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Abstract

Diffusion magnetic resonance imaging (AMRI) is a non-invasive method that allows connec-
tivity mapping of the brain. However, despite major advances in this field, accurate inference
of these patterns and its applicability within a clinical context is still in its early stages. This
thesis describes a conceptually novel method for reconstructing neuronal pathways inside
the brain from diffusion-weighted imaging (DWI) measurements with high angular resolution
and short data acquisition time. The proposed method combines recent theoretical advances
on spherical sampling and noise-reduction techniques from the field of compressed sensing.
Numerical simulations were performed to study the best sampling strategy under a novel
sampling theorem on the sphere in order to reduce the acquisition time during dMRI scans.
Furthermore, these results were combined with the recently proposed spherical deconvolution
technique to reconstruct the distribution of neuronal tracts (or fibers) within one voxel with
high angular resolution between multiple crossing fibers. The spherical deconvolution problem
was hereby formulated as an inverse problem and solved using techniques adopted from the
field of compressed sensing. Since the result of the spherical deconvolution step is sparse in
nature, the basis pursuit denoising formulation of the inverse problem is optimal within this
context. Finally, the resulting fiber orientation reconstruction was compared with diffusion
spectrum imaging (DSI) — a classic model-free acquisition method. Simulations revealed that
the proposed approach is superior to DSI in terms of both, acquisition time and angular reso-
lution of crossing fibers (>40° with at least 90% sensitivity). Our investigations showed that
the application of spherical deconvolution stated as a basis pursuit denoising problem holds

great promise for high angular resolution dMRI.
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”The truth is our most precious
possession, thus let us be economical in

its use. "

MARK TWAIN

1 Introduction and Problem Statement

Diffusion magnetic resonance imaging (dMRI) experienced high scientific attention during the
past decades. It can help to diagnose tumors or to study psychiatric disorders or neurological
diseases in more detail. To visualize the white matter of the brain and the neuronal fiber
bundles, diffusion tensor (DT) model is the most commonly used imaging technique to acquire
the orientation of the fibers within a voxel. However, this approach does not allow to resolve
regions of multiple fiber crossings with different orientations in space as demonstrated in

Figure 1.1.

(a) DSI (b) DTI

Figure 1.1: Fibers are color-coded according to their orientation, and are superimposed upon
a diffusion-weighted image of adjacent cerebral structures. (a) Tractography from diffusion
spectrum imaging (DSI) is able to resolve crossing fibers. (b) Failed reconstruction of
intersecting fibers with diffusion tensor imaging (DTI). [Wedeen et al., 2008]

Thus, many alternative models have been proposed to improve the angular resolution of
dMRI. Some of the methods, which allow high angular resolution diffusion imaging, are dif-
fusion spectrum imaging, Q-ball imaging, and techniques based on spherical deconvolution,
just to name few. Please refer to a review by Assemlal et al. [2011] and the book on dMRI
by Johansen-Berg and Behrens [2009] for more information on different sampling and recon-

struction techniques in dMRI. All these techniques have in common that they are based on
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nearly identical sampling schemes. The data acquisition consists of dense sampling, where
the orientation distribution function (ODF) is estimated from the signal by making use of
various mathematical approaches. The sampling strategy in particular evolved towards the
use of multiple spherical shells for signal acquisition, which allowed higher angular resolution
of crossing fibers. Table 1.1 summarizes the data acquisition times, number of samples and

angular resolution for different dMRI techniques. The motivation for finding an efficient sam-

Table 1.1: Diffusion MRI acquisition techniques. Acquisition times as reported in [Hagmann
et al., October 2006]. Angular resolution for g-ball imaging was taken from [Cho et al.,
2008|.

Sampling Gradient strength # of samples Acquisition Min. angle

Technique [sec/mm?] in g-space N time [min]
DWI b <1000 N =1 1-3 N.A.
DTI b <1000 N>7 3-6 N.A.
DSI b > 8000 N > 200 15-60 ~ 45°
g-ball 1000 < b < 3000 N > 60 10-20 ~ 50°

pling scheme lies in the aim to map effectively the diffusion signal with as few samples as
possible, which leads to a reduction of acquisition time. Simultaneously, the angular resolu-
tion needs to remain high or even be improved. Within this context, spherical harmonic (SH)
transform became a popular mathematical approach, due to its ability to perform convolution
operations easier and more efficient in harmonic than in real space. The main drawback of
this transformation is, however, that aliasing occurs if the signal is not sampled at a proper
bandwidth. According to Daducci et al. [2011] this problem has not been addressed in a
quantitative approach yet. Therefore, they proposed a novel multi-shell g-space sampling
technique. This technique, as well as, how to model the ODF with the help of spherical

harmonics will be presented here in more detail.

The main goal of this thesis was to improve the results of spherical sampling by transforming
the ODF to a different form. Hereby, we exploited the nice property of the harmonic space
allowing us to perform convolution easily. This is important as we will define an inverse
problem from the knowledge that an ODF can be transformed to a fiber orientation distribu-
tion function (FOD) by means of spherical deconvolution. Our approach made it possible to
extract the fiber directions from the FOD with higher angular resolution from less samples
than in DSI.

This thesis is organized in the main chapters: 1 Introduction and Problem Statement, 2
Background, 3 Methods, 4 Results, 5 Discussion, and 6 Conclusion. The Introduction and

Problem Statement gives a brief overview over the project and the problem statement. The
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chapter Background describes the biological brain tissue that is visualized with dAMRI. Further,
the history and physics of diffusion and diffusion-weighted imaging is introduced and two
reconstruction and visualization techniques (DTI and DSI) are described. The last part of
this introductory chapter gives a brief overview on the dMRI applications and the importance
of high-angular resolution reconstruction techniques. The Methods chapter introduces the
reader to the mathematical background used in this work, including the novel multi-shell
sampling, introduction to spherical deconvolution for FOD calculations, and formulation of
the inverse problem as a basis pursuit denoising (BPDN) problem with and without noise.
The chapter Results presents the outcome of the extensive numerical simulations. Here, we
will also propose modifications to the formulation of the BPDN problem. Additionally, we
will justify the advantages of our technique and discuss the comparison to DSI. The last part
of this thesis work — Discussion and Conclusion — will evaluate the results and deal with open

scientific questions and propose further possible direction of this research project.
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“If you can’t convince them, confuse

them!”

HARRY TRUMAN

2 Background

This chapter gives a brief overview on the background of diffusion magnetic resonance imaging
(AMRI) and its applications. The following introductory sections are inspired from a book
on dMRI by Johansen-Berg and Behrens [2009], work of Hagmann et al. [October 2006, and
Beaulieu [2002], and a review article on recent advances in diffusion MRI [Assemlal et al.,
2011].

2.1 Diffusion MRI: Theory and Applications

2.1.1 What Are Neuronal Tracts?

Diffusion MRI makes it possible to visualize and to investigate the architecture of the brains
white matter. This application relies on the phenomenon that water diffusion is obstructed
by barriers created by biological structures inside the brain (e.g., axons, neurons, and glial

cells within the brain tissue). Figure 2.1 illustrates the neuronal cell body and the axon.

Blood

capillary
%croglal cell
5 )

Figure 2.1: Schematic representation of the major cellular elements of the white matter as
the neuronal cell body and the axon. [Johansen-Berg and Behrens, 2009]
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These are the major structural elements that hinder water diffusion perpendicular to the
axons. The axon, embedded in the white matter, is surrounded by a type of fat, called myelin
sheath. The myelin lets the white matter appear whitish (see Figure 2.2a). This specialized
organization of the myelin sheaths acts as an electrical insulator, and it increases the speed
of transmission of nerve signals, whereby electrical impulses are sent along the axon from
the neuronal cell body to the axon terminus. The electrical impulse usually affects the cell
membrane potential of one of the neuron’s dendrites and then travels along the length of this
axon to transmit the electrical signal to other neurons. The common term for an axon is
nerve fiber and bundles of these fibers are called neuronal tracts or fibers (Figure 2.2c and

Figure 2.2b).

(a) Coronal Section (b) Right Cerebral Hemisphere (c) Left Cerebral Hemisphere

Figure 2.2: Dissections of the human brain [Williams et al., 1997]. In (a) the grey and the
white matters can be seen. (b) and (c) show the dissected human brain from the left and
from the right side respectively, revealing the structure of the white matter and the fiber
bundles.

2.1.2 Physics of Diffusion

Diffusion is a physical process leading to a uniform distribution of particles and thus to the
complete mixing of two or more substances. Brown (1827), Fick (1855), and Einstein (1905)
explained the theory behind this physical phenomenon and prepared the mathematical basis

for further reasearch.

In a medium, where the diffusion of particles is not hindered by anything, it can diffuse equally
in all directions and is then called isotropic. However, when the motion of the particles is
constrained by surrounding materials such as in biological tissues it is called anisotropic. The

differences between isotropic and anisotropic diffusion are illustrated in Figure 2.3.

