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Preface
The opening line of Anna Karenina, “All happy families resemble one another, but each un-

happy family is unhappy in its own way”, is a useful analogy for the analysis of inverse problems

in comparison with their respective forward problems in imaging1. Forward problems are a

happy family of physical models of the data acquisition system or the object being imaged;

perhaps they do not represent the same physical entity, but we can always write them in a

well-posed form and analyse them with a small number of techniques. Inverse problems, on

the other hand, are a varied collection of problems, each unhappy in its own way; they require

specific analysis of their individual ill-posed natures and a different set of techniques to solve

them.

Inverse problems are thus studied case by case, or chapter by chapter in this dissertation.

This results here in four self-contained chapters that investigate different inverse problems

in imaging and can be read in any order. The rest of the manuscript, the introduction and

the conclusions, simply present a coherent frame for this dissertation, they are light in refer-

ences by design to avoid distraction, and leave the actual work and literature review to the

appropriate chapters.

Lausanne, March 2013 Virginia Estellers

1This analogy was inspired by the comparison between ordinary and partial differential equations of Chapter 8
in Iserles [2009]. The original quote, of course, is from Lev Tolstoy.
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Abstract
This dissertation develops geometric variational models for different inverse problems in

imaging that are ill-posed, designing at the same time efficient numerical algorithms to

compute their solutions.

Variational methods solve inverse problems by the following two steps: formulation of a

variational model as a minimization problem, and design of a minimization algorithm to

solve it. This dissertation is organized in the same manner. It first formulates minimization

problems associated with geometric models for different inverse problems in imaging, and it

then designs efficient minimization algorithms to compute their solutions. The minimization

problem summarizes both the data available from the measurements and the prior knowledge

about the solution in its objective functional; this naturally leads to the combination of a

measurement or data term and a prior term. Geometry can play a role in any of these terms,

depending on the properties of the data acquisition system or the object being imaged. In

this context, each chapter of this dissertation formulates a variational model that includes

geometry in a different manner in the objective functional, depending on the inverse problem

at hand.

In the context of compressed sensing, the first chapter exploits the geometric properties

of images to include an alignment term in the sparsity prior of compressed sensing; this

additional prior term aligns the normal vectors of the level curves of the image with the

reconstructed signal, and it improves the quality of reconstruction. A two-step recovery

method is designed for that purpose: first, it estimates the normal vectors to the level curves of

the image; second, it reconstructs an image matching the compressed sensing measurements,

the geometric alignment of normals, and the sparsity constraint of compressed sensing. The

proposed method is extended to non-local operators in graphs for the recovery of textures.

The harmonic active contours of Chapter 2 make use of differential geometry to interpret the

segmentation of an image as a minimal surface manifold. In this case, geometry is exploited

in both the measurement term, by coupling the different image channels in a robust edge

detector, and in the prior term, by imposing smoothness in the segmentation. The proposed

technique generalizes existing active contours to higher dimensional spaces and non-flat

images; in the plane, it improves the segmentation of images with inhomogeneities and weak

edges.
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Abstract

Shape-from-shading is investigated in Chapter 3 for the reconstruction of a silicon wafer

from images of printed circuits taken with a scanning electron microscope. In this case,

geometry plays a role in the image acquisition system, that is, in the measurement term of

the objective functional. The prior term involves a smoothness constraint on the surface and

a shape prior on the expected pattern in the circuit. The proposed reconstruction method

also estimates a deformation field between the ideal pattern design and the reconstructed

surface, substituting the model of shape variability necessary in shape priors with an elastic

deformation field that quantifies deviations in the manufacturing process.

Finally, the techniques used for the design of efficient numerical algorithms are explained

with an example problem based on the level set method. To this purpose, Chapter 4 develops

an efficient algorithm for the level set method when the level set function is constrained to

remain a signed distance function. The distance function is preserved by the introduction of

an explicit constraint in the minimization problem, the minimization algorithm is efficient

by the adequate use of variable-splitting and augmented Lagrangian techniques. These

techniques introduce additional variables, constraints, and Lagrange multipliers in the original

minimization problem, and they decompose it into sub-optimization problems that are simple

and can be efficiently solved. As a result, the proposed algorithm is five to six times faster than

the original algorithm for the level set method.

Key words: Variational methods, image segmentation, image reconstruction, shape-from-

shading, minimization.
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Résumé
Cette thèse développe des modèles variationnels géométriques pour différents problèmes

inverses en imagerie qui sont mal posés, en développant en même temps des algorithmes

numériques efficaces pour calculer leurs solutions.

Les méthodes variationnelles résolvent des problèmes inverses en deux étapes : formulation

d’un modèle variationnel comme un problème de minimisation, et développement d’un

algorithme de minimisation pour le résoudre. Cette thèse est organisée de la même manière.

D’abord, des problèmes de minimisation associés aux modèles géométriques sont formulés

pour différents problèmes inverses en imagerie, puis des algorithmes efficients de minimisa-

tion sont développés pour calculer leurs solutions. Le problème de minimisation tient compte

à la fois des données mesurées et des connaissances a priori sur la solution dans sa fonction

objectif, ce qui conduit naturellement à la combinaison d’un terme de données et d’un terme

a priori. La géométrie peut jouer un rôle dans l’un ou l’autre de ces termes, en fonction des

propriétés du système d’acquisition des images ou de l’objet dont les données sont mesurées.

Dans ce contexte, chaque chapitre de cette thèse élabore un modèle variationnel qui qui

introduit la géométrie d’une manière différente dans la fonction objective, en fonction du

problème inverse étudié.

Dans le cadre de compressed sensing, le premier chapitre exploite les propriétés géomé-

triques des images et introduit un terme d’alignement dans le terme a priori de parcimonie

de compressed sensing, ce terme supplémentaire aligne les vecteurs normaux des courbes

de niveau de l’image avec le signal reconstruit et améliore la qualité de la reconstruction. A

cet effet, une méthode en deux étapes a été conçue qui d’abord estime les vecteurs normaux

aux courbes de niveau de l’image, et en deuxième lieu reconstruit une image qui s’ajuste à

l’alignement géométrique des normales, et aux données et au terme a priori de parcimonie de

compressed sensing. Cette méthode en deux étapes est directement étendue à des opérateurs

non-locaux pour la reconstruction d’images avec textures.

Le contours actifs harmoniques proposés dans le deuxieme chapitre interprétent la seg-

mentation d’une image en tant que variété différentielle de surface minimale. Dans ce cas, la

géométrie est exploitée à la fois dans le terme de données, par un couplage des différentes

composantes d’une image vectorielle qui resulte en un détecteur de contours robuste, et

dans le terme a priori, en imposant de la regularité à la segmentation. La technique proposée
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Résumé

utilise la géométrie différentielle pour généraliser plusieurs contours actifs à des espaces de

dimension superieure et à des images non planes, et elle améliore la segmentation d’images

avec des inhomogénéités et des contours faibles.

Shape-from-shading est étudiée pour la reconstruction des surfaces des wafer de silicium

à partir des images des circuits imprimés acquises avec un microscope électronique. Dans

ce cas, la géométrie joue un rôle dans le système d’acquisition de l’image et le terme de

données de la fonction objectif. Le terme a priori est composé d’une contrainte de régularité

sur la surface et d’un a priori de forme sur le dessin prévu dans le circuit. La méthode de

reconstruction proposée dans le Chapitre 3 estime aussi un champ de déformation entre

un modèle du dessin du circuit et la surface reconstruite, en remplaçant ainsi le modèle de

variabilité de forme nécessaire sur l’a priori de forme pour un champ de déformation élastique

qui permet de quantifier les déviations dans le processus de fabrication.

Enfin, les techniques utilisées pour le développement d’algorithmes numériques efficients

sont expliquées en analysant un exemple de problème utilisant la méthode des surfaces de

niveau (level set method). A cet effet, le Chapitre 4 développe un algorithme efficient pour la

méthode des surfaces de niveau lorsque la fonction de niveau est contrainte de rester une

fonction de distance signée. La fonction de distance est conservée par l’introduction d’une

contrainte explicite dans le problème de minimisation, tandis que l’accélération de la procé-

dure de minimisation est due aux techniques de séparation de variables et du Lagrangien. Ces

techniques introduisent des variables supplémentaires, des contraintes, et des multiplicateurs

de Lagrange dans le problème de minimisation d’origine pour le décomposer en sous-tâches

d’optimisation qui sont plus faciles à résoudre. En conséquence, l’algorithme proposé est cinq

fois plus rapide que l’algorithme original de la méthode des surfaces de niveau.

Mots-clés : Méthodes variationnelles, segmentation d’images, reconstruction de l’image,

shape-from-shading, minimisation.
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Introduction

0.1 Brief Context

The title Geometric variational models for inverse problems in imaging summarizes the moti-

vation, goals, and techniques of this dissertation. However, a brief description is still necessary

to put the different terms in context. This is the goal of this first section.

0.1.1 Motivation: Imaging

Imaging is a multidisciplinary field that studies the generation, analysis, and visualization of

images. The core of imaging as a formal science lies in the definition of the “image chain”, i.e.,

the process that results in the creation of an image from a collection of physical measurements.

The wide spectrum of these measurements leads to a wide range of imaging modalities; from

digital photography to specialized measurements in astronomy, microscopy, or medicine. The

range of applications, tasks, and sub-disciplines is equally broad. Image processing, the core

of this dissertation, is concerned with the analysis and characterization of images in relation

to the physical world. Imaging, in a nutshell, is an extended eyeball that helps us understand

the universe from the macro- to the nano-scale.

The importance of research in such a field is unquestionable, and yet the number of open

questions is too large to be presented in a single dissertation. Consequently, this dissertation

focuses on the study of four specific problems, but develops techniques and principles that

can be applied to other imaging tasks.

0.1.2 Goals: Inverse Problems

Inverse problems can be informally defined as the determination of the “cause”, from observa-

tion of the “effects”. Each inverse problem is thus coupled with a forward problem, a model

that explains the “effects” given the “cause”. Inverse problems arise naturally in imaging by

following backward the image chain, and constitute an extensive source of research problems.

Some examples include the reconstruction of an image from reduced measurements, its

segmentation into salient structures, or the reconstruction of a three-dimensional scene from

two-dimensional images.
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Figure 1: Inverse ill-posed problem. Non-uniqueness refers to the existence of multiple signals
u leading to the same measurements f , while ill-conditioning refers to an inversion process
where small errors in the data lead to large errors in the solution.

Formally, inverse problems can be defined as the recovery of an unknown function u from

the observed measurements f = K (u)+n. The operator K is determined by the forward model,

while the noise variable n is introduced to account for the limitations of this model.

Interesting inverse problems are ill-posed, that is, they suffer from non-uniqueness of

the solution and ill-conditioning of the inversion process. To overcome these obstacles and

find a solution that is physically meaningful, it is necessary to consider information about

the solution that goes beyond the measurements. This additional information will guide

the inversion process and rule out solutions physically irrelevant or due to noise. In other

words, inverse problems are solved by making assumptions about the solution based on prior

knowledge of the physical world. See Figure 1.

0.1.3 Techniques: Geometric Variational Models

The prior knowledge used to “invert the problem” can take many forms, but two common

assumptions in imaging are that the solution u is smooth and has some geometric properties.

Natura non facit saltus2 has been a principle in natural sciences since Aristotle, it is a

common assumption in physics, and has naturally lead to the same premise in imaging. As

a consequence, the unknown signal u = u(x), x ∈Ω⊂ Rn , is considered a function in space

and constrained to some degree of smoothness3, which is usually measured in terms of its

first-order derivatives.

Geometric models have also been explored in imaging as a source of prior knowledge

to solve inverse problems. In this case, the assumptions on the solution u are formulated

in terms of the normal vectors to its level curves, their mean curvature, or the surface of a

manifold defined by the unknown signal and the image. The smoothness constraints on u are

then substituted by geometric terms that involve second-order derivatives and produce more

faithful and complex models of the physical world. As a common rule, more detailed models

lead to more accurate solutions, but also result in problems that are more difficult to solve.

2Latin for “nature does not make jumps”
3Images have jumps, but they are smooth along lower-dimensional hypersurfaces, e.g., edges.
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0.2. Variational methods

Variational methods, in particular, solve inverse problems by formulating minimization

problems that summarize both the forward model and the necessary assumptions about

the solution. The minimizer of the resulting variational problem is considered a meaningful

solution of the original inverse problem, it thus defines a variational model.

The formulation and solution of accurate variational models is the subject of this thesis

and requires, therefore, a more detailed introduction.

0.2 Variational methods

This dissertation makes use of geometry to formulate variational models that provide physi-

cally meaningful solutions to different inverse problems in imaging, developing also efficient

numerical algorithms to compute them.

The variational formulation that we adopt reads

min
u

E(u) = min
u

J (u)+αR(u) u ∈ BV (Ω), (1)

whereα is a weighing parameter, and BV (Ω) is the Banach space of all functions with bounded

variation in Ω ⊂ Rn . With this formulation, the inversion techniques that we propose are

described by the three key ingredients of the optimization problem (1): the minimization

variables u, the objective functional E(u), and the minimization algorithm.

0.2.1 Minimization Variables

The physical meaning of the minimization variables depends on the inverse problem at hand

and the way we describe its solution. A correct description of the the solution should reflect the

prior information we have about it, easily translate the assumptions introduced in the problem

into the objective functional, and simplify the minimization problem as far as possible. This is

better understood with an example.

Image segmentation is interested in the decomposition of an image into homogeneous

regions, and the minimization variable is a parametrization of the contours that describe

the boundary between these regions. If the topology of the different regions is not known a

priori, an implicit parametrization of the contours (as the zero-level set of a two-dimensional

function) simplifies the design of algorithms that naturally handle changes of topology. In

this context, the active contours without edges of Chan and Vese [2001] decomposes the image

into piecewise constant regions according to the model of Mumford and Shah [1989], and

results in an objective functional that is widely used but not convex. If the original level set

function is further constrained to take values in the range [0,1], then the previous functional

can be relaxed to the convex model of Chan et al. [2006], Strandmark et al. [2009], and fast

minimization algorithms can be adopted (Goldstein et al. [2009]). In this case, the choice of

the correct minimization variables allows the reformulation of the piecewise constant model
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of Mumford and Shah into a convex minimization problem that is easy to solve4.

It is equally important to define the space of admissible solutions in a coherent manner

with the previous assumptions and the domain requirements of the objective functional. To

that purpose, variational models consider the unknown signals as L2 functions constrained to

some degree of regularity in the spatial domainΩ⊂Rn . In particular, the space of bounded

variation BV (Ω) is widely used in image processing because it models a key feature of images,

the edges, and admits the analysis of basic cartoon-like images.

0.2.2 Objective Functional

The objective functional defines the criterion used to recover the unknown signal u from both

the observed measurements and the prior knowledge available about the solution. It can thus

be decomposed into two terms: a data or measurement term R(u), and a prior term J (u). The

data term R(u) describes the relation between the measurements f and the unknown variable

u; the prior term J(u) describes the assumptions on u that lead to physically meaningful

solutions.

Some inverse problems consider one of these terms, usually R(u), a minimization con-

straint instead of an additive term in the objective functional. In that case, the minimization

problem of Equation (1) can be reformulated into the constrained minimization problem

min
u

J (u) subject to R(u) <σ, (2)

where σ is related to the level of noise present in the measurements. Indeed, optimization

theory tells us that, under some considerations, problems (1) and (2) are equivalent, that is,

they have the same minimizer and solving any of the two determines the parameter (σ,α)

of the other (Boyd and Vandenberghe [2004]). In this dissertation we only consider the

Lagrangian formulation of Equation (1).

The data term R(u) is formulated in terms of the forward operator K associated with the

inverse problem. In particular, R(u) = ρ(K (u)− f ) = ρ(n) measures the deviation between the

forward model ( f = K (u)+n) and the observed measurements with the penalty function ρ(·).

The choice of this penalty function depends on the limitations of the forward model or on

the statistical model of the noise present in the measurements. In a Bayesian framework, in

fact, R(u) corresponds to the log-likelihood of the measurements given the unknown signal,

and optimal penalty functionals can be defined for each noise model by maximum likelihood

estimates. The definition of maximum a posteriori estimates requires an additional statistical

model of the unknown signal u, which is given by the prior term J (u).

4 Chan et al. [2006] assumes that the mean intensity values associated with each region of the image are known;
while the piecewise constant model of Mumford and Shah [1989] includes them in the minimization problem. For
this reason, the convex model of Chan et al. [2006] is in fact a relaxed equivalent to the piecewise constant model
of Mumford and Shah. The formulation of Strandmark et al. [2009] solves this issue.
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The prior knowledge about the solution is summarized in the functional J(u), which

describes the physical properties of the object being imaged and can take a multitude of forms.

Most assumptions, nevertheless, fall in one of the following three categories: smoothness

constraints, geometric properties of the solution, or prior knowledge of the shape or topology

of the object being imaged. Although this dissertation focuses on geometric models, a brief

description of each category is still presented in order to understand their limitations and use.

Smoothness

Regularization techniques impose smoothness on the solution u to overcome the ill-conditio-

ning of the problem, that is, they provide stable solutions by controlling those parts of the

inversion process that are particularly sensitive to noise. In imaging, the smoothness of u is

usually measured in terms of its first-order derivatives with a functional of the form

J (u) =
∫
Ω
|∇u|p , (3)

where p is a parameter that chooses the type of regularization applied. Dirichlet or H 1

regularization is obtained with p = 2 and leads to solutions overly smooth that do not suit

natural images. Total variation (TV) is obtained with p = 1, and it has become the default

regularizer for image reconstruction since its first appearance in Rudin et al. [1992] for image

denoising. The success of TV is due to the following two properties: it preserves edges in the

form of jumps because it is the natural regularizer for cartoon-like images, and it is a convex

functional that offers good minimization properties.

Natural images, however, do not agree with a cartoon-like model, and they require regu-

larizers with higher-order derivatives to avoid the staircase effect of TV reconstructions. To

that purpose, a generalized TV regularizer has been proposed recently in Bredies et al. [2010].

This generalization of TV is still a convex functional, but it prefers piecewise smooth images

over staircase images because it finds a balance between first- and second-order derivatives.

In some applications, however, the staircase effect is not the only image artifact that must be

overcome and more complex models with higher-order derivatives are necessary; clearly, infor-

mation that goes beyond smoothness is necessary to reconstruct the geometry and topology

of the physical world.

Geometry

Geometric models interpret an image I as a surface in the image plane Ω ⊂ R2, where I (x)

represents the height of the surface at point x. This interpretation of images endows the level

sets of the image with certain geometric properties and measures, and geometric variational

models of minimal length curves, minimal mean curvature, or minimal area surface can then

be defined to segment or reconstruct an image. The two key geometric concepts used in

imaging are the normal vector to a curve or surface and its curvature; they are both defined in
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terms of differential operators, but present more complex forms than standard regularizers.

The interpretation of images as surfaces in the image plane R2 has been extended to multi-

channel images and non-Euclidean spaces by means of differential geometry in Sochen et al.

[1998]. In this case, the image is considered a space-feature manifold embedded in a higher

dimensional space, and the usual norms, curvatures, and areas are measured in terms of the

metric of the manifold. The resulting methods rely therefore on differential geometry to define

functionals that naturally take into account the coupling of the different image channels, they

can be extended to higher dimensional spaces and general parametric manifolds.

In general, geometric models lead to variational minimization problems with non-convex

functionals and second-order derivatives; this results in additional theoretical and com-

putational issues. In terms of theory, it is necessary to identify admissible function spaces

associated with regularized normal vectors or curvature functionals, and to study the existence

and uniqueness of solutions of non-convex minimization problems. In terms of computation,

it is necessary to develop specific numerical algorithms that overcome the speed limitations

imposed by second-order derivatives, and avoid the local minima of non-convex functionals.

Indeed, variational minimization techniques are based on the numerical evolution of partial

differential equations (PDEs), where the time and spatial steps of the flow are limited by the

order of the PDE derivatives, and result in extremely slow algorithms for geometric models. At

the same time, to overcome the non-convexity of the objective functional and to avoid local

minima these algorithms require good initialization strategies or multi-resolution approaches.

Consequently, geometric models call for additional optimization efforts to compute a solution

of the original inverse problem.

Prior Knowledge of the Shape or Topology of the Solution

In some applications, prior knowledge about the shape or topology of the solution is available

and can be exploited to improve variational techniques. A clear example of this kind of meth-

ods corresponds to atlas-based segmentation of medical images, where an atlas is introduced

to summarize the constraints on the topology and shapes of the segmented regions imposed

by human anatomy. The simplest case is the segmentation of a single structure, where the atlas

reduces to a shape prior. In this case, the standard variational approach defines a measure

of similarity between the evolving shape and the shape prior, and defines J(u) to penalize

deviations with respect to the expected shape that do not fit a model of shape deformation.

These methods obtain accurate segmentations robust to noise and image inhomogeneities,

but they require specific models of the object being imaged and are limited to very specific

applications.
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0.2.3 Minimization Techniques

Eventually, to solve the inverse problem and find the unknown signal u, it is necessary to

solve a variational minimization problem. In the context of the calculus of variations, the

objective functional is traditionally minimized with an iterative procedure equivalent to

gradient descent. As the minimization variable is here a function, the usual gradient operator

is substituted by the first variation δ and results in a descent flow ∂u
∂t =−δE(u) that is given

in terms of partial differential equations. This PDE flow is then discretized both in time and

space, and leads to descent algorithms where time and space steps are limited by the order of

the derivatives by Courant-Friedrichs-Lewy (CFL) stability condition ( Courant et al. [1967]).

These conditions assure convergence and accuracy in the solution, but make explicit PDE

evolution extremely slow for geometric models with second-order derivatives.

In the last few years, PDE methods have been combined and replaced by more efficient

optimization techniques to provide faster and more stable algorithms. These optimization

techniques are based on splitting variables and on the introduction of equality constraints

that are solved by quadratic-penalties, Bregman iterations, or the equivalent augmented

Lagrangian method (see e.g. Wang et al. [2008], Goldstein and Osher [2009], Wu and Tai [2010]).

The key idea of variable-splitting is to decompose the original problem into independent sub-

optimizations for each variable; by design, these sub-optimizations are easier to solve because

they reduce to convex problems, involve only first-order derivatives, or are decoupled for each

pixel. At the same time, the constraints associated with the split variables are easily introduced

in the minimization algorithm by additional penalty terms in the objective functional or by

dual variables that are periodically updated. The initial minimization is thus divided into

small and easier subtasks that are efficiently solved, and the resulting minimization algorithm

is faster than the original PDE flow of problem.

0.3 Outline of the Dissertation

As we have seen, variational methods solve inverse problems in two steps: formulation of a

minimization problem, and design of a numerical minimization algorithm to solve it. It is

then natural to structure this dissertation in the same manner.

Chapters 1-3 investigate different inverse problems in imaging and propose geometric

variational models to solve them. Naturally, each application exploits geometry in a different

way, and results in a variational method that incorporates geometry in a different term of

the objective functional. For a quick view, Table 1 summarizes the role of geometry in each

chapter. Chapter 4 explains the techniques used to develop efficient minimization algorithms

to compute these solutions.

The rest of this section describes explicitly how each chapter fits in the previous variational

context and provides a “big picture” of the dissertation.
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Chapter 1: Enhanced Compressed Sensing Recovery with Level Set Normals

In the context of compressed sampling, Chapter 1 presents a method to reconstruct an image

u from reduced measurements f in the Fourier domain. The forward operator K is a sam-

pling matrix that combines Fourier’s sensing basis with the binary matrix that extracts the

corresponding measurements in f . The noise in the measurements is assumed Gaussian,

and the data term simply measures the variance of the noise in the measurements. The prior

functional J(u) is composed of two terms, associated with two different assumptions about

the reconstructed image u. First, a TV regularizer that promotes images with sparse edges and

acts as the sparsity term characteristic of compressive sensing. Second, a geometric term that

aligns the estimated level set normals with the reconstructed image gradients. The resulting

variational model, therefore, exploits the geometric properties of images to complement the

TV regularizer in the prior term J (u).

The first part of Chapter 1 explains in detail the introduction of this geometric term in

compressed sensing, justifying why the alignment of the level curve normals with the gradients

of the reconstructed signal improves image recovery. The second part of Chapter 1 extends

this method to non-local operators and images defined on graphs. In this case the proposed

technique exploits the geometry of the graph defined by the non-local operators, and it is able

to recover finer details and structures of textured images. Both local and non-local methods

reconstruct the image by iterating the following two steps: first, estimation and regularization

of the normal vectors to the level curves of the image; second, reconstruction of an image

fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint.

The resulting reconstruction methods are thus reduced to a series of convex minimization

problems that can be efficiently solved.

The experimental results of Chapter 1 show that the proposed method improves image

recovery in two ways. First, the introduction of the geometric term enables the recovery sharp

edges as well as smoothly varying image regions, avoiding the staircase effect of total variation.

Second, the regularization of the estimated normals makes the proposed reconstruction

method robust to noise and a reduced number of measurements.

Chapter 2: Harmonic Active Contours

In the context of image segmentation, Chapter 2 partitions an image into different regions

by parametrizing the boundaries of these regions with a level set function φ, which becomes

the minimization variable. The observed measurements f correspond here to the different

channels of the image, and the objective functional couples the data and prior smoothness

terms in a single geometric functional that measures the surface of the manifold associated

with the segmentation.

To that purpose, Chapter 2 makes use of differential geometry, and interprets each possible

segmentation as a 2-dimensional manifold embedded in a higher dimensional space, from

8
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which it inherits a metric. The proposed metric allows the definition of distances between

points in the manifold that consider simultaneously the spatial distance between the points,

the values of the image at these points, and the labels assigned to them in the segmentation.

Consequently, the surface of this manifold naturally measures the smoothness of the segmen-

tation and the agreement between the values of the image at each point and the label assigned

to them in the segmentation; this couples both data and regularity measures into a single

geometric functional, and assigns a minimal surface manifold to an optimal segmentation

of the image. The proposed geometric model offers an additional advantage: it aligns the

gradients of the level set function with the gradients of the image, and exploits this directional

information to overcome fragmented edges and image inhomogeneities.

The potential of this geometric approach lies in the general definition of Riemannian man-

ifolds, which naturally generalizes the existing segmentation methods of Kichenassamy et al.

[1995], Caselles et al. [1997], Chan and Vese [2001], and Kimmel and Bruckstein [2002] to higher

dimensional spaces, non-flat images, and feature spaces. As a consequence, the proposed

technique improves the segmentation of multi-channel images, images with inhomogeneities,

and images characterized by geometric structures like ridges or valleys.

Chapter 3: Surface Reconstruction from Microscopic Images of Printed Circuits

In the context of shape-from-shading, Chapter 3 reconstructs 3D surfaces of silicon wafers

from 2D images of printed circuits taken with a scanning electron microscope. In this case,

the surface of the wafer is parametrized by the height z(x) associated to the surface at each

point x of the image plane, while the measurements are given by the shading observed in the

image at that point. This shading depends on the orientation between the light source and

the surface, and results in a geometric forward operator that is directly written in terms of the

alignment between the normal vector to the surface and the light source. Geometry, therefore,

is intrinsic to the definition of shape-from-shading.

The method developed in Chapter 3 combines the physical model of the optical acquisition

system with prior knowledge about the shapes of the patterns in the circuit. To that purpose,

the objective functional combines a measurement term based on the irradiance equation

with a shape prior that constrains the shape of the surface to agree with the expected shape of

the pattern. To account for the variability of the manufacturing process, the model allows a

non-linear elastic deformation between the expected pattern and the reconstructed surface.

As a consequence, the resulting minimization problem involves two unknowns, and the

reconstruction method provides two outputs: a reconstructed surface and a deformation

field. The reconstructed surface is derived from the shading observed in the image and the

prior knowledge about the circuit pattern, which results in a shape-from-shading technique

robust to noise. The deformation field produces a mapping between the expected shape

and the reconstructed surface, which provides a quantitative measure of deviation in the

manufacturing process.
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Table 1: Each applications makes use of geometry in a different term of the objective functional.
While compressed sensing incorporates it in the prior term and shape-from-shading in the
measurements, the proposed segmentation technique couples the regularity of the image and
the level set function in a geometric functional that measures the surface of a manifold.

Chapter Inverse problem R(u) J(u)

1 Image reconstruction Fourier measurements Sparsity, Geometry

2 Image segmentation Geometry – coupling of data and smoothness term

3 Shape-from-shading Geometry Shape prior

Chapter 4: an efficient minimization algorithm for the level set method

Solving inverse problems requires the formulation of a minimization problem, but also the

design of a minimization algorithm to eventually compute a solution. For this reason, a

considerable amount of time has been invested in the development of efficient numerical

algorithms for the previous inverse problems. The resulting algorithms make use of variable-

splitting and constrained optimization to overcome the limitations of functionals that are

non-differentiable, involve second-order derivatives, or are non-convex. It is unnecessary,

however, to present the algorithms developed for all the previous problems to understand

the principles that guide these techniques; instead, it seems more interesting to analyse in

detail the algorithm designed for the level set method in Chapter 4, and leave the algorithms

of Chapters 1-3 for the appendices.

In the context of image segmentation and surface reconstruction, Chapter 4 designs an

efficient algorithm for the level set method when the level set function is required to remain a

signed distance function. In this case, the original level set method of Osher and Sethian [1988]

is limited by two important numerical issues. First, the minimizing flow does not preserve the

level set function as a distance function, and it requires periodic reinitialization procedures.

Second, the time step of this flow is limited by the CFL condition, and the resulting algorithm

is slow. To avoid these limitations, Chapter 4 makes use of variable-splitting, augmented

Lagrangians, and constrained minimization techniques to develop a fast algorithm for the

level set method that naturally preserves the distance function. The proposed algorithm is fast

because it is not limited by the CFL condition, and it does not require periodic reinitialization

procedures because the level set function is explicitly constrained to be a distance function

in the minimization problem. As a result, the algorithm is five to six times faster than related

state-of-the-art methods.

0.4 Contributions

This dissertation investigates different inverse problems in imaging in a chapter-by-chapter

manner, therefore its contributions organize naturally in the same manner in Table 2.
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0.4. Contributions

In terms of publications, the material of Chapters 1 and 4 has been published in two

journal papers (Estellers et al. [2013a, 2012]), while the material of Chapters 2 and 3 has been

presented in two journal papers (Estellers et al. [2013b,c]) that are in peer review.

Table 2: Summary of the contributions of this dissertation. The main contributions of Chapters
1-3 are the formulation of new geometric variational models, however, efficient algorithms
are also developed for the respective minimization problems. On the other hand, Chapter 4
focuses on the design of an efficient minimization algorithm for the level set method.

Chapter Contributions

1
Introduction of normal alignment in reconstruction criterion of compressed sensing.
Extension to the non-local geometry of the graph associated with the image.

2
Interpretation of the segmentation of an image as a minimal surface manifold.
Generalization of existing segmentation methods (Caselles et al. [1997]
Chan and Vese [2001], Kimmel and Bruckstein [2003]) to Beltrami framework.

3
Introduction of a shape prior in shape-from-shading.
Introduction of an elastic deformation field instead of a statistical shape model.

4
Introduction of a signed distance function constraint in level set minimization problem.
Efficient minimization of the resulting constrained optimization problem.

Due to the diversity of topics, nevertheless, the full understanding of these contributions

calls for a clear context of each inverse problem, that is, for the lecture of each chapter.
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1 Enhanced Compressed Sensing
Recovery with Level Set Normals

This chapter presents a recovery method for compressed sensing that exploits the geometric

properties of images to recover signals of high quality from few measurements. The data

term of this inverse problem corresponds to reduced measurements in Fourier domain, while

the prior term combines the sparsity constraint characteristic of compressed sensing with

a geometric alignment term. This additional term aligns the gradients of the reconstructed

image with an estimate of the normal vectors to the level curves of the image. As a result, the

proposed method first estimates the geometry of the image and then incorporates it in the

reconstruction criterion of compressed sensing.

