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Abstract
Ultra high energy neutrinos are important astrophysical messengers that carry information

on processes taking place in extreme astrophysical environments. The detection of neutrinos

originating from the Greisen-Zatsepin-Kuzmin (GZK) process would confirm the proton

dominance in the composition of the Ultra High Energy Cosmic Rays (UHECRs) as well as

help to identify the unknown sources of the charged particles.

Data taken between April 2008 and May 2009 by the IceCube neutrino observatory in its

40 strings configuration were used for an all-flavour GZK neutrino event search. The main

challenge for this search was the separation of the faint GZK neutrino signal (order of 1 event

per year) from the several orders of magnitude higher atmospheric muon background. Special

focus was given to identifying the topological differences between signal and background

events and, based on them, the development of new background rejection techniques.

High energy events have been pre-selected by requiring a minimum amount of detected

light and number of active photomultipliers in an event. Photon hits in IceCube’s surface

array photomultipliers were used to identify and reject atmospheric muon background events.

Photon hit pattern differences (in time and space) in the in-ice detector between background

and signal events were used to construct new cut parameters for background rejection.

UHE neutrino events were selected by a final analysis cut determined by optimising the Model

Discovery Potential parameter (MDP) based on the neutrino flux from a reference GZK model.

The predicted rates for the analysis live time of 315.34 days were 0.32 signal neutrino events

and a total background rate of 0.015. The achieved least detectable signal by the analysis is

5.3 events which gives MDP=16.4. This means a normalisation factor of 16.4 higher on the

reference GZK neutrino flux would be necessary in order to be able to claim a 5σ discovery.

The full data sample was processed after the analysis methodology had been frozen and

approved by the IceCube collaboration. No data events survived the analysis’ final cuts.

A 90% confidence level upper limit was calculated based on the null observation giving

E 2φ≤ 4.75×10−8 GeV cm−2 s−1 sr−1 in the energy range [105.5,109] GeV, a result slightly below

the Waxman-Bahcall limit.

Keywords: GZK neutrinos, IceCube, South Pole, UHECRs
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Résumé

Les neutrinos de ultra-haute énergie sont des messagers astrophysiques importants qui

recèlent de l’information sur les processus qui se déroulent dans des environnements astro-

physiques extrêmes. La détection de neutrinos produits par le processus de Greisen-Zatsepin-

Kuzmin (GZK) confirmerait la prédominance des protons dans la composition des rayons

cosmiques de ultra-haute énergie (UHECR) et permettrait l’identification de ces sources in-

connues des particules chargées.

Les données prises entre avril 2008 et mai 2009 par l’observatoire de neutrinos IceCube dans

sa configuration à 40 chapelets ont été utilisées pour une recherche de tels événements. Le

principal défi pour cette recherche est la séparation du faible signal GZK (de l’ordre de un

événement par an) du bruit de fond de muons atmosphériques, plus élevé par plusieurs ordres

de grandeur.

Une attention particulière a été accordée à l’identification des différences topologiques entre

le signal et le bruit de fond des événements, résultant dans le développement de nouvelles

techniques de rejet des muons atmosphériques.

Les événements de haute énergie ont été pré-sélectionnés en exigeant que les événements

aient un minimum de lumière détectée et de photomultiplicateurs actifs. Le comptage de

photons par les photomultiplicateurs du détecteur de surface de l’observatoire a été utilisé

pour identifier et rejeter les événements de muons atmosphériques. Les différences entre le

signal et le bruit de fond des distributions temporelles et spatiales des photons enregistrés par

les chapelets enfouis sous la glace sont utilisées pour construire de nouveaux paramètres afin

de mieux rejeter de bruit de fond.

Les événements de signal UHECR ont été sélectionnés à l’aide de coupures optimisées pour

une découverte potentielle sur la base d’un modèle de référence de flux de neutrinos GZK. Les

taux de comptage prévus par l’analyse pour une durée effective de prise de données de 315.34

jours sont 0.32 événements de signal et 0.015 événements de bruit de fond total. Il en résulte

que le signal le "moins détectable" est 5.3 événements (i.e. un facteur MDP=16.4). Cela signifie

que le flux de référence devrait être 16.4 fois supérieur pour mener à une découverte avec un

taux de confiance à 5σ.

L’ensemble complet des données a été traité après que la méthodologie d’analyse ait été gelée

puis approuvée par la collaboration IceCube. Aucun événement n’a survécu aux coupures

finales de l’analyse. La limite supérieure, pour un taux de confiance à 90% et calculée sur
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Abstract

la base de cette observation nulle, est E 2φ ≤ 4.75×10−8 GeV cm−2 s−1 sr−1 dans la gamme

d’énergie [105.5,109] GeV, un résultat légèrement inférieur à la limite Waxman-Bahcall.

Keywords : GZK neutrinos, IceCube, le pôle Sud, UHECRs
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1 Introduction

Man’s curiosity about the nature of the universe has always existed. Ancient cultures all

around the world were methodically observing the night sky in plain eye, listing celestial

objects and their trajectories and trying to explain their findings. The Chinese astronomers

of the 2nd century reported the appearance of a bright star in the night sky in 185CE. The

object that sparkled like a star was visible for eight months before fading away. Nowadays this

is considered as the first supernova event observation recorded by humankind.

In contrast to old age astronomy that used only visible light, modern day astrophysics observes

astronomical objects using several astrophysical messengers: lower energy photons such as

radio or micro waves, higher energy photons such as X-rays and gamma rays, charged particles

(cosmic rays) and most recently neutrinos.

A large amount of information is contained in photon emission coming from an astronomical

source. Studying the energy range, luminosity and spectrum shape gives information about

processes taking place at the source vicinity, its chemical composition and physical properties.

Photons are emitted in abundance, are stable, point back to their source and are relatively

easy to detect. However, photons are attenuated by interstellar gas and dust clouds, and

interactions with the cosmic background radiation. Particularly for high energy sources

further information is needed in addition to the detection of gamma-ray flux in order to

distinguish between different acceleration models.

Studying the composition and characteristics of the cosmic ray flux gives information on a

more global scale: acceleration power and processes taking place in our galaxy or beyond

it. This is because emitted charged particles are deflected by galactic magnetic fields and

therefore do not point back to their source when detected.

Neutrinos are uncharged particles that interact solely via the weak force with a very small

interaction cross section. They are produced in nuclear reactions and high energy collisions,

are not deflected or attenuated and therefore point back to their origin. High energy neutrinos

produced in an energetic, optically thick environment escape the region instantly while

gamma-rays produced in the same region are delayed due to multiple collisions. High energy

neutrinos therefore establish the link between gamma-rays and high energy cosmic rays. The
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Chapter 1. Introduction

Figure 1.1: The role of neutrinos as messengers in high energy astrophysics. Energetic astro-
physical environments may be the sources for emission of high energy cosmic ray particles,
gamma rays and high energy neutrinos. The charged cosmic rays (p,e) are deflected by inter-
galactic magnetic fields and lose their directional information by the time they are detected.
Gamma rays (γ) are attenuated by interstellar dust clouds and interactions with the cosmic
background radiation. The uncharged neutrinos (ν) traverse the cosmos freely and point back
to their source when they are detected on earth.

relation between the different messenger particles from extraterrestrial sources and how they

are detected is illustrated in Figure 1.1. Detection of all three astrophysical messengers is

needed in order to determine the nature of processes taking place at the radiation sources.

The first achievements of neutrino astronomy were the measurement of the neutrino flux

from the sun and providing evidence of neutrino oscillations, a finding which also indicates a

non-zero neutrino mass. Another major discovery was the detection of neutrinos from the

supernova event SN1987a taking place at the Large Magellanic Cloud, the only confirmed

neutrino source to date apart from the sun. Neutrinos from SN1987a were recorded by three

different neutrino detectors on earth, KamiokaNDE II in Japan [1] (see Figure 1.2), IMB in the

US and BNO in Russia, three hours prior to the optical signal.

Recently built neutrino detectors and projects planned for the future are focusing on detection

2



Figure 1.2: Neutrino events from supernova 1987A detected by the KamiokaNDE II detector in
Japan. 11 events were counted within 12s.

of high energy neutrinos (>GeV) as these are predicted to emanate from different cosmological

sources. The construction of the IceCube neutrino observatory at the South Pole was com-

pleted in December 2010, reaching an instrumented volume of 1 cubic kilometre. IceCube is

the largest neutrino detector to date and is able to measure neutrinos of energies >109GeV.

This thesis work describes a search for a cosmogenic neutrino flux at extreme high energies

as well as the development of signal-from-background separation techniques for these type

of events using the half completed IceCube detector operational in 2008-2009. Detection of

cosmogenic neutrinos is needed for determining the sources of the highest energy cosmic

rays and their location as well as the cosmic ray spectrum at the source.
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2 Theory

2.1 Cosmic Rays

First discovered in 1912 by Victor Hess, the nature of Cosmic Rays has been studied by multiple

experiments since then.

Cosmic Rays (CR) are relativistic charged particles traveling through the universe. The compo-

sition of the CR flux is predominantly protons (79%), with Helium nuclei, heavier elements

nuclei, and electrons constitute the other 21% [2]. Primary CRs are star nucleosynthesis

products which are accelerated at astrophysical sources. These interact with interstellar gas

producing secondaries such as antiprotons and positrons.

The measured energy flux of CR extends over 12 orders of magnitude, from 109eV to 1021eV.

Particles with energies lower than 109eV are decelerated by the solar wind. The CR energy

flux is described by an inverse power law with the differential flux given by dN/dE ∝ E−γ with

few slope changes over the vast energy range. The most energetic particles observed ever in

nature are CRs with energies of ∼ 1020eV. These Ultra High Energy CR (UHECR) are detected

indirectly by large surface arrays for CR atmospheric shower detection and optical telescopes

for the produced fluorescence and Cherenkov light. AGASA [3], HiRes [4] and the Pierre Auger

Observatory [5] use these techniques for UHECRs detection. Direct detection of the CR flux at

energies <100TeV where the flux is relatively high is possible with small detectors carried by

satellites or balloons to the top of the atmosphere (such as AMS [6], ATIC [7]). The flux in the

middle range between 100TeV and 1EeV is detected indirectly by smaller air shower detector

arrays such as KASCADE [?] and Tibet [9].

Figure 2.1 shows the CR flux for energies above 1013eV. The differential flux follows a power law

with index γ= 2.7 up to ∼ 1015eV, where a steepening of the spectrum occurs (a feature known

as the knee) to an index γ= 3.2. At around 1018 −1019eV the slope becomes softer again with

γ∼ 2.8 (the ankle), and finally the flux drops dramatically at about 3−5×1019eV (see Figure

2.2). Particles with energies above the ankle are referred to as Ultra High Energy Cosmic Rays

(UHECRs).
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Chapter 2. Theory

Figure 2.1: The cosmic rays energy flux as measured by different experiments. Taken from [10]

It is believed that the part of the flux up to the knee is of galactic origin. Beyond the knee, the

flux transitions from a steep galactic component to a flat flux of extragalactic origin [11] and

the CR mass composition changes. The Standard Model for Galactic Cosmic Rays (SMGCR)

[12] predicts that Super Nova Remnants (SNRs) constitute the galactic CR sources via SNR

shock acceleration. Within this model, the proton component of the galactic CR reaches its

maximum energy at about 4×1015eV and thus gives the most probable explanation for the

existence of the knee. Assuming rigidity-dependent injection then the maximum energy of

the galactic iron flux is expected to be 26 times higher at ∼ 1017eV [11].

Several theoretical models exist that describe the transition between galactic and extragalactic

fluxes, its energy range and the changes in its mass composition. Three models are commonly

used, the "ankle", the "dip", and the "mix composition" model. All three predict a heavy

galactic component and a lighter extragalactic one but differ in other aspects. The ankle model

predicts the transition to occur at the ankle which requires an additional high energy galactic

flux component that exists beyond the 1017eV limit from the SMGCR. This energetic flux is

expected to be heavy (iron). Several objects are suggested as possible sources, for instance

SN explosions interacting with stellar wind or hypernovae. In the dip model, the transition

from the galactic iron flux to the extragalactic proton flux takes place at a lower energy of

4−7×1017eV and gives rise to the so-called 2nd knee . Consequently, the dip in the total

flux before the ankle is explained by UHE protons that loose energy due to pair-production
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Figure 2.2: UHECR energy flux measurements from Auger, HiRes and Telescope Array. Taken
from [10]

(pγ→ p+e++e−) from scattering on Cosmic Microwave Background (CMB) photons [11].

The mix composition model predicts a transition just before the ankle from galactic iron to an

extragalactic mixed composition, a mix which is often dominated by protons.

Finally, assuming that the highest energy CRs are of extragalactic origin and of light nuclei

composition, the flux’s rapid steepening around 3 − 5 × 1019eV may be explained by the

predicted Greisen-Zatsepin-Kuzmin (GZK) effect [13]: pion production by scattering of the

UHECR’s on the CMB photons. In the scenario that the UHECRs composition is mixed or

heavy, the propagating nuclei may interact with infra-red CMB photons and suffer energy

losses by photo-disintegration and pair production [14]. The steepening of flux due to these

losses occurs at lower energy than the flux steepening predicted by the GZK effect, and its

shape differs. The e+e− pair production dip is present only if protons constitute at least 85%

of the mixed. The higher the proton content in the composition mix, the more pronounces

are the dip and ankle features [14]. High quality measurements of the UHECR flux features

(dip and steepening) can be used then as an indirect measurement of its composition.

Several collaborations measured the composition of UHECRs in the energy range 1018 −
1019.5eV but so far results are inconclusive. Composition dependency is observed in dis-

tributions of < Xmax > and RMS(Xmax), the shower-to-shower fluctuations of the depth of

maximum. Results from HiRes [4] indicate a close to constant, light composition consisting of

protons and possibly light nuclei. The Auger collaboration results [15] indicate a change of

the composition from light to heavier elements above 1019eV (see Figure 2.3). It appears that

the HiRes observations do not match the prediction of the ankle model for mass composition,
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Figure 2.3: UHECR < Xmax > (left) and RMS(Xmax) (right) shower events measurements from
the Auger experiment, taken from [16]. Data indicates light composition (probably dominated
by protons) changing to a heavier mixture above 1019eV.

where the flux up to the ankle consists of galactic iron . These results are inconclusive and fur-

ther work on this topic is needed to solve the composition question. The UHECR composition

is crucial for predictions of a cosmogenic neutrino flux which is discussed in in section 2.2.5.

2.1.1 Acceleration mechanism

The CR energy flux follows a power-law shape over many orders of magnitude, indicating that

CRs do not result from thermal processes but from an acceleration mechanism where sources

dissipate high energies to the acceleration process.

A likely candidate for this mechanism is Fermi’s 1st order acceleration: charged particles are

confined to a shock (discontinuity) region by magnetic inhomogeneities. When a particle

bounces across the shock front back and forth it gains momentum proportional to the shock’s

β= vs/C value, or otherwise energy ∆E ∝ E . The particle can undergo multiple reflections

which increase its energy before it finally escapes the region. For a population of particles

going through this process, the resulting spectrum is a power law given by dN/dE ∝ E−γ. For

strong (supersonic) shocks the spectral index γ equals 2, for less energetic shocks the slope is

steeper [17]. The measured CR energy flux has a steeper spectral index than the γ= 2 injection

spectrum due to energy losses during CR propagation.

Generally a particle continues to gain energy as long as it is confined to the shock region by the

magnetic field, meaning the particle’s gyroradius is smaller than the size of the acceleration

region. The maximum attainable energy for a particle of charge Z e was calculated by Hillas

[18] as

Emax = βZ

2
BµGLpc (2.1)

where Emax[1015eV], B[µG] is the magnetic field and L[pc] is the size of acceleration region.
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2.1.2 Cosmic ray sources

For the CR spectrum below the knee, shock waves produced in supernova remnants (SNR)

within our galaxy are suggested as the CR acceleration source. Various models estimate

protons to be accelerated up to 1015eV within expanding SNRs. Observations of gamma ray

emission of about 1014eV from SNRs point to electronic acceleration to slightly higher energies:

Brehmsstralung and synchrotron radiation photons are subjected to inverse Compton scatter-

ing by the accelerated electrons resulting in a double hump flux shape. In addition, an energy

balance calculation shows that the total energy deposited by the SNR population into CRs can

account for the bulk of the measured galactic CR energy flux [19]. This calculation takes into

account the SN event frequency, luminosity per SN event, and requires an assumption on the

efficiency of SN energy transfer into CR kinetic energy. Other source candidates for galactic

CRs are pulsar wind nebulae and binary systems which exhibit gamma ray emission.

With increasing energy of the CR spectrum and the transition from galactic to extragalactic

origin, larger acceleration sites and stronger magnetic fields are needed at the sources in order

to reach the obtained energies.

The energy density contained in the extra-galactic component of the CR flux is ρUHECR ≈
3×10−19erg/cm3. Assuming a cosmologically distributed population of sources accelerating

CRs over a Hubble time of tH ≈ 1010yr, the required total power needed to reach the observed

ρUHECR is

LUHECR ≈ 1045 erg Mpc−3yr−1. (2.2)

Natural extragalactic source candidates are Active Galactic Nuclei (AGNs) and Gamma Ray

Bursts (GRBs), objects that appear to be energetic enough to allow particle acceleration to

energies around the ankle. With electromagnetic output of 2×1044erg/s from a typical AGN

and 2×1052erg per GRB event these objects have the required power to produce the UHECRs

flux, under the transparent source hypothesis - similar energy injected into CRs, gamma

rays and neutrino emission. Relevant models for Ultra High Energy Cosmic Rays (UHECRs)

production and the associated neutrino flux are given in sections 2.2.3 and 2.2.4 .

2.2 Astrophysical neutrinos

Accelerated cosmic rays escape their source and propagate through the surrounding radiation

fields and gas clouds. Even if charged protons are trapped in sources due to magnetic fields,

then the neutral neutrons created in pγ interactions may escape (transparent source) and

later decay to protons, thus recovering the accelerated flux shape. Charged and neutral

pions are created in the photo-nuclear and nuclear-nuclear interactions. Charged pion decay

produces a neutrino flux while neutral pion decay results in gamma ray emission. A similar

amount of energy is then found in the emitted photons, charged CRs and neutrino flux. The

astrophysical neutrino flux is therefore dependent on CR interactions with its surroundings
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and the detection of a neutrino flux from an astrophysical source is then a clear sign of

hadronic acceleration taking place.

2.2.1 Astrophysical neutrino production models

The main pion production channels for photo-nuclear and nuclear-nuclear interactions are

pγ → p+π0

pγ → n+π+ (2.3)

pp → p+p+π0

pp → p+n+π+ (2.4)

The pγ interactions go through direct production as well as a large contribution with the ∆+

intermediate state around its mass of m∆ =1.2GeV. Protons are recuperated via neutron decay

and neutron-photon interactions

nγ→ p+π− (2.5)

Neutrinos are then produced in charged pion decay via

π+ → νµ+µ+

µ+ → e++νe +νµ (2.6)

π− → νµ+µ−

µ− → e−+νe +νµ (2.7)

while neutral pion decay results in gamma ray emission

π0 → γ+γ (2.8)

The resulting gamma ray and neutrino energy fluxes follow the initial CR flux, so a power law

spectra is expected. In the pγ case the average energy transfer from the proton to the pion

is 0.2Ep [20]. Charged pion is produced in 1/3 of the cases and neutral pion otherwise, 2/3

probability. The pion passes in average 0.25Eπ to a daughter neutrino or 0.5Eπ to a produced
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gamma ray. 4-momentum conservation and the kinematics of the decay are used to calculate

the energy distributions of the daughter particles [21]. The fractions of initial proton energy

transferred to a single neutrino or photon are ≈ 1/20Ep and ≈ 1/10Ep respectively. Eventually

a similar amount of energy is deposited in gamma rays as in all-flavour produced neutrinos. A

similar result is obtained for pp collisions [22].