To characterize the motion of water molecules in the brain qualitatively, previously described
observations are used to form a more elaborate formulation of the diffusion phenomenon (see

Section 2.1.4 for more details).
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(a) Isotropic diffusion (b) Anisotropic diffusion

Figure 2.3: Random motion of a single water molecule due to diffusion in two different
tissues of the brain. (a) Isotropic diffusion, e.g., in the cerebrospinal fluid. (b) Anisotropic
diffusion due to constraints in vertical direction, e.g., in nerve fibers of the white matter.
[Beaulieu, 2002]

2.1.3 Brief History of dMRI

Principles of Nuclear Magnetic Resonance (NMR)
[Bloch, Purcell, Carr (1946), Hahn (1950)]

!

The Pulse Gradient Spin-Echo (PGSE) sequence
[Stejskal and Tanner (1965)]

!

Scalar Diffusion-Weighted Imaging (DWI)
[Le Bihan and Breton (1985)]

!

Diffusion Tensor Imaging (DTI)
[Basser et al, (1992-1994)]

!

Diffusion Spectrum Imaging (DSI)
[Wedeen et al (2000)]

Figure 2.4: Brief history of diffusion MRI [Descoteaux, 2008].

Diffusion MRI is based on principles of nuclear magnetic resonance (NMR) imaging. NMR
is a spectroscopic method to study the electronic environment of individual atoms and the
interactions with neighboring atoms. This allows the elucidation of molecular structure and
dynamics for concentration measurements. NMR was described at the same time by Bloch
[1946] and Purcell et al. [1946], and was awarded by a Nobel Prize in Physics in 1952. Few

years after this discovery Carr and Purcell [1954] proposed to create the first one-dimensional



2 Background

MR image by introducing a gradient to the magnetic field. Shortly afterwards, Hahn [1950]
published an article on the NMR spin echo, where he posed the fundamental observation that
the amplitude of received signal is reduced after a perturbation of the magnetic field due to
random thermal motion of the spins. This phenomenon is a major step towards understanding
dMRI. Many more advances in MR imaging followed (see Figure 2.4) and will be described

by the following section in more detail.

2.1.4 Acquisition Techniques
2.1.4.1 1-D dMRI: Diffusion Weighted Imaging (DWI)

Diffusion weighted imaging (DWI) was performed for the first time by Wesbey et al. [1984].
A year later DWI acquisition on a hen’s egg was done by Taylor and Bushell [1985]. After
further development of the technique LeBihan et al. [1986] was finally able to acquire first

images of the human brain and he also introduced the famous b-value (see Equation 2.4).

Through the development of DWT it has become possible to determine the movement of water
molecules inside the human brain and eventually present this information to understand
further the nature of the white matter. The measured signal loss enables a quantitative

evaluation of diffusion in gradient direction (Figure 2.5).

(a) x-direction (b) y-direction (c) z-direction

Figure 2.5: Effects of changing the axis of the diffusion—encoding gradients on the diffusion—
weighted signal intensity. In the area highlighted by the arrows the apparent diffusivity is
high along the horizontal axis as shown by (a), but low in the two orthogonal directions,
as dark areas represent high apparent diffusivity. [Assemlal et al., 2011]

One DW image corresponds to a single point in a so called g-space, where one g-space sample
represent a diffusion weighted signal measured in this direction. To measure diffusion of water
molecules qualitatively in a given direction g = (g, gy, 9-), the gradient spin echo sequence
of Stejskal and Tanner [1965] is used. They adopted a T2-weighted spin-echo sequence to

measure water diffusion (as illustrated in Figure 2.6). To acquire a diffusion weighted signal,
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two gradient pulses ¢(¢) in a diffusion encoding gradient direction g of a duration § are used.
These gradient pulses are placed symmetrically on both sides of the 180° rephasing pulse.
The first gradient pulse leads to a phase shift of the spins. The 180° pulse combined with
the second gradient pulse applies another phase shift after a time A. The acquired signal
caused by stationary molecules is unaffected by this pulse, as the previously applied phase
shift is canceled. However, water molecules which moved during the time period A experience
different phase shifts by the two gradient pulses, resulting in a signal loss, whereas, stationary
molecules are unaffected by gradients and measured signal intensity is preserved [Koh and

Collins, 2007]. The diffusion displacement probability density function (PDF), sometimes

! Repetition Time (TR)
R e it -
! 90° 180° ! 90°

% /\/— RF pulse
| |
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Figure 2.6: Schematic visualization of the Stejskal-Tanner PGSE sequence [Descoteaux,
2008].

also addressed in literature as the diffusion propagator, is denoted by P(r,7) and represents
the probability, that a water molecule will experience a certain displacement r after a time
7. Stejskal and Tanner showed that the signal attenuation S(q,7) has a Fourier relationship
with the average diffusion propagator P(r, ).

S(a,7)

E(q,7) = S = /P(r,T)e%iqTrdr = FQI[P](q), (2.1)

Here, the value of the real space vector q is given by

)
5
a= ¢,y q:) = ;/ g(t)dt = 1°8, (2.2)
T Jo 27

with v = 42 MHz/T being the nuclear gyromagnetic ratio for water protons [Westin and
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Maier, 2002], g the applied diffusion gradient vector, and P(r, 7) the diffusion PDF or diffusion
propagator of water molecules. P is the function, which is aimed to be reconstructed in dMRI.
Therefore, the diffusion PDF must be sampled along many q directions. Thus, the space of

all possible q vectors in three dimensions is called g-space.

By solving the Fourier integral in Equation 2.1 under assumption of a Gaussian PDF ana-
lytically, the Stejskal-Tanner signal attenuation equation obtains the commonly used form as

follows in Equation 2.3.
S(q7 T) = SoeiTqTan S(ba g) = SoeibgTDg7 (23)

The signal attenuation is also often written with respect to g, with |g| being strength of
the diffusion sensitizing gradient pulses. Here it is common to use the b-value as a diffusion

weighting factor:

b=7"6%(A~5/3)|g]* = (2m)*(A — 6/3)|al?, (2.4)
thus, the signal attenuation is obtained with respect to the b-value given by Equation 2.4. The
covariance matrix D of the net displacement vector r was defined by Einstein as D = 6% (rTr),

where 7 is the diffusion time and (...) denote an ensemble average of r.

2.1.4.2 3-D dMRI: Diffusion Tensor Imaging (DTI)

To describe the diffusion process in a 3-dimensional space a diffusion tensor model (DT) as
proposed by Basser et al. [1994] can be used. This tensor is obtained by solving the Stejskal-
Tanner equation 2.3. A log is taken on both sides and the equation is solved for six unknowns
(entries of D) at each voxel. At least seven images with non-coplanar gradient directions

including Sy for normalization must be acquired to calculate six tensor components.

log S — log S

g7 Dg = 220 252 > =2 (2.5)
_ - _lnSO_
In Sy

1 =b7" —by¥ o —bY*| | Dyy
In Sy

- D,, (2.

1 =% —by) - —bEF
In S,
- - _DIZ’_

The DT formalism allows the extraction of some interesting properties of diffusion. Therefore,

the tensor is decomposed into its three eigenvalues A1, A2, and A3, where Ay > Ao > A3, and

10
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corresponding eigenvectors vy, v, V3.

Da:a: Da:y sz
D= |D,, D, D,. (2.7)
Da:z Dyz Dzz

The largest eigenvalue A; gives the principal direction of the DT v and the other two eigen-

vectors span the orthogonal plane to it (illustrated in Figure 2.7).

" A N Orientation-color
Fractional anisotropy Map Color-coded Orientation Map conversion

Figure 2.7: The principle of DTI and contrast generation from diffusion measurements along
multiple axes. [Mori and Zhang, 2006]

From this eigenvalue decomposition, several rotationally invariant quantities can be extracted
such as the mean diffusivity A with 3A = A\; + A3 + A3 or the fractional anisotropy (FA) as
defined by Equation 2.8. A typical value for FA is approximately 0.8, as measured by Mori
and Zhang [2006]. Figure 2.8b presents how the tensor shape affects the FA value.

Fa- 3 VVar() (2.8)
V2N + X3+ N
v M= 0% (= B 4 (g — 4

3
Most often the FA map itself is used to visualize the regions of anisotropy, as can be seen
in Figure 2.8a. It is also common to visualize the DTs with a Red-Blue-Green (RGB) color-
map as proposed by Pajevic and Pierpaoli [1999]. The RGB map encodes the 3—dimensional
coordinates of the principal eigenvector v1, which is assumed to represent the local fiber
orientation (Figure 2.7). The areas of red, blue and green color indicate tensors aligned with
the x, y, z directions in space. Further, the dark regions are isotropic, meaning the tensor
shape is spherical and bright regions are anisotropic leading to an elongated shape of the

tensor. Even though the DT is a powerful tool for many clinical applications, the DT model

11
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" A R . .