The reconstruction of an image is thus done by iterating the following two steps: first,

the normal vectors to the level curves of the image are estimated by regularizing a point-

wise estimate from the previous iteration; second, an image is reconstructed with a recovery

model that fits the normal vectors, the compressed sensing measurements, and the sparsity

constraint. This results in a series of convex optimization problems that are efficiently solved.

The proposed technique is extended in a natural manner to non-local operators in graphs,

where it exploits the geometry of the graph associated with the image to recover fine detail

structures and textured images. The key point, in this case, is the regularization of non-local

gradients defined in the graph, which is done in terms of their graph divergence.

Both in the local and non-local case, experiments show a clear improvement in the quality

of the reconstructed images and the robustness of the proposed method to noise and a reduced

number of measurements.

1.1 Introduction to compressed sensing

Compressed sensing (CS) is founded on the principle that, through optimization, the sparsity

of a signal can be exploited to recover it from a reduced number of measurements. This

The material of this chapter has been partially published in Estellers et al. [2013a].
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simple and yet powerful idea is intriguing because it brings Shannon’s sampling theorem into

question. Compressed sensing is in fact the equivalent of Shannon’s theorem from the point of

view of sparsity: while Shannon states that to recover a band limited signal the sampling rate

must be at least twice the maximum frequency present in the signal; CS relates the sparsity

of a signal in certain basis with the number of measurements in another basis necessary to

recover it from a minimization problem. A few definitions are necessary to understand the

formulation of CS as an inverse recovery problem.

We say that a signal u ∈ Rn is s-sparse in the basis or dictionary Ψ if it can be expressed

by s non-zero coefficients in that basis, i.e. ‖Ψu‖0 = s; while u is compressible if most of the

energy inΨu is contained in its largest s coefficients.

GivenΦ andΨ two orthobasis or dictionaries of Rn and a signal u that is sparse in basisΨ,

the CS recovery problem is formulated as the reconstruction of u from m linear measurements

f in the sensing basis Φ, with m < n. Ideally we should measure the n projections of u in

basisΦ, that is Φu, but we only observe a small subset f = Au of size m. The sampling matrix

A = RΦ results from the combination of the sensing basis Φ and the matrix R that extracts

the corresponding measurements in f . Consequently, the system f = Au is undetermined,

and the sparsity of the signal u must be exploited to “invert” the problem and obtain a correct

reconstruction.

The obvious strategy would be to recover the sparsest u agreeing with the measurements,

that is, to solve the following non convex problem

min
u

‖Ψu‖0 subject to Au = f . (1.1)

Problem (1.1) is NP-hard due to the `0 penalty and only approximate solutions can be used in

real applications. Relaxing the `0 penalty to an `1 norm, problem (1.1) becomes the convex

problem

min
u

‖Ψu‖1 subject to Au = f . (1.2)

Recent results in CS, see Candès et al. [2011] and Needell and Ward [2012], prove that the

minimization problem (1.2) exactly recovers s-sparse signals with an overwhelming probability

when the number of measurements is O (s logn). In addition, if the sampling matrix A verifies

certain restricted isometry condition, then problem (1.2) actually recovers the signal associated

with the s largest coefficients of u in basis Ψ, i.e., exact recovery for s-sparse signals and

recovery of the s-sparse `2 approximation for compressible signals. In other words, in CS the

NP-hard problem (1.1) can be safely substituted by the convex problem (1.2) if matrix A is

chosen appropriately.

When the measurements are contaminated with noise, the constraint Au = f on the
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1.2. Compressed sensing with recovered normals

measurements is relaxed. In particular, under Gaussian noise the recovery is given by

min
u

‖Ψu‖1 subject to ‖Au − f ‖2 ≤σ, (1.3)

where σ is related to the noise level. From optimization theory, we know that problem (1.3) is

equivalent to

min
u

‖Ψu‖1 + α

2
‖Au − f ‖2

2, (1.4)

in the sense that solving any of the two determines the parameter (σ,α) in the other and both

have the same minimizer, see e.g., Boyd and Vandenberghe [2004].

Designing the sparsifying basisΨ depends on the signal at hand. For images a common

choice are orthogonal wavelets or the discretized total variation regularizer. TV assumes that

the edges of an image are sparse, and it is extensively used in image reconstruction because

it recovers sharp edges and preserves the convexity of problem (1.2). The discrete sparsity

prior of CS ‖Ψu‖1 is thus substituted in imaging by a discretization of the TV regularizer

J (u) = ∫
Ω |∇u| in an abuse of notation.

The basic CS recovery model considered in this chapter is then

min
u

J (u)+ α

2
‖Au − f ‖2

2, (1.5)

where A samples random Fourier measurements1, and the prior term J(u) of total variation

acts as sparsity criterion. The rest of this chapter shows how we can improve this recovery

model by exploiting the geometry of images, introducing an additional prior term in the

objective functional.

In particular, Section 1.2 presents the proposed geometric model, and Section 1.3 explains

its relation to similar techniques. The proposed method is then extended to non-local opera-

tors in Section 1.4, and the minimization algorithms are briefly sketched in Section 1.5. Finally,

experiments are presented in Section 1.6 and conclusions drawn in Section 1.7.

1.2 Compressed sensing with recovered normals

The main idea behind the proposed method is that the recovered normals of an image can

significantly improve CS reconstruction. This observation raises two main questions: How can

we recover normals robustly and accurately from CS measurements? How can we introduce

the estimated normals in the CS recovery model (1.5)? The answer proposed in this chapter is

a two-step iterative method that we initialise with the baseline solution of (1.5).

1The proposed matrix A satisfies the restricted isometry condition with high probability and is therefore a
common choice in MRI, see Rudelson and Vershynin [2006]. Nevertheless, other basis or dictionaries could be
equally adopted in our formulation, e.g., Lustig et al. [2005], Candès and Romberg [2005], Ma et al. [2008].
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In the first step of each iteration, we estimate the normal vectors to the level curves of the

image by regularizing a point-wise approximation with a vectorial extension of the ROF model

(Rudin et al. [1992]). To that purpose, we extend the weighted TV regularizer Jw (·) to vector

fields, with a weighting function w designed to verify w ≈ 0 near the edges and w ≈ 1 on flat

regions of the estimated image.

Once the normals are estimated, we can find an image that fits the measurements, the esti-

mated normals, and the sparsity criterion. The process is then iterated and can be summarized

as 
nk = argmin

|n|≤1
Jw (n)+ µ

2
‖n − n̂‖2

2

uk = argmin
u

J (u)+γ< divnk ,u >+α
2
‖Au − f ‖2

2,
(1.6)

where nk and uk are the normal field and the image estimated at iteration k, n̂ is a point-wise

estimate of the normals obtained from uk−1, and w = g (|∇uk−1|) is an inverse edge detector.

This sections details each of these two steps, which both reduce to convex optimizations

that can be efficiently solved. Combining the two stages into one would lead to a non-convex

model of higher order, and the resulting minimization would be slower and suffer from

local minima. A two-step method is computationally more efficient in the same way than

splitting variables in Section 1.5 simplifies the minimization problems and leads to closed

form solutions. The drawback of this two-step procedure is the lack of rigorous theory and

proof of convergence of the resulting algorithm. Nevertheless, experimental results show

that a single iteration of the proposed method already improves the standard TV recovery

model (1.5), while the optimal performance in terms of SNR is attained after a few iterations.

A similar limitation affects the iterative edge-guided CS algorithm of Guo and Yin [2010].

1.2.1 Estimation of level set normals

At each iteration k, the normals of the image are estimated in two steps. First, a noisy point-

wise estimate n̂ is obtained from the previous solution uk−1; this estimate is afterwards

regularized solving a minimization problem to obtain nk .

Given an estimate of the underlying image uk−1, the normal vectors associated with its

level set curves are defined as

n̂ =


∇uk−1
|∇uk−1| if |∇uk−1| > 0

0 if |∇uk−1| = 0.
(1.7)

This first estimate of the normals n̂ is then denoised with a combination of the vectorial

ROF model of Blomgren and Chan [1998] with the constraint |n| ≤ 1. In particular the vector
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1.2. Compressed sensing with recovered normals

field nk = (nx ,ny )k is defined as the solution of the following variational problem

min
|n|≤1

Jw (nx ,ny )+ µ

2
‖nx − n̂x‖2

2 +
µ

2
‖ny − n̂y‖2

2, (1.8)

where Jw (nx ,ny ) is the extension of the weighted TV regularizer to vector fields, and w =
g (|∇uk−1|) is an edge detector designed to verify w ≈ 0 near the edges and w ≈ 1 on flat

regions of uk−1.

Weighting the TV regularizer with an edge detector w = g (|∇uk−1|) encourages the edges

of the regularized solution to coincide with the main edges of the noisy signal uk−1. To be

robust against false edges, we can use the robust edge detector of Black et al. [1998], which

provides a statistical interpretation of the edge-stopping functions of the anisotropic diffusion

of Perona and Malik [1990]. In this statistical interpretation, edges are considered outliers

in the normal distribution of |∇uk−1| associated with noisy piecewise constant regions, and

the edge-stopping functions g (·) are derived from error norms robust to outliers. The edge

detectors have thus a parameter σe that acts as a soft-threshold in the detection of outliers,

and can be estimated a priori from the values of |∇uk−1| in the image. Based on the results of

Black et al. [1998], the edge detector is defined as

g (x) =
1

2

(
1− x2

σ2
e

)2 |x| ≤σe

0 |x| >σe

, (1.9)

withσe = 1.4826median(|∇uk−1−median(|∇uk−1|)|). In fact, using other robust edge detectors

in the estimation of normals leads to similar results in the final CS recovery method.

The constraint |n| ≤ 1 in (1.8) corresponds to a relaxation of the condition |n| = 1 inherent

to the definition of normals. It is numerically necessary in flat regions, where ∇u = 0 and we

cannot numerically normalize the gradient vector.

In the context of image denoising and inpainting, Hahn et al. [2011] shows that a combi-

nation of vectorial TV with an `1 data term provides better estimates of the normal fields of

images contaminated with salt-and-pepper noise. In compressed sensing, however, the first

estimate of the normals n̂ is obtained from a CS recovery algorithm, and we cannot assume

any particular noise model but certain kinds of artifacts. Experimentally, both the introduction

of a weight in the TV regularizer and the relaxation |n| ≤ 1 lead to more robust estimates of the

normal field for CS recovery. Indeed, the use of an edge detector as the weighting function in

Jw (·) gives more weight to the data term in the estimation of the normals near the edges, where

∇u is large and n̂ is clearly defined; in regions with no clear orientation, where n̂ is affected by

noise, the regularization averages neighbouring vectors and produces normal fields close to

zero. Similarly the relaxation |n| ≤ 1 experimentally leads to smaller norm values in noisier

areas. In non-flat areas, in fact, the value of |nk | can be considered an experimental measure

of quality in the estimation of the normal field.
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1.2.2 Matching normals and compressed sensing measurements

Once the normal field nk is computed, we can find an image that matches this field by

including the term −< nk ,∇u > in the standard CS recovery model (1.5). This term tries to

maximize the alignment of the estimated normals of the signal nk with the normals of the

reconstruction ∇u
|∇u| , and acts as an additional prior to J(u) when the unknown signal is an

image. The resulting recovery model is

uk+1 = argmin
u

J (u)−γ< nk ,∇u >+α
2
‖Au − f ‖2

2. (1.10)

Taking into account that the divergence is the adjoint operator of the gradient, the previous

minimization can be rewritten as

uk+1 = argmin
u

J (u)+γ< divnk ,u >+α
2
‖Au − f ‖2

2. (1.11)

The proposed method exploits the geometry of the image in the recovery process and obtains

better regularization properties than the standard TV recovery (1.5). In particular, the proposed

geometric model preserves edges like TV by encouraging the gradients to be sparse with the

initial prior J (u), and it recovers smooth regions by aligning the gradients of the reconstructed

image with the estimated normals with the term < nk ,∇u >.

The reformulation of (1.10) into model (1.11) is necessary to overcome the following

limitation of (1.10) in smoothly varying regions. In these regions, the minimization term

−< nk ,∇u > is negligible because the reconstructed gradient ∇u is small, and the data and

regularity terms dominate the minimization. In the model (1.11), however, this term is rewrit-

ten as < divnk ,u >, it is not affected by the value of ∇u, and the smoothness and orientation

of the region are only summarized by the divergence estimated from the previous step. The

divergence of the normals accumulates the orientation of the normal field for the different

neighbours around each pixel; it has constant non-zero values in smoothly varying regions,

large magnitude close to the edges of the image, and is close to zero in flat areas contaminated

with noise. The magnitude of the divergence, that is, the weight given to the alignment term, is

proportional to the coherence in local orientation of the estimated normals, and the recovery

model is more robust to noise.

In principle we could also use a smooth estimate of the gradients v =∇uk−1, instead of

the normals, to align the gradients of the reconstructed signal. However, discontinuities of

the image would have a contribution to v proportional to their jump, and the resulting term

< v ,∇u > would give different weights to discontinuities of different sizes. From a geometric

perspective, if we want to recover the shapes of the image independently of their contrast, we

need to consider the normal vectors derived from its level sets. By the use of level sets, we treat

all shapes equally and the term γ< nk+1,∇u > only accounts for geometric quantities. Indeed,
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with the co-area formula we can rewrite the alignment term as∫
Ω

nk ·∇u dx =
∫
Ω

nk ·
∇u

|∇u| |∇u| dx =
∫ ∞

−∞

∫
u−1(c)

|nk |cosθ(s) ds dc, (1.12)

where θ(s) is the angle between the normal vector to the level curve u−1(c) = {x | u(x) = c}

and the regularized normal vector nk . The alignment term it thus is purely sensitive to angles,

and its contribution is weighted by |nk |. In flat regions, where |nk | = 0, the alignment term

vanishes and the proposed reconstruction method simplifies to TV recovery. In smoothly

varying regions and close to the edges, |nk | is an experimental measure of confidence of the

estimated nk , and the alignment term of Equation (1.12) is less sensitive to noise because it is

weighted proportionally to this confidence.

1.3 Related approaches in compressed sensing

The method proposed in this chapter is inspired by image denoising and inpainting methods

that align an estimate of the normals with the reconstructed image. In the context of image

denoising, Lysaker et al. [2004] first regularizes the unit gradient of the noisy image and then

improves reconstruction by fitting this gradient into the regularized vector. The resulting

method outperforms the ROF model of Rudin et al. [1992] and similar higher-order PDE

methods of Lysaker et al. [2003]. Dong et al. [2009] improves this model by regularizing

the angles instead of the vectors and introducing an edge indicator as an extra weight. In

image inpainting, an equivalent two-step method is proposed by Ballester et al. [2001], later

improved with the divergence-free constraint by Tai et al. [2009, 2007] and adapted to image

decomposition and denoising by Hahn et al. [2010, 2011]. This alignment between normal

estimates and image gradients, however, has not been exploited before for CS recovery of

images.

In the field of CS, several methods have been proposed to improve the quality of the

`1 recovery model (1.5). For general signals, greedy algorithms and `p minimizations with

0 < p < 1 approximate the solution of the `0 model (1.1) and improve the sparsity of `1 penalty

in (1.5), but the resulting minimization problems are not convex, suffer from local minima,

and have slow numerical algorithms (see e.g., Rao and Kreutz-Delgado [1999], Chartrand

[2007], Tropp and Gilbert [2007], Needell and Tropp [2009], Blumensath and Davies [2009]).

To improve the sparsity of `1 recovery without increasing its complexity, Candès et al. [2008]

proposes an iterative process solving a weighted `1 problem at each iteration. The weights

are defined inversely proportional to the value of the recovered signal in the previous iter-

ate, approximating the behaviour of the `0 penalty and promoting the recovery of sparser

signals than `1. The resulting method efficiently solves a convex problem at each iteration

and experimentally improves signal recovery; for this reason, it has been adapted to image

processing with TV regularization by the edge-guided CS of Guo and Yin [2010]. Edge-guided

CS incorporates information about the magnitude of the gradient in the recovery process, and

it is therefore related to the geometric model proposed in this chapter. Our geometric recovery
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model, however, is additive and more robust to noise, and it exploits both the magnitude and

directional information of the gradients.

CS recovery of images has also been improved modifying the data term ‖Au− f ‖2
2 inspired

by image denoising techniques. In particular, the Bregman iterations proposed by Osher

et al. [2005] for image denoising and deblurring have been applied to CS by He et al. [2006].

In this case, Bregman iterations improve CS recovery for phantom MRI data, but fail in the

recovery of real images because reconstructing a signal from partial measurements is a more ill-

posed problem than denoising. For the particular case of TV regularisation, the first Bregman

iteration has a geometric interpretation similar to the second step of the proposed recovery

method. However, Bregman iterations do not include a regularization step for the normals

and therefore fail for noisy and real MRI signals.

The following section summarizes each of these to methods and clarifies their relationship

with our geometric technique.

1.3.1 Edge-guided compressed sensing

Edge-guided CS of Guo and Yin [2010] improves recovery of MRI images by exploiting edge

information with an iterative process that weights the TV regularizer with an edge detector

associated with the image recovered in the previous iteration. The key idea is that edges

correspond to locations where |∇u| is large, and TV corresponds to the `1 norm of the gradient;

therefore an inverse edge detector can be used to re-weight TV and approximate the `0 penalty

in a similar fashion to the re-weighted `1 of Candès et al. [2008] for general signals.

The method starts with the standard CS solution of model (1.5) to obtain a first estimate of

the image u1, it then defines the weights w1 = g (|∇u1|) as inversely proportional to |∇u1|, and

recovers an image with sparser edges by solving the re-weighted TV problem. The process is

iterated, leading to the following two-step algorithm: uk+1 = argmin
u

Jwk (u)+ α

2
‖Au − f ‖2

2

wk+1 = g (|∇uk+1|)
. (1.13)

There is no stopping criterion or guarantee of convergence for this iterative process, and

after a few iterations the reconstruction usually does not improve or even degrades. Moreover,

the multiplicative model of edge-guided CS is very sensitive to false edge detection. Indeed, if

an edge is detected in a wrong location, the weight associated with it on the next iteration will

encourage the creation of an edge in this location, and CS recovery will degrade with any new

iteration.

The iterative re-weighting process is designed to improve sparsity of the signal and the

recovery of piecewise constant functions, but it fails in the recovery of smooth image regions.

Compared with the proposed geometric model, edge-guided CS incorporates only information
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about the magnitude of ∇u, while our method also uses its directional information; edge-

guided CS simply re-estimates the edges at each iteration, while our geometric model includes

a regularization step of the estimated normals.

1.3.2 Bregman methods

The proposed geometric model also share similarities with Bregman methods, whose original

idea was to restore normals and image intensities simultaneously. However, Bregman methods

cannot recover normals as accurately and robustly as the proposed method because they do

not regularize the estimated normals. This improvement comes at the price of loosing global

convexity.

Bregman iterations substitute the minimization problem (1.5) for a sequence of convex

optimizations substituting J (u) for its Bregman distance to the previous iterate. In particular,

the first Bregman iteration has a geometric interpretation closely related to the proposed

method. Starting with u = 0, v = 0, the Bregman iterative process can be summarized as uk+1 = argmin
u

J (u)+ α

2
‖ f + vk − Au‖2

2

vk+1 = vk + f − Auk+1.
(1.14)

The first Bregman iteration corresponds to the standard TV model (1.5), while the second

iteration implicitly exploits the normals of the image recovered in the first iteration to improve

CS recovery.

For simplicity, the connection to proposed method is explained with a continuous formu-

lation, where A(·) is the continuous functional operator of CS and A∗ its adjoint. For the first

iteration u = 0, v = 0 and the method solves

u1 = argmin
u∈Rn

∫
Ω
|∇u|+ α

2
‖ f − A(u)‖2

2, (1.15)

The optimality condition associated with problem (1.15) is derived from its the Euler-Lagrange

equation, and reads

div
∇u1

|∇u1|
= −αA∗(u1)

(
f − A(u1)

)
, (1.16)

where n1 = ∇u1
|∇u1| corresponds to the normals of u1. At the next iteration we can introduce

a term < n1,∇u > aligning the normals of the reconstructed signal with the estimate of the

normals from the previous iteration, that is

u2 = argmin
u

∫
Ω
|∇u|− < n1,∇u >+α

2
‖ f − A(u)‖2

2. (1.17)
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Integrating by parts and substituting divn1 in Equation (1.16) we have

−< n1,∇u >=< divn1,u >=−<αA∗ (
f − A(u1)

)
,u >=

−α< f − A(u1), A(u) >=−α< v1, A(u) >, (1.18)

with v1 = f − A(u1) as defined in (1.14). If we substitute (1.18) in the minimization (1.17) and

group together the terms with A(u), we end up with the Bregman update rule

u2 =
∫
Ω
|∇u|+ α

2
‖ f + v1 − A(u)‖2

2. (1.19)

For the rest of iterations the geometric interpretation of the update is lost.

Compared with Bregman iterations, the proposed geometric method explicitly uses the

normals in the recovery model for all iterations, not only the second one, and it is not restricted

to TV regularization. In fact, Bregman iterations can also be used with other convex functionals

J (u), but the geometric interpretation of (1.17) is only possible for TV regularization. Moreover,

the proposed method is more robust to noise thanks to the regularization of the normals and,

unlike the Bregman iteration, experimentally improves CS reconstruction for both phantom

and real MRI data. In addition, the proposed recovery method extends to non-local operators

to exploit graph geometry and recover textured images.

1.4 Extension to non-local methods

Total variation regularization is designed to recover images with sharp edges and, as other

methods based on local gradients, it is not suited for textured images with fine structures.

In this section we extend the geometric model of Section 1.2 to textured images using both

non-local TV regularization and a term aligning the estimated non-local normals with the

non-local gradients of the reconstructed image.

1.4.1 Non-local operators

Non-local TV is a variational extension of the non-local means filter proposed for image denois-

ing in Buades et al. [2005]. Non-local means exploits the repetition of patterns in natural and

textured images to reconstruct sharp edges as well as the fine structures that appear repeatedly

in an image. This principle is the basis of the different non-local regularization methods

used in imaging, which outperform classic regularization techniques by incorporating global

information in the regularization process.

In a variational framework, Gilboa and Osher [2008] uses graph theory to extended the

classical TV to a non-local functional. In the discrete setting, Zhou and Schölkopf [2005] and

Elmoataz et al. [2008] use graph Laplacians to define similar non-local regularization operators.

The resulting non-local methods have been used to solve several inverse problems in imaging,
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showing in every case an improvement over their equivalent local methods based on classic

differential operators. In CS reconstruction, non-local TV has been recently proposed by Peyré

et al. [2008] and Zhang et al. [2010].

In order to generalize the geometric concept of normals, it is necessary to adopt the

discrete formulation of the continuous model presented in Gilboa and Osher [2008]. This

non-local framework considers the image domain as a graph G = (Ω,E), whereΩ is the set of

nodes of the graph, one for each pixel in the image, and E is the set of edges connecting the

nodes. The edge connecting nodes i and j is weighted with a positive symmetric function

w(i , j ) that is inversely proportional to the squared distance between the two nodes in graph

terms. Consequently, two pixels i and j spatially far away in the image can be considered

neighbours in the graph and interact if w(i , j ) > 0 (we write then i ∼ j ). For that reason, the

resulting approach is considered non-local.

Given an image u defined on the graph, the non-local gradient ∇G u at node i is defined as

the vector of all directional derivatives associated with the neighbours of i , that is

∇G u (i , j ) = (u( j )−u(i ))
√

w(i , j ) ∀ j ∈Ω. (1.20)

In the graph, vectors d = d(i , j ) are therefore functions defined in the domainΩ×Ω. In this

setting we can define the standard L2 inner product between functions as

< u, v >G=
∑
i∈Ω

u(i )v(i ). (1.21)

For vectors, the dot product is defined pixel-wise as

(d ·e)G (i ) = ∑
j∼i

d(i , j )e(i , j ), (1.22)

and the inner product on the graph is given by

< d ,e >G=
∑

i
(d ·e)G (i ) =∑

i

∑
j∼i

d(i , j )e(i , j ). (1.23)

In order to have an equivalent to the TV regularizer, it is necessary to define a norm

function on the graph | · |G . With the previous definitions, the magnitude of a vector at node i

is given by

|d |G (i ) =
√

(d ·d )G (i ) =
√∑

j∼i
d(i , j )2. (1.24)

The standard TV is then naturally extended to a non-local version as the `1 norm of the graph
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norm | · |G associated with the non-local gradient, that is,

T VG (u) = JG (u) =
∑

i
|∇G u|G (i ). (1.25)

With the above inner products, the non-local divergence of a vector d is defined as the adjoint

of the non-local gradient, that is

divG d (i ) = ∑
j∼i

(d(i , j )−d( j , i ))
√

w(i , j ). (1.26)

With these definitions, if we consider only the immediate pixels as neighbours and fix their

weights to w(i , j ) = 1, the non-local TV reduces to the standard TV definition. If we define the

weighting function proposed by the non-local means filter of Buades et al. [2005], the non-local

operators incorporate global information, and the standard regularization process is greatly

improved. The weighting function, therefore, has an important impact in the performance of

the non-local regularizers and should be chosen carefully.

For this reason, we adopt the successful weighting of non-local means and, given a refer-

ence image u0, we compute the weight w0(i , j ) measuring the difference between the patches

around each pixel as

w0(i , j ) = exp− ‖P0(i )−P0( j )‖2

2h2 , (1.27)

where h is a scaling factor, and P0(i ) is a patch of u0 centred at pixel i . The effect of this

weighting function in the definition of non-local neighbours is illustrated in Figure 1.1.

Figure 1.1: Definition of non-local interactions in a microscopic image in terms of a weighted
graph. The nodes in the resulting graph connect only pixels that belong to the same structures,
that is, either background, one cell (red), groups of cells (green).

This weighting function is designed to reduce Gaussian noise while preserving the textures

of the image. To that purpose, the reference image should be as close as possible to the true

image in order to incorporate valid information in the non-local operators. Accordingly, the

weighting function is initialized with the solution u0 to the standard CS reconstruction of
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model (1.5), a better estimate of the solution is then obtained with the non-local recovery

method, and the weights are updated with this new solution. Consequently, the basic non-

local CS recovery is given by the following two-step iterative method ∇Gk ←− estimate non-local operators from uk−1

uk = argmin
u

JGk (u)+ α

2
‖Au − f ‖2

2.
(1.28)

1.4.2 Compressed sensing with non-local normals

Symmetrizing the proposed local technique, we can develop a non-local method that exploits

the geometry of images defined in non-local graphs to improve the CS recovery method (1.28).

The first step of each iteration estimates the non-local normals nG associated with the level

set curves of the image in the graph. Once the non-local normals are estimated, the second

step finds an image that fits the non-local normals, the CS measurements, and the non-local

TV regularizer. As in the local case, these two steps are iterated alternatively.

In the local setting, the normal vectors of the level curves of an image u are defined

as n = ∇u
|∇u| . We can extend this definition to the non-local framework by normalizing the

components of the non-local gradient ∇G u node-wise, i.e., all the components associated

with node i are normalized by |∇G u|G (i ).

Given an estimate of the non-local normals nG , we can then include a term in the CS

reconstruction (1.28) that maximizes the alignment of the reconstructed signal with the non-

local normals. The resulting minimization problem is

u = argmin
u

JG (u)−γ< nG ,∇G u >G +α
2
‖Au − f ‖2

2. (1.29)

Exploiting the adjoint relation of the non-local divergence and gradient, we can re-write the

previous expression as

u = argmin
u

JG (u)+γ< divG nG ,u >G +α
2 ‖Au − f ‖2

2. (1.30)

As before, the process is iterated and we obtain the following non-local CS recovery method
∇Gk ←− estimate non-local operators from uk−1

divGk nGk = argminv JGk (v)+ µ
2 ‖v − v̂‖2 with v̂ = (

1− g (|∇G uk−1|G )
)

divG
∇G uk−1
|∇G uk−1|

uk = argmin
u

JGk (u)+γ< divGk nGk ,u >G +α
2 ‖Au − f ‖2

2

The third step of the proposed non-local method is naturally derived from its local version,

but the second step, the regularization of non-local normals, requires a more detailed analysis.
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1.4.3 Estimation of non-local normals

The non-local gradient operator, and consequently the non-local normals, do not correspond

to the discretization of standard vector fields in a grid. Indeed, ∇G u has a different number of

components for each pixel, and the direction associated with ∇G u(i , j ) depends on the relative

position of the node i and its neighbour j . Therefore, we cannot use standard techniques to

regularize these vector fields, and we must regularize the term divG nG posteriorly used in the

recovery algorithm. Compared with the regularization of the non-local normals, regularizing

their divergence looses directional information, but the resulting method is simpler and faster.

Given an estimate of the reconstructed signal uk−1, we can first compute a noisy estimate

of the non-local normals and their divergence pixel-wise, and then denoise it with standard

regularization methods. To that purpose, the non-local normals are estimated as

n̂G = ∇G uk−1

|∇G uk−1|
, (1.31)

and a rough estimate of the non-local divergence is computed as

v̂ = (
1− g (|∇G uk−1|G )

)
divG n̂G , (1.32)

where g (x) is a function designed to verify g ≈ 0 when x is large and g ≈ 1 when x is small.

In fact, g (|∇G uk−1|G ) acts as the equivalent edge detector presented in Section 1.2.1 and

is defined with the same Equation (1.9). As in the local case, we can adopt the statistical

interpretation of the edge detector g (|∇G u|G ) presented in Black et al. [1998], where the edges

are considered as outliers in the normal distribution of |∇G u|G associated with homogeneous

regions. Since the edge detector g is derived from error norms robust to outliers, weighting the

estimate of the divergence with the function 1− g (|∇G uk−1|G ) in Equation (1.32) is equivalent

to soft-thresholding the non-local divergence when we suspect that the variations in uk−1 are

caused by noise inside homogeneous regions.

Finally, we can regularize v̂ to obtain a smoother estimate of the non-local divergence,

which will be used in the last step of the proposed iterative method. There are two natural

approaches for this regularization: we can either ignore the non-local nature of the divergence

and gradient operators and use any local model to regularize v̂ , or use the non-local neighbours

to denoise v̂ with Equation (1.34), that is, use the natural distance and neighbouring relations

inherent to de definition of v̂ to denoise it.

divGk nGk = argmin
v

J (v)+ µ

2
‖v − v̂‖2 (1.33)

divGk nGk = argmin
v

JG (v)+ µ

2
‖v − v̂‖2 (1.34)

In particular, we choose to regularize the non-local divergence with the ROF model of Equation

(1.33) based on experimental results.
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1.5 Numerical minimization

As explained in the introduction, the subject of research of this chapter is the inclusion of

geometric terms in the CS recovery of images, not the minimization techniques. For this

reason, the details of the minimizations are presented in Appendices A and B; here only the

relation between the proposed algorithms and the state-of-the-art is briefly explained.

The minimizations associated with each of the local steps involve both a TV and a quadratic

term similar to the ROF model of Rudin et al. [1992]. Consequently, the resulting algorithms

apply a similar strategy to overcome the non linearity and non differentiability of TV than

the multitude of algorithms proposed for the ROF model. In the original ROF model, Rudin

et al. propose a time marching method to solve the Euler-Lagrange PDE of the model, but

the resulting algorithm is slow due to the constraint on the time step by the CFL condition.

In the last years more efficient methods have been proposed for the ROF model due to its

extensive use in imaging. A popular class of methods is based on the dual formulations of the

ROF model, e.g., the projection method of Chambolle [2004] or the primal-dual approaches

of Chan et al. [1999], Zhu et al. [2010], Chambolle and Pock [2010]. Other options are based

on variable-splitting and equality constrained optimization; which is solved by quadratic

penalties (Wang et al. [2008]), Bregman iterations (Goldstein and Osher [2009], Yin et al.

