
DISTAL: Domain-specific Language
for Implementing Distributed Algorithms

Master Thesis Report

Pamela Delgado

Distributed Systems Laboratory LSR
School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne

Supervisors: Zarko Milosevic, Martin Biely
Professor: Prof. André Schiper
External Expert: Prof. Pascal Felber

Lausanne, June 2012

Abstract
Distributed algorithms research focuses on interactions and communication be-
tween independent systems and processors in diverse scenarios. These algo-
rithms are usually written as abstract pseudo-code, and turning them into com-
pilable and runnable code is a complex and error prone task. This is in part
due to the lack of expressiveness for representing the distributed algorithms
abstractions in currently available tools and libraries. We present DISTAL, a
domain-specific language for implementing distributed algorithms, as a library
on top of Scala that allows the user to express and fully implement distributed
algorithms in a high level, pseudo-code-like manner. Validated with a Paxos and
its MultiPaxos variant along with a batching optimization, this library exhibits
the capability of allowing a quickly implementation of these algorithms, while
retaining their expected behavior and properties.

Keywords domain specific languages, distributed algorithms, Scala

1

Contents
1 Introduction 4

2 Background 6
2.1 Domain-specific languages . 6
2.2 Distributed algorithms analysis 6

3 DISTAL Language Design 8
3.1 Events . 9
3.2 Messages . 10
3.3 From pseudo-code to DSL . 11

4 Implementation 13
4.1 How it works . 13
4.2 DSL particularities . 13
4.3 Architecture . 15

5 Evaluation 17
5.1 Paxos . 17

5.1.1 MultiPaxos . 21
5.1.2 BatchiPaxos . 22

5.2 Expresiveness . 23
5.3 Performance . 23

6 Related work 27

7 Conclusion 29

2

List of Figures
1 Event definition options . 10
2 Execution line options . 11
3 Abstract tree built from DSL code 9 example 14
4 Architecture of DISTAL library 15
5 Paxos execution scenario . 17
6 MultiPaxos execution scenario . 21
7 BatchiPaxos execution scenario 22
8 Clients latency in BatchiPaxos 24
9 Clients throughput in BatchiPaxos 24
10 Clients latency comparison between MultiPaxos, BatchiPaxos and

Paxos . 25
11 Clients throughput comparison between MultiPaxos, BatchiPaxos

and Paxos . 26

List of Algorithms
1 Reliable broadcast . 12
2 Paxos algorithm . 18
3 Paxos algorithm - continuation 19

List of DSL code examples
1 Events in DISTAL . 9
2 Conditions in DISTAL . 9
3 Counting in DISTAL . 9
4 Comparing messages in DISTAL 10
5 Message definitions in DISTAL 10
6 Sending messages in DISTAL . 11
7 Triggering events in DISTAL . 11
8 Reliable broadcast implementation 12
9 Conditional event example . 13
10 Paxos implementation . 19
11 Modifications to Paxos to get MultiPaxos 21
12 Modifications to MultiPaxos to get BatchiPaxos 22

3

1 Introduction
Distributed systems are nowadays at the core of increasingly diverse applica-
tions, from highly scalable parallel systems to mobile data processing units. As
a result, a number of non trivial challenges is posed to the computer science
research community. On one hand, new technologies focus on efficient, reliable
and scalable communication in complex networks of processing nodes, and on
the other hand researchers study and propose distributed algorithms that are
capable to address these problems. Examples of this type of algorithms are, re-
liable message passing, agreement algorithms in presence of byzantine failures,
consensus algorithms, etc.

While these algorithms focus on essential abstract properties such as correct-
ness, validity or termination, they are written in an implementation-agnostic
way. Therefore, these algorithms are not biased by technological specificities,
and are also simpler to understand as they only reflect a handful of key ideas.
Such algorithms are typically expressed in a high level pseudo-code, which al-
lows them to be simple and expressive, fitting into a few lines of code [4].
However, turning these algorithms into compilable code is a highly complex,
time-consuming and error-prone task. Furthermore, the way an algorithm is
implemented and the tools a given implementation may use can affect the per-
formance, and some important assumptions non covered in theory, might raise
problems in practice.

The lack of adequate libraries or frameworks for facilitating the tasks of de-
veloping, prototyping and deploying distributed algorithms forces implementors
to devote a considerable amount of time and effort to turn an algorithm into real
code. Even in high-level programming languages, there is a mismatch between
the required expressiveness of an algorithm, and the available abstractions pro-
vided by a given language.

In this project we propose a domain specific language (DSL) to express dis-
tributed algorithms, implemented as a library in Scala, and that can be executed
on top of the Akka1 framework. The goal of this DSL is to help programmers
bridging the gap between abstract algorithms and actual code, thus enabling
a simple transition to a fully developed and runnable implementation. This
project focuses specifically in the following aspects of distributed systems:

Group communication algorithms Distributed systems is a wide area and
in this work we want to focus on distributed algorithms of the group commu-
nication type, namely: Consensus, Paxos, failure detector components, reliable
broadcast, total order broadcast, atomic broadcast, among others [4, 11].

Application layer Using an existing component for the network layer and
message passing, the project lies in the application layer, focusing more on the
developer side in terms of expressiveness and facility to verify, deploy and im-
plement algorithms in a high level fashion.

1http://akka.io/

4

The main contributions of this work can be summarized as follows:

i) We conduct an analysis of different ways of expressing distributed algo-
rithms and their commonalities.

ii) We provide the design of a Domain Specific Language for distributed al-
gorithms, using Scala as host language, whose main features include:

– An abstraction for events and messages

– The ability to mix with real Scala code, being an internal DSL

– A framework structure that helps the user in bootstrapping and de-
ploying (set up of peers and starting point, system generator, config-
uration files)

iii) We validated and experimented our approach with common use cases, in-
cluding Paxos to MultiPaxos implementation, an optimization with batch-
ing, and a test comparison with JPaxos [15].

