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Data, Parameters & Nonlinearities: Development and 
Applications of Large-scale Dynamic Models of Metabolism 

Abstract  
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Dynamic nonlinear models of metabolism offer a significant advantage as compared to constraint-based stoichiometric 
descriptions. However, progress in the development of large-scale nonlinear models has been hindered by both structural and 
quantitative uncertainties. In particular, the knowledge about kinetic rate laws and their parameters is till today still very 
limited when compared to the number of stoichiometric reactions known to be present in a large-scale metabolic model. In 
addition, strategies to systematically identify and implement large-scale dynamic models for metabolism are still lacking. In 
this contribution, we propose a novel methodology for development of dynamic nonlinear models for metabolism. Using the 
ORACLE[1] (Optimization and Risk Analysis of Complex Living Entities) framework, we integrate thermodynamics and 
available omics and kinetic data into a large-scale stoichiometric model. The resulting set of log-linear kinetic models is used 
to compute kinetic parameters of the involved enzymatic reactions such as the maximal velocities and Michaelis constants. 
These kinetic parameters are in turn used to compute populations of stable, nonlinear, dynamic models sharing the same 
stable steady-state as the log-linear ones. The computed models offer unprecedented possibilities for system analysis, e.g. to 
study the responses of metabolism upon large perturbations; to investigate time course evolutions in and around the steady 
state; and to identify multiple steady-states and their basins of attraction. We illustrate the features of the generated models 
in the case of optimally grown E. coli, where our analysis of the estimated maximal reaction rates highlights the significance 
of  network thermodynamics in constraining the variability of these quantities. 

ORACLE methodology 

Derived from a genome scale E. coli reconstruction.  
Consists of 133 reactions and 77 metabolites. Used to 
demonstrate the strategy for developing large scale 
dynamic models. 

!

ORACLE[1] used to assemble the key aspects defining 
a non-linear model: thermodynamics, rate laws, 
metabolite concentrations and kinetic parameters, and 
coupling with partial/complete data. 

We see that, for the optimally grown E. coli, the 
variability of the maximal velocity estimates depends 
on the displacement from the thermodynamic 
equilibrium of the involved enzymes. 
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Model

 The estimated parameters are consistent with BRENDA and other databases.  
 These parametric estimates are used to investigate correlative/co-regulated properties of the system.  
 The partial kinetic data is incorporated to further refine/constrain the kinetic parameter estimates.  
 The kinetic parameters used to systematically develop populations of stable dynamic models having the 

same steady-state as the log-linear ones.  
 These non-linear estimations around the stable state are used to analyze diverse properties of the 

system upon large perturbations and investigate time course evolutions in and around this steady state.  

Estimated kinetic parameters, e.g. Km values, are 
comparable to experimental measurements in 
databases like BRENDA. We use this partial data 
whenever available, to prune/refine our parametric 
estimates.  

Figure 3: Comparison of estimated and 
experimental (database) Km values. For 
17% of the reactions of the network, we 
could find partial or complete Km 
measurements. For these reactions, our 
estimated Km measurements for the 
participating metabolites were consistent 
with the experimental values. Example 
shown for the reaction, FUM (Fumarase) 
for the participating metabolites (Fumarate 
and Malate-L). We used this experimental 
measurements to prune our models. In case 
of react ion FUM, using both the 
measurements for Fumarate and Malate-L, 
only 7% of the models were acceptable.  

Parametric relationship mining 

Figure 4: Investigating correlative properties of the system using Vmax estimates. 
At a singular reaction level, we clearly see distributions for the parameters. At a 
multiple reaction level, inherent correlations and relations amongst each other 
become evident. Example shown for reactions MDH, ASPT and FUM. At a 
systems level, we can identify potentially correlated parts of the system. 

Figure 1: Flowchart of the computational procedure for uncertainty analysis of 
metabolic networks within the ORACLE framework. The successive application of 
computational procedures integrates biological information from different levels and 
sources thus refining kinetic models and providing guidance for metabolic engineering. 

Figure 2: Thermodynamic displacements of the reactions in the consistently reduced E. 
coli. network. The current network included 133 reactions and 77 metabolites. 

Vmax estimates are used in dynamic model 
generation but also to highlight not so evident 
correlative/co-regulated properties of the network. 

Model analysis using dynamic models of metabolic networks 

Conclusion 

Consistently reduced E. coli model 

Figure 6: Investigating basins of attraction upon 
perturbations to the models. In case of reaction ACONTa, 
the flux value for almost 100% of the cases returns back to 
the initial steady state flux value of 4.23 mMol/gdw/hr. 
While for others like AKGDH, there are two basins of 
attraction; one around 4 mMol/gdw/hr (89% of cases) and 
the other at 17 mMol/gdw/hr (11% of cases). We can 
further investigate the concentrations of metabolites 
(which were the only parameters that were changed) that 
gives rise to the other steady states.  

The non-linear estimations about the 
stable state can be used to analyze 
diverse properties of the system upon 
large perturbations and investigate 
time course evolutions in and around 
this steady state.  
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Figure 5: (A) Coefficient of variation (CV) of the Vmax estimates. For 50% of the 
reactions CV was < 1. (B) Strong dependence of the CV to the mean of the 
equilibrium displacement. 

Role of thermodynamics 