[2008]) or the equivalent augmented Lagrangian method (Wu and Tai [2010]). In the case of CS,

dual solvers are not usually adopted because they suffer from matrices A that are large-scale

and dense. In particular, for matrices corresponding to transforms with fast implementations,

like the Fourier transform of this chapter, splitting methods are a good choice because they

can easily exploit fast transforms to compute Au and AT u. The algorithms proposed here

fall in this last category. To that purpose, the different problems are re-written as constrained

minimizations, and augmented Lagrangians are used to solve them. The resulting Lagrangians

are minimized with respect to each variable independently, and the multipliers are then

updated in a cyclic way. Since all the minimizations can be analytically solved, the resulting

algorithms are extremely fast and easy to implement.

Similarly, the minimization algorithm for the non-local problem (1.30) is closely related

to the minimization of the non-local ROF model proposed in Gilboa and Osher [2008]. In

particular, the non-local CS problem has been solved with a combination of forward-backward

splitting and Bregman iteration in Zhang et al. [2010], but for uniformity this chapter uses the

same combination of splitting and augmented Lagrangians than the rest of the dissertation.

1.6 Experimental results

This section presents some of the numerical results obtained with our geometric models

and compares them with other techniques. In particular, the local version of our method is

compared with the standard CS recovery algorithm of model (1.5), with the edge-guided CS

of Guo and Yin [2010], and with the Bregman method of (1.14). The non-local version of our
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method is compared to the non-local CS recovery of Equation (1.28), which does not take into

account the geometric information of the non-local gradients in the recovery process.

The experiments use partial Fourier measurements and perform radial sampling on R ; the

size of the measurements m in relation to the size of the signal n is specified by the ratio or

percentage m
n . For a fair comparison, the same robust edge detector of Equation (1.9) is used

in both the edge-guided CS and the proposed method, and all the minimization problems ate

solved with the same splitting and augmented Lagrangian techniques. The parameterα, which

is related to the noise present in the CS measurements, has been manually tuned to obtain

best reconstruction with the standard CS recovery models (1.5) and (1.28), and posteriorly

used with edge-guided CS and the proposed normal methods. This parameter was reduced

by an order of magnitude for the Bregman iterations, as suggested in Osher et al. [2005]. The

other parameters of our model, γ and µ, have also been chosen manually to obtain good CS

recovery in terms of SNR. The parameter γ, which controls the weight given to the alignment

of the normals, takes similar values for the same kind of images (textured or brain MRI images)

and remains stable for different sparsity and noise levels. The parameter µ, which controls the

smoothness of the estimated normals, decreases when the number of measurements decrease

or the noise level increases because the point-wise estimated normals are less accurate and

require more regularization.

The first set of experiments tests our method with MRI images, first with the Shepp-Logan

phantom and then with a real MRI brain image. Table 1.1 shows the quantitative results of

the different CS reconstruction methods for MRI images. The proposed geometric model

always outperforms the standard TV reconstruction and the edge-guided CS technique. In the

experiments, both the edge-guided CS and our method are initialized with the TV solution

and, therefore, always improve TV reconstruction. In comparison with TV reconstruction,

however, our method more than doubles the gain of edge-guided CS, and outperforms Breg-

man iterations for real images or a reduced number of measurements (Bregman is only able to

exploit normal information when the TV reconstruction is accurate and the normal vectors

directly estimated from it do not require regularization). In general, performance improves

with non-local regularization, and our non-local geometric method outperforms the non-local

TV reconstruction in all the experiments. As expected, the gain in relation to non-local TV is

lower than in the local approach because the non-local geometric model looses part of the

directional information of the normals by denoising their divergence instead of the vector

fields.

The Figures 1.2-1.3 show qualitatively the improvement of our method over TV reconstruc-

tion and edge-guided CS. In the case of the phantom, our geometric models are able to better

reconstruct the phantom with fewer measurements both in the local and non-local case, while

with a real MRI image our reconstruction is able to capture better non dominant edges of the

white-grey matter interface. Figure 1.4 explicitly compares the normals associated with the TV

solution and the regularized normals of our local reconstruction for the real brain MRI image.

We observe that our local method is able to better reconstruct the normals, and therefore the
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Table 1.1: Comparison of CS reconstruction for MRI images. first four columns show the
results with the standard TV regularization: TV stands for the model of Equation (1.5), edge
CS for (1.13), Bregman iterations (1.14), and normal CS for the proposed geometric method.
The last two columns correspond to the definition of NL TV: NL-TV corresponds to standard
non-local CS recovery (1.28) and NL normal CS for the proposed non-local method.

Image m
n local CS non-local CS

TV edge CS Bregman normal CS TV normal CS

Phantom 8% 7.33 dB 7.37 dB 7.50 dB 12.78 dB 28.28 dB 33.13 dB
Phantom 12% 38.60 dB 45.33 dB 89.12 dB 56.14 dB 61.84 dB 74.57 dB
Brain 12% 17.14 dB 17.38 dB 17.16 dB 17.71 dB 18.96 dB 20.39 dB
Brain 20% 22.16 dB 22.35 dB 22.17 dB 23.82 dB 23.13 dB 24.12 dB

shapes, of the image.

For each image in the experiments, we can also add different levels of Gaussian noise (σn)

to the signal in order to investigate the robustness of the proposed model to noise. Results are

shown in table 1.2. We observe that our methods are more robust to noise than edge-guided

CS and Bregman iterations thanks to regularization step on the estimation of the normals.

As before, non-local regularization improves CS reconstruction, and we observe that the

proposed non-local method outperforms again the non-local TV, and is robust to noise.

Table 1.2: Comparison of CS reconstruction for noisy MRI images with 12% of samples and
different levels σn of Gaussian noise. first four columns show the results with the standard
TV regularization: TV stands for the model of Equation (1.5), edge CS for (1.13), Bregman
iterations (1.14), and normal CS for the proposed geometric method. The last two columns
correspond to the definition of NL TV: NL-TV corresponds the standard non-local CS recovery
(1.28) and NL normal CS for the proposed non-local method.

Image noise local CS non-local CS
m
n = 12% σn TV edge CS Bregman normal CS TV normal CS

5% 11.90 dB 11.91 dB 12.63 dB 12.90 dB 17.92 dB 18.36 dB
Phantom 10% 8.37 dB 8.38 dB 9.41 dB 9.44 dB 12.15 dB 13.03 dB

15% 6.59 dB 6.59 dB 7.14 dB 7.28 dB 10.09 dB 10.27 dB

5% 13.37 dB 13.36 dB 13.67 dB 13.78 dB 14.86 dB 15.00 dB
Brain 10% 10.88 dB 10.88 dB 11.48 dB 11.57 dB 12.31 dB 12.50 dB

15% 9.89 dB 9.89 dB 10.31 dB 10.48 dB 10.94 dB 11.19 dB

The next experiment investigates the properties of the local and non-local versions of our

algorithm with two synthetic images. The first step of our iterative method is designed to

preserve the discontinuities in the level set normals of the reconstructed image, while the

second step introduces this geometric information in the CS reconstruction model. This

property is specially interesting for the recovery of images with geometric structures like
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ridges or valleys, as shown in Figure 1.5. We observe that the proposed local method is able to

recover ridges and valleys to certain extent and outperforms TV reconstruction in this kind

of structures, but it is not able to capture the repetitive nature of the image like its non-local

version.

The third set of experiments investigates CS recovery with natural images containing

textures, where edge detection by itself is a difficult task, and the images cannot be considered

piecewise constant. With these images, local regularization looses all texture information,

while the non-local approaches can recover repetitive patterns and better exploit the geometric

information of the image. The results with the proposed geometric method are presented

in Table 1.3, with some of the reconstructed images shown in Figures 1.6-1.9 to qualitatively

analyse the performance of the different methods.

A quantitative comparison of the different methods with textured images is presented

in Table 1.3. We observe that the inclusion of an edge detector in edge-guided CS does not

Table 1.3: Comparison of CS reconstruction for textured images. The first four columns show
the results with the standard TV regularization: TV stands for the model of Equation (1.5),
edge CS for (1.13), Bregman iterations (1.14), and normal CS for the proposed geometric
method. The last two columns correspond to the definition of NL TV: NL-TV corresponds
to the standard non-local CS recovery (1.28) and NL normal CS for the proposed non-local
method.

local CS non-local CS
m
n image TV edge CS Bregman normal CS TV normal CS

Lena 14.53 dB 14.47 dB 14.55 dB 14.86 dB 15.82 dB 16.79 dB
12% Barbara 13.35 dB 13.31 dB 13.25 dB 13.59 dB 15.00 dB 15.52 dB

fingerprint 4.13 dB 4.11 dB 4.09 dB 4.13 dB 5.97 dB 5.98 dB
baboon 7.40 dB 7.25 dB 7.18 dB 7.40 dB 7.65 dB 7.65 dB

Lena 18.44 dB 18.36 dB 18.45 dB 19.27 dB 19.95 dB 21.09 dB
20% Barbara 16.71 dB 16.62 dB 16.55 dB 17.13 dB 18.37 dB 18.93 dB

fingerprint 5.70 dB 5.62 dB 5.59 dB 5.70 dB 9.03 dB 9.07 dB
baboon 9.13 dB 8.91 dB 8.90 dB 9.14 dB 9.63 dB 9.74 dB

Lena 25.39 dB 25.30 dB 25.44 dB 26.71 dB 26.39 dB 27.51 dB
39% Barbara 20.83 dB 20.68 dB 20.59 dB 21.36 dB 24.68 dB 25.33 dB

fingerprint 12.02 dB 11.84 dB 11.57 dB 12.03 dB 14.52 dB 14.56 dB
baboon 13.30 dB 13.14 dB 13.28 dB 13.41 dB 13.44 dB 13.82 dB

improve the TV reconstruction because the partially reconstructed images are not accurate

enough to detect edges and, as a result, the weighted TV term of edge-guided CS encourages

edges in wrong positions. This effect is not observed in our method because it is an addi-

tive and not a multiplicative model; moreover, it exploits the directional information of the

regularized normals, which can partially capture texture information better than an edge

detector. As a consequence, the proposed local method always outperforms the TV recon-
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struction and edge-guided CS methods. Similarly, Bregman iterations are not able to exploit

the geometric alignment of normals in the CS reconstruction because Bregman methods do

not regularize the first estimate of the normal vectors obtained from the TV solution. For

the non-local regularizations, our method also outperforms non-local TV, but the gain in

some cases is negligible (fingerprint and baboon for m
n = 12% or 20%). In fact, the non-local

methods require a good estimate of the reconstruction to initialize the non-local operators.

Since the proposed method requires both gradient and divergence to estimate the non-local

normals, it can only improve non-local TV when the initialization (in this case the standard TV

solution) has a minimum level of accuracy. More measurements are required for fingerprint

and baboon simply because these images are less sparse than Lena or Barbara in terms of TV

and CS requires more samples for their reconstruction.

In the reconstruction of Lena in Figures 1.6a-1.6f we can qualitatively observe the advan-

tages of our method in comparison to local and non-local TV reconstructions. In the local

case, the use of geometry avoids the staircase effect that is visible in the TV reconstruction of

Lena’s cheek. In the non-local case, the geometric model captures the slowly varying textures

of Lena’s skin or hat. In both cases the improvements are due to the regularization of the level

set normals of the image.
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(a) Shepp-Logan phantom (b) TV reconstruction, 7.33 dB

(c) edgeCS, 7.37 dB (d) non-local TV reconstruction, 28.28 dB

(e) proposed local method, 12.78 dB (f) proposed non-local method, 31.26 dB

Figure 1.2: Compressed sensing reconstruction of Shepp-Logan phantom from 8% of mea-
surements in Fourier domain.
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(a) Brain MRI (b) TV reconstruction, 17.14 dB

(c) edgeCS reconstruction, 17.38 dB (d) non-local TV reconstruction, 18.96 dB

(e) proposed local method, 18.56 dB (f) proposed non-local method, 20.39 dB

Figure 1.3: Compressed sensing reconstruction of MRI brain image from 12% of measurements
in Fourier domain.
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(a) Original image (b) Proposed local technique

Figure 1.4: Zoom on reconstructed brain MRI image from 12% of measurements in Fourier
domain. We superpose the reconstructed signals with the normals associated with their level
sets for the standard TV solution (left) and for the local version of our method (right). The
proposed geometric method is able to better reconstruct the normals and shapes of the image.

(a) Original image (b) Our local method, 16.73 dB (c) Our non-local method, 30.47 dB

(d) Original image, from Hahn et al.
[2011]

(e) Our local method, 5.90 dB (f) Our non-local method, 14.11 dB

Figure 1.5: Reconstruction of two synthetic images characterized by ridges from 10% and 14%
of measurements in Fourier domain. Local and non-local TV results in SNR of 16.30 and 30.15
dB for the top image, and 5.86 and 12.99 dB for the bottom one.
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(a) Lena (b) TV reconstruction, 18.44 dB

(c) edgeCS, 18.36 dB (d) non-local TV reconstruction, 19.45 dB

(e) proposed local method, 19.27 dB (f) proposed non-local method, 21.09 dB

Figure 1.6: Compressed sensing reconstruction of Lena from 20% of measurements in Fourier
domain.
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(a) Lena (b) Barbara

(c) proposed local method, 14.86 dB (d) proposed local method, 13.59 dB

(e) proposed non-local method, 16.79 dB (f) proposed non-local method, 15.52 dB

Figure 1.7: Left column: reconstruction of Lena phantom from 12% of measurements in
Fourier domain. Right column: reconstruction of Barbara from 12% of measurements in
Fourier domain.
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(a) Barbara (b) Baboon

(c) proposed local method, 17.13 dB (d) proposed local method, 9.14 dB

(e) proposed non-local method, 18.92 dB (f) proposed non-local method, 9.74 dB

Figure 1.8: Left column: reconstruction of Barbara from 20% of measurements in Fourier
domain. Right column: reconstruction of baboon from 20% of measurements in Fourier
domain.
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(a) Fingerprint

(b) proposed local method, 5.70 dB (c) proposed non-local method, 9.07 dB

Figure 1.9: Compressed sensing reconstruction of fingerprint from 20% of measurements in
Fourier domain.
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1.7 Conclusions

This chapter has proposed a recovery method for compressed sensing that iteratively aligns

the normal vectors to the level curves of the reconstructed image. The alignment of these

normal vectors has already been exploited in image denoising and inpainting methods, but

existing compressed sensing techniques have just neglected it because this information is

buried in the compressed sensing measurements and cannot be directly exploited.

To overcome this issue, the proposed technique alternates between the estimation of

the normals to the level curves of the image, and a compressed sensing reconstruction that

matches the estimated normals, the compressed sensing measurements, and the sparsity

constraint of total variation. The proposed method is also extended to non-local operators in

graphs to recover textured images, where it exploits the repetitive nature of patterns to recover

the relevant structures of the image. The proposed non-local method can also be used to

improve existing non-local denoising and deblurring methods.

Although there is no proof of convergence for the proposed two-step procedure, our ex-

periments show a clear improvement over state-of-the-art algorithms. The introduction of

geometry experimentally improves the reconstruction of images in two ways: the reconstruc-

tion is more robust to noise and a reduced number of measurements, and the recovery model

is able to recover sharp edges as well as smoothly varying image regions, overcoming the

staircase effect of total variation.
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2 Harmonic Active Contours

This chapter presents a segmentation method based on the geometric representation of images

as 2-dimensional manifolds embedded in a higher dimensional space. The segmentation is

formulated as a variational problem, where the contours are described by a level set function,

and the objective functional measures the surface of a manifold defined by the segmentation

of the image. The minimizer of this functional, i.e., the proposed segmentation, is therefore a

geometric model of a minimal surface manifold.

In this geometric framework, both the data and prior terms of the objective functional are

coupled at pixel level and lead to a variational model that intrinsically aligns the gradients of

the level set function with the gradients of the image and exploits this directional information

to overcome image inhomogeneities and fragmented contours. The proposed formulation

combines this robust alignment of gradients with attractive properties of methods previously

developed in the same framework: the natural coupling of image channels developed in

Sochen et al. [1998] for anisotropic diffusion, and the ability of the subjective surfaces of Sarti

et al. [2002] to detect weak edges and close fragmented boundaries.

The potential of such a geometric approach lies in the general definition of Riemannian

manifolds, which naturally generalizes the Geodesic Active Contours of Caselles et al. [1997],

the Active Contours without Edges of Chan and Vese [2001], and the robust edge integrator

of Kimmel and Bruckstein [2003] to higher-dimensional spaces, non-flat images and feature

spaces. As a consequence, the proposed technique improves the segmentation of multi-

channel images, images subject to inhomogeneities, and images characterized by geometric

structures like ridges or valleys.

2.1 Introduction

Image segmentation is a first fundamental step in many applications of computer vision and

machine learning because it simplifies the understanding of an image from thousands of

The material of this chapter has been published in Estellers et al. [2013c].
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pixels to a few regions. The goal of image segmentation is thus to partition the image domain

Ω into homogeneous regions corresponding to individual objects or, equivalently, to find the

contours C that define the boundaries of these objects. To that purpose, the segmentation of

an image is formulated as a minimization problem, where the objective functional specifies

the segmentation criterion, and the unknown variables describe the contours of the different

regions. The level set method of Osher and Sethian [1988], for instance, adopts an implicit

parametrization of the contours as the zero-level set of a function φ, which becomes then the

minimization variable, and writes the objective functional in terms of this level set function.

In this context, two representative segmentation methods are the Geodesic Active Contours

(GAC) of Caselles et al. [1997] and the Active Contours without Edges (ACWE) of Chan and Vese

[2001]. The GAC model, or the equivalent model of Kichenassamy et al. [1995], proposes an

edge-based segmentation criterion and defines an objective functional that weights the length

of the contour with an inverse edge detector on the image. On the other hand, ACWE proposes

a segmentation criterion based on the homogeneity of the different regions defined by the

segmentation, and its objective functional measures the variance of the grey-level values of

the image within each region. Both segmentation criteria can be combined and result in

a segmentation method simple and yet extensively used in imaging, for which fast convex

implementations have been proposed in Chan et al. [2006], Bresson et al. [2007], Goldstein et al.

[2009]. The resulting segmentation methods are extremely fast and reliable for cartoon-like

images, but fail in the segmentation of complex images with low contrast, inhomogeneities, or

ridge structures. To tackle these cases, more complex segmentation criteria are necessary, and

objective functionals based on second-order derivatives of the image along the contours have

been proposed in Kimmel and Bruckstein [2003] and Vasilevskiy and Siddiqi [2002]. The robust

edge integrator of Kimmel and Bruckstein [2003] is based on the key observation that the

direction of the image gradient is a good estimator of the orientation of an edge contour, and

the segmentation criterion can be improved by introducing a geometric term in the objective

functional that aligns the normal vectors to the contours with the gradients of the image. With

a level set parametrization, the objective functional of the robust edge integrator of Kimmel

and Bruckstein is formulated as

−
∫
C
|∇I · ∇φ

|∇φ| | (2.1)

and tries to align the normal vectors to the contours ∇φ
|∇φ| with the gradient of the image ∇I

along the contour C . The inclusion of this alignment term in the objective functionals of GAC

or ACWE leads to more accurate segmentations, but the resulting objective functionals are

not convex and suffer therefore from local minima and slow numerical minimizations. Figure

2.1a illustrates the main idea behind this alignment term, and Figures 2.1b-2.1c show the

improvement it brings to GAC and ACWE segmentation methods.

The method that we propose goes a step further and aligns the gradients of the image

∇I with the gradients of the level set function ∇φ for all the level sets of the image, not only

for the evolving active contour C . This results in a functional that is able to also exploit the
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(a) Alignment of image and
level-set gradients for the zero-
level set of φ (in red). Image
adapted from Kimmel [2003].

(b) Segmentation with
convex GAC+ACWE of
Goldstein and Osher
[2009].

(c) Segmentation with
GAC+ACWE and ro-
bust edge integrator of
Kimmel and Bruckstein
[2003].

(d) Segmentation with
proposed HAC.

Figure 2.1: Figure 2.1a illustrates the mechanism of the proposed alignment term for the
active contour C . Figures 2.1b-2.1d show the segmentation of a gray-scale image subject to
inhomogeneity with different methods, where the initial level set set appears in red and the
final segmentation in blue.

alignment of the neighbouring level sets to pull the contours to the right position. Compared

with the robust edge integrator of Kimmel and Bruckstein [2003], we are able to detect new

contours from the alignment of the neighbouring level sets, which makes us more robust to

local minima and less sensitive to initialization. A clear example is shown in Figure 2.1d.

Our method also answers the following question: how can we align gradients and normal

vectors in images with k channels? Generalizing the alignment term proposed by Kimmel and

Bruckstein to multi-channel images is not trivial because if we consider images as vector fields

in the image domainΩ, the coupling of the different channels must be defined heuristically.

The natural way to treat multi-channel images is to interpret them as 2-dimensional manifolds

or surfaces embedded in Rk+2 and make use of differential geometry to define equivalent

alignment terms. To that purpose, we develop our method in the Beltrami framework, which

was originally proposed for color denoising in Sochen et al. [1998] and later extended to

image segmentation by the subjective surfaces of Sarti et al. [2002]. In that sense, our method

introduces an alignment term in the subjective surface model, in the same way that Kimmel

and Bruckstein introduced an alignment term in the GAC model.

The proposed harmonic active contours (HAC) also include region- and edge-based seg-

mentation criteria. Our objective functional, however, is not a sum of terms with region- and

edge-based functionals, but is defined through the embedding of different image features in

the Beltrami framework. In this framework, the objective functional of GAC has been general-

ized to 2-dimensional manifolds in the subjective surfaces of Sarti et al. [2002] by embedding

the grey-level values of the image and by defining the objective functional to be the weighted

surface of the embedded manifold. Our method presents a generalization of GAC, ACWE,

and the robust edge integrator of Kimmel and Bruckstein to higher dimensional spaces by

embedding the image channels, the region features, and the level set function and by defining

the objective functional to be the surface of the embedded manifold. This functional offers
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three main advantages. First, the alignment term between the normal vectors to the contours

and the gradients of the image is naturally extended to all the level sets of φ, and the resulting

method exploits the alignment of neighbouring level sets to overcome local minima. Second,

the definition of images as manifolds can naturally include and handle multi-channel images,

and it takes into account the coupling of the different channels. Third, the proposed formu-

lation is easily generalized to no- flat parametric manifolds and feature spaces, where the

usual segmentation methods cannot be directly applied, see e.g., Kimmel and Sochen [2002],

Bogdanova et al. [2007].

The rest of this chapter is organized as follows. Section 2.2 reviews basic concepts of

differential geometry and introduces the Beltrami framework. Section 2.3 defines the HAC

model as a minimal surface manifold, specifying the proposed embedding, features, and

metric. Section 2.4 sketches the minimization algorithm, which is detailed in Appendix C, and

Section 2.5 presents the experimental results. Finally, conclusions are drawn in Section 2.6.

2.2 Differential geometry in image processing

In order to understand the Beltrami framework, it is necessary to formalize two basic concepts

of differential geometry: smooth manifolds and the metric tensor.

We review here the basic definitions of differential geometry to provide both an intuitive and a

formal understanding of the geometric ideas behind the equations of the Beltrami framework.

We introduce this framework by particularizing all the definitions to images, which will allow

us later to draw the connections between our method and previous literature. For a more

detailed description on differential geometry, please refer to do Carmo [1976].

The simplest manifold that we can consider is a curve in the plane, which corresponds

to a 1-dimensional manifold embedded in R2. Intuitively, a curve in the plane is a flexible

cord that can be straighten to locally look like the real line R. Formally, we describe it by

means of a smooth parametrization between R and the embedding space R2, ensuring that

there are no critical self-intersections in the curve by constraining the parametrization to be

locally invertible. In order to measure the length of the curve or the angle between its different

directions, we consider its trajectory in R2 and measure length and angles in terms of the

usual coordinates and scalar product of R2. In this section, we generalize these concepts to

n-dimensional manifolds embedded in Rm , m > n. The definitions, however, just formalize

the previous intuitive explanation of a curve in R2 (the manifold) and how we measure its

length (the metric).

We say that M ⊂Rm is an n-dimensional smooth manifold in Rm if for every point p in

M there is a local chart (σ,U ) satisfying

• U ⊂Rn and V ⊂Rm are open sets with p ∈V

• σ is a parametrization of M around p such that
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2.2. Differential geometry in image processing

σ : U ⊂Rn −→V ⊂Rm

(u1, . . . ,un) 7→σ (u1, . . . ,un) . (2.2)

– σ is a differential function with rank Jσ= n, where Jσ is the Jacobian of σ.

– σ : U −→V ∩M is an homeomorphism, i.e., σ−1 exists and is continuous.

The collection of local charts {σ,U } of M is called an atlas.

The inherent idea of the definition is the same than for the 1-dimensional curve in R2.

The first point is only a technical condition to ensure differentiability. The second condition

formalizes the idea that an n-dimensional smooth manifold is something that locally looks

like Rn and can be parametrized with a set of differential functions, the atlas, that are locally

invertible, i.e., the manifold has no critical points associated with self-intersections.

For instance, the plane R2 is a 2-dimensional manifold that can be parametrized with local

coordinates (x, y) and a single atlas {id,R2}. A more interesting case is the sphere S2 ⊂ R3, a

2-dimensional manifold in R3 which cannot be covered by one single atlas and has curvilinear

coordinates. In this case we can construct an atlas with the stereographic projections from

the north and south poles, which cover all the sphere except the projecting point. The stereo-

graphic projection from the north pole, for instance, readsσ
(
x, y

)= (
2x

1+x2+y2 , 2y
1+x2+y2 , x2+y2−1

1+x2+y2

)
.

This will be useful later.

In the Beltrami framework introduced in Sochen et al. [1998], images are considered as

2-dimensional Riemannian manifolds embedded in the so-called space-feature manifold. For

a grey-scale image defined in a rectangleΩ⊂R2, for instance, the manifold is parametrized

with the following single chart:

σ : Ω⊂R2−→Ω×R⊂R3(
x, y

) 7→(
x, y, f (x, y)

)
, (2.3)

where f (x, y) is the grey level associated with point (x, y). Assuming f to be differentiable, it is

trivial to prove thatσ verifies the properties of a local chart, and the image can be considered a

2-dimensional manifold M embedded in a higher dimensional space M ⊂Ω×R. The potential

of this geometric framework lies in the general definition of the space-feature manifold and the

choice of its metric. The features are not restricted to scalar values, but include vector features

encountered in color, texture, or multi-spectral image analysis (Kimmel et al. [1997], Sagiv

et al. [2006]). Similarly, the embedding is not limited to 2-dimensional images and generalizes

naturally to n-dimensional manifolds associated with volumetric data or time varying images.

Moreover, the choice of the metric enables the study of complex geometries inherent to scale-

space methods and non-flat images generated by catadioptric or omnidirectional cameras

(Bresson et al. [2006a], Bogdanova et al. [2007]).

To measure distances, angles, and areas in the manifold M we require the concept of a

metric, that is, a scalar product and a vectorial space. The definition of these concepts in a

manifold is naturally inherited from Rm by means of the parametrizations.
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Given an n-dimensional smooth manifold M ⊂ Rm and p ∈ M , we say that v ∈ Rm is a

tangent vector to M in p if there is ε> 0 and a parametric curve γ : (−ε,ε) −→M such that

γ (0) = p and γ′ (0) = v .

The collection of all tangent vectors to M at point p is called the tangent space TpM .

It is easy to prove that TpM is a vectorial space of dimension n, with basis { ∂σ∂u1
, . . . , ∂σ

∂un
} |u=σ−1(p).

As in the case of the curve in R2, distances and angles in the manifold M are inherited

from the standard scalar product in the embedding space Rm . This operation, denoted σ?, is

known as pull-back of the metric of Rm to the manifold.

To that purpose, for every point p ∈M we consider the vectorial space TpM ⊂Rm with the

inner product · induced byRm . The pull-back operationσ? gives us a linear symmetric definite

positive form Ip for every p ∈ M , that we call the metric or first fundamental form of the

manifold M

Ip : TpM×TpM −→ R

(u,v ) 7→ u·v . (2.4)

Given a local chart (σ,U ) and the basis { ∂σ∂u1
, . . . , ∂σ

∂un
} = {σ1, . . . ,σn} of TpM , we can compute

the expression of Ip in that basis. The resulting n ×n matrix G? has entries g?i j =σi ·σ j .

As a bilinear form, Ip does not depend on the local coordinates, but its matrix expression G?

depends on the basis used for TpM and, consequently, on the local chart.

In our previous examples, the plane can be described by one single atlas {id,R2} and we

have TpR
2 =R2, with metric given by the identity matrix I2. The sphere S2, on the contrary,

requires multiple atlases, and the induced metric with the stereographic projection reads

G? = 4
(1+x2+y2)2 I2.

In the case of images with the parametrization defined by Equation (2.3), the basis of the

tangent space is given by {σ1 = (1,0, fx ),σ2 = (0,1, fy )}, and the induced metric in this basis

reads

G? =
(

1+ fx
2 fx fy

fx fy 1+ fy
2

)
. (2.5)

In this image manifold, the distance between two points p1 =
(
x, y

)
and p2 =

(
x +d x, y +d y

)
in the image plane is measured by the length of vector v = −−−→p1p2 in the metric of the mani-

fold. Therefore, the squared distance between these two points is given by v T G?v = (d x)2 +
(d y)2 + (Dv f )2, where Dv f =∇ f · v is the directional derivative of f in the direction v . As a

consequence, two points in the manifold are close if they are physically close in the coordinate

space and their grey level values are similar. In other words, the notion of distance between

two points in the image refers not only to the spatial distance, but also to the information

available in the feature space. As a consequence, a scaling factor α is usually introduced in

order to bring feature and space variables to the same scale.
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2.2. Differential geometry in image processing

To measure areas in the manifold, we recall first that two non-parallel vectors u, v ∈R3 de-

fine a parallelogram with an area given by
p|u ∧v | =

√
‖u‖2‖v‖2 − (u·v )2 =

√
det(u, v )T (u, v ),

where (u, v ) is the matrix of columns u and v .

For a 2-dimensional manifold in general, the area of a bounded region R ⊂M is measured

by the “curvilinear parallelogram” formed by the tangent vectors associated to its coordinate

parametrization of this region, that is,∫
σ−1(R)

√
‖σ1‖2‖σ2‖2 − (σ1·σ2)2 =

∫
σ−1(R)

p
detG?.

For higher dimensional manifolds
∫
Ω

p
detG? measures the hyper-surface of the manifold in

its metric, and g? = detG? is defined as the squared hyper-surface element on the manifold.

In the case of grey-scale images in the plane, the surface of the manifold is given by∫
Ω

√
1+α2|∇ f |2 and reduces to a regularization term on the intensity values of the pixels. The

role of the scale parameter α allows us to consider different norms. If α→∞, the 1 inside the

square root becomes negligible and the surface of the manifold approaches a total variation

regularizer; the minimization of this functional corresponds to an anisotropic smoothing

where the diffusion coefficient is defined by the grey-level values of the image. On the other

hand, if α→ 0, the minimizing flow approaches the heat diffusion and results in an isotropic

diffusion where the smoothing is completely determined by the spatial coordinates in the

image plane. In other words, the surface of the manifold defined by an image couples in a

single functional the smoothness of the image in both spatial and feature coordinates, and the

weight given to each term is controlled by the metric parameter α.

