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Abstract
Recent progress in computational photography has shown that we can acquire near-infrared

(NIR) information in addition to the normal visible (RGB) information with only slight modifi-

cation to the standard digital camera. In this thesis, we study if this extra channel can improve

one of the more difficult computer vision tasks: Scene understanding. Due to the proximity of

NIR to visible radiation, NIR images share many properties with visible images. However, as a

result of the material dependency of reflection in the NIR part of the spectrum, such images

reveal different characteristics of the scene. In this work we study how to effectively exploit

these differences to improve scene recognition and semantic segmentation performance.

An initial psycho-physical test that we carried out gave promising evidence that humans

understand the content of a scene more effectively when presented with the NIR image as

opposed to the visible image. Motivated by this, we first formulate a novel framework that

incorporates NIR information into a low-level segmentation algorithm to better detect the ma-

terial boundaries of an object. This goal is achieved by first forming a illumination-invariant

representation, i.e., the intrinsic image, and then by employing the material dependent proper-

ties of NIR images. Secondly, by leveraging on state-of-the-art segmentation frameworks and

a novel manually segmented image database, we study how to best incorporate the specific

characteristics of the NIR response into high-level semantic segmentation tasks.

We show through extensive experimentation that introducing NIR information significantly

improves the performance of automatic labeling for certain object classes, like fabrics and

water, whose response in the NIR domain is particularly discriminant. We then thoroughly

discuss the results with respect to both physical properties of the NIR response and the

characteristics of the segmentation framework.

Keywords: Scene understanding, Near-infrared imaging, Semantic segmentation, Image

classification, Boundary detection, Material-based segmentation, CRF model, Graph-cut

segmentation.
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Zusammenfassung
Neuerungen auf dem Gebiet der computergestützten Bildgebung erlauben es uns, mit einer

nur wenig modfizierten herkömmlichen Digitalkamera Aufnahmen nicht nur im üblichen

RGB-Bereich, sondern auch im nahen Infrarot (NIR) zu machen. Diese Doktorarbeit unter-

sucht, inwiefern wir diese zusätzliche Informationsquelle für eins der schwierigeren Probleme

des Maschinellen Sehens nutzen können: automatisches Szeneverständnis.

NIR-Aufnahmen haben aufgrund der Nähe zum sichtbaren Bereich des Lichts viele Gemein-

samkeiten mit konventionellen RGB-Bildern, jedoch enthüllen sie aufgrund der stärker mate-

rialabhängigen Reflexion zusätzliche Szenecharakteristika. Wir untersuchen, wie wir diese

am besten zum automatischem Szeneverständnis und zur semantischen Segmentierung

verwerten können.

Durch eine einführende Studie können wir belegen, daß Menschen eine Szene leichter in der

NIR-Repräsentation als im sichtbaren Spektralbereich erfassen. Dies motiviert uns erstens,

ein Framework zu entwerfen, das NIR Informationen in einen low-level Segmentierungsal-

gorithmus einbindet, um zuerst ein beleuchtungsunabhängiges Bild der Szene zu erstellen

und dann die Materialabhängigkeit der NIR-Aufnahme ausnutzen, und so Materialgrenzen in

und zwischen Objekten besser zu finden. Zweitens untersuchen wir mithilfe eines Segmentie-

rungsframeworks vom aktuellen dem Stand der Technik und einer neu erstellten Datenbank

handsegmentierter Bilder Möglichkeiten zur Nutzung der NIR-spezifischen Bildcharakteristika

zur high-level-Segmentierung.

Wir zeigen mit Hilfe ausgedehnter Experimentreihen, daß NIR-Information die Genauigkeit

automatischer Etikettierung für manche Objektklassen, beispielsweise Textilien und Wasser,

deren NIR-Reflexionsverhalten besonders gut unterscheidbar ist, deutlich erhöht. Schließlich

diskutieren und deuten wir unsere Ergebnisse ausgiebig, mit besonderem Augenmerk sowohl

auf die physikalischen Eigenschaften der NIR-Bildgebung als auch auf die Charakteristika des

verwendeten Segmentierungsframeworks.
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Résumé
Les récents progrès en photographie computationelle ont démontré que nous pouvons acqué-

rir l’information de l’infrarouge proche (PIR) en plus de l’information visible normal (RVB)

en apportant juste une légère modification à un appareil photographique numérique stan-

dard. En raison de la proximité de PIR avec le spectre visible, les images PIR partagent de

nombreuses propriétés avec les images classiques. Cependant, du fait de l’impact du matériau

sur les réflections dans le proche infra rouge, ces images révèlent différentes caractéristiques

de la scène. Dans cette thèse, nous étudions comment exploiter ces propriétés pour améliorer

la performance d’algorithmes de segmentation sémantique et de reconnaissance de scène.