The remainder of the report is organized as follows: In Section 2 we intro-
duce the fundamental concepts about DSLs and the analysis of commonalities
found in mainstream distributed algorithms. In Section 3 we introduce the de-
sign of our DSL for distributed algorithms, and in Section 4 we describe its
implementation. The experimentation and evaluation of our approach is de-
tailed in Section 5. Related work is presented in Section 6 before concluding in
Section 7.

5

2 Background
Before describing our proposal we present in this section some fundamental
concepts related to Domain-specific languages and an analysis of distributed
algorithms that helped modeling the DSL features presented in next section.

2.1 Domain-specific languages
As we are in the information era, nowadays all types of domains start searching
for better ways of using the technology to their favor. Starting with areas out-
side computer science like medicine, biology, architecture, astronomy, etc, not to
mention several industry applications, we find a wide world of non-programmers
who want to tell the computer how to compute results, in other words, programs.
People started using more and more domain-specific languages to achieve their
goals without having to learn a general purpose programming language [26].

The same phenomenon happens also inside computer science, where stan-
dard programming languages are sometimes not enough. The growing number
of tools that helps scientists and developers to perform software verification,
implementation of parallel programs (Liszt [7], OptiML [24], Green Marl [12]),
database management systems (Pulse [1]) and probabilistic programming, are
just an example of the need for DSLs.

One can think of a DSL as being a small programming language focused
to a specific area, it usually provides a way of representing abstractions, unlike
a general purpose language. According to the way it is implemented, a DSL
can belong to one of two types of DSLs: external and internal [8]. While the
first kind, also called standalone is not necessarily dependent of a general pro-
gramming language, its implementation includes also a parser and a compiler or
interpreter. The second type of DSLs, internal, is embedded in a host language
and consequently, its syntax is somehow limited.

As the DSL for distributed algorithms defined by its requirements is an in-
ternal DSL, we present a rough analysis and comparison of the most popular
JVM host languages for developing internal DSLs based on [10]. JRuby, Groovy
and Clojure are alike in the sense that all of them provide meta programming,
macros and dynamic typing, while the syntax flexibility in Ruby and Groovy are
higher than Clojure. Scala on its down side, does not support dynamic typing
nor provides macros for meta programming, but there are a series of advantages
of using it as a host language, to name the most relevant: implicit conversion,
pattern matching, case classes, default arguments, flexible syntax with dot and
parenthesis, static types, host for object oriented and functional programming.
Embedded DSls in Scala have also been coupled with code generation in [21].

2.2 Distributed algorithms analysis
We studied the style common patterns and conventions for writing distributed
algorithms in the literature, and we came to the conclusion that there is not

6

a single or universally agreed way of expressing them. While this fact poses
challenges with respect to the expressiveness of the code that implements these
algorithms, at the same time it provides certain freedom for defining a DSL
syntax.

We analyzed a set of algorithms and the way they are expressed, among
them [2], [4], [14], [20], [3], [22], [6], [11], and we evidenced that despite the va-
riety of syntax in their pseudo-code, they share elements in common. Generally
speaking, distributed algorithms are expressed as processes reacting to events,
message types and their contents and quantity. The lack of expressiveness of
languages, frameworks and platforms for dealing with these concepts, can be
identified as one of the main obstacles when trying to implement distributed
algorithms. The mismatch between abstractions such as events or messages in
pseudo-code, and the elements available in programming languages, is the first
issue that needs to be tackled. From that point on, algorithms require the abil-
ity of specifying how messages are exchanged, when an event is triggered, and
what actions should be executed on those circumstances.

This is precisely the starting point for the definition and modeling of the
DSL, and in the following two sections we describe the solution including a
detailed description of the DSL features and its implementation.

7

3 DISTAL Language Design
We designed a DSL for developing distributed algorithms, with a special focus
on group communication. The functionalities of the DSL as a language, were
derived from a set of key directives, as a result of our analysis of existing algo-
rithms in the literature.

Firstly, the DSL should define a high-level language and be as expressive
as possible, allowing to write algorithms in a form very close to pseudo-code.
As we have seen in the previous section, algorithms in the literature can be
very different in form, but they share many notions that can be abstracted as
common elements. By defining a language that is very close to pseudo-code, we
minimize the cost of translation in terms of time and difficulty.

Secondly, it is required to allow re-usability whenever it is possible. We
identify three levels of re-usability:

Algorithmic level When studying common distributed algorithms we found
that they are typically expressed in layers, for example an Atomic Broadcast al-
gorithm could use a Reliable Broadcast algorithm underneath. Consequently the
DSL should allow defining algorithms in such a way that upper-layer algorithms
may use lower-level ones.

Code level This DSL library should allow the developer to seamlessly mix
DSL features with the host language code and libraries. In the case of our DSL
implementation, the host language is Scala, is very expressive and provides
collection manipulation features that allow the developer, for example to iterate
over a list of messages in a couple of code lines. Reimplementing these functions
as a feature as well as other language elements such as loops not only would
not provide any advantage to the DSL but also it would make it more complex
to develop and, if it is not carefully implemented, less efficient. Therefore we
promote code re-usability within the host language as an important DSL feature.

Parser/interpreter level As mentioned before in Section 2 there are two
types of DLSs: external and internal. Although external DSLs allow full free-
dom for the definition of the language syntax, they may require defining a parser,
parser combinator, compiler and even interpreter. Furthermore, to accomplish
the previous goal of code re-usability, it is far simpler and convenient to imple-
ment an internal DSL, for which a parser combinator for instance is discarded.
Although some internal DSLs define a small yet complete language they usually
include an interpreter for it. In the case of our DSL, implementing compilers,
parsers and interpreters is avoided, we completely reuse those of the host lan-
guage.