For images with k feature channels f 1, . . . , f k , we make use of Einstein’s convention1 to

write the surface element as g? = 1+αi
2|∇ f i |2 +αiα j

[∇ f i ,∇ f j
]2

, which takes into account

the coupling of the different channels in the image. Indeed, the terms
[∇ f i ,∇ f j

]= f i
x f j

y − f i
y f j

x

correspond to the magnitude of the cross product of the vectors ∇ f i and ∇ f j and measure the

coupling of feature channels f i and f j in terms of their gradients. As a consequence, Kimmel

et al. [1997] observes that the determinant of the induced metric works as a generalized edge

indicator. When the determinant of the metric has a value larger than unity, it indicates the

presence of a strong gradient on the manifold. A value which is close to unity indicates a region

where the manifold is almost flat. In the case of vectorial images, it does not only exploit ∇ f i

in terms of its norm, but also in terms of its orientation, i.e., it makes use of the directional

information to measure the coupling of the image channels in the definition of edges. In fact,

this is the main advantage of this geometric framework for image segmentation.

Finally, the notion of distances in M allows the definition of differential operators on

functions defined on the manifold. The differential operators are defined taking into account

the metric of the manifold G = (gi j ). For instance, the gradient is defined imposing that the

directional derivative of function f in direction v , denoted as Dv f , verifies Dv f =∇ f · v with

the scalar product defined with the metric of the manifold. The gradient operator corresponds

1Summation is assumed for variables with the same sub- and super-indexes
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then to ∇M f = g i j f j dui , and the squared norm of the gradient of a function is given by

‖∇M f‖2
M

= g i j fi f j , where (g i j ) is the inverse of the metric matrix G and fi = ∂ f
∂ui .

2.3 Harmonic Active Contours

We formulate our segmentation method as a minimization problem. Our minimization

variable is the level set function that describes the active contour of the segmentation, and the

objective functional measures the surface of the manifold defined by the joint embedding of

the image and the level set function. Consequently, the proposed segmentation corresponds to

a minimal surface manifold, and the minimizing function is an harmonic map; this identifies

our technique as an harmonic active contour.

For simplicity, our experiments consider only images in the plane, but the proposed

harmonic active contours extend easily to higher-dimensional and non-Euclidean spaces.

To illustrate this flexibility, this section presents the general formulation of the embedding,

manifold, and metric that characterize the proposed segmentation technique; the expressions

derived for images in the plane are only a particularization of the general HAC model.

2.3.1 Image segmentation as a Riemannian manifold

In our formulation, the segmentation is defined by the zero-level set of a function φ and the

segmentation criterion is given by the contour of the features f 1, . . . , f k , which might depend

on φ. Both the features and level set function are defined in the same space manifold Σ than

the images, take values in R and are considered as differentiable functions in Σ.

The space manifold Σ has coordinates u = (
u1, . . . ,un

)
, with metric G = (gµν) on these

coordinates2. For images in the plane, for instance, we have u = (x, y), Σ = Ω ⊂ R2, and

G = I2, while for images in the sphere parametrized with the stereographic projection we have

G = 4
(1+x2+y2)2 I2.

We now make use of the Beltrami framework and consider an n-dimensional manifold M

associated with each possible segmentation of the image. This manifold M is defined by the

following embedding into the space-feature Σ×Rk+1

σ : Σ−→Σ×Rk+1

u 7→
(
u, f 1, . . . , f k ,φ

)
. (2.6)

Compared to previous approaches, our space-feature manifold includes both image features

and level set function in the embedding. We keep the name space-feature manifold for

simplicity, but we point out that the inclusion of both the level set function and the image

2To simplify notation, we use Greek indexes µ,ν to refer to space coordinates in Σ and latin ones i , j for the
features. To that purpose also, the usual gradient and norms are assumed in Rn and we specify with a sub-index
∇Σ, ‖.‖Σ any other case.
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features is the key point that allows the definition of an alignment term between the gradients

of the level set function and the gradients of the image.

We now pull-back the metric defined in M by space and features together. To this purpose,

in Σ×Rk+1 we consider the metric

G 0 . . . 0 0

0 α1 . . . 0 0

0 0
. . . 0 0

0 0 . . . αk 0

0 0 . . . 0 β

 , (2.7)

which offers the following interpretation: the distances on the coordinates u associated with

the space manifold are measured in the corresponding metric G of Σ, which is considered

orthogonal to the feature space, while both the feature channels f 1, . . . , f k and the level set

function φ live in the Euclidean space Rk+1 and are considered orthogonal to each other.

The pull-back operator on (2.7) induces the following space-feature metric (g∗
µν) on the mani-

fold M

g∗
µν = gµν+αi f i

µ f i
ν +βφµφν. (2.8)

With the proposed embedding both the image features and segmenting functions are

included in the induced metric of Equation (2.8), leading to terms weighted by αi and β.

The subjective surface model of Sarti et al. [2002] includes only the level set function in the

embedding and weights the surface element with an edge detector to drive the active contours

to the edges of the image; this results in a generalization of GAC to 2-dimensional manifolds

that ignores region-based segmentation criteria. We avoid this issue by introducing additional

dimensions on the embedding. The additional dimensions in the feature space, however, do

not affect the intrinsic dimension of the image manifold M , which does not depend on the

embedding but on the space manifold Σ.

In this work we limit ourselves to 2-dimensional images, i.e., u = (x, y), the determinant

of the induced metric tensor is computed as g∗ = g∗
11g∗

22 − g∗
12g∗

21 and the squared surface

element given by

g∗ =g +αi g gµν f i
µ f i

ν +βg gµνφµφν+ 1

2
αiα j

[
∇ f i ,∇ f j

]2 +αiβ
[
∇ f i ,∇φ

]2
. (2.9)

In Equation (2.9), ∇ f is the gradient computed in the coordinates u, g is the surface element

associated with the original metric tensor (gµν) on Σ and (gµν) its inverse. If we take into

account the definition of differential operators in the manifold Σ, Equation (2.9) simplifies to

g∗ =g +αi g‖∇Σ f i‖2
Σ+βg‖∇Σφ‖2

Σ+
1

2
αiα j

[
∇ f i ,∇ f j

]2 +αiβ
[
∇ f i ,∇φ

]2
. (2.10)
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This allows us to interpret the terms ‖∇Σ f i‖2
Σ and ‖∇Σφ‖2

Σ as a simple measure of smoothness

of the features and the level set function in the original metric of the space Σ. On the other

hand, the terms
[∇ f i ,∇ f j

]= f i
x f j

y − f i
y f j

x correspond to the magnitude of the cross-product

of the vectors ∇ f i and ∇ f j and measure the coupling of the image features f i and f j . An

equivalent term for the coupling of the level set function and the different feature channels is

given by the terms
[∇ f i ,∇φ]

. Naturally, as the image features and the level set function are

orthogonal to each other in (2.7), their associated terms do not involve the metric of the space

manifold (gµν).

For images on manifolds conformally equivalent to the Euclidean plane, i.e., whose metric

matrix is diagonal G =p
g I2, the squared surface element simplifies to

g∗ =g +αi
p

g‖∇ f i‖2 +βpg‖∇φ‖2 + 1

2
αiα j

[
∇ f i ,∇ f j

]2 +αiβ
[
∇ f i ,∇φ

]2
.

This type of manifolds are commonly encountered in image processing, from the usual im-

ages defined on the plane (
p

g = 1) to non flat images on the sphere (
p

g = 2
1+x2+y2 with the

stereographic projection).

On the following, we will consider images on the plane, where we have

g∗ =1+αi‖∇ f i‖2 +β‖∇φ‖2 + 1

2
αiα j

[
∇ f i ,∇ f j

]2 +αiβ
[
∇ f i ,∇φ

]2
. (2.11)

2.3.2 Minimal surface manifold as segmentation criterion

We formulate our segmentation technique as the following minimization problem

min
φ

∫
Ω

√
1+αi‖∇ f i‖2 +β‖∇φ‖2 + 1

2
αiα j

[∇ f i ,∇ f j
]2 +αiβ

[∇ f i ,∇φ]2. (2.12)

We claim that the optimal segmentation is given by the level set function that minimizes the

surface of the manifold defined by the joint embedding of the image and the level set function.

Indeed, as can be seen in Equation (2.12), minimization of the surface element aligns the

gradients of the level set function φ with the gradients of the image features, that is, with the

edges of the image. Let us analyse it in more detail.

Inside homogeneous regions, the minimization is driven by the smoothness penalty ‖∇φ‖
because

p
g ≈

√
1+β‖∇φ‖2, the objective functional approximates TV or isotropic diffusion

depending on the value of parameter β, and the level set function tends to be flat.

In regions of the image with well-defined edges, the gradients of the image features are large

and minimization of the cross-terms
[∇ f i ,∇φ]

attracts the level sets of φ to the edges of the

image, the spatial gradient of φ increases, and the level set function develops a discontinuity.

In regions with fragmented edges, the information about size and orientation of neighbouring

well-defined edges is smoothly extended by the terms |∇φ| and
[∇ f i ,∇φ]

, and the level set
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function is able to complete the missing boundaries.

In the proposed harmonic active contours, therefore, the segmentation criterion is defined

by the choice of the image features, which we particularize next to to obtain contour- and

region-based segmentation criteria.

2.3.3 Feature definition for edge- and region-based segmentation

Edge-based segmentation is obtained by choosing features that are local image descriptors. In

the easiest case, we simply embed the grey level or color intensities of the image, but more

elaborate features such as semi-local texture descriptors, Wavelet or Gabor coefficients could

be equally used. For simplicity we define f i (x, y) = I i (x, y) for each channel I i in the image.

At the same time, in order to detect objects that are not defined by local gradients, but by

homogeneous regions, we introduce region-based features. We adopt the piecewise constant

instance of the segmentation model proposed by Mumford and Shah [1989]. We define two

image regions, R+ = { (x, y) |φ(
x, y

)> 0 } and R− = { (x, y) |φ(
x, y

)< 0 }, and characterize them

by the mean values of the local features inside the region, µi+ and µi−. For each channel, the

associated region features are inspired by ACWE and introduce the following region descriptor

associated with R+

f i = (I i −µi
+)2H

(
φ

) = si H
(
φ

)
, (2.13)

where H is the Heaviside function, and the resulting feature f i measures the square error

associated with the piecewise approximation of R+. The region descriptor for R− can be

included in a similar manner, but we omit it here to shorten the equations. Its treatment

and minimization are analogous to the region descriptor R+. The proposed region features

segment the image into two regions in terms of the zero-level set of the function φ, that is,

they fix the level set that parametrizes the contours of the segmentation.

The proposed segmentation method combines contour- and region-based criteria by

including both contour- and region-based features in the embedding. The resulting squared

surface element reads

g =1+αi‖∇I i‖2 +γi‖∇ f i‖2 +β‖∇φ‖2 + 1

2
αiα j

[
∇I i ,∇I j

]2

+αiγ j

[
∇I i ,∇ f j

]2 + 1

2
γiγ j

[
∇ f i ,∇ f j

]2 +αiβ
[
∇I i ,∇φ

]2 +γiβ
[
∇ f i ,∇φ

]2
. (2.14)

The term ‖∇φ‖2 controls the smoothness of the level set function and ‖∇ f i‖2 the smoothness

of the region decomposition of the image, the cross-terms
[∇I i ,∇ f j

]2
measure the coherence

between region and contour criteria, and the terms
[∇I i ,∇φ]2

and
[∇ f i ,∇φ]2

measure the

alignment between the contours of level set function and the edges of the original image and

its region decomposition.
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The parameter of the metric associated with the image channel I i is αi , while the param-

eter γi is associated with the region term f i . In order to simplify the metric, we normalize

the feature range of each channel by αi = α
mi

α
and γi = γ

mi
γ

. The resulting segmentation is

defined by three parameters: α controls the weight given to the edge segmentation criterion, γ

controls the region criterion associated with a piecewise constant decomposition of the image,

and β controls the regularity of the contours and the level set function φ.

2.3.4 Relation to subjective surfaces and anisotropic diffusion

We analyse now the relation of the proposed technique with existing geometric methods

proposed in the Beltrami framework. For simplicity we limit the analysis to images in the

plane.

We start by reviewing the embedding and resulting metric proposed for anisotropic dif-

fusion and texture denoising in Sochen et al. [1998], Kimmel et al. [1997], Sagiv et al. [2006].

Given a multi-valued image in the plane with features f 1, . . . , f k , the natural embedding for

denoising is given by

σ f : Ω −→ Ω×Rk(
x, y

) 7→
(
x, y, f 1, . . . , f k

)
. (2.15)

The metric induced in the image manifold is then

G f =
(

1+αi f i
x

2
αi f i

x f i
y

αi f i
x f i

y 1+αi f i
y

2

)
, (2.16)

and the resulting surface element g f = 1+αi
2|∇ f i |2+αiα j

[∇ f i ,∇ f j
]2

works as a robust edge

detector. It defines the edges of the image considering both the gradients of each channel

with the terms |∇ f i |2, and the coupling of the different channels with the cross-products[∇ f i ,∇ f j
]
.

A similar geometric framework has been applied to segment images in Sarti et al. [2002],

where the level set function is interpreted as a subjective surface. To that purpose, Sarti et al.

substitute the image features f 1, . . . , f k by the level set function φ and define the following

embedding

σφ : Ω −→ Ω×Rk(
x, y

) 7→(
x, y,φ

)
. (2.17)

With the usual scalar product in the space-feature Ω×R⊂R3, the induced surface element is

given by gφ = 1+β‖∇φ‖2 and measures the area of the level set function seen as a surface. In

order to detect contours, the surface element is weighted with an inverse edge detector, and the

level set function is evolved to minimize its weighted surface measured by
∫
Ω w

√
1+β‖∇φ‖2.
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Consequently, this method is a generalization of GAC to 2-dimensional manifolds, as shown

in Bresson et al. [2006a]. An equivalent formulation of this functional is obtained weighting

directly the elements of the metric ofΩ×R by the inverse edge detector w , that is, considering

the scalar product inΩ×R given by the following symmetric, positive semi-definite matrix w 0 0

0 w 0

0 0 βw

 . (2.18)

The inverse edge detector w is usually a simple function of the image gradient, like w = 1
1+a|∇I |2 ,

and exhibits none of the properties of the robust edge detector g f used in the Beltrami

framework for diffusion. Embedding of the level set functionφ in the definition of the manifold

results, however, in a segmentation technique able to cope with weak edges and fragmented

boundaries, see Sarti et al. [2002].

The segmentation model of the subjective surface, moreover, does not include a region term

in the objective functional, and it does not explicitly define a contour because the particular

level sets of φ that parametrizes the contour is not specified in the objective functional. The

inclusion of the region features of Equation (2.13) in our embedding overcomes these two

limitations, i.e., the ability to segment images based on the homogeneity of the regions and

the explicit parametrization of the contour as the zero-level set of function φ.

In fact, it is easy to prove that our embedding corresponds to a generalization of the subjective

surfaces with the following metric in the space-featureΩ×R

(
G f 0

0 β

)
=

 1+αi f i
x

2
αi f i

x f i
y 0

αi f i
x f i

y 1+αi f i
y

2
0

0 0 β

 . (2.19)

Compared to subjective surfaces, our metric in the space-feature Ω×R substitutes the edge

detector w with the induced metric of anisotropic diffusion by Sochen et al. [1998], Kimmel

et al. [1997], Sagiv et al. [2006]. Interpreting the metric G f as a robust edge detector, we can

easily see that the proposed technique combines the advantages of both geometric approaches:

diffusion methods for the robust detection of edges and subjective surfaces for its ability to

close fragmented and weak edges.

2.3.5 Relation to robust edge integration

The proposed HAC shares a strong connection with the segmentation method proposed in

Kimmel and Bruckstein [2003], where a geometric alignment term between the normals to the

contour and the gradient of the image is combined with the objective functionals of GAC and

ACWE to improve image segmentation. This alignment term defines a robust edge integrator

that acts in a similar manner to the cross-product terms of the proposed HAC. To understand

the differences and similarities of both methods, a more detailed description of the robust
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Chapter 2. Harmonic Active Contours

edge integrator of Kimmel and Bruckstein [2003] is necessary.

Kimmel and Bruckstein [2003] observes that the direction associated with the gradient

vector of an image I is a good estimator of the orientation of the edge contour, and introduces

a robust edge integrator that encourages the alignment between the normal vector to the

contour and the gradient of the image along the contour. With an implicit parametrization of

the contours, this alignment term reads

−
∫
C
| ∇I · ∇φ

|∇φ| |. (2.20)

From Equation (2.20), it is clear that this alignment term is only active in C for the zero-level

set of φ. On the other hand, the proposed HAC aligns the gradients of the level set function,

not the normals, with the gradients of the image for all the level sets of φ by integrating the

cross-terms
[∇ f i ,∇φ]2

throughout the whole image domain Ω. This gives us two theoretic

differences with respect to the robust edge integrator of Kimmel and Bruckstein for grey-

scale images. First, the weight given to the alignment term in HAC is proportional to |∇φ|,
which gives more weight to the alignment of gradients when the level set function has larger

gradients, i.e., stronger edges. Second, the HAC aligns the gradients of all the level sets of the

level set function, not only along the active contour, and is therefore less likely to get trapped

in local minima, see Figures 2.1c and 2.1d and the experiments of Section 2.5.

Moreover, HAC naturally generalizes to multi-channel images, where both the coupling of

the different image channels and the coupling of their alignment with the level set function

are included in the objective functional of Equation (2.14). Finally, the proposed HAC can also

be applied to non-Euclidean parametric manifolds and feature spaces.

In terms of implementation, Kimmel [2003] proposes an efficient algorithm to minimize

the resulting objective functional with a PDE descent flow in the level set function. The

algorithm combines additive operator-splitting and a narrow-band implementation, but

requires periodic redistancing of φ as a signed distance function. As a result, and despite the

level set formulation, the alignment term is only active in a narrow band close to the zero-level

set of φ. On the other hand, HAC uses modern optimization techniques to minimize the

objective functional and is therefore faster. Our objective functional, in fact, is not compatible

with a narrow-band implementation or periodic redistancing of the level set function because

it exploits the alignment of all the level sets of φ with the image features, not only close to the

active contour.

2.4 Numerical minimization

The optimization problem associated with the proposed HAC model is given by

min
φ

∫
Ω

p
g with g given in Equation (2.14). (2.21)
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2.5. Experimental results

In Estellers et al. [2011], we adopted the traditional PDE descent flow used in the Beltrami

framework to minimize the objective functional. In particular, we used Euler-Lagrange to ob-

tain the optimality conditions for the minimization problem and evolved φ with the following

flow

φt =− 1

2
√

g∗

(
∂g∗

∂φ
+ 1

2g∗
∂g∗

∂σµ
∂g∗

∂φµ
− ∂

∂σµ
∂g∗

∂φµ

)
(2.22)

until a fixed-point was encountered, and the optimality conditions were met. To guarantee

stability of the iterative scheme, the time step of the flow was limited by the CFL condition,

and the minimization technique was extremely slow.

Several techniques have been proposed recently to accelerate the Beltrami flow for image

reconstruction, like the vector extrapolation of Dascal et al. [2007], or the semi-implicit PDE

schemes of Dascal et al. [2009]. The experiments of Rosman [2010], however, show that

minimization techniques based on variable-splitting and augmented Lagrangians result in

faster algorithms.

Based on this observation, we develop here a minimization algorithm that relies on the

same variable-splitting and augmented Lagrangian techniques than Chapter 4 to obtain an

algorithm that, in average, is 4-5 times faster than the original descent flow (2.22). To avoid

repetition, the details of the proposed algorithm are given in Appendix C.

2.5 Experimental results

This section evaluates the properties of the proposed HAC by segmenting different kinds

of images and compares its performance with related segmentation methods. For a fair

comparison, all the code is implemented in Matlab and runs in a laptop with an Intel Core i5

at 2.3GHz, the timings are given in seconds (s).

The first set of experiments is designed to characterize the properties of the proposed HAC

model. We start in Figures 2.2a and 2.2b by showing the ability of HAC to exploit the directional

information of the image gradients in order to overcome the inhomogeneities present in the

images and obtain correct segmentations. We then show the ability of the proposed method to

correctly segment ridge structures, first with a noisy image of a car-plate image in Figure 2.2d

and then with the segmentation of blood vessels in a fundus image with low-contrast in Figure

2.2c. Next, Figures 2.3a-2.3d show the ability of the proposed method to close fragmented

contours and segment medical images with weak edges. Figure 2.4 presents the results of

the segmentation of color images, where the proposed method exploits the coupling of the

different channels to detect meaningful edges. In this case, we provide also the segmentations

obtained with the standard convex GAC+ACWE segmentation method, where neither the

coupling of the different channels nor the alignment of image gradients with the contours are

exploited to overcome the inhomogeneities of the background (Figure 2.4c) or textured areas
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(a) HAC 7.0s. (b) HAC 8.2s. (c) HAC 10.3s. (d) HAC 6.8s.

(e) Kimmel and Bruckstein
[2003] 24.7s.

(f) Kimmel and Bruckstein
[2003] 12.0s.

(g) Kimmel and Bruckstein
[2003] 24.2s.

(h) Kimmel and Bruckstein
[2003] 15.3s.

Figure 2.2: Segmentation of images with ridge structures, inhomogeneities and noise with the
proposed HAC (top row) and with Kimmel and Bruckstein [2003]’s model (bottom row). Initial
level set set in red, final segmentation in blue.

(a) HAC 25.2s. (b) HAC 14.9s. (c) HAC 15.3s. (d) HAC 17.1s.

(e) Kimmel and Bruckstein
[2003] 15.9s.

(f) Kimmel and Bruckstein
[2003] 29.3s.

(g) Kimmel and Bruckstein
[2003] 22.2s.

(h) Kimmel and Bruckstein
[2003] 21.5s.

Figure 2.3: Segmentation of medical images with the proposed HAC (top row) and with Kimmel
and Bruckstein [2003] model (bottom row). Initial level set set in red, final segmentation in
blue.

(Figure 2.4d).

In a second set of experiments we compare the proposed HAC with the robust edge
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(a) HAC 11.6s. (b) HAC 25s.

u on iteration 14

(c) GAC+ACWE 1.5s.

u on iteration 13

(d) GAC+ACWE 2.1s.

Figure 2.4: Segmentation of color images with HAC model and a the convex formulation
of GAC+ACWE models. Initial level set set in red, final segmentation in blue. Note that
initialization does not affect the convex GAC+ACWE segmentation model3.

integrator of Kimmel and Bruckstein [2003] combined with the GAC and ACWE models. In

particular, we adopt the narrow-band implementation proposed in Kimmel [2003], with fast

redistancing of the level set function following Sethian [1996]. Figures 2.2e-2.2h and 2.3e-

2.3h show the results of the segmentations for Kimmel and Bruckstein’s method. For images

not subject to inhomogeneities, Figures 2.3e-2.3h, both methods perform similarly in terms

of accuracy, but HAC is faster because we make use of variable-splitting and augmented

Lagrangian to design an efficient minimization technique. The images of Figures 2.2e-2.2g

are subject to inhomogeneities and cannot be segmented with a simple combination of

GAC+ACWE models. In these cases, the alignment of image gradients and level set function is

necessary to produce correct segmentations, and our experiments show that the proposed

HAC produces slightly better segmentations in terms of speed and accuracy, see for instance

the fundus image in Figures 2.2c and 2.2g, or the polyhedra of Figures 2.2a and 2.2e.

The key point, however, is the robustness of HAC to different initializations, as shown

in Figure 2.5. In these synthetic images, Kimmel and Bruckstein’s method cannot exploit

the region term due to the image inhomogeneity, and a balloon force is introduced to either

shrink or inflate the original contour. With the wrong initialization, therefore, Kimmel and

Bruckstein’s method is not able to detect new outer contours of the second of object of Figure

2.5a or the inner contours of the number of Figure 2.1c because they are too far from the

zero-level set of φ. On the other hand, the proposed HAC aligns the gradients of all the level

sets of φ with the gradients of the image features and is able to propagate the alignment of

neighbouring level sets to detect new contours. As a result, the segmentations obtained from

different initializations in Figures 2.2a and 2.5c, and Figures 2.1d and 2.5d are not qualitatively

different with our method, while they differ with Kimmel and Bruckstein’s method.

2.6 Conclusions

This chapter has developed a segmentation method in a geometric framework that interprets

each possible segmentation of an image as a 2-dimensional manifold embedded in a higher-

dimensional space, from which it inherits a metric. This metric defines distances between
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(a) Kimmel and Bruckstein
[2003], 8.4s.

(b) Kimmel and Bruckstein
[2003], 44.5s.

(c) HAC 22.1s. (d) HAC, 36.2s.

Figure 2.5: Comparison of image segmentation results with HAC and the inclusion of the
robust edge integrator of Kimmel and Bruckstein [2003] into the GAC+ACWE model. Initial
level set set in red, final segmentation in blue.

points in the manifold that consider simultaneously the spatial distance between the points,

the values of the image features at these points, and the labels assigned to them in the seg-

mentation. A minimal surface manifold corresponds then to a segmentation that minimizes

the usual region, edge, and regularity terms of an active contour model, and additionally takes

into account the coupling of the different image channels and the alignment between the

gradients of the image and the gradients of the level set function.

Compared with the Geodesic Active Contours of Caselles et al. [1997] and the Active Contour

without Edges of Chan and Vese [2001], the proposed technique overcomes image inhomo-

geneities because it exploits the directional information of the gradients of the image to align

the contours of the segmentation with the edges of the image.

A similar idea is the basis of the robust edge integrator of Kimmel and Bruckstein [2003],

where the alignment between the gradients of the image and the normal vectors to the con-

tours drives only the zero-level set of the level set function. The alignment of the proposed

model, on the other hand, affects all the level sets and is thus able to exploit the alignment of

the neighbouring levels to pull the contours to the right position. As a result, the proposed

harmonic active contours are able to discover new edges and are less sensitive to initialization.

The proposed formulation, moreover, is directly extended to higher-dimensional spaces

and non-flat images, where usual segmentation methods cannot be applied.
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3 Surface Reconstruction from
Microscopic Images of Printed Cir-
cuits
This chapter develops a method to reconstruct 3D surfaces of silicon wafers from 2D images

of printed circuits taken with a scanning electron microscope. To solve this inverse problem,

the reconstruction method combines the physical model of the optical acquisition system

with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-

shading technique with a shape prior.

In the context of variational methods, the reconstruction of the surface is formulated

as an optimization problem with an objective functional that combines a data term on the

microscopic image with two prior terms on the surface. The data term models the acquisition

system through the irradiance equation characteristic of the microscope; the first prior is a

common smoothness penalty, and the second prior constrains the shape of the surface to

agree with the expected shape of the pattern in the circuit. Geometry, in this chapter, plays a

role in the data term as a result of the irradiance equation, which relates the shading observed

in the image with the orientation of the unknown surface.

In order to account for the variability of the manufacturing process, the prior term incorpo-

rates a variable that allows a non-linear elastic deformation between the expected pattern and

the reconstructed surface; the estimation of this deformation field introduces a registration

problem in the proposed variational formulation. As a result, the minimization problem has

two unknowns, and the reconstruction method provides two outputs: a reconstructed surface

and a deformation field. The reconstructed surface is derived from the shading observed in

the image and the prior knowledge about the pattern in the circuit, while the deformation field

produces a mapping between the expected shape and the reconstructed surface that provides

a measure of deviation between the theoretical models and the real manufacturing process.

The material of this chapter has been partially published in Estellers et al. [2013b].
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Chapter 3. Surface Reconstruction From Microscopic Images of Printed Circuits

3.1 Introduction: a few words on lithography

As circuit designs become more complex due to technology scaling, engineers in the semi-

conductor industry require new tools to obtain accurate and useful information about the

manufacturing process. In particular, the characterization of surface topography is essential

in optical lithography in order to optimize the printing process from layout masks to silicon

wafers. Scanning electron microscopy (SEM) is the primary tool currently used in industry

to measure geometrical features of semiconductor structures, but it provides only limited

information about the third dimension of the surfaces. In fact, several parameters associated

with the surface of the wafer are crucial to control the lithographic process (the height of the

step, the slope of the side walls, or the curvature of edges, see Mack [2007]), and it has now

become necessary for the industry to develop image processing techniques to reconstruct

accurate 3D surfaces from 2D SEM images. This chapter develops such a technique. It is

formulated as a shape-from-shading (SFS) reconstruction that considers prior knowledge

about the shape of the patterns in the circuit in order to improve the accuracy and robustness

of the reconstruction.

In the past, computer vision has focused on the combination of stereoscopy with SFS

for the reconstruction of surfaces from SEM images of printed circuits, but the resulting

techniques have not been adopted by the industry. The acquisition of pairs of stereoscopic

SEM images at the nanometre scale is not only challenging, but extremely expensive for

large wafers, and the throughput requirements of manufacturers call for simpler and more

economic methods. Some examples of these techniques are Kayaalp et al. [1990], Beil and

Carlsen [1991], Ellison and Taylor [1991], Jones and Taylor [1995], Danzl and Scherer [2002],

Reithmeier et al. [2010].

Industrial SEM images are usually analysed with simple image processing techniques that use

edge detection and template matching to estimate 1D profiles of the surface along the contours

of the SEM image (Morokuma et al. [2005], Tabery et al. [2007, 2006], Shindo et al. [2009],

Shishido et al. [2010], Shibahara et al. [2011]). These techniques coarsely detect edges in the

SEM image with simple gradient and thresholding methods, locate a preliminary contour and

subsequently refine it to match a physically meaningful criterion in terms of the underlying

surface. To that purpose, they exploit available information about the patterns in the circuit

and analyse 1D profiles of the image along the normals to the contours, which are then

modified to match a fixed height level of the underlying surface. These profile measurements

are relatively fast to extract, but no real 3D surface is reconstructed. This chapter “fills in the

gap” between these two approaches and includes the knowledge of the patterns expected in

the circuit into a surface reconstruction method based on shape-from-shading. Compared to

the stereoscopic method, the proposed technique does not require SEM image pairs obtained

with an expensive dedicated system; instead, it exploits the available information about the

shapes of the patterns in the circuit to overcome the ill-posed nature of SFS with a shape prior

and obtain a robust reconstruction method.

For each pattern in the printed circuit, the nature and accuracy of the available information
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3.2. Shape-from-shading with a shape prior

can be considerably different. While reasonable optical proximity correction (OPC) models of

the printing process exists for some technology nodes and designs, these models are under

calibration in the first cycles of development and only the mask associated with the circuits can

be trusted (Mack [2007]). The reconstruction method proposed here considers both situations

and defines different shape priors depending on the nature of the available information. At the

time, it estimates a deformation field between the shape prior and the reconstructed surface

that can be used a posteriori to quantify unaccounted errors in the OPC modelling or the

lithographic printing process.

The rest of this chapter is organized as follows. Section 3.2 presents the proposed technique

and its context, reviewing SFS techniques in optical lithography and shape priors in imaging.

The reconstruction of the surface is then formulated as a minimization problem and solved

with efficient optimization techniques in Section 3.3, leaving the algorithmic details for the

Appendix D. Section 3.5 presents the experimental results, and conclusions are drawn in

Section 3.6.

3.2 Shape-from-shading with a shape prior

In the context of variational methods, the reconstruction of a surface is formulated here as an

optimization problem with a combined matching criterion based on the irradiance equation

and a shape prior that constrains the reconstructed surface to agree with the expected shape

of the pattern. To account for the variability of the physical printing process, the model allows

a non-linear elastic deformation of the expected patterns. We propose two different objective

energies to measure this deformation, one based on an OPC model of the expected surface

and another on the limited information extracted from the mask of the circuit.

The proposed variational problem has thus two variables, and the reconstruction method

provides two outputs: a surface parametrized by its height map z and a deformation field u.

The minimization problem that will be described in this section reads

min
z,u

αA (∇z)+βB (z,u)+γG (∇z)+W (∇u) . (3.1)

The height map of the surface z is reconstructed from the shading observed in the SEM image

and the prior knowledge about circuit patterns, which results in terms A, B and G in the

objective functional. The deformation field u produces a mapping between the expected

shapes in the circuit and the reconstructed surface, which leads to terms B and W in the

minimization problem (3.1). The details of each one of these terms are presented next, together

with a review of related approaches.
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3.2.1 Shape-from-shading from SEM images

In computer vision, shape recovery refers to the reconstruction of a 3D scene from 2D images

and covers different techniques, called shape-from-x, depending on the nature of the input

information. Shape-from-shading, in particular, deals with the recovery of shape from a

gradual variation of shading in the image.