- o O@ [ 13 5 S

FA =0.12 FA = 0.46 FA = 0.82
A =08 A =110 A = 1.60
g3 = 0.65 Az = 0.50 N3 = 0.25

(a) DTI ellipsoids (b) Fractional anisotropy

Figure 2.8: Ellipsoidal visualization of diffusion tensor data. (a) shows on the left the whole
view and on the right a zoomed view at the splenium of corpus callosum [Masutani et al.,
2003|. (b) illustrates diffusion ellipsoids with different fractional anisotropy ranging from
almost isotropic (lower FA) to anisotropic (higher FA) diffusion profile [Johansen-Berg and
Behrens, 2009].

is limited. It cannot be used to visualize voxels with multiple fiber crossings. This limitation is
caused by the assumption of the Gaussian PDF and the limited number of degrees of freedom
in the model. Hence, we need higher order models to be able to describe non-Gaussian

distributions.

2.1.4.3 3-D dMRI: Diffusion Spectrum Imaging (DSI)

In contrast to DTI, diffusion spectrum imaging (DSI) is not based on any model hypothesis
on the diffusion. It is also said to be model-free. In DSI, the resolution of the diffusion PDF
depends only on the number of samples in g-space. Equation 2.10 shows the way of extracting
the diffusion PDF from data measuring the signal on a Cartesian grid of points in g-space

and then taking the 3-dimensional Fourier transform to obtain the PDF.
P(r,7) = /E(q, 7)e 2m9 g = Fyp[E)(r) (2.10)

DSI was described for the first time by Wedeen [2000]. The original technique has, however,
some technical limitations. In order to achieve a high resolution, a big sampling box with
many g-space sampling directions is required. This needs many measurements and very large
b-values. This results in a major practical problem, because of the large number of samples.
The acquisition time then increases drastically, hence making it impractical to use in a clinical
context (up to 60 minutes for data acquisition). For DSI, usually 515 diffusion-weighted images
are acquired in q-space with b-values ranging from 0 sec/mm? to 8,000 sec/mm?. Then a

Fourier transform is applied to the obtained g-space data to calculate the PDF.

As a result of DSI limitations, other techniques have been developed to calculate the desired
diffusion PDF. One such feasible approach is Q-ball imaging developed by Tuch [2004] (Figure

12
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2.9a). This imaging technique has again the advantage of being model independent, and it
has been shown that it is possible to reconstruct the diffusion orientation distribution function

(ODF) directly from samples placed on a single spherical shell in g-space.

jg‘l :%) ull diffusion pdf (scheme in 2D)
o
g-space ﬁ*
:

Area under
the curve

(a) Q-ball sampling (b) From PDF to ODF

Figure 2.9: (a) shows that in g-ball imaging, points on a shell with a constant b-value
are acquired in g-space. At least 60 images are necessary to reconstruct an orientation
distribution function that is realistic. (b) gives an overview on how to compute an ODF
from acquired PDF by integrating the area under the curve of the exponential decay of the
PDF. [Hagmann et al., October 2006]

Figure 2.9 shows how an ODF is computed from the PDF and visualized. The values of the
displacement distribution along diffusion directions (yellow lines in Figure 2.9b) are repre-
sented as histograms. The ODF is then computed along them by calculating the area under
the diffusion propagator curve for each of the sampling directions. The integral is then visu-
alized by a deformed sphere, where the different lengths of the two radii correspond to the

magnitude of diffusion in the respective direction.

sbboooo
POCSINFNCY

0

y 72 o
o \065.85 -05 —0-6_6@'@:6:6,6 ;_(;@9499
045 o .
(a) DSI (b) DTI (c) Q-ball (d) Sparse sampling

Figure 2.10: Different sampling schemes of the g-space [Assemlal et al., 2011].

Other acquisition techniques allowing high angular resolution diffusion imaging (HARDI) also
exist. For more technical details on g-ball and other acquisition and imaging techniques the
reader may refer to recently published literature (e.g., Assemlal et al. [2011]). Figure 2.10

gives an overview on some of the g-space sampling schemes.

13
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2.2 Clinical and Basic Research Applications

Moseley et al. [1990] showed that water diffusion in cerebral tissue decreases within minutes
after a stroke in brains of cats. This finding quickly attracted a lot of attention as a method
for early detection of brain injuries, because it is not possible to show stroke for hours to
days after the onset of injury with standard imaging methods. Also, in the assessment of
tumors, dMRI was identified as a useful imaging tool. Tumors are more cellular than the
tissue from which they originate and appear with different signal intensity due to restricted
diffusion in DWI [Koh and Collins, 2007|. Now, with dMRI being established in stroke and
tumor diagnosis, the way was paved for further research on other potential applications for
dMRI. Large scale research projects have been initiated to study the human brain with this
new imaging technique'?. Nowadays, a major application area of dMRI is fiber-tracking or
"tractography’ (see Figure 2.11a). The field of tractography has undergone intensive develop-
ment since the introduction of dMRI and exciting applications are now beginning to emerge
e.g., assessment of brain maturation in children [Schmithorst and Yuan, 2010] or monitoring

of disease progression [Hagmann et al., 2008|.

Figure 2.11: (a) Deterministic streamline tractography from a DTT model. White lines show
the fiber tracts based on the directions, reconstructed from each voxel [Tournier et al., 2011].
(b) Lateral view of the connectivity map of the right hemisphere of a human brain from
DSI [Hagmann et al., 2008].

Tractography for itself again lead to very interesting applications to build large-scale structural
brain networks [Hagmann et al., 2008|. Such networks provide information on how brain
regions, responsible for different tasks, are interconnected (see Figure 2.11b). Connectivity-
mapping hold great promise for studies of psychiatric disorders or neurological diseases as
multiple sclerosis, Alzheimer’s disease, or schizophrenia from a new perspective [LeBihan,

2003].

"http:/ /www.brain-connect.eu/
2http://www.humanconnectomeproject.org/

14



“It is amazing what you can accomplish

if you do not care who gets the credit.”

HARRY TRUMAN

3 Methods

3.1 Novel MWS Sampling Theorem and Spherical Harmonics

To represent discrete data, that lives on a sphere, the spherical harmonic (SH) basis is known
to be an appropriate concept. Spherical harmonics Y;,,, of order [ and degree m are the angular

portions of Laplace’s equation in spherical coordinates. They are defined as

Vi (6, ) — 1/Wﬂm(cos 0)cime (3.1)

and will be used for all further data representations, with Py, being the associated Legendre
functions. With the spherical harmonics forming a complete, orthogonal basis on the sphere,
any square integrable function on the sphere (e.g., ODF) may be represented by a harmonic

expansion such as.

00 l
F0,8) =" " fimYim(0,0). (3.2)

=0 m=-1
Here, the spherical harmonic coefficients f,, are given by a projection to the spherical har-
monic basis functions Yj,,. To perform the exact SH-transform efficiently, an implementation

of McEwen and Wiaux [in press| will be used.

The essence of spherical sampling on multiple shells, as introduced by Daducci et al. [2011],
lies in the fact, that on each shell, the signal E is being sampled according to the novel
MWS (McEwen & Wiaux symmetric) sampling theorem using equiangular grids [McEwen
and Wiaux, in press|. This approach allows an exact computation of B> SH coefficients of a
function on the sphere of band limit B on the basis of (B — 1)(2B — 1) + 1 ~ 2B?% samples.
In contrast to MWS sampling technique, another exact equiangular sampling theorem by
Driscoll and Healy [1994] needs at least 482 samples to obtain the signal on a sphere and
avoid aliasing effects. The new sampling technique gives a big benefit in terms of acquisition

time, as less samples are required (see Figure 3.1a for comparison).
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Number of samples N(B)
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(a) Number of samples (b) Linear sampling  (c¢) Logarithmic sampling

Figure 3.1: (a) shows the number of samples needed to reconstruct a signal without aliasing
according to the Driscoll-Healy (DH) theorem versus the MWS sampling scheme. (b) and
(c) show linear and logarithmic distribution of shells in g-space.

In order to map the b-value to the required bandlimit B, while keeping the aliasing low, a
so called dictionary, created from simulations with different FAs, is used (Figure 3.2). The
b-value provides information on where such a sampling shell is located in g-space to measure
the exponential decay of the signal E. Two approaches of where to put the shells will be

investigated in this work: logarithmic and linear placements (Figure 3.1c and Figure 3.1b).

T T
elelelelotereT )
/ /

/ /

10| - | Low aliasing i /

D00PO000G e poo o

/

dree / """""""""" A —‘C’—FA:O.S """ T
O@@H g —O—FA=06

2—‘ --------------------------- —*—FA=04 |------ B
@

0 1 i 1 I I L

0 1000 2000 3000 4000 5000 6000 7000 8000

b-value

Figure 3.2: Values of bandlimit B required to describe the diffusion signal E at each b-value
for a low aliasing level and different FA [Daducci et al., 2011].