Following an analysis of common ways of expressing distributed algorithms,
we defined the key features of our proposed DSL. At the very core of the DSL
we define Events and Messages, described in detail in the following two subsec-
tions. While in these latter we show pieces of DSL code, a complete Reliable

8

Broadcast code example can be found in the last subsection and a full Paxos
implementation is also presented in evaluation.

3.1 Events
Events are the main component of this DSL, this section presents features and
cases related to events and how to use them. Distributed algorithms are typically
expressed in terms of events being triggered, and actions launched when an event
is detected.

Events: An event is an occurrence triggered by an algorithm at some point
of its execution. In the wake of an Event, some action is typically executed by
the algorithm, receiving a message for processing. Algorithms in the DSL are
able to listen to event occurrences with the UPON EVENT keywords. In the next
example, the algorithm will execute the action inside the DO clause, every time
the MyEvent event is triggered. This action is defined as an anonymous function
that receives a message and can process it inside: (m: MyMsg) =>{<do something

with m>}.

UPON EVENT MyEvent() DO (

(m: MyMsg) =>{...})

DSL code 1: Events in DISTAL

Conditions: Sometimes users want to verify if a condition holds before the
action is executed. We specify a condition using the WITH keyword followed by a
condition function. In the following example the condition is that the message
attribute k should be larger than some internal value myk (this value could rep-
resent the number of a view instantiation, for example).

def biggerK(m: MyMsg) = (m.k > myk)

UPON EVENT MyEvent() WITH biggerK DO ((m: MyMsg)=>{})

DSL code 2: Conditions in DISTAL

Counting: Another variant of conditional consists in controlling a condition
that holds a given number of times. Then, when some threshold is met, the
algorithm proceeds to execute the action. This is specified using the TIMES key-
word after the WITH condition. This is a useful feature particularly for algorithms
that require verifying conditions on a number of messages received by peers, for
instance half of them in the next example.

UPON EVENT MyEvent() WITH condition TIMES n/2 DO ...

DSL code 3: Counting in DISTAL

9

Figure 1: Event definition options

Comparing messages: Sometimes the content of the messages matters, and
we want to execute an action after we received n messages of the same kind. By
same kind we refer to same value for an attribute (or a combination of them),
and this can be specified using the SAME keyword followed by the function that
provides the message value to be compared, and the number of times it is ex-
pected to appear before executing the action (using the TIMES keyword). In this
example we filter messages with the same vote value. When the threshold n is
met for a list of messages of the same kind, this list is sent as parameter to the
event action.

def voteValue(m: VoteMsg) = m.vote

UPON EVENT Vote() SAME voteValue TIMES n DO(

(msgs: List[VoteMsg]) =>{...})

DSL code 4: Comparing messages in DISTAL

Figure 1 summarizes different ways of building an event including the type
of parameters expected in each stage of the DSL.

3.2 Messages
The second main component of the DSL, messages, is closely related to events.
In this subsection we explore how to define as well as how to use them to activate
and process Events.

Message Definition To be able to define the events as shown previously, the
user would need to create classes defining the messages, with their respective
attributes, and the events. The only condition is to extend DSL Message and
Event classes respectively. There is also a definition for an empty message, and
if desired, attributes can contain default values.

case class MyMessage(att1: Int=0, att2...) extends DSLMessage

case class MyEvent(msg: MyMessage) extends DSLEvent(msg)

DSL code 5: Message definitions in DISTAL

10

Figure 2: Execution line options

Another important abstraction present in the DSL is activating events by
sending messages. We provide two ways, send and trigger.

Send To send messages that activate an event across the network, we typically
use SEND, this is translated by the DSL to Akka message-passing.

def myMsg = MyMessage(0,ack,...)

SEND MyEvent(myMsg) TO peerid

DSL code 6: Sending messages in DISTAL

Trigger The other option is to TRIGGER an event internally, for instance from
a lower layer algorithm, for example from a reliable broadcast instance.

TRIGGER(rebInstance,MyEvent(myMsg))

DSL code 7: Triggering events in DISTAL

In both SEND and TRIGGER is possible to specify the destination with the peer
ID, an actor reference and a list of peers.

Figure 2 summarizes the different ways of building an executable line of the
DSL including all the options for specifying a peer in SEND.

3.3 From pseudo-code to DSL
Now that we have explained the DSL features we can visualize an implemen-
tation of a simple and concrete distributed algorithm as an example. Consider
reliable broadcast algorithm, slightly modified from [11], with two events defined
in algorithm 1.

If we were to port this to DISTAL we have the following implementation,
we also include the definition of the messages which is trivial 2.

2DSLActor provides also myPeers and parent variables

11

Algorithm 1 Reliable broadcast
1: Upon Event SendReliableBroadcast(m)
2: SEND m TO my peers
3:
4: Upon Event ReliableBroadcast(m)
5: if m not in delivered
6: SEND m TO my peers
7: delivered := delivered + m
8: DeliverRBroadcast(m)

// Messages

case class BroadcastMsg (id: Int, content: String) extends DSLGenericMsg

// Events

case class SendReliableBroadcast(bmsg: BroadcastMsg = null) extends DSLGenericEvent(bmsg)

case class ReliableBroadcast(rbmsg: BroadcastMsg = null) extends DSLGenericEvent(rbmsg)

case class DeliverRBroadcast(dmsg: BroadcastMsg = null) extends DSLGenericEvent(dmsg)

// Main algorithm actor class

class ReliableBroadcast extends DSLProtocol{

val delivered: List[BroadcastMsg] = List()

UPON EVENT SendReliableBroadcast() DO (

(m: BroadcastMsg)=>{

| SEND ReliableBroadcast(m) TO myPeers

})

UPON EVENT ReliableBroadcast() DO (

(m: BroadcastMsg)=>{

if(!delivered.contains(m)){

| SEND ReliableBroadcast(m) TO myPeers}

delivered = delivered ++ List(m)

| TRIGGER(parent,DeliverRBroadcast(bmsg))

}

}

)}

DSL code 8: Reliable broadcast implementation

Observing and comparing the algorithm pseudo-code and the implementa-
tion we can note three important properties of the DSL. 1) It does not grow in
number of lines. 2) At the same it allows to mix DSL and Scala code inside
actions, for instance the addition of a new message to the list of delivered mes-
sages. 3) Moreover, the implementation is expressive enough to understand the
purpose of the algorithm at a glance.