To understand the problem of SFS it is necessary to study how the images are formed.

In our formulation we attach to the camera a 3D coordinate system (x, y, z), where (x, y)

corresponds to the image plane and the axis z corresponds on the optical axis. If we assume

an orthographic projection, the visible part of the scene defines a height map z(x, y) with the

coordinates of the points in the image given by (x, y). The SFS problem is then formulated in

terms of the “irradiance equation” of the acquisition system:

I0(x, y) = R(n(x, y)). (3.2)

Equation (3.2) relates the grey level I0(x, y) measured in the image with the reflectance function

R(n(x, y)) of the surface at that point. In physical terms, R(n) gives the value of the light re-

emitted by the surface as a function of its orientation, i.e., of the vector n normal to the surface.

This normal can easily be expressed in terms of the gradient of the height map as

n = (−∇x z,−∇y z,1)√
|∇z|2 +1

. (3.3)

The original SFS problem proposed by Horn [1970] consists on the recovery of a height map z,

the unknown of the problem, from the shading observed in the image I0, the data available

from measurements.

Since the introduction of SFS in the 70s, most efforts have been directed into the recovery

of shapes from images taken under normal lighting conditions, and only few investigations

have considered the problem associated with SEM images, see e.g. Kayaalp et al. [1990], Beil

and Carlsen [1991], Ellison and Taylor [1991], Jones and Taylor [1994, 1995], Danzl and Scherer

[2002], Rad et al. [2007], Reithmeier et al. [2010].

In the SEM acquisition system, images are formed scanning the sample with an electron

beam and detecting the electrons emitted at the point where the beam strikes the surface.

The number of electrons emitted by the surface is related to the angle between the electron

beam and the surface normal, resulting in shades in the captured image I0 proportional to

the number of electrons. At high magnifications, the imaging geometry can be modelled as

an orthographic projection with a unique light source at infinity. The resulting reflectance

function for SEM images is then given by

R (n) = ν

n ·L
, (3.4)

where ν is the reflectance coefficient of the surface, and L is a unit vector indicating the
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direction of the light source. In the case of SEM images of silicon wafers, ν is assumed uniform

within an image, L ≈ (0,0,1), and both parameters can be directly estimated from the SEM

images as explained in Section 3.4. Such a reflectance map neglects the effects of mutual

illumination, but provides a model of the SEM acquisition system that is computationally

tractable.

3.2.2 Review of surface reconstruction from SEM images of printed circuits

In the case of silicon wafers of printed circuits, the features derived from SEM images are

generally too sparse for standard SFS techniques. For this reason, in research, surface re-

construction from SEM measurements has been formulated as the correspondence problem

associated with stereo pairs of images that are obtained tilting the microscope stage or de-

flecting the electron beam. The combination of stereoscopy and SFS is able to reconstruct

accurate surfaces because the two techniques complement each other: SFS works best where

the surface is smooth and featureless, while stereo works well where the surface is rough and

the features are dense. See Kayaalp et al. [1990], Beil and Carlsen [1991], Ellison and Taylor

[1991], Jones and Taylor [1995], Danzl and Scherer [2002], Reithmeier et al. [2010] for the

details of such techniques.

In the industry, however, the main approach to 3D surface reconstruction from SEM images

is based on 1D measurements and Monte Carlo simulations. The Monte Carlo method models

statistically the interaction of the electron beam with the wafer by repeated simulations of

electron behaviour, which results in extremely long running times. Consequently, Monte Carlo

simulations are only used to obtain a library of SEM signals for simple circuit patterns defined

by a few parameters, see Villarrubia et al. [2004], Villarrubia and Ding [2009], Villarrubia et al.

[2010]. A measured SEM signal is then compared to the signals in library, and a 1D profile of the

surface is reconstructed estimating the library parameters that best match the measurements.

In this case it is important to obtain a robust estimate of the SEM profile, and several 1D

measurements are usually averaged, or smoothed, to avoid the effects of noise. This technique

has proved considerably accurate for simple structures available in the libraries, but it is too

restrictive for the complicated 2D patterns currently used in circuit designs. Compared to

the SFS approach adopted in computer vision, Monte Carlo simulations provide an accurate

model of the reflectance map, but the reconstruction is limited to 1D profiles and does not

consider the 3D nature of the surface.

The approach proposed here combines SFS techniques from computer vision with the

prior knowledge available in industry about the expected patterns and OPC models. We

approximate SEM acquisition system with the irradiance equation of SFS, and we consider

the 2D nature of the image measurements, the expected smoothness of the surface, and the

prior knowledge about its shape to overcome the limitations of Equation (3.4) to model the

electron interaction as accurately as Monte Carlo simulations. Similar to the combination

of SFS with stereoscopy, our approach integrates the complementary techniques of SFS and
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image registration to merge the best of both worlds: while SFS works well where the image is

featureless and the surface is smooth, the registration of the shape prior is guided by edges

of the image. Compared with stereoscopy, we do not require special acquisition systems to

obtain simultaneous SEM image pairs, instead we make use of the information available from

circuit designs about the expected patterns in the image. It is worth noting, however, that our

approach could also be modified to include stereoscopic pairs.

3.2.3 Variational formulation of shape-from-shading

A variational formulation of SFS offers here three additional advantages. First, variational

SFS techniques are generally more robust than other approaches, and therefore better suited

for an application with industrial SEM data (Zhang et al. [1999], Durou et al. [2008]). Second,

the objective minimization energy can easily include a term describing the prior information

provided by the mask or the OPC model in the shape reconstruction algorithm. Third, the

resulting minimization problem can be solved with efficient optimization techniques to speed

up the reconstruction. We refer the reader to the review papers of Zhang et al. [1999], Prados

et al. [2006], Durou et al. [2008], for an overview of other possible SFS approaches.

Variational SFS methods are defined by the choice of three elements: the unknown z used

to describe the surface, the objective functional E that is minimized, and the minimization

method. Functional E is defined by two terms or constraints in SFS: the brightness and

the smoothness constraint. The brightness term A ensures that the reconstructed shape

produces a similar irradiance as the input image, while the smoothness term G ensures the

reconstruction of a smooth surface, and it is introduced to overcome the ill-posed nature

of the problem. As both constraints can be directly written in terms of the gradient ∇z or

the normal n to the surface, the minimization can be solved in terms of ∇z or n. If the

minimization is solved in terms of n, the height map of the surface must be recovered a

posteriori by integration (Ikeuchi and Horn [1981]), and the integrability constraint of Frankot

and Chellappa [1988] ∂2z
∂x∂y = ∂2z

∂y∂x must be guaranteed to reconstruct physically meaningful

surfaces. The integrability of the surfaces can also be ensured by directly formulating the

brightness constraint in terms of the height map z, which results in variational methods with

higher-order derivatives and slower minimization algorithms (see e.g., Horn [1990], Leclerc

and Bobick [1991], Szeliski [1991]). We adopt such a formulation, but use recent advances in

optimization techniques to obtain a fast minimization algorithm.

Proposed data term – a model of the image acquisition system

In the proposed formulation, the brightness term reads

A (I ) = 1

2

∫
Ω

(R (d )− I0)2 with d = (dx ,dy ) =∇z, (3.5)
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3.2. Shape-from-shading with a shape prior

which assumes Gaussian noise in the SEM image acquisition process, but other norms instead

of L2 could be used for other noise models.

Proposed smoothness term on the surface

We adapt the common smoothness term of SFS, 1
2

∫
Ω

(
∆z +2∇x∇y z

)2, inspired by image seg-

mentation techniques. In particular, our approach mimics the active contours of Kichenas-

samy et al. [1995] and Caselles et al. [1997] by weighting the common smoothness term with

an inverse ridge detector that only penalizes locations where high slopes are unlikely. The

resulting penalty is

G (z) = 1

2

∫
Ω

w
(
∆z +2∇x∇y z

)2 = 1

2

∫
Ω

w |∇d |2 with d =∇z. (3.6)

The weighting function w is designed to satisfy w ≈ 0 on the ridges of the SEM image and

w ≈ 1 elsewhere because the SEM ridges appear only at locations where the shape of the

surface changes abruptly. Weighting the smoothness term acts as the constraint proposed in

Zheng and Chellappa [1991], which specifies that the intensity gradients of the reconstructed

image and the input image should be close to each other. In particular we define w as a simple

inverse ridge detector adapted from Lindeberg [1996], Frangi et al. [1998] to the SEM image I0,

but other ridge detectors are equally possible.

3.2.4 Shape prior in shape-from-shading

Humans, and in particular engineers, interpret SEM images of circuits by incorporating high-

level knowledge about the expected patterns. Such a knowledge is necessary to disambiguate

low-level intensities and artifacts in noisy images and to make any automatic reconstruction

method robust. Computer vision has successfully imitated the integration of prior knowledge

done by humans into the image segmentation problem, but this information has not yet been

exploited in the context of shape-from-shading. Inspired by image segmentation techniques,

we incorporate the prior knowledge about the shapes of the patterns in the circuit into the

surface reconstruction process.

Shape priors are included in image segmentation techniques to ensure robustness to

occlusions and noise, see e.g., Leventon et al. [2000], Tsai et al. [2001], Chen and Tagare [2002],

Rousson and Paragios [2002], Cremers et al. [2002], Paragios [2003], Cremers et al. [2004], Chan

and Zhu [2005], Foulonneau et al. [2006], Bresson et al. [2006b].

The standard approach in variational methods is to incorporate an additional term in the

objective functional that defines the segmentation criterion. This additional term measures

the similarity between the evolving shape and a reference one, called shape prior, and penal-

izes deviations with respect to the expected shape. The resulting method must deal with two

important issues: alignment of the shape prior within the image and variability of the shape

with respect to the prior. For the question of shape alignment, affine transformations can be
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taken into account in the model. This can be done explicitly in the definition of the objective

functional, at the price of increasing the complexity of the optimization; or by intrinsic align-

ment of complex shape descriptors. The second issue is the question of shape variability in

the reference template, which is usually handled through statistical models or trained shape

models from annotated data. In the case of SFS from SEM images of silicon wafers, these two

issues require different answers.

Shape alignment techniques can be directly adapted and included in our SFS model, but

they are unnecessary and would only increase the complexity of the minimization. Indeed,

SEM images of silicon wafers are usually correctly scaled and rotated because the imaging

device takes into account the circuit design in the acquisition system. The question of shape

variability is more difficult to handle because obtaining an accurate model of a surface is

extremely expensive at the nanometre scale. Atomic force microscopy has been used to

measure the surfaces of a few circuit patterns in Seeger [2004], but it is an extremely expensive

process that is not viable if several images of each pattern must be acquired. OPC modelling

can be used to obtain surface models through simulations, but the resulting models are partly

based on heuristics and only predict certain effects of the lithographic printing process (Mack

[2007]). Due to these limitations, we substitute the model of shape variability with a dense

deformation field in our surface recovery model.

In our approach we simultaneously recover the surface z and estimate a deformation

field u between the expected shape and the recovered one. This strategy does not require a

shape model and offers two additional advantages. First we can incorporate information of the

expected shapes in terms of 3D models or 2D masks of the patterns, depending on the accuracy

of the available information. Second, the deformation field directly provides a measure

of deviation of the printing process compared to the expected shape (larger deformation

fields are associated with larger printing errors), and it can be used in metrology or OPC

modelling to detect failing regions, wrong measurements, or models. The problem of shape

variability is thus re-formulated as the estimation of a deformation field between two surfaces

or, equivalently, the registration of their height maps. The registration technique that we adopt

is based on the non-linear elastic model of Guyader and Vese [2009].

In agreement with our variational formulation, we consider the registration problem as

the minimization of a functional whose unknown is the displacement field u and refer the

reader to Modersitzki [2004] for an overview of other registration methods. Denoting as z0 the

height map of the shape prior, image registration is performed by minimizing a functional that

combines a measure of similarity between z and z0 and a penalty on the displacement field u.

Proprosed shape priors in optical lithography

If we can use OPC simulations to provide a prior model of the surface and its height map z0,

we can directly measure the distance between the surface and the expected OPC shape with
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the L2-norm. The term associated with the shape prior is then

B (z,u) =
∫
Ω

(z (x)− z0 (x +u))2 . (3.7)

If a reliable OPC model is not available, we must compare the reconstructed surface to

the binary mask of the pattern provided in the circuit design. In this case the minimization

of the energy is slower, and the reconstruction method completely neglects the optical and

physical proximity effects modelled in OPC. To compare our surface to the mask, we need

first to binarize it in order to have a meaningful measure. For simplicity, we threshold the

surface at a fixed threshold θ and compare it to the mask with the L2-norm. The thresholding

is written in terms of the Heaviside function H (z −θ), and the mask is described in terms of

the signed distance function φ to its contour as H
(
φ

)
. The similarity to the layout is therefore

measured with the following shape prior term

B (z,u) =
∫
Ω

(
H (z (x)−θ)−H

(
φ (x +u)

))2 . (3.8)

We choose to describe the mask by means of the distance function to its contour in order to

improve the numerical convergence associated with the registration of binary texture-less

images.

Proposed deformation field on the shape prior

To regularize the displacement field we can either rely on physical models, such as elastic

and viscous fluid models, or rely on image regularization techniques (see e.g., Fischer and

Modersitzki [2003, 2004] for the regularization approach). In general, physical models are more

interesting than image regularizers because they model real materials and follow our intuition.

For this reason, we consider that the deformation of the mask or the OPC model follows a

physical model, and we adopt energies from material sciences to penalize deformation fields

u that are non-elastic.

The concept of elasticity is incorporated in image registration by considering the template

and reference images as observations of the same elastic body before and after being subjected

to a deformation. Deformations of elastic bodies are then measured in terms of the Green-

St. Venant strain tensor

ε= ∇u +∇uT +∇uT ∇u

2
. (3.9)

As penalty for our deformation field u, elastic models use the St. Venant-Kirchoff energy stored

by the deformed material, which is given by

W (ε (u)) =
∫
Ω

λ

2
(trε (u))2 +µ trε (u)2 , (3.10)
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where λ and µ are the first and second Lamé parameters characteristic of the material.

The first linear elastic model, proposed by Broit [1981], neglects the quadratic term in the

strain tensor and the resulting model is fast to optimize but does not allow large deforma-

tions. To overcome this limitation, Christensen et al. [1996] proposes a viscous fluid model

where objects evolve as fluids in accordance to Navier-Stokes equations. Compared to the

elastic models, fluid equations perform regularization on the velocity field and allow larger

deformations, but they are computationally more expensive. Recently, Guyader and Vese

[2009] observed that we can obtain an elastic model comparable to the viscous model of

Christensen et al. [1996] by simply considering the quadratic term in the strain tensor and

defining Equation (3.10) as a penalty on the deformation field. The non linearity in this elastic

model allows small strains even when the stress is relatively large and, consequently, large

deformation between the shape obtained from the OPC model and the recovered surface or

their respective masks.

3.3 Numerical minimization

The variational formulation of our surface reconstruction method results in the following

non-convex minimization problem

min
z,u

αA (∇z)+βB (z,u)+γG (∇z)+W (∇u) . (3.11)

To solve this optimization problem, we apply again variable-splitting and augmented La-

grangians to obtain an efficient and easy-to-code algorithm. As these techniques are analysed

in detail in Chapter 4, the details of the proposed minimization algorithm are left for Appendix

D, and here only the particularities of the SFS problem are analysed.

In this chapter we adopt a multi-resolution approach to speed up the surface recon-

struction method and be more robust against local minima. Multi-resolution or scale-space

tracking is commonly used in computer vision to solve large non-convex minimization prob-

lems. As the name suggests, scale-space tracking finds an approximate solution to the problem

at a coarse scale and then tracks it through scale as it solves the problem at higher resolutions.

At a large scale, the problem will not suffer from local minima and a first coarse solution is

easily found. This solution is used to initialize the algorithm at smaller scales. As the scale

is reduced, local minima appear in the minimization, and tracking of the initial solution

guarantees that the solution is kept meaningful. In fact, multi-resolution is not certified to

find the global minimum of a non-convex minimization problem, only a significant one that

appears at large scales.

In terms of efficiency, the algorithm is designed to perform most of its iterations at a large scale,

where it finds a coarse solution to the problem fast. As the scale is reduced, the algorithm is

initialized closer to a minimum and requires less iterations to converge, which are now more

expensive due to the finer resolution of the grid. Multi-resolution makes our method more
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fast and robust to local minima.

3.4 Estimation of the reflectance map

In order to improve the approximation of the reflectance function by Equation (3.4), we al-

ternatively iterate between the refinement of the reflectance map, in terms of the estimated

reflectance coefficient ν and the light source direction L, and the refinement of the recon-

structed surface.

Given a first estimate of the surface and its normal n, we can refine the parameters of the

reflectance map by solving two least squares minimization problems.

To estimate the value of the reflectance coefficient we assume that the light source direction

is known, fixing its value to the previous estimate, and solve

min
ν

∫
Ω

(ν− I0n ·L)2. (3.12)

This least-squares problem is analytically solved with ν = ∫
Ω I0n ·L.

Similarly, in the estimation of L we fix the value of ν to the previous estimate, and solve

the following minimization problem

min
|L|=1

∫
Ω

(
ν

I0
−n ·L)2. (3.13)

The constraint |L| = 1 is not handled explicitly in the minimization by a closed-form solution;

instead we adopt the same augmented Lagrangian technique used for the minimization of

(3.11).

3.5 Experimental results

This section presents the experimental results of the proposed surface reconstruction method.

We use large-field-of-view SEM images of circuits in the diffusion layer that cover an area of

1.25×1.25 µm. For simplicity, in all the experiments the parameters of the algorithm are set to

α= 500, β= 50, γ= 100, λ=µ= 10−4.

The shape prior are based on the mask, that is on Equation (3.8), as reliable OPC models

were not accessible. Convergence of the algorithm should be faster with a shape prior based

on OPC models, but the reconstructed surface would only be more accurate to the same extent

that the OPC models are. In this sense, it is always better to use limited but reliable mask

information than unreliable OPC models. Figure 3.1 shows the masks associated with the

patterns in the experiments.

A multi-resolution approach in z has been adopted to speed up convergence, adapting the
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shape prior at each resolution with the solution of the previous scale. At each scale, therefore,

the absolute deformation field can be computed concatenating the deformations at previous

resolutions correctly scaled. Figure 3.3 shows the reconstructed surface for a simple structure

at multiple scales, where the estimated deformation field to each scale prior is also included.

In our experiments we can only provide qualitative results of our reconstruction method

because no ground truth for the reconstructed surfaces is currently available, but we observe

that results agree with our intuitive reconstruction from the SEM images. Moreover, if we

superpose the isoline of height θ = 0.5zmax +0.5zmi n of the reconstructed surface in the SEM

image in Figure 3.2, we observe that our reconstruction correctly estimates the position of the

edges in the image.

To measure the contribution of the shape prior in the reconstruction, we compare the

reconstructed surface of Figure 3.3 with the equivalent variational method ignoring the shape-

prior, that is, defining z as the minimizer of min
z

αA (∇z)+γG (∇z). Figure 3.7 presents the

results of the reconstruction without the shape prior, where SFS alone fails due to noise,

shadows, and SEM artifacts. For instance, the shadow present under the white band in the

SEM image results in a deep and narrow valley in the surface reconstructed in Figure 3.7b.

Figure 3.4 presents the results of the reconstruction of more complex patterns from Figures

3.1b-3.1d. In order to test the robustness of our method to noise, we can repeat the experiments

adding white Gaussian noise to the previous SEM images, see Figure 3.5. We observe that

our SFS method is robust to noise. In particular, the only differences visible in the surfaces in

comparison with Figures 3.3 and 3.4 are the gentle and almost negligible waves present in the

dark flat areas. This waves are the only residual left in the reconstruction from the noise.

It is interesting to analyse the reconstructions of the surfaces in Figure 3.6, where the

printing process partially fails. In the first surface, we observe that the height of the walls

degrades in the vertical direction, while for the second surface we can see how the walls of

the pattern become thinner and almost break. In both cases, the proposed method produces

surfaces that agree with the human interpretation of the corresponding SEM images, and it

can be used therefore to detect failures in the lithographic process.

(a) (b) (c) (d) (e) (f)

Figure 3.1: Binary masks associated with different patterns.

Due to the lack of reliable ground truth data at the nanometre scale, we can only evaluate

indirectly the performance of the proposed reconstruction method. Inspired by the evaluation

methods of OPC models in optical lithography, we will compare 1D distance measurements
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Figure 3.2: SEM image with associated mask 3.1a. In red we superposed the iso-contours of
height θ associated with the reconstructed surface of Figure 3.3.

associated with different patterns. In particular, the critical distance of OPC simulations will

be compared with the corresponding distances measured from our reconstructed surfaces. To

understand the next experiments, therefore, it is first necessary to understand some additional

concepts from lithography.

One of the basic tasks of computational lithography is the quantitative characterization

of the printing process, from patterns and masks in circuit designs to the shapes carved in

silicon wafers. In particular, numerical simulations that model optical and physical properties

of the light source and the material of the wafer are performed in order to estimate the shape

of the surface with OPC models. For accurate results, these models are iteratively refined by

calibration with measurements of the wafer in several cycles of printing-simulation. To that

purpose, OPC modellers describe the patterns printed in a wafer in terms of critical distances,

that is, 1D measurements of distances associated with the surface of the wafer at a critical

position where the engineers expect that the printing process might fail. The next experiment

analyses the critical distance associated with the reconstructed surface with its equivalent

generated with a calibrated OPC model for 24 patterns that printed correctly. Both distances

should coincide with an accurate SFS reconstruction, while wrong SFS reconstructions would

lead to a mismatch of the pairs of critical distances. Consequently, we use this process as

validation of the proposed reconstruction method.

For the OPC simulations, we use the compact resist model CM1 of Mentor Graphics and

run simulations with Calibre to estimate the critical distance associated with each one of the

24 patterns. In both simulations and SFS reconstruction, the critical distance is measured

at the location of the gauge where the simulated and reconstructed surfaces attain height

0.3 with respect to a normalized surface, as suggested in Mack [2007]. Figure 3.8 shows the

scatter plot between the critical distances from OPC simulations and from the proposed

method. This experiment provides a quantitative evaluation of the proposed method, but it is

only representative to the extent that the OPC model is reliable. We observe that the critical

distances are nicely correlated (the difference in scaling is due to the pixel-to-nanometre

conversion), except in a few outlier cases. We can conclude that the proposed reconstruction

method agrees with the calibrated OPC estimates. Currently we cannot assess if the existing
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differences are due to errors in the OPC models, inaccuracy of the SFS reconstruction method,

or they simply show effects of the manufacturing process that are not considered in the OPC

model. To clarify this point it is necessary to compare the surfaces estimated with the proposed

SFS method with real and accurate 3D measurements on the wafer, possibly with atomic force

microscopy. At present, this information is not available and the question remains open to

future investigations.

3.6 Conclusions

This chapter has developed a method to reconstruct surfaces of silicon wafers from images of

printed circuits taken with a scanning electron microscope. The proposed method is robust

to the noise and the image artifacts characteristic of the electronic microscope because it

incorporates knowledge about the shapes of the patterns in the reconstruction process.

To that purpose, the proposed variational formulation defines an intuitive objective func-

tional that includes models of the image acquisition systems, the expected smoothness of the

wafer, and the shape of the patterns in the circuit. The proposed technique also estimates a

deformation field between the shape prior of the circuit design and the reconstructed surface;

this field substitutes the unknown statistical shape models that are necessary to model the

variability of the lithographic printing process in the shape prior. Consequently, this deforma-

tion field complements the information available from the reconstructed surface and can be

directly used to detect failures and critical regions in the wafer.

Both outputs are in fact extremely important in optical lithography, where it is necessary

to characterize the surface of silicon wafers and to quantify deviations in the manufacturing

process. The proposed technique, therefore, can have an important impact on the chip

manufacturing industry and opens a new line of research in shape-from-shading.
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(a) Surface at largest scale. (b) Deformation at largest scale.

(c) Zoom at middle scale. (d) Deformation at middle scale.

(e) Zoom at smallest scale. (f) Deformation at smallest scale.

Figure 3.3: Reconstructed surface and deformation fields at three different scales from SEM
image of Figure 3.2.
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Figure 3.4: First row, SEM images from patterns of Figure 3.1b, 3.1c and 3.1d (right). Second to
fifth rows, reconstructed surfaces on the left and the deformation fields on the right.
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(a) Noisy image, 1.85 dB SNR (b) Surface from noisy image 3.5a

(c) Noisy image, 2.36 dB SNR. (d) Surface from noisy image 3.5c

(e) Noisy image, 1.05 dB SNR (f) Surface from noisy image 3.5e

Figure 3.5: Reconstructed surfaces from noisy images.
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Figure 3.6: SEM images and reconstructed surface for patterns of Figure 3.1e and 3.1f. The
lithographic process resulted in pinching in the center of the left’s pattern and thin and fading
the outer walls on the right pattern.
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(a) Surface without shape prior. (b) Zoom on Figure 3.7

Figure 3.7: Reconstruction results for the SEM image of Figure 3.2 ignoring the shape prior in
the SFS algorithm.
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Figure 3.8: Scatter plot of the critical distances obtained with our SFS reconstruction method
and OPC simulations.
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4 An efficient algorithm for the level set
method preserving distance functions

This chapter presents the techniques used in this dissertation to develop efficient minimiza-

tion algorithms for different inverse problems. It is unnecessary, however, to analyse the

algorithms developed for all the problems in order to understand the principles that guide

these techniques, it is more constructive to present in detail a single algorithm. As a single

sample, therefore, the minimization problem should be interesting and allows us to explore

the issues of a non-convex problem with a non-differentiable functional. For this reason, this

chapter presents the algorithm developed for the level set method when the level set function

is constrained to be a signed distance function. The rest of the algorithms are left for the

Appendices A-D.

The level set method of Osher and Sethian [1988] is a popular technique for tracking

moving interfaces in many disciplines because of its high flexibility. The original level set

method, however, is still limited by two numerical issues. First, it does not implicitly preserve

the level set function as a distance function, which is necessary to accurately estimate geo-

metric features like the curvature or the normal vectors to the contours. Second, the level set

algorithm is slow because the time step of its PDE flow is limited by the CFL condition, which

is essential to the numerical stability and accuracy of the iterative scheme. Hence, an efficient

algorithm for this problem is necessary.

In this context, this chapter presents an algorithm that preserves distance functions in

the level set method and avoids the previous two issues. The proposed algorithm makes use

of variable-splitting and augmented Lagrangians to both overcome the CFL limitations and

to naturally preserve the level set function as a distance function in the minimization; this

avoids periodic re-distancing of the level set function and speeds the numerical algorithm. In

particular, the algorithm proposed here is applied to image segmentation, where it proves to

be 5 to 6 times faster than related state-of-the-art techniques, but it could be equally adapted

to any level set method that requires the distance information.

The material of this chapter has been partially published in Estellers et al. [2012].
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4.1 Algorithms for the level set method and distance functions

In the last twenty years, the level set method (LSM) of Osher and Sethian [1988] has become

a popular numerical technique for tracking moving interfaces in a wide range of disciplines,

from material sciences, to fluid mechanics or computer vision. The main reasons of its success

are the high flexibility of the LSM to adapt to different problems, its ability to handle changes

of topology like contour breaking and merging seamlessly, and the guarantee of the existence

of solutions in the class of viscosity PDEs. Moreover, extensive numerical algorithms based on

Hamilton-Jacobi equations have been developed, accurately handling shocks and providing

stable numerical schemes for the level set method.

The key idea of the LSM is to implicitly represent a contour or interface as the zero level

set of a higher dimensional function, called the level set function (LSF), and formulate the

evolution of the contour through the evolution of the level set function. For closed contours,

signed distance functions (SDFs) were originally adopted to represent level set functions

because they directly provide stability and accuracy to the LSM (Osher and Fedkiw [2002],

Osher and Paragios [2006]). In the last years, however, new approaches have proposed to

use binary functions, rather than distance functions, to represent the level set function. This

change of representation allows the use fast convex optimization techniques, like the graph

cut method of Boykov et al. [2001] or the convex relaxation of Chan et al. [2006], but loose

the distance information inherent to a SDF. Distance functions are still essential in many

applications. For instance, in medical imaging SDFs are used in the segmentation of cortical

surfaces of Section 4.5, they provide an efficient estimation of the normal vectors in the

reconstruction of surfaces in Section 4.2, and are used in the creation of special effects in

computer graphics. For these applications, and many others, it is necessary to develop a fast

and accurate algorithm for distance preserving level set methods.

A major issue of distance preserving LSMs is the limited speed of the existing algorithms

based on Hamilton-Jacobi equations and upwind schemes (Osher and Sethian [1988], Osher

and Paragios [2006]). Two handicaps affect these iterative methods. First, the speed of the

algorithms is limited by the CFL condition of Courant et al. [1967], which is necessary to

guarantee the stability of the numerical evolution of Hamilton-Jacobi PDEs. Second, the

objective functional of the LSM is hard to optimize because it usually involves a total variation

penalty that is not differentiable, due to the `1 norm of the gradient, and must be approximated

by a smooth function. This approximation does not provide an exact solution to the problem

and significantly slows down the minimization process. This chapter will overcome these

limitations by the use of efficient techniques in `1 optimization.

Another major issue of the LSM, pointed out by Gomes and Faugeras [1999], is a contradic-

tion between the theory and the implementation when level set functions are represented by

a signed distance function. Indeed, the level set method does not preserve the SDF during its

evolution because SDFs are not solutions of the Hamilton-Jacobi PDEs of the LSM. Conse-

quently, additional techniques are necessary to preserve the LSF as an SDF during contour
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evolution, but no fully satisfying methods have been proposed so far. The most common

approaches to fix this problem are periodic re-distancing of the LSF as an SDF, this is called re-

distancing or re-initialization, or constraining the LSF to remain an SDF during the evolution

of the contour.

Re-distancing is the most common approach. It consists in stopping the evolution of the

LSF periodically and re-initializing it as an SDF while preserving the zero level set. This ap-

proach introduces the questions of when and how to re-initialize the LSF. It is hard to say when

the re-distancing must be applied because there is a trade-off between speed and accuracy:

each re-distancing procedure takes time, but the LSM will develop irregularities during the

evolution without re-distancing. Similarly, the re-initialization can be performed with different

LSM techniques, like the PDE method of Sussman et al. [1994] or the fast marching algorithms

of Tsitsiklis [1995] or Sethian [1996]. The main issue with re-distancing, nevertheless, is the

exact preservation of the zero level set during the re-distancing process, which might require

interpolation to avoid shifting the moving interface to undesired positions.

The second approach aims at constraining the LSF to stay an SDF during the contour

evolution, avoiding the previous re-distancing procedure altogether. Gomes and Faugeras

[1999] introduces a new level set formulation that restricts the LSF to be an SDF by the

use of three coupled PDEs, but the analysis of the existence of solutions and the numerical

implementations of the resulting method are more difficult than the standard LSM. More

recently, Li et al. [2005, 2010] proposed to add a penalty term in the level set energy to constrain

the LSF to be close to an SDF. In this case, the resulting numerical algorithm is simple and

efficient, but its time step is still restricted by the CFL condition, and the SDF property is only

encouraged but not enforced. We will see that our method overcomes all of these limitations

and provides an efficient way to constrain the LSF to be an SDF.

