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Abstract Dynamic nonlinear models of metabolism offer a significant advantage as compared to constraint-based stoichiometric

Objective descriptions. However, progress in the development of large-scale nonlinear models has been hindered by both structural and

S —— : quantitative uncertainties. In particular, the knowledge about kinetic rate laws and their parameters is till today still very
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neasurements limited when compared to the number of stoichiometric reactions known to be present in a large-scale metabolic model. In
i awesng  addition, strategies to systematically identify and implement large-scale dynamic models for metabolism are still lacking. In
g ; this contribution, we propose a novel methodology for development of dynamic nonlinear models for metabolism. Using the
e — S J .......... - ORACLE! (Optimization and Risk Analysis of Complex Living -

5 . available omics and kinetic data into a large-scale stoichiometric model. The resulting set of log-linear kinetic models is used

Cntities) framework, we integrate thermodynamics and

dentify key Large Scale E : : : : : . . : :
equators/ ) Dynamic Models o Generate ket . to compute kinetic parameters of the involved enzymatic reactions such as the maximal velocities and Michaelis constants.
1\ parameters : . . . . . - .
Networks These kinetic parameters are in turn used to compute populations of stable, nonlinear, dynamic models sharing the same

. stable steady-state as the log-linear ones. The computed models offer unprecedented possibilities for system analysis, e.g. to
constrainCouple! study the responses of metabolism upon large perturbations; to investigate time course evolutions in and around the steady
@ta i state; and to identify multiple steady-states and their basins of attraction. We illustrate the features of the generated models
in the case of optimally grown F. coli, where our analysis of the estimated maximal reaction rates highlights the significance

of network thermodynamics in constraining the variability of these quantities.
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Figure 1: Flowchart of the computational procedure for uncertainty analysis of
metabolic networks within the ORACLE framework. The successive application of
computational procedures integrates biological information from different levels and
sources thus refining kinetic models and providing guidance for metabolic engineering.

Increasing knowledge about metabolic network

ORACLE! used to assemble the key aspects defining
a non-linear model: thermodynamics, rate laws,
metabolite concentrations and kinetic parameters, and
coupling with partial /complete data.

Consistently reduced E. col: model

Derived from a genome scale F. coli reconstruction.
Consists of 133 reactions and 77 metabolites. Used to
demonstrate the strategy for developing large scale
dynamic models.

Displacement from thermodynamic equilibrium
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Figure 2: Thermodynamic displacements of the reactions in the consistently reduced E.
coli. network. The current network included 133 reactions and 77 metabolites.

Role of thermodynamics
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Figure 5: (A) Coefficient of variation (CV) of the V . estimates. For 50% of the
reactions CV was < 1. (B) Strong dependence of the CV to the mean of the
equilibrium displacement.

We see that, for the optimally grown FE. coli, the
variability of the maximal velocity estimates depends
on the displacement from the thermodynamic
equilibrium of the involved enzymes.

Kinetic parameter estimation
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Figure 3: Comparison of estimated and
experimental (database) K_  values. For
17% of the reactions of the network, we
could find partial or complete K,
measurements. For these reactions, our
estimated K, measurements for the
participating metabolites were consistent
with the experimental values. Example
shown for the reaction, FUM (Fumarase)
for the participating metabolites (Fumarate
and Malate-L.). We used this experimental
measurements to prune our models. In case
of reaction FUM, using both the
measurements for Fumarate and Malate-L,

only 7% of the models were acceptable.
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Estimated kinetic parameters, e.g. K, values, are

comparable to experimental measurements in

databases like BR.

ENDA.

We use this partial data

whenever available, to prune/refine our parametric
estimates.

Parametric relationship mining
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Figure 4: Investigating correlative properties of the system using V. _estimates.
At a singular reaction level, we clearly see distributions for the parameters. At a
multiple reaction level, inherent correlations and relations amongst each other
become evident. Example shown for reactions MDH, ASPT and FUM. At a

systems level, we can identify potentially correlated parts of the system.

\Y estimates are used in dynamic model

Imax

generation but also to highlight not so evident
correlative /co-regulated properties of the network.

Model analysis using dynamic models of metabolic networks
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Conclusion

<> The estimated parameters are consistent with BRENDA and other databases.
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he partial kinetic data is incorporated to further refine/constrain the kinetic parameter estimates.

¢ T

he kinetic parameters used to systematically develop populations of stable dynamic models having the

same steady-state as the log-linear ones.

hese parametric estimates are used to investigate correlative/co-regulated properties of the system.

<> These non-linear estimations around the stable state are used to analyze diverse properties of the

system upon large perturbations and investigate time course evolutions in and around this steady state.
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