12

4 Implementation
While the DSL design and features were presented in the previous section, this
section will cover the implementation of the DSL itself, some particularities and
the architecture of DISTAL as a library.

4.1 How it works
As we explained before, Scala provides internal DSLs with some built-in features
that enable them to use syntactic sugaring. These features are mainly implicits,
optional dots, high order functions and case classes, that let us build from the
user code an abstract tree composed of classes, objects and methods. This tree
is built as the DSL code is written.

UPON EVENT MyEvent() WITH condition DO (

(m: MyMsg) =>{...

| SEND m TO peer

})

DSL code 9: Conditional event example

The two main classes of the implementation of the DSL are the EventBuilder

and the LineBuilder. If we take the previous example of an event definition start-
ing with UPON, which is an object, by means of implicit we create an EventBuilder,
and the only way of doing this using the object EVENT. Taking the event and
its corresponding type, the latter will create an UponBranch that can contain ob-
jects of types WITH, SAME or DO. These branches can contain subbranches on their
own, to define objects like TIMES or DO. Finishing the construction with an ac-
tion defined in terms of a function applied to a message, this abstract tree is
created in order to define an event settings. Internally the DSLActor will create
an EventDefinition, saving all these values to process them when needed, and
adding it to a Hashmap of events. The message passing through the network is
taken care underneath by Akka.

Figure 3 shows the tree built from the example shown previously.

Similarly, for a DSL execution line we have the LineBuilder, represented by a
special object | to distinguish a DSL line from a normal Scala execution. This
object is in charge of the definition of SEND, with its own branch and options, and
TRIGGER. Since these objects typically lie in an event action, their corresponding
apply methods in the DSL implementation are translated to executable code,
in the case of the example above it will send a message to a peer. By its nature,
a DSL execution line can be also part of a normal Scala method or even just lie
inside a class.

4.2 DSL particularities
As we stressed before, internal DSLs are limited by the host language. In the
case of Scala and this Distributed Algorithms DSL, there were some challenges

13

Figure 3: Abstract tree built from DSL code 9 example

and particularities to consider during the implementation.

The fact that in Scala there are no means to use macros [10] (to dynami-
cally define new types for example) like in other languages such as Ruby, made
the DSL implementation limited, from a syntax point of view. For instance in
the definition of actions inside events, a function that receives an argument of
the same type as the event message is needed to be declared explicitly like an
anonymous function. When developing the DSL several options where taken
into account before choosing the more expressive among the feasible solutions.

Another example of this syntax limitation is the | commodity character used
to build an executable line. Since an object for the implicit was needed in any
case, we have chosen this character because is less intrusive for the user code.

A challenging part of the implementation was to deal with the statically
typed characteristic of Scala. As we saw before, actions inside events are de-
fined in terms the type of message that it receives, meaning new types defined
by the user. These types presented a difficulty when creating the Event in the
DSL, because we did not know those types in advance to tell the compiler. This
is why all objects in DISTAL implementation are type parametrized. Further-
more, the new types created by the user both messages and events have to be
subtypes from DSLGenericMsg and DSLGenericEvent (known types to the DSL).

A special case with static types happened for the anonymous function: since
the first type parameter is covariant we could not take as a parameter a super
type, like DSLGenericMsg. A combination of Nothing and a cast when applying
this function to the incoming message, together with type parametrized classes
and objects was the trick that solved this issue.

14

Figure 4: Architecture of DISTAL library

An inherent drawback, from the user point of view, of internal DSLs is that
the exceptions he/she might get are not always meaningful. In our DSL we tried
to design in the simplest yet complete syntax to avoid confusion.

4.3 Architecture
Although the core of the DSL library explained in the previous two subsections
lies inside the DSLActor class, there is a set of classes outside that also form part
of the library, and are devoted to facilitate the deployment task to the user.
The architecture of the DSL library and how user classes are related to it are
shown in Figure 4.

In this figure the green elements correspond to user defined classes and ob-
jects, and the blue ones to the DSL library elements. The main algorithm will
be implemented in a class, corresponding to AlgorithmActors in the figure, along
with its events and messages definition. These classes should extend DSLActor,
DSLGenericEvent and DSLGenericMsg correspondingly.

For the implementation to be able to run we need to create Akka systems
in each node, actors (or instances) of the main algorithm and define a config-
uration file with all the parameters needed for Akka. The DSLApplication is the
starting point for the run, it is type parametrized with the class type of actors
and the Application Master and it will be in charge of creating the actors using
the configuration file and to call the master bootstrapping. The user should
define an Algorithm Application, bootable or with a main class, that creates a
new DSLApplication and pass an Algorithm Master object.

Another important block for the deployment is DSLMaster, which is in charge
of all the bootstrapping, meaning the exchange of peers information, waiting for
acknowledge, and the start and stop points of the algorithm. The correspond-

15

ing user Algorithm Master should extend this class and if desired override the
startAlgorithm method.

To be able to create Akka actors, an ActorSystem is needed in each machine
node, this is wrapped in GeneralSystem class, for which the user will just need to
create a new class giving as parameters the name of the system, its configuration
setting name and the configuration file path.

16

Figure 5: Paxos execution scenario

5 Evaluation
This section presents the evaluation of DISTAL including the implemented al-
gorithm, the settings for testing, and the results for both expressiveness and
performance points of view.

5.1 Paxos
Among the different distributed algorithms present in the literature, we have
chosen Paxos [16, 17] to implement and evaluate the DSL. There are several
reasons for this choice, first of all it is a complex and well known algorithm
key to consensus, secondly because it has several variants with which we could
test how the DSL is helpful when comparing different alternatives of the same
problem, and finally because we count with almost the same settings and the
source code of a Java implementation of it: JPaxos [22].

