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Abstract

Diffusion magnetic resonance imaging (dMRI) is a non-invasive method that allows connec-
tivity mapping of the brain. However, despite major advances in this field, accurate inference
of these patterns and its applicability within a clinical context is still in its early stages. This
thesis describes a conceptually novel method for reconstructing neuronal pathways inside
the brain from diffusion-weighted imaging (DWI) measurements with high angular resolution
and short data acquisition time. The proposed method combines recent theoretical advances
on spherical sampling and noise-reduction techniques from the field of compressed sensing.
Numerical simulations were performed to study the best sampling strategy under a novel
sampling theorem on the sphere in order to reduce the acquisition time during dMRI scans.
Furthermore, these results were combined with the recently proposed spherical deconvolution
technique to reconstruct the distribution of neuronal tracts (or fibers) within one voxel with
high angular resolution between multiple crossing fibers. The spherical deconvolution problem
was hereby formulated as an inverse problem and solved using techniques adopted from the
field of compressed sensing. Since the result of the spherical deconvolution step is sparse in
nature, the basis pursuit denoising formulation of the inverse problem is optimal within this
context. Finally, the resulting fiber orientation reconstruction was compared with diffusion
spectrum imaging (DSI) – a classic model-free acquisition method. Simulations revealed that
the proposed approach is superior to DSI in terms of both, acquisition time and angular reso-
lution of crossing fibers (≥40◦ with at least 90% sensitivity). Our investigations showed that
the application of spherical deconvolution stated as a basis pursuit denoising problem holds
great promise for high angular resolution dMRI.
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”The truth is our most precious
possession, thus let us be economical in
its use."

Mark Twain

1 Introduction and Problem Statement

Diffusion magnetic resonance imaging (dMRI) experienced high scientific attention during the
past decades. It can help to diagnose tumors or to study psychiatric disorders or neurological
diseases in more detail. To visualize the white matter of the brain and the neuronal fiber
bundles, diffusion tensor (DT) model is the most commonly used imaging technique to acquire
the orientation of the fibers within a voxel. However, this approach does not allow to resolve
regions of multiple fiber crossings with different orientations in space as demonstrated in
Figure 1.1.

with contemporary high-resolution 2D images. To address this
problem, TrackVis provides multiple ways to reduce the track data
to subsets for visualization while retaining anatomic context. In
the present study our procedure was first to localize a region of
interest by displaying all fibers that cross a 2-dimensional slice, then
display fibers that intersect a small interactively-adjustable region of
interest (ROI) such as a sphere or disk to focus on specific structures.
We selected areas of the cerebral white matter in monkey and
human as well as subcortical and cerebellar regions known from
neuroanatomical tract tracing studies to contain complex or crossing
fibers.

Comparison of DSI and DTI analyses

To compare the results of the two methods (DSI vs. DTI), DSI
data were re-processed by DTI tractography. Tensors were fit to the
complete set of DSI data by linear least-squares, and tractography
performed with the same algorithm with Uf the leading eigenvector
of the diffusion tensor, essentially the Euler algorithm with path
termination (Conturo et al., 1999; Wedeen et al., 1995).

Results

Monkey

In the post-mortem fixed brain of the monkey, DSI tractography
of the optic chiasm (Figs. 1A, C) shows that optic nerve fibers
lying laterally as they enter the chiasm maintain their lateral lo-

cation as they course through the chiasm region to enter the optic
tract. Medially situated fibers in the optic nerve are seen to decus-
sate in the chiasm before progressing caudally into the optic tract,
in agreement with well-established anatomy. The DTI reconstruc-
tion (Figs. 1B, D), in contrast, fails to show decussation of fibers at
all, leading to clearly erroneous topology.

When the spherical seed volume is placed within the basis pontis
and tractography is performed on the DSI reconstruction (Figs. 2A,
C), pontocerebellar fibers are accurately shown intersecting and
interpenetrating the corticopontine and corticospinal fibers. For the
same seed volume, DTI tractography (Figs. 2B, D) reveals a reduced
set of corticofugal fibers, but few, if any, pontocerebellar fibers. In
addition, the DTI tractography shows spurious continuity between
pontocerebellar and corticofugal fibers.

Within the centrum semiovale, tractography on the DSI recon-
struction (Figs. 3A, C) reveals 3-way crossing of fibers consisting
of mediolaterally directed commissural fibers of the corpus cal-
losum, vertically oriented projection fibers of the corona radiata,
and rostro-caudally oriented long association fibers. In contrast, the
DTI reconstruction (Figs. 3B, D) in the same location fails to show
the intravoxel fiber crossing, demonstrating instead spurious de-
viations of these bundles.

In the cerebral cortex DSI reveals a pervasive radial orientation
(Fig. 4A), corresponding to the known radial organization of intra-
cortical connections. There is also some artifactual propagation of
solutions across the sulcal space between opposing gyri. This archi-
tecture is seen sporadically or not all with DTI imaging (Fig. 4B).

Fig. 1. Figures illustrating the results of MR tractography of the optic chiasm in monkey. For this and the following figures, fibers are color-coded according to
their orientation, and are superimposed upon a diffusion-weighted image of adjacent cerebral structures. DSI tractography shows the decussation of fibers in A
and at higher magnification in C, as well as the laterally placed fibers that do not decussate. Tractography of the DTI reconstruction fails to demonstrate the
decussation, as shown in B and at higher magnification in D. Inset figure: The convention for the 3D fiber orientation color code in this and subsequent figures is
that each fiber has constant color representing the orientation vector between its endpoints, with colors as indicated, left (L), right (R), anterior (A), posterior (P),
superior (S), and inferior orientations as shown.

1269V.J. Wedeen et al. / NeuroImage 41 (2008) 1267–1277
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(b) DTI

Figure 1.1: Fibers are color-coded according to their orientation, and are superimposed upon
a diffusion-weighted image of adjacent cerebral structures. (a) Tractography from diffusion
spectrum imaging (DSI) is able to resolve crossing fibers. (b) Failed reconstruction of
intersecting fibers with diffusion tensor imaging (DTI). [Wedeen et al., 2008]

Thus, many alternative models have been proposed to improve the angular resolution of
dMRI. Some of the methods, which allow high angular resolution diffusion imaging, are dif-
fusion spectrum imaging, Q-ball imaging, and techniques based on spherical deconvolution,
just to name few. Please refer to a review by Assemlal et al. [2011] and the book on dMRI
by Johansen-Berg and Behrens [2009] for more information on different sampling and recon-
struction techniques in dMRI. All these techniques have in common that they are based on
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1 Introduction and Problem Statement

nearly identical sampling schemes. The data acquisition consists of dense sampling, where
the orientation distribution function (ODF) is estimated from the signal by making use of
various mathematical approaches. The sampling strategy in particular evolved towards the
use of multiple spherical shells for signal acquisition, which allowed higher angular resolution
of crossing fibers. Table 1.1 summarizes the data acquisition times, number of samples and
angular resolution for different dMRI techniques. The motivation for finding an efficient sam-

Table 1.1: Diffusion MRI acquisition techniques. Acquisition times as reported in [Hagmann
et al., October 2006]. Angular resolution for q-ball imaging was taken from [Cho et al.,
2008].

Sampling Gradient strength # of samples Acquisition Min. angle
Technique [sec/mm2] in q-space N time [min]

DWI b ≤ 1000 N = 1 1–3 N.A.
DTI b ≤ 1000 N ≥ 7 3–6 N.A.
DSI b ≥ 8000 N ≥ 200 15–60 ≈ 45◦

q-ball 1000 ≤ b ≤ 3000 N ≥ 60 10–20 ≈ 50◦

pling scheme lies in the aim to map effectively the diffusion signal with as few samples as
possible, which leads to a reduction of acquisition time. Simultaneously, the angular resolu-
tion needs to remain high or even be improved. Within this context, spherical harmonic (SH)
transform became a popular mathematical approach, due to its ability to perform convolution
operations easier and more efficient in harmonic than in real space. The main drawback of
this transformation is, however, that aliasing occurs if the signal is not sampled at a proper
bandwidth. According to Daducci et al. [2011] this problem has not been addressed in a
quantitative approach yet. Therefore, they proposed a novel multi-shell q-space sampling
technique. This technique, as well as, how to model the ODF with the help of spherical
harmonics will be presented here in more detail.

The main goal of this thesis was to improve the results of spherical sampling by transforming
the ODF to a different form. Hereby, we exploited the nice property of the harmonic space
allowing us to perform convolution easily. This is important as we will define an inverse
problem from the knowledge that an ODF can be transformed to a fiber orientation distribu-
tion function (FOD) by means of spherical deconvolution. Our approach made it possible to
extract the fiber directions from the FOD with higher angular resolution from less samples
than in DSI.

This thesis is organized in the main chapters: 1 Introduction and Problem Statement, 2
Background, 3 Methods, 4 Results, 5 Discussion, and 6 Conclusion. The Introduction and
Problem Statement gives a brief overview over the project and the problem statement. The

2



1 Introduction and Problem Statement

chapter Background describes the biological brain tissue that is visualized with dMRI. Further,
the history and physics of diffusion and diffusion-weighted imaging is introduced and two
reconstruction and visualization techniques (DTI and DSI) are described. The last part of
this introductory chapter gives a brief overview on the dMRI applications and the importance
of high-angular resolution reconstruction techniques. The Methods chapter introduces the
reader to the mathematical background used in this work, including the novel multi-shell
sampling, introduction to spherical deconvolution for FOD calculations, and formulation of
the inverse problem as a basis pursuit denoising (BPDN) problem with and without noise.
The chapter Results presents the outcome of the extensive numerical simulations. Here, we
will also propose modifications to the formulation of the BPDN problem. Additionally, we
will justify the advantages of our technique and discuss the comparison to DSI. The last part
of this thesis work – Discussion and Conclusion – will evaluate the results and deal with open
scientific questions and propose further possible direction of this research project.

3
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”If you can’t convince them, confuse
them!”

Harry Truman
2 Background

This chapter gives a brief overview on the background of diffusion magnetic resonance imaging
(dMRI) and its applications. The following introductory sections are inspired from a book
on dMRI by Johansen-Berg and Behrens [2009], work of Hagmann et al. [October 2006], and
Beaulieu [2002], and a review article on recent advances in diffusion MRI [Assemlal et al.,
2011].

2.1 Diffusion MRI: Theory and Applications

2.1.1 What Are Neuronal Tracts?

Diffusion MRI makes it possible to visualize and to investigate the architecture of the brains
white matter. This application relies on the phenomenon that water diffusion is obstructed
by barriers created by biological structures inside the brain (e.g., axons, neurons, and glial
cells within the brain tissue). Figure 2.1 illustrates the neuronal cell body and the axon.

Oligodendrocyte

Blood 
capillary

Microglial cellNeuron

Internode

Myelinated axon

Node of Ranvier

Astrocyte

Axon

Myelin

Axonal membrane

Figure 2.1: Schematic representation of the major cellular elements of the white matter as
the neuronal cell body and the axon. [Johansen-Berg and Behrens, 2009]
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2 Background

These are the major structural elements that hinder water diffusion perpendicular to the
axons. The axon, embedded in the white matter, is surrounded by a type of fat, called myelin
sheath. The myelin lets the white matter appear whitish (see Figure 2.2a). This specialized
organization of the myelin sheaths acts as an electrical insulator, and it increases the speed
of transmission of nerve signals, whereby electrical impulses are sent along the axon from
the neuronal cell body to the axon terminus. The electrical impulse usually affects the cell
membrane potential of one of the neuron’s dendrites and then travels along the length of this
axon to transmit the electrical signal to other neurons. The common term for an axon is
nerve fiber and bundles of these fibers are called neuronal tracts or fibers (Figure 2.2c and
Figure 2.2b).

(a) Coronal Section (b) Right Cerebral Hemisphere (c) Left Cerebral Hemisphere

Figure 2.2: Dissections of the human brain [Williams et al., 1997]. In (a) the grey and the
white matters can be seen. (b) and (c) show the dissected human brain from the left and
from the right side respectively, revealing the structure of the white matter and the fiber
bundles.

2.1.2 Physics of Diffusion

Diffusion is a physical process leading to a uniform distribution of particles and thus to the
complete mixing of two or more substances. Brown (1827), Fick (1855), and Einstein (1905)
explained the theory behind this physical phenomenon and prepared the mathematical basis
for further reasearch.

In a medium, where the diffusion of particles is not hindered by anything, it can diffuse equally
in all directions and is then called isotropic. However, when the motion of the particles is
constrained by surrounding materials such as in biological tissues it is called anisotropic. The
differences between isotropic and anisotropic diffusion are illustrated in Figure 2.3.

To characterize the motion of water molecules in the brain qualitatively, previously described
observations are used to form a more elaborate formulation of the diffusion phenomenon (see
Section 2.1.4 for more details).
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2 Background
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auf Grund der thermischen Energie der Teilchen. Anzahl, Stärke und Richtung der stoßenden 

Moleküle ändern sich ständig, so dass eine beobachtete zufällige Zick-Zack-Bewegung 

entsteht.  

In einer Flüssigkeit mit einem Konzentrationsgradienten erfolgt die freie Diffusion nach den 

sogenannten Fickschen Diffusionsgesetzen (Brown 2006). Am Ort der höherer Konzentration 

des Teilchens erfolgen Zusammenstöße wesentlich häufiger als an Orten niedrigerer 

Konzentration, so dass die Teilchen, die in Richtung der niedrigeren Konzentration befördert 

werden, dort weniger Rückstöße erfahren und sich dadurch allmählich ein Gleichgewicht 

einstellt. Die Teilchen folgen also dem Konzentrationsgradienten bis dieser ausgeglichen ist. 

Die Diffusion von Teilchen in einer Flüssigkeit wird durch das Molekulargewicht, 

intermolekulare Interaktionen und die Temperatur beeinflusst. In einer reinen Flüssigkeit, in 

der die Diffusion von Teilchen durch nichts behindert wird, kann diese gleichmäßig in alle 

Richtungen erfolgen. Diese Richtungsunabhängigkeit wird Isotropie genannt (Abb. 3A). Wird 

die Diffusion hingegen durch Barrieren und Begrenzungen beeinträchtigt und beeinflusst, 

spricht man von Anisotropie (Abb. 3B). 

 

 

Abbildung 3: Beide Abbildungen zeigen die zufällige Bewegung eines einzelnen Wassermoleküls aufgrund von 
Diffusion. Links ist isotrope Diffusion dargestellt (z.B. im Liquor cerebrospinalis eines Hirnventrikels). Rechts 
wird das Molekül durch vertikale Begrenzungen in seiner Diffusion eingeschränkt, es liegt anisotrope Diffusion 
vor (z.B. in Nervenfasern der weißen Hirnsubstanz). Die Diffusion ist in der Y-Richtung größer als in der X-
Richtung (Beaulieu 2002). 

 

Dies wird am Beispiel des Sellerie deutlich. Im hohlen Kern, dem Parenchym des Sellerie, 

herrscht Isotropie, die Diffusion von Wasser kann dort fast ungehindert in alle Richtungen 

erfolgen. Wohingegen Wasser in den Stängeln, welche aus längsgerichteten Fasern bestehen, 

v.a. in deren Richtungsverlauf parallel zu diesen diffundieren kann und somit Anisotropie 

vorliegt (Beaulieu 2002). So wird auch die Bewegungsfreiheit von diffundierenden 

(a) Isotropic diffusion
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Figure 2.3: Random motion of a single water molecule due to diffusion in two different
tissues of the brain. (a) Isotropic diffusion, e.g., in the cerebrospinal fluid. (b) Anisotropic
diffusion due to constraints in vertical direction, e.g., in nerve fibers of the white matter.
[Beaulieu, 2002]

2.1.3 Brief History of dMRI

The Pulse Gradient Spin-Echo (PGSE) sequence 

[Stejskal and Tanner (1965)] 

Principles of Nuclear Magnetic Resonance (NMR)

[Bloch, Purcell, Carr (1946), Hahn (1950)]

Scalar Diffusion-Weighted Imaging (DWI) 

[Le Bihan and Breton (1985)]

Diffusion Tensor Imaging (DTI) 

[Basser et al, (1992-1994)] 

Diffusion Spectrum Imaging (DSI) 

[Wedeen et al (2000)]

! 

! 

! 

! 

Figure 2.4: Brief history of diffusion MRI [Descoteaux, 2008].