Observations of solar as well as man-made neutrinos in the past 20 years give evidence for

neutrino flavour oscillations [10]. Neutrinos have a mass, the mass and flavour eigenstates do

not coincide resulting in neutrino flavour oscillations. Mass and eigenstates are related via a

unitary matrix similarly as in the quarks sector, the Maki-Nakagawa-Sakata matrix [23] (MNS

matrix). Detection of a high energy neutrino flux originating from an astrophysical distance

means detection after very large number of oscillation cycles. The extension of the source

itself (assuming a source is defined and the distance to it is known) means that not a fixed

but a range of propagation distances has to be considered for detected neutrinos originating

from it. More importantly, the neutrino energy measurement by itself has a substantial error.

From these reasons a measured oscillation probability is in fact the averaged one over many

oscillation cycles, and is dependent only on the neutrino mass matrix elements, which have

been experimentally measured.

The neutrino flavour ratio at production from charged pion decay in pp or pγ interactions is

νe : νµ : ντ = 1 : 2 : 0. (2.9)

Calculation of the flavour ratio over cosmological distance (assuming a measurement of the

average oscillation probability) involves the MNS matrix elements. Our current knowledge

of the matrix elements from neutrino oscillations measurements of solar, atmospheric and

man-made neutrinos gives a very small θ13 mixing angle (which means |Ue3|2 << 1) and

measured sin2(2θatom) close to 1 (which gives |Uµ3| ' |Uτ3| when recognising the atmospheric

oscillations angle with θ23). Using this information, the flavour ratio after oscillations over a

cosmological distances is then expected to be [24]

νe : νµ : ντ = 1 : 1 : 1 (2.10)

2.2.2 Theoretical bounds on a diffuse neutrino flux

The particle physics interactions leading to neutrino productions are well understood. How-

ever, the processes taking place in astrophysical sources, resulting in acceleration of CR to

ultra high energies are not resolved. Different theoretical models exist describing the evolution

of sources such as AGNs and GRBs and predicting a neutrino flux. In general, the predicted
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neutrino flux is normalised with respect to observations of gamma ray or CR fluxes. With a

similar argument, using the measured high energy cosmic ray flux and assuming that all high

energy neutrino flux originates from CRs interactions one can obtain a model-independent

upper bound for the sum of all extragalactic neutrino flux.

Waxman and Bahcall (WB) derived an upper bound on the diffuse extragalactic neutrino

flux assuming optically thin sources and using UHECR normalisation [25]. They assume

acceleration of protons taking place in cosmologically distributed sources. The protons

interact with photons, producing pions, neutrons and protons. Charged pion decays produce

neutrinos and neutron decays produce protons again. Assuming a proton injection spectrum

ofΦ∝ E−2, taking into account proton energy loss during propagation and the measured CR

energy spectrum above 1019eV, the generation rate of CRs was calculated to be

E 2
CR

dNCR

dECR
≈ 1044erg Mpc−3 yr−1. (2.11)

The produced protons interact with photons producing charged and neutral pions. As demon-

strated before, charged and neutral pions are generated roughly with the same probability,

and a single neutrino emitted from charged pion decay has an average energy Eν ≈ 0.05Ep.

Noting that the two muon neutrinos produced per charged pion decay take about half of its

energy and taking into account neutrino generation over Hubble time tH ≈ 1010yr, the current

νµ+νµ energy density is given by

E 2
ν

dNν

dEν
≈ 0.25× tH E 2

CR
dNCR

dECR
(2.12)

An upper bound on the muon neutrino flux is then calculated as

E 2
νΦmax = c

4π
E 2
ν

dNν

dEν
≈ 1.5×10−8GeV cm−2s−1sr−1 (2.13)

A correction factor is then calculated to account for the CR source evolution with redshift,

CR energy loss due to redshift and pair production, and neutrino energy loss due to redshift.

This results in a factor 3 increase to the muon neutrino flux. Finally, accounting for neutrino

flavour oscillations, the upper bound on muon neutrino flux at earth becomes

E 2
νΦWB = 2.25×10−8GeV cm−2s−1sr−1 [20] [25]. It is noted that the WB bound is valid also

if there are strong magnetic fields confining protons to the source region [26]. In that case

neutrons produced in pγ interactions escape the source area and later decay producing CR

protons.

2.2.3 Active Galactic Nuclei as neutrino sources

AGNs are the brightest sources in the universe that emit continuos electromagnetic (EM)

radiation. The generating process of an AGN is believed to be the accretion of matter by a

supermassive black hole at the centre of the galaxy and the release of gravitational energy.
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AGNs emit EM radiation over a wide wavelength range from radio to gamma rays, with

variability observed in all wavelengths and with various time scales. AGNs are typically divided

to radio-quiet and radio-loud galaxies and to further subcategories. One group of radio-loud

(luminosity from jets and lobes is dominant) AGNs is blazars, objects that show rapid variability

and the jets are assumed to be pointing close to the direction of the observer. Detected EM

emission can be highly polarised and a characteristic double hump spectrum is observed.

Many models exists to explain blazar activity. These can be divided into two groups: leptonic

and hadronic. Any model has to reproduce the observed gamma ray signal and double hump

structure in the EM spectrum in order to be relevant.

The leptonic models assume that protons are not accelerated to energies high enough to

have efficient pγ interactions. Assuming X-ray photons of 1keV and the centre of mass energy

needed for pγ pion production then the threshold proton energy for pion production is around

1015eV. Instead, AGN radiation originates in relativistic electrons. The double hump structure

in this case is due to photons originating in the jet (synchrotron) or externally (accretion disk)

being boosted to higher energies in inverse Compton collisions with the electrons that are

accelerated in the jet.

Due to the absence of high energy protons above the pγ or pp pion production threshold,

leptonic models do not predict a UHE neutrino flux. Hadronic models assume that a significant

fraction of the jet kinetic energy is used for proton acceleration to relativistic energies. The

distinction is made between pp and pγ as dominating interactions.

One example for a pγ interactions hadronic model is the Synchrotron Proton Blazar (SPB)

model by Muecke et al [27]. In this model protons are co-accelerated with electrons in the

jet region but the energy density of the protons is much higher. Charged UHECR protons are

produced close to the source via the decay of escaping neutrons. The associated neutrino

flux is proportional to the measured extra galactic UHECR flux. The lower frequency hump

of the EM spectrum (X-ray) originates in the electron’s synchrotron radiation. The higher

frequency hump (TeV) originates mostly from synchrotron radiation of relativistic protons

and with contributions from neutral pion decay and induced cascades, and muon synchrotron

emission. Large magnetic field are required in the SPB model to allow the proton synchrotron

emission to reproduce the high frequency hump. A diffuse neutrino flux at earth from BL Lac

blazars population was calculated using the model. The flux peaks around 108GeV at about an

order of magnitude lower than the WB bound.

2.2.4 Gamma Ray Bursts as neutrino sources

GRBs are the most luminous, high energy explosions in the universe. GRBs appear isotropically

all over the sky in distant galaxies in regions with active star formation. Their time duration

spans from ms to several minutes. The initial gamma ray signal is often followed by emission

in longer wavelengths when the GRB ejecta interacts with interstellar gas (the afterglow). Short
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duration bursts are believed to result from massive stellar core collapse into a neutron star or

a black hole, while long duration bursts are associated with merging binary systems.

The general model for the massive core collapse case assumes relativistic jets emerging from

the stellar envelope following the collapse. The observed gamma rays are produced by syn-

chrotron emission and inverse Compton scattering on accelerated electrons by shocks in the

jet flow [28]. Protons are similarly accelerated and a neutrino flux accompanying the GRB

burst is produced via pγ interactions.

Razaqque, Meszaros and Waxman use the general GRB model to calculate expected neutrino

fluxes associated with the different stages of the GRB event: a precursor signal taking place

10-100s before the bright burst and prompt flux coinciding with the burst. [28]. While the jets

are still inside the star, shock accelerated protons may interact with X-ray photons to produce

pions, resulting in a ∼TeV neutrino precursor signal. The prompt neutrino flux mentioned

above is of energies &100 TeV. The model is similarly used to determine neutrino fluxes from

core collapses in which the jets do not fully emerge from the stellar envelope and the events

are not categorised as GRBs. The escaping neutrino flux is then the sole signal from such core

collapse events.

2.2.5 Cosmogenic neutrinos

During propagation in the cosmos UHE protons with energies above ≈ 1020eV may interact

with low energy photons of the Cosmic Microwave Background (CMB) or Cosmic Infrared

Background (CIB) radiation via pγ → π+n or π0p. The charged and neutral pion decays

produce UHE neutrinos and photons. These interactions degrade the proton energy and

therefore a decrease in the UHECR flux at energies above the threshold is expected, the so-

called GZK cutoff [13]. The predicted UHE neutrino flux is referred to as GZK or cosmogenic

neutrinos.

The CMB spectrum is approximately a 2.72K temperature black body radiation spectrum

with average photon energy of < ε>= 6.4 ·10−4eV. The injected UHECR proton spectrum is

usually assumed to be a power-law with a cut-off energy, dN /dE ∝ E−α×exp (−E/Ec), with

typical values α = 2 and Ec = E 21.5eV. The centre of mass of the pγ collision has to satisfy

s & (mp+mπ)2 to allow pion production. For a head-on collision the proton’s threshold energy

is then ≈ 1020eV.

A rough estimate of the interaction path length λGZK can be calculated by assuming the

interaction cross section and photon density are constants [22]. The respective values are

σpγ = 0.25mb and nγ = 411cm−3 and the interaction path length is then

λGZK = (nγσpγ)−1 ≈ 3Mpc. (2.14)

A more precise calculation for the proton threshold energy for the interaction takes into ac-
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Figure 2.4: UHE protons attenuation length as a function of energy. Solid line refer to proton
attenuation length due to pion production (lπ, which dominates) as well as pair production
(lp) and expansion losses. Plot taken from [29].

count the shape of the CMB spectrum f (εγ) and the detailed pγ cross sectionσpγ(Ep,εγ,cos(θ))

where θ is the angle between the proton and photon in the lab frame and which includes direct,

resonance and multi-pion contributions. The effective energy threshold is then decreased to

Ep ≈ 1019.6eV. The interaction length is then calculated by

λ−1
int(Ep) = 1

2

∫
dcos(θ)

∫ ∞

0
dεγσpγ(Ep,εγ,cos(θ)) f (εγ). (2.15)

The attenuation length can be approximately calculated by multiplying the integrand by an

inelasticity factor, Kp(Ep,εγ,cos(θ)) ≡ 1−E ′
p/Ep. The inelasticity is about mπ/mp ≈ 1/7 at the

interaction energy threshold, increasing with higher energies and asymptotically reaching

1/2. Figure 2.4 shows the attenuation length dependency on the proton energy (solid line).

The attenuation length above 1019eV decreases dramatically with the increasing inelasticity

factor and cross section. The slope changes at about 1020eV and the attenuation length shows

a slower decrease up to about 1020.5eV (increasing inelasticity and decreasing cross section)

which afterwards remains fairly constant.
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Figure 2.5: Total number of produced GZK neutrinos per proton as a function of its propagation
distance. Lower curves for protons of energy above 1019eV and upper curves for protons of
energies above 1020eV. Solid lines signify created νµ,νµ, dashed lines created νe,νe. Proton
injection power-law flux of E−2 with a cut-off energy of 1021.5eV is used for this calculation.
Plot taken from [30].

Protons with 1021eV injection energy will on average interact more than twice in the first

10Mpc of propagation and would loose about half of their initial energy. UHECRs above the

GZK interaction energy threshold loose energy over a distance of ~20Mpc, so only UHECRs

originating from sources at distance ~50Mpc or less can be detected on earth [31]. The

relatively short interaction path length means that UHECRs interact within a short distance

from their source (in comparison to the distance from the source to Earth that can be few

orders of magnitude larger), and so cosmological neutrinos point back to the direction of the

UHECRs sources. Figure 2.5 shows the total number of created neutrinos as a function of

the proton propagating distance, demonstrating that the detected neutrino spectrum from

UHECR proton sources at 200Mpc distance will be fully evolved. It is also demonstrated

that it is the more energetic protons that are important for neutrino production hence the

significance of the injection cut-off energy. Given this relation, the detection of GZK neutrinos

will help to determine the location and nature of the most powerful CR accelerators in the

universe.

Calculation of the expected cosmogenic neutrino flux is dependent on the characteristics of

the injection proton spectrum (power law spectral index and high energy cutoff value), the

distribution of UHE proton sources and cosmological evolution. The resulting νµ−νµ spectra

has a single peak between 1018eV and 1019eV. The cosmogenic νe −νe exhibits a two peak

structure, a higher energy one of mostly νe from charged pion decay (similarly as the νµ peak)

and a lower energy one between 1016eV and 1017eV of νe from neutron decay. Neutrons of

energy lower than 1020eV are more likely to decay than to interact.
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The GZK neutrino by Engel, Seckel and Stanev (ESS) published in 2001 is usually considered as

a baseline model [30]. ESS used the measured cosmic ray flux on earth at 1019eV for the nor-

malisation of their injection flux. An update of this model by Seckel and Stanev was presented

in 2008 (SS08) [32], taking into account HiRes and Auger UHECR spectrum measurements

and new normalisation of CR injection spectrum with accounting for CR propagation and

cosmological evolution. Mixed composition as well as an all-proton hypothesis models are

reported.

The flux models presented by Ahlers et al. in 2010 [33] use diffuse gamma-ray flux measure-

ments by the Fermi large area telescope to constrain the cosmogenic neutrino production

rate. It is assumed that the diffuse gamma-ray flux originates from electrons, positrons and

gamma-rays that are co-produced with cosmogenic protons. Subsequent interactions with

the CMB and intergalactic magnetic fields create cascaded, thus randomising the direction

of the resulting gamma-rays and decreasing their energy. The implication of the cross-over

energy between galactic and extra galactic CR contribution is also assessed (the Emin model

parameter). The neutrino flux is required to be smaller when the gamma-ray bound is applied

and relatively low cross-over energy has a decreasing effect on the flux.

In case of an injection spectrum of UHECRs with a heavy composition, the nuclei go through

photodisintegration processes when interacting with CMB and CIB photons. A nuclei would

undergo many reactions during propagation, cascading in atomic number and charge and

generating UHE protons, neutrons and alpha particles. In consequence, the cosmogenic

neutrino flux expectation is lower in the heavy composition case than in the proton UHECR

scenario. The neutrino flux spectrum from UHE iron nuclei was calculated by Ave et al. [34].

The iron-induced neutrino spectrum reproduces the double peak structure existing in the

UHE proton case, with a third peak around 1014eV of νe originating from neutron decays of

neutrons emitted by the disintegrating nuclei.

Figure 2.6 shows a comparison of GZK neutrino flux predictions from the models described

above. Flux models contain curves for produced νµ and νe (such as for the ESS01 and SS08

models) or a single curve for the total neutrino flux prediction (as in the Ahlers models). In any

case neutrino flavour oscillations over a cosmological distance need to be considered when

interpreting the flux models to event rates on earth (see section 2.2.1).

2.3 Atmospheric muons and neutrinos

Muons and neutrinos are produced by CR interactions with the atmosphere and constitute

the main background for an UHE neutrino search. The main effort of any neutrino search is

effectively rejecting the atmospheric muon flux that is higher by a factor of 106 . Atmospheric

neutrinos, however, compose an irreducible background.
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Figure 2.6: UHE neutrino flux predictions from different GZK theoretical models.

2.3.1 Atmospheric air showers

An atmospheric air shower is initiated by a single charged CR particle interacting with nuclei

in the earth’s atmosphere. The initial reaction produces secondary particles that interact as

well, creating a cascade of particles through production and decay channels. Muons and

neutrinos are produced in decays of charged mesons (pions, kaons, and at very large energies

charmed mesons), electrons positrons and photons originate from cascades initiated by decay

of neutral and charged mesons. UHECR induce extensive air showers in which the secondary

particles are of very large energy and reach the earth’s surface where the spread of the shower

can be of a >10 km scale. However, muons and neutrinos are the most abundant particles

reaching the earth’s surface and the only ones that survive at large depths. The shower has a

hadronic component (see hadronic showers section 2.4.2) and an electromagnetic one (see

electromagnetic showers section 2.4.1). The hadronic core at the centre of the shower can

include a large number of muons that typically retain the direction of the initial CR, typically

called a muon bundle. Induced electromagnetic cascades tend to spread out of the shower

core. A schematic view of air shower development is shown in Figure 2.7. Some of the produced

muons may decay before reaching the surface, producing muon and electron neutrinos. This

contribution is substantial only up to muon energies of few GeV so not important for this

work.

2.3.2 Conventional atmospheric neutrinos

The atmospheric neutrino spectrum can be divided into two contributions, neutrinos originat-

ing from pion and kaon decays referred to as the conventional component, and neutrinos from
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Figure 2.7: Extensive air shower scheme taken from [35].

charmed meson decays referred to as the prompt (charm) component. The steeply falling

conventional component dominates up to about 0.1-1PeV where the hard flatter prompt

component emerges [36].

Neutrinos from pion decay dominate up to the TeV range where contributions from kaons

are important. The conventional flux is then dominated by νµ and a neutrino-antineutrino

19



Chapter 2. Theory

asymmetry is present due to the strong majority of positively charged CRs. With increasing

energy the interaction probability for pions and kaons also increases. For particles traversing

a given medium the energy for which the decay length and interaction length are equal is

called the critical energy, Ecrit (we note that Ecrit have several different definitions, other

definitions are more useful for muons and electrons [10]). The interaction length is dependent

on the medium density and the particle’s cross section (which is dependent on its energy)

while the decay length is dependent solely on the particle’s energy. For mesons traversing

the atmosphere an isothermal atmospheric density distribution is often assumed for Ecrit

calculations [37]. Typical values of Ecrit,π = 115GeV for pions and Ecrit,K = 850GeV for kaons

are obtained. Above these energies the particles are more likely to interact with the air nuclei

than to decay. This creates an energy dependent reduction in muon and neutrino production

resulting in an increase of 1 in their power law spectral index compared to the generating CR

flux, γ= 2.7 → α= 3.7 for energies above ~1TeV [10]. This effect is zenith angle dependent and

is less strong for near horizontal events due to their large path length in the low density upper

atmosphere. So while the flux of the CR primaries is isotropic, the conventional neutrino

atmospheric flux exhibits a complicated zenith dependency due to the interplay between

meson decay and interaction in the atmosphere. The conventional atmospheric neutrino flux

model used in this work was developed by Honda et al. [38].

2.3.3 Prompt neutrino component

In the case that the CR generating an air shower is of very high energy, charmed mesons and

baryons can be generated in the shower (D0,D±,Ds,Λ+
c ). The life time of these particles is

very short and their critical energy is very high at Ecrit > 107GeV, so that they rapidly decay,

generating isotropic muon and neutrino prompt fluxes that have a harder spectrum than the

conventional one. Neutrinos and muons are produced in semi-leptonic decay modes, such as

D0 → K−+ l++νl

D+ → K
0 + l++νl (2.16)

Λ+
c →Λ0 + l++νl

The decay branching fractions for electron and muon flavours are equal giving the same

prompt flux for νe and νµ while the ντ flux is more than an order of magnitude lower. The

transition between νµ conventional to higher contribution of prompt flux is at about 300TeV,

while the transition in the νe flux is at much lower energy at about 10 TeV due to the lower νe

conventional flux. A comparison of conventional and prompt νµ+νµ flux models for vertical

and horizontal zenith angles is presented in Figure 2.8. The atmospheric neutrino prompt flux

component model used in this thesis work was derived by Enberg et al [36].

We note that neutrino oscillations for a baseline in the order of the diameter of the earth

(~12,000 km) are negligible for energies much greater than 50GeV. This is clear from the
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Figure 2.8: A comparison of atmospheric conventional and prompt νµ+νµ fluxes. The con-
ventional contribution is modelled by Honda et al. [38] while the prompt contribution is
calculated by Enberg et al. [36]. Plot taken from [36].

oscillation frequency calculated approximately by

∆m2
i j L

4E
≈ 1.27∆m2

i j

(
eV2) L(km)

E(GeV)
(2.17)

where the squared mass difference between flavours is ≈ 10−3eV2.

2.4 Neutrino interactions

Neutrinos interact solely via the weak force. For astrophysical high energy neutrinos, interac-

tions are Deep Inelastic Scattering (DIS) processes. Neutrino-nucleon interactions can be of

Charged-Current (CC) type, with the exchange of W± boson or of Neutral-Current (NC) type

with the exchange of a neutral Z0 boson.