The main idea of Paxos is to solve agreement and perform consensus over
a value, usually proposed by clients between a given number of replicas, in an
asynchronous non byzantine environment. It consists of two phases, prepare
and propose. During prepare phase the leader3 of a given view sends a Prepare
message and when it gets a majority of PrepareOK responses from the other
replicas, it sends one of the values proposed by the clients within a Propose
message. When a replica receives a proposal it answers with an Accept to all
the peers, and finally each replica can decide on a value once it has received
Accept from a majority of its peers. Figure 5 illustrates the execution of two
consequent views in which the first replica is the leader.

In the Algorithm 2 and DSL code 12 we present the full pseudo-code and
DSL code respectively of a detailed implementation of the algorithm described
above used in the evaluation. To increase clarity, failure detector code has been
omitted.

3several leader election algorithms are also present in literature

17

Algorithm 2 Paxos algorithm
Initialization:

view ← 0 // used to recognize voting rounds
(lastview, lastvalue)← {0, Nil} // last accepted value and its view
procId← ID // ID of the process
accepted← {Nil} // set of processes that accepted the value in current view
valuesProposed← Nil

PreparePhase:
if valuesProposed has at least one message and prepare or propose phase

view ← nextMyV iew
send Prepare<viewm> where viewm← view to all

ProposePhase:
lastvalue← valuesProposed
lastview ← view
send Propose<viewm,valuem> where viewm ← lastview; valuem ← lastvalue

to all

Upon Prepare<viewm> where viewm ≥ view from p
if viewm > view then

advanceView(viewm)
view ← viewm
send PrepareOK<viewm,{viewp, valuep}> where viewm ← view;

{viewp, valuep} ← {lastview, lastvalue} to p
if process is leader of view

leave Propose or Prepare phase

Upon PrepareOK<viewm,{viewp, valuep}> with viewm = view times majority
{viewv, value} ← {viewp, valuep} from PrepareOK with highest viewp
begin Propose phase

Upon Propose<viewp, valuep> where viewp ≥ view from p
accepted← nil
if viewp > view then

advanceView(viewp)
else if viewp = view
{viewv, value} ← {viewp, valuep}

send Accept<viewm, valuem> where viewm← viewp; valuem← valuep to all

Upon no decision taken and the leader crashed
begin Prepare phase

18

Algorithm 3 Paxos algorithm - continuation
Upon Accept<viewp, valuep> where viewp ≥ view from p

if viewp > view then
advanceView(viewp)

else if viewp = view
if viewv! = viewp then

execute Upon Propose<viewp, valuep>
accepted← accepted ∪ {p}
if accepted contains majority of processes then

decided on value
leave propose or prepare phase
if procID is leader of view

preparePhase

Upon ClientRequest <value> from c
clientProposalV alue← value
if leader(view) = procID

send RedirectLeader<leader> where leader = leader(view) to c
else

add value to valuesProposed
if (phase.equals("NONE"))

begin prepare phase

class Paxos extends DSLActor {

// Initialization

var view = 0

var lastview: Int = 0

var lastvalue: Value = null

var accepted: List[(ActorRef,Int)] = Nil

var phase: String = "NONE"

var valuesProposed: Queue[Value] = new Queue()

def preparePhase = {

if(valuesProposed != null && valuesProposed.size > 0 && phase.equals("NONE")){

phase = "PREPARE"

view = nextMyView

| SEND Prepare(PrepareMsg(view)) TO myPeers

}}

def proposePhase = {

phase = "PROPOSE"

lastvalue = valuesProposed.dequeue()

lastview = view

| SEND Propose(ViewValueMsg(lastview,lastvalue)) TO myPeers

}

def biggerEqualView(m: PrepareMsg) = m.viewm >= view;

UPON EVENT Prepare() WITH biggerEqualView DO (

(m: PrepareMsg)=>{

if (m.viewm > view)

advanceView(m.viewm)

view = m.viewm

| SEND PrepareOK(PrepareOKMsg(view, (lastview,lastvalue))) TO sender

19

if(leader(view)!= myID)

phase = "NONE"

})

def sameView(m: PrepareOKMsg) = (m.viewm == view && phase.equals("PREPARE"))

UPON EVENT PrepareOK() WITH sameView TIMES majority DO (

(msgs: List[PrepareOKMsg])=>{

val lastviewvalue = (msgs foldLeft msgs.head.viewvaluep) {

(x, y) => if(x._1 < y.viewvaluep._1) y.viewvaluep else x }

lastview = lastviewvalue._1

lastvalue = lastviewvalue._2

proposePhase

})

def biggerEqualView(m: ViewValueMsg) = (m.viewm >= view)

UPON EVENT Propose() WITH biggerEqualView DO (

(m: ViewValueMsg)=>{

accepted = Nil

if (m.viewm > view)

advanceView(m.viewm)

else {

lastview = m.viewm

lastvalue = m.valuem

| SEND Accept(ViewValueMsg(m.viewm,m.valuem)) TO myPeers

}})

UPON EVENT Accept() WITH biggerEqualView DO(

(m: ViewValueMsg) => {

if (m.viewm > view)

advanceView(m.viewm)

else {

if(lastview != m.viewm)

| TRIGGER(self,Propose(ViewValueMsg(m.viewm,m.valuem)))

accepted = accepted ++ List((sender,myID))

if(accepted.size == majority){

| SEND Decided(lastvalue) TO server

phase = "NONE"

if(leader(view) == myID) preparePhase

}}})

UPON EVENT ClientRequest() DO (

(v: Value)=>{

if(leader(view) != myID){

| SEND RedirectLeader(NewLeaderMsg(myPeers(leader(view)))) TO sender

} else {

valuesProposed.enqueue(Value(v.clientID, v.sequenceID, v.value, sender))

if (phase.equals("NONE"))

preparePhase

}})