Diffusion MRI is based on principles of nuclear magnetic resonance (NMR) imaging. NMR
is a spectroscopic method to study the electronic environment of individual atoms and the
interactions with neighboring atoms. This allows the elucidation of molecular structure and
dynamics for concentration measurements. NMR was described at the same time by Bloch
[1946] and Purcell et al. [1946], and was awarded by a Nobel Prize in Physics in 1952. Few
years after this discovery Carr and Purcell [1954] proposed to create the first one-dimensional
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2 Background

MR image by introducing a gradient to the magnetic field. Shortly afterwards, Hahn [1950]
published an article on the NMR spin echo, where he posed the fundamental observation that
the amplitude of received signal is reduced after a perturbation of the magnetic field due to
random thermal motion of the spins. This phenomenon is a major step towards understanding
dMRI. Many more advances in MR imaging followed (see Figure 2.4) and will be described
by the following section in more detail.

2.1.4 Acquisition Techniques

2.1.4.1 1-D dMRI: Diffusion Weighted Imaging (DWI)

Diffusion weighted imaging (DWI) was performed for the first time by Wesbey et al. [1984].
A year later DWI acquisition on a hen’s egg was done by Taylor and Bushell [1985]. After
further development of the technique LeBihan et al. [1986] was finally able to acquire first
images of the human brain and he also introduced the famous b-value (see Equation 2.4).

Through the development of DWI it has become possible to determine the movement of water
molecules inside the human brain and eventually present this information to understand
further the nature of the white matter. The measured signal loss enables a quantitative
evaluation of diffusion in gradient direction (Figure 2.5).
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where I1 and I2 are the signal intensities measured 
with the lower and higher b-values, respectively, and 
ADC is the apparent diffusion coefficient (Le Bihan, 
1986; Stejskal and Tanner, 1965). In other words, there 
is a single exponential relationship between the signal 
and the apparent diffusion coefficient, the coupling 
factor being the b-factor. It is important to point out at 
this stage that this is only true for Gaussian diffusion. 
Chapter 7 will discuss situations under which the sim-
ple relationship in equation (3.3) no longer stands.

To quantify diffusion, one needs a minimum of two 
signal measurements – typically, one with diffusion-
encoding gradients applied and one without (but not 
necessarily – the key thing is that the difference in the 
b-values is known). The ADC is then estimated by 
rearranging equation (3.3). When this technique, first 
developed in NMR spectroscopy, is combined with 
imaging gradients, the effect is to quantify the apparent 
diffusion coefficient within each voxel of the imaged 
volume. As such, one can obtain quantitative maps of 
the apparent diffusion coefficient (Le Bihan, 1986).

B. The Influence of Anisotropic Structure on 
Diffusion NMR

Microstructure fundamentally affects the apparent 
diffusion properties of water and so non-invasive quan-
tification of diffusion acts as a sensitive probe to any 
changes in cellular structures that alter the displace-
ment per unit time. Thus, the introduction of diffusion-
weighted imaging was met with great enthusiasm as 
a non-invasive method of gaining new contrast within 
the brain. The most useful clinical application to date is 
the use of the diffusion-weighted scan in acute ischemia 
in which there is a reduction in the voxel-averaged dis-
placement of water molecules per unit time, hence a 
reduction in the apparent diffusion coefficient, there-
fore less signal attenuation – and the lesion appears 
hyperintense (Moseley et al., 1990a), even when “con-
ventional” scans (T1-weighted, T2-weighted, FLAIR) 
are normal.

About the same time as the finding that the ADC 
was reduced in ischemia, it was observed that, in cer-
tain parts of the cat brain, the ADC that was measured 
depended strongly on the direction in which it was 

measured (i.e. the direction of the applied diffusion-
encoding gradient) (Moseley et al., 1990b). These 
findings confirmed previous ex vivo measurements 
in muscle and brain tissue made almost two decades 
earlier by Hansen (1971) and later by Cleveland et al. 
(1976). Shortly after Moseley’s observation in the cat 
brain, the directional dependence of the ADC was 
reported in human white matter (Doran et al., 1990; 
Chenevert et al., 1990). This is illustrated in Figure 3.3, 
which shows diffusion-weighted images of a (human) 
brain in which the diffusion-encoding gradient is 
applied along one of three orthogonal axes.

In certain brain regions, the diffusion-weighted 
intensity is the same in all three images, suggesting that 
the ADC is the same in all directions. In these areas, we 
say that diffusion is isotropic. However, in the regions 
highlighted by arrows this is not the case and diffu-
sion in these regions is referred to as anisotropic. From 
just these three diffusion-weighted images alone, one 
can already infer a substantial amount of information 
about the structure indicated by the arrows. First, the 
large differences in diffusion-weighted intensities with 
changes in the diffusion-encoding gradient direction, 
suggest that the tissue here is highly ordered on the 
voxel scale. Second, as there is high signal attenuation 
in Figure 3.3(a) (in which the diffusion-encoding gra-
dients were applied in a left–right orientation), we can 
infer that diffusion is relatively unhindered along this 
axis. Conversely, in the two perpendicular orientations 
(Figure 3.3(b) and (c)), the signal attenuation is much 
less, indicating that the mean-squared displacement 
per unit time is reduced and that something is there-
fore hindering the displacement of water molecules 
along these orthogonal axes. Therefore, from just these 
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(a) (b) (c)

FIGURE 3.3 Effect of changing the axis of the diffusion-encod-
ing gradients on the diffusion-weighted signal intensity. The arrows 
at the top of the figure show the orientation of the encoding axis. 
In (c), the orientation is perpendicular to the viewing plane. Dark 
areas have high apparent diffusivity, lighter areas represent lower 
apparent diffusivity. In the area highlighted by the lower (unfilled) 
arrows, which forms the midsagittal portion of the splenium of the 
corpus callosum, the apparent diffusivity is high along the left–right 
axis, but low in the two orthogonal directions.

(a) x-direction
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ing gradients on the diffusion-weighted signal intensity. The arrows 
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(a) (b) (c)

FIGURE 3.3 Effect of changing the axis of the diffusion-encod-
ing gradients on the diffusion-weighted signal intensity. The arrows 
at the top of the figure show the orientation of the encoding axis. 
In (c), the orientation is perpendicular to the viewing plane. Dark 
areas have high apparent diffusivity, lighter areas represent lower 
apparent diffusivity. In the area highlighted by the lower (unfilled) 
arrows, which forms the midsagittal portion of the splenium of the 
corpus callosum, the apparent diffusivity is high along the left–right 
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(c) z-direction

Figure 2.5: Effects of changing the axis of the diffusion–encoding gradients on the diffusion–
weighted signal intensity. In the area highlighted by the arrows the apparent diffusivity is
high along the horizontal axis as shown by (a), but low in the two orthogonal directions,
as dark areas represent high apparent diffusivity. [Assemlal et al., 2011]

One DW image corresponds to a single point in a so called q-space, where one q-space sample
represent a diffusion weighted signal measured in this direction. To measure diffusion of water
molecules qualitatively in a given direction g = (gx, gy, gz), the gradient spin echo sequence
of Stejskal and Tanner [1965] is used. They adopted a T2-weighted spin-echo sequence to
measure water diffusion (as illustrated in Figure 2.6). To acquire a diffusion weighted signal,
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two gradient pulses g(t) in a diffusion encoding gradient direction g of a duration δ are used.
These gradient pulses are placed symmetrically on both sides of the 180◦ rephasing pulse.
The first gradient pulse leads to a phase shift of the spins. The 180◦ pulse combined with
the second gradient pulse applies another phase shift after a time ∆. The acquired signal
caused by stationary molecules is unaffected by this pulse, as the previously applied phase
shift is canceled. However, water molecules which moved during the time period ∆ experience
different phase shifts by the two gradient pulses, resulting in a signal loss, whereas, stationary
molecules are unaffected by gradients and measured signal intensity is preserved [Koh and
Collins, 2007]. The diffusion displacement probability density function (PDF), sometimes

RF
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90◦ 180◦

δδ
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Diffusion Gradient
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Repetition Time (TR)

Signal Readout

Line readout

Spin Echo

g

Gx

Gy
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Figure 4.3: Schematic Stejskal-Tanner imaging PGSE sequence. RF pulses could
more realistic.

shift only for static spins. On the other hand, spins under Brownian motion during
the time period ∆ separating the two pulses undergo different phase shifts by the
two gradient pulses, resulting in a T2 signal attenuation [Cercignani and Horsfield.
(2001)].

By assuming the pulses to be infinitely narrow (narrow pulse approximation), i.e.
if the gradient pulse duration δ is short enough for the diffusion of the water molecule
to be negligible during that time, [Stejskal and Tanner (1965)] showed that the signal
attenuation S(q, τ) is expressed as the 3-dimensional (3D) Fourier transformF of the
ensemble average propagator P ,

S(q, τ)
S0

=
∫

!3
P (r|r0, τ ) exp(−2πiqT R)dr = F [P (r|r0, τ)], (4.7)

where the value of q is given by q = γδG/2π, with γ the nuclear gyromagnetic ratio
for water protons, G the applied diffusion gradient vector, S0 is the baseline image
acquired without any diffusion gradients (also called b = 0 image) and P (r|r0, τ) is the
diffusion PDF or diffusion propagator of water molecules introduced earlier. This P

is ultimately the function we are looking to reconstruct in diffusion MRI. Intuitively,
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Figure 2.6: Schematic visualization of the Stejskal-Tanner PGSE sequence [Descoteaux,
2008].

also addressed in literature as the diffusion propagator, is denoted by P (r, τ) and represents
the probability, that a water molecule will experience a certain displacement r after a time
τ . Stejskal and Tanner showed that the signal attenuation S(q, τ) has a Fourier relationship
with the average diffusion propagator P (r, τ).

E(q, τ) =
S(q, τ)

S0
=

∫
P (r, τ)e2πiqT rdr = F−1

3D [P ](q), (2.1)

Here, the value of the real space vector q is given by

q = (qx, qy, qz) =
γ

2π

∫ δ

0
g(t)dt =

γδg
2π

, (2.2)

with γ = 42 MHz/T being the nuclear gyromagnetic ratio for water protons [Westin and
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Maier, 2002], g the applied diffusion gradient vector, and P (r, τ) the diffusion PDF or diffusion
propagator of water molecules. P is the function, which is aimed to be reconstructed in dMRI.
Therefore, the diffusion PDF must be sampled along many q directions. Thus, the space of
all possible q vectors in three dimensions is called q-space.

By solving the Fourier integral in Equation 2.1 under assumption of a Gaussian PDF ana-
lytically, the Stejskal-Tanner signal attenuation equation obtains the commonly used form as
follows in Equation 2.3.

S(q, τ) = S0e
−τqT Dq, S(b,g) = S0e

−bgT Dg, (2.3)

The signal attenuation is also often written with respect to g, with |g| being strength of
the diffusion sensitizing gradient pulses. Here it is common to use the b-value as a diffusion
weighting factor:

b = γ2δ2(∆− δ/3)|g|2 = (2π)2(∆− δ/3)|q|2, (2.4)

thus, the signal attenuation is obtained with respect to the b-value given by Equation 2.4. The
covariance matrix D of the net displacement vector r was defined by Einstein as D = 1

6τ 〈r
T r〉,

where τ is the diffusion time and 〈. . . 〉 denote an ensemble average of r.

2.1.4.2 3-D dMRI: Diffusion Tensor Imaging (DTI)

To describe the diffusion process in a 3-dimensional space a diffusion tensor model (DT) as
proposed by Basser et al. [1994] can be used. This tensor is obtained by solving the Stejskal-
Tanner equation 2.3. A log is taken on both sides and the equation is solved for six unknowns
(entries of D) at each voxel. At least seven images with non-coplanar gradient directions
including S0 for normalization must be acquired to calculate six tensor components.

gT Dg =
log S0 − log S

b
, (2.5)
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(2.6)

The DT formalism allows the extraction of some interesting properties of diffusion. Therefore,
the tensor is decomposed into its three eigenvalues λ1, λ2, and λ3, where λ1 ≥ λ2 ≥ λ3 , and
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corresponding eigenvectors ν1, ν2, ν3.

D =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



 (2.7)

The largest eigenvalue λ1 gives the principal direction of the DT ν1 and the other two eigen-
vectors span the orthogonal plane to it (illustrated in Figure 2.7).

MRI Measures Water Diffusion along
One Predetermined Axis
One of the most unique features of diffusion measure-
ment by MRI is that it detects water motion only along
the applied gradient axis. In Figure 4, the gradient was
applied to the horizontal orientation, leading to signal
phase dispersion along the horizontal axis. In this
case, the translational motion along the horizontal (X)
axis (indicated by yellow arrows) leads to signal loss,
but the motion along the vertical (Y) axis (indicated by
green arrows) has no effect. In this case, we are measur-
ing the ADC along the X axis. By combining the X, Y, and
Z gradients, the ADC along any orientation can be mea-
sured. In Figure 5B, measurement results along three
different orientations (along X, Y, and Z axes) are used.
The contrasts of these ADC maps are markedly differ-
ent, depending on the gradient orientations, which is in-
dicative of anisotropic diffusion. The measured ADCs in
three different regions are tabulated under Figure 5B.
There is as much as a 3-fold difference in the ADCs, de-
pending on measurement orientations. If water mole-
cules move along axonal fibers, the fiber orientation
should be similar to the measurement orientation with
the largest ADC (indicated by color boxes). By assigning
red, blue, and green colors to the X, Y, and Z axes and by
determining the orientation (color) of the largest ADC,
we can assign a color for each pixel, thereby creating
a color-coded orientation map (Figure 5C). For example,
region #1 is assigned a blue color because the ADC is
the largest along the Z axis. Similarly, #2 and #3 regions
are assigned red and green colors.
Tensor Calculation Is Required to Determine
Precise Fiber Orientation
In Figure 5C, fiber orientations are estimated from three
independent diffusion measurements along the X, Y,
and Z axes. However, these measurements are not
enough because fiber orientation is not always along
one of the three axes. In reality, fiber orientations are al-
most always oblique to the axes. To accurately find the
orientation with the largest ADC, we would have to mea-
sure diffusion along thousands of axes, which is not
practical. To simplify this issue, the concept of diffusion
tensor was introduced in the early 1990s (Basser et al.,

1994). In this model, measurements along different
axes are fitted to a 3D ellipsoid (Figure 6A) (note: the
ellipsoid represents average diffusion distance in each
direction, not ADC; plotting of ADC along each axis
would provide a peanut shape). The properties of the
3D ellipsoid, namely, the length of the longest, middle,
and shortest axes (called eigenvalues, l1, l2, and l3)
and their orientations (called eigenvectors, v1, v2, and
v3) can be defined by six parameters (Figure 6B). There-
fore, ADC measurements along six axes are enough to
calculate the ellipsoid. To convert the measurement re-
sults (more than six ADC) to these six parameters, a 33
3 symmetric matrix called tensor is used, hence the
name ‘‘diffusion tensor imaging.’’ Once these six param-
eters are obtained at each pixel, several interesting con-
trasts can be generated. For example, we can measure
the degree of diffusion anisotropy by using a measure-
ment of difference among the three eigenvalues: (l1 2
l2)

2 + (l1 2 l3)
2 + (l2 2 l3)

2. If diffusion is isotropic
(l1 = l2 = l3), this measure becomes 0. Large numbers
indicate high diffusion anisotropy. One of the most
widely usedmetrics of diffusion anisotropy is ‘‘fractional
anisotropy (FA),’’ which is (Pierpaoli and Basser, 1996):

FA=

ffiffiffi
1

2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
ðl12l2Þ2 + ðl22l3Þ2 + ðl32l1Þ2

#r
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l21 +l

2
2 +l

2
3

q (3)

This is a very convenient index because it is scaled
from 0 (isotropic) to 1 (anisotropic) (Figure 6D).

After a diffusion ellipsoid is determined, the informa-
tion can be reduced to a vector of the longest axis
(eigenvector v1), which we assume indicates the fiber
orientation (Figure 6C). Because it is very difficult to vi-
sualize 3D vectors, we usually convert this information
to a color space (Figure 6F) and generate a color-coded
orientation map (Figure 6E) (Makris et al., 1997; Pajevic
and Pierpaoli, 1999).
Three-Dimensional Structures of Axonal Bundles
Can Be Reconstructed from DTI Data
If we can assume that the orientation of the longest axis
(v1) of the diffusion tensor represents local fiber orienta-
tion, it is not difficult to reconstruct 3D streamlined

Figure 6. The Principle of DTI and Contrast
Generation

From diffusion measurements along multiple
axes (A), the shape and the orientation of
a ‘‘diffusion ellipsoid’’ is estimated (B). This
ellipsoid represents what an ink stain would
be if ink were dropped within the pixel. An
anisotropy map (D) can be created from the
shape, in which dark regions are isotropic
(spherical) and bright regions are anisotropic
(elongated). From the estimated ellipsoid (B),
the orientation of the longest axis can be
found (C), which is assumed to represent
the local fiber orientation. This orientation in-
formation is converted to a color (F) at each
pixel. By combining the intensity of the an-
isotropy map (D) and color (F), a color-coded
orientation map is created (E).