νl (νl )+N → l−(l+)+X (CC) (2.18)

νl (νl )+N → νl(νl)+X (NC) (2.19)

l stands for a lepton and the subscript stands for the corresponding lepton flavours, N is a

nucleon and X a hadronic interaction product. For example, a muon neutrino interacting

through CC with one of the ice’s nuclei will result in a muon. In detail, the W or Z couples with

one of the quarks in a proton or neutron that forms the atomic nuclei. The CC changes the

type of quark. High enough energy may be transferred to the scattered quark, dissociating it
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Figure 2.9: Feynman diagrams for neutrino deep inelastic charged current (left) and neutral
current (right) interactions.

from the nuclei and creating an hadronic shower. The Feynman diagrams describing these

two processes are given in Figure 2.9.

There is one neutrino-electron process that is relevant for astrophysical neutrino energies.

Energetic enough electron anti-neutrinos can interact with electrons at rest to produce a real

W boson via the so-called Glashow resonance [39] :

νe +e− → W− (2.20)

with a cross section of about 5×10−31cm2, about two orders or magnitude higher than the CC

cross section. The invariant mass of the collision has to allow the creation of the W boson with

its rest mass of MW = 80GeV, requiring a νe incoming energy of

Eν =
M 2

W

2me
≈ 6.3×106GeV. (2.21)

The W boson decays into hadrons or leptons. The Glashow resonance should be easily ap-

parent above the standard cross section in IceCube’s data. It is suggested that the Glashow

resonance may help to distinguish between pp and pγ type sources of extra-galactic diffuse

neutrino flux because a smaller flux of νe exists in the case of pγ processes [40].

The neutrino-nucleon interaction cross sections for CC and NC as a function of Eν are pre-

sented in Figure 2.10. The cross sections increase with energy. The neutrino cross section is

slightly higher than that of the anti-neutrino [41] for the following reason: the total angular

momentum from the spins of an antineutrino and a quark is +-1 while for neutrino and a quark

it is 0. As the total angular momentum for the antineutrino case is non zero, high scattering

angles are suppressed. The corresponding contributions from the scattering on antiquarks are

small. This is because most of the nucleon momentum is carried by the valence quarks and

only a small fraction by antiquarks from the sea quarks. CC interactions are more likely than

NC ones as the W boson coupling to fermions is higher than the Z boson one [10].
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Figure 2.10: Neutrino and anti neutrino cross sections of CC and NC interactions. The Glashow
resonance is depicted separately. The HP [42] and pQCD [43] models use different extrapola-
tion techniques for the unknown PDFs shapes. Plot taken from [44].

Calculations of neutrino-nucleon DIS cross sections are dependent on Parton Distribu-

tion Functions (PDFs) of the nucleon. Typically DIS involves very large values of Q2, the

4-momentum transfer squared, and very small values of Bjorken x, the fraction of the mo-

mentum of the interacting nucleon taken by the scattered quark. The highest values of Q2

and lowest values of x were measured at the HERA particle accelerator. The HERA data were

used by the CTEQ collaboration for neutrino-nucleon cross section calculations [43]. These

results are represented in Figure 2.10. The cross section’s uncertainty increases with energies

> 108GeV as the relevant PDFs shape is unknown and calculation becomes very model de-

pendent. The two models presented in Figure 2.10 differ by a factor 2 at Eν = 1012GeV. New

cross sections based on Zeus PDF fits were calculated by Cooper-Sarkar and Sarkar [45] and

are used for MC neutrino simulations for this analysis work. The new results show a less steep

rise of the cross sections at the highest energies compared to the previous calculations shown

in Figure 2.10.

2.4.1 Electromagnetic cascades

Electromagnetic (EM) cascade is a process involving electrons, positrons and photons. An

initiating particle looses energy by creating secondary particles via bremsstrahlung or pair
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production process. Many more particles are produced in subsequent steps of the same

mechanism until the created photons are not energetic enough to allow pair production.

As mentioned earlier, a neutrino-induced electron initiates an EM cascade shortly after its

production. Electromagnetic cascades can also be initiated by the energetic photons and

electrons emitted in stochastic muon or tau energy losses: bremsstrahlung, e+e− production

and photo-nuclear interactions. Charged particles in the EM cascade emit Cherenkov light

that can be detected. Studies showed that the total Cherenkov light output in the EM cascade

is approximately proportional to the total track length for all charged particles in the cascade

[46]. The total track length itself is proportional to the cascade’s initiating particle’s energy E0.

An effective total track length was defined and parametrized as [46]:

Le f f = 0.894×E0(GeV)×4.889[m] (2.22)

2.4.2 Hadronic cascades

Neutrino-nucleon CC and NC interactions will result in hadronic cascade: the produced

hadrons in their turn interact with other nuclei producing more hadrons and subsequently a

cascade. Hadronic cascades can be initiated at a later stage as well - from stochastic energy

losses of muon or tau leptons (photo-nuclear) or from hadronic decay of the tau. In atmo-

spheric showers an initially developed hadronic cascade ultimately creates an EM cascade

where most of the energy is dissipated.

Hadronic cascade development fluctuates much more than that of EM cascade as it can vary a

lot with the type of particles produced. In general it produces less Cherenkov light than an EM

cascade. The effective track length for an hadronic cascade was parametrized as [46]:

Leff = 0.86×E0(GeV)×4.076[m] (2.23)
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3 The IceCube neutrino observatory

Neutrinos are charge-less, interact only through the weak force and have very small cross

section which makes them difficult to detect. Neutrino detectors therefore have a very large

detector volume in order to achieve a satisfying event rate. Neutrino telescopes typically use a

large body of water or clear ice in which they collect Cherenkov light emitted by secondary

charged particles resulting from neutrino-nucleon interaction in the medium. The IceCube

neutrino observatory uses this detection technique. IceCube utilises the South Pole trans-

parent ice as neutrino target and detection medium and is made up to trigger for neutrino

energies above 10-100 GeV.

3.1 Neutrino detection principle

Neutrino detection involves the detection of secondary charged leptons or neutrino-induced

cascades. These are recorded primarily by the emitted Cherenkov light (see section 3.1.2) as

well as light produced in stochastic lepton energy losses. Other detection methods are possible

for neutrinos of energies higher than about 100PeV. The Askaryan effect [47] predicts two types

of signal (in addition to optical Cherenkov emission) from neutrino-induced particle cascades:

radio-frequencies electromagnetic emission and acoustic wave signal. Radio emission is the

detection technique used by RICE [48] and ANITA [49], both taking place at the South Pole,

but no neutrino events have been identified so far. The acoustic signal techniques has been

studied in water by SAUND [50] and ANTARES [51], and in ice by IceCube [52] including

development work for high sensitivity acoustic sensors [53].

3.1.1 Lepton energy loss

Muon propagating through a medium looses energy via several types of processes. The energy

deposited in Cherenkov radiation is relatively very small. Energy loss due to ionisation is

homogeneous along the muon track (continuos) and the amount of deposited energy is

almost constant per unit length. Other stochastic radiative processes include bremsstrahlung,
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Figure 3.1: Muon energy loss processes in ice vs. muon energy: ionisation (solid),
bremsstrahlung (dashed), pair production (dashed-dotted) and photo-nuclear (dotted). Plot
taken from [54].

pair production and photo-nuclear interactions. Figure 3.1 shows the muon energy losses by

these different processes and their energy dependence. For muons propagating through ice

stochastic losses become dominant at energies higher than about 104GeV.

The mean energy loss per unit length for energetic charged heavy particles propagating

through a medium is described by the Bethe formula. The average rate of energy loss for the

high energy muons of E > 104GeV relevant for this analysis work can be parametrized as [10]:

−dE

dx
= a(E)+b(E)E (3.1)

where a(E) describes ionisation losses and b(E) describes the sum of stochastic losses. a and

b are slowly-varying functions (seen in Figure 3.1) and can be assumed to be constant such

that

−dE

dx
≈ a +bE . (3.2)

Stochastic losses are dominant at high energies so a constant a is a good enough approxi-

mation. Typical a and b values for energetic muons propagating in the South Pole ice were

obtained by fitting MC simulated energy loss curves in the range 20 GeV to 1011 GeV [54],
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giving

a = 0.259 [GeV/mwe] (3.3)

b = 3.63×10−4 [1/mwe] (3.4)

where mwe stands for meter water equivalent. Integrating the approximated energy loss (3.2)

gives the mean muon range for a muon with initial energy E0:

x0 ≈ 1

b
ln

(
1+ E0

Ecrit

)
(3.5)

where Ecrit = a(Ecrit)/b(Ecrit) is the critical energy for which radiative and ionisation losses

are equal. For ice this is in the order of Ecrit ≈ 750GeV to 1TeV. The mean muon range for

a TeV muon is therefore around 2.4km and for a PeV muon the range is above 20km. This

means that neutrino-induced muons produced well outside of the instrumented volume of

the IceCube detector can reach it and be detected. Detection is done by Cherenkov light and,

specifically for high energies as shown above, light emitted in stochastic energy loss processes

(bremsstrahlung and Cherenkov light from secondary charged particles).

The dominating energy loss process for electrons is bremsstrahlung. An electron will travel

only a short distance in ice before creating an electromagnetic cascade, in comparison to the

large muon range of a muon with a similar energy.

Tau leptons are be induced by tau neutrinos appearing in UHE astrophysical neutrino oscilla-

tions presented in section 2.2.1 or produced as a part of the prompt component of extensive air

showers in Ds
+ → τ+ντ decays presented in section 2.3.3 The tau lepton’s lifetime is 2.9×10−13s.

This gives an approximate tau decay length of lτ = γctτ ∼ 50(Eτ/PeV)m, which is larger than

1km for Eτ ∼ 20PeV [55]. The tau lepton decays leptonically with 35% branching fraction

(τ− → µ−+νµ+ντ, and almost as frequently τ− → e−+νe +ντ), and hadronically with 65%

branching fraction (τ− → hadrons+ντ) [56]. Tau energy losses processes are dominated by

photo-nuclear interactions and pair production [57].

3.1.2 Cherenkov radiation

The principal neutrino detection in IceCube is by Cherenkov light detection. It is emitted by

charged leptons produced at neutrino-nucleon CC interactions (section 2.4). The neutrino-

nucleon vertex point is seen as the starting point of the lepton track or cascade, if it is in close

proximity to the instrumented volume. Cherenkov radiation from an induced lepton is used

to track the lepton passage through the ice. Secondary charged particles created in stochastic

energy loss processes (important for high energy muons, see section 3.1.1) also in turn produce

Cherenkov light which can be detected and used for an event’s energy estimation.

A relativistic charged particle traveling through a dielectric medium with a speed greater
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Figure 3.2: Geometry of Cherenkov radiation emission from a charged particle in a dispersive
medium [10]. η is the opening half-angle of the emission light cone, η+θc 6= 90◦.

than the phase speed of light in that medium emits photons. This is the so-called Cherenkov

radiation. The charged particle polarises the medium and photons are emitted when the

medium’s molecules depolarises. A coherent shock front of light is formed, cone shaped, with

a characteristic angle θc depending on the medium’s refractive index n:

cos(θc) = 1/nβ (3.6)

where β= v/c is the ratio between the speed of the particle and the speed of light in vacuum.

The refractive index of ice is n ≈ 1.33 and the corresponding Cherenkov angle is θc ≈ 41◦

assuming a relativistic particle (β≈ 1). A schematic view of the Cherenkov radiation geometry

is given in Figure 3.2.

The number of emitted photon per unit track length and wavelength λ is given by the Frank-

Tamm calculations:

d2N

dxdλ
= 2πα

λ2

(
1− 1

β2n2(λ)

)
(3.7)

where α is the fine structure constant. Cherenkov radiation is stronger at short wavelengths

due to the 1/λ2 dependency. In IceCube the detected wavelengths cutoff is at around 350nm

due to the glass housing of the photomultipliers.

3.2 Observatory overview

As neutrinos traverse the South Pole ice they may interact with nucleons in the ice, producing

secondary charged particles which emit Cherenkov radiation. Capturing this Cherenkov light

allows for indirect neutrino detection and track reconstruction. This is the principal of work of

the IceCube neutrino observatory at the South Pole.

IceCube consists of an array of strings of Digital Optical Modules (DOMs) embedded in the

antarctic ice (in-ice detector) as well as a surface array of DOMs placed in ice-filled tanks
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(IceTop). With the detector’s construction completion in December 2010, IceCube reached

an instrumented volume of 1 cubic kilometer, currently the largest neutrino observatory in

the world. The large detector volume is necessary due to the low neutrino interaction cross

section and the low predicted astrophysical neutrino flux.

The proof-of-principle for neutrino detection at the South Pole ice was done by the AMANDA

detector [58], IceCube’s predecessor. AMANDA comprised of 19 strings holding a total of 677

optical modules installed in the ice at depths between 1500m and 2000m. The detector’s

optical modules spacing and total instrumented size made it suitable for detection of lower

energy neutrinos compared to IceCube. AMANDA was collecting data for 13 year before it was

decommissioned in 2009.

The completed detector includes 86 strings with each string holding 60 DOMs, giving a total of

5160 DOMs placed in depths of 1450m to 2450m below the surface. Of these, 80 of the strings

are placed at 125m distance of each other and neighbouring DOMs on a string are places with

17m vertical distance. The remaining 6 strings form DeepCore: an inner ring at the centre of

IceCube with strings placed more densely with their DOMs placed with smaller spacing at

the lower part of the detector where the antarctic ice is the clearest. The surface array IceTop

consists of 81 stations placed on top of IceCube strings. Each station includes two ice tanks

with each tank housing two DOMs.

A scheme of the IceCube detector is shown in Figure 3.3. The geometry of the IceCube 40-

strings detector on the surface is shown in Figure 3.4.

IceCube’s main physics goal is the search for high energy neutrino sources, but its physics

program is diverse. Other goals are determining the sources of ultra high energy cosmic

rays, giving evidence of the energy-release processes that occur at GRBs and AGNs, providing

information about dark matter particles existence and constraining neutrino oscillation pa-

rameters. IceTop main physics goal is the study of CR energy flux and mass composition at the

region of the knee.

The initial detector design was optimised for an energy range of 100GeV to 100PeV [59]

though the detector has the capability to detect neutrino energies as high as 100EeV. High

quantum efficiency DeepCore strings were added in order to increase the detector’s sensitivity

to neutrinos of low energies, from ∼10GeV [60]. Detection of supernovae neutrinos of few

tens of MeV energies is possible by looking at overall detector noise rate [61] or by studying

detector hits which are correlated in space and time [62] [63].

In this work data that was taken between April 2008 and May 2009 by the incomplete de-

tector is used. During that time IceCube had 40 operational strings and 40 IceTop stations

(IC40). This detector configuration covered half of the complete IceCube hexagon shape giving

approximately a rectangular shape with a short and long axes.
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Figure 3.3: The IceCube neutrino observatory. Image credit: Jamie Yang.

3.3 The digital optical module

The principal element of the IceCube detector for Cherenkov light detection and data acquisi-

tion is the Digital Optical Module (DOM). Its design had to consider the difficult conditions

at which the detector is working: negative temperatures down to −40◦C, high pressure up to

400atm during freezing, and the need for highly reliable detector with a life time of at least ~15

years as the modules are inaccessible once deployed. The light detector has to function on low

power, detect wide dynamic range of number of photon hits and have fast response time with

nanoseconds time resolution.

The DOM is an integrated package of a 25cm diameter photomultiplier tube (PMT), high

voltage power supply unit, LED flasher calibration board and embedded digital data acquisi-

tion system encased inside a thick glass pressure housing [64]. The PMT is held in place and

optically coupled to the glass sphere by an optical gel. It is shielded from the earth’s magnetic

field by a mu-metal cage. The DOM components are used for operating the PMT, amplifying

and digitising the PMTs analog pulses, signal filtering and detector calibration. A schematic

view of the DOM is given in Fig 3.5
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Figure 3.4: The surface geometry of the IceCube 40-strings detector. Image credit: Kurt
Woschnagg.

3.3.1 The photomultiplier tube

IceCube chose Hamamatsu R7081-02 for the PMT due to its low dark noise rate, high gain

and good time and charge resolution for single photons [65]. It is sensitive to light in the

wavelength range 300− 650nm with a peak quantum efficiency of 25% at 390nm, though

the glass and optical gel set a short wavelength cutoff at about 350nm. It operates on 1500V

which results in nominal gain of 107 that gives Single Photo Electron (SPE) pulses of 8mV, well

observed above electronic noise level ( 0.1mV).

The PMTs were manufactured with custom low radioactivity glass which resulted in low dark

noise rate of 300Hz in the antarctic ice temperatures. A high energy neutrino event can create

an optical signal of 3µs but most of the information is contained within its first 300ns. Due to

this short time window and low dark rate, only 1% of the induced muons will have a single

dark noise photon hit in the 100 DOMs closest to the track. This would have very low impact

on track reconstruction.

The PMTs charge resolution from SPE hits was measured as approximately 30%. Including

effects from the DOM digitisation and readout electronics the time resolution was measured

as 2.7ns with large DOM-to-DOM variations. Simulations show that photon scattering in the

ice creates long delays in photon arrival time with 40% of photons delayed by at least 5ns for

10m traveling distance [66]. This photon delay then constitute a much larger effect than the

2.7ns PMT time resolution. On the other hand, PMTs close to an ultra high energy tracks will

detect the first arriving photon with a negligible delay, in which case the PMT time resolution
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Figure 3.5: Scheme of the IceCube Digital Optical Module unit. Image credit: R. Pearson

becomes important. In practice many reconstruction methods in IceCube use the PMT signal

rise time which is produced by the first arriving photons, so based on short delayed photons.

As these first photons travel different distances some time delays are expected (see section

4.2.2) depending on the South Pole’s ice quality (see section 3.6).

The PMT response is proportional to the number of detected photons up to the nonlinear

saturation regime beyond which the PMT response curve flattens. The saturation behaviour is

dependent on the PMT work gain and is almost independent of incoming pulse time length.

With the 107 work gain the response is linear up to 50mA current (31 photoelectrons per ns)

and saturates at 150mA. MC Simulation studies show that saturated PMTs starts to appear for

600 TeV shower energies and that for a ∼10 PeV showers most of the PMTs closest to the event

are badly saturated. PMT saturation affects the estimation of total charge collected in a PMT

waveform but it does not affect event track reconstructions which are based on MPT signal

rise time. In IC40 data taking run and this analysis work saturated PMTs are used and treated

similarly to unsaturated ones. More work is needed in order to understand better and develop

methods to correct for saturated PMTs and obtain an improved charge estimation.

The LED flashers are used for determining the energy scale for event energy reconstruction as

well as detector-wide geometry and time calibration and measurement of the properties of

the South Pole ice.
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Figure 3.6: PMT ATWD waveform examples. Left: typical single SPE waveform shape. Right:
ATWD channel 1 (highest amplification) waveform from light emitted from DOM flasher board
which contains some saturated bins (x axis in [ns]). In this case the ATWD channels 2 is not
saturated and voltage values can be read from it (for channel 1 saturated bins). Plots are taken
from [67].

3.3.2 PMT signal processing

The PMT signal is digitised by two digitising systems on the DOM main board (MB), time

stamps are set on the waveforms and they are sent to the surface.

A trigger is issued if the PMT signal exceeds a discriminator threshold which is set to 0.25 SPE

in the IC40 data run. Timing on the MB is controlled by a 20MHz quartz oscillator which is

doubled to 40MHz [59]. The local time is regularly calibrated with an all-detector time at the

surface. The trigger is given a time stamp from the local clock.

The PMT signal is delayed by 75ns by passing on a 11.2m long strip-line on a dedicated delay

board [59]. This is done before the signal is reaching the digitisers in order for the rising

part of the waveform to be fully recorded. The fast digitiser is implemented in an Analog

Transient Waveform Digitiser (ATWD) chip. It has 128 samples and can run between 200 and

700 Mega-Samples Per Second (MSPS). In IC40 The sampling frequency was 300 MSPS which

gives 3.3ns bin width and 442ns total time length for the ATWD waveform. The ATWD has four

channels, three of which are used for waveform recording while the remaining one is used for

calibration and monitoring. The three relevant channels amplify the PMT signal by 16X, 2X,

and 0.25X, giving a dynamic range to match the PMT output. In order to minimise dead time,

two ATWD chips are installed on the MB and work in ping-pong fashion. Examples of ATWD

waveforms are shown in Figure 3.6. A typical single SPE waveform shape is given in the left

plot. The right plot contains an ATWD channel 1 (highest amplification) waveform from light

emitted from DOM flasher board which contains some saturated bins.