Although, the exact MWS sampling theorem provides a good guideline to set up the sampling
scheme to keep angular aliasing low (i. e., how many samples on each shell), the radial aliasing

problem remains (i. e., where to put the shells).
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3.1.1 Orientation Distribution Function (ODF)

To define the orientation distribution function (ODF) the probability of diffusion in the di-
rection 7 through a solid angle element dS) will be denoted as O(7)d2. The ODF is computed
by integrating the displacement probabilities P(r) as in Equation 3.5.

P(r)dv = P(r#)ridrdQ (3.3)
O(#)dQ = / OOP(rf)errdQ (3.4)
0

o) = /OOOP(rf)Ter (3.5)

As proposed by Aganj et al. [2009], the factor 72 must be considered, when integrating the
propagator. The diffusion of water molecules P(r) gives the displacement probability P(r)dv
of a molecule to move from an initial location at the origin to the infinitesimal volume element

dv = dxdydz located at r = (z,y, 2)7 after a certain amount of time (Equation 3.3).

Figure 3.3: Radial integration of the PDF in a cone of constant solid angle [Aganj et al.,
2010].

In spherical coordinates, which are parameterized by (r, 6, ¢) with
r = and #(6, ¢) = (sin 6 cos ¢, sin § sin ¢, cos )7, (3.6)
the volume element is
dv = r’drdQ with dQ = sin §dfd¢ (3.7)
being the infinitesimal solid angle element (see Figure 3.3 for visual representation). Therefore,

the 72 factor is important for ODF calculations.

For simulation purposes, the following PDF, as a finite mixture of Gaussians for N crossing

fibers with the diffusion tensor D; will be assumed. This approach was proposed by Tuch
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[2002] and is defined as:

N
fi
Pr) = Z (27)2/3/det Die

7

—1/2rTD;1r (38)

with total diffusion

/Pdrzl = Y fi=1, (3.9)

and f; being the volume fraction in the i*" direction. The ODF is formulated as in Equation

3.10 and will be referred to as true ODF or Ogpye(7) in the remainder of this work, i. e.,
Oprue(?) = / P(ri)rdr
N

_ fi —1/2r2¢T D17 2
= 2(277)2/3\/m e i Tredr. (3.10)

%

With the Gaussian integral [ 229"y = YT the above Equation 3.10 is solved to obtain

4a3/27

the final formulation of the ODF (see A.1 for proof), i. e.,

N

Oprue() = ZW?TDi(fTDilﬁ)_g/Q' (3.11)

3.1.2 From dMRI Signal to the ODF

After the signal F is sampled in the previously described way, the ODF can be calculated, as

schematically visualized in Figure 3.4.

A glm { Olm ‘ A [ O(TA’)

Figure 3.4: Flow chart representation of the necessary transformations to obtain the ODF
from the acquired diffusion signal on the sphere. A stands for spherical harmonic transform
and A~! for the inverse spherical harmonic transform respectively.

For the transformations from Figure 3.4 the famous Fourier relation between the propagator
P and the signal £

E(q) = E(qq) = F3p[Pl(a)

is used. Here, the relation between AFE and inverse Fourier transform of P is important. From

basic Fourier analysis we know that Z~![z" f](¢) = ()" 8:;];7(1@ with f(&) = [ f(x)e 2% dx.
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Thus, we can derive how the diffusion signal E relates to the propagator P, when we incor-

porate the 72 factor.

i 2 92 2 2
Fsplr?Pl(q) = (27T> (5%%+(§%3+§qg)E(q) (3.12)
= —ﬁAE(q) (3.13)
= E(q) (3.14)

Our next goal is to find the mathematical formulation for the ODF in harmonic space.
Canales-Rodriguez [2009] proposed the use of an intermediate variable S to find the defi-

nition of the harmonic coefficients of the ODF in terms of the diffusion signal FE, i. e.,

S(@) = / E(q)dq (3.15)

= /E(qc})qdq. (3.16)

The Laplacian in spherical coordinates is given by Equation 3.18 with the Laplace-Beltrami

operator Ay from Equation 3.17. The proof is presented by Aganj et al. [2010].

AB(0.0,6) = 2 B+ LaE (3.17)
q,9, — q 8q2 q q2 b .
1 92 1 9/, 0
bp = 7Sin2 QW + 7Sin9% <Sln 980) (318)

By integrating the first term of the Laplacian ég—;(qE), we can see that it is constant and
independent of F with the assumption that the diffusion signal and its derivative go to zero

at ¢ — oo and by use of the product rule, as presented by the following proof:

2 2
/;;qz(qE)qdq = 88q2(qE)dq
0
= [aq(qE)]
= [E+eE]]
= FE(o0) — E(0) 4+ ¢E'(o0) — qE'(0)
= 1 (3.19)
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Now, with the proof from 3.19 and the Equation 3.16 we obtain the final formulation for S(§),
i. e.,
S@@) = / E(¢d)qdq
AFE(qq
= / ( )qdq

_47-[-2

1 1 92 1
= —— -—(qF —AyE | qd
A2 <q8q2(q )+q2 b )qq
1 1 1
= — — — | “AyEd
472 47?2/q b
1 1 (E—1)
N — — —=A . 2
dx? " ap2 "t / . X (3.20)
| S —

S(q)

Equation 3.20 contains an approximation which is needed, as the integral cannot be calculated
for @ with E(0) = 1. The intermediate variable S will be then transformed to harmonic
space with ApY;,, = —I(I + 1)Y},,, according to Equation 3.21.

ApS = AyD SinYim(0, )
im

= = U+ D)SmYim(0, ) (3.21)

lm
From Equation 3.20 and 3.21 follows the definition of the harmonic coefficients of S.

1 1 _
Sl = 7271_3/2 6100mo + 4771_2l(l + 1)Slm (3'22)

The harmonic coefficients of S are related as by Equation 3.23 to form the definition of the

ODF in harmonic space,

1 Slm
= —PF((0)== 2
Ot Qﬁ l<0) S00 (3 3>
1 1 _
= —=h mo + ——— 1)Sim
N 1(0) <5l05 o+2ﬁl(l+ )Si )
. 0100mo L1+ 1) -
= Sun + yp P;(0)Sim (3.24)

where P, are the Legendre polynomials with Py(0) = 1 and Spg = %%/2 [Canales-Rodriguez,
2009]. To obtain the ODF O(7) in real space, the inverse harmonic transform is applied to

the harmonic coefficients Oy, .
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3.2 Fiber Orientation Distribution (FOD) and Spherical

Deconvolution

3.2.1 Fiber Orientation Distribution Function

The fiber ODF is another representation of the ODF, which describes the fiber orientation
distribution (FOD), in literature sometimes also referred to as fODF. This is motivated by
the assumption that a DW signal can be modeled by a single response function. Tournier
et al. [2004] proposed a method to extract such an FOD from the ODF by means of spherical

deconvolution as illustrated in Figure 3.5.

@

(a) (b) FOD (c) ODF

Figure 3.5: Schematic representation of the convolution between the ODF template 7 and
true FOD, which results in an ODF [Descoteaux, 2008].

The equation for the FOD is formulated as
O(F) = a;d(#sf — 1), (3.25)

where the relation between the ODF and FOD is described as in Equation 3.26. Here, an
ODF equals a convolution of rotated template ODF 7 with the FOD O, i. e.,

O(#) = (R(*)7]0)
= Zai[R(f,-)r](f). (3.26)

The ODF in spherical harmonic coefficients Oy, can be described in terms of the harmonic
coefficients of the FOD Oy,,. The convolution in real space is performed as a multiplication

in harmonic space as denoted by the Equation 3.27. For further operations Oy, and Oy, will
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be transformed into a vector form and will be then referred to as oy and oy, respectively:

4, =
Olm = mTlo Olm (327)
|
T
4
o, = Top. (328)

3.2.2 Inverse Problem and Basis Pursuit Denoising (BPDN)

As described in the previous section, the harmonic coefficients of the FOD can be reconstructed
from the ODF with a template operator T'. T is created from a single-fiber true ODF simulated
by applying the novel efficient sampling scheme on multiple shells and transforming the result
to an ODF.