Neuron
532

Figure 2.7: The principle of DTI and contrast generation from diffusion measurements along
multiple axes. [Mori and Zhang, 2006]

From this eigenvalue decomposition, several rotationally invariant quantities can be extracted
such as the mean diffusivity λ̄ with 3λ̄ = λ1 + λ2 + λ3 or the fractional anisotropy (FA) as
defined by Equation 2.8. A typical value for FA is approximately 0.8, as measured by Mori
and Zhang [2006]. Figure 2.8b presents how the tensor shape affects the FA value.

FA =
3√
2

√
V ar(λ)√

λ2
1 + λ2

2 + λ2
3

(2.8)

with
V ar(λ) =

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

3
. (2.9)

Most often the FA map itself is used to visualize the regions of anisotropy, as can be seen
in Figure 2.8a. It is also common to visualize the DTs with a Red-Blue-Green (RGB) color-
map as proposed by Pajevic and Pierpaoli [1999]. The RGB map encodes the 3–dimensional
coordinates of the principal eigenvector ν1, which is assumed to represent the local fiber
orientation (Figure 2.7). The areas of red, blue and green color indicate tensors aligned with
the x, y, z directions in space. Further, the dark regions are isotropic, meaning the tensor
shape is spherical and bright regions are anisotropic leading to an elongated shape of the
tensor. Even though the DT is a powerful tool for many clinical applications, the DT model
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3.1. Image-based display of diffusion tensor data

In this category, the voxel values are determined on
the basis of eigenvectors and eigenvalues of diffusion
tensor at the location. The voxel value represents the
value of maximum diffusion coefficient l?, anisotropy
measure such as FA, orientation of the maximum
diffusion coefficient e1 and so on. The color-encoded
image of diffusion MRI was developed to visualize fiber
orientation [38]. By using DTI data, color-encoding of
the principle vector of the tensor e1 shows the fiber
tracts more distinctively than the simple FA images [39].
The simplest way to encode the orientation of e1 is to
determine the color components of the voxel by using
the FA value and the components of the normalized
eigenvector e1!/(X1, Y1, Z1); (je1j!/1) as follows;

(r; g; b; a)!FA(jX1j; jY1j; jZ1j; 1) (9)

where r , g , b , and a represents red, blue, green and
alpha components of the voxel color, and FA is the
scalar value of the fractional anisotropy. The alpha
component is required only for the case of 3D volume

rendering. Fig. 4 shows the examples of image-based
visualization of diffusion tensor.

3.2. Symbolic display of diffusion tensor data

Varieties of display methods based on the use of
symbolic objects have been proposed. Those symbols
are; arrow, ellipsoid, and other combined objects
[20,27,40"/43] and are aimed at displaying spatial
distribution of the anisotropy and the principle direc-
tions of the diffusion tensor. The ellipsoid display is the
most basic method for visualization of tensor including
stress and strain tensors in materials mechanics [44]. As
the formula (Eq. (7)) shows, an ellipsoid of diffusion
tensor represents distance covered in 3D space by
molecules in a certain diffusion time. A problem of
ellipsoid display is that apparent shape of ellipsoid
depends on view direction and it is difficult to recognize
local anisotropy. Coloring is effective for visualization
of such local properties. For example, a color-encoding
of local anisotropy mapping in our institute is described
as follows.

Fig. 5. Ellipsoidal visualization of diffusion tensor data. Top row: Superimposed on axial image (left: whole view, right: zoomed at splenium of
corpus callosum). Bottom row: Stereo pair of 3D ellipsoidal display.
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(a) DTI ellipsoids
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fiber axis) – this was often the case in older studies of 
excised ordered axonal systems such as nerves and 
spinal cord. However, when the fiber is aligned at arbi-
trary directions to the gradients or if one is trying to 
measure multiple fibers simultaneously with imaging, 
then acquisition of the full diffusion tensor (minimum 
of six gradient directions) is required to fully char-
acterize the diffusion tensor (Basser et al., 1994a, b).  
The tensor is then diagonalized to calculate the eigen-
values reflecting diffusion parallel and perpendicu-
lar to each of the fibers. The largest eigenvalue ( 1) 
is assumed to be the apparent diffusion coefficient of 
water along the length of the fiber and the two smaller 
eigenvalues ( 2, 3) are assumed to be the appar-
ent diffusion coefficients perpendicular to the fiber. 
For simplification, the two smaller eigenvalues are 
often averaged to yield a single value, the radial dif-
fusivity ( ). The directional diffusion coefficients are 
often presented as the axes of an ellipsoid (Figure 6.3).  
The degree of anisotropy is calculated from diver-
gences between parallel and perpendicular diffusion. 
This chapter is not meant to debate the various defini-
tions of anisotropy; however, we will refer to two of 
them throughout this chapter – the ratio of the paral-
lel and perpendicular diffusion coefficients (used in 
many early studies and gives an intuitive feel of the 

degree of anisotropy although it is not used in brain 
studies) and fractional anisotropy (FA) which is most 
commonly used in DTI publications. Another impor-
tant DTI-derived parameter is the mean diffusivity 
(i.e. MD, Trace/3 ADC, D ) which is the average of 
the three eigenvalues and gives a measure of the bulk 
diffusivity ignoring directional preferences. Examples 
of ellipsoids with the same mean diffusivity but dif-
ferent FA values demonstrating a range of isotropic 
to anisotropic diffusion are shown in Figure 6.4. Thus 
the goal with DTI is to determine if there are any dif-
ferences in the molecular displacement of water in tis-
sue, reflected by the eigenvalues and their mean and 
anisotropy, in regional parts of the brain in specific 
neurological disorders. If some, or all, of these diffu-
sion parameters are found to be abnormal, what could 
this mean at the microstructural level? This is the topic 
of the next section.

II. RELATIONSHIP OF WATER 
DIFFUSION ANISOTROPY TO TISSUE 

MICROSTRUCTURE

A. Quantitative Comparisons
Although mean diffusivity is similar between 

gray matter and white matter in adult human brain, 
the degree of anisotropy is vastly different in these 
tissues due to their unique structure (Pierpaoli  
et al., 1996). In fact, FA is low in the cortical gray mat-
ter ( 0.2), variable in the deep gray matter (0.2–0.4), 
and higher but with quite a range in the white mat-
ter from 0.45 in the subcortical white matter in the 
gyri to 0.8 in the corpus callosum of healthy human 
brain. Unfortunately, even within one tissue class 
such as white matter, there is no direct relationship 
between the degree of anisotropy observed in a given 
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ADC

ADC

FIGURE 6.3 Anisotropic diffusion is represented as a diffusion 
ellipsoid reflecting diffusion parallel (i.e. axial diffusivity, ADC//, 

1) or perpendicular (i.e. radial diffusivity, ADC , 2,3) to the neural 
fibers.

FA  0.12
1  0.8

2,3  0.65

FA  0.46
1  1.10

2,3  0.50

FA  0.82
1  1.60

2,3  0.25

FIGURE 6.4 Diffusion ellipsoids that all have the same mean diffusivity (0.7  10 3 mm2/s) but incremental fractional anisotropy ranging 
from nearly isotropic (lower FA) to anisotropic (higher FA). In this example, the parallel ( 1) and perpendicular diffusivities ( 2,3) must change 
in opposite directions to keep the mean diffusivity constant.(b) Fractional anisotropy

Figure 2.8: Ellipsoidal visualization of diffusion tensor data. (a) shows on the left the whole
view and on the right a zoomed view at the splenium of corpus callosum [Masutani et al.,
2003]. (b) illustrates diffusion ellipsoids with different fractional anisotropy ranging from
almost isotropic (lower FA) to anisotropic (higher FA) diffusion profile [Johansen-Berg and
Behrens, 2009].

is limited. It cannot be used to visualize voxels with multiple fiber crossings. This limitation is
caused by the assumption of the Gaussian PDF and the limited number of degrees of freedom
in the model. Hence, we need higher order models to be able to describe non-Gaussian
distributions.

2.1.4.3 3-D dMRI: Diffusion Spectrum Imaging (DSI)

In contrast to DTI, diffusion spectrum imaging (DSI) is not based on any model hypothesis
on the diffusion. It is also said to be model-free. In DSI, the resolution of the diffusion PDF
depends only on the number of samples in q-space. Equation 2.10 shows the way of extracting
the diffusion PDF from data measuring the signal on a Cartesian grid of points in q-space
and then taking the 3-dimensional Fourier transform to obtain the PDF.

P (r, τ) =
∫

E(q, τ)e−2πiqT rdq = F3D[E](r) (2.10)

DSI was described for the first time by Wedeen [2000]. The original technique has, however,
some technical limitations. In order to achieve a high resolution, a big sampling box with
many q-space sampling directions is required. This needs many measurements and very large
b-values. This results in a major practical problem, because of the large number of samples.
The acquisition time then increases drastically, hence making it impractical to use in a clinical
context (up to 60 minutes for data acquisition). For DSI, usually 515 diffusion-weighted images
are acquired in q-space with b-values ranging from 0 sec/mm2 to 8, 000 sec/mm2. Then a
Fourier transform is applied to the obtained q-space data to calculate the PDF.

As a result of DSI limitations, other techniques have been developed to calculate the desired
diffusion PDF. One such feasible approach is Q-ball imaging developed by Tuch [2004] (Figure
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2.9a). This imaging technique has again the advantage of being model independent, and it
has been shown that it is possible to reconstruct the diffusion orientation distribution function
(ODF) directly from samples placed on a single spherical shell in q-space.

voxel to voxel the direction of the diffusion maxi-
mum. The fibers depicted with tractography are
often considered to represent individual axons or
nerve fibers, but they are more correctly viewed in
physical terms as lines of fast diffusion that follow
the local diffusion maxima and that only generally
reflect the axonal architecture. This distinction is
useful because, for a given imaging resolution and
signal-to-noise ratio, lines of maximum diffusion
coherence (ie, the computer-generated fibers)
may differ from the axonal architecture in some
brains. Tractography adds information and inter-
est to the MR imaging depiction of the human
neuronal anatomy.

The connectivity maps obtained with tractog-
raphy vary according to the diffusion imaging mo-
dality used to obtain the diffusion data. For ex-
ample, diffusion tensor imaging provides a Gauss-
ian approximation of the actual displacement
distribution, and since the representation of that
distribution is restricted to variations of an ellip-
soid, this method creates various biases in the

tractography result. In contrast, diffusion spec-
trum imaging with tractography overcomes many
of those biases and allows more realistic mapping
of connectivity. The tractography result also de-
pends on the tracking algorithm used. Determin-
istic fiber tracking from diffusion tensor imaging
uses the principal direction of diffusion to inte-
grate trajectories over the image (22) but ignores
the fact that fiber orientation is often undeter-
mined in the diffusion tensor imaging data. To
overcome this limitation of the data, Hagmann
and colleagues, as well as other investigators, in-
vestigated statistical fiber tracking methods based
on consideration of the tensor as a probability
distribution of fiber orientation (23–25).

The application of fiber tractography to data
such as those obtained with diffusion spectrum
imaging or q-ball imaging results in the depiction
of a large set of fiber tracts with a more complex

Figure 18. Diagram shows
that in q-ball imaging, points
on a shell with a constant b
value are acquired in q-space.
At least 60 images are neces-
sary to reconstruct an orienta-
tion distribution function that
is realistic.
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(a) Q-ball sampling Figure 7. Diagram shows how an orientation distribution function (ODF) is computed
and represented. Left: Image of a section through a schematized 3D displacement distribu-
tion. The value of the orientation distribution function was computed along two axes (yellow
lines). Center: Histograms represent the displacement distribution along the two axes. The
value of the orientation distribution function along those axes equals the area under the
curve for each axis. In this example, the two areas under the curve are respectively small and
large, indicating that there is much less diffusion in the one direction than in the other.
Right: The sum of the areas under the curve is represented by a deformed sphere in which
the lengths of the two radii (yellow lines) are short and long, corresponding to little diffusion
and much diffusion, respectively. To compute the orientation distribution function, the area
under the curve is computed for every direction.

Figure 8. Orientation distribution function map of a coronal brain section. For every brain
position p, an orientation distribution function is plotted to characterize the local diffusion
probability density function. It is easy to identify the corticospinal tract, in which the domi-
nant color is blue, and the corpus callosum, in which red is predominant. More difficult to
see are the cingulum and the arcuate fasciculus, depicted predominantly in green, and the
middle cerebellar peduncle, in red.
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k-space, the q-space data are subjected to a Fou-
rier transform in every brain position. The result
is a displacement distribution in each brain posi-
tion (ie, voxel) (Fig 11). In other words, a single
application of the pulsed gradient SE sequence
produces one brain image with a given diffusion
weighting. Multiple repetitions of the sequence,
each with a different diffusion weighting, are nec-
essary to sample the entirety of q-space; the result
is hundreds of brain images, each of which re-
flects the particular diffusion weighting used. One
must then imagine that the data are reorganized
so that in every brain position there is a q-space

signal sample that consists of hundreds of values
and that in every brain position a Fourier trans-
form relates the raw q-space data to the diffusion
probability density function (Fig 12).

q-Space is always sampled for a specific diffu-
sion time interval !, which is determined by the
duration of the interval between the two gradient
pulses. The diffusion time interval can be varied
to enhance different properties. For example, a
longer interval produces better directional resolu-
tion. Imagine diffusion within an axon: With a

Figure 11. Diagram shows the process with which a 3D diffusion probability density func-
tion is obtained for one voxel (one brain position). In A, a 3D grid that represents q-space,
each yellow dot corresponds to an MR signal sampling point. The signal is sampled at each
point by varying the direction and strength of the diffusion gradient (q vector) of the pulsed
gradient SE sequence. With a single application of the pulsed gradient SE sequence, one
point in q-space is sampled for each brain position simultaneously, and the result is one dif-
fusion-weighted image. In B, the left panel shows sections through the MR signal sampled in
q-space for a specific brain position (one voxel), and the right panel shows the diffusion
probability density function in the same voxel after a 3D Fourier transform of the MR signal
in q-space is performed. The cross-shaped appearance of the diffusion probability density
function is often seen in voxels in the brainstem, where axons of the corticospinal tract cross
with axons of the middle cerebellar peduncle.

Figure 12. Series of diffusion-weighted
MR brain images obtained with variations
in the direction and strength of the diffu-
sion gradient in the pulsed gradient SE
sequence. Each image shows the signal
sampled at one point in q-space (one yel-
low dot). Every sampling point in q-space
corresponds to a specific direction and
strength of the diffusion gradient.
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(b) From PDF to ODF

Figure 2.9: (a) shows that in q-ball imaging, points on a shell with a constant b-value
are acquired in q-space. At least 60 images are necessary to reconstruct an orientation
distribution function that is realistic. (b) gives an overview on how to compute an ODF
from acquired PDF by integrating the area under the curve of the exponential decay of the
PDF. [Hagmann et al., October 2006]

Figure 2.9 shows how an ODF is computed from the PDF and visualized. The values of the
displacement distribution along diffusion directions (yellow lines in Figure 2.9b) are repre-
sented as histograms. The ODF is then computed along them by calculating the area under
the diffusion propagator curve for each of the sampling directions. The integral is then visu-
alized by a deformed sphere, where the different lengths of the two radii correspond to the
magnitude of diffusion in the respective direction.

2.1. Local diffusion modeling

Whereas the scalar ADC measure is modeled with a zeroth-or-
der tensor, DTI introduces the use of a second-order tensor D,
allowing a more accurate angular characterization of the diffusion
process in the brain (Stejskal, 1965; Moseley et al., 1990; Filler
et al., 1992; Basser and LeBihan, 1992). The mathematical frame-
work which explicitly relates the diffusion tensor to the NMR sig-
nal was demonstrated by (Stejskal, 1965; Basser and LeBihan,
1992; Basser et al., 1994):

EðqÞ ¼ expð$4p2sqTDqÞ ð16Þ

In this formalism, the average local diffusion process is de-
scribed by a second-order tensor D, whose coordinates in the q-
space basis {ux,uy,uz} are given by a 3 % 3 symmetric and posi-
tive-definite matrix:

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

0

B@

1

CA ð17Þ

In a environment such as water, the diffusion process D is assumed
to be symmetric (i.e., D = DT) according to the principles of thermo-
dynamics (Onsager, 1931a,b; De Groot and Mazur, 1962; Casimir,
1945; Stejskal, 1965; Basser et al., 1994).

