) \right]$$

- Limit of $T_e(z) \equiv T_0$ and $n(z) \equiv n_0$
 $$e\phi = \Lambda T_0 \quad (\phi \text{ set by the sheath})$$

- Limit of $T_e^{\pm} = n^{\pm} = 0$ and $T_e/n \sim const$
 $$e\phi(z) = 2.71 \bar{T}_e(z) \quad (\phi \text{ set by adiabaticity})$$

▶ Conclusion: It depends on the operational regime!
SOL simulations agree with the analytical prediction

\[
\Lambda = 3
\]

\[
\bar{\Phi}_{sim}
\]

\[
\bar{\Phi}_{th}
\]

\[
\Lambda T_0
\]
SOL simulations agree with the analytical prediction

\[\Lambda = 3 \]
\[\Lambda = 6 \]

\[\bar{\phi}_{sim} \]
\[\bar{\phi}_{th} \]
\[\Lambda T_0 \]
What is the origin of intrinsic toroidal rotation in the SOL?

- There is a finite volume-averaged toroidal rotation ($\sim 0.3c_s$)
A theory of SOL intrinsic rotation

- Conservation of parallel momentum:

\[\partial_t v_i + v_i \nabla ||v_i|| + (v_i E \times B) \cdot ||v_i|| + \frac{1}{m_i} \nabla ||p|| = 0 \]

Time-average

Estimate turbulent momentum flux

\[\Gamma_x \sim \langle \tilde{v}_i \partial_t \tilde{\phi} \partial_y \rangle \sim -D_I \partial_x \bar{v}_i \partial_x^2 \]
A theory of SOL intrinsic rotation

- Conservation of parallel momentum:

\[
\frac{\partial v_{||i}}{\partial t} + v_{||i} \nabla_{||} v_{||i} + (v_{E \times B} \cdot \nabla) v_{||i} + \frac{1}{m_i n} \nabla_{||} p = 0
\]
A theory of SOL intrinsic rotation

- Conservation of parallel momentum:

\[
\frac{\partial v_{||i}}{\partial t} + v_{||i} \nabla_{||} v_{||i} + (v_E \times B \cdot \nabla) v_{||i} + \frac{1}{m_i n} \nabla_{||} p = 0
\]

- Time-average

- Estimate turbulent momentum flux

\[
\Gamma_x \sim \langle \tilde{v}_{||i} \frac{\partial \tilde{\phi}}{\partial y} \rangle_t \sim -D_I \frac{\partial \tilde{v}_{||i}}{\partial x^2}
\]
2D equation for the toroidal rotation

\[-D_I \frac{\partial^2 \tilde{v}_{||i}}{\partial x^2} + v_I \frac{\partial \tilde{v}_{||i}}{\partial x} + \frac{1}{B_\varphi} \frac{\partial \phi}{\partial x} \frac{\partial \tilde{v}_{||i}}{\partial y} + \alpha \tilde{v}_{||i} \frac{\partial \tilde{v}_{||i}}{\partial y} + \frac{\alpha}{m_i \tilde{n}} \frac{\partial \tilde{p}}{\partial y} = 0\]

Sheath is crucial to determine

- Radial electric field
- Boundary conditions

Outcome : analytical solution \(\tilde{v}_{||i}(x, y) \)
GBS simulations agree with the theory

Simulation
GBS simulations agree with the theory
Analytical solution explains observed trends

\[M(x, 0) = M_s e^{-x/l} + (M_{sh} - M_a) \left(1 - e^{-x/l} \right) \]
Analytical solution explains observed trends

\[M(x, 0) = M_s e^{-x/l} + (M_{sh} - M_a) \left(1 - e^{-x/l}\right) \]
Analytical solution explains observed trends

\[M(x,0) = M_s e^{-x/l} + \left(M_{\text{sh}} - M_a \right) \left(1 - e^{-x/l} \right) \]

- \(M_{\text{sh}} = \Lambda \rho_s / (2 \alpha L_T) \sim 0.5 \)
- Co-current rotation
- Rice scaling \(V_\varphi \sim T_e / I_p \)
Analytical solution explains observed trends

\[M(x, 0) = M_s \frac{e^{-x/l}}{\text{separatrix}} + \left(M_{\text{sh}} - M_a \right) \left(1 - e^{-x/l} \right) \]