The inverse problem is then redefined as denoted by Equation 3.29. The motivation to use this
formulation of the inverse problem is that we expect a sparse solution. The FOD is assumed
to be a signal on the sphere in real space with only as many peaks as fiber directions, which
is the reason to use a sparsity prior. This basis pursuit denoising (BPDN) problem will be
solved by minimization of the {;-norm under a constraint on the l3-norm as defined by Chen
et al. [1995], i. e.,

minimize  ||A™ 5,1 (3.20)

subject to |lop, — Topl|2 < €.
BPDN solves a regularized problem with a trade-off between making 765, close to oy in the
lo sense and keeping 0y, sparse in the [; sense. Therefore, the template operator 1" and the
inverse harmonic transform operator A~! will be taken as the input. Additionally, the adjoint
(conjugate transpose) operators T+ and (A~!)* are needed by the BPDN solver. As T is zero
for odd [, the respective entries must not be taken into account, as division by zero would
occur. Additionally, the inverse problem was solved only for the symmetric entries of Oy,
(i. e., for m > 0), as the FOD as well as the ODF is known to be an antipodally symmetric
function on the sphere. Thus, additional operators for adding (ADD) and removing (REM)
those zero and symmetric entries have been created. These operators transform the number of
coefficients NV of the signal according to N(B) = 372 + £ — 3 for odd B. The inverse problem
will then be solved for a reduced size vector ;. The transformation of the index h for the
spherical harmonic coefficients are applied as by h = 1 + (I + [ + m) for the vector indices.
Please refer to Figure 3.6 for index transformations between the harmonic Im-coefficients and
the vector index h. In addition to the described operators, weights w; = sin6; need to be

applied for the I; minimization. These weights are needed because the the [{-norm is being
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harmonic coefficients as an Im-triangle
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Figure 3.6: Here the index transformation of the harmonic coefficients are shown. Blue
circles represent the coefficients, which remain after applying the REM operator. The
white circles are added, when the ADD operator is being applied.

calculated on the sphere. The weights are defined as
[17tia0 % 3170 sin (3.30)

with dQ2 = sin 8dfd¢. We then solve the inverse problem in a following way

minimize  |[wA"'ADD(ap)]|1

(3.31)
subject to ||REM (op) — REM (T)op]2 < €.

The resulting harmonic coefficients of the FOD correspond to Oy, for m > 0 and even [ only.

The final result, namely the FOD in real space, is defined as
O = A"'ADD(ay,).

In the remainder of this work the operators REM and ADD as well as the weights won’t
be shown in the formulation of the inverse problem for simplicity reasons, although they are
always being incorporated when the BPDN solver is being applied. Now, we can summarize
the above modifications again as a flowchart to visualize the mathematical steps in Figure
3.7.
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E(q) |—[ODF: Oy, [ 222N ROD: Oy, |2 FOD: O(7)

Figure 3.7: Flow chart representation of the necessary transformations to obtain the FOD
from the acquired diffusion signal E on the sphere and by spherical deconvolution with
BPDN. A~! denotes the inverse spherical harmonic transform.

3.3 Adding Rician Noise to the dMRI Signal

It is known that noise in MR data follow a Rician distribution [Jones and Basser, 2004].
Rician noise was applied to each sample of the signal E, where E(0) is the signal intensity
measured with no diffusion weighting at b = 0s/mm?. o¢ is the standard deviation for the

Gaussian distribution.
E(0) 1

~ SNR SNR

Ey = \/(E + no)? + ni, where {no,n1} ~N (0,0¢)

e

3.3.1 Whitening a Complex Random Vector

The assumption of a x? distribution of the noise holds only for uncorrelated noise with zero
mean i. e., whitened noise. This prior knowledge about the noise will be of use later for
setting an upper bound for the data constraint of the inverse problem. Rician noise has been
simulated without signal and has been modified in the same manner as the signal E to obtain
the correlated noise on the harmonic coefficients of the ODF. From sufficiently many such
simulations the whitening operator W and the mean of the noise p have to be calculated. For
whitening a vector n with mean p and covariance matrix C' following calculations are needed

with A being a diagonal matrix of eigenvalues of the covariance matrix C, i. e.,

C = EAET (3.32)
w = AYV2ET (n—p). (3.33)

Thus, the output of this transformation has expectation E

E{w} = A~ ET (E{n} — i) = A2 E" (u— ) = 0 (3.34)
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and covariance matrix

E{ww} = E{AY2ET (n—p)(n—p)TEAY?)}
AT ETE{(n— p)(n— p)"YEAT?
AY2ETCEATY? (3.35)
By diagonalizing C, we get the following:

AV2ETEAETEANTY2 = ATV2ANTY2 =T (3.36)

Thus, with the above transformation, we can whiten the complex random vector. The whiten-
ing operator W for this transformation can be calculated by means of the Cholesky decom-

posttion, 1. e.,

C = EAET (3.37)
A = AVZAY? (3.38)
W = AY2E (3.39)
ct = wtw (3.40)

In the end we should get a white random vector w with zero mean and the identity covariance

matrix.

3.3.2 Setting ¢ for the Data Constraint of the BPDN Problem

In order to be able to set an upper bound on the data constraint of the minimization problem,
we need to estimate €. To do so we must know the statistics of the noise n. A complex
random noise n is proportional to x? with N complex degrees of freedom. A ’complex degree
of freedom’ is like two real degrees of freedom. However, the distribution is not the usual
x? density function with 2N degrees of freedom. Each of the real variables going into the
computation of n has variance 1/2 [Fuhrmann, 1999]. A complex-valued random variable

ny = nl(fe) + nl(fm) is a complex variable that follows a Gaussian distribution, if its real

and imaginary parts, n,()re) and nl(fm) are jointly Gaussian, uncorrelated, and they have the

same variance of ¢2. Denoting the mean of nye) and nl(jm) by pre and pgm, respectively,
U = pfre + fim = Elng| is called the mean of ny, and o is called np’s variance per real
dimension.

o = Bl — pre)?) = El(nf) — pim)?) = 5 Ellms — P’ (3.41)
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It follows from 3.41

02 = o?+0°%=20" (3.42)
1
o = —&—o0o 3.43

9th

From here, we can now define € as the 99" percentile of the square root of the inverse 2

distribution for 2N degrees of freedom divided by two, i. e.,

e =+/x2(2N)/2. (3.44)

Figure 3.8 demonstrates the difference between the x? distributions for N and 2N degrees of

freedom and shows that whitened noise on Oy, follows a x2(2N) distribution.

Fitted XZ distribution of the noise for
different degrees of freedom and ¢ = 7.

0.051
2
2 (N
0.045 O 2N
IW(n-)li2
0.04+ -
0.035 -
0.03F
«—
X 0.025F
o
0.02+
0.015F
0.01F+
0.005 -

Figure 3.8: y? distributions for N and 2N degrees of freedom in comparison with noise
distribution on the harmonic coefficients of the ODF (Oy,,) without signal after whitening
and 6000 simulations.

3.3.3 BPDN Problem Formulation with Noise

With the knowledge on the distribution of the noise we are able to set € to a proper bound.
With the residual noise n the whitening operator W from Section 3.3.1 will be applied as

follows:

onh, = Top+n (3.45)
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n = Op— Tah (346)

n = n—p=op—p—"Top (3.47)

Wn = Wiop—p)— W;T Op,. (3.48)
Op

The inverse problem is now redefined with noise and ¢ as the 99" percentile of the inverse y2
distribution for 2N degrees of freedom with N being the number of complex unknowns of o,
i. e.,
minimize  |[|A™ 5,1
. (3.49)
subject to ||op, — Topll2 < €

3.4 Extracting Fiber Directions with Maximum Filtering

To evaluate the accuracy of the here proposed sampling and reconstruction techniques, the
actual fiber directions need to be extracted. It is generally assumed that the fiber directions
are given by the maxima of the ODF or the FOD respectively. For that the method of

maximum filtering, as proposed by Lemire [2006] has been used. As we are dealing with a

€1

Y

reconstructed
crossing angle

€2

Figure 3.9: Original (red and green) and reconstructed (pink) fiber directions for two crossing
fibers. €1 and e represent the reconstruction error for each fiber.

discrete function on a equiangular grid, we can easily extract the maxima. The maximum
filtering compares a grid point to its neighbors, which are located within a certain vicinity
(window). First, if the value of the observed grid point is higher than its neighbors, it will
be selected as a peak candidate by substituting all the neighbors with the value of this peak
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candidate. Second, the peaks are found by comparing the modified function with its originate.

Hereby, equal entries correspond to maxima of the analyzed function.

The next step is to discard all peaks, which are below 40% of the highest peak, and too
far (12 < 20°) away from the original fiber, which we aim to reconstruct. This avoids
identifying small peaks as fiber directions, which may occur due to noise. Figure 3.9 shows

how the reconstruction errors are measured.
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“Never postpone until tomorrow what

you can do the day after tomorrow."

MARK TWAIN

4 Results

In this chapter we will present the outcome of extensive numerical simulations, which have
been conducted to identify the best sampling strategy with respect to fiber extraction from
an orientation distribution function (ODF). After choosing the best sampling scheme for the
ODF in terms of least possible amount of samples and still reasonable reconstruction quality,
we will calculate the fiber orientation distribution (FOD) by means of spherical deconvolution.
For FOD calculations we formulate the inverse problem as a basis pursuit denoising (BPDN)
problem and apply several modifications to this formulation. Subsequently, we aim in finding
the best sampling scheme, which provides best reconstruction quality with respect to the
FOD. As a final step we will evaluate our best results in comparison to DSI sampling and

reconstruction method.