2.2. Model estimation from the data

The apparent diffusion tensor profile D is expressed as a func-
tion of the wave-vector diffusion q defined in the q-space, so that
the logarithm of Eq. (16) is:

DðqÞ ¼ qTDq ¼ $ lnðEðqÞÞ
4p2s ð18Þ

Since the diffusion tensor D is symmetric, it is entirely defined by
six components which can be grouped into a vector D (Basser
et al., 1994):

D ¼ ðDxx;Dxy;Dxz;Dyy;Dyz;DzzÞT: ð19Þ

The construction of the sampling matrix of the q-space requires at
least n = 6 acquisitions qi, i 2 [1,n] and one additional acquisition
at q = 0 for normalization (Stejskal, 1965; Basser et al., 1994; Tuch,
2002):
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where the wave-vector is decomposed as qi ¼ qx
i ux þ qy

i uy þ qz
iuz.

The sampling matrix defined in Eq. (20) is traditionally named the
B-matrix, in reference to its multiple b-factor entries bij = 4p2sqiqj
(cf. Eq. (7)).

The logarithm of the data samples Ei, i 2 [1,n] are grouped in a
vector Y:

Y ¼ ð$ lnðE1Þ;$ . . . ;$ lnðEnÞÞT: ð21Þ

Finally, Eq. (16) which links the model to the data, is expressed
in the matrix form as:

Y ¼ BD: ð22Þ

In the case where there are exactly six acquisitions in different
orientation of the q-space, the components of the diffusion tensor
can be computed by the relationship D = B$1Y. However, such a
process is very sensitive to the quality of the data and to perturba-
tions due to acquisition noise. In practice, scanners are now able to
acquire many mores images (typically up to n = 60 directions).
From these n images, the tensor is estimated to be the one which
minimizes a notion of error to the set of acquired data (Johan-
sen-Berg and Behrens, 2009). There are several methods for the
estimation and regularization of second-order tensor fields, includ-
ing: weighted least squares (Basser et al., 1994), variational meth-
ods for the estimation of the image volume with positivity and
regularity constraints (Chefd’hotel et al., 2002; Tschumperlé and
Deriche, 2003a; Tschumperlé and Deriche, 2003b; Chefd’hotel

Fig. 5. Examples of local diffusion profiles E observed in the brain matter measured by dMRI. The data are represented here as volumetric images 64 % 64 % 64, where the
center of the q-space q = 0 is the center of each image. (a) Free isotropic Gaussian diffusion. (b) Restricted diffusion due to the presence of a single fiber bundle. (c) Restricted
diffusion in the presence of two fiber bundles in a crossing configuration. (d) Restricted diffusion which is isotropic in direction, but has a multi-Gaussian profile radially.

(a) (b) (c) (d) (e)

Fig. 6. The analysis of the diffusion signal is closely related to the sampling of the q-space. (a) Full sampling of the q-space is currently impractical in vivo due to the significant
acquisition time it would imply. (b) Low angular resolution sampling used in DTI. (c) High angular resolution sampling (HARDI). (d) Radial only sampling used in diffusion
NMR. (e) Sparse sampling which combines radial and angular measurements.
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(a) DSI

2.1. Local diffusion modeling

Whereas the scalar ADC measure is modeled with a zeroth-or-
der tensor, DTI introduces the use of a second-order tensor D,
allowing a more accurate angular characterization of the diffusion
process in the brain (Stejskal, 1965; Moseley et al., 1990; Filler
et al., 1992; Basser and LeBihan, 1992). The mathematical frame-
work which explicitly relates the diffusion tensor to the NMR sig-
nal was demonstrated by (Stejskal, 1965; Basser and LeBihan,
1992; Basser et al., 1994):

EðqÞ ¼ expð$4p2sqTDqÞ ð16Þ

In this formalism, the average local diffusion process is de-
scribed by a second-order tensor D, whose coordinates in the q-
space basis {ux,uy,uz} are given by a 3 % 3 symmetric and posi-
tive-definite matrix:
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In a environment such as water, the diffusion process D is assumed
to be symmetric (i.e., D = DT) according to the principles of thermo-
dynamics (Onsager, 1931a,b; De Groot and Mazur, 1962; Casimir,
1945; Stejskal, 1965; Basser et al., 1994).

2.2. Model estimation from the data

The apparent diffusion tensor profile D is expressed as a func-
tion of the wave-vector diffusion q defined in the q-space, so that
the logarithm of Eq. (16) is:

DðqÞ ¼ qTDq ¼ $ lnðEðqÞÞ
4p2s ð18Þ

Since the diffusion tensor D is symmetric, it is entirely defined by
six components which can be grouped into a vector D (Basser
et al., 1994):

D ¼ ðDxx;Dxy;Dxz;Dyy;Dyz;DzzÞT: ð19Þ

The construction of the sampling matrix of the q-space requires at
least n = 6 acquisitions qi, i 2 [1,n] and one additional acquisition
at q = 0 for normalization (Stejskal, 1965; Basser et al., 1994; Tuch,
2002):
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where the wave-vector is decomposed as qi ¼ qx
i ux þ qy

i uy þ qz
iuz.

The sampling matrix defined in Eq. (20) is traditionally named the
B-matrix, in reference to its multiple b-factor entries bij = 4p2sqiqj
(cf. Eq. (7)).

The logarithm of the data samples Ei, i 2 [1,n] are grouped in a
vector Y:

Y ¼ ð$ lnðE1Þ;$ . . . ;$ lnðEnÞÞT: ð21Þ

Finally, Eq. (16) which links the model to the data, is expressed
in the matrix form as:

Y ¼ BD: ð22Þ

In the case where there are exactly six acquisitions in different
orientation of the q-space, the components of the diffusion tensor
can be computed by the relationship D = B$1Y. However, such a
process is very sensitive to the quality of the data and to perturba-
tions due to acquisition noise. In practice, scanners are now able to
acquire many mores images (typically up to n = 60 directions).
From these n images, the tensor is estimated to be the one which
minimizes a notion of error to the set of acquired data (Johan-
sen-Berg and Behrens, 2009). There are several methods for the
estimation and regularization of second-order tensor fields, includ-
ing: weighted least squares (Basser et al., 1994), variational meth-
ods for the estimation of the image volume with positivity and
regularity constraints (Chefd’hotel et al., 2002; Tschumperlé and
Deriche, 2003a; Tschumperlé and Deriche, 2003b; Chefd’hotel

Fig. 5. Examples of local diffusion profiles E observed in the brain matter measured by dMRI. The data are represented here as volumetric images 64 % 64 % 64, where the
center of the q-space q = 0 is the center of each image. (a) Free isotropic Gaussian diffusion. (b) Restricted diffusion due to the presence of a single fiber bundle. (c) Restricted
diffusion in the presence of two fiber bundles in a crossing configuration. (d) Restricted diffusion which is isotropic in direction, but has a multi-Gaussian profile radially.

(a) (b) (c) (d) (e)

Fig. 6. The analysis of the diffusion signal is closely related to the sampling of the q-space. (a) Full sampling of the q-space is currently impractical in vivo due to the significant
acquisition time it would imply. (b) Low angular resolution sampling used in DTI. (c) High angular resolution sampling (HARDI). (d) Radial only sampling used in diffusion
NMR. (e) Sparse sampling which combines radial and angular measurements.
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(b) DTI

2.1. Local diffusion modeling

Whereas the scalar ADC measure is modeled with a zeroth-or-
der tensor, DTI introduces the use of a second-order tensor D,
allowing a more accurate angular characterization of the diffusion
process in the brain (Stejskal, 1965; Moseley et al., 1990; Filler
et al., 1992; Basser and LeBihan, 1992). The mathematical frame-
work which explicitly relates the diffusion tensor to the NMR sig-
nal was demonstrated by (Stejskal, 1965; Basser and LeBihan,
1992; Basser et al., 1994):

EðqÞ ¼ expð$4p2sqTDqÞ ð16Þ

In this formalism, the average local diffusion process is de-
scribed by a second-order tensor D, whose coordinates in the q-
space basis {ux,uy,uz} are given by a 3 % 3 symmetric and posi-
tive-definite matrix:
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In a environment such as water, the diffusion process D is assumed
to be symmetric (i.e., D = DT) according to the principles of thermo-
dynamics (Onsager, 1931a,b; De Groot and Mazur, 1962; Casimir,
1945; Stejskal, 1965; Basser et al., 1994).

2.2. Model estimation from the data

The apparent diffusion tensor profile D is expressed as a func-
tion of the wave-vector diffusion q defined in the q-space, so that
the logarithm of Eq. (16) is:

DðqÞ ¼ qTDq ¼ $ lnðEðqÞÞ
4p2s ð18Þ

Since the diffusion tensor D is symmetric, it is entirely defined by
six components which can be grouped into a vector D (Basser
et al., 1994):

D ¼ ðDxx;Dxy;Dxz;Dyy;Dyz;DzzÞT: ð19Þ

The construction of the sampling matrix of the q-space requires at
least n = 6 acquisitions qi, i 2 [1,n] and one additional acquisition
at q = 0 for normalization (Stejskal, 1965; Basser et al., 1994; Tuch,
2002):
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where the wave-vector is decomposed as qi ¼ qx
i ux þ qy

i uy þ qz
iuz.

The sampling matrix defined in Eq. (20) is traditionally named the
B-matrix, in reference to its multiple b-factor entries bij = 4p2sqiqj
(cf. Eq. (7)).

The logarithm of the data samples Ei, i 2 [1,n] are grouped in a
vector Y:

Y ¼ ð$ lnðE1Þ;$ . . . ;$ lnðEnÞÞT: ð21Þ

Finally, Eq. (16) which links the model to the data, is expressed
in the matrix form as:

Y ¼ BD: ð22Þ

In the case where there are exactly six acquisitions in different
orientation of the q-space, the components of the diffusion tensor
can be computed by the relationship D = B$1Y. However, such a
process is very sensitive to the quality of the data and to perturba-
tions due to acquisition noise. In practice, scanners are now able to
acquire many mores images (typically up to n = 60 directions).
From these n images, the tensor is estimated to be the one which
minimizes a notion of error to the set of acquired data (Johan-
sen-Berg and Behrens, 2009). There are several methods for the
estimation and regularization of second-order tensor fields, includ-
ing: weighted least squares (Basser et al., 1994), variational meth-
ods for the estimation of the image volume with positivity and
regularity constraints (Chefd’hotel et al., 2002; Tschumperlé and
Deriche, 2003a; Tschumperlé and Deriche, 2003b; Chefd’hotel

Fig. 5. Examples of local diffusion profiles E observed in the brain matter measured by dMRI. The data are represented here as volumetric images 64 % 64 % 64, where the
center of the q-space q = 0 is the center of each image. (a) Free isotropic Gaussian diffusion. (b) Restricted diffusion due to the presence of a single fiber bundle. (c) Restricted
diffusion in the presence of two fiber bundles in a crossing configuration. (d) Restricted diffusion which is isotropic in direction, but has a multi-Gaussian profile radially.
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Fig. 6. The analysis of the diffusion signal is closely related to the sampling of the q-space. (a) Full sampling of the q-space is currently impractical in vivo due to the significant
acquisition time it would imply. (b) Low angular resolution sampling used in DTI. (c) High angular resolution sampling (HARDI). (d) Radial only sampling used in diffusion
NMR. (e) Sparse sampling which combines radial and angular measurements.
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2.1. Local diffusion modeling

Whereas the scalar ADC measure is modeled with a zeroth-or-
der tensor, DTI introduces the use of a second-order tensor D,
allowing a more accurate angular characterization of the diffusion
process in the brain (Stejskal, 1965; Moseley et al., 1990; Filler
et al., 1992; Basser and LeBihan, 1992). The mathematical frame-
work which explicitly relates the diffusion tensor to the NMR sig-
nal was demonstrated by (Stejskal, 1965; Basser and LeBihan,
1992; Basser et al., 1994):

EðqÞ ¼ expð$4p2sqTDqÞ ð16Þ

In this formalism, the average local diffusion process is de-
scribed by a second-order tensor D, whose coordinates in the q-
space basis {ux,uy,uz} are given by a 3 % 3 symmetric and posi-
tive-definite matrix:

Dxx Dxy Dxz
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1

CA ð17Þ

In a environment such as water, the diffusion process D is assumed
to be symmetric (i.e., D = DT) according to the principles of thermo-
dynamics (Onsager, 1931a,b; De Groot and Mazur, 1962; Casimir,
1945; Stejskal, 1965; Basser et al., 1994).

2.2. Model estimation from the data

The apparent diffusion tensor profile D is expressed as a func-
tion of the wave-vector diffusion q defined in the q-space, so that
the logarithm of Eq. (16) is:

DðqÞ ¼ qTDq ¼ $ lnðEðqÞÞ
4p2s ð18Þ

Since the diffusion tensor D is symmetric, it is entirely defined by
six components which can be grouped into a vector D (Basser
et al., 1994):

D ¼ ðDxx;Dxy;Dxz;Dyy;Dyz;DzzÞT: ð19Þ

The construction of the sampling matrix of the q-space requires at
least n = 6 acquisitions qi, i 2 [1,n] and one additional acquisition
at q = 0 for normalization (Stejskal, 1965; Basser et al., 1994; Tuch,
2002):
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where the wave-vector is decomposed as qi ¼ qx
i ux þ qy

i uy þ qz
iuz.

The sampling matrix defined in Eq. (20) is traditionally named the
B-matrix, in reference to its multiple b-factor entries bij = 4p2sqiqj
(cf. Eq. (7)).

The logarithm of the data samples Ei, i 2 [1,n] are grouped in a
vector Y:

Y ¼ ð$ lnðE1Þ;$ . . . ;$ lnðEnÞÞT: ð21Þ

Finally, Eq. (16) which links the model to the data, is expressed
in the matrix form as:

Y ¼ BD: ð22Þ

In the case where there are exactly six acquisitions in different
orientation of the q-space, the components of the diffusion tensor
can be computed by the relationship D = B$1Y. However, such a
process is very sensitive to the quality of the data and to perturba-
tions due to acquisition noise. In practice, scanners are now able to
acquire many mores images (typically up to n = 60 directions).
From these n images, the tensor is estimated to be the one which
minimizes a notion of error to the set of acquired data (Johan-
sen-Berg and Behrens, 2009). There are several methods for the
estimation and regularization of second-order tensor fields, includ-
ing: weighted least squares (Basser et al., 1994), variational meth-
ods for the estimation of the image volume with positivity and
regularity constraints (Chefd’hotel et al., 2002; Tschumperlé and
Deriche, 2003a; Tschumperlé and Deriche, 2003b; Chefd’hotel

Fig. 5. Examples of local diffusion profiles E observed in the brain matter measured by dMRI. The data are represented here as volumetric images 64 % 64 % 64, where the
center of the q-space q = 0 is the center of each image. (a) Free isotropic Gaussian diffusion. (b) Restricted diffusion due to the presence of a single fiber bundle. (c) Restricted
diffusion in the presence of two fiber bundles in a crossing configuration. (d) Restricted diffusion which is isotropic in direction, but has a multi-Gaussian profile radially.
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Fig. 6. The analysis of the diffusion signal is closely related to the sampling of the q-space. (a) Full sampling of the q-space is currently impractical in vivo due to the significant
acquisition time it would imply. (b) Low angular resolution sampling used in DTI. (c) High angular resolution sampling (HARDI). (d) Radial only sampling used in diffusion
NMR. (e) Sparse sampling which combines radial and angular measurements.
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(d) Sparse sampling

Figure 2.10: Different sampling schemes of the q-space [Assemlal et al., 2011].