UPON EVENT LeaderCrashed() DO (

(_)=>{ preparePhase })

DSL code 10: Paxos implementation

20

Figure 6: MultiPaxos execution scenario

5.1.1 MultiPaxos

In order to test the facility to migrate from this simple implementation of Paxos
we studied one of its variants: MultiPaxos [17, 5]. Since in most of Paxos im-
plementations the leader tends to be stable (in terms of crashing) and given
that the performance in Paxos (and most of distributed algorithms) is driven
by the quantity of messages sent across the network, a variant called MultiPaxos
emerges as an option to solve this problem. In MultiPaxos, once the prepare
phase is finished, the leader would send propose, as normal Paxos. However, for
proposing the next client value it would not need to install a new view (prepare
phase) and it would send directly Propose. This behavior is illustrated in figure
6.

The following listing shows the set of changes needed to transform our Paxos
implementation from above to a MultiPaxos variant. The most important
change is 4), adding a call to proposePhase in Accept event. Changes to mes-
sages to include the instance number are not included.

//1) Add instance number to differentiate between proposal phases, send instance in messages

//2) Add a PREPROPOSE phase

var instance = 0

def proposePhase = {

if(phase.equals("PREPROPOSE") && valuesProposed != null && valuesProposed.size > 0){

instance = instance + 1

| SEND Propose(ViewValueMsg(view,instance,... }

...

// In PrepareOK - last lines

phase = "PREPROPOSE"

proposePhase })

...

//3) Update Accepted variable to a Hashmap with key being the instance number

var accepted: HashMap[Int,List[String]] = HashMap()

...

// In Accept when adding a new peer

var newList = List(sender.path.name)

if(accepted.contains(m.instance))

newList = newList ++ accepted(m.instance)

accepted.put(m.instance, newList)

if(newList.size == majority){ ...

//4) After deciding on a value, the leader should start again Propose phase

21

Figure 7: BatchiPaxos execution scenario

// In Accept last lines

if(leader(view) == myID) {

phase = "PREPROPOSE"

proposePhase

} else phase = "NONE"

DSL code 11: Modifications to Paxos to get MultiPaxos

Adding these changes to the code was straightforward, it barely increased
(less than 10) the number of lines and the expressiveness was still maintained.

5.1.2 BatchiPaxos

Two optimizations to MultiPaxos studied in [15] are Batching and Pipelining,
concluding in their results that the first one affects performance. This is why
we chose to implement also this optimization and run tests on it.

As we mentioned before, the bulk of performance lies in the network, there-
fore the number of messages sent is key for latency and throughput, and Batch-
ing takes advantage of this by appending together several client requests and
performing just one Propose phase for a given message size threshold. As shown
in Figure 7, client requests may come at different stages and the leader would
keep a queue to send them in batches.

The following listing shows the set of changes needed to add Batching op-
timization to the previous MultiPaxos implementation. Changed Messages are
accordingly to receive a list of values each and this is not included in the listing
to maintain clarity.

//1) Add a Batchsize variable, obtain its value from configuration file

//2) Update LastValue variable to a List of client values

var lastbatchvalues: List[Value] = Nil

var batchsize: Int = _

var msgBatch: Int = 1

override def initialization ={

batchsize = config.getInt("batchsize")}

//3) The first time a client request arrives, calculate the number of requests needed to fill the batch size

def preparePhase = {

if(valuesProposed != null && valuesProposed.size > 0){

22

msgBatch = batchsize/valuesProposed(0).value.length

...}

//4) Add a control to Propose only if the threshold is met and in the message include the n first requests.

// In proposePhase

if(valuesProposed.length >= msgBatch){

phase = "PROPOSE"

lastbatchvalues = Nil

for(i <- 0 until msgBatch)

lastbatchvalues = lastbatchvalues ++ List(valuesProposed.dequeue())

...

| SEND Propose(ViewValueMsg(view,instance,lastbatchvalues))

...

DSL code 12: Modifications to MultiPaxos to get BatchiPaxos

Similarly to MultiPaxos, adding Batching optimization to the code took lit-
tle time, with around 5% increase the number of lines and the implementation
was expressive enough for the developer to understand the meaning at a glance.

5.2 Expresiveness
Our algorithm example, Paxos, is a distributed algorithm usually non trivial to
implement, even for high level languages such as Java. We can state, as user
experience, that when developing Paxos the translation from pseudo-code to
code was pretty straightforward, off course there were details overlooked and
not present in the algorithm but in general it was fast. What took more time to
implement was the bootstrapping, deploying and the testing, for which Clients,
Servers, Loggers and scripts were created.

Comparing the pseudo-code and the implementation we can conclude that
it does not grow exponentially in number of lines, in fact the events implemen-
tation plus preparePhase and proposePhase methods can still fit into approx-
imately 60 lines and one page.

The implementation also exhibits the ability to mix DSL and Scala code,
specially inside actions, where we notice the need for conditionals, loops and
collection manipulation. Furthermore, it is expressive enough to understand
the purpose of the algorithm at a glance. And comparing with the Java imple-
mentation is all not only concise but also concentrated in just one scala class.

5.3 Performance
We also evaluated the performance of this implementation with the aim to see
if the implementation using the DSL and most of all Akka would incur into too
much overhead and to validate the DSL as capable of reproducing the same
conclusions for Paxos with Batching.

The experiments were carried out on in similar settings and circumstances
than JPaxos. A crash-stop model was assumed, using three machines with Pen-
tium III 850 MHz processors, 512 MB of memory, and connected through a 100

23

Figure 8: Clients latency in BatchiPaxos

Figure 9: Clients throughput in BatchiPaxos

Mbps Ethernet cluster. Three Paxos actors would run in an ActorSystem of a
replica machine. Then a client benchmark running in a fourth machine would
create 60 clients and stop them after a 180 seconds run. Clients send requests of
a configured S KB size each time they receive answer. Using a statistic library
they save in a log the throughput calculated by the number of replies received
over the time difference between the last and first ones, along with the mean
and standard deviation, maximum and minimum latency or time that took a
request to be replied. The first replies up to 3 seconds (same as JPaxos) were
not taken into account in order to consider JVM warm-up.