4.1 Evaluating MWS Sampling Towards a Best Acquisition
Strategy with Respect to the ODF

To asses the performance of the proposed sampling and reconstruction technique, simulations
have been performed, using a true ODF model as described earlier. We mentioned in Section
3.1 that the novel MWS sampling scheme allows us to estimate the required number of samples
for each sampling shell. However, the question on how many shells and to which value of q
the shells should be set, cannot be answered with this theorem. Thus, an empirical approach
will be evaluated here, in order to find out the best sampling technique. For that, we aim to
reconstruct an ODF with two fiber populations from a true ODF with fractional anisotropy of
0.8 and volume fractions of f1 2 = 0.5. A true ODF will be simulated in 200 random directions
and the corresponding signal will be sampled according to a desired sampling scheme. Here,
we will investigate the reconstruction quality in terms of sensitivity (i.e., success rate of
reconstruction) and accuracy of the result for common diffusion MRI (dMRI) SNR values
20, 30, and 40. As already mentioned earlier in Section 3.4, we set a threshold (40% of the
highest peak) on the maxima identification. We discard also results, where the reconstructed
fiber directions have an error of more than 20° for each fiber. To measure the accuracy, we

will compare the true fiber crossing angle and volume fractions to the reconstructed ones and
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propose the best sampling scheme with least possible samples. Here, we exploit the property
of the diffusion signal being symmetric. Therefore, we need to sample only one half of the
sphere. We will choose from two different distributions of shells, logarithmic and linear. For

that, the following settings have been tested as shown in Table 4.1.

Table 4.1: Simulation parameters to evaluate the best sampling scheme.

Shell Number Min. b-value Max. b-value
Placement of shells [sec/mm?] [sec/mm?]
logarithmic 2to05 0 to 250 (step 50) 2500 to 8000 (step 500)

linear 1to5h 0 to 250 (step 50) 2500 to 8000 (step 500)

4.1.1 Determination of the Best Sampling Scheme for Fiber Extraction

In this section we will evaluate the performance of fiber reconstruction from the ODF directly
by simulating the diffusion weighted MR signal and by applying different sampling strategies.
The goal here is to find a sampling where it is possible to reconstruct two crossing fiber
populations with an angle of 35° and 40° with the highest sensitivity and with least amount
of samples. We chose these angles, because we are not able to resolve fibers crossing with
30°. On the other hand the results for a 45° crossing angle start already to reach sensitivity
rates towards 100%. Therefore, the challenging angles for our method are between 35° and
40° fiber crossing angles. Figures 4.1 and 4.2 show the sensitivity plotted for different number
of samples for logarithmic and linear distribution of shells and for an SNR = 30. From these
extensive simulations, we are now able to conclude on three best sampling settings. In Table

4.2 the sampling parameters, which provide the best reconstruction quality, are shown.

Table 4.2: Best sensitivity results after 200 simulations in random orientations for 35° and
40° crossing angle and SNR, = 30.
Shell Number Number Sensitivity for 35° Sensitivity for 40°

Placement of shells of samples [70] [70]
linear 1 68 46 73

logarithmic 2 74 43 79

logarithmic 3 79 45 81

It is also worth noting an interesting observation, that using more than one shell for linear
placement, does not improve the results. However, when the shells are distributed in a

logarithmic fashion, adding more shells provides better reconstruction results for up to three

30



4 Results

shells, before the drop in sensitivity rate occurs. This might be explained with the fact, that

radial aliasing comes into play with a higher impact for those settings.

Linear sampling Logarithmic sampling
100 100
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Figure 4.1: Sensitivity rates for different sampling schemes for logarithmic and linear place-
ment of shells, for 35° crossing angle and SNR, = 30.
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Figure 4.2: Sensitivity rates for different sampling schemes for logarithmic and linear place-
ment of shells, for 40° crossing angle and SNR = 30.

The next step is to run simulations also for the remaining noise levels (SNR = 20 and SNR
= 40) and crossing angles, in order to be able to compare the identified schemes among each
other. Please refer to Figure 4.3, which shows the outcome of the comparison. Here, we
can conclude, that a setting with three logarithmically distributed shells, placed between the
b-values of 0 sec/mm? and 4000 sec/mm?, resulting in 79 samples, provides the best results
with respect to the ODF. However, we don’t know yet which of the three settings will provide

best reconstruction results after solving the BPDN problem.
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ODF reconstruction results
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Figure 4.3: ODF sensitivity rates for the three best sampling schemes, for different crossing
angles, and SNRs.

4.1.2 Accuracy Evaluation of the Best Sampling Strategy

To also evaluate the accuracy of the best reconstruction scheme (three logarithmic shells, 79
samples, b-values between 0 sec/mm? and 4000 sec/mm?), which we identified in the previous
section, we measured the global angular error (Figure 4.4) and the local error €15 (Figure
4.5(a)—(c)) for each fiber. Additionally we also evaluated the error made in reconstruction of
the volume fraction of the fibers (Figure 4.5(d)—(f)), where the sum of the lengths of the fibers
is 100% and each of the volume fraction contributions should be 50%. For these accuracy
evaluations we considered only valid reconstruction results, for each fiber crossing angle. The
global angular reconstruction error decreases with increasing SNRs and is around 5°. For the
local error €12 we observe the same behavior. Here, it is important to mention, that an error
of 5° is small relative to a crossing angle of 90°, however for a crossing angle of 30° means this
a relatively high uncertainty. As for the volume fractions, we observe that the reconstruction
error also decreases with decreasing noise and stays below 0.05, which corresponds to a relative
error of 10%. The boxplots show the error for crossing angles between 30° and 90°, where
the central mark is the median, the edges of the box are the 25! and 75" percentiles, the
whiskers extend to the most extreme error data points. From visual representation of the
ODF for different SNRs in Table 4.3 it can be already concluded that it is not possible to
reconstruct a crossing angle of 30°, whereas higher crossing angles > 40° can be identified
easily. Moreover, we can see that noise introduces many spurious peaks to the ODF or it

obstructs the shape of the ODF, such that it is no longer possible to find the fiber directions.
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Table 4.3: ODFs for different SNRs and crossing angles. The green and red lines show the
true fiber directions and the pink line the reconstructed ones. A sampling scheme with
three logarithmic shells and 79 samples was used.
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Figure 4.4: Reconstruction accuracy evaluation of the ODF. (a) ODF sensitivity rates for
different crossing angles and SNRs for the best sampling scheme with three logarithmic
shells and 79 samples. (b)—(d) global angular error.
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Figure 4.5: Reconstruction accuracy evaluation of the ODF. (a)-(c) angular errors ¢; o for
each of the two reconstructed fibers for different crossing angles and SNRs. (d)—(f) error
made in terms of the volume fractions f, where we aimed to reconstruct volume fractions
of 0.5 for each of the fiber directions. The sampling scheme with three logarithmic shells
and 79 samples was used, which has proven to provide the best results.

4.2 Finding the Best Formulation of the BPDN Problem with
Respect to the FOD Using Spherical Deconvolution

We showed that it is possible to obtain already very good results when extracting the fiber
directions directly from the ODF. We assume, however, that these results can be improved
even further by computing the FOD and again extract the fiber directions from here. In this
section we will evaluate the result after solving the BPDN problem. From the computed FOD
the fiber directions will be again identified and compared to the results obtained from the
ODF. In addition to different sampling schemes, we will also evaluate different formulations
of the minimization problem and again compare the results in order to find the best strategy.
Therefore, we will use our simulations of the ODF for different crossing angles of two crossing
fibers with FA=0.8 and volume fractions fi 2 = 0.5.

4.2.1 Solving the Inverse Problem for an FOD (BPDN)

Here, we will evaluate the sensitivity rates when calculating the FOD from the ODF by means

of our first unmodified version of the BPDN formulation as by Eq. 3.29. From the simulation
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results in Figure 4.6 we can see that we cannot improve our results when extracting the fibers
from the FOD for SNR=40. However, when comparing the results for a higher noise level
(SNR=20), we get an improvement for crossing angles > 50°.

FOD reconstruction results with BPDN
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Figure 4.6: FOD reconstruction results (BPDN). Sensitivity rates for three different sampling
schemes for different crossing angles and SNRs in comparison to ODF.