In image processing, the level set method was first introduced to carry out image seg-

mentation in Kichenassamy et al. [1995], Caselles et al. [1997] and Chan and Vese [2001] and

then extended to other tasks as stereo reconstruction, object tracking, and object recognition

in Faugeras and Keriven [1997], Paragios and Deriche [2000] and Leventon et al. [2000]. In

this chapter we focus on image segmentation and surface reconstruction, but the proposed

method can be easily extended to other problems.

In image segmentation, the level set method re-formulates the parametric active contour

model into a non-parametric minimization problem that is independent of the contour dis-

cretization. To this purpose, the active contour is described by the zero level set of the LSF, and

the evolution equation of the active contour is applied to the LSF, instead of only to the active

contour, in order to drive its zero level set to the edges of the image. This level set formulation

easily includes edge-, region-, and shape-based terms in the objective functional that defines

the segmentation criterion, which makes the LSM highly flexible to adapt to different tasks

and explains it extensive use in imaging. Similar segmentation models, for instance, have

been applied to the problem of reconstructing a surface form unorganized data points in Zhao

[2000]. In this case, the implicit representation of the surface by an SDF offers the following
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two advantages: it avoids complex 3D parametrizations that require prior knowledge of the

topology of the surface, and it provides an easy and reliable way to directly estimate surface

normals from the level set function. This advantages will be explored in Section 4.2.

In this chapter, we develop a fast and accurate algorithm for the level set method that con-

strains the LSF to remain an SDF via constrained minimization. This results in a minimization

problem that is hard to solve directly, and we therefore propose to split it into sub-optimization

problems that are easier to solve, and combine them together using an augmented Lagrangian.

This idea is borrowed from the split-Bregman method proposed by Goldstein and Osher [2009]

for the `1 minimization of compressed sensing, but the same principles guide the method of

alternating direction of multipliers proposed by Lions and Mercier [1979], Glowinski and Le

Tallec [1989], Bioucas-dias and Figueiredo [2007] and Setzer [2011]. As a result, the proposed

algorithm holds three important properties. First, it is fast because it is not limited by the CFL

condition. Indeed, the splitting strategy and its reformulation into a constrained minimization

allows us to deal with the non-differentiability of TV and go beyond the CFL time-step restric-

tion. Second, our algorithm preserves the LSF as an SDF, avoiding the classical re-distancing

problem and providing desirable properties for applications where the distance information is

necessary. In surface reconstruction from unorganized points, for instance, the normal vectors

to the surface can be fast and reliably estimated from an SDF, and in medical imaging the

distance information can be exploited to include topological restrictions on human anatomy

in the segmentation of cortical surfaces. Finally, our algorithm is fast and easy to implement

because each step is based on standard minimization problems. The rest of this chapter will

analyse in detail these properties and techniques.

In particular, Section 4.2 reviews very briefly the level set method applied to image seg-

mentation and surface reconstruction. Sections 4.3 and 4.4 present the proposed algorithm,

and Section 4.5 describes the numerical experiments and results. Finally conclusions are

drawn in Section 4.6.

4.2 Image segmentation and surface reconstruction with the LSM

The level set method can be applied to perform image segmentation using the active contour

method. The segmentation problem is then defined as the following minimization problem

with respect to a contour C :

min
C⊂Ω

∫
C

wb(s)d s +
∫

Ci n

w i n
r (x)d x +

∫
Cout

wout
r (x)d x, (4.1)

where Ω is the image domain, s is the arc-length parametrization of the contour C , and

Ci n ,Cout designate the regions inside and outside the contour. The first term of (4.1) weights

the length of C by an edge detector wb , as proposed in Kichenassamy et al. [1995] and Caselles

et al. [1997]. The functions w i n
r , wout

r are region terms that measure the homogeneity of the

different regions in the segmentation, like e.g., the model of Chan and Vese [2001]. We adopt
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4.2. Image segmentation and surface reconstruction

this minimization model for image segmentation because it represents a large class of active

contour published in the literature.

Similar models have been used to reconstruct smooth surfaces from unorganized data

points in Hoppe et al. [1992] and Zhao [2000]. Given a set of noisy points {xi }1≤i≤N lying close to

the unknown surface, a smooth estimate of the surface can be reconstructed by minimizing the

area of the surface weighted by the distance to the set of points, i.e., wb(x) = min1≤i≤N |x−xi |.
We propose here a model which also includes a region term w i n

r to improve the quality of

reconstruction with sparse data sets. In particular, we adapt the model proposed in Lempitsky

and Boykov [2007] and align the normals of the reconstructed surface to the precomputed

normal vectors at the data points {ni }1≤i≤N . In our variational formulation, however, first a

semi-dense vector field of the surface normal n̂ must be estimated everywhere in space, and

then the unknown surface can be reconstructed maximizing the alignment of its normal N

with the estimated normal field n̂.

The proposed region term that maximizes the alignment of normals can be identified as

w i n
r =−div n̂ by making use of the divergence theorem. Indeed,

argmax
C⊂Ω

∫
C

n̂ ·N d s = argmin
C⊂Ω

∫
Ci n

−div n̂ d x, (4.2)

where C represents here the unknown surface. Consequently, it is only necessary to estimate

the flux of the semi-dense normal field at the point x, which can be done with the following

formula proposed in Ye et al. [2010]

div n̂ (x) =
∑

1≤i≤N

1p
2πσ

e−
|x−xi |2

2σ2 〈x −xi ,ni 〉, (4.3)

where ni is the surface normal estimated at xi . Unlike the method of Lempitsky and Boykov,

the method proposed here does not need to know a priori the normals to the surface at the

data points. Our method, instead, reliably estimates these normals from the signed distance

function during the reconstruction process by ni = ∇φ (xi ), where φ is the signed distance

function. To sum up, for the reconstruction of a surface from unorganized data points, the

functions in problem (4.1) are re-defined as wb(x) = min
1≤i≤N

|x−xi |, w i n
r =−div n̂, and wout

r = 0.

The level set method can be applied to solve problem (4.1) by re-writing the minimization

in terms of a level set function φ as follows:

min
φ

∫
Ω

wb(x)|∇H(φ)|+wr (x)H(φ) subject to |∇φ| = 1, (4.4)

where the C ⊂Rn is described by the zero level set of φ, and H is the Heaviside function. The

dimension of the embedding space and the level set interface depend on the application, with

n = 2 for image segmentation and n = 3 for surface reconstruction. The additional constraint

|∇φ| = 1 guarantees that the level set function is a signed distance function (Sussman et al.

[1994]).
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Chapter 4. An efficient algorithm for the level set method preserving distance functions

4.3 Efficient level set algorithm preserving signed distance functions

In this section, we introduce an efficient algorithm to solve the level set minimization problem

(4.4) and preserve a signed distance function. The main idea is to split the original hard

problem (4.4) into sub-optimization problems that are well-known and easy to solve, and

combine them together using an augmented Lagrangian. This idea is borrowed from the split-

Bregman method of Goldstein and Osher [2009], which is an efficient optimization method for

`1-norm problems recently introduced in image processing for compressed sensing recovery.

Let us consider the following constrained minimization problem, which is equivalent to

the original LSM problem (4.4):

min
φ,ϕ,u,q ,p

∫
Ω

wb(x)|q(x)|+wr (x)u(x) subject to



u = H(ϕ)

ϕ=φ
q =∇u

p =∇φ
|p| = 1

, (4.5)

where we have introduced additional variables, the functions (ϕ,u) and the n-dimensional

vector fields (q , p), to split the original objective functional into simpler independent terms,

as a result this step is known as variable-splitting. The proposed splitting approach makes the

original problem (4.4) easier to solve because (4.5) can better handle the non-differentiability

and non-linearity of (4.4). Indeed, it is known from Wang et al. [2008], Goldstein and Osher

[2009] that the minimization of the TV term |∇φ| can be carried out efficiently by decoupling

the `1 norm and the gradient operator ∇; the term |∇φ| in (4.4) is thus replaced by |p|, and

p = ∇φ in (4.5). Similarly, the variable ϕ = φ is introduced to handle the non-linear term

u = H(φ), and the term |∇H(φ)| is rewritten as |q |, with q =∇u.

Next, we want to reformulate this constrained minimization problem as an unconstrained

optimization task. This can be done with the augmented Lagrangian approach of Glowinski

and Le Tallec [1989], which translates the constraints into pairs of a Lagrangian multiplier and

a penalty term. Let us define the augmented Lagrangian energy associated with (4.5):

L
(
φ,ϕ,u, q , p ,Λ

)=∫
Ω

wb |q |+wr u +λ1(ϕ−φ)+ r1

2
(ϕ−φ)2 +λ2(u −H(ϕ))+ r2

2
(u −H(ϕ))2

+λ3 · (q −∇u)+r3

2
|q −∇u|2 +λ4 · (p −∇φ)+ r4

2
|p −∇φ|2 subject to |p| = 1 (4.6)

where Λ= (λ1,λ2,λ3,λ4) are the Lagrangian functions, and r1, . . . ,r4 are positive constants.

The constrained minimization problem (4.5) reduces then to finding the saddle-point of

the augmented Lagrangian energy L , and its solution can be approximated by the iterative

Algorithm 1, see Glowinski and Le Tallec [1989].

We start by initializing φ0 and ϕ0 with the signed distance function to the initial con-
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4.4. Efficient solution to sub-minimization problems

Algorithm 1 Augmented Lagrangian method for distance preserving level set methods

1: Initialize φ,ϕ,u, q , p ,Λ
2: Find a minimizer of L with respect to variables (φ,ϕ,u, q , p) with fixed Lagrange multipli-

ersΛk−1:

(φk ,ϕk ,uk , q k , pk ) = argmin
φ,ϕ,u,q ,p

|p|=1

L (φ,ϕ,u, q , p ,Λk−1) (4.7)

3: Update Lagrange multipliers

λk
1 =λk−1

1 + r1(ϕk −φk ) (4.8)

λk
2 =λk−1

2 + r2(uk −H(ϕk )) (4.9)

λ3
k =λ3

k−1 + r3(q k −∇uk ) (4.10)

λ4
k =λ4

k−1 + r4(pk −∇φk ) (4.11)

4: Stop the iterative process when ‖φk −φk−1‖2 < ε.

tour, u0 = H(φ0), q 0 = ∇u0, p0 = ∇φ0, and the Lagrange multipliers to zero. At each iter-

ation, an alternating minimization method is used to find an approximate minimizer of

L (φ, ϕ, u, q , p , Λk−1) with respect to the variables φ, ϕ, u, q and p . Then the Lagrange

multipliers are updated with the residual associated with each constraint, and the process is

repeated until the change of the level set function φ falls below a certain threshold ε, which

happens at convergence.

In general, it is difficult to find the exact minimizer of the minimization problem (4.7)

because the functional (4.6) is not convex with respect to the variables φ, ϕ, u, q and p , and

there is no guarantee of convergence to a global minimum. However, experiments show

that a good approximation can be found by the alternating direction method of multipliers,

see Glowinski and Le Tallec [1989]. An approximate solution is thus computed by iteratively

alternating the minimization of L (φ,ϕ,u, q , p ,Λk−1) with respect to each variable while

considering the others fixed. This leads to Algorithm 2.

The next step is to determine the solutions of the five sub-minimization problems (4.12) -

(4.16), which can actually be computed efficiently.

4.4 Efficient solution to sub-minimization problems

In this section, we simplify notation by omitting the super-index and the tilde symbol in the

sub-minimization problems (4.12)-(4.16).

In our implementation, we discretize the image domainΩ⊂R2 with a regular grid of size

n = nx ×ny , and use forward differences to compute the discrete gradients and backward

differences for the divergence in order to preserve the adjoint relationship div =−∇∗ in the
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Chapter 4. An efficient algorithm for the level set method preserving distance functions

Algorithm 2 Alternate minimization for an approximate solution of (4.7)

1: Initialize φ̃0=φk−1,ϕ̃0=ϕk−1, ũ0=uk−1, q̃ 0=q k−1, p̃0=pk−1.
2: For l = 1, . . . ,L and and fixed Lagrange multipliers Λk , solve the following sub-problems

alternatively:

φ̃l =argmin
φ

L (φ,ϕ̃l−1, ũl−1, q̃ l−1, p̃ l−1,Λl−1) (4.12)

ϕ̃l =argmin
ϕ

L (φ̃l ,ϕ, ũl−1, q̃ l−1, p̃ l−1,Λl−1) (4.13)

ũl =argmin
u

L (φ̃l ,ϕ̃l ,u, q̃ l−1, p̃ l−1,Λl−1) (4.14)

q̃ l =argmin
q

L (φ̃l ,ϕ̃l , ũl , q , p̃ l−1,Λl−1) (4.15)

p̃ l =argmin
p

L (φ̃l ,ϕ̃l , ũl , q̃ l , p ,Λl−1) subject to |p| = 1 (4.16)

3: Set (φk ,ϕk ,uk , q k , pk ) = (φ̃L ,ϕ̃L , ũL , q̃ L , p̃L).

discrete setting. In matrix-vector notation, we efficiently compute the spatial derivatives

multiplying the discretized functions arranged as a column vector with the sparse finite

difference matrices ∇xφ = Dxφ, ∇yφ = D yφ. Similarly, the discretization of the L2 inner

product inΩ corresponds to the usual dot product of vectors.

4.4.1 Sub-minimization with respect to φ and u

The sub-minimization problems (4.12) and (4.14) can be written as follows:

min
φ

∫
Ω

r1

2

(
φ−

(
ϕ+ λ1

r1

))2 + r4

2

∣∣∣∇φ−
(

p + λ4

r4

)∣∣∣2
(4.17)

min
u

∫
Ω

wr u + r2

2

(
u −

(
H(ϕ)− λ2

r2

))2 + r3

2

∣∣∣∇u −
(

q + λ3

r3

)∣∣∣2
(4.18)

The Euler-Lagrange equation of (4.17) is

(−r4∆+ r1)φ=−r4 div p −divλ4 + r1

(
ϕ+ λ1

r1

)
, (4.19)

and can be solved efficiently by the fast Fourier transform (FFT) as proposed in Wang et al.

[2008]. Indeed, with the vector notation explained above, Equation (4.19) is discretized as a
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4.4. Efficient solution to sub-minimization problems

linear system of equations Aφ= b, with matrix A and vector b given by

A =r1In + r4DT
x Dx + r4DT

y D y

b =− r4DT
x p x − r4DT

y p y + r1

(
ϕ+ λ1

r1

)
.

Matrix A is symmetric, definite positive, and block-circulant, and we can use the Fourier

transform F to decompose it as A = F T DF , with D a diagonal matrix. Consequently,

the system Aφ = b can easily be solved in the Fourier domain. In practice we use the FFT

transform instead of doing the matrix multiplications with F and F T , which gives us the

following solution φ=F T (D−1Fb) of complexity O (n logn)

It is now straightforward to apply the same procedure to compute the minimizer u? of

(4.18), whose Euler-Lagrange equation is

(−r3∆+ r2)u =−wr − r3 div q +divλ3 + r2

(
H(ϕ)− λ2

r2

)
. (4.20)

4.4.2 Sub-minimization with respect toϕ

The sub-minimization problem (4.13) can be written as follows:

min
ϕ

∫
Ω

r1

2

(
ϕ−

(
φ− λ1

r1

))2 + r2

2

(
H(ϕ)−

(
u + λ2

r2

))2
(4.21)

Let us call z =φ− λ1
r1

, v = u+ λ2
r2

, and observe that the minimization is decoupled for each pixel.

The function that we need to minimize pixel-wise is now

F (ϕ) = r1

2
(ϕ− z)2 + r2

2
(Hε(ϕ)− v)2. (4.22)

Observe that, for practical implementations, the minimization problem (4.22) involves a

smooth approximation Hε of the Heaviside function. For this reason, we propose a two-step

method to quickly find a minimizer of (4.22).

Step 1: Find a solution ϕ0 of (4.22) for ε= 0, i.e., for the distributional/non-smooth Heavi-

side function. A closed-form solution exists for this problem and can be computed as follows.

The first term of (4.22) is minimized by ϕ0 = z. As the distributional Heaviside function can

take only values 0 or 1, the second term of (4.22) is minimized by either ϕ0 < 0 when v < 1
2 or

by ϕ0 ≥ 0 when v ≥ 1
2 . This means that both terms are minimized by ϕ0 = z when v < 1

2 and

z < 0 or when v ≥ 1
2 and z ≥ 0. Otherwise we must choose to minimize the greater of these

terms, and set ϕ0 = 0 if E (0) < E (z) and ϕ0 = z otherwise.

Step 2: Find a solution ϕ0 of (4.22) for ε> 0 using the standard Newton’s method with ϕ0
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Chapter 4. An efficient algorithm for the level set method preserving distance functions

as initialization. The iterative Newton’s method for finding the minimizer of (4.22) reads

ϕm+1 =ϕm − F ′ (ϕm
)

F ′′ (ϕm
) , (4.23)

with ϕm=0 =ϕ0, in our case it gives

ϕm+1 =ϕm − r1
(
ϕm − z

)+ r2
(
Hε(ϕm)− v

)
δε

(
ϕm

)
r1 + r2

(
Hε(ϕm)− v

)
δ′ε

(
ϕm

)+ r2δ
2
ε

(
ϕm

) ,

where δε and δ′ε are smooth approximations of the Dirac function and its derivative.

Newton’s method presents quadratic convergence close to the minimizer, which intuitively

means that the number of correct digits doubles in every step. With the correct initialization

of the first step, therefore, usually two iterations are enough to find a good minimizer of (4.21),

and the resulting technique is almost as fast as a closed-form solution.

4.4.3 Sub-minimization with respect to q

The sub-minimization problem (4.15) can be written as follows:

min
q

∫
Ω

wb |q |+ r3

2

∣∣∣q −
(
∇u − λ3

r3

)∣∣∣2
(4.24)

Let us call z =∇u − λ3
r3

, observe that the minimization (4.24) is decoupled for each pixel, and

the problem reduce to pixel-wise minimization of the following function in the plane

Fq (q) = |q |+ r3

2wb
|q − z |2. (4.25)

Figure 4.1: Graphical explanation of shrinkage operator

The first term in Fq only depends on the norm of q , and therefore the orientation of the

minimizer is determined by the second term |q − z |2. It is clear from Figure 4.1 that this

minimizer has the form q? =βz , for some β≥ 0. The minimization of Fq then reduces to the
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minimization of the quadratic function Fβ(β) = Fq (βz) = β|z |+ (1−β)2 r3
2wb

|z |2 with respect

to the scalar parameter β. By simple differentiation with respect to β we obtain β? = 1− wb
r3|z | ,

and the constraint β≥ 0 leads to the following solution:

q? = max
{
|z |− wb

r3
,0

} z

|z | . (4.26)

This minimizer corresponds, in fact, to soft-thresholding with the shrinkage operator of

Donoho [1995], for which we simply provide a graphical explanation.

4.4.4 Sub-minimization with respect to p

The sub-minimization problem (4.16) can be written as follows:

min
p

∫
Ω

r4

2

∣∣∣p −
(
∇φ− λ4

r4

)∣∣∣2
subject to |p| = 1 (4.27)

Let us call z = ∇φ− λ4
r4

, and observe again that the minimization of (4.27) is decoupled for

each pixel. The problem is equivalent to the pixel-wise minimization of the following function

on the plane F (p) = r4
2 |p − z |2 = r4

2 (|p|2 −|z |2 −2p · z).

We can introduce the constraint in |p| = 1 in F by writing it F (p) = r4
2 (1−|z |2 −2p · z). It is

obvious that the minimizer of F is of the form p? = z
|z | . Indeed, when vectors z and p have the

same orientation, the scalar product p · z reaches a maximum, and the constraint |p| = 1 is

verified. The minimizer p? of (4.27) is then given by

p? = r4

|r4∇φ−λ4|
∇φ− 1

|r4∇φ−λ4|
λ4. (4.28)

4.5 Experiments and discussions

To analyse the properties of the proposed algorithm, the experimental section is organized in

three different parts. Sections 4.5.1 presents the results of the proposed level set algorithm

for image segmentation and surface reconstruction, where our method is accurate and fast.

Section 4.5.2 shows the importance of preserving the distance function for the correct seg-

mentation of medical images. Finally, Section 4.5.3 compares our algorithm with existing

level set methods that preserve the signed distance function, analysing and comparing their

performance in terms of speed and accuracy.

4.5.1 Image segmentation and surface reconstruction

We apply our algorithm for image segmentation by defining the edge and region terms pro-

posed in Caselles et al. [1997] and Chan and Vese [2001], which have been extended to handle

89



Chapter 4. An efficient algorithm for the level set method preserving distance functions

color images. Figure 4.2 shows the results obtained for different images from the Berkeley1,

Weizmann2 and GrabCut3 databases. The method behaves as expected, providing the same

results as re-distancing or the penalty methods in terms of the final segmentation, but with a

considerable speed-up in time.

We also use the proposed model to successfully reconstruct several surfaces from the

Stanford dataset4. We initialize the method with a sphere containing all the data points and

recompute the region term w i n
r every 5 iterations as described in Section 4.2. Unlike the

models of Lempitsky and Boykov [2007], we do not need to estimate a priori the surface

normal at the data points, instead the normal to the surface at the points is directly estimated

from the current value of the level set function. Finally, the process is accelerated with a

standard multi-resolution approach, see Figure 4.3. The final reconstructed surfaces are

shown in figures 4.4 and 4.5.

4.5.2 Cortex segmentation with coupled surfaces

Inspired by Gomes and Faugeras [1999], we develop a segmentation algorithm for the cor-

tical layer with two active contours coupled by their relative distance, which constrains the

thickness of the cerebral cortex to the expected topology of the brain. Graph cut methods or

convex relaxation techniques cannot be directly applied to solve this problem because they

use binary function to represent the contour and loose the distance information, which is

necessary for a successful segmentation of the cortex.

The cerebral cortex is the layer of the brain bounded by the outer and inner cortical

surfaces, that is, the outer interface between cerebral spinal fluid and grey matter, and the

inner interface between the grey and the white matter. Locating this cortical surface is a first

step in many brain imaging tasks, and measuring its thickness is a common procedure in the

diagnosis of many neurological diseases. We will see that the use of SDFs in the segmentation

of the cortical surface allows the inclusion of information about the cortical structure into the

segmentation problem and, at the same time, provides an estimate of the cortical thickness.

In order to extract the cortical layer we need to extract its two bounding surfaces C 1 and C 2.

In theory, therefore, we could segment the regions defined by the white matter and the exterior

parts of the brain by independent minimization of the following functionals associated with

1http://www.eecs.berkeley.edu/vision
2http://www.wisdom.weizmann.ac.il/ vision
3http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/

grabcut.htm
4http://graphics.stanford.edu/data/3Dscanrep/
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Figure 4.2: Proposed level set-based segmentation method applied to natural images. For each
result, we show the segmentation result and the level set function. We plot the initial zero level
set in blue, the final contour in pink and the ±1,±2 level sets of the final function in black.
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(a) grid 30x30x30, time 2.4s (b) grid 60x60x60, time 10.6s (c) grid 120x120x120, time 50.5s

Figure 4.3: Reconstructed bunny from the Stanford dataset at different resolutions. Linear
interpolation of the SDF obtained at lower resolutions was used as initial LSF for higher
resolutions.

C 1 and C 2

min
C 1

E
(
wb , wr 1,C 1)= ∫

C 1
wb(s)d s +

∫
C 1

i n

wr 1(x)d x, (4.29)

min
C 2

E
(
wb , wr 2,C 2)= ∫

C 1
wb(s)d s +

∫
C 2

i n

wr 2(x)d x, (4.30)

where wb is a boundary indicator, and wr 1, wr 2 are region descriptors for the white matter and

the exterior areas of the brain. In practice, however, the boundaries between grey and white

matter are not clear, MRI images suffer from intensity inhomogeneities, and the segmentations

obtained with local region descriptors and boundary detectors do not correctly locate the

cortical layer.

To overcome these limitations and obtain meaningful segmentations, it is necessary to

introduce a distance constraint in the segmentation model that incorporates information

about brain anatomy. For simplicity, we modify the model proposed in Zeng et al. [1999], but

other models for cortex segmentation could be adopted, see e.g., MacDonald et al. [2000],

Goldenberg et al. [2002]. We use a coupled surface model, where a functional is minimized

when C 1 captures the interface between cerebral spinal fluid and grey matter, C 2 the grey-

white matter boundary, and the distance between them is close to the expected cortical

thickness d (about 3 mm). The problem is written in terms of the LSM, making use of the

SDF φ1 and φ2 to define the bounding surfaces C 1 and C 1. The functional to minimize is then

given by

min
φ1,φ2

E
(
wb , wr 1,φ1

)+E
(
wb , wr 2,φ2

)+ c

2

∫
Ω

(
φ1 −φ2 −d

)2 subject to

|∇φ1| = 1

|∇φ2| = 1
(4.31)

The term
(
φ1 −φ2 −d

)2 penalizes segmentations where the distance between the bounding

surfaces differs from the expected cortical thickness d . Indeed, when φ1 and φ2 are the SDFs
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(a) grid 120x120x120, time 50s (b) grid 240x240x240, time 391s

(c) grid 200x160x120, time 151s (d) grid 490x320x240, time 1076s

(e) grid 200x160x120, time 173s (f) grid 490x320x240, time 1096s

Figure 4.4: Reconstruction of the Stanford bunny, dragoon, and hand surfaces from scattered
data points at different resolutions.
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(a) grid 120x240x120, time 173s (b) grid 240x480x240, time 940s

(c) grid 60x60x120, time 46s (d) grid 120x120x240, time 315s

Figure 4.5: Reconstruction of the Stanford Budha and horse surfaces from scattered data
points at different resolutions.
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(a) Initialization. (b) Coupled level set
functions.

(c) Non-coupled
level set functions.

(d) Ground truth. (e) k-mean algo-
rithm.

Figure 4.6: Segmentation of grey-white matter interface on MRI images of human cortex. The
segmentation obtained with the proposed method 4.6b is clearly closer to the ground truth
4.6d than the results obtained when no coupling terms is considered and the segmentation is
performed independently for the inner and outer cortical surfaces 4.6c. The segmentation
4.6e obtained with 3 phases of the k-mean algorithm fails because region descriptors alone
cannot segment grey-matter.

defined by C 1 and C 2, the distance between the surfaces can be measured on the whole

domain by φ1 −φ2 and, consequently, the term
(
φ1 −φ2 −d

)2 drives the segmentation to

solutions where the distance between the surfaces is consistent with the cortical structure.

The minimization technique presented in Section 4.4 can be directly applied to this

problem. The same variable-splitting and Lagrange multipliers are now defined and solved for

each level set function independently, and only the alternate minimization with respect to φ1

and φ2 are modified. The minimization problems with respect to φ1 (the analogous applies to

φ2) is now

min
φ1

∫
Ω

r1

2

(
φ1 −

(
ϕ1 +

λ1,1

r1

))2 + c

2

(
φ1 −φ2 −d

)2 + r4

2

∣∣∣∇φ1 −
(

p1 +
λ1,4

r4

)∣∣∣2
, (4.32)

and its associated Euler-Lagrange equation

(−r4∆+ r1 + c)φ1 =−r4 div p −divλ4 + r1

(
ϕ+ λ1

r1

)
+ c

(
φ2 +d

)
(4.33)

can be solved efficiently by the fast Fourier transform as we have already explained in Sec-

tion 4.4.

We have applied this technique in an illustrative experiment to segment the cortical layer

in different slices of MRI images. Results are shown in Figure 4.6. We observe that coupling

the level set functions and constraining the expected cortical thickness in the segmentation

produces a segmentation in Figure 4.6b close to the ground truth, while the segmentation

obtained without the coupling in Figure 4.6c is not able to follow the fine structures of the

brain.
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(a) Initial contour de-
fined by level set func-
tion.

(b) Initial level set function. (c) Final contour defined
by level set function.

(d) Final level set function.

Figure 4.7: The level set function (φ= 0 in pink and φ=±1,±2 in dark) develops irregularities
during the propagation and stops after a few iterations if the LSF is not constrained to be (or
at least close to) an SDF.

4.5.3 Comparison with other level set methods preserving distance functions

In this section, we compare our algorithm to the other techniques designed to preserve the

SDF in the LSM in the context of image sgementation. To that purpose, we first remind

the necessity of preserving the LSF as an SDF with a simple example. We initialize the LSF

as an SDF and evolve it with the PDE flow of the original LSM for the image segmentation

problem (4.4). The level set function becomes too steep around its zero level set after a few

iterations and stops its evolution because the geometric features of curvature and normals are

not correctly estimated, see Figure 4.7. Two common approaches have been introduced to

overcome this problem: periodically re-distancing the LSF, or maintaining the SDF during the

evolution of the contours.

We will compare three different techniques: the standard re-distancing approach and two

methods that preserve the SDF in the evolution of the contours, our method and the methods

of Li et al. [2005, 2010]. The re-distancing process is carried out with the fast marching method

of Adalsteinsson and Sethian [1999], while the methods of Li et al. are defined by introducing

a penalty energy P in the objective functional to encourage the LSF to be close to an SDF.

The methods of Li et al., to be precise, are defined by the following minimization problem

min
φ

∫
Ω

wb |∇H(φ)|+wr H(φ)+ µ

2
P

(|∇φ|) , (4.34)

where the penalty P (x) is a potential function with a minimum at x = 1. Li et al. [2005] defines

the potential P (x) = (x−1)2 penalizing deviations from SDF and encouraging the SDF property

|∇φ| = 1 on the whole domain. This penalty is modified in Li et al. [2010] to encourage the

SDF property only close to the zero level set and a flat level set function elsewhere. This is

accomplished re-defining the penalty P as a double-well potential with two unique equal

minima at x = 1 and x = 0. In both cases, Li et al. solve the minimization problem with a

descent PDE flow, with a time step limited by the value of µ according to the CFL condition.

96



4.5. Experiments and discussions

Figures 4.8h-4.8l show the re-distancing method of Adalsteinsson and Sethian [1999]. Al-

though the final segmentation and LSF provide the desired results, the periodic re-initialization

procedures produce non-smooth minimizations that result in jumps in the objective func-

tional that appear each time we re-initialize the level set function. These annoying jumps

appear because re-distancing is not guaranteed to exactly preserve the location of the zero

level set of the level set function, this produces small abrupt changes in the location of the

contour and, consequently, in the value of the objective functional. Besides, we do not know

in general when to re-distance the LSF and must choose heuristically; in our experiments

we re-distance every 5 iterations because re-distancing more often slows the algorithm, and

re-distancing less often causes irregularities in the level set function. Other heuristics are

possible and equally arguable.

Next, we consider the method of Li et al., which is closer to the method developed in this

chapter. Li et al. introduces a penalty in the minimization problem that encourages the LSF

to be close to a distance function. A penalty term, however, does not constrain exactly the

LSF to be an SDF, and the value of the penalty constant µ in (4.34) is limited by a trade-off

between speed and accuracy. Indeed, a large value of µ in Figures 4.8r-4.8v preserves the

LSF close to a distance function, but it slows down significantly the minimization process.

On the other hand, a small µ speeds up convergence, but the LSF differs from an SDF and

presents peaks and valleys close to the zero level set; this effect is shown in Figures 4.8m-4.8q,

where the small island-like contours of the ±1,2 level sets (in black) might lead to instabilities

that affect the location of the zero level contours (in pink). To avoid this issue, the penalty

function is re-defined as a double-well potential in Li et al. [2010], encouraging the LSF to

be an SDF close to the zero level set and flat elsewhere. The resulting method avoids the

instabilities associated with the method of Li et al. [2005] when a small µ is used, but it does

not really provide a distance function. In terms of speed, the method of Li et al. [2010] is as

fast as the original method of Li et al. [2005], and it does not develop potential instabilities.

Both methods, however, are still limited by the CFL condition and are slower than the method

proposed here.