Une expérience psycho-physique initialement effectuée a démontré que les êtres humains

comprennent mieux le contenu d’une scène avec une image infrarouge qu’avec une image

normale. Cela nous a motivé à formuler une nouvelle approche qui incorpore l’information PIR

dans un algorithme de segmentation bas niveau pour mieux détecter les limites des différent

matériaux composant un objet. Ce but est atteint tout d’abord par la formation de l’image

intrinsèque puis par l’exploitation des propriétés liées aux matériaux dans les images PIR.

Nous étudions ensuite la meilleure maniére pour incorporer les caractéristiques spécifiques

de la réponse PIR dans la segmentation sémantique haut-niveau en prenant avantage des

méthodes de segmentation modernes et d’une nouvelle base de données d’images segmentées

manuellement.

Nous montrons à travers de nombreuses expériences que l’introduction du PIR améliore

de manière significative la performance des algorithmes de classification pour certaines

catégories comme les tissus ou l’eau qui ont des réponses en PIR très différentes. Finalement,

nous discutons en détails des résultats liés aux propriétés physiques du PIR ainsi que des

caractéristiques de la méthode de segmentation.
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r i ng in all 13 ring filtered images for a random sample in each

class. The corresponding T3 value for each sample is: [0,0,0,1]. . . . . . . . . . . 24

2.11 The energy in the rectangle filter from 0 to 180 degrees for a random sample in

each class. The detected peaks are marked by red circles. The corresponding T4

value for each sample is: [1,0,0, 2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 The residuals of the wood samples within 63% confidence interval. The black

line is the regression line representing the correlation of the wood samples in

the database. The area in which we are 63% confident that samples are wood is

shaded gray. Thus the probability of the target sample (green point) to be wood

is 37%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Illustration of the SIFT descriptor, Around each keypoint, a 8× 8 window is

formed and divided into 4×4 cells. Within the window, gradient magnitude

are computed. For each cell, accumulate an 8-orientation histogram, then

concatenate them to form a 4 x 4 x 8 = 128-dimensional vector. Image courtesy

of Lowe [1999]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Different steps for constructing the bag-of-words for image representation. Im-

age adapted from [Sun et al., 2010]. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 SVMs maximize the margin around the separating hyperplane. . . . . . . . . . . 36

3.4 Illustration for mean shift algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 39

xviii



List of Figures

3.5 Mean shift filtered baboon image. Each color represent a segment. Image

courtesy of Comaniciu and Meer [2002]. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Interlaced classes in feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Graph over the pixels. Red nodes represent the labels of the pixels, these are

estimated values. The blue nodes represent the observations. Note that observa-

tions contain information from multiple sources, and edges are associated to

weights and depend on observations from neighboring pixels. . . . . . . . . . . 42

4.1 A typical photograph of a porcelain cup. (left) visible RGB image, (right) NIR im-

age. The presence of confusing color patterns on the object makes the cognition

task more difficult, especially at lower resolutions. . . . . . . . . . . . . . . . . . 47

4.2 (a) Visible image, (b) NIR image, (c) Edge map of the smoothed visible image, (d)

Edge map of the smoothed NIR image. The edge maps were produced by using

difference of Gaussians on the low-pass filtered image. . . . . . . . . . . . . . . . 49

4.3 The visible and NIR representations of the scenes used in the test. . . . . . . . . 50

4.3 The visible and NIR representations of the scenes used in the test (cont.). . . . 51

4.4 Four of 31 images of the scene “guitar player” with bitrate increasing from 0.020

to 0.067 bpp (top: NIR image, bottom: visible image). . . . . . . . . . . . . . . . 53

4.5 Mean cognition bitrate for both visible and NIR representation of all the images

in the database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 A typical photograph with vegetation. Flower and grass have the same chemical

characteristics and appear the same in the NIR image. . . . . . . . . . . . . . . . 55

5.1 The proposed framework overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 RGB-NIR color components of a scene and the corresponding channels in the

PC-space. Note that there is visibly less energy in the later components. . . . . 59

5.3 Some images of the EPFL dataset are displayed as pairs. On the left: the conven-

tional RGB image of the scene, on the right: its NIR counterpart. . . . . . . . . . 61