The second method is a fast Analog to Digital Converter (fADC). The fADC collects 256 samples

in sampling frequency of 40MSPS which gives a waveform of 25ns bin width and 6.4µs total
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time length. The fADC waveform is long enough to fully detect an optical signal arriving

to a DOM from the highest energy events. The fADC works with a low dynamic range such

that a SPE charge is easily observed (typically 13-count value above the baseline [67]) but the

fADC waveform can be saturated at high charge deposits while the ATWD lowest amplified

waveform is not.

The PMTs waveforms may include after pulses, a common artefact for such detectors. Acceler-

ated electrons travel between dynodes and ionise residual gases inside the PMT. The produced

ions are accelerated towards the photocathode and release photoelectrons when reaching

it. The ejected photoelectrons are amplified by the dynode stages, resulting in an after pulse

signal which is typically recorded from 300ns to 11µs after the initial pulse. Different after

pulse time peaks are associated with different gas ions of different mass and corresponding

flight time. After pulses are significant at high energy events as the accumulated charge in

them grows linearly with the initial pulse charge (with typically after pulse total charge is 6%

of the initial generated one). For such high energy events where the initial pulse waveform is

saturated, it was suggested that the after pulses may be used for initial pulse charge estimation.

This approach however was not yet developed at the time of this analysis work.

A significant amount of the after pulses time range is within the time length of the fADC

waveform (6.4µs) while the ATWD one includes only the very beginning of the after pulses. As

the ATWD waveform 442ns time length includes 75ns recorded before the DOM trigger and

the initial pulse peak, the after pulses has a minimal affect on the ATWD pulses. However,

the IC40 online data processing scripts contained a software bug concerning the fADC pulse

processing. Due to that the fADC pulses were discarded and all reconstruction methods and

waveform charge estimation were done using ATWD pulses only. For this reason the PMT

after pulses is not a concern for this analysis. Future high energy IC analysis may use the after

pulses for better estimating the charge in initial saturated pulses by using the fADC waveforms

smartly.

In order to reduce noise hits in the data and to avoid detector dead time while processing

noise hits, a Local Coincidence (LC) condition is put in place. Each DOM is connected to

its two nearest neighbouring DOMs with a copper wire twisted-pair. When a trigger occurs

the DOM sends a LC signal to its neighbours. The LC condition is met if in a specific time

window, typically smaller than 1µs, at least one of the neighbouring DOMs triggers and sends

a response LC signal. The LC signal rate is typically ~10Hz so most of DOM triggers due to dark

noise are eliminated. IceCube used a Hard LC (HLC) data collection mode during the IC40 run

in which waveforms are digitised and kept only from DOMs that fulfilled the LC condition.

In HLC information from isolated triggered DOMs are discarded. In later runs, starting from

IC59, a Soft LC mode was implemented. In SLC limited information from isolated triggered

DOMs is kept in the form of coarse charge stamp from the fADC’s highest samples. However a

large fraction of these isolated triggers are cause by noise hits and needs to be identified and

discarded on later stages of event processing.
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3.4 The data acquisition system

The DOMs are connected to the surface with a twisted-pair copper wire which is used for

communication, delivering power to the DOMs, time calibration and data transmission. The

string’s cable connects to a surface junction box (together with cables from two IceTop tanks),

which is connected to the counting house at the IceCube Laboratory (ICL).

After the signal digitisation is done at the DOM, the DOM launch information is sent to the

ICL. It contains a time stamp from the local DOM clock and ATWD and fADC waveforms (HLC

case). At the ICL the DOM launch time stamp is converted to an ICL clock time and all DOM

launches from a single string are time-ordered.

Due to storage issues and in order to concentrate on interesting, reconstructible events, a

Simple Majority Trigger (SMT) is applied. In IC40, events with 8 or more DOM launches

(SMT8) within a time window of 5µs are passed on for further filtering. Otherwise the data are

discarded. The kept events are passed on to the Processing and Filtering system (PnF). This

is a set of fast reconstructions and filters designed by the different IceCube working groups

searching for different signal types. The events that pass at least one of the online filters are

kept. Events are transmitted to the north daily via satellite.

3.5 Event topologies in IceCube

Events in IceCube are typically categorised as track-like events and cascade-like events. In a

track-like event the DOM hits show up as following a track in the ice in their location and time

distributions. In the cascade-like event the light emission and detection is roughly spherical

and is more localised compared to a track event that can pass along the entire detector. In

some cases an event may present a track and cascades DOM hit samples in the detector which

is referred to as a composite event. A scheme of the light emission for the muon and track

event topologies is given in Figure 3.7.

Neutrino-nucleon interactions in the ice produce hadronic showers. In the Neutral Current

(NC) interaction case the produced event will have a cascade-like DOM hit signature located

around the interaction vertex. In the Charged Current (CC) case the event topology is depen-

dent on the type of the outgoing lepton which is determined from the incoming neutrino

flavour. A νµ-induced muon travels through the detector producing a track-like signature.

The muon may be produced outside of the detector (through-going track) or inside it (start-

ing track) where an accompanying cascade may be observed at the vertex point making it a

composite event. Electrons produced in νe CC interactions immediately interacts in the ice

producing electromagnetic cascade giving a clear cascade-like event signature. Events involv-

ing ντ-induced τ leptons generally have a composite event DOM hit signature. A track-like

DOM hit pattern is found around the traversing τ and cascade-like light emission is found

around τ production and decay vertices. A decaying τ may also produce a charged muon,

producing again track-like DOM hits. The length of the τ track and the chance to have both
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Figure 3.7: Track (left) and cascade (right) event topologies in the IceCube detector, taken from
[83].

τ production and decay occurring inside the detector or not are dependent on the τ energy.

Events may look like a single cascade at low energy (production and decay vertices insepara-

ble), two separated cascades with a faint track in between in middle energies ("double-bang"

events, or "lollipop" if only one of the cascades is contained in the detector) and a simple

track event for high energy, long track length τ traversing the detector (produced and decays

outside of it).

Determination of the event parameters for track-like events is a simpler task than for cascade-

like events, with cascades light detection pattern being more sensitive to ice properties. Also,

low quality track events may resemble (be confused with) cascade events but this is much less

likely the other way around.

3.6 South Pole ice properties

Unless otherwise mentioned, the information in this section is summarised from [68], where

the optical properties of the South Pole ice are thoroughly discussed.

The requirement from a neutrino Cherenkov detector detection medium is a transparent

material with low photon scattering and absorption. The surrounding must also be dark in

order to reduce noise and a large volume is desired due to the low neutrino cross section and

low flux predictions for high energy neutrinos. The ice sheet at the south pole meets all these

requirements, being that the glacial ice is the most transparent solid known for wavelengths

between 200nm and 400nm. IceCube’s PMT are most sensitive to wavelength’s around 390nm,

utilising well the transparent ice.

The 2820m thick glacial ice sheet at the south pole was created over a period of 165,000 years

[69]. The South Pole ice is not fully homogeneous and clear but its quality is dominated
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by dust impurities which variate with depth and, to a lesser extent, horizontally. The dust

concentrations are correlated with climatological changes, reflecting the different atmospheric

conditions and volcanic eruptions during the ice creation. The temperature of the ice varies

between -55C at the surface and previously estimated -9C at bedrock [68], however newer

measurements indicate that the bedrock ice temperature is closer to the pressure-induced

melting point of -2C. The IceCube detector is installed in depths between 1450m and 2450m.

Four distinct dust peaks are found in this region, the largest of them at around 2050m depth.

The optical properties of a medium are described by its amount of scattering and absorption

of photons. These are usually quantified by the scattering length λs and absorption length

λa. The first is defined as the average distance a photon will travel in the medium before

being scattered and the second is defined as the distance for which the photon’s survival

probability drops to 1/e. In the glacial ice at the IceCube depths scattering and absorption are

predominantly due to the insoluble dust particles. Mie scattering model is used to calculate

the light scattering off dust spheres with radius typically larger than the light’s wavelength. In

a single scattering we refer to the average cosine of the scattering angle θ as the anisotropy,

〈cos(θ)〉. Mie scattering calculations for IceCube showed that scattering is strongly peaked in

the forward direction with 〈cos(θ)〉 = 0.94 and has a weak dependency on light wavelength. It

is then useful to describe the South Pole ice in terms of effective scattering length λe, which is

the average distance at which a photon direction is randomised. Assuming large number of

scattering processes λe is defined by

λe = λs

1−〈cos(θ)〉 . (3.8)

This highly anisotropic scattering case results in λe >>λs.

Other than dust, another source for scattering in the ice are trapped air bubbles. Early mea-

surements at shallow depths between 800m and 1000m showed large concentration of air

bubbles which resulted in very short scattering length [70]. However, as pressure increases

with depth, air bubbles compress and go through phase transition to air-hydrates solid state

[71]. The refractive index of the air-hydrates is very similar to the one of ice so photons pass

through it almost without any scattering. Additional measurements confirmed that at depths

greater than ~1500m all bubbles have transformed into the solid phase. We can conclude that

for the IceCube detector air bubbles do not contribute to photon scattering.

3.6.1 The ice model

A six parameters "ice model" was constructed to parameterise the effective scattering length

and the absorption lengths using Mie scattering assumption. The relevant parameters are the
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effective scattering coefficient and absorption coefficient defined by:

be = 1

λe
(3.9)

a = 1

λa
. (3.10)

The model fits be and a at a wavelength of 400nm which is at the peak sensitivity of the IceCube

detector, taking into account Cherenkov light wavelength spectrum, the DOM’s glass housing

transmissivity and the PMT’s quantum efficiency:

be (λ) = be (400)
( λ

400

)−α
(3.11)

a(λ) = Cdustλ
−κ+ Ae−B/λ(1+0.01∆T )

Cdust = be (400)D +E (3.12)

The model depends on 6 parameters as well as on the ice’s temperature: α,κ, A,B ,D,E and

∆T . Wavelengths are given in nanometers and temperature in K.

Scattering : scattering off dust is power-law dependent on the wavelength with α close to 1

which exact value depends on dust composition.

Absorption : two terms contribute to the absorption coefficient’s dependency on λ. The first

term describes the absorption due to insoluble dust particles in the ice. Cdust is proportional

to the dust concentration which is depth dependent. It is the dominating term for wavelengths

in the region ~200nm to ~500nm. The second term describes absorption by the ice itself. It is

an exponential increase in the infrared regime and this term dominates at wavelengths longer

than ~500nm. The exponential is corrected with a 1%/K temperature dependence that was

observed [72]. ∆T is calculated relatively to the temperature at 1730m depth. The Urbach

tail component (ice absorptivity in wavelengths slightly longer than those corresponding to

the ice’s band-gap energy) is disregarded here as it is negligible for wavelengths longer than

300nm.

Light from pulsed and steady light sources was recorded by the AMANDA light sensors and

used to extract scattering and absorption parameters, resulting in the Millennium ice model.

For the installation of IceCube at larger depth, measurements of dust concentrations for

depths below 2100m from the antarctic ice core from Vostok and Dome Fuji were incorporated.

In addition, systematic studies of the ice model showed a systematic smearing of the dust

layers structure. An improved data analysis technique was performed on the AMANDA data

making sure the dust layers and clean layers are separated more accurately, resulting in a

modified ice model called AHA. However, data collected with the IceCube detector suggests

that the deepest ice below the largest dust peak is cleaner than what is modelled in AHA. The

AHA ice model was used as the standard for the work detailed in this thesis.
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Testing and improving the ice model is an ongoing effort in IceCube. With the recent comple-

tion of the detector a new model was developed called Spice-Mie [73]. Data taken using light

emission from the DOM’s LED flashers, covering the full detector’s depth range, were used to

fit effective optical ice parameters which include detector efficiencies. Figure 3.8 show the

fitted absorption and effective scattering coefficients as a function of depth for the AHA and

Spice-Mie models.
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Figure 3.8: Absorption and effective scattering coefficients for 400nm wavelength at IceCube’s
depth range, as modelled by the AHA and Spice-Mie ice models. Plot adapted from [73].
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4 Simulation and reconstruction in
IceCube

A Monte Carlo (MC) simulation technique is used for generating simulated event samples

of expected background and signal types of events. A good description of background event

fluxes and understanding of the detector’s characteristics and response are needed in order

to construct a reliable background rejection method. Simulated atmospheric muon events,

which constitute the majority of the background for this analysis, are compared with IceCube

data to check the quality of the MC simulation and detector description.

4.1 Event simulation

Event simulation in IceCube takes place within a dedicated software framework called IceSim.

The simulation chain includes the following elements:

• Event generation - Primary particles are created according to chosen flux models. Gen-

erated particles are assigned with a particle type, energy, direction of movement and a

distance from the IceCube detector.

• Propagation - The primary particles are propagated through matter (atmosphere, earth

rock and the antarctic ice) taking into account continuous and stochastic energy loss

mechanisms and production of secondary particles, which are also propagated. Cherenkov

photons emitted by primary and secondary particles are propagated through the antarc-

tic ice.

• Detector simulation - The IceCube detector response is simulated including PE hit

pattern, PMT response, DOM electronics simulation and the detector’s trigger.

Two types of events are generated: atmospheric muons from extensive air showers initiated by

UHECR interactions in the atmosphere, and single neutrino events.

41



Chapter 4. Simulation and reconstruction in IceCube

4.1.1 Atmospheric muon event generation

The CORSIKA event generator (COsmic Ray SImulations for KAscade) [74] is used for extensive

air shower simulation. Atomic nuclei from hydrogen (single proton) to iron are simulated and

considered as the CR primaries initiating the showers. The primaries are propagated in the

atmosphere until they interact with air nuclei or decay, and atmospheric muons and neutrinos

are created. The high energy hadronic interactions are described by SIBYLL [75].

The default model for describing the primary CR spectrum in IceCube simulations is the

poly-gonato model developed by Hoerandel [76]. The model assumes contributions of nuclei

primaries from proton to uranium. In this case the knee in the CR spectrum is due to a rigidity

dependent cutoff of the single type nuclei spectra (see section 2.1). The model describes

only the galactic origin CR spectrum and so does not reproduce the observed spectrum at

the highest energies which is believed to be of extragalactic origin CRs. To account for this

shortcoming and to achieve a simulated event distribution closer to the observed one, the

extragalactic UHECRs flux is approximated by extending the galactic iron component with a

E−3 power law flux (the observed UHECRs flux slope is E−2.8). A smaller issue is that primary

nuclei only up to iron are simulated by CORSIKA due to technical reasons. Double coincident

and triple coincident atmospheric shower events are simulated as well.

The CORSIKA event simulation is done either according to the observed energy spectrum, a

power law with index γ≥ 2.7, or with a bias towards production of high energy events by de-

creasing the power law index by one, giving a flatter flux. Simulated events are then weighted

to obtain the observed CR energy spectrum. Efficient simulation of high energy events is im-

portant for this analysis work as large statistics of the highest energy muon background events

are needed in order to allow the development of reliable background rejection techniques.

A second model of the primary CR spectrum that is used in this work is the 2-component

model which assumes CR mass composition of proton and iron mix and was fitted to the

KASCADE array measurements [77]. CORSIKA simulation sets of single proton CR showers

and single iron CR showers were generated following a E−2 power law spectrum. The sets

are then used together and events are weighted according to the 2-component model. These

2-component model simulation sets were shown to describe the experimental data better and

have larger statistics than the poly-gonato model MC at the highest energy range as well as at

the lowest energies considered in this analysis (see Figure 4.1). The 2-component model is

therefore used as the benchmark MC simulation of single CR shower background events.

4.1.2 Neutrino event generation

Neutrino generation in IceCube is done with the neutrino generator software package (NuGen)

which is based on the ANIS event generator [44]. NuGen makes use of recent calculations of

the high energy neutrino cross section based on Zeus PDFs fits [78]. Neutrinos are generated at

a random position on the earth’s surface and propagated through the earth’s rock. Energy loss
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Figure 4.1: CORSIKA poly-gonato (black) and 2-component (red) simulated event rates vs
primary energy.

by neutral current interactions and absorption due to charged current interactions are taken

into account. The PReliminary Earth Model (PREM) is used to model the earth’s structure [79].

Neutrinos that reach the vicinity of the IceCube detector are forced to interact with the antarc-

tic ice producing secondary particles, which in turn emit photons that trigger the detector.

Each event is then assigned with a weight representing the probability for that interaction

to occur. Neutrino generation for this analysis is done following a E−1 power law which is

efficient for HE events. The generated events are then weighted in order to describe the

energy spectrum of atmospheric and cosmologic neutrino fluxes. In this work the baseline

atmospheric neutrino flux models considered are Honda [38] for the conventional component

and Engberg [36] for the prompt one.

4.1.3 Propagation

The Muon Monte Carlo (MMC) software package propagates atmospheric muons and neutrino-

induced leptons through the antarctic ice. MMC takes into account continuos and stochastic

energy loss processes and deals with propagation of secondary leptons when created. The

propagation of Cherenkov photons during simulation is very computationally demanding

and consequently a different method is used. The Photonics software package [80] is used for

photon propagation in MC simulations based on the ice model coefficient values. In Photonics,

photons from a light source are propagated and photon density and time distributions around

the IceCube detector volume are calculated. Light density and time distributions for different
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light source locations are saved in look-up tables. During event simulation the Photonics

tables are read to determine light distributions in the detector volume.

4.1.4 Detector simulation

The detector simulation starts with simulating the PMT response to the photon density at

the DOM location as calculated by Photonics. This simulation stage is called hit construction

where the number of photons propagating from the ice through the DOM sphere and onto the

PMT are determined. The released photo-electrons and PMT output pulse are simulated in

the following step, the PMT simulation. The DOM simulation includes the DOM electronic

response, treatment of the PMT output and its digitisation to ATWD and fADC waveforms. The

last step is the trigger simulation where the IceCube trigger conditions are applied in order to

construct IceCube events. Events which do not pass the trigger conditions are rejected.

4.1.5 Simulated data samples

If simulation is done according to true flux parameters then the live time of a simulation

event sample is the total number of simulated events over the true event rate. Most of the

simulated events used in this analysis, however, were simulated in a biased way in order to

favour the simulation of HE events. In the case of biased simulation an effective live time for

each energy decade (or smaller intervals) in the event sample can be calculated in a similar

fashion to the non-biased event simulation. It is important to have enough simulated events

in the interesting energy region in order to reduce the statistical uncertainty of the signal

selection methods and expected passing rates. The live time of the experimental data used in

this analysis for signal search is 315.34 days. The live time of the signal and background MC

simulated samples is in the order of hundreds of years for the highest energies and about a

year live time at ≈ 3×106GeV.

4.2 Event reconstruction

Event reconstruction in IceCube aims to estimate the physical quantities of the recorded

event: type of the detected particle or particles, their direction, location and energy. Events

observed by the detector can be generally separated to track-like events and cascade-like

events depending on the distribution of photon hits in the detector. Different reconstruction

algorithms are used depending on the event type hypothesis. In this analysis only track

reconstruction methods are used. Atmospheric muons (and muon bundles) are then rejected

based on reconstructed variables.
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4.2.1 Waveform processing

The event reconstruction methods use information extracted from the waveform digitisers

in the form of pulses. Specifically in IC40 and in this analysis only the output of the ATWD

digitiser was used for pulse extraction and event reconstruction.