Our method overcomes the limitations of the LSM of Li et al. [2005, 2010] because our

formulation constrains the LSF to be an SDF, and the proposed algorithm is fast because

the splitting strategy allows us to exploit data sparsity and closed-form solutions to develop

efficient minimizations. Indeed, Figures 4.8q, 4.8v, and 4.8g show that our method keeps more

faithfully the LSF as an SDF than Li et al.’s method, and results in a penalty energy
∫
Ω(|∇φ|−1)2

smaller by at least one order of magnitude. Observe that the minimum of this penalty is

around 1 with our method, around 5 with Li et al.’s method with a large µ, and around 100 with

Li et al.’s method with a small value of µ. In other words, our method is almost as accurate

as re-distancing when it comes to preserving the SDF and overall faster than the other two

methods. These advantages are provided by the augmented Lagrangian approach, which can

preserve accurately the constraint while keeping a good minimization speed.

To quantify the improvement obtained with our method with respect to the other distance
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(a) Image. (b) Initial φ.

(c) 15 iterations,
0.12s.

(d) 19 iterations,
0.14s.

(e) 30 iterations,
0.21s.
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(g) Penalty energy with re-
spect to iterations.

(h) 65 iterations,
1.04s.

(i) 85 iterations,
1.35s.

(j) 120 iterations,
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(l) Penalty energy with re-
spect to iterations.

(m) 750 iterations,
0.85s.

(n) 950 iterations,
1.35s.

(o) 1500 iterations,
1.84s.
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(q) Penalty energy with re-
spect to iterations.

(r) 8,000 iterations,
8.98s.

(s) 10,200 iterations,
11.37s.

(t) 20,000 iterations,
22.02s.
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(v) Penalty energy with re-
spect to iterations.

Figure 4.8: Comparison of the evolution of the level set functionφ: 2nd row, our algorithm; 3rd
row, re-distancing of Adalsteinsson and Sethian [1999]; 4rth row algorithm of Li et al. [2005]
with a big penalty, and 5th row with small penalty. Each row shows the evolution of the LSF φ
at intermediate and final iterations (φ= 0 in magenta, φ=±1,±2 in black), the evolution of
energy

∫
Ωwb |∇H(φ)|+wr H(φ)+ 1

2 (|∇φ|−1)2 and penalty
∫

(|∇φ|−1)2. Our method provides
the best trade-off between speed and preservation of the distance function.
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(c) Speed improvement with our method
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(d) Quality against speed for the three LSM

Figure 4.9: Comparison of quality of segmentation and speed for the different methods
on a dataset of 72 images. Quality of the LSF is measured in terms of the penalty term
at convergence 1

|Ω|
∫

(|∇φ| − 1)2 when the obtained contours are equivalent. Our method
preserves the SDF almost as well as re-distancing, clearly better than Li et al.’s method, and is
faster than any of them.

preserving LSM techniques, we have used the previous algorithms to segment 72 images from

the Berkeley, Weizmann and GrabCut databases. For Li et al.’s method, we have chosen a

relatively small penalty µ that allows large time steps. We compare in Figure 4.9 the different

algorithms in terms of the quality of preserving the SDF and speed. Figure 4.9a presents the

values of the penalty
∫
Ω(|∇φ|−1)2 at convergence for all the images, showing that our method

preserves the SDF almost as well as re-distancing and clearly better than Li et al.. Indeed, the

penalty values for our method and re-distancing are similar, both being an order of magnitude

smaller than with Li et al.’s method. We also compare the time for each method to reach

convergence, which is assumed when ‖φ−φ∗‖2

‖φ∗‖2
< 10−4. We observe in Figures 4.9b and 4.9c that

our algorithm is on average 5 to 6 times faster than the other two methods. Finally, we present

in Figure 4.9d a scatter plot of the penalties obtained at convergence against the time required

to converge, which shows that our method presents a good trade-off between accuracy of SDF

preservation and speed.
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(a) Redistancing: 5.2%
misclassification in 17s.

(b) Li et al.’s Li et al. [2005]:
5.8% misclassification in
4s.

(c) Li et al.’s Li et al. [2010]:
6.2% misclassification in
4s.

(d) Our method: 5.8% mis-
classification in 3.8s.

Figure 4.10: Segmentation of grey-white matter interface on MRI images of human cortex. The
segmentation model (4.31) is solved with different approaches: re-distancing in Figure 4.10a,
with the methods of Li et al. [2005] in Figure 4.10b, with the method of Li et al. [2010] in Figure
4.10c, and with the proposed algorithm in Figure 4.10d.

Finally, in order to compare the different methods in terms of accuracy of segmentation,

we have tested the surface coupling of Section 4.5.2 with the previous level set methods for

a synthetic image. In Figure 4.10 we show the resulting segmentations with the different

methods, and measure their performance in terms of grey-white matter tissue classification.

While re-distancing obtains the best performance with 5.24% of errors, it is the slower option

with 17 s. The two methods of Li et al.’s take 4 s to converge, but Li et al. [2005] performs better

than Li et al. [2010] because it encourages an SDF everywhere, not only close to the desired

contours, and considers the topology of the brain over the whole image domain. Finally, our

method provides the best trade-off between speed and accuracy as it takes 3.8 s to converge

and produces less errors than any of Li et al. [2005, 2010]’s methods.
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4.6 Conclusions

This chapter has introduced an efficient algorithm for the level set method that overcomes

the main numerical limitations of the original level set algorithm, that is, the speed and the

preservation of the signed distance function. The gain in speed is due to the splitting and

augmented Lagrangian techniques used in the minimization, which decompose the original

problem into sub-optimization tasks that are easier to solve and have closed-form solutions.

Preserving the distance function, which is essential in many applications, is achieved through

a constraint in the minimization problem that is handled by the augmented Lagrangian and

merges seamlessly with the rest of the algorithm.

Extended numerical experiments show the three main properties of the algorithm: it

is fast, it preserves the level set function as a signed distance function, and it provides the

best trade-off between speed and accuracy of distance function preservation among the

state-of-the-art.

Due to the wide use of level set functions, this technique can have an impact in a large

community. In this dissertation, however, it only presents the numerical techniques used

to solve the minimization problems efficiently. The underlying principle behind all these

algorithms, dual variables, and equations, is beautifully simple: divide and conquer.
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5 Conclusions and Future Work

This dissertation has explored the use of geometry in variational methods, proposing new

solutions for different inverse problems in imaging that improve state-of-the-art techniques.

5.1 Conclusions

Geometry, in ancient Greek, literally means measuring the Earth; geometry originated from

the necessity to model the physical world in an organized manner, and its concepts and

constructions reflect how humans understand the universe. It is only natural, then, that when

we try to capture, reconstruct, and analyse the physical world from two-dimensional images,

geometry plays an important role in the models and techniques we develop.

In the context of variational methods and inverse problems in imaging, geometry goes a

step further than regularization; it does not only assume that an image or a curve is smooth,

but that it obeys certain properties characteristic of the physical world. These additional

assumptions lead to more accurate variational models, but also to more complex minimization

problems. Two logic questions arise at this point: when and how should we include geometry

in a variational model?

Occam’s razor 1 can guide the answer to our first question: “Everything should be made as

simple as possible, but not simpler”. In our case, we can use the razor to bias the choice of our

inversion methods: when two competing variational models provide the same solutions, or

qualitatively equivalent ones, the simpler model of the two is preferable. For instance, the use

of the popular total variation regularization usually results in variational methods with convex

functionals; in terms of minimization, then, our problems are over2. Indeed, convex problems

have unique minimizers, or multiple equally good ones, necessary optimality conditions are

1This interpretation of Occam’s razor is attributed to Einstein, in defence of his theory of relativity in The
Meaning of Relativity.

2This idea is nicely expressed by Rockafellar: “...in fact, the great watershed in optimization isn’t between linearity
and non-linearity, but convexity and non-convexity”. A detailed explanation of the implications of convexity in
minimization can be found in Boyd and Vandenberghe [2004].
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sufficient, and there is a large collection of numerical methods to efficiently solve them. The

restriction to convex functionals, of course, limits the form of the variational energy and the

accuracy of the underlying model, but convex models are usually enough for simple images

and even desirable to avoid over-fitting. When additional accuracy is required or the structure

of the data is more complex, then geometry comes into play.

The second question, the how, offers only an unhappy answer: it depends. It depends on

the inverse problem under consideration, and it depends on the nature of the object being

imaged. Geometry is an additional prior for the reconstruction of images in compressive

sensing in Chapter 1, it is exploited in the coupling of both measurements (the image) and

the solution (contour) in the segmentation method of Chapter 2, and it is intrinsic to the

measurements in the shape-from-shading problem of Chapter 3. In this dissertation, therefore,

a natural answer to the how requires a stroll through its chapters.

5.1.1 On Geometric Models

Chapter 1 proposed a recovery method for compressed sensing that iteratively aligns the

normal vectors of the level curves of the image with the reconstructed signal. In compressed

sensing, these normal vectors are buried in a reduced set of measurements and cannot be

directly exploited in the recovery model. For this reason, the proposed technique alternates

between the estimation of the normals to the level set curves of the image, and reconstruction

of an image that matches the estimated normals, the compressed sensing measurements, and

the sparsity constraint of total variation. This two-step procedure reduces the problem to a

series of convex minimizations that can be efficiently solved, but it lacks a proof of convergence

and requires an heuristic stopping criterion. The geometric alignment term of the normals is

also extended to non-local operators in graphs for the recovery of textured images, where it

exploits the geometric properties of images in terms of their non-local graphs. The inclusion

of this alignment term as an image prior improves signal recovery in two ways: it is more

robust to noise and a reduced number of measurements, and it is able to recover sharp edges

as well as smoothly varying regions, overcoming the staircase effect of total variation.

The hamonic active contours developed in Chapter 2 interpret each possible segmentation

of an image as a 2-dimensional manifold embedded in a higher dimensional space. With

the metric induced by the proposed embedding, a minimal surface manifold corresponds

to a segmentation that minimizes the usual region, edge and regularity terms of an active

contour model, and it exploits the directional information of the gradients of the image and

the level set function to align the contours of the segmentation with the edges of the image.

The proposed formulation, moreover, naturally takes into account the coupling of the different

image channels, and it is generalized to higher dimensional spaces and non-flat images where

usual segmentation methods cannot be applied. As a result, the proposed harmonic active

contour is able to segment grey-scale and color images with strong inhomogeneities and

fragmented edges.
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Chapter 3 investigated the problem of shape-from-shading for a very particular applica-

tion, the recovery of the surface of a silicon wafer from an image of a printed circuit taken

with a scanning electron microscope. In this case, geometry is part of the problem, not of

the solution. Indeed, the irradiance equation characteristic to shape-from-shading is purely

geometric because it relates the orientation of the unknown surface, in terms of its normal

vectors, with the shading observed in the image. This geometric problem is ill-posed, and

prior knowledge is necessary to obtain a correct solution; in this case, it takes the form of

a shape-prior and a deformation field that relate the pattern in the circuit design with the

reconstructed surface. The result is a robust shape-from-shading method that exploits prior

knowledge from circuit design to reconstruct surfaces of silicon wafers and measures the

deformation field associated with the manufacturing process. Above all, this chapter is a

proof-of-concept that opens the doors to new investigations on shape-from-shading in the

context of optical lithography.

5.1.2 On Variational Methods and Minimization

A geometric variational model is, per se, a minimization problem; as such, it requires a solution.

Variational problems only have closed-form solutions in a few cases, and usually we have

to develop numerical algorithms that find a solution for each instance of the given data. In

the same way that simplifying the algebraic expression of a closed-form solution speeds its

computation and reduces numerical errors, developing an efficient algorithm reduces the

computational cost and errors associated with a numerical minimization problem. If it is

an accepted convention that closed-form expressions should be simplified, then efficient

numerical algorithms should be equally developed for each problem. This is the goal of

Chapter 4: to present the techniques used in this dissertation to design efficient numerical

algorithms for the previous variational models.

In particular, Chapter 4 develops an efficient algorithm for the level set method that

overcomes the main numerical limitations of the original level set algorithm, that is, the speed

and the preservation of the signed distance function. The distance function is preserved by the

introduction of an explicit constraint in the minimization problem, while the gain in speed is

due to the variable-splitting and augmented Lagrangian techniques used in the minimization.

These techniques introduce additional variables, constraints, and Lagrange multipliers in the

original minimization problem and decompose it into sub-optimization tasks that are easier to

solve. The underlying principle behind the resulting algorithm, with the dual variables, update

rules, and sub-minimizations, is beautifully simple and convincing: divide and conquer.

5.2 Future Work

The logic continuation of Chapter 1 would try to answer two open questions. First, how

can we choose a meaningful stopping criterion for the proposed iterative two-step method?

The discrepancy principle of the inverse scale space proposed in Burger et al. [2006] offers a
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possible answer to this question and a starting point for future investigations. Second, how can

we regularize the non-local normals? The main difficulty lies on the fact that non-local normals

do not correspond to standard vector fields: they have a different number of components for

each pixel, and the direction associated with each component depends on the relative position

of the the non-local neighbours to the pixel. A direct answer involves the second order non-

local derivatives of Gilboa and Osher [2008], but threatens to be computationally intractable.

An ad-hoc option is to consider the non-local gradient at each pixel as a function in the circle,

with the angular coordinates given by relative position of the non-local neighbours to the pixel.

With this interpretation, spherical harmonics can be used to obtain a vector representation of

the non-local gradients that is easily regularized with standard techniques.

The strength of the harmonic active contours of Chapter 2 lies on the natural treatment

of multi-channel images and the generalization to non-flat spaces. Therefore, two possible

extensions of this work are the application of the proposed technique to texture segmentation

and spherical images. In this case, the segmentation techniques proposed by Sagiv et al. [2006]

and Bogdanova et al. [2007] could serve as kick-off points.

The shape-from-shading technique of Chapter 3 could be improved in several ways. First,

the approximation of the reflectance map could be refined to account for proximity effects by

introducing simulations of electron-sample interactions. The resulting reconstruction method

would be more accurate by providing a more faithful model of the data acquisition system, but

it would also be computationally more expensive. Second, the estimation of the deformation

field could be substituted by a statistical shape model of the pattern being imaged, but to

obtain such a model multiple measurements of the surface associated with each pattern are

required. In this case, the reconstruction method would gain on speed, but the construction

of a shape model by atomic force microscopy would be extremely expensive.

Ending note

It would be difficult, and certainly out of my power, to trace a more general path for future

work on the use of geometry in image processing; this dissertation reflects only a personal

expedition on this vast field, and my conclusions are limited to the experiences of each chapter.

Some of them, however, can be summarized in the following quote from another journey

through space and geometry:

“Distress not yourself if you cannot at first understand the deeper mysteries of Spaceland.

By degrees they will dawn upon you.”

Edwin Abbott Abbott, Flatland: A Romance of Many Dimensions, 1884.
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A Minimization Algorithm of Chapter 1
Local Recovery Method

In this appendix, we provide the details of the minimization algorithm of Chapter 1 for the

local recovery method proposed for compressed sensing.

A.0.1 Notation

We discretize the image domain Ω ⊂ R2 with a regular grid of size n = nx ×ny . In Ω we

consider the images as scalar functions with u(i ) ∈R, for each pixel i ∈Ω, and their gradients

as vector-valued functions with ∇u(i ) ∈ R2. We use forward differences to compute the

discrete gradients and backward differences for the divergence in order to preserve the adjoint

relationship div =−∇∗ in the discrete setting.

The discrete TV regularizer is then given by

J (u) =∑
i
|∇u(i )| =∑

i

√
∇x u(i )2 +∇y u(i )2, (A.1)

where we denote the pixel-wise norm of vectors as |d |(i ) =
√

d 2
x (i )+d 2

y (i ). Our discretized

TV is then the `1-norm of the function computing the pixel-wise norm of the gradient, i.e.,

J (u) = ‖ |∇u| ‖1.

For vector fields d = (
dx ,dy

)
, we discretize the TV regularizer as follows

J (dx ,dy ) =∑
i

√
|∇dx (i )|2 +|∇dy (i )|2. (A.2)

In that case we observe that it corresponds to the `1-norm of the function computing the

pixel-wise norm of the vector of combined gradients, i.e., J
(
dx ,dy

)= ‖ |(∇dx ,∇dy
) | ‖1. With

that observation it is easy then to extend it to a weighted TV regularizer as Jw (dx ,dy ) =
‖ |W (∇dx ,∇dy

) | ‖1, where W is a diagonal matrix with the weights associated to each pixel.

In the vector notation used in CS, we can efficiently compute the spatial derivatives

multiplying the discrete functions arranged as a column vector with the sparse finite difference
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Appendix A. Minimization Algorithms of Chapter 1: Local Recovery Method

matrices ∇x u = Dx u, ∇y u = D y u. Similarly, the discretization of the L2 inner product in Ω

corresponds to the usual dot product of vectors, i.e. < v,u >= vT u.

A.1 Estimate u matching measurements, sparsity prior, and normals

To reconstruct the image we need to solve the following convex minimization problem:

min
u

‖ |∇u| ‖1 +γvT u + α

2
‖Au − f ‖2

2 with v = divn. (A.3)

We propose an iterative algorithm to solve (A.3) based on splitting and constraint minimization

techniques. The main idea is to split the original problem into sub-optimization problems

which are well-known and easy to solve, and combine them together using an augmented

Lagrangian. The proposed algorithm is guaranteed to converge thanks to the convexity of

(A.3).

Let us consider the following constrained minimization problem, which is equivalent to

(1.11):

min
u,d

‖ |d | ‖1 + vT u + α

2
‖Au − f ‖2

2 subject to d =∇u. (A.4)

The proposed splitting approach makes the original problem (1.11) easier to solve because

(A.4) decouples the `1-norm and the gradient operator ∇.

Next, we reformulate this constrained minimization problem as an unconstrained opti-

mization task. This can be done with an augmented Lagrangian approach, which translates

the constraints into pairs of a Lagrangian multiplier and a penalty term. Let us define the

augmented Lagrangian energy associated to (A.4):

L1 (u,d ,λ) = ‖ |d | ‖1 + vT u + α

2
‖Au − f ‖2

2 +λT
x (dx −Dx u)+λT

y (dy −D y u)

+ r

2
‖dx −Dx u‖2

2 +
r

2
‖dy −D y u‖2

2 (A.5)

where λ= (
λx ,λy

)
are the Lagrange multipliers and r is a positive constant. The constraint

minimization problem (A.4) reduces to finding the saddle-point of the augmented Lagrangian

energy L1. The solution to the saddle point problem (A.5) can be approximated iteratively

by the following algorithm: initialize the variables and Lagrange multipliers to zero; at each

iteration find an approximate minimizer of L1 (u, d , λk−1) with respect to the variables u,d ,

and update the Lagrange multipliers with the residuals associated to the constraints; stop

the process when u remains fix. As the Lagrangian L1 is convex with respect to u,d , we can

find a minimizer by alternating the minimization with respect to each variable. The resulting

method is equivalent to the alternating direction method of multipliers. The iterative method

is summarized in Algorithm 8

The next step is to determine the solutions of the two sub-minimization problems (A.6),(A.7),

108



A.1. Estimate u matching measurements, sparsity prior, and normals

Algorithm 3 Augmented Lagrangian method to solve (A.4), estimating u from CS measure-
ments and normal matching

1: Initialize u,d ,λ
2: For each iteration l = 1,2. . ., find an approximate minimizer of L1 with respect to variables

(u,d ) with fixed Lagrange multipliers λl :

ul =argmin
u

L1(u,d l−1,λl ) solved in Fourier domain (A.6)

d l =argmin
d

L1(ul ,d ,λl ) solved by shrinkage (A.7)

3: Update Lagrange multipliers

λl+1
x =λl

x + r (d l
x −Dx ul )

λl+1
y =λl

y + r (d l
y −D y ul )

4: Stop the iterative process when ‖ul−ul−1‖
‖ul ‖ < ε.

which can be computed efficiently.

A.1.1 Minimization problem with respect to u

The sub-minimization problem (A.6) can be written as follows:

min
u

vT u + α

2
‖Au − f ‖2

2 +
r

2
‖dx + 1

r
λx −Dx u‖2

2 +
r

2
‖dy + 1

r
λy −D y u −‖2

2. (A.8)

We see that it reduces to a quadratic minimization, with positive semi-definite Hessian matrix

H =αF T RT RF + r (DT
x Dx +DT

y D y ). The optimality conditions read

Hu = b with b =αF T R f +DT
x (r dx +λx )+DT

y

(
r dy +λy

)
.

Actually as R is a row selector, RT R is a sparse diagonal matrix with non-zero entries on

the selected Fourier coefficients, and we cannot assure the invertibility of H . We find an

approximate solution defining the positive definite matrix Hε = H + εIn , with a small ε> 0,

and solving the approximate system

Hεu = b +εû, (A.9)

where we use the value of u from the previous augmented Lagrangian iteration to estimate

û = ul−1. In the resulting system, Hε is block circulant and we can use the Fourier transform to

decompose it as Hε = F T CF , with C = αRT R + r F
(
DT

x Dx + DT
y D y

)
F T + εIn a diagonal

matrix. Consequently, the system (A.9) can easily be solved in the Fourier domain inverting

the diagonal matrix C . In practice we use the FFT transform instead of doing the matrix

multiplications with F and F T , which gives us a solution of complexity O (n logn).
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Appendix A. Minimization Algorithms of Chapter 1: Local Recovery Method

A.1.2 Minimization problem with respect to d

The minimization problem with respect to d corresponds to an `1 - `2 norm problem that can

be solved by shrinkage. If we define z = 1
r λ−∇u, Equation (A.7) is equivalent to

min
dx ,dy

∑
i
|d (i )|+ r

2

∑
i
|d (i )− z(i )|2. (A.10)

The minimization of (A.10) can be done pixel-wise, and the solution is given by the shrinkage

operator S (z ,1/r ), that is,

d (i ) = max
{
|z(i )|− 1

r
,0

} z(i )

|z(i )| i = 1, . . . ,n. (A.11)

A.2 Regularization of normal vectors

To regularize the normals at each iteration we have to solve

min
|n|≤1

‖ |W (∇nx ,∇ny
) | ‖1 + µ

2
‖nx − n̂x‖2

2 +
µ

2
‖ny − n̂y‖2

2,

where W is a diagonal matrix with weights associated to weighted TV regularizer. We use the

same combination of splitting and augmented Lagrangian techniques than in Section A.1. To

avoid repetition, on the following we will simply write the form of the constraint minimization

problem, the augmented Lagrangian, and each of the sub-minimizations.

Equivalent constraint minimization is

min
n=m,|m|≤1

d=∇nx ,e=∇ny

‖ |W (d ,e) | ‖1 + µ

2
‖nx − n̂x‖2

2 +
µ

2
‖ny − n̂y‖2

2,

with associated augmented Lagrangian

L2 (n,m,d ,e,λ,ν,ξ) = ‖ |W (d ,e) | ‖1 + µ

2
‖n − n̂‖2

2 +λT
x (dx −Dx nx )+λT

y (dy −D y nx )

+rd

2
‖dx −Dx nx‖2

2 +
rd

2
‖dy −D y ny‖2

2 +νT
x (ex −Dx ny )+νT

y (ey −D y ny )+ re

2
‖ex −Dx ny‖2

2

+re

2
‖ey −D y ny‖2

2 +ξT
x (nx −mx )+ rm

2
‖nx −mx‖2

2 +ξT
y (ny −my )+ rm

2
‖ny −my‖2

2.

The resulting minimization method is presented in Algorithm 4.

A.2.1 Minimization problem with respect to n

The sub-minimization problem with respect to nx can be written as follows:

min
nx

µ

2
‖nx − n̂x‖2

2 +ξT
x (nx −mx )+ rm

2
‖nx −mx‖2

2 +
r

2
‖dx + 1

rd
λx −Dx nx‖2

2 +
rd

2
‖dy + 1

rd
λy −D y nx‖2

2.
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A.2. Regularization of normal vectors

Algorithm 4 Augmented Lagrangian method to regularize normal vectors

1: Initialize n,m,d ,e,λ,ν,ξ
2: For each iteration l = 1,2. . ., find an approximate minimizer of L2 with respect to variables

(nx ,ny ,m,d ,e) with fixed Lagrange multipliers λl ,νl ,ξl :

nl = argmin
n

L2(n,ml−1,d l−1,e l−1,λl−1,νl−1,ξl−1)

ml = argmin
m

L (nl ,m,d l−1,e l−1,λl−1,νl−1,ξl−1)

d l = argmin
d

L (nl ,ml ,d ,e l−1,λl−1,νl−1,ξl−1)

e l = argmin
e

L (nl ,ml ,d l ,e,λl−1,νl−1,ξl−1)

3: Update Lagrange multipliers

λl
x =λl−1

x + rd (d l
x −Dx nl

x )

λl
y =λl−1

y + rr (d l
y −D y nl

x )

νl
x =νl−1

x + re (e l
x −Dx nl

y )

νl
y =νl−1

y + re (e l
y −D y nl

y )

ξl =ξl−1 + rm(n −m)

4: Stop the iterative process when ‖nl−nl−1‖
‖nl ‖ < ε.

We see that it reduces to a quadratic minimization, with positive definite Hessian matrix

H = (µ+ rm)In + rd DT
x Dx + rd DT

y D y . The optimality conditions read

Hnx =µn̂x + rmmx +DT
x (rd dx +λx )+DT

y

(
rd dy +λy

)−ξx .

As before, the resulting H is block circulant and we can use the Fourier transform to decompose

it as H = F T CF , with C = (µ + rm)In + rd F
(
DT

x Dx + DT
y D y

)
F T a diagonal matrix. We

solve the linear system in the Fourier domain efficiently with the FFT transform. Observe that

the minimization problem with respect to ny has the same form and can be solved with the

same technique.

A.2.2 Minimization problem with respect to d and e

The minimization problem with respect to d corresponds to the `1 - `2 problem

min
dx ,dy

∑
i
|w(i )d (i )|+ rd

2

∑
i
|d (i )− z(i )|2, (A.12)

where z = 1
rd
λ−∇nx . As w(i ) > 0, this minimization is equivalent to

min
dx ,dy

∑
i
|d (i )|+ rd

2w(i )

∑
i
|d (i )− z(i )|2. (A.13)
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Appendix A. Minimization Algorithms of Chapter 1: Local Recovery Method

A similar problem has already been solved in Section A.1 with the shrinkage operator, which is

now adapted to include the weights w . The solution to this sub-minimization is given by

d (i ) = max
{
|z(i )|− w(i )

r
,0

} z(i )

|z(i )| i = 1, . . . ,n. (A.14)

Due to the symmetry of the problems, the same minimization technique is used for e.

A.2.3 Minimization problem with respect to m

Finally, the minimization problem with respect to m reads

min
|m(i )|=1

rm

2

∑
i
|m(i )− z(i )|2, with z = n + 1

rm
ξ (A.15)

and can be solved pixel-wise. For each pixel we have the following 2D problem: given a point

in space with coordinates z(i ) ∈R2 we want to find the point in the unit ball minimizing its

distance to z(i ). It is clear that the solution corresponds to the projection of the unconstrained

minimizer z(i ) into the unit ball, i.e.,

m(i ) =
z(i ) |z(i )| ≤ 1

z(i )
|z(i )| otherwise

. (A.16)

This finalizes the sub-optimization tasks, and therefore this appendix.
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B Minimization Algorithm of Chapter 1
Non-Local Recovery Method

In this appendix, we provide the details of the minimization algorithm of Chapter 1 for the

non-local recovery method proposed for compressed sensing.

B.0.4 Notation

In the discrete setting, the non-local gradient is a linear operator, and by arranging the image

as a column vector it can thus be computed as a sparse matrix multiplication ∇G u = Du. The

matrix D ∈ RN×n (N = |E | indicates the number of edges in the graph) is derived from the

weights associated to the edges and is usually sparse. Consequently d = Du ∈ RN is also a

vector column, with as many components associated to node i as neighbours this node has.

With the vector notation, the inner product of two vectors fields d ,e defined in G is then

computed as < d ,e >G= d T e. As in the continuous setting, the NL divergence divG is derived

from its adjoint relation with the non-local gradient ∇∗
G =−divG and, consequently, in matrix

notation it corresponds to divG d =−DT d .

Since the minimization associated to (1.33) has already been explained for the vectorial

case, in this appendix we focus on the minimizations associated to the non-local operators of

Equations (1.30) and (1.34).

B.1 Estimate u matching measurements, non-local sparsity prior,

and non-local normals

With the previous notation, the minimization problem (1.30) reads

u = argmin
u

‖ |Du|G ‖1 +γvT u + α

2
‖Au − f ‖2

2 (B.1)

with v = divG nG . This minimization is also reformulated as a constraint minimization and

solved efficiently with an augmented Lagrangian. Compared to the local minimizations, in the

splitting step we require an additional variable, s, to have efficient solutions for the posterior
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Appendix B. Minimization Algorithms of Chapter 1: Non-local Recovery Method

sub-minimization problems. The resulting constraint minimization of (B.1) is given by

min
u,s,d

‖ |d |G ‖1 + vT u + α

2
‖As − f ‖2

2 subject to

{
d = Du

s = u
. (B.2)

The Lagrangian in that case reads

L3 (u, s,d ,λd ,λu) = ‖ |d |G ‖1 + vT u + α

2
‖As − f ‖2 +λd

T (d −Du)+ rd

2
‖d −Du‖2

+λT
u (u − s)+ ru

2
‖u − s‖2.

The resulting minimization method is presented in Algorithm 5, where we have also hinted

the solution to each of the sub-minimization problems.

Algorithm 5 Augmented Lagrangian method for CS reconstruction matching normals by (B.2)

1: Initialize u, s,d ,λd ,λu
2: For each iteration l = 1,2. . ., find an approximate minimizer of L3 with respect to variables

(u, s,d ) with fixed Lagrange multipliers λd
l ,λl

u :

u =argmin
u

L3(u, sl−1,d l−1,λd
l−1,λl−1

u ) conjugate gradients

s =argmin
s

L3(ul , s,d l−1,λd
l−1,λl−1

u ) solved in Fourier domain

d =argmin
d

L3(ul , sl ,d ,λd
l−1,λl−1

u ) solved by non-local shrinkage

3: Update Lagrange multipliers

λd
l =λd

l−1 + rd (d l −Dul )

λl
u =λl−1

u + ru(ul − sl )

4: Stop the iterative process when ‖ul−ul−1‖
‖ul ‖ < ε.

Minimization problem with respect to u

The minimization with respect to u corresponds to the following quadratic positive definite

problem

min
u

vT u +λd
T (d −Du)+ rd

2
‖d −Du‖2 +λT

u (u − s)+ ru

2
‖u − s‖2. (B.3)

We find its minimizer solving its optimality conditions, which provide the following system of

linear equations

Kuu =−γv −λu + ru s +DT (λd + rd d ) . (B.4)
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B.1. Estimate u matching measurements, non-local sparsity prior, and non-local
normals

Matrix Ku = ru I + rd DT D is sparse, symmetric, and positive definite, and we have efficient

algorithms to invert it. We choose an iterative method that we initialize with the solution

to the previous augmented Lagrangian iterate. In particular we use conjugate gradients to

exploit the symmetry and positive definition of K , with preconditioning matrix given by its

incomplete Cholesky factorization. The resulting method is very fast, converging to enough

precision with 2-3 iterations of conjugate gradients.

B.1.1 Minimization problem with respect to s

The minimization with respect to s is also a quadratic problem which can be efficiently solved,

in that case in the Fourier domain. The problem reads

min
s

α

2
‖As − f ‖2 +λT

u (u − s)+ ru

2
‖u − s‖2. (B.5)

The optimality conditions in that case are(
αAT A+ ru In

)
s =αAT f +λu + ruu. (B.6)

As before, the matrix Ks =αAT A+ ru In = F T C F is block-circulant and the resulting system is

diagonal in the Fourier domain with C = RT R + ru In . Therefore (B.6) can be efficiently solved

with the FFT.