5.4 EPFL dataset: varying PCA dimensions for SI F Ti and COLr,g ,b,n . . . . . . . . . 64

6.1 The mean shift segmentation result of visible and NIR images. The first row

shows the color image and its segmentation result, the second row is the NIR

image and its segmentation. Note the oversegmentation resulting from changes

in illumination BH
i or colors BC

i within the object. . . . . . . . . . . . . . . . . 72

6.2 An example of an object, in which an illumination-based border and a color

border coincide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xix



List of Figures

6.3 Three different relations that can hold between the color signals C (λ) of two

regions in an image. (b) Region (2) is under a shadow, (c) (1) and (2) are of the

same material but colored differently, and (d) a color and material change occurs. 75

6.4 (a) The log ratio of 10 samples under different light sources/shadows. The

intensity ratio of all the samples under different lights lies along a single direction,

(b) The chromaticity space given by the projection onto the second and third

principle eigenvectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 (First Column) visible images and (second column) the illuminant-independent

representation. To visualize images in the new space, we present PC 2 and PC 3

as a and b values in the C I EL AB color space. Lightness value is chosen to be 60

for all the intrinsic images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 The flowchart detailing the segmentation framework. . . . . . . . . . . . . . . . 84

6.7 (First Column) visible-only image segmentation result, (second column) seg-

mentation result using joint information. . . . . . . . . . . . . . . . . . . . . . . 85

7.1 (left) input image, (right) segmentation of the cup. . . . . . . . . . . . . . . . . . 87

7.2 Sample images from our outdoor and indoor datasets: RGB (left), NIR (middle).

ground truth(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 The TrimapAcc plots with different pairwise potentials using COLp1234 +SI F Tn

(top- for the outdoor dataset) respectively SI F Tr g bn (bottom-for the indoor

dataset) as unary potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 The TrimapAcc plots compare the border accuracy of the results of the visible

only scenario and the proposed strategy, top-for the outdoor dataset and bottom-

for the indoor dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Examples from the outdoor dataset. Note the better classification and recogni-

tion of Clouds and Sky when NIR information is incorporated. . . . . . . . . . . 104

7.6 Examples from both outdoor and indoor datasets. Note that the material depen-

dency of NIR images results in more accurate detection of object boundaries. . 105

7.7 The material dependency characteristics of NIR images helps to distinguish

more accurately between the classes of material with the same intrinsic color.

Higher contrast in the NIR images in the sky makes SI F Tn a more discriminative

feature in distinguishing between Sky and Water. . . . . . . . . . . . . . . . . . . 106

7.8 multispectral-SIFT (SI F Tr g bn) outperforms the late fusion of COL and SI F T in

recognition of colorful classes where texture is more intrinsic to the class. . . . 107

7.9 Sample segmentation results for the outdoor and indoor datasets. . . . . . . . . 108

xx



List of Figures

7.10 A scene in both visible and NIR representations with a strong cast shadow. The

cast shadow is mis-labeled by our best segmentation algorithms. . . . . . . . . . 109

7.11 Input images (RGB and NIR, the manually labelled ground truth, as well as the

resulting shadow masks by Fredembach and Süsstrunk [2010]. . . . . . . . . . . 109

7.12 Binary segmentation of images with strong presence of shadows. Incorporating

shadow mask in the pairwise potential increases the precision of the result by

10% in image (a) and 1% in image (b). . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1 An α-expansion graph for a 1-dimensional image. . . . . . . . . . . . . . . . . . 118

B.1 Column (A) is the color image. Column (B) shows the NIR image of the scene and

column (C) is their corresponding shadow maps. . . . . . . . . . . . . . . . . . . . . 119

B.2 Umbra and penumbra. A non-point light source will produce three distinct lighting

areas; lit regions, partially lit (penumbra), and not lit at all (umbra). . . . . . . . . . . 122

B.3 (a): Original image. (b): Lightness corrected. (c): Color corrected. (d): Borders cor-

rected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.4 Column (A) is the original image, (B) shows the shadow map, (C) shows the results

with LB [Levine and Bhattacharyya, 2005], (D) shows the results with FF Fredembach

and Finlayson [2006], and (E) shows the results with our algorithm. We can see that

the solution we propose preserves not only the colors, but also the textures of the

lightened parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xxi





List of Tables

2.1 P (T3,T4 | Ai ) in the database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 The confusion matrix using just visible information . . . . . . . . . . . . . . . . . 29