A recorded event has a set of digitised waveforms for each DOM that has recorded a signal in

the event. Each DOM has three ATWD digitised waveforms are obtained by using a different

gain on the recorded PMT signal. The software module DOMcalibrator is applied on the

digitised waveforms in order to calibrate them taking into account the work gain specific

for each DOM [81]. DOMcalibrator performs a baseline subtraction, corrects for waveform

tail droop, determines waveform start time and digitiser clock speed, and combines the

three ATWD channels into a single waveform. The calibrated waveform is then passed to

the FeatureExtractor module for pulse extraction [82]. A pulse is a waveform feature defined

by a pulse starting time (leading edge), a pulse width and amplitude, and pulse extraction

assumes a typical shape of a single photoelectron pulse. For the IceCube 40 strings data, the

FeatureExtractor was used in a configuration which extracts a single pulse per waveform. The

pulse starting time is given by estimating the leading edge time (or, arrival of first photon)

of the first found peak above threshold. The pulse amplitude is given by the charge sum

of all waveform bins above threshold and is measured in terms of photoelectrons (PEs), an

average charge that a single photon-induced pulse would contain. As a specific pulse shape is

assumed and its normalisation is set by the data whereas the attributed pulse width has no

real significance.

4.2.2 Likelihood description

Event reconstruction can be described by the need to estimate a set of unknown parameters

~a by using a collection of measured values~x. This is achieved by maximising the likelihood

function L(~x|~a) (or, in practice minimising −lnL) which for independent components xi of~x

can be written as

L(~x|~a) =∏
i

p(xi |~a). (4.1)

Here p(xi |~a) is the Probability Density Function (PDF) of measuring an xi value given deter-

mined values for the set of parameters ~a. In the IceCube case, regarding an infinitely long

muon track along which photons are emitted with the typical Cherenkov angle, the set of

parameters to determine includes a track vertex location and time, the track direction and

energy at time t0:

~a = (~r0, t0, p̂,E0). (4.2)

A scheme of the Cherenkov light front and the different variables is presented in Figure 4.2.

As the vertex location can be chosen arbitrarily along the track, the geometrical coordinates
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Figure 4.2: Definition of variables of the Cherenkov light front, used in track reconstruction,
taken from [83].

contain five degrees of freedom. The energy at the vertex position constitutes the sixth

degree of freedom. The geometry and energy of the track can be fitted simultaneously or

separately, the latter is most often the case in IceCube. The set of measured values~x used for

the likelihood minimisation is the set of feature-extracted pulses, each with pulse location,

time and amplitude.

In IceCube, the PDF used for parameter estimation needs to describe the probability to mea-

sure a certain distribution of photons given a set of values for~a. The photon hit distribution on

a given DOM is binned in time with K bins with the number of expected photons for each bin

as µi . The probability of measuring ni photons with expectation value µi is given by Poisson

statistics. For a single DOM it is

L(~x|~a) =
K∏

i=1

e−µi

ni !
µ

ni

i . (4.3)

The event’s ln(L) term is given by summing over ln(L) contributions from all active DOMs in

the event. The −ln(L) term is then minimised with respect to the unknown track parameters.

The photon expectation values µi are determined by a parametrisation of probability of light

distribution after propagation through the ice, which is based on previous measurements and

presented in the next section.
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Time likelihood

As demonstrated in Figure 4.2 the geometrical photon arrival time at i th DOM is given by

tgeo,i = t0 + p̂ · (~ri −~r0)+di · tan(θc)

cice
(4.4)

The time residual is defined as the difference between the detected photon arrival time and

the expected geometrical arrival time from a direct photon (no scattering in the ice) as

tres,i ≡ thit,i − tgeo,i (4.5)

In an ideal case the distribution p(tres|~a) would be a delta function. In reality several effects

distort the distribution making it wider and with a typical tail of high positive tres values: the

limited time resolution of the detector broadens the p(tres|~a) distribution, the PMT dark noise

adds a flat component to it, photons from radiative energy losses along the muon track (a

fluctuating component) create a long tail of high tres hits and photon scattering in the ice as

well shifts the distribution to higher tres values. The first two effects also result in negative tres

values. Photon scattering in the ice is strongly dependent on the ice purity and the distance

d between the track and the DOM. Scattering is the largest effect on the tres distribution

compared to the others mentioned above.

A commonly used analytical parametrisation for p(tres|~a) in IceCube is the so-called Pandel

parametrisation [83]. It is a Gamma distribution based on measurements of laser light propa-

gation taken in the BAIKAL experiment [84] using an isotropic, monochromatic and point-like

light source. The Pandel parametrisation for light distribution can be written as

p(ξ,ρ, tres) = 1

Γ(ξ)
ρξtξ−1

res e−ρtres (4.6)

ξ≡ d/λ , ρ ≡ 1/τ+ cice/λa. (4.7)

The absorption length is given by λa while τ and λ are functions of d and the DOM-track geom-

etry, free parameters that are determined empirically [85]. The Pandel function is normalised

and can be integrated analytically.

The Pandel parametrisation assumes bulk ice, meaning constant ice properties (scattering

and absorption coefficients) all through the medium. The South Pole ice is however layered,

with its characteristics changing significantly between different ice depths, as shown by the

ice model in section 3.6.1. This is a disadvantage concerning the accuracy of modelling the

photon arrival time distribution in IceCube for event reconstruction purposes. In order to

incorporate the ice layer structure in the event reconstruction the Photonics (section 4.1.3)

photon propagation tables are used. The Photorec software uses the Photonics tables (that

are calculated according to the full ice model) to construct normalised numerical PDFs of

Cherenkov photon arrival time.
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Figure 4.3: Residual time distribution from MC simulation (black) and in comparison the
Pandel characterisation (dashed red) at short (left) and long (right) distance from a muon
track [83].

4.2.3 Track first guess

The track reconstruction methods based on the full likelihood description require a starting

point ( a track seed) to start the minimisation process. The track seed is obtained by fast

analytic algorithms that do not require a starting point. The linefit algorithm is the first guess

method used in this analysis. Linefit assumes a simple geometry which gives an analytical

solution and is therefore very fast to obtain. The linefit track result is used by online filters at

the South Pole as well as to seed higher level reconstruction algorithms such as SPE and MPE

(section 4.2.4).

The linefit algorithm [83] does not use the true geometry of photons emitted in a Cherenkov

cone around an advancing particle and neglects photon delay due to scattering in the ice.

Instead, Linefit assumes an effective velocity ~v with which the photons travel in a one-

dimensional path through the detector and which is a free parameter of the fit. A DOM

photon hit at time ti and location~ri is then described by

~ri =~r0 +~v · ti (4.8)

where~r0 signifies the vertex point. A χ2 term is then defined and minimised to obtain the

solution (~v ,~r0) :

χ2 =
Npulses∑

i=1
(~ri −~r0 −~v · ti )2 (4.9)

The summation is done over the pulses in the event, where ti is the pulse’s leading edge time

and~ri is the DOM position. Derivation of the χ2 with respect to the free parameters gives an
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4.2. Event reconstruction

analytic solution:

~r0 = <~ri >−~v < ti > (4.10)

~v = <~ri · ti >−<~ri >< ti >
< t 2

i >−< ti >2
(4.11)

where < xi > is the average of parameter x over all pulses. The fitted velocities typically are

close to the speed of light for track-like events with a long track and relatively homogenous

light emission, and are smaller for cascade-like events.

4.2.4 Muon track reconstruction algorithms

The Single Photo-Electron (SPE) PDF p1 describes the arrival time of single photons on a

specific DOM location [83]. The PDF is obtained from simulation of photon propagation

through the ice. For the SPE reconstruction method only the information from the first photon

is used and the reconstruction result is robust (in practice the first rise time found in the PMT

waveform is used). The exact measurement of photon arrival times other than the first one

is limited due to electrical and optical signal response time. The constructed SPE likelihood

function that is optimised is

ln(Ltime) =
NDOM∑

i=1
ln

(
p1(tres,i |~a)

)
(4.12)

The result of the linefit first guess algorithm is used as a seed for the SPE track reconstruction.

The result of the SPE is used for running a 32 iteration SPE fit (SPE32).

The first photon arriving at a DOM is usually less scattered than the average single photo-

electron. The SPE PDF is modified to account for that. The arrival time distribution for the

first of N photons is calculated by [83]:

p1
N (tres) = N ·p1(tres) ·

(∫ ∞

tres

p1(t )d t
)(N−1) = N ·p1(tres) · (1−P1(tres))(N−1) (4.13)

P1 is the integrated distribution of the SPE PDF. The resulting p1
N (tres) is called the Multi

Photo-Electron (MPE) PDF. Similarly to (4.12), a MPE likelihood parameter is defined and its

optimisation is referred to as the MPE reconstruction. N , the number of photons arriving

at the DOM is estimated from the waveform and again the first identified rise time of the

waveform is used for the first photon arrival time. The SPE32 reconstruction result is used

as a seed for the MPE fit. The MPE reconstruction result improves with the energy of the

muon event, the number of DOMs in the event and the event NPE (recorded Number of

Photo-Electrons). For very energetic events with high NPE value the first arriving photons

are very much direct photons (no scattering) and so they carry the information on the track
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Chapter 4. Simulation and reconstruction in IceCube

location. The MPE reconstruction has on average a smaller error on the fitted track parameters

than the SPE reconstruction result. It is also more prone to converge in a local minimum

rather in the global one (compared with the SPE fit), which gives rise to a small fraction of

events with a mis-reconstructed track geometry.
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5 GZK neutrino search data analysis

This chapter begins with an overview of the GZK neutrino search with data collected by

the IceCube neutrino observatory. Information is given on the searched signal, the type of

background events, the used MC simulation and the IceCube data on which the search is

performed. The analysis starting filter level & first cuts are described next, with analysis higher

level observables introduced in the next chapter.

It is important to note that the analysis was developed by using MC simulated signal and

background events and a data burn sample (see section 5.1.4). The analysis technique and all

selected cuts were determined based on these samples to avoid any bias. The analysis method

has been frozen and approved by the IceCube collaboration prior to looking at the full data

sets and obtaining final results.

5.1 Analysis overview

5.1.1 The searched signal

This analysis is optimised to search for ultra high energy neutrinos, such as neutrinos predicted

by the GZK effect (section 2.2.5) at 108−109 GeV energies using the IceCube 40-strings detector

(IC40) data run. The predicted GZK neutrino event rates from the different theoretical models

are in the order of 1 for the IC40 data run live time . A comparison of several theoretical models

considered in this analysis is presented in Figure 5.1. The three neutrino flavours are included

in the search, although the developed methods for background rejection (sections 6.2 and 6.3)

are based on νµ signal events alone.

One of the GZK neutrino models is used as the default model in this analysis, so that the cut

optimisation depends on it. This default model is the Seckel-Stanev 2008 pure proton, HiRes-

measured energy normalisation model [32], referred to as SS08 135h. This model contains

a 108 −109 GeV energy neutrino peak from proton interactions produced with flavour ratio

(1 : 2 : 0) and a lower energy νe peak from neutron decays (1 : 0 : 0). Taking into account
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Figure 5.1: The neutrino flux prediction from different GZK theoretical models. The ESS01 [30]
and SS08 [32] models both give curves for produced νµ and νe which are used for calculating
GZK neutrino event rate at IC40 after flavour oscillations over cosmological distances. The
Ahlers models (reference [33]) give a prediction for the all-flavour neutrino flux. The predicted
neutrino event rates from these models for the full IC40 data sample are in the order of 1.

neutrino flavour oscillation over cosmological distances (see section 2.2.1) the main GZK peak

will oscillate to a flavour ratio of (1 : 1 : 1) on earth while the neutron decay peak evolves to

(5/9 : 2/9 : 2/9). All noted event rates at IceCube take into account this flavour mixing. In the

case that a model prediction is given for the total neutrino flux (such as for the Ahlers models),

a mixing to flavour ratio (1 : 1 : 1) is used. In addition event rates for a generic diffuse flux of

E−2 energy dependency are reported. While the analysis is optimised for the higher energy

GZK neutrino flux, it is also sensitive to the E−2 diffuse flux.

Figure 5.2 shows the resulting νe,νµ and ντ fluxes passing the IC40 detector online filter used

as a starting point for this analysis (EHE Filter). Each curve represents ν+ν fluxes. The

prominent Glashow resonance is seen at the νe flux. The νµ and ντ fluxes are quite similar

and are substantially higher than the νe flux thanks to the large muon range.

5.1.2 Background events

High energy atmospheric muons (and muon bundles) originating from cosmic-ray showers

represent the main background for this neutrino search (see section 2.3.1). Double and triple

coincident CR showers represent a much less significant background. This analysis includes

atmospheric neutrinos as background and aims to minimise their rate after the final selection
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Figure 5.2: GZK neutrino fluxes at IC40 passing the detector online filter (EHEFilter) used for
this analysis. Fluxes of the three neutrino flavours (ν+ν) are presented for three theoretical
models. Rates are scaled to the IC40 data burn sample live time of 33.8 days.

in order to better separate surviving UHE neutrinos from atmospheric ones. The default

atmospheric neutrino models used are Honda 2006 [38] for the conventional component and

Enberg-Sarcevic [36] for the prompt flux (see sections 2.3.2 and 2.3.3).

5.1.3 Analysis structure

Previous GZK neutrino searches in IceCube perform a final event selection based on the

Number of Photo-Electrons (NPE) registered in the event and the first-guess track zenith

angle [86]. The approach of this work is to use event topology observables that are based on

higher level reconstruction and that have a signal-background separation power to increase

background rejection. The sensitivity of the neutrino search to detect a neutrino signal is

represented by the neutrino effective area. This parameter represents the equivalent area

for which all neutrinos reaching the detector would be recorded and pass the analysis event

selection. The effective area is dependent on the neutrino energy, incoming zenith angle and

flavour, and it enfolds the detector physical size and detection efficiencies. If the approach

taken by this analysis is successful, then the NPE threshold cut at the analysis final level

would be set to lower values, then the neutrino effective area would increase for this analysis

compared to previous ones. The structure of the analysis is as follows:

• Analysis level 0 : the IC40 online EHE Filter event selection.
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Chapter 5. GZK neutrino search data analysis

• Analysis level 1 : an energy cut (size of the observed event) to reduce background events

efficiently. Lower event rates make it feasible to calculate higher level observables.

• Analysis level 2 : rejection of atmospheric muons by using the IceTop surface array in

the appropriate angular range.

• Analysis level 3 (final cut selection) : simultaneous optimisation of cuts on event-

topology observables and registered event NPE as a function of the zenith angle of

reconstructed tracks.

5.1.4 Data sample and simulated events

Information about the IceCube MC signal and background event simulation for the in-ice

detector used for this analysis are summarised in Table 5.1. Specifically for the IceTop veto

study described in section 6.1, different simulation files including detector simulation of the

IceTop and the in-ice IceCube detectors were used for which the information is summarised

in Table 5.2.

The data used for this analysis are events collected by the IceCube detector in its 40-strings

configuration taken between April 2008 and May 2009. Only data runs where the in-ice part of

the detector as well as the IceTop part of the detector were functioning well are considered. All

runs tagged as "good" runs and with a run number ending with xx0 constitute the burn sample

for this analysis - a set of data used for comparisons with MC simulation and for construction

of the analysis which is later discarded. The live time of the data burn sample is 33.86 days.

The live time of the set of runs used for the GZK neutrino search is then 315.34 days (the burn

sample runs are excluded).

Data and MC simulated events have gone through the same filtering and reconstruction chain.

The analysis development has been done while continuously checking good data description

by MC simulated events.
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5.1. Analysis overview

Generator Type Spectrum Nfiles Nprimaries/file Used for
shape

CORSIKA single proton (H) E−2 600 2×106 analysis
CORSIKA single iron (Fe) E−2 600 2×106 analysis
CORSIKA single poly-gonato ∆=−1 1000 4×105 MC-data

comparison
CORSIKA double coincident unweighted 1000 107 analysis

poly-gonato
CORSIKA double coincident ∆=−0.5 7000 2×106 analysis

poly-gonato
CORSIKA triple coincident unweighted 1000 107 analysis

poly-gonato
NuGen νµ E−1 1000 5×103 analysis
NuGen UHE νµ E−1 100 1×103 analysis
NuGen νe E−1 1000 5×103 analysis
NuGen ντ E−1 1000 5×103 analysis
NuGen UHE ντ E−1 100 1×103 analysis

Table 5.1: MC Simulated events used for this analysis (in-ice detector simulation). All sim-
ulation files use the AHA ice model unless mentioned otherwise. The 2-component model
simulation files have a total of 2M single proton showers and 2M single iron showers. The
CORSIKA simulation ∆ parameter gives the index of reduction of the spectral slope of simu-
lated files with comparison to the poly-gonato model. The normal NuGen datasets neutrino
energy range is 101 −1010GeV while the energy range in the UHE sets is 109 −1011GeV. The
UHE dedicated sets are needed in order to include events from the high energy tail of the GZK
peak.

Generator Primary type Spectrum Nshowers Energy range
shape

SIBYLL H E−1 3.6×106 104 −108GeV
SIBYLL He E−1 3.3×106 104 −5×107GeV
SIBYLL O E−1 3.3×106 104 −5×107GeV
SIBYLL Si E−1 3.3×106 104 −5×107GeV
SIBYLL Fe E−1 3.6×106 104 −108GeV

Table 5.2: IC40 IceTop and in-ice detector coincident simulation files used for the IceTop veto
study. All simulation files use the AHA ice model.
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5.2 Analysis level 0 (EHE Filter)

The data sample starting point for this analysis is the IC40 online filter called EHE Filter which

is designed to retain very bright events in the in-ice detector corresponding to high energy

particles. The analysis level 0 (EHE Filter) uses a single selection condition:

log10(NPEportia) > 2.8 . (5.1)

The observable NPE refers to the total Number of Photo-Electrons collected in an event by

the IceCube DOMs (see section 4.2.1). The NPE value used in the EHE Filter condition is

obtained by the portia waveform processing algorithm. In general portia is very similar to

the Feature Extractor algorithm described in 4.2.1, but fewer waveform corrections due to

detector hardware effects are performed in portia. However during the IC40 data taking portia

used ATWD and FADC pulses for the calculation of NPE while Feature Extractor used solely

ATWD pluses. Feature extracted FADC pulses had to be discarded and were not used for

track reconstructions due to a software bug in the online processing. The NPE values used in

higher levels of the analysis are obtained by Feature Extractor and shall be marked simply as

NPE. Distribution of the NPE values at EHE filter level are shown in Figure 5.3. The list of MC

simulation and data streams represented by the distribution curves is given in Table 5.4.

Simulation and data events go through an offline processing which consists of track first

guess (the linefit algorithm, see section 4.2.3) and several likelihood reconstruction algorithms

including SPE 1-iteration, SPE 32-iterations and MPE (see section 4.2.4). The following Table

5.3 gives the analysis level 0 passing rates for the different MC simulation and data burn

sample streams. The difference of 30% between data and all-CORSIKA simulation event rates

is due to differences at low NPE values of the passing events and it is significantly reduced at

higher analysis levels. Full IC40 data rates for different theoretic GZK models (Figure 5.2) are

listed in Table 5.4.

5.3 Analysis level 1

The aim of the analysis level 1 cut is to efficiently reject background events while retaining

signal events and to reduce the data volume significantly. The searched GZK neutrino signal

creates very bright events in the detector while the atmospheric muon background rate

strongly decreases with energy, therefore the level 1 cut variables are energy related. In

addition, the likelihood minimisation MPE track fit is required to converge without problems

as the fitted track parameters are used in the higher filter levels.

The event variables used are:

• NPEF E - The number of collected photo-electrons, obtained by the Feature Extractor

waveform processing algorithm.
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5.3. Analysis level 1

EHE Filter rate (Hz)
Proton + Fe (2component) 0.785
Double coincident CORSIKA (dcor) 0.123
Triple coincident CORSIKA (tcor) 7.22×10−3

CORSIKA total (mc_all) 0.916
Atmospheric ν (atm_honda_sarcevic) 2.26×10−5

GZK νµ (sig_numu) 1.79×10−8

GZK νe (sig_nue) 4.58×10−9

GZK ντ (sig_nutau) 1.66×10−8

GZK total (gzk_all) 3.9×10−8

E−2 total (E2_all) 5.46×10−6

Data burn sample (data) 1.32

Table 5.3: Analysis level 0 (EHE filter) event rates for MC simulation and burn sample data.
The names of corresponding curves in all following distributions are given in brackets. The
default atmospheric neutrino models are Honda 2006 (conventional) and Sarcevic-Enberg
(prompt). The default GZK neutrino signal is SS135h. Rates are for ν+ν.