Other acquisition techniques allowing high angular resolution diffusion imaging (HARDI) also
exist. For more technical details on q-ball and other acquisition and imaging techniques the
reader may refer to recently published literature (e.g., Assemlal et al. [2011]). Figure 2.10
gives an overview on some of the q-space sampling schemes.
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2 Background

2.2 Clinical and Basic Research Applications

Moseley et al. [1990] showed that water diffusion in cerebral tissue decreases within minutes
after a stroke in brains of cats. This finding quickly attracted a lot of attention as a method
for early detection of brain injuries, because it is not possible to show stroke for hours to
days after the onset of injury with standard imaging methods. Also, in the assessment of
tumors, dMRI was identified as a useful imaging tool. Tumors are more cellular than the
tissue from which they originate and appear with different signal intensity due to restricted
diffusion in DWI [Koh and Collins, 2007]. Now, with dMRI being established in stroke and
tumor diagnosis, the way was paved for further research on other potential applications for
dMRI. Large scale research projects have been initiated to study the human brain with this
new imaging technique1,2. Nowadays, a major application area of dMRI is fiber-tracking or
’tractography’ (see Figure 2.11a). The field of tractography has undergone intensive develop-
ment since the introduction of dMRI and exciting applications are now beginning to emerge
e.g., assessment of brain maturation in children [Schmithorst and Yuan, 2010] or monitoring
of disease progression [Hagmann et al., 2008].

the other hand, region-to-region connection by white
matter tracts is a very difficult notion to define. In fact,
the notion of a ‘‘tract’’ is itself often a vague and subjec-
tive concept, as axons can merge and exit at any point
along the tract, making it impossible to define a clear
boundary. If we cannot unequivocally define the biologi-
cal entity we are trying to delineate, there is no gold
standard by which to judge the validity of tractography,
and interpretation becomes difficult.

On the other hand, the advantages of tractography are
clear: it can delineate white matter tracts in 3D and non-
invasively from less than 10 min of MR data acquisition,
which cannot be achieved by any other modality. It is
thus very important to understand these properties and
limitations of tractography, to ensure that they are used
wisely to answer biological and/or clinical hypotheses
about brain anatomy.

Deterministic Tractography

Most tractography algorithms in common use rely on
line propagation techniques to delineate white matter
pathways (105). This general class of methods is also of-
ten referred to as deterministic streamline fiber tractogra-
phy (Fig. 15a). These rely on: the identification of a suit-
able position from which to initiate the algorithm (the
seed point); the propagation of the track along the esti-
mated fiber orientation; and the termination of the track
when appropriate termination criteria are met. Each of
these aspects is described below, starting with the propa-
gation of the track.

Track Propagation

Tractography algorithms rely on the availability of esti-
mates of the orientation of the white matter fibers at any

location in 3D space within the volume of interest. The
major eigenvector of the diffusion tensor (also referred to
as the principal diffusion direction) is typically assumed
to provide a suitable estimate of the fiber orientation
within each imaging voxel (146). The simplest method to
obtain an estimate of this orientation at any location is
then to use nearest-neighbor interpolation: the desired
white matter orientation is approximated as that of the
nearest voxel. The algorithm can then proceed by step-
ping out from the starting position along the orientation
estimated at that point, by a fixed user-specified step-
size. The orientation at the new location is then esti-
mated, and the next step taken along that direction, until
the track is terminated (see below). This combination of
fixed step-size tracking using nearest-neighbor inter-
polation is the basis of the original fiber assignment by
continuous tracking (FACT) algorithm (18).

Other implementations differ mainly in the choice
of interpolation method. Most algorithms use tri-linear
interpolation, whereby the quantity of interest is calcu-
lated as a weighted sum from the 8 voxels nearest to the
point of interest (17). Some implementations will
perform tri-linear interpolation on the raw DW signals
themselves, and recompute the major eigenvector based
on these data (17). Another approach is to interpolate the
elements of the diffusion tensor themselves (147–152).

Other differences between implementations relate to
the propagation algorithm used. The FACT algorithm
mentioned above is in essence a first-order Euler integra-
tion procedure, which is known to overshoot in highly
curved regions due to the finite step size (153,154). The
use of fourth-order Runge-Kutta integration has been pro-
posed to minimize these errors (20). Other propagation
methods have been proposed to allow fiber-tracking to
proceed through crossing fiber regions, by ‘‘deflecting’’

FIG. 15. Conceptual example of (a) deterministic (Ref. 20) and (b) probabilistic (Ref. 145) streamline tractography based on the diffusion
tensor model. The white lines in (a) represent fiber tract pathways that were reconstructed by following the principal diffusion directions
(see the glyphs shown in the blue region of interest) in consecutive steps, initiated bidirectionally at the indicated locations (i.e., ‘‘seed
points’’). For each of the pathways in (a), there is no information available about the precision/dispersion that is associated with their
tract propagation. By contrast, the set of multiple (1000) lines shown in (b) provides a feel for the degree of uncertainty related to the
tract reconstruction initiated from the single seed point. Note that the same underlying tractography algorithm (Ref. 20) was used for
both examples, but in (b), each tract pathway was calculated from a ‘‘different’’ diffusion tensor data set that was created with the wild-
bootstrap approach (Ref. 145).

1548 Tournier et al.

(a)

regions that are highly connected within one module) and
connector hubs (hub regions that link multiple modules) [35].
Without exception, connector hubs are located within the
anterior-posterior medial axis of the cortex (Figure 6A),
including bilaterally the rostral and caudal anterior cingulate,
the paracentral lobule, and the precuneus. Examination of
high-resolution connection matrices shows that the majority
of connector hub ROIs is consistently found in posterior
medial and parietal cortex (Figure 6B). Provincial hubs are
members of the frontal (e.g., medioorbitofrontal cortex),
temporoparietal (e.g., bank of the superior temporal sulcus,
superior temporal cortex) or occipital modules (e.g., peri-
calcarine cortex). Most core regions, as identified by k-core or
s-core decomposition, are members of the two medial
modules. When combined into a single ‘‘core module,’’ over
70% of the between-module edge mass is attached to the
core.

When modularity detection was applied to more restricted
portions of the high-resolution connection datasets, for

example the visual and frontal cortex, we were able to
recover clusters that were consistent with those found in
previous studies based on classical anatomical techniques, or
orderings that were suggested based on functional subdivi-
sions. For example, we found, in all five participants, a
segregated dorsal and ventral cluster of visual ROIs,
corresponding in location and extent to the dorsal and
ventral stream of visual cortex [36]. Clustering of frontal
cortical ROIs yielded distinct clusters centered on orbital,
medial, and lateral frontal cortex (Figure S4).

Centrality and Efficiency
Regions with elevated betweenness centrality are posi-

tioned on a high proportion of short paths within the
network [37]. The spatial distribution of ROIs with high
betweenness centrality (Figure 7A and 7B) shows high
centrality for regions of medial cortex such as the precuneus
and posterior cingulate cortex, as well as for portions of
medial orbitofrontal cortex, inferior and superior parietal
cortex, as well as portions of frontal cortex. Figure 7B

Figure 3. High-Resolution Connection Matrix, Network Layout and Connectivity Backbone (Participant A, scan 2)

(A) Matrix of fiber densities (connection weights) between all pairs of n¼ 998 ROIs. ROIs are plotted by cerebral hemispheres, with right-hemispheric
ROIs in the upper left quadrant, left-hemispheric ROIs in the lower right quadrant, and interhemispheric connections in the upper right and lower left
quadrants. The color bars at the left and bottom of the matrix correspond to the colors of the 66 anatomical subregions shown in Figure 1. All
connections are symmetric and displayed with a logarithmic color map.
(B) Kamada-Kawai force-spring layout of the connectivity backbone. Labels indicating anatomical subregions are placed at their respective centers of
mass. Nodes (individual ROIs) are coded according to strength and edges are coded according to connection weight (see legend).
(C) Dorsal and lateral views of the connectivity backbone. Node and edge coding as in (B).
doi:10.1371/journal.pbio.0060159.g003
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(b)

Figure 2.11: (a) Deterministic streamline tractography from a DTI model. White lines show
the fiber tracts based on the directions, reconstructed from each voxel [Tournier et al., 2011].
(b) Lateral view of the connectivity map of the right hemisphere of a human brain from
DSI [Hagmann et al., 2008].

Tractography for itself again lead to very interesting applications to build large-scale structural
brain networks [Hagmann et al., 2008]. Such networks provide information on how brain
regions, responsible for different tasks, are interconnected (see Figure 2.11b). Connectivity-
mapping hold great promise for studies of psychiatric disorders or neurological diseases as
multiple sclerosis, Alzheimer’s disease, or schizophrenia from a new perspective [LeBihan,
2003].

1http://www.brain-connect.eu/
2http://www.humanconnectomeproject.org/
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”It is amazing what you can accomplish
if you do not care who gets the credit."

Harry Truman

3 Methods

3.1 Novel MWS Sampling Theorem and Spherical Harmonics

To represent discrete data, that lives on a sphere, the spherical harmonic (SH) basis is known
to be an appropriate concept. Spherical harmonics Ylm of order l and degree m are the angular
portions of Laplace’s equation in spherical coordinates. They are defined as

Ylm(θ, φ) =

√
2l + 1(l −m)!

4π(l + m)!
Plm(cos θ)eimφ (3.1)

and will be used for all further data representations, with Plm being the associated Legendre
functions. With the spherical harmonics forming a complete, orthogonal basis on the sphere,
any square integrable function on the sphere (e.g., ODF) may be represented by a harmonic
expansion such as.

f(θ, φ) =
∞∑

l=0

l∑

m=−l

flmYlm(θ, φ). (3.2)

Here, the spherical harmonic coefficients flm are given by a projection to the spherical har-
monic basis functions Ylm. To perform the exact SH-transform efficiently, an implementation
of McEwen and Wiaux [in press] will be used.

The essence of spherical sampling on multiple shells, as introduced by Daducci et al. [2011],
lies in the fact, that on each shell, the signal E is being sampled according to the novel
MWS (McEwen & Wiaux symmetric) sampling theorem using equiangular grids [McEwen
and Wiaux, in press]. This approach allows an exact computation of B2 SH coefficients of a
function on the sphere of band limit B on the basis of (B − 1)(2B − 1) + 1 ∼ 2B2 samples.
In contrast to MWS sampling technique, another exact equiangular sampling theorem by
Driscoll and Healy [1994] needs at least 4B2 samples to obtain the signal on a sphere and
avoid aliasing effects. The new sampling technique gives a big benefit in terms of acquisition
time, as less samples are required (see Figure 3.1a for comparison).
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(c) Logarithmic sampling

Figure 3.1: (a) shows the number of samples needed to reconstruct a signal without aliasing
according to the Driscoll–Healy (DH) theorem versus the MWS sampling scheme. (b) and
(c) show linear and logarithmic distribution of shells in q-space.

In order to map the b-value to the required bandlimit B, while keeping the aliasing low, a
so called dictionary, created from simulations with different FAs, is used (Figure 3.2). The
b-value provides information on where such a sampling shell is located in q-space to measure
the exponential decay of the signal E. Two approaches of where to put the shells will be
investigated in this work: logarithmic and linear placements (Figure 3.1c and Figure 3.1b).

B

b-value

Figure 3.2: Values of bandlimit B required to describe the diffusion signal E at each b-value
for a low aliasing level and different FA [Daducci et al., 2011].

Although, the exact MWS sampling theorem provides a good guideline to set up the sampling
scheme to keep angular aliasing low (i. e., how many samples on each shell), the radial aliasing
problem remains (i. e., where to put the shells).
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3 Methods

3.1.1 Orientation Distribution Function (ODF)

To define the orientation distribution function (ODF) the probability of diffusion in the di-
rection r̂ through a solid angle element dΩ will be denoted as O(r̂)dΩ. The ODF is computed
by integrating the displacement probabilities P (r) as in Equation 3.5.

P (r)dv = P (rr̂)r2drdΩ (3.3)

O(r̂)dΩ =
∫ ∞

0
P (rr̂)r2drdΩ (3.4)

O(r̂) =
∫ ∞

0
P (rr̂)r2dr (3.5)

As proposed by Aganj et al. [2009], the factor r2 must be considered, when integrating the
propagator. The diffusion of water molecules P (r) gives the displacement probability P (r)dv

of a molecule to move from an initial location at the origin to the infinitesimal volume element
dv = dxdydz located at r = (x, y, z)T after a certain amount of time (Equation 3.3).

need for artificial postprocessing such as manual normal-
ization and sharpening.

In this paper, we rederive the ODF expression for QBI
via Fourier analysis, this time starting from the proper
definition of the ODF in CSA. We show that this results
in an inherently normalized and dimensionless expres-
sion. In addition, we illustrate through our experiments
that the new ODFs are naturally sharp and thus multiple
fiber orientations are better resolved, potentially improv-
ing tractography. We also provide a general formulation
for multiple q-shell QBI and demonstrate the improve-
ment achieved by considering the information from mul-
tiple q-shells and using richer multiexponential models.
Furthermore, by making use of the spherical harmonic
(SH) basis, we demonstrate that the implementation of
the new, mathematically correct expression is as straight-
forward as that of the original formula, or perhaps even
simpler, considering that further sharpening (postpro-
cessing) is not necessary.

This paper extends our previous conference versions
for single (22) and multiple q-shells (23). In particular,
we provide more complete mathematical proofs, a regu-
larization scheme, and additional validation and
comparisons.1

MATERIALS AND METHODS

General ODF Definition

The PDF of the diffusion of water molecules, Pðr*Þ, gives
the displacement probability Pðr*Þdv of a molecule, ini-
tially placed at the origin, to be in the infinitesimal
volume dv located at r

*
after a certain amount of time.

We make the common assumption that this function is
symmetric, i.e., Pð#r

*Þ ¼ Pðr*Þ. The PDF can be presented
in Cartesian coordinates with r

* ¼ ðx; y ; zÞT and dv ¼
dxdydz. However, for mapping the orientation architec-
ture of the tissue, the representation that mostly in-
terests us is in the standard spherical coordinates,
parameterized by (r,y,/), where r

* ¼ rû with
ûðu;fÞ ¼ ðsin u cosf; sin u sinf; cos uÞT the unit direction
vector. The volume element in this case is dv ¼ r2drdX,

with dV ¼ sin ud udf being the infinitesimal solid angle
element.

We denote by ODFðûÞdV the probability of diffusion
in the direction û through the solid angle dX, which is
computed by integrating the displacement probabilities,
i.e., Pðr*Þdv ¼ PðrûÞr2drdV, for all magnitude r, while
keeping û constant:

ODFðûÞdV ¼
Z r¼1

r¼0
PðrûÞr2drdV;

or simply:

ODFðûÞ ¼
Z 1

0
PðrûÞr2dr ½1&

The above definition, which is normalized and
dimensionless, is the integral of the probability values
in a cone of ‘‘very small’’ CSA (Fig. 1, left). This cor-
rect definition was used for instance by Wedeen et al.
(1) in diffusion spectrum imaging, where Pðr*Þ was first
computed from the diffusion data via Fourier inversion
and then integrated to calculate the ODF, and also in
Robinson et al. (24) and Aganj et al. (25) for diffusion
tensor imaging, where the ODF was analytically com-
puted. However, the original expression for ODF recon-
struction in QBI (3) is different from Eq. 1 in the sense
that the integral is not weighted by the important factor
r2 (Fig. 1, right). To the best of our knowledge, the only
paper that has so far considered this factor in (single
shell) QBI is a very recent parallel work (11) (published
independently after a conference version of our paper
(22) had just been accepted), where the ODF is approxi-
mated using Eq. 1. (See the ‘‘Theoretical Comparison’’
section for details.)

Computing the ODF without the factor r2 would be
equivalent to assuming the PDF to be Pðr*Þ=jr*j2, asR1
0 PðrûÞdr ¼

R1
0

PðrûÞ
r2 r2dr. This radial projection gives an

artificial weight to Pðr*Þ, which is, respectively, too large
and too small for points close to and far from the origin,
and in fact, the computed quantity would be different
just as the zeroth moment of a one-dimensional function
!PðrÞ :¼ PðrûÞ is different from its second moment. For
instance, a consequence of not including r2 is that the
computed ODF will not be necessarily normalized, and
an artificial normalization factor will be required. More-
over, the ODF will not be dimensionless since, given
that Pðr*Þ has the dimension of L#3 (L being the length),
the dimensions of Pðr*Þr2dr and Pðr*Þdr are respectively
1 and L#2.

As an example intended for comparison, we compute
the ODFs with r2 (which we shall call CSA ODF when
comparing to the original method) and without r2 (origi-
nal ODF) in the case of diffusion tensor imaging (26),
with the following standard gaussian PDF:

Pðr*Þ ¼ 1

ð2pÞ
3
2 Dj j

1
2

e#
1
2 r
*T

D#1 r
*

; ½2&

where D is the covariance matrix (proportional to the dif-
fusion tensor). The computed ODFs are:

FIG. 1. Radial integration of the PDF (left) in a cone of CSA (i.e.,
the factor r2 is considered) and (right) by linear projection (i.e.,
without the factor r2 as done in the original QBI). [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

1After our conference paper was accepted and its extension to multiple shells
was submitted, a parallel and independent work was published (11), where the
proper definition of the ODF was considered in single q-shell QBI. However, in
addition to not considering multiple shells and the richer models, as done
here, the authors take the integral of the diffusion signal on a circle and not on
the entire plane, and that results in a different formula that is not necessarily
normalized and leads to other potential inaccuracies. (See the ‘‘Theoretical
Comparison’’section for further details.)

q-Ball Imaging ODF in Constant Solid Angle 555

Figure 3.3: Radial integration of the PDF in a cone of constant solid angle [Aganj et al.,
2010].