2.3 The confusion matrix using both visible and NIR information. . . . . . . . . . . 29

4.1 p value for all the image pairs in the database. . . . . . . . . . . . . . . . . . . . . 54

5.1 Summary of basic features considered for combination. . . . . . . . . . . . . . . 60

5.2 Mean average precision (MAP) for PASCAL, and class accuracy (mean ± std) for

MIT and EPFL, with different PCA configurations. . . . . . . . . . . . . . . . . . . 63

5.3 Accuracy (mean ± std) on EPFL for SIFT features extracted on different channels. 65

5.4 Accuracy (mean ± std) on EPFL, color features on different channel combinations. 66

5.5 Accuracy (mean ± std) for different fusions on the EPFL dataset . . . . . . . . . 67

7.1 Correlation (Cor rK ,L) between different channels in both outdoor and indoor

scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Evaluation (average of per-class, overall accuracies, and Jaccard index) of the

segmentation for different local descriptors and their combinations both on

outdoor and indoor datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Results for the full CRF model both for outdoor and indoor datasets. . . . . . . 98

7.4 Confusion matrix of COLp1234 + SI F Tn and four-dimensional pairwise. For

each class, the corresponding segmentation rates for the best visible scenario (

COLr g b +SI F Tl with visible-only pairwise) are given in parentheses. Outdoor

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Confusion matrix of SI F Tr g bn and four-dimensional pairwise. For each class,

the corresponding segmentation rates for the best visible scenario ( SI F Tr g b

with visible-only pairwise) are given in the parenthesis. Indoor dataset. . . . . . 103

A.1 The weights used in the α-expansion algorithm . . . . . . . . . . . . . . . . . . . 118

xxiii





1 Introduction

Figure 1.1: Examples from RGB-NIR images. Notice that the NIR band exhibits noticeable
differences at the scene level.

Have you ever wondered what it would be like to be able to see near-infrared light, like an

African fish or boa constrictor can? It is a whole new way of looking at the world. This thesis

shows how near-infrared can help us to extract more accurate information about a scene.
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Chapter 1. Introduction

One of the long-term goals in machine vision is to develop autonomous systems that can

reason out the visual environment from visual inputs. Humans with proper prior knowledge

“understand” a scene they see and could answer questions about the scene regarding the

presence and locations of different objects. This is an easy task for a human being, as we

are generally able to discard the influence of lighting conditions and hence to accurately

identify the class (or object) that an image region belongs to [Finlayson et al., 1994]. Scene

understanding is useful in many applications, including robot perception for navigation and

surveillance for physical security and environmental monitoring. In recent years, we have

seen much progress using sophisticated (or rather high-level) image descriptors [Sivic and

Zisserman, 2003, Csurka et al., 2004, Perronnin and Dance, 2007] and better machine learning

techniques [Boykov and Kolmogorov, 2004], although scene understanding [Li-Jia et al., 2009],

including semantic segmentation [Shotton et al., 2006, Verbeek and Triggs, 2007, Ladicky et al.,

2010, Csurka and Perronnin, 2011], still remains as a challenging task.

One reason that machine vision systems still struggle to understand scenes is mainly due

to the ambiguity of the influence of light and surface reflectance on a given pixel value. For

example, a dark pixel can either result from a dark surface reflectance under normal lighting

conditions or a light surface reflectance under a shadow. More specifically, such shortcomings

are mostly due to four elements - appearance variation, cluttered backgrounds, illumination

differences, and shadow effects. Decoding the contributions of such effects from a scene is a

hard problem [Finlayson et al., 1994]. To solve it, we either need to make assumptions about

the world or to capture more information.

In this thesis, we study scene understanding using the second approach. Specifically, we

propose to use near-infrared (NIR) images, in addition to visible (RGB) images, as input to

the scene understanding task. NIR is electromagnetic radiation at wavelengths that range

from 700 to 1100 nanometers, just beyond the red part of the visible spectrum. Due to the

proximity of NIR to visible radiation, NIR images share many properties with visible images.

However, as a result of the material dependency of reflection in the NIR part of the spectrum,

such images reveal different characteristics of the scene [Salamati et al., 2009, Salamati and

Süsstrunk, 2010] (see Figure 1.2 for illustration).