GZK neutrino model EHE Filter rate (315.34 days)
SS08 135h (pure proton) 1.06
ESS01ΩΛ = 0 0.79
Ahlers Emi n = 1018eV best fit 0.89
Ahlers Emi n = 1018.5eV best fit 1.21

Table 5.4: EHE filter GZK model all-flavour event rates for the live time of the IC40 data. Rates
are for ν+ν.

• NCh - The number of in-ice DOMs with registered signal.

• MPE fit status integer - The return value of the MPE track reconstruction algorithm.

Status integer zero means fit status ’OK’, the fit has converged without problems.

The analysis level 1 conditions which must be simultaneously satisfied are:

log10(NPEF E ) > 3.5

NCh > 100 (5.2)

MPEFit.StatusI = 0

The level 1 cut rejects more than 99% of the background while retaining 66% of the signal

at analysis level 0. The full information of the level 1 simulation and data passing rates is

provided in Table 5.5.

Two dimension distributions of cos(θ) vs. log(NPE) for the Analysis level 1 data and MC are

shown in Figure 5.5. The data burn sample plot (left) can be compared to the middle plot
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Figure 5.3: Analysis level 0 NPE distribution of MC simulated and burn sample data events.
The plotted curves correspond to the MC simulation and data streams given in Table 5.3.

of MC background events which includes the following simulation streams: proton + iron

showers, double and triple coincident CORSIKA showers, and neutrino atmospheric flux. The

signal plot on the right represent the GZK neutrino flux (three neutrino flavours). It is clear that

the background is predominantly downgoing and decreases strongly for larger zenith angles.

Mis-reconstructed events and atmospheric neutrinos contribute a flux around and below the

horizon. The strongest GZK signal on the other hand is around the horizon and at large NPE

values. These distributions and their observed differences between signal and background are

the basis for the final cut selection together with additional dedicated parameters presented

in the next chapter.
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Figure 5.4: Analysis level 0 NCh distribution of MC simulated and burn sample data events.
The plotted curves correspond to the MC simulation and data streams given in Table 5.3.

EHE Filter rate Level 1 rate Level 1
(Hz) (Hz) passing fraction (%)

Proton + Fe (2component) 0.785 5.52×10−3 0.7
Double coincident CORSIKA (dcor) 0.123 8.71×10−4 0.7
Triple coincident CORSIKA (tcor) 7.22×10−3 5.68×10−5 0.78
CORSIKA total (mc_all) 0.916 6.45×10−3 0.7
Atmospheric ν (atm_honda_sarcevic) 2.26×10−5 1.66×10−7 0.76
GZK νµ (sig_numu) 1.79×10−8 1.18×10−8 65.9
GZK νe (sig_nue) 4.58×10−9 2.72×10−9 59.4
GZK ντ (sig_nutau) 1.66×10−8 1.13×10−8 68.0
GZK total (gzk_all) 3.9×10−8 2.58×10−8 66.05
E−2 total (E2_all) 5.46×10−6 1.4×10−6 25.6
Data burn sample (data) 1.32 6.32×10−3 0.47

Table 5.5: Analysis level 1 event rates for MC simulation and burn sample data. The default
atmospheric neutrino models are Honda 2006 (conventional) and Sarcevic-Enberg (prompt).
The default GZK neutrino signal is SS135h. Rates are for ν+ν.
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Figure 5.5: Analysis level 1 cos(θ) vs. log(NPE) distribution for data burn sample events (left),
MC simulated background (middle) and MC simulated signal (right). Simulation distributions
are normalised to the data burn sample live time of 33.8 days. The colour scale represents the
event rate in each (cos(θ),log(NPE)) bin.
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6 Atmospheric muon bundles rejection
methods

As described in section 2.3.1 the main background of this EHE neutrino search consists of

muon bundles from Extensive Air Showers (EAS). Several methods were developed for the

separation of energetic muon bundles events from neutrino events and are used in this

analysis. The development study was performed using νµ signal exclusively, and the resulting

methods show signal-background separation power for the three neutrino flavours.

A muon bundle created in EAS may have thousands of muons that reach the IceCube detector

at a depth of 1500 m below the surface. Most of the muons are concentrated in a dense core,

but some may have relatively high transverse momenta pt and are therefore separated from

the core of the bundle at the depth of IceCube by a distance ∝ pt /Eµ. Multiple scattering and

deflection due to the earth’s magnetic field can increase the separation for near-horizontal

events [87]. Observing the separation of single muons within the bundle core is not possible

in IceCube as the photon scattering length in ice is too short and the detector’s string spacing

is too large for this purpose. However, differences in the light distribution around the bundle

core compared to that around a single muon can be used to distinguish the two event classes.

Section 6.1 presents a study of the performance of the IceTop surface array for vetoing high en-

ergy muon bundles. Section 6.2 describes how early photon hit times due to muons separated

from the bundle core are used for rejecting these events. Finally in section 6.3 the perpendicu-

lar light distribution around a fitted track gives additional separation power between muon

bundles and neutrino-induced muon events.

6.1 Atmospheric shower veto using IceTop

The IceTop surface array uses the same Digital Optical Modules (DOMs) as IceCube’s in-ice

detector (see section 3.2). When an EAS develops and reaches the surface, charged particles

traversing the IceTop tanks generate DOM hits (predominantly muons and electrons). Due to

the spreading out of EAS and the high multiplicity within the shower, IceTop has an efficiency
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reaching to 100% for detecting close to vertical showers with shower axis in vicinity of the

surface array.

Using IceTop hits to veto muon bundle events is very beneficial to the EHE neutrino search as

the signal events are in the same phase space as the background: downgoing to horizontal

incoming particles. For the IC40 observatory, a CR shower axis with incoming zenith angle

up to 36◦ can be contained in the instrumented volume of both the IceTop array and the

in-ice detector. While this constitutes 1/5 of the sky’s solid angle above the horizon which can

be background-cleaned, neutrino-induced leptons in this zenith region arrive at the in-ice

detector after propagating only a short distance in the ice. These leptons therefore retain

most of the initial energy of the GZK neutrino and their energy flux directly reflects the GZK

neutrino spectrum.

In order to use the full capabilities of IC40, the analysis therefore needs to use IceTop hit

information in order to tag and reject energetic muon bundles. For this purpose the IceTop

detection efficiency was studied for muon bundle events that fulfilled the IC40 in-ice EHE

filter condition. The detection efficiency was studied with respect to the incoming CR particle

type, energy and topology: zenith angle and its impact parameter to IceTop’s centre.

This rejection method is pure in the sense that GZK signal events do not have accompanying

IceTop hits except for noise hits, so no signal should be lost when applying the veto. The

following section discusses how accompanying IceTop hits due to noise are minimised and

why signal loss due to them can be neglected.

Each IceTop tank is calibrated separately in order to determine the charge threshold to be

set for its DOM to trigger. The recorded charge by a muon traversing an IceTop tank strongly

depends on the length of track in the ice. For a vertical muon this corresponds to the height of

the tank (∼ 1m ice depth). The charge threshold is then given in units of Vertical Equivalent

Muons (VEM) which corresponds to ∼ 250 created photoelectrons for an high gain DOM. In

IC40 the high gain DOM trigger threshold was in the range 0.1-0.2 VEM (corresponds to 25-50

photoelectrons) which constitutes a high enough threshold to reduces noise hits substantially.

Secondly, during the IC40 data taking the IceTop array was working in Hard Local Coincidence

(HLC) mode, requiring both tanks of an IceTop station to record hits within a time window of

1µs in order for the waveforms to be kept. IceTop HLC hits (two or more) are saved when within

an in-ice event time window. The HLC therefore rejects isolated noise hits. It is noted that

small air showers which are detected by a single IceTop tank do not pass the HLC condition

and waveforms are not kept. This limits the veto efficiency on low energy showers. The

59-stations IceTop detector started working on a Soft Local Coincident (SLC) data taking mode

in June 2009. The SLC mode is similar to HLC with the addition that waveform information

from isolated tank hits is saved (time and charge stamps). Therefore, in future analyses using

newer IceCube data, the IceTop veto is expected to yield an improved veto capability on low

energy showers.

Lastly, the chance that IceTop records at least 2 HLC hits from a real atmospheric muon event
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in coincidence with a GZK neutrino event (during the event time window of ∼ 10µs) was

statistically calculated and shown to be very small and is therefore neglected in this analysis.

6.1.1 Data and simulated events

The MC simulation used for this study is a dedicated simulation sample of CR showers in-

cluding detector simulation of both the IceTop surface array and the in-ice detector DOMs.

Simulation includes showers from five nuclei types: H, He, O, Si and Fe, for incoming particles

with a zenith angle in the range of [0,65]◦ and energy in the range 104 −5 ·107 GeV (Table 5.2).

The SIBYLL hadronic interaction model [75] is used and simulation is done according to an

E−1 spectrum. For this study the events are then weighted to represent the CR flux with equal

contribution from each nucleus type, which is an approximative representation of it. The data

used for this study is the data burn sample as described in 5.1.4. There is no IceTop and in-ice

detector coincident simulation for double and triple CORSIKA showers and the veto efficiency

is not studied for these type of events.

6.1.2 Veto efficiency dependencies

We define the IceTop veto efficiency for a sample of background simulated events as the

number of events that have two or more IceTop HLC triggers (one station or more) within the

in-ice event time window over all background simulated events. The veto efficiency is studied

for subsamples of the MC simulated events with respect to CR particle type, initial energy,

zenith angle & event topology.

Several new parameters are defined here in order to describe the topology of the event in the

detector. The Impact Parameter (IP) to IceTop is defined as the distance between the incoming

CR track position on the ice surface to the centre of the IceTop array, calculated in 2D, as

presented in Figure 6.1. The IP (dashed purple line) is then used to calculate a containment

parameter (ITcontain) defined as the IP value divided by the length of the instrumented IceTop

detector pointing in the same direction as the IP and measured from its centre (solid black

line), i.e the maximum instrumented radius in the region where the incoming particle track

intersects the ground. This yields ITcontain<1 for tracks passing through the instrumented

array (contained tracks) and ITcontain>1 for tracks passing outside of it (non-contained

tracks). Similarly the IP to the centre of the in-ice detector is calculated in 3D from the point

of closest approach along the CR track. The track’s ICcontain parameter with regards to the

in-ice detector is defined similarly as the ITcontain variable but is calculated in 3D. Studying

the veto efficiency w.r.t. the containment parameters rather than the IPs reduces the effect

of the IC40 detector asymmetry between the detector long and short axes on the efficiency

distribution. Figure 6.1 shows a scheme of the IceCube observatory, an incoming track, the

definitions of both impact parameters and the length of the instrumented detector used for

containment parameter calculation.
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Figure 6.1: The complete IceCube observatory, definitions of the IceTop and in-ice detector
Impact Parameters (IPs, dashed purple lines) and illustration of the length of the detector in
the same direction as the IP used for the calculation of the containment parameter (solid black
lines).

Studied events must fulfil the EHE Filter requirement, selecting events that deposit a large

amount of light in the in-ice detector. The veto efficiency for EHE filtered events is then studied

using MC true values. Comparing the veto efficiency for different CR primary types showed

very small differences. Figure 6.2 shows a comparison of proton and iron nuclei, the two

extreme cases. The distributions show that the IceTop veto efficiency is strongly dependent

on the initial CR energy and zenith angle (see Figure 6.3). The veto efficiency dependency on

the IP w.r.t. the in-ice detector is also demonstrated in these previous plots. A veto condition

is then constructed from three parameters characterising the topology of the event: the CR

zenith angle and the two IPs, or alternatively ITcontain and ICcontain. The dependency on

the azimuth angle is neglected as it is not very important in the IceCube 40-strings detector

configuration (section 3.2). Due to the EHE Filter requirement the dependency of the veto on

the in-ice IP is the weakest, giving almost constant high efficiency for in-ice contained events

and low efficiency for non-contained events. This is clearly demonstrated in Figure 6.4 looking

at the veto efficiency on both containment values (MC true values).

The veto efficiency has been studied so far as function of quantities that were provided by the
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Figure 6.2: The IceTop veto efficiency vs. the IP [m] to the in-ice detector for proton (blue)
and iron (red) nuclei. Left plot: events with CR MC true zenith in the range [0,18◦], right
plot: events with CR MC true zenith in the range [18◦,25◦]. The error bars represent statistical
errors.

 MC truth IP to IC40 centre [m]  
0 100 200 300 400 500 600 700 800

 IT
 v

et
o 

ef
fic

ie
nc

y 

0

0.2

0.4

0.6

0.8

1

 MC truth IP to IC40 centre [m]  
0 100 200 300 400 500 600 700 800

 IT
 v

et
o 

ef
fic

ie
nc

y 

0

0.2

0.4

0.6

0.8

1

Figure 6.3: The IceTop veto efficiency vs. the IP [m] to the in-ice detector for different energy
range curves: [0.1,1] PeV (green), [1,10] PeV (blue), [10,50] PeV (black). Left plot: events with
CR MC true zenith in the range [0,18◦], right plot: events with CR MC true zenith in the range
[18◦,25◦]. The error bars represent statistical errors.
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Figure 6.4: IceTop veto efficiency dependency (MC) on true IceTop and in-ice detector con-
tainment values. Left plot: distribution of in-ice vs. IceTop containment values for the CR MC
dataset (EHE filtered), right plot: IceTop veto efficiency calculated for the same MC events,
plotted as a function of ICcontain and ITcontain.
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Figure 6.5: IceTop veto efficiency dependency (MC) on MPE reconstructed IceTop and in-ice
detector containment values. Left plot: distribution of in-ice vs. IceTop MPE reconstruction
containment values for the CR MC dataset (EHE filtered), right plot: IceTop veto efficiency
calculated for the same MC events, plotted as a function of MPE ICcontain and ITcontain.

MC truth. In practice, the CR energy is measured by the event NPE value (see section 5.3) and

the CR zenith and containment values are calculated w.r.t. the MPE reconstructed track. As

seen in Figure 6.5, the efficiency containment map built from the reconstructed track and

energy is slightly smeared in comparison to the previous plot.

The veto efficiency has been characterised to be used in this neutrino search by dividing the

MC data to three log10(NPE) ranges and plotting the veto w.r.t. the MPE track zenith cosine

and ITcontain value (the dependency on ICcontain is neglected). This is shown in Figure 6.6.

As the veto is applied after analysis level 1 and its log10(NPE)>3.5 condition , only the lower

distribution is used in the EHE neutrino search.

6.1.3 Data and MC simulation results

A similar veto efficiency map was constructed using burn sample data. The burn sample

has reduced statistics at the higher NPE values compared with the MC dataset and higher

statistics at the lower NPE values. The obtained veto efficiency distribution from the full burn

sample data is shown in Figure 6.7. At the highest NPE range (bottom plot) the high veto
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Figure 6.6: IceTop veto efficiency characterisation in reconstructed cos(θ) vs. ITcontain. The
MC dataset is divided to three log10(NPE) ranges: [2.8,3] (top), [3.,3.5] (middle) and [>3.5]
(bottom). The veto efficiency improves with higher NPE events and a high efficiency region
(>90%) is found for ITcontain<1.5.

68



6.1. Atmospheric shower veto using IceTop

efficiency region appears similarly as in simulation but the burn sample has less entries and

the distribution fluctuates more. There are differences between the data and MC simulated

events that create slightly different veto capabilities and efficiency for the two samples. The

data sample includes single CR showers as well as double and triple coincident showers

which constitute about 14% of the event rate at the analysis level 1. There are no double or

triple coincident CR shower MC sets available for IceTop veto studies. Data also includes

atmospheric neutrino events which are negligible at the event rate but may influence the veto

efficiency at certain angles. The MC simulation is only of single MC showers and is limited in

angle and energy. In summary, results from data and MC simulation show a similar trend of

high veto efficiency for IceTop contained events but the MC describes only a sub sample of

the data and results are not expected to be identical. In order to account for these differences

in a conservative fashion, the IceTop veto is applied in the analysis in the following way: data

events with IceTop signal (≥2 HLC hits) are vetoed while on the background MC simulation

stream the (MC-obtained) veto efficiency is applied as a reduction weight factor on the single

CR shower muon background events (no rejection of double and triple coincident showers).

The veto weight factor is applied in the zenith range cos(θ)=[0.6,1.0] and only if the veto

efficiency was calculated with N ≥ 2 entries in order to disregard bins where the efficiency has

an high error due to low statistics. In that way the total background veto passing rate is slightly

higher for the MC simulation stream than for the data stream, and the veto representation in

MC is conservative.
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Figure 6.7: The IceTop veto efficiency in the data burn sample in reconstructed cos(θ) vs.
ITcontain divided to three log10(NPE) ranges: [2.8,3] (top), [3.0,3.5] (middle) and [>3.5] (bot-
tom).
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6.2 Early photon hit times

A single muon track hypothesis is used in this analysis for event track reconstruction (the MPE

reconstruction algorithm, see section 4.2.4). In the case of large muon bundles originating

from energetic CR showers there could be outlying muons which are well separated in space

from the main bundle at the IceCube depth. These can generate DOM photon hits which are

recorded with negative time residual (tres defined in 4.2.2), meaning photons with unphysical

arrival time with respect to the fitted single track. The existence of such negative tres hits can

be used to distinguish these muon bundle events from signal events, neutrino-induced single

leptons. This is done by defining a negative tres likelihood parameter. The development of a

cut parameter out of the tres distribution has been done using νµ alone as the reference signal.

Figure 6.8 illustrates that muon bundle events tend to have more negative tres than the signal

events by showing the average number of hits per tres range calculated from a large number of

events.
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Figure 6.8: The density of negative tres hits for muon bundles (blue) from proton and iron CR
showers and signal (red) simulated events. The residual times are calculated w.r.t. the MPE
fitted track. The events used for calculating the average density are in a range cos(θ)=[1,0.9]
and log(NPE)=[4.0,4.5].

6.2.1 Early tres hit density PDFs

The likelihood parameter construction requires a description of typical signal and background

events to which an event is compared. This comparison yields a likelihood value for a signal

and background hypothesis which is later used as a cut parameter for background rejection.

For this purpose a 2D signal tres hit density versus tres time value distribution is constructed by

stacking many MC signal events (and separately for background, muon bundles MC events).

This is done in the following way:
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• The number of photon hits in the event in the tres range [-400,1000] ns is calculated by

summing over photon hits in that range: pall =
∑N

i=0 ptres,i with ptres,i representing the

number of photon hits in the i th bin. A time residual bin width of 10ns is used.

• A logarithm of photon hit density ρtres per tres bin is calculated by

log (ρtres,i ) = log(ptres,i /pall). Photon densities are used rather than the number of

registered photons as the density is roughly decorrelated from the event NCh (number

of active DOMs), an observable that shows some disagreements between data and MC

simulation.

• If ptres,i > 0 then the log(ρtres,i ) value is in the range [-3,0]. If ptres,i = 0 then the value of

the logarithm is set artificially to log(ρtres,i ) =−4 to represent minimum density. This is

done as tres bins with zero entries are important information in the event description

and the chosen value is small enough that it is not otherwise obtained in any event in

any tres bin.

• A 2D histogram of log(ρtres) vs tres is filled with information from signal (background)

events. The 2D histogram is scaled by 1/Nevents giving that for each tres bin the dis-

tribution of log(ρtres) is normalised to 1. In other words, for each tres bin there is a

Probability Distribution Function (PDF) of the logarithm of photon hit density for signal

(and background) events, a PDF of ( log(ρtres)|tres,i ).

The EHE-filtered MC simulated events are divided into five log(NPE) ranges and five signal and

five background 2D PDFs are constructed (four ranges relevant after the analysis level 1 cut).