Table 4.4: ODFs in comparison to FODs (BPDN) for different SNRs and a 45° crossing angle.
The green and red lines show the true fiber directions and the pink line the reconstructed
ones. A sampling scheme with one shell has been used.
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Table 4.4 illustrates worst cases where the FOD distorts the volume fraction of one of the
fibers, such that it is no longer recognized as a maximum due to the threshold we set, when
extracting the fiber direction. Therefore we hope to solve this problem by modifying the
BPDN problem formulation. In best case we manage to resolve 2 fibers with the FOD but
not with the ODF even for low SNRs.
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4.2.2 Solving the Inverse Problem for an Upsampled FOD (BPDNup)

Earlier, we defined our problem such that we only solve for harmonic coefficients corresponding
to even [ > 0 and m > 0. As there is no noise on the first harmonic coefficient of the ODF og
it cannot be taken into account inside the data constraint. However, the [; prior should be
able to influence 0g, as it is part of the solution. In addition to the first harmonic coefficient

the sparsity prior can be used to also upsample the result, in order to reduce artifacts caused

Ddoum

by the band limit of our function. For that a diagonal matrix is used to restrict

(downsample) the data constraint to only as many coefficients as provided by the harmonic
coefficients of the ODF oj, and excluding the h = 0 coefficient. The inverse problem is then

reformulated as:
minimize  ||A™ 5,1

(4.1)
subject to |jop, — T D5y |3 < e.

Although, the FOD appears to have ’sharper’ fibers, we are not able to improve the sen-
sitivity rate with this modification. We observe that the number of reconstructed fibers is
altered falsely (see Table 4.5, worst case I). Furthermore, the same effect of distorted fibers
as from not upsampled FOD occurs as well when upsampling the FOD (see Table 4.5, worst
case II). Therefore, we don’t observe any improvement in the sensitivity rates for the fiber

reconstructions with this method, as can be seen in Figure 4.7.

FOD reconstruction results with BPDNup ODF
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Figure 4.7: FOD reconstruction results (BPDNup). Sensitivity rates for different 3 sampling
schemes for different crossing angles and SNRs in comparison to ODF.
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Table 4.5: ODFs in comparison with FODs (BPDNup) for SNR=40. The green and red lines
show the true fiber directions and the pink line the reconstructed ones. A sampling scheme
with three shells has been used. This effect occurs also for one and two shells.
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4.2.3 Reformulating the Inverse Problem for FOD in Real Space
(BPDNreal)

Another interesting modification to the minimization problem is to solve for the FOD gy,
already in real space. For that a forward spherical harmonic transform is needed. We denote

the forward harmonic transform with a A operator and reformulate the inverse problem as:

minimize  ||O||;
_ (4.2)
subject to |lop, — TAOll2 < €

From our simulations we observe a slight improvement in the fiber reconstruction for SNR=40,
whereas for SNR=20 and one shell sampling we notice a significant raise of the sensitivity

rate for crossing angles > 45° (see Figure 4.8).

The last formulation of the problem that we suggest here, is to solve the data constraint
completely in real space. Therefore, the ODF O is given and again we are looking for a
solution in real space that satisfies the sparsity prior (I;-norm). In order to be able to perform a
convolution with the ODF template T by multiplying the harmonic coefficients of the template

with the FOD, we need to make use of the forward and inverse harmonic transform, i.e.,

minimize  [|O||;

_ (4.3)
subject to  [|O — AT'TAO||z <

Unfortunately, the latter proposal does not allow us to de-correlate the noise in order to be
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Figure 4.8: FOD reconstruction results (BPDNreal). Sensitivity rates for three different
sampling schemes for different crossing angles and SNRs in comparison to ODF.

able to set € according to the y? distribution. This is the case because the noise on the signal
does not only get correlated by linear transformations, but also the inverse spherical harmonic
transform creates a linear combination of the harmonic coefficients to obtain the noise on the
final ODF O. From here, a whitening operator cannot be created. Therefore, again sufficiently
many repetitions (1000) of just noise simulations without signal have been performed. ¢ was
then set to the 99" percentile of the mass of the correlated noise distribution. Unfortunately,
with this formulations of the inverse problem it is not possible to improve the reconstruction

results, due to inaccurate estimation of ¢.

A disadvantage of the real space formulation of the minimization is that it does not make
sense to upsample the result. As our signal is bandlimited, the forward harmonic transform

would create aliasing and distort the result.

Table 4.6: ODFs in comparison with FODs from different BPDN problem formulations. The
green and red lines show the true fiber directions and the pink line the reconstructed ones.
We can see that with BPDN in real space (BPDNreal) we manage to reconstruct two fibers,
without distorting the volume fractions.

FOD FOD
True ODF BPDNup BPDNreal

SNR. 40, ,e % ( \x/ \0 1
{ y

3 shells, 45° ,
e 7
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From Table 4.6 we can see that the volume fractions and the number of fibers can be recon-
structed more accurately, when we solve for an ODF in real space instead of for its harmonic

coefficients.

4.2.4 Adding a Positivity Constraint to the Inverse Problem
(BPDNreal+)

As reported by Tournier [2007] spherical deconvolution introduces negative spurious peaks to
the FOD producing a physically impossible solution. Therefore, the inverse problem will be
constrained to positive values of the ODF only, because it is known that the ODF as well as
the FOD are not only symmetric but also positive functions. We therefore reformulate the

inverse problem as:

minimize  ||O]|;
subject to |lo, — TAO||2 < &, (4.4)
0 >0,

with O > 0 being the positivity constraint. Adding the positivity constraint improves the
results only for one case of the proposed formulations of the BPDN problem, namely for
solving the problem for an ODF in real space (BPDNreal). The reconstruction results of the

ODF calculated by other formulations could not be improved.
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Figure 4.9: FOD reconstruction results (BPDNreal+). Sensitivity rates for three different
sampling schemes for different crossing angles and SNRs in comparison to ODF.

Figure 4.9 shows that we can reach angular resolutions up to 45° for high noise levels (SNR
= 20) and even up to 40° for lower noise levels (SNR = 40), when using the BPDNreal+

formulation.
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We can conclude from this result, that we are able to denoise the FOD very well by using
the BPDN formulation of the inverse problem. In addition, we can note that by calculating
the FOD we can even have very good results with only 68 samples on one shell, which is
not possible for the fiber reconstruction from an ODF. At this step we identified the best
combination of a sampling scheme with one shell and 68 samples and a modified version of
the BPDN formulation (BPDNreal+).

4.2.5 Accuracy Evaluation with Respect to FOD (BPDNreal-+)

From our simulations we can see that the BPDN problem formulation for an FOD in real
space (BPDNreal+) in combination with a single shell sampling scheme with 68 samples has
proven to be the best strategy. In this section we will show the accuracy we can reach with this
sampling and reconstruction technique. Again, we evaluate only the valid results, according
to the sensitivity rates. From the Figures 4.10 and 4.11 we observe that the local angular
error €1 2 is improved, when we reconstruct the fibers from the FOD. However, there is a small
deterioration in the global angular error, although the error mean remains around 5°. The

volume fractions are not influenced by the transformation to the FOD.

FOD reconstruction results with BPDNreal+
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Figure 4.10: Reconstruction accuracy evaluation of the FOD (BPDNreal+). (a) sensitivity
rates for different crossing angles and SNRs. (b)—(d) global angular error. Sampling scheme
with one logarithmic shell and 68 samples
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Figure 4.11: Reconstruction error for € and volume fractions from the FOD (BPDNreal+).
(a)—(c) angular errors e 9 for each of the two reconstructed fibers for different crossing
angles and SNRs. (d)—(f) error made in terms of the volume fractions f, where we aimed to
reconstruct volume fractions of 0.5 for each of the fiber directions. Sampling scheme with

one shell and 68 samples
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4.3 Comparison: FOD (BPDNreal+), ODF, and DSI

In the previous section we identified the best sampling scheme and the best formulation of the
minimization problem to calculate the FOD, which leads us to the next question: How is the
performance of our approach in comparison with DSI? We conducted numerical simulations
for DSI with b-values up to 8000sec/mm? and for different SNR values. Figure 4.12 shows the
sensitivity rates for all three methods, which are: ODF from DSI sampling, ODF and FOD
with MWSS and BPDNreal-+.

DSl vs. ODF vs. FOD
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Figure 4.12: Sensitivity rates of the best sampling schemes with respect to ODF and FOD
(BPDNreal+) for different crossing angles and SNRs in comparison with DSI.

With the new sampling scheme we are able to reach higher angular resolutions than with DSI
sampling method. For DSI the symmetry can be also exploited, thus making it possible to
reduce the amount of samples for DSI by a factor of two. However, even with this modification,
the new sampling method requires only 79 samples on three shells, which is less than 258
needed for DSI. When reconstructing the fiber directions from the ODF, we are able to
resolve crossings of 40° in comparison to 50° with DSI. If we calculate the FOD we are even
able to outperform the reconstruction rates of the ODF with even less samples (68) and only
one shell. This reconstruction technique allows us to further improve the sensitivity rate by
approximately 30% for high noise levels (SNR = 20) and by 5% for low noise levels (SNR =
40).
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5 Discussion

In this thesis we have developed a novel fiber reconstruction method for diffusion magnetic
resonance imaging (AMRI) measurements based on spherical sampling and spherical decon-
volution. Many methods for fiber reconstruction exist and the use of spherical harmonics to
approximate a signal in g-space became a common approach in dMRI. However, up to now,
none of the methods tackled the problem of radial aliasing, which arises when a signal is

sampled with an improper bandwidth.