In spherical coordinates, which are parameterized by (r, θ, φ) with

r = rr̂ and r̂(θ, φ) = (sin θ cos φ, sin θ sinφ, cos θ)T , (3.6)

the volume element is

dv = r2drdΩ with dΩ = sin θdθdφ (3.7)

being the infinitesimal solid angle element (see Figure 3.3 for visual representation). Therefore,
the r2 factor is important for ODF calculations.

For simulation purposes, the following PDF, as a finite mixture of Gaussians for N crossing
fibers with the diffusion tensor Di will be assumed. This approach was proposed by Tuch
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[2002] and is defined as:

P (r) =
N∑

i

fi

(2π)2/3
√

det Di
e−1/2rT D−1

i r (3.8)

with total diffusion ∫
Pdr = 1 =⇒

∑

i

fi = 1, (3.9)

and fi being the volume fraction in the ith direction. The ODF is formulated as in Equation
3.10 and will be referred to as true ODF or Otrue(r̂) in the remainder of this work, i. e.,

Otrue(r̂) =
∫

P (rr̂)r2dr

=
N∑

i

fi

(2π)2/3
√

detDi

∫
e−1/2r2r̂T D−1

i r̂r2dr. (3.10)

With the Gaussian integral
∫

x2e−ax2
dx =

√
π

4a3/2 , the above Equation 3.10 is solved to obtain
the final formulation of the ODF (see A.1 for proof), i. e.,

Otrue(r̂) =
N∑

i

fi

4π
√

det Di
(r̂T D−1

i r̂)−3/2. (3.11)

3.1.2 From dMRI Signal to the ODF

After the signal E is sampled in the previously described way, the ODF can be calculated, as
schematically visualized in Figure 3.4.

3 Materials and Methods

E(q) −→ S(q̂)
Λ−−→ S̃lm −→ Olm

Λ−1

−−→ O(r̂)

For the transformations from Fig. 3.3 the famous Fourier relation between the propagator
P and the signal E

E(q) = E(qq̂) =

∫
P (rr̂)e2iπqrdr

will be transformed to obtain an new formulation for the siganal.

∂2E(q)

∂q2
x

=

∫
P (rr̂)(2iπr)2e2iπqxrdr (3.7)

By rewriting the equation 3.7 for y and summing them to obtain the Laplacian we get

∆E(q) =

∫
P (rr̂)(−4π2)r2e2iπqrdr (3.8)

and by incorporating the r2 factor we obtain

E(qq̂) =
∆E(qq̂)

−4π2
(3.9)

The Laplacian in spherical coordinates is given by

∆E(q, θ,φ) =
1

q2

∂

∂q

(
q2∂E

∂q

)
+

1

q2 sin2 θ

∂2E

∂φ2
+

1

q2 sin θ

∂

∂θ

(
sin θ

∂E

∂θ

)

S(q̂) =

∫
q−1E(qq̂)dq

=

∫
∆E(qq̂)

−4π2q
dq

≈ 1

4π2
− 1

4π2
∆S

∫
(E − 1)

q
dq

︸ ︷︷ ︸
S̄(q)

(3.10)

Eq. 3.10 contains an approximation which is needed, as the integral cannot be calculated
for E(0)

q with E(0) = 1.

The intermediate variable S̄ will be transformed to harmonic space with r2∇2Y = −l(l +

25

Figure 3.4: Flow chart representation of the necessary transformations to obtain the ODF
from the acquired diffusion signal on the sphere. Λ stands for spherical harmonic transform
and Λ−1 for the inverse spherical harmonic transform respectively.

For the transformations from Figure 3.4 the famous Fourier relation between the propagator
P and the signal E

E(q) = E(qq̂) = F−1
3D [P ](q)

is used. Here, the relation between ∆E and inverse Fourier transform of P is important. From
basic Fourier analysis we know that F−1[xnf ](ξ) =

(
i

2π

)n ∂nf̂(ξ)
∂ξn with f̂(ξ) =

∫
f(x)e−2πixξdx.
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Thus, we can derive how the diffusion signal E relates to the propagator P , when we incor-
porate the r2 factor.

F−1
3D [r2P ](q) =

(
i

2π

)2

(
∂2

∂q2
x

+
∂2

∂q2
y

+
∂2

∂q2
z
)E(q) (3.12)

= − 1
4π2

∆E(q) (3.13)

= Ẽ(q) (3.14)

Our next goal is to find the mathematical formulation for the ODF in harmonic space.
Canales-Rodriguez [2009] proposed the use of an intermediate variable S to find the defi-
nition of the harmonic coefficients of the ODF in terms of the diffusion signal E, i. e.,

S(q̂) =
∫

Ẽ(q)dq (3.15)

=
∫

Ẽ(qq̂)qdq. (3.16)

The Laplacian in spherical coordinates is given by Equation 3.18 with the Laplace-Beltrami
operator ∆b from Equation 3.17. The proof is presented by Aganj et al. [2010].

∆E(q, θ, φ) =
1
q

∂2

∂q2
(qE) +

1
q2

∆bE (3.17)

∆b =
1

sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
(3.18)

By integrating the first term of the Laplacian 1
q

∂2

∂q2 (qE), we can see that it is constant and
independent of E with the assumption that the diffusion signal and its derivative go to zero
at q →∞ and by use of the product rule, as presented by the following proof:

∫
1
q

∂2

∂q2
(qE)qdq =

∫
∂2

∂q2
(qE)dq

=
[

∂

∂q
(qE)

]

=
[
E + qE′]∞

0

= E(∞)− E(0) + qE′(∞)− qE′(0)

= −1 (3.19)
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Now, with the proof from 3.19 and the Equation 3.16 we obtain the final formulation for S(q̂),
i. e.,

S(q̂) =
∫

Ẽ(qq̂)qdq

=
∫

∆E(qq̂)
−4π2

qdq

= − 1
4π2

∫ (
1
q

∂2

∂q2
(qE) +

1
q2

∆bE

)
qdq

=
1

4π2
− 1

4π2

∫
1
q
∆bEdq

≈ 1
4π2

− 1
4π2

∆b

∫
(E − 1)

q
dq

︸ ︷︷ ︸
S̄(q)

. (3.20)

Equation 3.20 contains an approximation which is needed, as the integral cannot be calculated
for E(0)

q with E(0) = 1. The intermediate variable S̄ will be then transformed to harmonic
space with ∆bYlm = −l(l + 1)Ylm, according to Equation 3.21.

∆bS̄ = ∆b

∑

lm

S̄lmYlm(θ, φ)

= −
∑

lm

l(l + 1)S̄lmYlm(θ, φ) (3.21)

From Equation 3.20 and 3.21 follows the definition of the harmonic coefficients of S.

Slm =
1

2π3/2
δl0δm0 +

1
4π2

l(l + 1)S̄lm (3.22)

The harmonic coefficients of S are related as by Equation 3.23 to form the definition of the
ODF in harmonic space,

Olm =
1

2
√

π
Pl(0)

Slm

S00
(3.23)

=
1

2
√

π
Pl(0)

(
δl0δm0 +

1
2
√

π
l(l + 1)S̄lm

)

=
δl0δm0

2
√

π
+

l(l + 1)
4π

Pl(0)S̄lm (3.24)

where Pl are the Legendre polynomials with P0(0) = 1 and S00 = 1
2π3/2 [Canales-Rodriguez,

2009]. To obtain the ODF O(r̂) in real space, the inverse harmonic transform is applied to
the harmonic coefficients Olm.
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3.2 Fiber Orientation Distribution (FOD) and Spherical
Deconvolution

3.2.1 Fiber Orientation Distribution Function

The fiber ODF is another representation of the ODF, which describes the fiber orientation
distribution (FOD), in literature sometimes also referred to as fODF. This is motivated by
the assumption that a DW signal can be modeled by a single response function. Tournier
et al. [2004] proposed a method to extract such an FOD from the ODF by means of spherical
deconvolution as illustrated in Figure 3.5.

(a) dODF kernel R′ ⊗
fiber distribution = dODF Ψ
(true fiber ODF)

(b)
Signal S dODF Ψ fODF Ψsharp

Figure 9.2: Sketch of the convolution/deconvolution. In (a), the convolution between
the dODF kernel and true fODF produces a smooth dODF. In (b), we show a sketch
of the deconvolution sharpening. The Funk-Radon Transform (FRT) of the simulated
HARDI signal on the sphere produces a smooth dODF. This dODF is transformed
into a sharp fODF by the deconvolution with the dODF kernel of (a). The simulated
HARDI signal was generated with noise-free orthogonal fibers crossing each with a
FA = 0.7, with b-value of 3000 s/mm2, spherical sampling density N = 60 and an
order ! = 6 reconstruction.

Ψsharp (Figure 9.2a) can be written as

Ψ(u) =
∫

|w|=1
R′(u · w)Ψsharp(w)dw. (9.1)

In order to solve this integral, we first replace Ψ and Ψsharp with their respective
SH estimation of order !, Ψ =

∑
j c′jYj(u) and Ψsharp =

∑
j fjYj(u) and obtain

R∑

j=1

c′jYj(u) =
R∑

j=1

fj

∫

|w|=1
R′(u · w)Yj(w)dw. (9.2)

At this point, we use the Funk-Hecke theorem stated in Section 5.5 to solve the con-
volution integral between R′ and the spherical harmonic Yj over the sphere. We then
obtain

fj =
c′j
r′j

, where r′j = 2π
∫ 1

−1
P!(j)(t)R′(t)dt, (9.3)

where coefficients r′j come from the Funk-Hecke formula.
The main consideration is thus the creation of a viable single fiber diffusion ODF

kernel R′. As done in [Anderson (2005)], we assume an axially symmetric tensor
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(c) ODF

Figure 3.5: Schematic representation of the convolution between the ODF template τ and
true FOD, which results in an ODF [Descoteaux, 2008].

The equation for the FOD is formulated as

Ō(r̂) =
∑

i

αiδ(r̂ir̂ − 1), (3.25)

where the relation between the ODF and FOD is described as in Equation 3.26. Here, an
ODF equals a convolution of rotated template ODF τ with the FOD Ō, i. e.,

O(r̂) = 〈R(r̂)τ | Ō〉

=
∑

i

αi[R(r̂i)τ ](r̂). (3.26)

The ODF in spherical harmonic coefficients Olm can be described in terms of the harmonic
coefficients of the FOD Ōlm. The convolution in real space is performed as a multiplication
in harmonic space as denoted by the Equation 3.27. For further operations Ōlm and Olm will
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be transformed into a vector form and will be then referred to as ōh and oh respectively:

Olm =
√

4π

2l + 1
τ∗l0

︸ ︷︷ ︸
T

Ōlm (3.27)

⇓

oh = T ōh. (3.28)

3.2.2 Inverse Problem and Basis Pursuit Denoising (BPDN)

As described in the previous section, the harmonic coefficients of the FOD can be reconstructed
from the ODF with a template operator T . T is created from a single-fiber true ODF simulated
by applying the novel efficient sampling scheme on multiple shells and transforming the result
to an ODF.

The inverse problem is then redefined as denoted by Equation 3.29. The motivation to use this
formulation of the inverse problem is that we expect a sparse solution. The FOD is assumed
to be a signal on the sphere in real space with only as many peaks as fiber directions, which
is the reason to use a sparsity prior. This basis pursuit denoising (BPDN) problem will be
solved by minimization of the l1-norm under a constraint on the l2-norm as defined by Chen
et al. [1995], i. e.,

minimize ‖Λ−1ōh‖1
subject to ‖oh − T ōh‖2 < ε.

(3.29)

BPDN solves a regularized problem with a trade-off between making T ōh close to oh in the
l2 sense and keeping ōh sparse in the l1 sense. Therefore, the template operator T and the
inverse harmonic transform operator Λ−1 will be taken as the input. Additionally, the adjoint
(conjugate transpose) operators T+ and (Λ−1)+ are needed by the BPDN solver. As T is zero
for odd l, the respective entries must not be taken into account, as division by zero would
occur. Additionally, the inverse problem was solved only for the symmetric entries of Ōlm

(i. e., for m ≥ 0), as the FOD as well as the ODF is known to be an antipodally symmetric
function on the sphere. Thus, additional operators for adding (ADD) and removing (REM)
those zero and symmetric entries have been created. These operators transform the number of
coefficients N of the signal according to N(B) = B2

4 + B
2 −

3
4 for odd B. The inverse problem

will then be solved for a reduced size vector ōh. The transformation of the index h for the
spherical harmonic coefficients are applied as by h = 1 + (l2 + l + m) for the vector indices.
Please refer to Figure 3.6 for index transformations between the harmonic lm-coefficients and
the vector index h. In addition to the described operators, weights wi = sin θi need to be
applied for the l1 minimization. These weights are needed because the the l1-norm is being
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Figure 3.6: Here the index transformation of the harmonic coefficients are shown. Blue
circles represent the coefficients, which remain after applying the REM operator. The
white circles are added, when the ADD operator is being applied.

calculated on the sphere. The weights are defined as
∫

|f(r)|dΩ ≈
∑

i

|f(r)| sin θi, (3.30)

with dΩ = sin θdθdφ. We then solve the inverse problem in a following way

minimize ‖wΛ−1ADD(ōh)‖1
subject to ‖REM(oh)−REM(T )ōh‖2 < ε.

(3.31)

The resulting harmonic coefficients of the FOD correspond to Ōlm for m ≥ 0 and even l only.
The final result, namely the FOD in real space, is defined as

Ō = Λ−1ADD(ōh).

In the remainder of this work the operators REM and ADD as well as the weights won’t
be shown in the formulation of the inverse problem for simplicity reasons, although they are
always being incorporated when the BPDN solver is being applied. Now, we can summarize
the above modifications again as a flowchart to visualize the mathematical steps in Figure
3.7.
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3 Methods

as proposed by Lemire [2006] has been used. The maximum filtering compares a grid point to its

reconstructed 

crossing angle

Figure 3.9: Original (red and green) and reconstructed (pink) fiber directions for two crossing
fibers. ε1 and ε2 represent the reconstruction error for each fiber.

neighbors, which are located within a certain vicinity. Subsequently, if the value of the observed
grid point is higher than its neighbors, it will be selected as a peak candidate. The next step
is to discard all peaks, which are below 40% of the highest peak, and too far (ε1,2 ≤ 20◦) away
from the original fiber, which we aim to reconstruct. This avoids identifying small peaks as fiber
directions, which may occur due to noise. Figure 3.9 shows how the reconstruction errors are
measured.

E(q) −→ ODF: Olm
BPDN−−−−→ FOD: Ōlm

Λ−1

−−→ FOD: Ō(r̂)

27

Figure 3.7: Flow chart representation of the necessary transformations to obtain the FOD
from the acquired diffusion signal E on the sphere and by spherical deconvolution with
BPDN. Λ−1 denotes the inverse spherical harmonic transform.

3.3 Adding Rician Noise to the dMRI Signal

It is known that noise in MR data follow a Rician distribution [Jones and Basser, 2004].
Rician noise was applied to each sample of the signal E, where E(0) is the signal intensity
measured with no diffusion weighting at b = 0s/mm2. σG is the standard deviation for the
Gaussian distribution.