This is done in order to limit the NPE dependency of the constructed parameter, giving PDF

of ( log(ρtres)|tres,i ,NPE ). Examples of the obtained 2D PDFs for the range log(NPE)=[4.0,4.5]

for signal and background MC events as well as the corresponding distribution from data

burn sample events are presented in Figure 6.9. It is seen that the density of negative tres

hits is higher in data and background MC compared to signal MC. Data and background

MC show very similar behaviour. A difference between signal and background MC in the

density distribution at positive tres values is observed. This difference is due to the fact that,

for a given NPE range, background event tracks pass closer to the IceCube detector centre

than signal event tracks, which predominantly pass outside of it (or at its edge). Photons

originating from a muon passing well outside of the detector need to propagate (on average)

larger distances than for contained events to reach the DOMs. With increasing propagation

distance there is less chance for direct photons (tres = 0) and higher probability for larger tres

values. In addition the accuracy of reconstructing non-contained tracks is lower than that of

events passing well within the instrumented detector volume. A poorer estimation of the track

parameters (zenith, azimuth, vertex) results in less accurate estimations of tres values. From

these reasons the signal positive tres distribution is less peaked around tres = 0 and flatter at

large values compared to the background distribution.
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Figure 6.9: The 2D PDFs of negative tres photon hit density for signal and background sim-
ulation, and the photon hit density distribution for data events. Upper plot: νµ signal MC,
middle: atmospheric muon background MC, bottom: data burn sample events.
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6.2.2 Construction of early tres likelihood parameter

The tres hit distribution of a single event is then used to construct a signal-like (background-

like) photon hit density likelihood parameter by comparing it to the signal (or background)

2D PDF of ( log(ρtres)|tres,i ,NPE ). This is done as following (quantities are defined per event):

• Photon hits with residual time in the range [-400,50]ns only are considered.

• The set of photon hit logarithm of densities is calculated: log(ρtres,i )|tres,i ,NPE.

• The probabilities corresponding to the set of photon densities are read from the signal

(or background) relevant 2D PDF, giving a set ps,i ( log(ρtres,i ) | tres,i , NPE ). Here s stands

for signal, b for background.

• The signal likelihood is the product of signal photon hit density probabilities:

Ls =∏
ps,i , and similarly for background likelihood.

• The ratio of signal-hypothesis likelihood to background-hypothesis likelihood is the

eventual parameter that is used to separate signal from background:

∆ ln(Ltres) = ln(Ls)−ln(Lb) = ln(Ls/Lb) , giving negative values to background-like events

and positive values to signal-like events (s stands for signal, b for background).

In the cases where there are no photon hits in the residual time range of [-400,50]ns (as may

happen for signal events, low percentage of background events, or for badly mis-reconstructed

events) then the ∆ ln(Ltres) parameter is left undefined and it is not used as a cut parameter. In

practice even in such case the ∆ ln(Ltres) can be calculated and the obtained value was shown

to be a relatively large positive one, very much "signal" like, as expected. The decision whether

to include or exclude such "zero photon hits" in this method is a matter of choice, but the end

result is most probably the same. These events are very much signal-like and are kept.

6.2.3 Early photon hits∆ ln(Ltres) parameter distributions

The resulting ∆ ln(Ltres) parameter distributions for different MC simulation streams and

burn sample data at the analysis level 1 are shown in Figure 6.10. The total MC background

simulation and burn sample data distributions agree well. The background peaks at negative

∆ ln(Ltres) values while the GZK signal peaks at positive ones as expected.

In order to better present the separation power between signal and background events, the

distributions are divided into log(NPE) ranges (four distributions above analysis level 1 cut)

and are shown in Figure 6.11 (distributions are normalised to 1). The division of the events

into log(NPE) bins is relevant as at the analysis final level the ∆ ln(L) parameter cut value is

determined together with a log(NPE) cut. The separation improves slightly with higher NPE.
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Figure 6.10: ∆ ln(Ltres) parameter distribution at analysis level 1. Total MC background simula-
tion (green) and burn sample data (black) distributions agree well.
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Figure 6.11: ∆ ln(Ltres) parameter distributions for different log(NPE) ranges: top left [3.5,4.0],
top right [4.0,4.5], bottom left [4.5,5.0], bottom right > 5.0. The curves represent GZK neutrino
all-flavour (red), atmospheric neutrinos (magenta), CORSIKA atmospheric muon background
(blue) and burn sample data (black). The distributions are normalised to 1.
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6.3 Perpendicular light distribution

As mentioned earlier, the photon scattering length in the ice is too short and the spacing of

the IceCube DOMs is too large to facilitate the observation of separate muons within a muon

bundle core. However, the emitted light distribution perpendicular and along a muon bundle

core may differ from that of a single muon event of the same energy. The radial spread of

the muons inside the bundle can be up to ∼ 50 m, so the perpendicular light distribution at

small distances is flatter around a bundle compared to a single muon track. The amount of

detected light at larger distances is higher for a single muon track compared to a bundle. This

is because muons in the bundle range out and do not reach the clearest ice at the bottom of

the detector and of large stochastic energy losses in the single muon case. In this work we

focus on constructing a likelihood parameter describing the difference in falling light densities

perpendicular to a muon bundle and a single muon light source.

This development work included as well an attempt to use the change in light yield along the

track, but this has not produced a useful parameter. The ice quality (scattering and absorbent

coefficients) changes with depth, with the clearest ice found at the bottom of the IceCube

detector. This results in a higher photon detection efficiency at the bottom of the detector, an

effect which works in contrast to the fading light yield from muon bundles as they traverse the

ice and loose energy, making the light fading less visible. One has to precisely account for the

ice clarity between points of photon emission and detection, taking into account the zenith

angle and location of the reconstructed track, in order to recover the fading of light along the

track. It is not clear if it is possible to do this with our current knowledge of ice quality in the

detector so that the difference between a muon bundle and a single muon would be visible.

6.3.1 Perpendicular light density parametrisation

The amount of detected light at perpendicular distances from a single muon track is a function

of the muon energy, ice properties and the detector noise level due to DOM electronics. Its

parameterisation is described in [88] and is given by the so-called µ−function:

µ(d ,θ,E) = a(θ,E)ω−d/d0 +bnoise (6.1)

The relevant variables are d : DOM-track distance, θ: opening angle between the string axis

and track, E : energy of the track and d0 = 1 m. The parameter a (in units of NPE) represents the

light normalisation and is dependent on the energy of the track in IceCube, the dimensionless

parameter ω describes the shape of the falling light curve and bnoise (in units of NPE) gives

the expected noise level of the DOMs. The parameters a and ω are both dependent on ice

properties which vary with depth [68]. However, it is difficult to resolve the dependency as

for each event light is emitted and detected at different ice depths and the dependency is

averaged in the fitted parameter values. An example for the detected light distribution around

a single muon neutrino event and the fitted µ(d ,θ,E) function is given in Figure 6.12.
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Figure 6.12: Distribution of detected light perpendicular to a simulated neutrino-induced
single muon track (red markers) and the fitted µ-function (black) for an event with log(NPE)=5.

6.3.2 Construction ofµ-function likelihood parameter

The difference in perpendicular light distribution between signal and background events

in this analysis appears in the µ-function fitted values of ω and a. The µ-function fit is

applied on the set of event-collected pulses (DOM location and feature extracted amplitude)

and distances calculated with respect to the MPE reconstructed track. In 2-dimensional

distributions of fitted log(a) vs ω values, signal and background events occupy different areas

of the phase space. This is shown in Figure 6.13 where signal events typically have a smaller ω

value and a larger log(a) value than background events. The 2D distributions in Figure 6.13

are normalised to 1 so essentially each one constitute a 2D PDF of (ω, log(a)) values for its

data subset. Such 2D PDFs are constructed from signal and background MC event samples for

the four relevant log(NPE) ranges above the analysis level 1 cut (same as in section 6.2.1).

These are used to calculate a µ-function likelihood parameter in the following manner:

• A given event has a fitted MPE track and fitted µ-function to its collected light distribu-

tion, resulting in a pair of (ω, log(a)) values.

• The probability for a signal (background) event to obtain that set of (ω, log(a)) values is

read from the relevant signal (background) 2D PDF, represented as ps((ω, log(a))|log(NPE)).

If the read probability is smaller than 10−5 or the 2D PDF has an empty bin (no informa-

tion from MC events), a minimum probability of p = 10−5 is set.

• The likelihood for a signal (background) hypothesis is then simply the obtained proba-

bility, ln(Ls) = ln(ps).

• Similarly as in section 6.2.2 the parameter of the ratio of signal-hypothesis likelihood

to background-hypothesis likelihood is defined by ∆ ln(L) = ln(Ls)− ln(Lb) = ln(Ls/Lb),

giving negative values to background-like events and positive values to signal-like

events.
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Figure 6.13: µ-function fit parameters log(a) vs ω 2D distributions for νµ signal MC (top left),
atmospheric muon background MC (top right) and data burn sample events (bottom) for
events in range log(NPE)=[4.5,5]. The distributions are normalised to 1.

In the case that the µ-function fit does not converge correctly or the probabilities of an

(ω, log(a)) pair are minimal (p = 10−5) for the signal and background hypotheses, then the

parameter ∆ ln(Lperp) is not defined for this event and cannot be used as a cut parameter. This

method is limited by the MC statistics from which the 2D PDFs are constructed.

The distributions of ∆ ln(Lperp) for all MC streams and data burn sample at analysis level 1

are shown in Figure 6.14. The separation power of this parameter is not as strong as the early

photon hit parameter.

6.4 Combined∆ ln(L) parameter separation power results.

To maximise the potential of the two parameters they are combined to a single likelihood

∆ ln(Lcom) =∆ ln(Ltres)+∆ ln(Lperp). This is a valid approach as adding the two ∆ ln(L) terms

is the same as multiplying the initial probabilities calculated for the two observables and

constructing a single likelihood test
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6.4. Combined∆ ln(L) parameter separation power results.
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Figure 6.14: µ-function fit ∆ ln(Lperp) distribution at analysis level 1.

∆ ln(Lcom) = ln(Ls,tres)− ln(Lb,tres)+ ln(Ls,perp)− ln(Lb,perp)

= ln(Ls,tres ·Ls,perp)− ln(Lb,tres ·Lb,perp) (6.2)

= ln(
∏

ps,tres,i ·ps,perp)− ln(
∏

pb,tres,i ·pb,perp).

The combined likelihood is a stronger cut parameter than using the two separated cuts

consecutively. The signal and background separation is increased when multiplying the

probabilities, less signal events have a negative ∆ ln(Lcom) value (background-like events) and

are lost in comparison to the two separated cuts. The distributions of the combined likelihood

parameter per log(NPE) range at the analysis level 1 are given in Figure 6.15.
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Figure 6.15: Distributions of the combined ∆ ln(Lcom) parameter for different log(NPE) ranges:
top left [3.5,4.0], top right [4.0,4.5], bottom left [4.5,5.0], bottom right > 5.0. The curves repre-
sent GZK neutrino all-flavour (red), atmospheric neutrinos (magenta), CORSIKA atmospheric
muon background (blue) and burn sample data (black). The distributions are normalised to 1.
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7 Analysis final event selection

The high level cuts of this analysis use the studies described in chapter 6 and the observables

developed therein. The final cut selection is performed on the entire event distribution with

zenith dependent cut values and has been optimised for signal discovery potential.

7.1 Analysis level 2

The IceTop veto on muon bundles described in section 6.1 is applied on the IC40 data passing

the Analysis level 1 cuts (section 5.3). This is performed as follows:

• Data burn sample: events with IceTop signal (≥2 HLC hits) are rejected (see section 6.1).

• MC simulation single CORSIKA showers (p+Fe): events are re-weighted by w = 1−εveto

where εveto represents the veto efficiency for the relevant (cos(θ), ITcontain) bin as ob-

tained by the IceTop and in-ice simulation study (Figure 6.6 bottom plot, log(NPE)>3.5).

The zenith angle and containment parameter are of the reconstructed MPE track. The

re-weighting is done in the zenith range cos(θ)=[0.6,1.0], corresponding to a recon-

structed zenith below 53◦. It is only applied if the veto efficiency was calculated with

N ≥ 2 entries, otherwise, w = 1 (see section 6.1.3).

• MC simulation double and triple coincident CORSIKA showers: all events are kept (the

veto efficiency was not studied for these type of events, see section 6.1.1).

Event rates of the data and MC simulation streams at Analysis level 2 (after IceTop veto) are

shown in Table 7.1. The background simulation stream event rate (single + double + triple

coincident CORSIKA showers) that passes the veto condition is slightly higher than that of the

data stream. This means the application of the IceTop veto on the MC is on the conservative

(safe) side. The effect of the IceTop veto is seen in the Analysis level 2 cos(θ) vs. log(NPE)

distribution in Figure 7.1 if compared to the same distribution at Analysis level 1 (Figure 5.5).
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Chapter 7. Analysis final event selection

Level 1 rate Level 2 rate Level 2
(Hz) (Hz) passing fraction (%)

Proton + Fe 5.52×10−3 3.31×10−3 59.9
Double coincident CORSIKA 8.71×10−4 8.71×10−4 100
Triple coincident CORSIKA 5.68×10−5 5.68×10−5 100
CORSIKA total 6.45×10−3 4.24×10−3 65.7
Atmospheric ν 1.66×10−7 1.66×10−7 100
GZK νµ 1.18×10−8 1.18×10−8 100
GZK νe 2.72×10−9 2.72×10−9 100
GZK ντ 1.13×10−8 1.13×10−8 100
GZK total 2.58×10−8 2.58×10−8 100
E−2 total 1.4×10−6 1.4×10−6 100
Data burn sample 6.32×10−3 3.92×10−3 62.1

Table 7.1: Event rates for MC simulation and burn sample data. Default atmospheric neutrino
models are Honda 2006 (conventional) and Sarcevic-Enberg (prompt). The default GZK
neutrino signal is SS135h. Rates are for ν+ν.
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Figure 7.1: Analysis level 2 cos(θ) vs. log(NPE) distribution for data burn sample events (left),
MC simulated background (middle) MC simulated signal (right). Simulation distributions are
normalised to the data burn sample live time of 33.8 days. The colour scale represents the
event rate in the (cos(θ),log(NPE)) bin.

7.2 Analysis level 3 cut optimisation

At the beginning of this analysis work it was shown that the expected GZK neutrino signal rate

for the default theoretical model (SS08 135h [32]) is 1.06 events for the IC40 live time (blinded
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7.2. Analysis level 3 cut optimisation

data) and in the range 0.8-1.2 for other models (see Table 5.4). Given the potential to detect

signal events, the approach for determining the final event selection was chosen to optimise

the analysis for a discovery by minimsing the Model Discovery Potential (MDP) parameter.

The MDP parameter is defined similarly to the commonly used Model Rejection Factor (MRF)

[89]. Minimising the MRF parameter optimises the power of the analysis to reject theoretical

flux models. The MDP parameter on the other hand optimises the analysis to make a discovery

if a signal is observed.

7.2.1 Model Discovery Potential parameter

In this analysis we perform a counting experiment, meaning eventually counting the events

that survive the last cut. In this case a discovery is defined as a high enough observation for

which the probability to occur in the background-only hypothesis is very small. If this happens,

we claim that (with a defined confidence level) an extra flux above the background has been

discovered. We define here the parameters for which these conditions are fulfilled (large

enough observation, small enough probability), how the discovery significance is calculated

and accordingly the Model Discovery Potential parameter (MDP [90] [91]) for which the last

cut selection is optimised.

The probability to count in an experiment nobs given a background-only expectation value of

µb is calculated from the Poisson distribution and is referred to as the p-value:

P (≥ nobs|µb) (7.1)

If the p-value is very small, smaller than α= 5.73×10−7, then a discovery can be claimed as

this particular α value corresponds to a 5σ observation. We define ncrit as the critical number

of observed events needed in order to obtain such p-value:

P (≥ ncrit|µb) <α (7.2)

ncrit can be calculated as a function of µb and for our choice ofα. If a real signal is present with

expectation value µs then the ncrit value is calculated according to the demanded statistical

power of the observation given by 1−β. This relation is written as

P (≥ ncrit|µb +µs) = 1−β (7.3)

If we choose to demand 1−β= 0.9, meaning given the background and signal expectation

values nobs ≥ ncrit would be obtained at 90% of the cases, then this defines the least detectable

signal µld s as the minimum signal expectation value that fulfils (7.3) for our choice of 1−β

P (≥ ncrit|µb +µl d s) = 0.9 (7.4)

This means that a signal of strength µld s together with background expectation of µb generate

an observed nobs giving a p-value smaller than α= 5.73×10−7 at 90% of the cases. In practice,
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Chapter 7. Analysis final event selection

givenµb value, relation (7.2) is used to determine ncrit and afterwards (7.4) is used to determine

µld s . The MDP parameter is then defined as MDP= µld s/µs , so that minimising the MDP

means finding the cut location with which the experiment has the best potential to make a

discovery.

7.2.2 Cut optimisation technique

The parameters used at the Analysis level 3 are the event log(NPE), the calculated combined

likelihood parameter ∆ ln(Lcom) (presented in section 6.4) and reconstructed zenith angle,

cos(θ). The distributions of the first two are given in Figure 7.2. Because of the strong zenith

dependence of the background and signal distributions (see Figure 7.1) final cuts on (log(NPE),

∆ ln(Lcom)) are determined for cos(θ) bins, as presented in the next section.

The selection at the final analysis cut level is performed as follows:

• The entire event distribution shown in Figure 7.1 is divided into 14 bins of cos(θ), with

fine binning of 0.1 bin width at the signal region around the horizon and above it, and

wider bins in the upgoing region.

• For each cos(θ) bin a 2D distribution of ∆ ln(Lcom) vs log(NPE) is plotted. This is done

separately for CORSIKA background events (proton + iron, double and triple coinci-

dent showers), atmospheric neutrino background and GZK neutrino signal. An ex-

ample for these 2D distributions is given in Figure 7.3 for the zenith bin number 10

(cos(θ)=[0.1,0.0]). Events for which the ∆ ln(Lcom) is undefined (see sections 6.2.2 and

6.3.2) are placed in the y-axis overflow bins and are kept for the next steps. All zenith bin

plots are found in the appendix, Figures A.1 to A.3.

• The 2D distributions are used to calculate complement cumulative distributions w.r.t.

the two parameters. Examples of the resulting plots are shown in Figure 7.4 for zenith

bin 10. The complement cumulative distributions then provide signal and background

expectation rates for each (log(NPE),∆ ln(Lcom)) cut value. All zenith bin plots are found

in Figures A.4 to A.7.

• Signal and background (CORSIKA + atmospheric neutrinos) expectation values for each

(log(NPE),∆ ln(Lcom)) cut values are read from the complement cumulative distributions

and the MDP parameter is calculated for that cut selection. This is done repeatedly by

scanning over the log(NPE) and ∆ ln(Lcom) ranges, thus creating a 2D MDP map for that

cos(θ) bin. The MDP parameter is not calculated if µs = 0 or µb > 5, a range which is

not interesting for this work. An example of the obtained MDP map for zenith bin 10 is

given in Figure 7.5 and all zenith bin plots are found in Figure A.7.

The 2D MDP map for a cos(θ) bin illustrates the MDP distribution and minimum position

for that bin, but finding the local MDP minimum for each bin and setting the (log(NPE),
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Figure 7.2: Distributions of log(NPE) (top) and combined likelihood parameter (bottom) at
Analysis level 2.
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Figure 7.3: Event rate distributions of∆ ln(Lcom) vs log(NPE) for zenith bin 10 (cos(θ)=[0.1,0.0]).
Top left: GZK neutrino signal events, top right: CORSIKA background events, bottom: atmo-
spheric neutrino events. Events for which the ∆ ln(Lcom) is undefined are placed in the y-axis
overflow bins and are kept for the next steps. The colour scale represents the event rate per
(∆ ln(Lcom), log(NPE)) bin. The displayed range for the event rate is different in each plot.

∆ ln(Lcom)) cuts accordingly does not give the best outcome for the analysis over the full sky.

In turn a global MDP parameter is evaluated and minimised. The calculation of µl d s takes

into account signal and background rates from all 14 zenith bins. Global MDP optimisation

simultaneously determines the 14 sets of (log(NPE), ∆ ln(Lcom)) cuts.

MDPglobal =µld s/µs with µs =
14∑

i=1
µs,i , µb =

14∑
i=1

(µCORSIKA,i +µatmospheric,i ) (7.5)

The global MDP optimisation means finding the minimum of a function of 28 free parameters.