NIR information can potentially be captured by any digital camera. Silicon sensors of standard

digital cameras are naturally sensitive in the NIR (700-1100nm) wavelength range. By removing

the hot mirror (a NIR blocking filter) affixed to the sensor, digital cameras can be enabled to

capture both visible and NIR images [Fredembach and Süsstrunk, 2008]. Combining both

scene representations has recently been successfully used in a number of computer vision and
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Figure 1.2: Electromagnetic spectrum, and a scene in both the visible and NIR part of the
spectrum.

computational photography applications, such as dehazing [Schaul et al., 2009], dark flash

photography [Krishnan and Fergus, 2009], skin smoothing [Süsstrunk et al., 2010], and scene

categorization [Brown and Süsstrunk, 2011, Salamati et al., 2011b].

The properties of NIR images have been used by the remote sensing [Zhou et al., 2009, Walter,

2004] and military [Kong et al., 2005] communities for many years to detect and classify natural

and/or man-made objects, with a focus on aerial photography and human detection. These

applications typically use true hyper-spectral capture with several bands in the NIR and also

the IR part of the spectrum. However, in this thesis we present a framework that uses only a

single channel for integrating all NIR radiation. The single channel NIR can be easily captured

by a standard sensor found in any digital camera. This allows us to tackle scene understanding

challenges in everyday photography.
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Chapter 1. Introduction

Figure 1.3: Challenging cases for RGB-only semantic segmentation. In NIR images (a) cups
in different colors share the same brightness, (b) haze is transparent, and (c) texture is more
intrinsic to the material.

1.1 NIR Image Characteristics

Intrinsic properties of the NIR wavelength band guarantee that images can be sharper, less

affected by man-made colorants, and more resilient to changing light conditions. Exploiting

the characteristics of the different waveband images can lead to improved scene understanding

and object recognition. In this section, we review some physical phenomena that result in

differences between RGB and NIR images.

1. Rayleigh scattering When light is scattered on very small particles (s <λ/10), it behaves

according to Rayleigh scattering, Es ∝ E0/λ4, i.e., the intensity of the scattered light Es

is proportional to that of the incident light E0 by the inverse of the fourth power of the

wavelength λ. As a result,

• Sky appears blue in an RGB image because it is the most scattered color due to

its relatively short wavelength. In comparison, NIR at 1000 nm is 40 times less

scattered than blue at 400nm. We thus expect NIR intensity to be significantly

lower than its visible counterpart in sky and its reflected components, such as

water.

• Haze is transparent in NIR images. Haze is caused by scattering on particles

(s <λ/10) in the air. Hence, scattering follows Rayleigh law, and, therefore, haze is

almost not present in the NIR.

Using RGB-only images often yields mis-recognition of mountains, sky, and clouds in

hazy atmosphere (see Figure 1.3-b for illustration). The “haze transparency” charac-

teristic of NIR results in sharper images for distant objects. In particular, vegetation,
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1.1. NIR Image Characteristics

(a) (b) (c) (d)

Figure 1.4: Automatic semantic segmentation results. (a) RGB images, (b) NIR images, (c) the
results obtained by taking into account only RGB information, and (d) the results of incorpo-
rating NIR information as well as RGB. In the top image, you can notice that incorporating
material-dependent NIR information results in a more accurate recognition. The high contrast
between the sky and clouds in the NIR image of the scene in the bottom results in a more
precise clouds boundary.

mountains, sky, and clouds at a distance in the visible image are smoothed and bluish,

which may affect the performance of texture and color features in the classification task.

The sharper and haze-free appearance of these classes in NIR helps classification and

leads to better segmentation.

2. A very large number of pigments are quasi-transparent to NIR radiation [Burns and

Ciurczak, 2001, Salamati et al., 2009, Fredembach and Süsstrunk, 2008] show that most

of dyes and pigments have little or no absorption in the NIR. As a result,

• NIR images reveal more information about the material. Due to the transparency

of colors, the intensity values in NIR images are more consistent across a single

material and, consequently, across a given class region (see Figure 1.3-a). NIR

images provide information that can be used to automatically identify material

classes.

• Texture is more intrinsic to the material in NIR images. Due to the colorants’

transparency, material intrinsic texture properties are easier to capture in the NIR

part of the spectrum.

Considering color in RGB images as a discriminative feature causes difficulties in sit-

uations where there is a cluttered background. Moreover, man-made classes, such as

Screen, Cup, and Clothing, are made of a variety of colors and patterns (see Figure 1.3-a).

Thus, learning an appearance model of such classes based on RGB values only is very

challenging. Even for classes with a consistent color, such as Vegetation, relying on
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solely RGB-based features can be insufficient as the color information perceived by a

camera drastically varies in different lighting conditions.