Client logs where processed and using a normal distribution fit with 95%
confidence interval the mean and standard deviation of all the clients was es-
timated. Figures 8 and 9 show the results for BatchiPaxos, or Paxos with
batching, with request of size 128 B and batch size from 128 B up to 2048 B.

Similarly to JPaxos, we can conclude by the graphs that batching is im-
portant for small requests: throughput increases in a logarithmic fashion and
latency decreases likewise.

24

Figure 10: Clients latency comparison between MultiPaxos, BatchiPaxos and
Paxos

A comparison between Paxos, MultiPaxos and BatchiPaxos was made
similarly, this time varying the size of client requests from 16 to 1024 B. Results
showed in 10 and 11 are processed the same way as for the two previous graphs.

As expected, these figures show that while there is little difference between
MultiPaxos and BatchiPaxos (due to an increase in processing messages and the
size of them), normal Paxos is almost twice slower than the other two, logically
because there are almost twice more preparePhase. Another visible observation
is that the size of clients request barely modifies the latency or the throughput,
with what we confirm, together with batching, that the main limiting in the
network is not the size of messages passed but the quantity of them.

As a general conclusion for performance evaluation we draw that the DSL
allows to develop a complex algorithm in a high level way very close to pseudo-
code. At the same time we are able to make similar conclusions about the
performance that correspond to other implementations, in this case JPaxos. As
for the performance results, maximum throughput for JPaxos reaches 12K of
requests per second [15] while ours with fifteen times less clients goes up to half
near 1630 requests per second. Taking into account that JPaxos is a highly
optimized work and the implementation of the DSL version of Paxos took one
week and even less the migration to MultiPaxos or BatchiPaxos the performance
comes to second priority, due to time constraints.

In any case the goal of this project was not performance oriented, in the
sense that no comparison between technologies has been studied, nor even the
optimizations that JPaxos has such as serialization and careful management of
threads were included this implementation. However, it would be interesting
to further work in this subject in the future, along with implementing our own
message passing layer. What is clear in these respects is that the DSL itself
does not incur in overhead with this type of algorithms, because changes and

25

Figure 11: Clients throughput comparison between MultiPaxos, BatchiPaxos
and Paxos

translations to the code are made during compile time and the processing in
runtime is negligible.

26

6 Related work
In this section we describe frameworks, libraries, tools and programming lan-
guages that facilitate the development of distributed algorithms and systems.

While Splay [18] shares similar goals with our project in terms of expres-
siveness and resemblance to pseudo-code, the authors cover a wider and at the
same time lower level range of usages, not specific to distributed algorithms. For
instance, it has been experimented and validated with distributed systems like
Chord, Pastry and BitTorrent. It also focus on providing testing and testbeds
experimental facilities like churn management. Their implementation includes
a central controller and a shared database between processes. In our approach
the master is only used for the bootstrapping and if desired the starting point
of running, furthermore the DSL actors by default are not linked to a particular
process or thread, which avoids blocking.

A widely known language for distributed systems is Mace [13], which helps
low level networking for distributed applications. It can be also considered a
domain-specific language of type external because it fully compiles to C++
runnable code. It is a very complete system, providing failure detection, its
programs can be model-checked and debugged to test safety and liveness, pro-
grammers can use existing tools to debug and profile to further analyze their
systems. It has proved to be useful to researchers but in a low level kind of
programming and not specific only to distributed algorithms. The way of build-
ing applications uses layer approach with upcalls and downcalls, an abstraction
for events is present, and it uses a state machine approach. Although its per-
formance is good, in the code there are too many low level details to reason
directly about an algorithm like Paxos.

Neko [25] shares a similar objective to our DSL in the sense that is more
focused on group communication algorithms and it is implemented in a high
level language Java. However its host language does not allow the user to be
expressive enough: one would still write useless code lines for example to define
methods that are not really used. The environment is based on a stochastic
model, the authors provide a NekoThread and NekoProcess to help controlling
threading in Java along wiht support for bootstrapping.

Continuing with distributed algorithms, Mommie [19] provides an abstrac-
tion for identifying invariants or liveness properties, optimizations can be applied
automatically maintaining those properties guaranties. The paper validates the
work with an algorithm very similar to Paxos trying optimizations on top of
it. Again, the approach is more state-machine like, they also provide an ab-
straction for quorum and transitions between states. In general is more focused
on the verification of properties and the language may not totally intuitive to
distributed algorithms.

In the network layer we find BFT protocols under fire [23], presenting a
simulation environment for byzantine protocols. It includes a P2 compiler to
go from pseudo-code to executable in a P2 engine, their language is designed in
terms of declarative rules, closer to Lisp and logic. Another interesting work is

27

[9] in which the authors define a whole programming language for distributed
systems with an automaton model, with the aim of reaching mathematicians,
including logic signs and a formal mathematical model in their syntax.

Among the existing frameworks available for developing distributed appli-
cations, Akka stands out as a very promising and widely used platform, built
on top of Scala and Java. Akka is targeted for building concurrent, distributed
event-driven applications, providing a set of APIs, tools and libraries to the
developer. While this simplifies implementing distributed applications in gen-
eral, message passing in Akka is not expressive enough for users implementing
distributed algorithms. Because its scope is very generic, it leads users to repeat-
edly implement some functionalities and behaviors that are common in most of
these algorithms. Examples of these are the notions of triggering events, mes-
sages, algorithm layering, and verification of conditions in messages.