σG =
E(0)
SNR

=
1

SNR

En =
√

(E + n0)2 + n2
1, where {n0, n1} ∼N (0, σG)

3.3.1 Whitening a Complex Random Vector

The assumption of a χ2 distribution of the noise holds only for uncorrelated noise with zero
mean i. e., whitened noise. This prior knowledge about the noise will be of use later for
setting an upper bound for the data constraint of the inverse problem. Rician noise has been
simulated without signal and has been modified in the same manner as the signal E to obtain
the correlated noise on the harmonic coefficients of the ODF. From sufficiently many such
simulations the whitening operator W and the mean of the noise µ have to be calculated. For
whitening a vector n with mean µ and covariance matrix C following calculations are needed
with Λ being a diagonal matrix of eigenvalues of the covariance matrix C, i. e.,

C = EΛET (3.32)

w = Λ−1/2 ET (n− µ). (3.33)

Thus, the output of this transformation has expectation E

E{w} = Λ−1/2 ET (E{n} − µ) = Λ−1/2 ET (µ− µ) = 0 (3.34)
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and covariance matrix

E{wwT } = E{Λ−1/2 ET (n− µ)(n− µ)T E Λ−1/2 }

= Λ−1/2 ET E{(n− µ)(n− µ)T }E Λ−1/2

= Λ−1/2 ET CE Λ−1/2 (3.35)

By diagonalizing C, we get the following:

Λ−1/2 ET EΛET E Λ−1/2 = Λ−1/2 Λ Λ−1/2 = I. (3.36)

Thus, with the above transformation, we can whiten the complex random vector. The whiten-
ing operator W for this transformation can be calculated by means of the Cholesky decom-
position, i. e.,

C = EΛET (3.37)

Λ = Λ1/2Λ1/2 (3.38)

W = Λ−1/2E (3.39)

C−1 = W+W (3.40)

In the end we should get a white random vector w with zero mean and the identity covariance
matrix.

3.3.2 Setting ε for the Data Constraint of the BPDN Problem

In order to be able to set an upper bound on the data constraint of the minimization problem,
we need to estimate ε. To do so we must know the statistics of the noise n. A complex
random noise n is proportional to χ2 with N complex degrees of freedom. A ’complex degree
of freedom’ is like two real degrees of freedom. However, the distribution is not the usual
χ2 density function with 2N degrees of freedom. Each of the real variables going into the
computation of n has variance 1/2 [Fuhrmann, 1999]. A complex-valued random variable
nb = n(re)

b + n(im)
b is a complex variable that follows a Gaussian distribution, if its real

and imaginary parts, n(re)
b and n(im)

b are jointly Gaussian, uncorrelated, and they have the
same variance of σ2. Denoting the mean of n(re)

b and n(im)
b by µre and µim respectively,

µ = µre + µim = E[nb] is called the mean of nb, and σ is called nb’s variance per real
dimension.

σ2 = E[(n(r)
b − µre)2] = E[(n(i)

b − µim)2] =
1
2
E[|nb − µ|2] (3.41)
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It follows from 3.41

σ2
n = σ2 + σ2 = 2σ2 (3.42)

σ =
1√
2
σn. (3.43)

From here, we can now define ε as the 99th percentile of the square root of the inverse χ2

distribution for 2N degrees of freedom divided by two, i. e.,

ε =
√

χ−2(2N)/2. (3.44)

Figure 3.8 demonstrates the difference between the χ2 distributions for N and 2N degrees of
freedom and shows that whitened noise on Olm follows a χ2(2N) distribution.
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Figure 3.8: χ2 distributions for N and 2N degrees of freedom in comparison with noise
distribution on the harmonic coefficients of the ODF (Olm) without signal after whitening
and 6000 simulations.

3.3.3 BPDN Problem Formulation with Noise

With the knowledge on the distribution of the noise we are able to set ε to a proper bound.
With the residual noise n the whitening operator W from Section 3.3.1 will be applied as
follows:

oh = T ōh + n (3.45)
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n = oh − T ōh (3.46)

n̄ = n− µ = oh − µ− T ōh (3.47)

Wn̄ = W (oh − µ)︸ ︷︷ ︸
ǒh

−WT︸︷︷︸
Ť

ōh. (3.48)

The inverse problem is now redefined with noise and ε as the 99th percentile of the inverse χ2

distribution for 2N degrees of freedom with N being the number of complex unknowns of ōh,
i. e.,

minimize ‖Λ−1ōh‖1
subject to ‖ǒh − Ť ōh‖2 < ε

(3.49)

3.4 Extracting Fiber Directions with Maximum Filtering

To evaluate the accuracy of the here proposed sampling and reconstruction techniques, the
actual fiber directions need to be extracted. It is generally assumed that the fiber directions
are given by the maxima of the ODF or the FOD respectively. For that the method of
maximum filtering, as proposed by Lemire [2006] has been used. As we are dealing with a

reconstructed 

crossing angle

Figure 3.9: Original (red and green) and reconstructed (pink) fiber directions for two crossing
fibers. ε1 and ε2 represent the reconstruction error for each fiber.

discrete function on a equiangular grid, we can easily extract the maxima. The maximum
filtering compares a grid point to its neighbors, which are located within a certain vicinity
(window). First, if the value of the observed grid point is higher than its neighbors, it will
be selected as a peak candidate by substituting all the neighbors with the value of this peak
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candidate. Second, the peaks are found by comparing the modified function with its originate.
Hereby, equal entries correspond to maxima of the analyzed function.

The next step is to discard all peaks, which are below 40% of the highest peak, and too
far (ε1,2 ≤ 20◦) away from the original fiber, which we aim to reconstruct. This avoids
identifying small peaks as fiber directions, which may occur due to noise. Figure 3.9 shows
how the reconstruction errors are measured.
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”Never postpone until tomorrow what
you can do the day after tomorrow."

Mark Twain

4 Results

In this chapter we will present the outcome of extensive numerical simulations, which have
been conducted to identify the best sampling strategy with respect to fiber extraction from
an orientation distribution function (ODF). After choosing the best sampling scheme for the
ODF in terms of least possible amount of samples and still reasonable reconstruction quality,
we will calculate the fiber orientation distribution (FOD) by means of spherical deconvolution.
For FOD calculations we formulate the inverse problem as a basis pursuit denoising (BPDN)
problem and apply several modifications to this formulation. Subsequently, we aim in finding
the best sampling scheme, which provides best reconstruction quality with respect to the
FOD. As a final step we will evaluate our best results in comparison to DSI sampling and
reconstruction method.

4.1 Evaluating MWS Sampling Towards a Best Acquisition
Strategy with Respect to the ODF

To asses the performance of the proposed sampling and reconstruction technique, simulations
have been performed, using a true ODF model as described earlier. We mentioned in Section
3.1 that the novel MWS sampling scheme allows us to estimate the required number of samples
for each sampling shell. However, the question on how many shells and to which value of q
the shells should be set, cannot be answered with this theorem. Thus, an empirical approach
will be evaluated here, in order to find out the best sampling technique. For that, we aim to
reconstruct an ODF with two fiber populations from a true ODF with fractional anisotropy of
0.8 and volume fractions of f1,2 = 0.5. A true ODF will be simulated in 200 random directions
and the corresponding signal will be sampled according to a desired sampling scheme. Here,
we will investigate the reconstruction quality in terms of sensitivity (i.e., success rate of
reconstruction) and accuracy of the result for common diffusion MRI (dMRI) SNR values
20, 30, and 40. As already mentioned earlier in Section 3.4, we set a threshold (40% of the
highest peak) on the maxima identification. We discard also results, where the reconstructed
fiber directions have an error of more than 20◦ for each fiber. To measure the accuracy, we
will compare the true fiber crossing angle and volume fractions to the reconstructed ones and
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propose the best sampling scheme with least possible samples. Here, we exploit the property
of the diffusion signal being symmetric. Therefore, we need to sample only one half of the
sphere. We will choose from two different distributions of shells, logarithmic and linear. For
that, the following settings have been tested as shown in Table 4.1.

Table 4.1: Simulation parameters to evaluate the best sampling scheme.

Shell Number Min. b-value Max. b-value
Placement of shells [sec/mm2] [sec/mm2]
logarithmic 2 to 5 0 to 250 (step 50) 2500 to 8000 (step 500)

linear 1 to 5 0 to 250 (step 50) 2500 to 8000 (step 500)

4.1.1 Determination of the Best Sampling Scheme for Fiber Extraction

In this section we will evaluate the performance of fiber reconstruction from the ODF directly
by simulating the diffusion weighted MR signal and by applying different sampling strategies.
The goal here is to find a sampling where it is possible to reconstruct two crossing fiber
populations with an angle of 35◦ and 40◦ with the highest sensitivity and with least amount
of samples. We chose these angles, because we are not able to resolve fibers crossing with
30◦. On the other hand the results for a 45◦ crossing angle start already to reach sensitivity
rates towards 100%. Therefore, the challenging angles for our method are between 35◦ and
40◦ fiber crossing angles. Figures 4.1 and 4.2 show the sensitivity plotted for different number
of samples for logarithmic and linear distribution of shells and for an SNR = 30. From these
extensive simulations, we are now able to conclude on three best sampling settings. In Table
4.2 the sampling parameters, which provide the best reconstruction quality, are shown.

Table 4.2: Best sensitivity results after 200 simulations in random orientations for 35◦ and
40◦ crossing angle and SNR = 30.

Shell Number Number Sensitivity for 35◦ Sensitivity for 40◦

Placement of shells of samples [%] [%]
linear 1 68 46 73

logarithmic 2 74 43 79
logarithmic 3 79 45 81

It is also worth noting an interesting observation, that using more than one shell for linear
placement, does not improve the results. However, when the shells are distributed in a
logarithmic fashion, adding more shells provides better reconstruction results for up to three
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shells, before the drop in sensitivity rate occurs. This might be explained with the fact, that
radial aliasing comes into play with a higher impact for those settings.
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Figure 4.1: Sensitivity rates for different sampling schemes for logarithmic and linear place-
ment of shells, for 35◦ crossing angle and SNR = 30.
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Figure 4.2: Sensitivity rates for different sampling schemes for logarithmic and linear place-
ment of shells, for 40◦ crossing angle and SNR = 30.

The next step is to run simulations also for the remaining noise levels (SNR = 20 and SNR
= 40) and crossing angles, in order to be able to compare the identified schemes among each
other. Please refer to Figure 4.3, which shows the outcome of the comparison. Here, we
can conclude, that a setting with three logarithmically distributed shells, placed between the
b-values of 0 sec/mm2 and 4000 sec/mm2, resulting in 79 samples, provides the best results
with respect to the ODF. However, we don’t know yet which of the three settings will provide
best reconstruction results after solving the BPDN problem.
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Figure 4.3: ODF sensitivity rates for the three best sampling schemes, for different crossing
angles, and SNRs.

4.1.2 Accuracy Evaluation of the Best Sampling Strategy

To also evaluate the accuracy of the best reconstruction scheme (three logarithmic shells, 79
samples, b-values between 0 sec/mm2 and 4000 sec/mm2), which we identified in the previous
section, we measured the global angular error (Figure 4.4) and the local error ε1,2 (Figure
4.5(a)–(c)) for each fiber. Additionally we also evaluated the error made in reconstruction of
the volume fraction of the fibers (Figure 4.5(d)–(f)), where the sum of the lengths of the fibers
is 100% and each of the volume fraction contributions should be 50%. For these accuracy
evaluations we considered only valid reconstruction results, for each fiber crossing angle. The
global angular reconstruction error decreases with increasing SNRs and is around 5◦. For the
local error ε1,2 we observe the same behavior. Here, it is important to mention, that an error
of 5◦ is small relative to a crossing angle of 90◦, however for a crossing angle of 30◦ means this
a relatively high uncertainty. As for the volume fractions, we observe that the reconstruction
error also decreases with decreasing noise and stays below 0.05, which corresponds to a relative
error of 10%. The boxplots show the error for crossing angles between 30◦ and 90◦, where
the central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme error data points. From visual representation of the
ODF for different SNRs in Table 4.3 it can be already concluded that it is not possible to
reconstruct a crossing angle of 30◦, whereas higher crossing angles ≥ 40◦ can be identified
easily. Moreover, we can see that noise introduces many spurious peaks to the ODF or it
obstructs the shape of the ODF, such that it is no longer possible to find the fiber directions.
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Table 4.3: ODFs for different SNRs and crossing angles. The green and red lines show the
true fiber directions and the pink line the reconstructed ones. A sampling scheme with
three logarithmic shells and 79 samples was used.
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(c) Angular error for SNR = 30
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Figure 4.4: Reconstruction accuracy evaluation of the ODF. (a) ODF sensitivity rates for
different crossing angles and SNRs for the best sampling scheme with three logarithmic
shells and 79 samples. (b)–(d) global angular error.
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Figure 4.5: Reconstruction accuracy evaluation of the ODF. (a)–(c) angular errors ε1,2 for
each of the two reconstructed fibers for different crossing angles and SNRs. (d)–(f) error
made in terms of the volume fractions f , where we aimed to reconstruct volume fractions
of 0.5 for each of the fiber directions. The sampling scheme with three logarithmic shells
and 79 samples was used, which has proven to provide the best results.

4.2 Finding the Best Formulation of the BPDN Problem with
Respect to the FOD Using Spherical Deconvolution

We showed that it is possible to obtain already very good results when extracting the fiber
directions directly from the ODF. We assume, however, that these results can be improved
even further by computing the FOD and again extract the fiber directions from here. In this
section we will evaluate the result after solving the BPDN problem. From the computed FOD
the fiber directions will be again identified and compared to the results obtained from the
ODF. In addition to different sampling schemes, we will also evaluate different formulations
of the minimization problem and again compare the results in order to find the best strategy.
Therefore, we will use our simulations of the ODF for different crossing angles of two crossing
fibers with FA=0.8 and volume fractions f1,2 = 0.5.

4.2.1 Solving the Inverse Problem for an FOD (BPDN)

Here, we will evaluate the sensitivity rates when calculating the FOD from the ODF by means
of our first unmodified version of the BPDN formulation as by Eq. 3.29. From the simulation
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results in Figure 4.6 we can see that we cannot improve our results when extracting the fibers
from the FOD for SNR=40. However, when comparing the results for a higher noise level
(SNR=20), we get an improvement for crossing angles ≥ 50◦.
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Figure 4.6: FOD reconstruction results (BPDN). Sensitivity rates for three different sampling
schemes for different crossing angles and SNRs in comparison to ODF.

Table 4.4: ODFs in comparison to FODs (BPDN) for different SNRs and a 45◦ crossing angle.
The green and red lines show the true fiber directions and the pink line the reconstructed
ones. A sampling scheme with one shell has been used.

SNR

ODF

40 20 20

FOD

worst case best case worst case

(BPDN)

Table 4.4 illustrates worst cases where the FOD distorts the volume fraction of one of the
fibers, such that it is no longer recognized as a maximum due to the threshold we set, when
extracting the fiber direction. Therefore we hope to solve this problem by modifying the
BPDN problem formulation. In best case we manage to resolve 2 fibers with the FOD but
not with the ODF even for low SNRs.
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4.2.2 Solving the Inverse Problem for an Upsampled FOD (BPDNup)

Earlier, we defined our problem such that we only solve for harmonic coefficients corresponding
to even l > 0 and m ≥ 0. As there is no noise on the first harmonic coefficient of the ODF o0

it cannot be taken into account inside the data constraint. However, the l1 prior should be
able to influence ō0, as it is part of the solution. In addition to the first harmonic coefficient
the sparsity prior can be used to also upsample the result, in order to reduce artifacts caused
by the band limit of our function. For that a diagonal matrix Ddown is used to restrict
(downsample) the data constraint to only as many coefficients as provided by the harmonic
coefficients of the ODF oh and excluding the h = 0 coefficient. The inverse problem is then
reformulated as:

minimize ‖Λ−1ōh‖1
subject to ‖oh − TDdownōh‖2 < ε.

(4.1)

Although, the FOD appears to have ’sharper’ fibers, we are not able to improve the sen-
sitivity rate with this modification. We observe that the number of reconstructed fibers is
altered falsely (see Table 4.5, worst case I). Furthermore, the same effect of distorted fibers
as from not upsampled FOD occurs as well when upsampling the FOD (see Table 4.5, worst
case II). Therefore, we don’t observe any improvement in the sensitivity rates for the fiber
reconstructions with this method, as can be seen in Figure 4.7.

30 40 50 60 70 80 90
0

20

40

60

80

100

Angle

S
e

n
s
it
iv

it
y
 [

%
]

FOD reconstruction results with BPDNup

 

 

30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Angle

S
e

n
s
it
iv

it
y
 [

%
]

Valid simulation results for eQSI
s
 :

 SNR 40, 200 fiber orientations

 sampling: nSHELLS=3, b values = [0, 4000]

 

 

SNR = 20, 1 shell

SNR = 20, 2 shells

SNR = 20, 3 shells

SNR = 40, 1 shell

SNR = 40, 2 shells

SNR = 40, 3 shells

30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Angle

S
e

n
s
it
iv

it
y
 [

%
]

Valid simulation results for eQSI
s
 :

 SNR 40, 200 fiber orientations

 sampling: nSHELLS=3, b values = [0, 4000]

 

 

SNR = 20, 1 shell

SNR = 20, 2 shells

SNR = 20, 3 shells

SNR = 40, 1 shell

SNR = 40, 2 shells

SNR = 40, 3 shells

ODF

FOD

Figure 4.7: FOD reconstruction results (BPDNup). Sensitivity rates for different 3 sampling
schemes for different crossing angles and SNRs in comparison to ODF.
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Table 4.5: ODFs in comparison with FODs (BPDNup) for SNR=40. The green and red lines
show the true fiber directions and the pink line the reconstructed ones. A sampling scheme
with three shells has been used. This effect occurs also for one and two shells.