Texture has also shown to be a powerful cue for semantic segmentation [Csurka and

Perronnin, 2011, Plath et al., 2009]. This local feature, however, can be confused with

color patterns and other immediate surface impurities, as surface reflectance in the

visible part of the spectrum is not intrinsic to the corresponding object material (see

Figure 1.3-c for illustration).

The ultimate goal of automatic scene recognition and object labeling is to design a model that

produces the same segments and labels as humans do. Therefore, the results of computer

vision algorithms are often evaluated against a ground truth annotated by a human. Thus, in

order to design a more accurate model, we need to understand how humans assign semantic

meanings to different regions of an image. There are several attributes that play a role in

this task: color, texture, material, and context. Taking into account the characteristics of NIR

images (material dependency and the fact that perceived texture is more intrinsic to the class of

material), it is expected that NIR data improves the accuracy of automatic labeling for the cases

in which the semantic class corresponds to a specific material, texture or combination of them.

For instance, the class Cup is often made of very specific classes of material (porcelain, ceramic,

or plastic) and, regardless of the pattern and color of the object, NIR has a unique reflection

response for each of these materials. Consequently, we expect to increase the accuracy of

recognition for such classes by incorporating NIR into the segmentation framework. The

classes Building or Car, however, usually consist of a variety of man-made material classes.

Thus, introducing NIR is not expected to significantly improve the performance of automatic

labeling for them. In summary, incorporating NIR information is expected to outperform the

visible-only strategies for the cases when the key attribute to assign a certain class to a region

is

• texture (Fabric and Wood),

• material (Water, Cloud, and Vegetation), or

• a combination of texture and material.

For the cases where color is the key to recognizing a class, NIR is unlikely to significantly

improve the accuracy.
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1.1. NIR Image Characteristics

In this thesis, we propose to incorporate NIR information, in addition to RGB images, into

a state-of-the-art image classification, low-level and high-level segmentation framework to

overcome the shortcomings of RGB-based approaches mentioned above. It has been shown

that each class of material has an intrinsic behavior in the NIR part of the spectrum [Salamati

et al., 2009]. See Figure 1.4 and notice that many sources of confusion and mis-segmentation

can be avoided by incorporating NIR images. We specifically investigate if NIR information

can increase the accuracy of human cognition, automatic image classification, and semantic

segmentation. The specific characteristics of NIR are proposed to be helpful in all those tasks.

Human Cognition:

Visual cognition occurs mostly based on the shape properties of the objects rather than the

color or patterns [Ullman and Power, 1997]. Since objects made of a specific material usually

have the same response in NIR images, it is more probable that edges in NIR images represent

the physical shape of the object rather than changes in color within the object. We therefore

expect that NIR images are useful input for human scene cognition tasks and competetive

with images in the visible spectrum. Verifying this allows us to easily demonstrate the general

appropriateness of using NIR in scene understanding.

Automatic Scene Classification:

Automatic scene recognition is a long-standing problem in computer vision. It is an important

element in contextual vision [Krishnan and Fergus, 2009, Fei-Fei et al., 2005]. In computer

vision applications, the effective use of color for image classification mainly requires illumi-

nation estimation [Finlayson et al., 1994] or computing invariants [Geusebroek et al., 2001]

under different illumination conditions. One attraction of incorporating NIR information is

that it is less correlated with R, G and B than they are with each other, which should increase

any gains from effective multispectral techniques.

Semantic Image Segmentation:

Semantic image segmentation is the process of partitioning an image into regions, where

each region corresponds to a semantic class within a predefined list. We believe that the

intrinsic properties of NIR images make them as relevant for the semantic segmentation

task as conventional RGB images. First, NIR images share many characteristics with visible

images, due to the NIR radiation being adjacent to the visible spectrum. In particular, the

shapes of objects in the scene are preserved, i.e., borders of physical objects in the visible

images match the borders in the NIR image, which is necessary for segmentation. Second,

the intensity values in the NIR images are more consistent across a single material, and

consequently across a given class region, due to the unique reflectances of certain natural and
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man-made composites to NIR radiation [Salamati et al., 2009] Third, texture in NIR images is

more intrinsic to the material. This is partly due to the transparency of most colorants and

dyes in NIR; texture introduced by (color) patterns on the surface is less dominant in NIR.

Additionally, there is generally less haze present in NIR images [Schaul et al., 2009].