The introduction of the additional splitting variable s = u allows us to split the inversion of

the full matrix αAT A+ rd DT D , which would result from the use of a single variable for s and

u, into the inversion of two matrices Ku and Ks . The sparse matrix Ku can be efficiently solved

with a sparse incomplete Cholesky factorization, while the full matrix Ks is easily inverted in

the Fourier domain. The original matrix αAT A+ rd DT D , on the other hand, does not present

an evident sparsity pattern or a direct decomposition with fast transforms.

B.1.2 Minimization problem with respect to d

The minimization with respect to d is equivalent to

min
d

‖ |d |G ‖1 + rd

2
‖d − z‖2 with z = Du − λd

rd
(B.7)

As in the local case, this minimization is decoupled for each pixel i as follows

min
d(i , j )

√∑
j∼i

d 2(i , j )+ ∑
j∼i

rd

2

(
d(i , j )− z(i , j )

)2 (B.8)
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Appendix B. Minimization Algorithms of Chapter 1: Non-local Recovery Method

and can be solved by a direct extension of the shrinkage operator to the graph. That is, for

each node in the graph that is a neighbour of node i , the solution is given by

d?(i , j ) = max
{
|z|G (i )− 1

rd
,0

} z(i , j )

|z|G (i )
. (B.9)

B.2 Regularization of non-local divergence of normal vectors

With the previous notation, the minimization problem (1.34) reads

min
v

‖ |Dv |G ‖1 + µ

2
‖v − v̂‖2

2. (B.10)

As in the local case, we decouple the `1 and the `2 problems by defining an additional variable

d = Du and rewriting (B.10) as the following constraint minimization problem

min
v,d

‖ |d |G ‖1 + µ

2
‖v − v̂‖2

2 subject to d = Du (B.11)

with associated augmented Lagrangian

L4 (u,d ,λd ) = ‖ |d |G ‖1 + µ

2
‖v − v̂‖2

2 +λd
T (d −Dv)+ rd

2
‖d −Dv‖2

2. (B.12)

To minimize the Lagrangian L4 with respect to u and d , we alternate the direction of

minimization with respect to each variable and proceed as indicated by Algorithm 6, where

we have also hinted the solution to each one of the sub-minimization problems.

Algorithm 6 Augmented Lagrangian method to regularize non-local divergence of normals
from (B.11)

1: Initialize u,d ,λd
2: For each iteration l = 1,2. . ., find an approximate minimizer of L4 with respect to variables

(u,d ) with fixed Lagrange multipliers λd
l :

v = argmin
v

L4(v,d l−1,λd
l−1) solved with conjugate gradient

d = argmin
d

L4(v l ,d ,λd
l−1) solved by non-local shrinkage

3: Update Lagrange multipliers

λd
l =λd

l−1 + rd (d l −Dul )

4: Stop the iterative process when ‖v l−v l−1‖
‖v l ‖ < ε.
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B.2. Regularization of non-local divergence of normal vectors

B.2.1 Minimization problem with respect to v

The minimization with respect to v corresponds to the following quadratic positive definite

problem

min
v

µ

2
‖v − v̂‖2

2 +λd
T (d −Dv)+ rd

2
‖d −Dv‖2

2. (B.13)

We find its minimizer by solving its optimality conditions, which provide the following system

of linear equations(
µI + rd DT D

)
v =µv̂ +DT (λd + rd d ) . (B.14)

We find the same form of matrix K =µI +rd DT D than in (B.4) and, therefore, we use the same

conjugate gradient method to invert the system.

B.2.2 Minimization problem with respect to d

The minimization with respect to d is equivalent to (B.7) changing u for v , in particular we

have

min
d

‖ |d |G ‖1 + rd

2
‖d − z‖2 with z = Du − λd

rd
, (B.15)

which is solved with the same adaptation of the shrinkage operator to the graph. For each

node neighbour to i , the solution is given by

d?(i , j ) = max
{
|z|G (i )− 1

rd
,0

} z(i , j )

|z|G (i )
. (B.16)

This finalizes the sub-optimization tasks, and therefore this appendix.
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C Minimization Algorithm of Chapter 2

The optimization problem associated with the proposed HAC model is given by

min
φ

∫
Ω

p
g , (C.1)

with the surface element given by

g =1+αi‖∇I i‖2 +γi‖∇ f i‖2 +β‖∇φ‖2 + 1

2
αiα j

[
∇I i ,∇I j

]2

+αiγ j

[
∇I i ,∇ f j

]2 + 1

2
γiγ j

[
∇ f i ,∇ f j

]2 +αiβ
[
∇I i ,∇φ

]2 +γiβ
[
∇ f i ,∇φ

]2
. (C.2)

The key idea of the proposed decomposition algorithm is to split the original problem into

sub-optimization problems that are easier to solve. To that purpose, we rewrite the original

problem (C.1) as a constraint minimization, and we use augmented Lagrangians to solve it.

The resulting Lagrangian is minimized with respect to each variable independently, and the

multipliers are then updated in a cyclic way. Since all the minimizations can be analytically

solved or are decoupled for each pixel, the resulting algorithm is fast and easy to implement.

Let us consider the following constrained minimization problem

min
φ,p ,ϕ, f 1,..., f k

q 1,...,q k

∫
Ω

p
gc subject to



p =∇φ
q i =∇ f i 1 ≤ i ≤ k

ϕ=φ
f i = si H

(
ϕ

)
1 ≤ i ≤ k

, (C.3)

which is equivalent to the original problem (C.1) with

gc = 1+αi‖∇I i‖2 +γi‖q i‖2 +β‖p‖2 + 1

2
αiα j

[
∇I i ,∇I j

]2 +αiγ j

[
∇I i , q j

]2

+ 1

2
γiγ j

[
q i , q j

]2 +αiβ
[
∇I i , p

]2 +γiβ
[
q i , p

]2
.
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Next, we reformulate the constrained minimization of problem (C.3) as an unconstrained

optimization task. This can be done with an augmented Lagrangian approach, which trans-

lates the constraints into pairs of a Lagrangian multiplier and a penalty term, see e.g., Glowinski

and Le Tallec [1989]. Let us define the augmented Lagrangian energy L
(
φ, p , f 1, . . . , f k , q 1, . . . , q k ,ϕ,Λ

)
associated with the previous problem (C.3):

L =
∫
Ω

p
gc +λ1 · (p −∇φ)+ r1

2
‖p −∇φ‖2 +λ2,i · (q i −∇ f i )+ r2,i

2
‖q i −∇ f i‖2

+λ3(ϕ−φ)+ r3

2
(ϕ−φ)2 +λ4,i ·

(
f i − si H(ϕ)

)
+ r4,i

2

(
f i − si H(ϕ)

)2
, (C.4)

where the Lagrange multipliers Λ= (
λ1,λ2,1, . . . ,λ2,k ,λ3,λ4,1, . . . ,λ4,k

)
are functions inΩ, and

r1, . . .r4,k are positive constants.

The constraint minimization problem (C.3) reduces then to finding the saddle-point of the

augmented Lagrangian L . The solution to this saddle-point problem can be approximated

by the following iterative algorithm: initialize the Lagrange multipliers to zero and the split

variables according to the constraints; at each iteration, find an approximate minimizer of

L with respect to the variables φ, p , f 1, . . . , f k , q 1, . . . , q k by alternating the minimization with

respect to each variable, and update the Lagrange multipliers with the residuals associated

with each constraint; stop the process when φ remains fixed. This process is summarized in

Algorithm 8.

The next step is to determine the solutions of the sub-minimization problems (C.5)-(C.9),

which can actually be computed efficiently. In the following, we simplify notation by omitting

the super-index in the different sub-minimizations.

C.0.3 Notation

We discretize the image domain Ω⊂R2 with a regular grid of size n = nx ×ny . We use forward

differences to compute the discrete gradients and backward differences for the divergence in

order to preserve the adjoint relationship div =−∇∗ in the discrete setting. In matrix-vector

notation, we can efficiently compute the spatial derivatives multiplying the discrete functions

arranged as a column vector with the sparse finite difference matrices ∇x u = Dx u, ∇y u = D y u.

Similarly, the discretization of the L2 inner product in Ω corresponds to the usual dot product

of vectors.

C.0.4 Minimization associated with φ and f i

The sub-minimization problem (C.5) can be written as follows:

min
φ

∫
Ω

r1

2
‖v −∇φ‖2 + r3

2
(z −φ)2,
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Algorithm 7 Lagrangian method for minimization of HAC method.

1: Initialize φ, p , f 1, . . . , f k , q 1, . . . , q k ,ϕ,Λ
2: At iteration l , find a minimizer of L with respect to variables (φ, p , f 1, . . . , f k , q 1, . . . , q k ,ϕ)

with fixed Lagrange multipliersΛl−1:

φl =argmin
φ

L (φ, p l−1, f 1l−1
, . . . , f k l−1

, q 1l−1
, . . . , q k l−1

,ϕl−1,Λl−1) (C.5)

p l =argmin
p

L (φl , p , f 1l−1
, . . . , f k l−1

, q 1l−1
, . . . , q k l−1

,ϕl−1,Λl−1) (C.6)

f i l =argmin
f i

L (φl , p l , f 1, . . . , f k , q 1l−1
, . . . , q k l−1

,ϕl−1,Λl−1) (C.7)

q i l =argmin
q i

L (φl , p l , f 1l
, . . . , f k l

, q 1, . . . , q k ,ϕl−1,Λl−1) (C.8)

ϕl =argmin
ϕ

L (φl , p l , f 1l
, . . . , f k l

, q 1l
, . . . , q k l

,ϕ,Λl−1) (C.9)

3: Update the Lagrange multipliers and region terms

λ1
l =λ1

l−1 + r1(p l −∇φl )

λ2,i
l =λ2,i

l−1 + r2,i (q i l −∇ f i k
) i = 1, . . . ,k

λl
3 =λl−1

3 + r3

(
ϕl −φl

)
si =

(
I i −µi

+
)2

with µi+ =
∫
Ω I i H(ϕ)∫
Ω H(ϕ)

i = 1, . . . ,k

λl
4,i =λl−1

4,i + r4,i ( f i l − si H(ϕl )) i = 1, . . . ,k

4: Stop the iterative process when ‖φl −φl−1‖ < ε.
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where z =ϕ+ λ3
r3

and v = p − λ1
r1

. The corresponding Euler-Lagrange equation is:

r3φ− r1∆φ= r3z − r1 div z . (C.10)

With the notation explained above, Equation (C.10) is discretized as a linear system of equa-

tions Aφφ= bφ, with matrix Aφ and vector bφ given by

Aφ =r3In + r1DT
x Dx + r1DT

y D y

bφ =r3z − r1DT
x v x − r1DT

y v y .

Matrix Aφ is symmetric, definite positive, and block-circulant, and we can use the Fourier

transform F to decompose it as Aφ = F T DφF , with Dφ a diagonal matrix. Consequently,

the system Aφφ= bφ can easily be solved in the Fourier domain. In practice we use the FFT

transform instead of doing the matrix multiplications with F and F T , which gives us the

following solution φ=F T (D−1
φ Fbφ) of complexity O (n logn)

The minimization problem associated with the features f 1, . . . , f k have all the same form

and can also be solved in the frequency domain. Without loss of generality, we present here

the minimization associated with f 1, which reads

min
f 1

∫
Ω

r2,1

2
‖∇ f 1 −v‖2 + r4,1

2

(
f 1 − z

)2
,

where we have defined the auxiliary variables v = q 1+ λ2,1

r2,1
and z = s1H − λ4,1

r4,1
. The correspond-

ing Euler-Lagrange equation is

r4,1 f 1 −2r2,1∆ f 1 = r4,1z − r2,1 div v ,

which is discretized also as a linear system of equations A f f 1 = b f . Matrix A f and vector b f

are given by

A f =r4,1In + r2,1DT
x Dx + r2,1DT

y D y

b f =r4,1z − r2,1DT
x v x − r2,1DT

y v y ,

where A f is also symmetric, positive definite, and block-circulant, and the system is solved

again in the Fourier domain.

C.0.5 Minimization associated with vector fields p and q 1, . . . , q k

We first note that the minimization problem associated with the vector fields p and each

q 1, . . . , q k are decoupled for each pixel and can be solved by point-wise minimization of the

functions being integrated. As the problems associated with the vector fields q 1, . . . , q k have
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all the same form, we develop only the expressions for q 1 and p , which read

min
p

∫
Ω

p
gc +λ1

(
p −∇φ)+ r1

2
‖p −∇φ‖2 (C.11)

min
q 1

∫
Ω

p
gc +λ2,1

(
q 1 −∇ f 1)+ r2,1

2
‖q 1 −∇ f 1‖2

. (C.12)

The main difficulty involved in (C.11) and (C.12) is the square root affecting the surface

element
p

gc , which does not allow for a closed-form solution. To overcome this issue, we

use the iterative re-weighted least squares (IRLS) technique, which has been proposed in the

context of Beltrami minimizations in Rosman [2010].

IRLS iteratively minimizes the square root term
p

gc by the following process: at iteration l

the square root is approximated by the weighted surface element
p

gc
l ≈ gcp

g l−1
c

= gc

w l with fixed

weight w l , the resulting weighted least squares problem is solved, and the weight is updated

for the next iteration. The problem reduces then to a series of a quadratic minimizations on p

or on q 1, for which closed-form solutions are available.

For instance, applied to (C.11), at each iteration the minimization problem is equivalent to

min
p

∫
Ω

β‖p‖2 +αiβ
[∇I i , p

]2

w
+ r1

2
‖p −v‖2,

where v =∇φ− λ1
r1

. By simple differentiation with respect to each component of p =
(

p x , p y

)
we obtain the following 2×2 linear system of equations for each pixel

Ap p = r1w v with Ap = 2β

 1+αi

[
I i

y

]2 +γi

[
q i

y

]2 + r1w
2β αi I i

x I i
y +γi q i

x q i
y

αi I i
x I i

y +γi q i
x q i

y 1+αi
[
I i

x

]2 +γi
[

q i
x

]2 + r1w
2β

 .

Matrix Ap is symmetric, positive definite, and its determinant is given by

|A| =
(

2β

w

)2

g f + r1
2β

w

(
2αi‖∇I i‖2 +γi‖q i‖2

)
,

where g f is the induced metric associated with the embedding
(
x, y, I 1, . . . , I k , f 1, . . . , f k

)
. With

a 2×2 linear system to solve at each pixel, we have an equivalent to a closed-form solution for

each IRLS update. These formulas can be further simplified by ignoring the coupling of the

x, y components of p and updating each component iteratively.

The same procedure is used to solve (C.12). In this case we have the following linear system

for each pixel B 1q 1 = r2,1

2γ1
w∇ f i −λ2,1.
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Matrix B 1 is symmetric, positive definite, and has entries1

B11 =1+
k∑

i=1
αi

[
I i

y

]2 +
k∑

i=2
γi

[
q i

y

]2 +β
[

p y

]2 + wr2,1

2γ1

B12 =B21 =
k∑

i=1
αi I i

x I i
y +

k∑
i=2

γi q i
x q i

y +βp x p y

B22 =1+
k∑

i=1
αi

[
I i

x

]2 +
k∑

i=2
γi

[
q i

x

]2 +β[
p x

]2 + wr2,1

2γ1

The determinant of B 1 reads

|B 1| = 1

w2 g f1̂ + r2,1
1

2γ1w
(2

k∑
i=1

αi‖∇I i‖2 +
k∑

i=2
γi‖q i‖2),

where g f1̂ is the induced metric associated with the embedding
(
x, y, I 1, . . . , I k , f 2, . . . , f k

)
. We

have then also a closed-form for each IRLS update.

In practice, we have found that 3-5 iterations of IRLS are enough for both minimization

problems.

C.0.6 Minimization associated withϕ

If we define the auxiliary variables z = φ− λ3
r3

, r = r4,i (si )2 and w = 1
r λ4,i si + r4,i

r si f i , the

minimization problem associated with ϕ is equivalent to the following minimization

min
ϕ

∫
Ω

F (ϕ) = min
ϕ

∫
Ω

r3

2

(
ϕ− z

)2 + r

2

(
H(ϕ)−w

)2 (C.13)

and can again be solved by pixel-wise minimization of F (ϕ). Observe that for practical imple-

mentations, this minimization involves a smooth approximation Hε of the Heaviside function.

We propose two steps to find quickly a minimizer of (C.13).

1) Find a solution ϕ0 of (C.13) for ε= 0 (i.e. for the distributional/non-smooth Heaviside

function). A closed-form solution exists for this problem and can be computed as follows. The

first term of F
(
ϕ

)
is minimized by ϕ0 = z. As the Heaviside function can take only values 0 or

1, the second term is minimized by ϕ0 < 0 when w < 1
2 and by ϕ0 ≥ 0 when w ≥ 1

2 . That means

that both terms, and therefore the function, are minimized by ϕ0 = z if either w < 1
2 and z < 0

or w ≥ 1
2 and z ≥ 0. Otherwise we must choose to minimize the greater of these terms and set

ϕ0 = 0 if F (0) < F (z) and ϕ0 = z otherwise.

2) Find a solution ϕ of (C.13) for ε > 0 using the standard Newton’s method with ϕ0 as

initialization. The iterative Newton’s method for finding the minimizer of (C.13) reads as

1Einstein’s convention is not used because the summations always exclude one index.
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follows:

ϕm+1 =ϕm − r3
(
ϕm − z

)+ r
(
H(ϕm)−w

)
δ

(
ϕm

)
r3 + r

(
H(ϕm)−w

)
δ′(ϕm

)+ rδ
(
ϕm

)2 .

Each iteration, Newton’s method finds a second-order polynomial approximation to the

function around the current iterate and minimizes it. Initialized close to a minimum, as our

first step assures, Newton’s method converges fast because the second order approximation is

accurate, and the resulting minimization method requires only 3-5 iterations to converge.

This finalizes the sub-optimization tasks, and therefore this appendix.
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D Minimization Algorithm of Chapter 3

The variational problem associated with the reconstruction of a surface in Chapter 3 results in

the following non-convex minimization problem

min
z,u

αA (∇z)+βB (z,u)+γG (∇z)+W (∇u) . (D.1)

The objective functional of this problem has terms involving the surface height map z, its

spatial gradients d = ∇ z, the deformation field u, and its spatial derivatives V = ∇ u1. To

efficiently solve the problem, we design an iterative algorithm that considers these variables as

independent, and we use an augmented Lagrangian to ensure that the relationships d = ∇ z

and V = ∇ u hold.

The resulting Lagrangian is minimized with respect to each variable independently and

the multipliers are then updated in a cyclic way. The independent minimizations for each

variable are easier to solve because they reduce to convex problems involving only first-order

derivatives or are decoupled for each pixel. The initial complex minimization of Equation

(D.1) is thus divided in small and easier subtasks that are efficiently solved, and the resulting

algorithm is faster than the descent PDE flow of problem (D.1). In image processing, similar

techniques have been recently applied to the variational minimization problems associated

with image denoising, image segmentation, and image reconstruction that were previously

solved with PDE methods, see e.g., Wang et al. [2008], Goldstein and Osher [2009], Goldstein

et al. [2009].

D.0.7 Notation

We discretize the image domain Ω ⊂ R2 with a regular grid of size n = nx ×ny . In Ω we

consider images and height maps as scalar functions with z(i ) ∈ R, and their gradients are

1 u is a 2-dimensional vector field in R2 and we denote as V =∇u the 2×2 matrix field obtained of applying the
gradient operator to each component of u.
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therefore vector-valued functions with ∇z(i ) ∈R2. We use forward differences to compute the

discrete gradients and backward differences for the divergence in order to preserve the adjoint

relationship div =−∇∗ in the discrete setting. In vector notation, we can efficiently compute

the spatial derivatives multiplying the discrete functions arranged as a column vector with the

sparse finite difference matrices ∇x z = Dx z, ∇y z = D y z.

For numerical purposes we also relax the Heaviside function to a smooth approximation

Hε (x) = 1
2

(
1+ 2

π arctan
( x
ε

))
, with its corresponding derivative δε approximating the Dirac

distribution.

D.1 Numerical minimization algorithm

To reconstruct the height map z associated with the surface and estimate the deformation

field u, we need to solve the minimization problem of Equation (D.1). To this purpose, let us

consider the following constrained minimization problem, which is equivalent to (D.1):

min
d=∇z
V =∇u

αA (d )+βB (z,u)+γG (d )+W (V ) . (D.2)

Next, we reformulate this constrained minimization problem as an unconstrained opti-

mization task. This can be done with an augmented Lagrangian approach, which translates

the constraints into pairs of a Lagrangian multiplier and a penalty term. The augmented

Lagrangian associated with (D.2) reads

L (z,d ,u,V ,λz ,λu ) = Ec (z,d ,u,V )+
∫
Ω
λz · (d −∇z)+ rz

2
|d −∇z|22 +λu · (V −∇u)+ ru

2
|V −∇u|22

where the vectorial functionsλz ,λu are Lagrange multipliers, and rz ,ru are positive constants.

The constraint minimization problem (D.2) reduces to finding the saddle-point of the

augmented Lagrangian energy L . To find a saddle-point, the following algorithm can be

adopted: initialize the variables and Lagrange multipliers to zero, at each iteration k find an

approximate minimizer of L (z, d ,u, V , λz
k−1, λu

k−1) with respect to the variables z,d ,u,V ,

and update the Lagrange multipliers with the residuals associated with each constraint. See,

e.g., Glowinski and Le Tallec [1989].

In general, it is difficult to find the exact minimizer of the Lagrangian L with respect to the

variables z,d ,u,V simultaneously. However, experiments show that a good approximation can

be found by alternating the minimization of L with respect to each variable while considering

the others fixed. The resulting method is equivalent to the alternating direction method of

multipliers. The resulting iterative method is summarized in Algorithm 8.

The next step is to determine efficient solutions for the sub-minimization problems (D.3)-

(D.6). To simplify notation we omit the super-index in the sub-minimization problems.
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D.1. Numerical minimization algorithm

Algorithm 8 Augmented Lagrangian method to solve the constraint minimization (D.2)

1: Initialize z,d ,u,V ,λz ,λu
2: For each iteration l = 1,2. . ., find an approximate minimizer of L with respect to variables

(z,d ,u,V ) with fixed Lagrange multipliers λz
l , λu

l :

z l = argmin
z

L
(
z,d l−1,ul−1,V l−1,λz

l−1,λu
l−1

)
(D.3)

d l = argmin
d

L
(
z l ,d ,ul−1,V l−1,λz

l−1,λu
l−1

)
(D.4)

ul = argmin
u

L
(
z l ,d l ,u,V l−1,λz

l−1,λu
l−1

)
(D.5)

V l = argmin
V

L
(
z l ,d l ,ul ,V ,λz

l−1,λu
l−1

)
(D.6)

3: Update Lagrange multipliers

λz
l =λz

l−1 + rz (d l −∇z l ) (D.7)

λu
l =λu

l−1 + ru(V l −∇ul ) (D.8)

4: Stop the iterative process when ‖ul−ul−1‖
‖ul ‖ < ε, ‖zl−zl−1‖

‖zl ‖ < ε.

D.1.1 Minimization with respect to z

If we have an OPC model z0 of the printed surface, the sub-minimization problem with respect

to z reads

min
z

∫
Ω

β

2
(z − z̄0)2 +λz · (d −∇z)+ rz

2
|d −∇z|22, (D.9)

where z̄0 = z0 (x +u) does not depend on z.

We observe that it is a convex minimization problem, and therefore we can find a mini-

mizer by solving its optimality conditions. Euler-Lagrange gives us the following optimality

condition

βz − rz∆z =λz +βz̄0 −div(λz + rz d ) . (D.10)

If we discretize Equation (D.10), we obtain a system of linear equations Az z = b with a

positive definite matrix. In particular we have

Az =βIn + rz DT
x Dx + rz DT

y D y

b =βz̄0 +DT
x

(
rd dx +λz,x

)+DT
y

(
r dy +λz,y

)
. (D.11)

Note that matrix Az is block circulant and we can use the Fourier transform F to decompose

it as Az = F T DF , with D a diagonal matrix. Consequently, the system (D.11) can easily

be solved in the Fourier domain. In practice we use the FFT transform instead of doing the

matrix multiplications with F and F T , which gives us the solution z =F T
(
D−1Fb

)
with a
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complexity O (n logn).

If we compare the surface to the expected mask in terms of the Heaviside function, we

have the following minimization problem

min
z

∫
Ω

β

2
(Hθ (z)−h)2 +λz ·(d −∇z)+ rz

2
|d −∇z|22, (D.12)

where h = H
(
φ (x +u)

)
does not depend on z, and Hθ(x) = H(x −θ) denotes the composition

of the Heaviside function with the translation by θ.

In this case we do not have a closed-form solution for the minimization and require an

iterative algorithm. In practical terms, we derive a fast semi-implicit minimization algorithm,

that we initialize with the value of the previous iterate in the augmented Lagrangian Algorithm

8. The resulting minimization with respect to z converges within 2-5 iterations.

The Euler-Lagrange equations associated with Equation (D.12) are

−rz∆z =β(Hθ(z)−h)δθ(z)+λz +βz̄0 −div(v ) , (D.13)

where v = λz + rz d , and δ(·) is the derivative of the Heaviside function, that is, the Dirac

distribution. Given a small ε> 0, the system is equivalent to

εz − rz∆z = εz +β(Hθ(z)−h)δθ(z)+λz +βz̄0 −div v (D.14)

and can be solved with the following fixed-point iterative method (iterations on k)

εzk+1 − rz∆zk+1 = εzk +β(Hθ(zk )−h)δθ(zk )+λz +βz̄0 −div v . (D.15)

At each iteration we have a linear system equivalent to (D.10) that we solve again in the Fourier

domain.

D.1.2 Minimization with respect to d

If we define v =∇z − λz
rz

, the minimization problem with respect to d = (dx ,dy ) reads

min
d

∫
Ω
α (R (d )− I0)2 +γw |∇d |2 + rz |d −v |22. (D.16)

The ideal reflectance function for SEM is given by Equation (3.4), but in fact, at the nanometre

scale the reflectance map is considerably more complex and has to account for proximity

effects. As a result, Equation (3.4) is only an approximation of the SEM image acquisition

system, and it can be equally modelled by its first order Taylor expansion in the minimization

process. Such an approach has also been shown to improve convergence in Zheng and

Chellappa [1991]. At iteration k +1 we approximate the reflectance map around the previous
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D.1. Numerical minimization algorithm

iterate by

R (d ) ≈ Rk +
(
dx −d k

x

)
Rk

x +
(
dy −d k

y

)
Rk

y with


Rk = R(d k )

Rk
x = ∂dx R(d k )

Rk
y = ∂dy R(d k )

. (D.17)

Defining R̄k = R
(
d k

)
−Rk

x d k
x −Rk

y d k
y − I0, at each iteration the minimization can be re-

written as

min
d

∫
Ω
α

(
Rk

x dx +Rk
y dy + R̄k

)2 +γw |∇d |2 + rz |d −v |2. (D.18)

For simplicity we minimize independently for each component of d and correct this approxi-

mation through the iterative method. A simultaneous minimization could also be performed

efficiently solving a 2×2 linear system of equations for each pixel in the frequency domain,

see e.g., Hahn et al. [2011].

The Euler-Lagrange equations associated with the minimization with respect to dx and dy

are

rz dx +αRk
x dx +γ∇w ·∇dx −γw∆dx = rz vx −αRk

x

(
Rk

y dy + R̄k
)

rz dy +αRk
y dy +γ∇w ·∇dy −γw∆dy = rz vy −αRk

y

(
Rk

x dx + R̄k
)

.

If we discretize the optimality conditions, we have a linear system of equations Ax dx = bx and

Ay dy = by with

Ax = rz In + αDRxk + γDT
x Dw Dx + γDT

y Dw D y

bx =αDRxk
(
DR yk dy −DR̄k

)+ rz vx

Ay = rz In + αDR yk + γDT
x Dw Dx + γDT

y Dw D y

by =αDR yk
(
DRxk dx −DR̄k

)+ rz vy ,

where DRxk , DR yk and Dw are diagonal matrices, with entries associated with the values of

functions Rk
x , Rk

y and w in Ω. Matrices Ax , Ay are then symmetric, sparse, and diagonally

dominant, and the systems can be inverted with an iterative Gauss-Seidel method. As a

consequence of the sparsity of the matrices, each iteration of the Gauss-Seidel method is

extremely fast and convergence is achieved within a few updates.
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D.1.3 Minimization with respect to u

If we have an OPC model z0 of the printed surface, the sub-minimization problem with respect

to u reads

min
u

∫
Ω

β

2
(z (x)− z0 (x +u))2 +λu · (V (x)−∇u (x))+ ru

2
|V (x)−∇u (x) |2. (D.19)

The associated Euler-Lagrange equation is

− ru∆u (x) = b(u)

b(u) =−βz (x)−div(λu (x)+ ruV (x))+βz0 (x +u)∇z0 (x +u) .

If we compare the surface to the expected mask in terms of the Heaviside function, we

have the following minimization problem

min
u

∫
Ω

β

2

(
hθ (z(x))−H

(
φ (x +u)

))2 +λu · (V (x)−∇u (x))+ ru

2
|V (x)−∇u (x) |2. (D.20)

The associated Euler-Lagrange equation is now

− ru∆u (x) = b(u)

b(u) =−βhz (x)−div(λu (x)+ ruV (x))+βH
(
φ (x +u)

)
δ

(
φ (x +u)

)∇φ (x +u) .

In both cases, the optimality conditions reduce to

−ru∆u = b (u) (D.21)

and can be solved iteratively with the same scheme. To that purpose, we choose a small ε> 0

and initialize the following fixed-point method with the solution to the previous Lagrangian

iterate

εu t+1 − r u∆u t+1 = b
(
u t )+εu t . (D.22)

This fixed-point scheme is discretized as a system of linear equations that is equivalent to

(D.11) and can be efficiently solved by means of the FFT transform or a few iterations of Gauss-

Seidel. We have experimentally observed that 2-5 iterations of this fixed-point algorithm are

enough to achieve convergence.
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D.1. Numerical minimization algorithm

D.1.4 Minimization with respect to V

Defining W =∇u − λu
ru

, the minimization with respect to V reads

min
V

∫
Ω
|V −W |F 2 +W

(
V +V T +V T V

2

)
, (D.23)

where |·|F designates the Frobenius norm. In this case the minimization functional contains no

derivatives and is decoupled for each pixel, that is, we only need to solve a scalar minimization

problem independently for each pixel. To that purpose we use a semi-implicit gradient descent

method with time step τ. At each pixel we denote V =
(

V11 V12

V21 V22

)
and iteratively update V

pixel-wise with the following rule

V k+1
11 =V k

11 +τ
(
ruW11 −λck

01 −µck
02 −µck

04V k
12

)
1+τ(

r u +λck
01 +µck

02

)
V k+1

12 =V k
12 +τ

(
ruW12 −µck

04

(
1+V k

11

))
1+τ(

r u +λck
01 +µck

03

)
V k+1

21 =V k
21 +τ

(
ruW21 −µck

04

(
1+V k

22

))
1+τ(

r u +λck
01 +µck

02

)
V k+1

22 =V k
22 +τ

(
ruW22 −λck

01 −µck
03 −µck

04V k
21

)
1+τ(

r u +λck
01 +µck

03

) ,

where

c01 =V11 +V12 + 1

2

(
V 2

11 +V 2
12 +V 2

21 +V 2
22

)
c02 =2V11 +V 2

11 +V 2
21

c03 =2V22 +V 2
12 +V 2

22

c04 =V12 +V21 +V11V12 +V21V22.

A similar scheme has been proposed in Guyader and Vese [2009] in the context of image

registration, but the relation V =∇u is here considered a constraint instead of a penalty in

the minimization. Experimentally we have found that few iterations are enough to reach the

accuracy required for the Lagrangian update rule of Algorithm 8.

This finalizes the sub-optimization tasks, and therefore this appendix.
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