ODF

45◦ 45◦ 35◦ 80◦

FOD

worst case I worst case II best case worst case

(BPDNup)

4.2.3 Reformulating the Inverse Problem for FOD in Real Space
(BPDNreal)

Another interesting modification to the minimization problem is to solve for the FOD ōh

already in real space. For that a forward spherical harmonic transform is needed. We denote
the forward harmonic transform with a Λ operator and reformulate the inverse problem as:

minimize ‖Ō‖1
subject to ‖oh − TΛŌ‖2 < ε

(4.2)

From our simulations we observe a slight improvement in the fiber reconstruction for SNR=40,
whereas for SNR=20 and one shell sampling we notice a significant raise of the sensitivity
rate for crossing angles ≥ 45◦ (see Figure 4.8).

The last formulation of the problem that we suggest here, is to solve the data constraint
completely in real space. Therefore, the ODF O is given and again we are looking for a
solution in real space that satisfies the sparsity prior (l1-norm). In order to be able to perform a
convolution with the ODF template T by multiplying the harmonic coefficients of the template
with the FOD, we need to make use of the forward and inverse harmonic transform, i.e.,

minimize ‖Ō‖1
subject to ‖O − Λ−1TΛŌ‖2 < ε

(4.3)

Unfortunately, the latter proposal does not allow us to de-correlate the noise in order to be
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Figure 4.8: FOD reconstruction results (BPDNreal). Sensitivity rates for three different
sampling schemes for different crossing angles and SNRs in comparison to ODF.

able to set ε according to the χ2 distribution. This is the case because the noise on the signal
does not only get correlated by linear transformations, but also the inverse spherical harmonic
transform creates a linear combination of the harmonic coefficients to obtain the noise on the
final ODF O. From here, a whitening operator cannot be created. Therefore, again sufficiently
many repetitions (1000) of just noise simulations without signal have been performed. ε was
then set to the 99th percentile of the mass of the correlated noise distribution. Unfortunately,
with this formulations of the inverse problem it is not possible to improve the reconstruction
results, due to inaccurate estimation of ε.

A disadvantage of the real space formulation of the minimization is that it does not make
sense to upsample the result. As our signal is bandlimited, the forward harmonic transform
would create aliasing and distort the result.

Table 4.6: ODFs in comparison with FODs from different BPDN problem formulations. The
green and red lines show the true fiber directions and the pink line the reconstructed ones.
We can see that with BPDN in real space (BPDNreal) we manage to reconstruct two fibers,
without distorting the volume fractions.

SNR 40,

True ODF ODF FOD FOD

3 shells, 45◦

BPDNup BPDNreal
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From Table 4.6 we can see that the volume fractions and the number of fibers can be recon-
structed more accurately, when we solve for an ODF in real space instead of for its harmonic
coefficients.

4.2.4 Adding a Positivity Constraint to the Inverse Problem
(BPDNreal+)

As reported by Tournier [2007] spherical deconvolution introduces negative spurious peaks to
the FOD producing a physically impossible solution. Therefore, the inverse problem will be
constrained to positive values of the ODF only, because it is known that the ODF as well as
the FOD are not only symmetric but also positive functions. We therefore reformulate the
inverse problem as:

minimize ‖Ō‖1
subject to ‖oh − TΛŌ‖2 < ε,

Ō > 0,

(4.4)

with Ō > 0 being the positivity constraint. Adding the positivity constraint improves the
results only for one case of the proposed formulations of the BPDN problem, namely for
solving the problem for an ODF in real space (BPDNreal). The reconstruction results of the
ODF calculated by other formulations could not be improved.
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Figure 4.9: FOD reconstruction results (BPDNreal+). Sensitivity rates for three different
sampling schemes for different crossing angles and SNRs in comparison to ODF.

Figure 4.9 shows that we can reach angular resolutions up to 45◦ for high noise levels (SNR
= 20) and even up to 40◦ for lower noise levels (SNR = 40), when using the BPDNreal+
formulation.
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We can conclude from this result, that we are able to denoise the FOD very well by using
the BPDN formulation of the inverse problem. In addition, we can note that by calculating
the FOD we can even have very good results with only 68 samples on one shell, which is
not possible for the fiber reconstruction from an ODF. At this step we identified the best
combination of a sampling scheme with one shell and 68 samples and a modified version of
the BPDN formulation (BPDNreal+).

4.2.5 Accuracy Evaluation with Respect to FOD (BPDNreal+)

From our simulations we can see that the BPDN problem formulation for an FOD in real
space (BPDNreal+) in combination with a single shell sampling scheme with 68 samples has
proven to be the best strategy. In this section we will show the accuracy we can reach with this
sampling and reconstruction technique. Again, we evaluate only the valid results, according
to the sensitivity rates. From the Figures 4.10 and 4.11 we observe that the local angular
error ε1,2 is improved, when we reconstruct the fibers from the FOD. However, there is a small
deterioration in the global angular error, although the error mean remains around 5◦. The
volume fractions are not influenced by the transformation to the FOD.
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Figure 4.10: Reconstruction accuracy evaluation of the FOD (BPDNreal+). (a) sensitivity
rates for different crossing angles and SNRs. (b)–(d) global angular error. Sampling scheme
with one logarithmic shell and 68 samples
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Figure 4.11: Reconstruction error for ε and volume fractions from the FOD (BPDNreal+).
(a)–(c) angular errors ε1,2 for each of the two reconstructed fibers for different crossing
angles and SNRs. (d)–(f) error made in terms of the volume fractions f , where we aimed to
reconstruct volume fractions of 0.5 for each of the fiber directions. Sampling scheme with
one shell and 68 samples
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4.3 Comparison: FOD (BPDNreal+), ODF, and DSI

In the previous section we identified the best sampling scheme and the best formulation of the
minimization problem to calculate the FOD, which leads us to the next question: How is the
performance of our approach in comparison with DSI? We conducted numerical simulations
for DSI with b-values up to 8000sec/mm2 and for different SNR values. Figure 4.12 shows the
sensitivity rates for all three methods, which are: ODF from DSI sampling, ODF and FOD
with MWSS and BPDNreal+.
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Figure 4.12: Sensitivity rates of the best sampling schemes with respect to ODF and FOD
(BPDNreal+) for different crossing angles and SNRs in comparison with DSI.

With the new sampling scheme we are able to reach higher angular resolutions than with DSI
sampling method. For DSI the symmetry can be also exploited, thus making it possible to
reduce the amount of samples for DSI by a factor of two. However, even with this modification,
the new sampling method requires only 79 samples on three shells, which is less than 258
needed for DSI. When reconstructing the fiber directions from the ODF, we are able to
resolve crossings of 40◦ in comparison to 50◦ with DSI. If we calculate the FOD we are even
able to outperform the reconstruction rates of the ODF with even less samples (68) and only
one shell. This reconstruction technique allows us to further improve the sensitivity rate by
approximately 30% for high noise levels (SNR = 20) and by 5% for low noise levels (SNR =
40).
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Friedrich Nietzsche

5 Discussion

In this thesis we have developed a novel fiber reconstruction method for diffusion magnetic
resonance imaging (dMRI) measurements based on spherical sampling and spherical decon-
volution. Many methods for fiber reconstruction exist and the use of spherical harmonics to
approximate a signal in q-space became a common approach in dMRI. However, up to now,
none of the methods tackled the problem of radial aliasing, which arises when a signal is
sampled with an improper bandwidth.

Here, we evaluated a novel sampling theorem on the sphere [McEwen and Wiaux, in press]
(MWS), which allowed us to probe at low band-limit (B<11) diffusion signals with less than
half the number of samples as required by other equiangular sampling theorems on the sphere
[Driscoll and Healy, 1994]. Although, the MWS sampling theorem provides us with constraints
on the number of samples for each shell (i.e., to avoid angular aliasing), the information on
where (i.e., which b-values) to place the shells in q-space is unknown. The extensive nu-
merical simulations, provided in this thesis, identified the best sampling strategy for fiber
reconstruction from an orientation distribution function (ODF). Hereby, a sampling scheme
with 79 q-space samples placed on three logarithmically distributed shells has proven to be
the best signal acquisition strategy. To our surprise, adding more sampling shells does not
necessary lead to better reconstruction results. Especially, using linear placement of shells,
the reconstruction became even worse by increasing the amount of shells. However, when
simultaneously increasing the b-value, we could observe a general improvement in reconstruc-
tion performance. This effect remains an open question, but we speculate that high radial
aliasing has an impact when the signal is sampled in an improper way in radial direction.
Together, we conclude that with fiber reconstruction from the ODF, logarithmic spherical
sampling provides higher sensitivity rates than linear sampling.

Furthermore, we proposed spherical deconvolution as a technique to further increase angular
resolution between crossing fibers. Spherical deconvolution is applied to the ODF in order
to calculate the fiber orientation distribution (FOD), which provides better reconstruction
results than the ODF. This complex operation can be performed efficiently in harmonic space
since it is being reduced to an inverse problem and can be reformulated as a basis pursuit
denoising problem (BPDN). BPDN is known to be able to suppress noise and at the same
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time preserve well-expressed structures of the solution. Solving the inverse problem for an
FOD in harmonic space is computationally advantageous due to small number of unknowns to
be determined. Unfortunately, when looking for a band-limited function in harmonic space,
aliasing artifacts are being introduced when transforming the solution back to real space.
Therefore, we proposed to solve the BPDN problem for an upsampled FOD and exploit the
nice feature of harmonic transformation allowing us to increase the band-limit. As expected,
after upsampling the aliasing artifacts disappeared, however, the overall sensitivity couldn’t be
improved. The reason for this behaviour was mainly caused by distorted volume fractions of
the FOD, which lead to non-optimal maxima extraction. To address this issue, we proposed
to solve the inverse problem for an FOD in real space, as we assume that the problem of
incorrectly reconstructed volume fractions is caused by fitting the harmonic coefficients instead
of solving for the FOD function itself. Indeed, we observed an improvement in comparison to
the upsampled FOD solution in terms of fiber reconstruction sensitivity. The final modification
of the BPDN problem aimed to remove negative values of the FOD in real space, which are
physically not possible. These negative values occur due to noise. By constraining the FOD
to only positive values we were finally able to outperform the reconstruction results of the
ODF, especially in the range of high noise levels (SNR = 20).

Summarized, this led us to the conclusion that a constrained BPDN formulation of the inverse
problem, together with a sampling scheme with 68 samples on one shell, is the best approach
to reconstruct fiber crossings. This is not only an improvement in terms of angular resolution
but also in terms of number of samples. Finally, we compared our results to the model-free
diffusion spectrum imaging (DSI) reconstruction method. This comparison revealed a clear
advantage for our method in terms of number of samples and, more importantly, angular
resolution between two crossing fibers.

Although, many ideas towards improving the extraction of the fiber directions from diffusion
weighted data have been investigated, some approaches still remained untouched during this
work. One interesting idea is to test the reconstruction performance of the FOD calculated
by the original formulation of the BPDN problem [Chen et al., 1995]:

minimize ‖Ō‖1
subject to ‖O − ΦŌ‖2 < ε.

(5.1)

The BPDN problem is solved in real space with an overcomplete dictionary Φ containing a
one-fiber ODF template, also referred to as atoms, rotated in all possible directions. Then we
aim to find the best solution of the linear combinations of the atoms to model the sampled
ODF. For example to model an ODF, which represents two fibers crossing in one voxel, a
linear combination of two one-fiber templates will be found to conclude on the FOD.

44



5 Discussion

Another formalism to solve the inverse problem has caught our attention as well. Due to
difficulties we have experienced, when dealing with noise, least absolute shrinkage and selection
operator (LASSO) method may be a better alternative to solve the inverse problem. This
algorithm was suggested by Tibshirani [1994] and minimizes the residual (l2-norm) subject to
the sum of the coefficients (l1-norm) being less than a constant κ (see Eq. 5.2). In our case
κ represent the maximum number of fibers we aim to reconstruct.

minimize ‖E − ΦŌ‖2
subject to ‖Ō‖1 ≤ κ

(5.2)

When using LASSO, we don’t need to set ε anymore, thus having more freedom in reformu-
lating the inverse problem. Now a totally different approach may be used, where the FOD is
obtained from the signal E directly. And with the LASSO formulation of the inverse problem
in real space we don’t need to make use of the spherical harmonics. Additionally, as we don’t
go to harmonic space, we don’t have to worry about aliasing errors making the use of the
sampling theorem obsolete. These modification would allow us to experiment with differ-
ent sampling grids and numbers of samples to finally identify an optimal sampling and fiber
reconstruction strategy.

Here, I would also like to mention one disadvantage of the spherical deconvolution technique.
We need to make assumptions on the fractional anisotropy (FA) of the one-fiber template.
For all of our simulations we have set the FA of the true ODF as well as of the ODF template
to 0.8. It will certainly influence the reconstruction quality of the FOD if the fractional
anisotropy measures do not match, which would be interesting to observe and to evaluate.
On the other hand we are able to reconstruct as many fibers as we want, as long we can
resolve the angle between the fibers (see Figure 5.1).

(a) True ODF (b) ODF (c) FOD (BPDNreal+)

Figure 5.1: Three fibers crossing in one voxel. A noise of SNR=40 was applied to the diffusion
signal. The true ODF (a), the reconstructed ODF (b), and the FOD using BPDNreal+ (c)
are shown. A sampling scheme with 68 samples on one shell has been applied.
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The influence of compressed sensing (i.e., undersampling) on further reduction of samples lead-
ing to reduced sampling time should also be exploited. Undersampling of diffusion-weighted
MR images in k-space can be considered in this context, but also reducing the number of
samples on each shell in q-space is an option. In combination, this would have an influence on
the acquisition time. However, it is of course not clear whether a reasonable reconstruction
quality can be achieved.

Real data acquisition is another topic, which could not be touched due to time reasons, but
is crucial to make the evaluation of the method complete. For that purpose and in order to
make conclusions on the reconstruction quality a phantom may be used, where the crossing
angle of the fibers is known.

Taken together, we showed that resolving neuronal pathways with the help of spherical har-
monics and techniques used in compressed sensing leads to a better reconstruction quality
than popular reconstruction methods such as DSI.
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”The truth is our most precious
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6 Conclusion

In this thesis work we have evaluated a novel sampling theorem on the sphere within the
context of diffusion MRI and we also presented a new fiber orientation distribution recon-
struction technique. The novelty in the reconstruction approach is the use of the knowledge
from the field of compressed sensing and the application of basis pursuit denoising to the
spherical deconvolution technique. After extensive numerical simulations, we showed that
this strategy made it possible to reliably estimate fiber direction with a lower angle than with
an orientation distribution function. In comparison to diffusion spectrum imaging, we were be
able to reach a relatively high angular resolution of 40◦ crossing fibers with only 68 samples,
instead of 50◦ with 258 samples. The improvement of the fiber orientation reconstruction
quality with our method may lead to development of robust and more accurate tractography
algorithms, paving the way for further interesting clinical research studies and possibly even
applications.
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A Appendix

A.1 Solving the Gaussian Integral

∫
e−1/2rT D−1

i rr2dr = In(a)

In(a) =
∫

e−ax2
xndx

x ≡ a−1/2y

dx = a−1/2dy

y2 = ax2

In(a) = a−1/2
∫

e−y2
(a−1/2y)ndy

= a−(n+1)/2
∫

e−y2
yndy

For n = 0, this is just the usual Gaussian integral,

I0(a) =
1
2

√
π

a

For n = 1, the integrand is integrable by quadrature

I1(n) = a−1
∫

e−y2
ydy = a−1

[
−1

2
e−y2

]∞

0

=
1
2a

− ∂

∂a
In−2(a) = − ∂

∂a

∫
e−ax2

xn−2dx

= −
∫
−x2e−ax2

xn−2dx

=
∫
−ax2xndx

= In(a)
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for even n

In(a) = − ∂

∂a
In−2(a)

=
(
− ∂

∂a

)2

In−4

= · · · =
(
− ∂

∂a

)n/2

I0(a)

=
√

π

2

(
− ∂

∂a

)n/2

a−1/2

∫
x2e−ax2

dx =
√

π

4a3/2
(A.1)
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