1.2 Contributions

The results of this dissertation are structured into five main chapters. Here, we briefly describe

the main contributions of each chapter.

Chapter 2: As a preliminary study, in this chapter, we investigate the potential offered by NIR

images to more accurately classify different types of material classes:

• We acquire a dataset of visible and NIR images under controlled viewpoint and illumi-

nation conditions. The dataset consists of 51 samples wood, tile, textile, and linoleum

samples.

• Image features are proposed according to the characteristics of NIR images and the

relation with the visible images.

• We show that using the proposed features leads to a better classification of the material

classes when NIR information is present.

Chapter 4: In this chapter we validate the hypothesis that humans can understand the content

of a scene more effectively when presented with the NIR image as opposed to the visible image.

To this end:

• We execute a psychophysical experiment to measure the human cognition threshold

for both visible and NIR representations. The promising evidence from this experiment

gives us enough belief that an automatic computer system can leverage NIR information

for improved recognition accuracy as well.

Chapter 5: We consider the task of automatic image classification in the context of images

for which both standard visible RGB channels and NIR information are available. We use an

efficient local patch based image representation:
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1.2. Contributions

• Consistent with previous work, we confirm the observation that the combination of

both color and NIR cues can be useful for the image categorisation task, in a state-of-the

art framework.

• We conduct a thorough study on how to compute and best use texture and color de-

scriptors when NIR information is available.

• We investigate the complementarity between the different descriptors considered, and

propose efficient ways to combine them.

Chapter 6: We present a framework to incorporate NIR information in order to better segment

an image into objects by separating material boundaries from color and shadow edges:

• We form an intrinsic image by extending the 4-sensor camera calibration model by [Fin-

layson and Drew, 2001] into incorporating the NIR channel along with RGB channels.

• We propose a low-level segmentation framework based on the idea that the union

of both segmentations obtained from the intrinsic and NIR images results in image

partitions that are only based on material changes and not on color or shadows.

• We present results, showing that the proposed method provides good object-based

segmentation results on diverse images.

Chapter 7: We propose an approach to incorporate NIR information into semantic image

segmentation:

• We contribute with a pixel-level annotation of a dataset of 770 registered RGB and NIR

image pairs.

• Our second contribution is the extension of a state-of-the-art segmentation frame-

work with different strategies for incorporating the NIR channel. Our proposed system

is based on a “conditional random field” (CRF), where we exploit different possibili-

ties for combining the visible and NIR information in the recognition part and in the

regularization part of the model.

• In addition to the evaluation, we fully discuss the accuracy for each class of material,

linked to the material characteristics of NIR radiation.

Chapter 8: In this chapter we present a summary of the thesis and discuss its contributions.

We point towards the possibilities for improvement and the directions for future work.
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2 Related Work in NIR Imaging

NIR spectra are influenced by the chemistry and physical structure of different material classes,

which makes them suitable for material classification [Burns and Ciurczak, 2001]. Comparing

NIR images to visible spectrum images, we observe several differences (see Figure 2.1 for

illustration). The following are some interesting features of NIR images:

1. The sky is dark, while clouds are bright

2. Atmospheric haze disappears

3. Contrast is high

4. Vegetation is very bright

5. Patterns on some materials are transparent to NIR radiation

Properties (2) and (3) are closely related, because the haze transparency allows us to see the

details behind it. Atmospheric haze transparency in the NIR part of the spectrum allows us to

take haze-free landscape pictures even in difficult meteorologic conditions, or when the smog

level is high enough to impair vision in the visible part of the spectrum.

Property (1) leads to a contrast increase between clouds and sky so that the clouds become

more noticeable. This gives the images a more “dramatic” look. Properties (4) and (5) are

mainly related to material reflectance characteristics. In the case of vegetation, chlorophyll has

a very high reflection in the NIR part of the spectrum. The difference in brightness between

visible and NIR images can be partly explained by the fact that blue and red radiation are

absorbed to perform photosynthesis. Many vegetation-derived objects, such as textiles, share
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this brightness in the NIR spectrum. The monitoring of forest growth via satellite pictures is

an example of an application that uses this vegetation characteristic.

(a) Transparency of atmospheric haze

(b) Plastic transparency and vegetation brightness

(c) Textile brightness and uniformity

Figure 2.1: Some photographs of different materials. (left) RGB image, and (right) NIR image.