Here, we evaluated a novel sampling theorem on the sphere [McEwen and Wiaux, in press|
(MWS), which allowed us to probe at low band-limit (B<11) diffusion signals with less than
half the number of samples as required by other equiangular sampling theorems on the sphere
[Driscoll and Healy, 1994]. Although, the MWS sampling theorem provides us with constraints
on the number of samples for each shell (i.e., to avoid angular aliasing), the information on
where (i.e., which b-values) to place the shells in g-space is unknown. The extensive nu-
merical simulations, provided in this thesis, identified the best sampling strategy for fiber
reconstruction from an orientation distribution function (ODF). Hereby, a sampling scheme
with 79 g-space samples placed on three logarithmically distributed shells has proven to be
the best signal acquisition strategy. To our surprise, adding more sampling shells does not
necessary lead to better reconstruction results. Especially, using linear placement of shells,
the reconstruction became even worse by increasing the amount of shells. However, when
simultaneously increasing the b-value, we could observe a general improvement in reconstruc-
tion performance. This effect remains an open question, but we speculate that high radial
aliasing has an impact when the signal is sampled in an improper way in radial direction.
Together, we conclude that with fiber reconstruction from the ODF, logarithmic spherical

sampling provides higher sensitivity rates than linear sampling.

Furthermore, we proposed spherical deconvolution as a technique to further increase angular
resolution between crossing fibers. Spherical deconvolution is applied to the ODF in order
to calculate the fiber orientation distribution (FOD), which provides better reconstruction
results than the ODF. This complex operation can be performed efficiently in harmonic space
since it is being reduced to an inverse problem and can be reformulated as a basis pursuit

denoising problem (BPDN). BPDN is known to be able to suppress noise and at the same
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time preserve well-expressed structures of the solution. Solving the inverse problem for an
FOD in harmonic space is computationally advantageous due to small number of unknowns to
be determined. Unfortunately, when looking for a band-limited function in harmonic space,
aliasing artifacts are being introduced when transforming the solution back to real space.
Therefore, we proposed to solve the BPDN problem for an upsampled FOD and exploit the
nice feature of harmonic transformation allowing us to increase the band-limit. As expected,
after upsampling the aliasing artifacts disappeared, however, the overall sensitivity couldn’t be
improved. The reason for this behaviour was mainly caused by distorted volume fractions of
the FOD, which lead to non-optimal maxima extraction. To address this issue, we proposed
to solve the inverse problem for an FOD in real space, as we assume that the problem of
incorrectly reconstructed volume fractions is caused by fitting the harmonic coeflicients instead
of solving for the FOD function itself. Indeed, we observed an improvement in comparison to
the upsampled FOD solution in terms of fiber reconstruction sensitivity. The final modification
of the BPDN problem aimed to remove negative values of the FOD in real space, which are
physically not possible. These negative values occur due to noise. By constraining the FOD
to only positive values we were finally able to outperform the reconstruction results of the
ODF, especially in the range of high noise levels (SNR = 20).

Summarized, this led us to the conclusion that a constrained BPDN formulation of the inverse
problem, together with a sampling scheme with 68 samples on one shell, is the best approach
to reconstruct fiber crossings. This is not only an improvement in terms of angular resolution
but also in terms of number of samples. Finally, we compared our results to the model-free
diffusion spectrum imaging (DSI) reconstruction method. This comparison revealed a clear
advantage for our method in terms of number of samples and, more importantly, angular

resolution between two crossing fibers.

Although, many ideas towards improving the extraction of the fiber directions from diffusion
weighted data have been investigated, some approaches still remained untouched during this
work. One interesting idea is to test the reconstruction performance of the FOD calculated
by the original formulation of the BPDN problem [Chen et al., 1995]:

minimize  ||O||;
i} (5.1)
subject to ||O — ®O||2 < e.

The BPDN problem is solved in real space with an overcomplete dictionary ® containing a
one-fiber ODF template, also referred to as atoms, rotated in all possible directions. Then we
aim to find the best solution of the linear combinations of the atoms to model the sampled
ODF. For example to model an ODF, which represents two fibers crossing in one voxel, a

linear combination of two one-fiber templates will be found to conclude on the FOD.
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Another formalism to solve the inverse problem has caught our attention as well. Due to
difficulties we have experienced, when dealing with noise, least absolute shrinkage and selection
operator (LASSO) method may be a better alternative to solve the inverse problem. This
algorithm was suggested by Tibshirani [1994] and minimizes the residual (l2-norm) subject to
the sum of the coefficients (/;-norm) being less than a constant x (see Eq. 5.2). In our case

k represent the maximum number of fibers we aim to reconstruct.

minimize ||E — ®O||2 (5.2)
subject to [|O|]; < & '

When using LASSO, we don’t need to set £ anymore, thus having more freedom in reformu-
lating the inverse problem. Now a totally different approach may be used, where the FOD is
obtained from the signal F directly. And with the LASSO formulation of the inverse problem
in real space we don’t need to make use of the spherical harmonics. Additionally, as we don’t
go to harmonic space, we don’t have to worry about aliasing errors making the use of the
sampling theorem obsolete. These modification would allow us to experiment with differ-
ent sampling grids and numbers of samples to finally identify an optimal sampling and fiber

reconstruction strategy.

Here, I would also like to mention one disadvantage of the spherical deconvolution technique.
We need to make assumptions on the fractional anisotropy (FA) of the one-fiber template.
For all of our simulations we have set the FA of the true ODF as well as of the ODF template
to 0.8. It will certainly influence the reconstruction quality of the FOD if the fractional
anisotropy measures do not match, which would be interesting to observe and to evaluate.
On the other hand we are able to reconstruct as many fibers as we want, as long we can

resolve the angle between the fibers (see Figure 5.1).

- . \r%
(; > € .\): * =
(a) True ODF (b) ODF (c) FOD (BPDNreaH

Figure 5.1: Three fibers crossing in one voxel. A noise of SNR=40 was applied to the diffusion
signal. The true ODF (a), the reconstructed ODF (b), and the FOD using BPDNreal+ (c)
are shown. A sampling scheme with 68 samples on one shell has been applied.
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5 Discussion

The influence of compressed sensing (i.e., undersampling) on further reduction of samples lead-
ing to reduced sampling time should also be exploited. Undersampling of diffusion-weighted
MR images in k-space can be considered in this context, but also reducing the number of
samples on each shell in g-space is an option. In combination, this would have an influence on
the acquisition time. However, it is of course not clear whether a reasonable reconstruction

quality can be achieved.

Real data acquisition is another topic, which could not be touched due to time reasons, but
is crucial to make the evaluation of the method complete. For that purpose and in order to
make conclusions on the reconstruction quality a phantom may be used, where the crossing

angle of the fibers is known.

Taken together, we showed that resolving neuronal pathways with the help of spherical har-
monics and techniques used in compressed sensing leads to a better reconstruction quality

than popular reconstruction methods such as DSI.
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”The truth is our most precious
possession, thus let us be economical in

its use. "

MARK TWAIN

6 Conclusion

In this thesis work we have evaluated a novel sampling theorem on the sphere within the
context of diffusion MRI and we also presented a new fiber orientation distribution recon-
struction technique. The novelty in the reconstruction approach is the use of the knowledge
from the field of compressed sensing and the application of basis pursuit denoising to the
spherical deconvolution technique. After extensive numerical simulations, we showed that
this strategy made it possible to reliably estimate fiber direction with a lower angle than with
an orientation distribution function. In comparison to diffusion spectrum imaging, we were be
able to reach a relatively high angular resolution of 40° crossing fibers with only 68 samples,
instead of 50° with 258 samples. The improvement of the fiber orientation reconstruction
quality with our method may lead to development of robust and more accurate tractography
algorithms, paving the way for further interesting clinical research studies and possibly even

applications.
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6 Conclusion
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A Appendix

A.1 Solving the Gaussian Integral

/6_1/2rTDi1rr2dr = Iy(a)

In(a) = / e_a$2xnd33

r = a71/2y
de = o Y2dy
y2 — ax?

(@) = a /2 / eV (a2 dy

e

For n = 0, this is just the usual Gaussian integral,

1 o 1
Ii(n) = a_l/e_ydey:a_l [—6_92] =

—%In72(a) — _a/€_a$2an_2dﬁlf
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for even n

XXII
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