Scanning the full parameters phase space in order to find the minimum is a computationally

intensive process which is impractical for this work. Instead it was decided to perform the

global optimisation in an iterative fashion. The starting point for the cut values was chosen

for each bin in the area where zero background events pass the cuts. Within that area of cut

values, the set of cuts maximising the signal rate were chosen as the start values. The total

14 zenith bins signal and background rates passing these initial cuts are used to calculate

an MDP starting value. The next steps of this cut optimisation is a process to achieve the
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Figure 7.4: Complement cumulative distributions of ∆ ln(Lcom) vs log(NPE) for zenith bin 10
(cos(θ)=[0.1,0.0]). Top left: GZK neutrino signal events, top right: CORSIKA background events,
bottom: atmospheric neutrino events.

lowest MDP value possible. Several zenith bins cut positions were scanned simultaneously

at each step while the other ones remained fixed, and new sets of (log(NPE), ∆ ln(Lcom)) cuts

were fixed according to the position of the minimum MDP value found in this step. The

process was repeated many times while changing the combination of scanned zenith bins and

scanned region around the step’s cut position starting point and updating the global MDP

value if it has improved. The process was finalised when the MDP value converged and did

not show any improvement in the successive steps. The minimum MDP found is taken to be

the global minimum and the 14 sets of (log(NPE), ∆ ln(Lcom)) final cut values are determined

by its position. The results of the global MDP minimisation are reported in the next section.

7.3 Final event selection

The MDP minimum obtained in the iterative global minimisation is:

MDP = 16.4, µl d s = 5.3, µs = 0.323.
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Figure 7.5: MDP parameter 2D map for zenith bin 10.

The interpretation of these values is that with the obtained final cut selection a minimum

flux observation of 5.3 events, which is higher by a factor 16.4 than the signal expectation

value of 0.323 events, would produce a 5σ discovery. The background rate expectation for

this final cut selection is 0.015, a factor 20 lower than the GZK signal expectation. Table 7.2

holds a summary of the expected event rates for the IC40 full year blinded data and Table

7.3 lists the full information of (log(NPE), ∆ ln(Lcom)) final cut values and passing rates for

each zenith bin. The final GZK neutrino rate is 30.5% of the EHE filter level rate while the

Analysis level 1 rate stands at 66% of the initial rate. Zero data burn sample events pass the

final cuts. All CORSIKA events passing the final cuts are of single CR shower type. For all

bins below cos(θ)=0.2 no cut is placed on the ∆ ln(Lcom) parameter. CORSIKA background

events in these zenith bins are mis-reconstructed events with poorly determined zenith angle.

This results in an unusable ∆ ln(Lcom) parameter which can occur due to several different

reasons, all of which are more likely for mis-reconstructed events: non converged µ-function

fit or alternatively the set of (a,ω) values are away from the main distributions and there is

no valid likelihood estimation for the values (∆ ln(Lperp) undefined), or there are zero photon

hit entries in the residual time range of [-400,50] ns from which to construct ∆ ln(Ltres). So in

practice the ∆ ln(Lcom)) parameter is relevant for background rejection above cos(θ)=0.2.
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7.3. Final event selection

Data stream MDP final cut rates
for IC40 blinded data

GZK total 0.32
(% from EHE filter rate) (30.5%)
E−2 ν flux total 3.65
CORSIKA background 0.002
Atmospheric ν background 0.012
Total background 0.015

Table 7.2: Summary of the event rates passing the analysis level 3 cuts for the different simula-
tion and data streams. Zero data burn sample events pass the final cut. Rates are for ν+ν, all
flavours summed.

7.3.1 Neutrino effective area

The sensitivity of the analysis to detect a neutrino signal is presented by the neutrino effective

area. This parameter represents the equivalent area for which all neutrinos reaching the

detector would be recorded and pass the event selection, taking into account the detector

response function. The neutrino effective area at different cut levels of this analysis is shown

in Figure 7.6 for the sum of the three neutrino flavours. The effect of the level 1 cut and the

level 3 cut on the analysis detection power as a function of the neutrino energy is apparent

by comparing the higher level effective area curves to the initial EHE filter one. Sensitivity

is degraded at energies below ∼ 106.5GeV and the final effective area at ∼ 1010GeV is about a

factor ∼ 2 lower than the initial one. The analysis final level effective areas for the different

neutrino flavours are provided in Figure 7.7.

The νµ and ντ effective areas are of similar size and are larger than the νe effective area due to

the large muon propagation range and the nature of tau composite events. The effect of the

Glashow resonance is visible in the νe effective area just below ∼ 107GeV.

The effective areas obtained by another IC40 EHE neutrino search [86] are given for compar-

ison (referred to as IC40 EHE curves). The two analyses differ in some of the tools they use

such as the MC simulation models, waveform pulse extraction algorithm, track reconstruction

algorithm, GZK model used for analysis optimisation and observables used for high level cut

selection. In the final level of the IC40 EHE analysis the data are separated into deep and

shallow events depending on the depth of the DOM with the largest recorded signal. The final

MDP optimised cut selection is based on portia NPE (see section 5.2) and linefit reconstructed

zenith angle for the shallow events, and portia NPE and event time span for the deep events.

The analysis work described in this thesis has a lower neutrino effective area than the IC40

EHE analysis below ∼ 107GeV and slightly higher above this energy. The new techniques in

this analysis work compared to the IC40 EHE search are the use of the IceTop veto, the use of

the topological cut parameters and the approach of making a final cut optimisation in 2D for

each zenith bin. These entail some benefits as well as some disadvantages:
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bin cos(θ) log(NPE) ∆ ln(Lcom) CORSIKA atmospheric GZK signal
number range cut value cut value total rate ν rate ν rate
1 [1.0, 0.9] 5.4 9 3.87×10−5 1.93×10−5 7.28×10−3

2 [0.9, 0.8] 5.6 -1 0 1.54×10−6 6.49×10−3

3 [0.8, 0.7] 5.2 9 8.43×10−4 5.63×10−5 8.63×10−3

4 [0.7, 0.6] 5.4 4 0 6.3×10−6 9.98×10−3

5 [0.6, 0.5] 5.5 -10 0 3.21×10−6 1.13×10−2

6 [0.5, 0.4] 5.5 1 0 2.83×10−6 1.12×10−2

7 [0.4, 0.3] 5.45 -8 0 6.72×10−6 1.69×10−2

8 [0.3, 0.2] 5.15 -1 0 2.22×10−4 3.04×10−2

9 [0.2, 0.1] 5.1 - 0 6.01×10−4 4.33×10−2

10 [0.1, 0.0] 4.85 - 1.77×10−3 3.12×10−3 6.98×10−2

11 [0.0, -0.1] 4.7 - 0 5.86×10−3 5.89×10−2

12 [-0.1, -0.2] 5.25 - 0 2.39×10−4 1.20×10−2

13 [-0.2, -0.4] 5.15 - 0 4.61×10−4 1.12×10−2

14 [-0.4, -1.0] 5.1 - 0 1.87×10−3 2.45×10−2

total rate 2.65×10−3 1.25×10−2 0.323

Table 7.3: Summary of the event rates passing the analysis level 3 cuts per zenith bin. Zero
burn sample events pass the final cuts. Rates are for ν+ν, all flavours summed.
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magenta) and final MDP selected cut (dashed blue).

• Muon background rejection by the IceTop veto leads to smaller background event rates

at high NPE values in the close-to-downgoing zenith range. This permits the NPE final
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7.3. Final event selection
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Figure 7.7: Analysis effective area for different neutrino flavours and in comparison to another
IC40 EHE neutrino search [86].

cut to be set at lower values which increases the final neutrino signal rates though most

of the GZK signal is around the horizon. On the other hand this analysis uses only data

runs in which the IceTop surface array was functioning well. This requirement creates a

live time loss of 18 days, or 5% reduction, from the IC40 EHE search live time of 333.5

days. The live time reduction degrades the overall sensitivity of the analysis and the final

upper limit set by it. A possible improvement to this situation is discussed in section 8.1.

• The MPE track reconstruction method used in this work is a likelihood maximisation

algorithm. The MPE reconstructed track parameters have on average much smaller

errors in comparison with the linefit (analytical solution) first-guess track parameters.

On the other hand, for a small portion of events the MPE reconstruction gives a poorly

reconstructed track, and rarely, the minimisation procedure may not have converged at

all.

• The 2D simultaneous optimisation of the final analysis level cut (per zenith bin) using

the topological parameters should be an improvement compared to the IC40 EHE search

where the final cut is set by a single parameter (different one for deep and shallow events).

More information on the event characteristics is needed, particularly information which

may be used to maximises the selection power of the observables.
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Chapter 7. Analysis final event selection

7.4 Systematic uncertainties

The systematic uncertainty for this GZK neutrino search is due to the shortcomings in our

description of all the processes taking place: physical interactions, particle’s energy loss pro-

cesses and detector attributes and response. The list below gives information about different

uncertainty sources for this analysis and their estimated uncertainty ranges. Uncertainties

obtained by the IC40 EHE analysis [86] are interesting due to similarities between that work

and this GZK neutrino search.

• The uncertainty on the event rates due to the distribution of the NPE value for a charged

particle energy. The IC40 EHE analysis obtains a background rate uncertainty of about

40% and signal rate uncertainty of up to 8% from this source [86].

• The uncertainty in the neutrino-nucleon inelastic cross section is estimated as ±9% [78],

which was shown to affect the signal event rate almost linearly [92].

• The uncertainty in the primary cosmic-ray composition at UHE energies. The IC40 EHE

search tests two extreme composition scenarios, pure proton and pure iron, and reports

a change of 84% in the atmospheric muon background event rate.

• The uncertainty in the hadronic interaction model used for air showers simulation. The

IC40 EHE reports a difference of 36% in the background rate rising from two commonly

used hadronic interaction models. However CORSIKA, the default model in this analysis,

was not used by the IC40 EHE search.

• The uncertainty in the conventional component of the atmospheric neutrino flux

(Honda model) is estimated as ±25% on the flux absolute normalisation [38].

• The uncertainty in the prompt component of the atmospheric neutrino flux (Enberg

model) is cited as an asymmetric error range in the overall flux normalisation of -44% to

+25% [36].

• The uncertainty on the IceCube photomultiplier tube efficiency was measured to be

±8% [65]. A shadowing effect from the string main cable and the PMT’s magnetic shield

reduces the DOM sensitivity by an estimated 7%. The uncertainty due to noise hits is

expected to be small.

• The uncertainty on the measured properties of the glacial ice at the South Pole. A better

determination of the scattering and absorption coefficients is an ongoing effort by the

IceCube collaboration. Newer ice models [73] seem to describe data better than the

AHA ice model used in this analysis. The difference between the AHA ice model and the

new SPICE-Mie model is larger than the reported AHA model uncertainty.

Other uncertainty sources are the statistical error on the MC simulated events and the error on

the IT veto efficiency which was obtained from data burn sample events (statistics dependent).
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7.4. Systematic uncertainties

As mentioned above, this analysis work and the IC40 EHE search have some similarities

(namely use of zenith-dependent NPE threshold cuts) and some differences, and their resulting

neutrino effective areas are very similar. The IC40 EHE reports a combined uncertainty of

about +14%−12% for the signal event rate and +60%−96% for the background rate. These

numbers can only be used as a crude estimate for the systematic uncertainties in this analysis

work.
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8 Results & discussion

After finalising the three stages of cut selection, the analysis was approved by the IceCube

collaboration. Permission was granted to “unblind”, i.e. study the IC40 entire year of previously

blinded data. The data were processed through the analysis stream and no events from the

unblinded data survived the final cuts, which is consistent with the background event rate

expectation of 0.015. This result is used to calculate the neutrino flux upper limit after the

observation of zero events during the analysis live time of 315.34 days, which is calculated as

follows. The expected number of neutrino events in a certain energy range ∆ from a dφν/dE

neutrino flux is given by

δN =
∫
∆

Aν(Eν) · dφν
dE

dE ·4π ·T (8.1)

where Aν is the neutrino effective area which depends on the neutrino energy, T is the experi-

ment’s live time. Taking into account the three neutrino flavours and assuming cosmogenic

neutrinos of νe : νµ : ντ produced with flavour ratio 1:2:0 and after oscillations detected at

earth with 1:1:1 ratio we have

δN = 1

3

∫
∆

3∑
l=1

Aνl (Eν) ·
dφνe+νµ+ντ

dE
dE ·4π ·T (8.2)

l represents the three neutrino flavours. The 90% Confidence Limit (CL) is obtained by

demanding that dN is smaller than N90 which for background level ∼ 0 is equal to 2.44 as

calculated by Feldman-Cousins [93]. Assuming a power-law flux of the form dφν/dE = a ·E−α

and using the relation

dN

dE
= dN

dlogE
· 1

E ln(10)
(8.3)

the 90% CL condition becomes

N90 ≤ 1

3

∫
∆

3∑
l=1

Aνl (Eν) ·aE−(α−1) ·dlogE · ln(10) ·4π ·T (8.4)
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Chapter 8. Results & discussion

From here finding the upper limit means finding the power-law flux normalisation a which

corresponds to the required limit

a ≥ 1∑ Aν

Eα−1

·
( 3 ·N90

dlogE · ln(10) ·4π ·T

)
(8.5)

the sum here is over the bins within the energy range ∆ and the effective area in the sum of the

three neutrino flavours areas.

The red curve in Figure 8.1 top plot (Differential upper limit) represents the quasi-differential

model-independent 90% CL limit normalised by energy decade (meaning dlogE=1, and

essentially assuming E−1 flux within the energy decade). The upper limit for an E−2 power-law

flux is obtained in the energy range [105.5,109] GeV at a value of E 2φ≤ 4.75×10−8 GeV cm−2

s−1 sr−1 and is shown by a dashed red curve Figure 8.1 bottom plot (E−2 upper limit). This

result is slightly lower than the WB limit presented by a black dashed line (WB limit).

An alternative method for demonstrating the power of this analysis, and which is independent

of the normalisation or energy binning, works by obtaining the spectral limit curves similarly

as described in reference [94]. In this method the power-law 90% CL limit is calculated for a

range of slopes, meaning for each α in the appropriate range the a normalisation is calculated.

The spectral limits are drawn and the intersection points of consecutive α value limit curves

define an envelope which represents the analysis upper limit to power-law flux spectra. For

this work power-law limits were calculated for slopes in the range α= [−1,5] with dα= 0.1

and the resulting limits are shown in Figure 8.1 bottom plot. The envelope of these curves was

extracted and is shown in Figure 8.1 upper plot by a magenta curve (Power law limit) and can

be compared with the previously obtained upper limits which are based on a specific slope

selection. The Power law limit curve is tangent to the E−2 upper limit and does not fall below

it meaning the analysis is optimised for a power-law index of γ∼ 2.

The quasi-differential limit obtained for the previous IC40 EHE neutrino search [86] is calcu-

lated in the same manner and plotted for comparison by a green line (Upper limit IC40 EHE ).

It is noted that the green curve is not expected to recreate the IC40 EHE upper limit reported in

[86] as it is calculated differently (different energy range is taken, the 90% CL upper limit differs

due to different background expectation rate, systematic uncertainties are included and the

Glashow resonance is ignored). Also included in the figure are the default GZK neutrino model

(SS08 135 HiRes, dashed blue) and the highest flux model considered (Ahlers Emi n = 1019eV

best, dashed-dotted black).
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Chapter 8. Results & discussion

8.1 Discussion

The IceTop veto on atmospheric muon background was developed for this analysis work

and at that time was a novel approach in IceCube. Using the veto is even more interesting

in the IC 59-strings detector and newer data samples as the detector is now running in soft

local coincidence mode (section 6.1) and the veto efficiency is increased. The method can

be useful also for lower energy neutrino searches by helping to reject atmospheric muon

events that are mis-reconstructed and are in the signal region. It is a clean parameter as

signal rejection by the veto condition is negligible. In hindsight, this analysis could have

included the complete blinded data set, meaning including also the runs in which IceTop was

malfunctioning ("bad" IT runs). In that case the IT veto would have been applied only on a

subsample of the data ("good" IT runs). A correction factor for the veto efficiency would have

been calculated depending on the time fractions of good and bad IT runs. The "effective" veto

efficiency would have been applied then on the MC simulated streams and the loss of 18 days

from the analysis live time would have been prevented. However, an implementation of this

approach is needed in order to asses wether the resulting signal expectation rate and final

upper limit would be better or worse than the current ones.

This GZK search was the first one in IceCube to use event topology parameters based on

high level reconstruction and photon hit-pattern description. Specifically, the early photon

hits likelihood parameter shows good capability of separation of signal from background

events, also for events with energies below EHE. In the current approach it is the highest NPE

events per zenith bin that survive the last level cut. The separation power of the topological

parameters may be better exploited in an analysis with a combined likelihood approach. In

that approach a single likelihood parameter can be calculated by incorporating all the relevant

information (NPE, zenith, IceTop DOM hits, topological parameters and any other useful

observables) and the final analysis cut is set by selecting a "signal-like" likelihood threshold.

Nowadays the IceCube detector is complete with its 86 strings and the instrumented volume

has doubled compared to the 40 string detector. With increasing detection live time in the

coming years, future GZK neutrino searches are expected to detect the first GZK neutrinos or

to be able to exclude theoretical models.
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A Appendix A

The full event distributions used at Analysis level 3 (section 7.2) for determining the final cut

values are given here. The sky is divided to cos(θ) bins with the following ranges:

bin number 1 2 3 4 5 6 7
cos(θ) [1.0, 0.9] [0.9, 0.8] [0.8, 0.7] [0.7, 0.6] [0.6, 0.5] [0.5, 0.4] [0.4, 0.3]

bin number 8 9 10 11 12 13 14
cos(θ) [0.3, 0.2] [0.2, 0.1] [0.1, 0.0] [0.0, -0.1] [-0.1, -0.2] [-0.2, -0.4] [-0.4, -1.0]

Table A.1: cos(θ) bins used at Analysis level 3.
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Figure A.1: GZK neutrino signal distribution of ∆ ln(Lcom) vs log(NPE).
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Figure A.2: Corsika background events distribution of ∆ ln(Lcom) vs log(NPE).
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Figure A.3: Atmospheric neutrino background distribution of ∆ ln(Lcom) vs log(NPE).
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Figure A.4: GZK neutrino signal complement cumulative distributions of ∆ ln(Lcom) vs
log(NPE).
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Figure A.5: Corsika background complement cumulative distributions of ∆ ln(Lcom) vs
log(NPE).
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Figure A.6: Atmospheric neutrino background complement cumulative distributions of
∆ ln(Lcom) vs log(NPE).
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Figure A.7: MDP parameter value distributions w.r.t ∆ ln(Lcom) and log(NPE).
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B List of abbreviations

AGN - Active galactic nucleus

AMANDA - Antarctic muon and neutrino detector array

ANIS - All neutrino interaction simulation

ATWD - Analog transient waveform digitiser

CC - Charged-current

CL - Confidence level

CIB - Cosmic infrared background

CMB - Cosmic microwave background

CR - Cosmic ray

CORSIKA - Cosmic ray simulation for Kascade

DIS - Deep inelastic scattering

DOM - Digital optical module

EHE - Extreme high energy

EM - Electromagnetic

ESS - Engel-Seckel-Stanev

fADC - fast analog to digital converter

GRB - Gamma ray burst

GZK - Greisen-Zatsepin-Kuzmin

HLC - Hard local coincidence

IC - IceCube

ICL - IceCube laboratory

IT - IceTop

LC - Local coincidence

MB - Main board

MC - Monte Carlo

MDP - Model discovery potential

MMC - Muon Monte Carlo

MNS - Maki-Nakagawa-Sakata

MPE - Multi photoelectron
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Appendix B. List of abbreviations

MRF - Model rejection factor

MSPS - Mega samples per second

NC - Neutral-current

NPE - Number of photoelectrons

OM - Optical module

PDF - Probability density function

PE - Photoelectron

PMT - Photomultiplier tube

PnF - Processing and filtering

PREM - Preliminary Earth model

SLC - Soft local coincidence

SMGCR - Standard model for galactic cosmic rays SMT - Simple majority trigger

SNR - Supernova remnant

SPB - Synchrotron proton blazar

SPE - Single photoelectron

SS - Seckel-Stanev

UHECR - Ultra high energy cosmic ray

WB - Waxman-Bahcall
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