- \(M_{\text{sh}} = \Lambda \rho_s / (2 \alpha L_T) \sim 0.5 \)
- Co-current rotation
- Rice scaling \(V_\varphi \sim T_e / I_p \)
- \(M_a \sim (n^+ - n^-) / n_0 \)
- Co/Counter-current rotation
- Reverses with \(B \) and topology
The SOL width depends on the limiter position

\[\langle p_e \rangle_t \]

\[\langle p_e \rangle_t \]

\[\langle p_e \rangle_t \]

\[\langle p_e \rangle_t \]
Summary of the results presented

- Provided **BC for all fluid fields**, thus supplying the sheath physics to drift-fluid codes
- Implemented BC in the turbulence code **GBS**
- Investigated **sheath effects** on plasma turbulence and flows:
 - **Electrostatic potential** in open field lines results from the combined effect of the sheath physics and the electron adiabaticity
 - **Scrape-off layer intrinsic toroidal rotation** driven by the sheath and transported due to the turbulence
 - **Scrape-off layer width** strongly depends on the limiter position
The role of the sheath in magnetized plasma fluid turbulence
Extra slides: Why global? why full-n?

- **Global vs Local?**
 - Flux-tube only valid if $k_x L_{eq} \gg 1$ but $k_x L_{eq} \sim \sqrt{k_y L_{eq}} \gtrsim 1$

- **Full-n vs Delta-n?**
 - In the SOL $\delta n/n \sim 1$ so cannot separate \bar{n} and \tilde{n}

- **Flux-driven vs Gradient-driven?**
 - Need to evolve the equilibrium profile (e.g. mode saturation)
Extra slides : Effect of the source details?

- Details of the radial shape of the source not important
- Poloidal shape of the source may be important (asymmetries, recycling) - to be studied
- Effect of source strength being explored : what do we expect?
 - If $\gamma_{\text{lin}} > V_{E\times B}'$: no difference i.e. $L_p \sim \rho_s$
 - If source strong to make $\gamma_{\text{lin}} \sim V_{E\times B}'$: turbulence suppression?

[Ricci et al PRL 2007]
Extra slides: How about kinetic effects?

- SOL is fairly collisional:
 - $\lambda_{ei} \ll L_{||}$
 - $\nu^* > 1$
 - $\nu_{ei} > \gamma L$

- Kinetic effects may be considered as a higher order correction
 - e.g. Landau damping in Ohm’s law
Extra slides: Importance of neutrals?

- For the magnetic presheath BC: inertia \gg i-n collisions?
 - Yes, as long as: $\omega_{ci} \sin \alpha \gg \nu_{in}$

- For the SOL equilibrium: ionization? recombination?
 - High recycling can affect the $V_{||i}$ profile - to be studied
 - Intrinsic rotation theory may breakdown in detached regime

- For the SOL fluctuations: effect on the turbulence? blobs?
 - Nature of turbulence unchanged, but can add some damping
 - Cross-field currents due to i-n collisions can affect blobs
Extra slides: Is the sheath resistive? Ryutov’s model?

- Misconception about the concept of "sheath resistivity":
 - The sheath is essentially collisionless, $\lambda_D \ll \rho_s \ll \lambda_{ie}$
 - How to define an effective resistivity if $j_{||} \neq j_{||}(E_{||})$?

- Ryutov model for sheath resistivity:
 - Linearized Ohm's law written as $\nabla_{||} \tilde{\phi} = \nu \tilde{j}_{||} \sim \nu \tilde{\phi}$
Extra slides: Parallel vs Toroidal rotation?

\[V_\varphi = V_\parallel \cos \alpha + V_d \sin \alpha \]

\[V_d = \frac{E_x \times B}{B^2} - \frac{(\nabla p_i)_x \times B}{enB^2} \]

\[V_d/c_s \sim \rho_s/L_\phi \ll 1 \]
Extra slides: Ion temperature effects?

- For the magnetic presheath:
 - FLR effects on wall absorption can affect BC - to be studied

- For the SOL equilibrium:
 - Finite T_i introduces Pfirsch-Schluter flows

- For the SOL fluctuations: effect on turbulence?
 - RBM physics similar with ion temperature
 - ITG physics appears, but not critical for SOL
Extra slides: Electromagnetic effects?

- GBS has EM effects - ideal ballooning modes present
- GBS could be used to get a "wall BC" for MHD codes
- Magnetic presheath BC are electrostatic - to be extended

[Ricci et al PPCF 2012, Halpern et al PoP 2013]