28

7 Conclusion
Nowadays programmer productivity has a preponderant value for both the in-
dustry and academia. Concretely, in distributed systems there is a gap between
research algorithms and real executable implementations, which may explode
into thousands of lines of code. Furthermore the deployment, validation and
verification of these implementations are not easy tasks and usually require
more time and attention from the developer. We presented DISTAL, a new
Domain-Specific Language for implementing distributed algorithms that pro-
vides a very high level and intuitive syntax on top of Scala.

This DSL has been validated with Paxos, its variant MultiPaxos and an opti-
mization BatchiPaxos. We showed that the DSL library allows the developer to
easily and rapidly modify code, changing from one algorithm to the other, using
abstractions such as Event triggers and Messages that resemble their pseudo-
code counterparts. Through experimentation, we evidenced that the execution
of these algorithms with our library, follows a similar behavior than in other
implementations like JPaxos. Although the performance evaluation exhibits
an overhead, which might be subject to study for future work, there were no
optimizations made to the code or the message passing settings. Besides, de-
velopment time is greatly reduced, while expressiveness is maintained without
exploding in terms of lines of code (from 150 of the algorithm pseudo-code to
183 its implementation), in contrast to several thousands of lines in languages
like C++ [5].

The main benefits of this project are not only improving development pro-
ductivity and clarity but also reducing errors while translating algorithms pseudo
code to our language. DISTAL is the result of an analysis and modeling of dis-
tributed algorithms, based on events and messages, not state machine like most
of existing approaches in the state of the art. This makes the transition form
algorithms to programming code very simple, unlike other languages. Moreover,
DISTAL emphasizes on the notion of reuse. Nowadays most of internal DSLs
define a small but complete language with its own syntax and interpreter which
requires to redefine, for latter translation, features already present in the host
language. One of the novelties of this DSL lies in the ability of inserting and
mixing native Scala code to take advantage of its useful features. Finally, we
showed in the the experiments that a well known and complex distributed algo-
rithm such as Paxos can be easily implemented using DISTAL, while preserving
the algorithm behavior as if we were using other implementations.

There exist areas that can be the subject of further study, starting with
a more in depth comparison between DSL, Akka, Scala and Java only imple-
mentations, continuing with testing different settings for message passing, and
profiling. Another useful tool can be one made to verify in an automatic way
the correctness and performance of the algorithms developed.

29

References
[1] Yanif Ahmad. Pulse: database support for efficient query processing of

temporal polynomial models. PhD thesis, Providence, RI, USA, 2009.
AAI3377093.

[2] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Deconstructing paxos.
ACM Sigact News, 34(1):47–67, 2003.

[3] C. Cachin. Yet another visit to paxos. 2010.

[4] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and
secure distributed programming. Springer-Verlag New York Inc, 2011.

[5] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live-an engi-
neering perspective (2006 invited talk). In Proceedings of the 26th ACM
Symposium on Principles of Distributed Computing-PODC, volume 7, 2007.

[6] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[7] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, et al. Liszt: a domain
specific language for building portable mesh-based pde solvers. In Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 9. ACM, 2011.

[8] M. Fowler and Parsons R. Domain-Specific Languages. Addison-Wesley,
2011.

[9] S.J. Garland and N.A. Lynch. Using i/o automata for developing dis-
tributed systems. Foundations of Component-Based Systems, 13:285312,
2000.

[10] D. Ghosh. DSLs in action. Manning Publications, 2011.

[11] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broad-
casts and related problems. 1994.

[12] S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Z. DeVito, N. Joubert, F. Pala-
cios, S. Oakley, M. Medina, M. Barrientos, et al. Green-marl: A dsl for
easy and efficient graph analysis. ACM Transactions on Graphics, 2009.

[13] C.E. Killian, J.W. Anderson, R. Braud, R. Jhala, and A.M. Vahdat. Mace:
language support for building distributed systems. ACM SIGPLAN No-
tices, 42(6):179–188, 2007.

[14] J. Kirsch and Y. Amir. Paxos for system builders. Technical report, Tech-
nical Report CNDS-2008-2, Johns Hopkins University, 2008.

[15] J. Kończak, N. Santos, T. Żurkowski, P.T. Wojciechowski, and A. Schiper.
Jpaxos: State machine replication based on the paxos protocol. 2011.

[16] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169, 1998.

30

[17] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[18] L. Leonini, É. Rivière, and P. Felber. Splay: distributed systems evalua-
tion made simple (or how to turn ideas into live systems in a breeze). In
Proceedings of the 6th USENIX symposium on Networked systems design
and implementation, pages 185–198. USENIX Association, 2009.

[19] P. Maniatis, M. Dietz, and C. Papamanthou. Mommie knows best: sys-
tematic optimizations for verifiable distributed algorithms. In Proceedings
of the 13th USENIX conference on Hot topics in operating systems, pages
30–30. USENIX Association, 2011.

[20] Z. Milosevic, M. Hutle, and A. Schiper. On the reduction of atomic broad-
cast to consensus with byzantine faults. In Reliable Distributed Systems
(SRDS), 2011 30th IEEE Symposium on, pages 235–244. IEEE, 2011.

[21] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. Communications
of the ACM, 55(6):121–130, 2012.

[22] N. Santos, M. Hutle, and A. Schiper. Latency-aware leader election. In
Proceedings of the 2009 ACM symposium on Applied Computing, pages
1056–1061. ACM, 2009.

[23] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. Bft protocols
under fire. NSDI, 2008.

[24] A.K. Sujeeth, H. Lee, K.J. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya,
M. Odersky, and K. Olukotun. Optiml: An implicitly parallel domain-
specific language for machine learning. In Proceedings of the 28th Interna-
tional Conference on Machine Learning, ICML, 2011.

[25] P. Urban, X. Défago, and A. Schiper. Neko: A single environment to
simulate and prototype distributed algorithms. In Information Networking,
2001. Proceedings. 15th International Conference on, pages 503–511. IEEE,
2001.

[26] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

31