The NIR image properties discussed above can be divided into two main categories: scattering

related (1) (2) (3) and material related (4) (5) properties. The scattering related properties can

be explained by considering the Rayleigh and Mie scattering domains:

12



Figure 2.2: Spectral reflectance of 20 different fabrics. Their reflectances are different in the
visible part of the spectrum, which for given camera and lighting conditions leads to different
color values. However, as the samples belong to the same material, their spectral reflectances
in the NIR range are not significantly different.

The Rayleigh equation gives the intensity of light scattered on particles with a dimension

d <λ/10

I = I0
1+cos2(θ)

2R2

(
2π

λ

)4(n2 −1

n2 +2

)2(d

2

)5

(2.1)

where θ is the scattering angle, n is the particle refraction index, λ is the wavelength, R is

the particle distance, and d is the particle diameter. Particles in the air (haze) satisfy the size

condition and are therefore subject to Rayleigh scattering.

Because of the factor 1/λ4 in Equation 2.1, the scattered intensity is higher for short wave-

lengths. Therefore haze scatters more light in the short-wavelength and less in the NIR range

of the spectrum. Particles of clouds are larger than one tenth of the wavelength and so for them

Mie scattering is dominant and the scattered intensity is no longer wavelength dependent.

This is the reason cloud brightness remains almost constant in NIR.

The transmission and reflection properties of a material can change significantly according to

wavelength. Therefore it is difficult to estimate the differences in brightness between visible

and NIR images without having a prior knowledge of the materials in the scene. Figure 2.2

shows that for a given material, regardless of the object color in the visible part (400-700 nm),

the reflection in the NIR band (700-1100 nm) remains the same.
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Visible Spectrum Near-infrared

(a) Spectral sensitivity functions with NIR blocking filter

Visible Spectrum Near-infrared

(b) Spectral sensitivity functions with visible blocking filter

Figure 2.3: The spectral sensitivities of the NikonD90 (Figure 2.4) with B+W 486 IR/UV cut
(NIR blocking filter), and B+W 093 (visible blocking filter).

2.1 How to Capture NIR Images

Current imaging sensors, both CCD and CMOS, are made of silicon and thus intrinsically

sensitive to wavelengths from roughly 350 nm to 1100 nm, as illustrated in Figure 2.4. If we

remove the NIR-blocking filter from the camera, the sensor has the capability of imaging both

NIR and visible bands; no modification of the actual sensor is required [Fredembach and

Süsstrunk, 2008].

Three main approaches have been proposed so far for RGB and NIR acquisition. In the
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first approach, two sensors are placed to capture images simultaneously [Zhang et al., 2008].

Considering that the sensor is one of the expensive pieces in a camera, this approach is quite

expensive. Furthermore, implementing such a system in a small device such as a cell phone

is extremely difficult. The second method is to use one sensor in two consecutive shots to

capture the pair of images [Fredembach and Süsstrunk, 2008]. In each shot, either a visible-

blocking or NIR-blocking filter is fixed in front of the lens. This technique is time consuming

and severe registration issues arise, especially in the case of dynamic scenes. The last design

is to jointly capture RGB and NIR images by only a single sensor [Sadeghipoor et al., 2011].

In this method, similar to conventional color imaging, the sensor is overlaid with an array of

color filters that sample the scene both spatially and spectrally. Afterwards, a reconstruction

algorithm is applied to the raw image to estimate full resolution RGB and NIR image pair.

All the images captured and used in this thesis are acquired per the second method [Fredem-

bach and Süsstrunk, 2008]. The filters used to capture visible and NIR images are B+W 486

IR/UV cut and B+W 093 Infrared filter, respectively. The spectral sensitivities of the NikonD90

(Figure 2.4) with these filters are shown in Figure 2.3.

2.2 Current Uses of NIR Imaging

Near-infrared imaging is used in different areas. NIR spectroscopy (NIRS) is employed for

material identification and forgery detection. It has been shown that surface reflection in the

NIR band is critical for detection of different classes of material [Burns and Ciurczak, 2001,

Kulcke et al., 2003]. NIRS is a nondestructive analytical technique applied to understand

the interactions between incident light and a material surface. The need for little or no

preparation of samples, along with the inherent simplicity of NIRS, has made it one of the

most used techniques for material identification in the industry [Burns and Ciurczak, 2001].

In remote sensing, multi-spectral images are captured to acquire information to detect, char-

acterize, and monitor different regions (such as vegetation and soil) on the earth [Blackburn,

2007]. In such applications, region reflection in both visible and NIR parts of the spectrum

is required [Zhou et al., 2009, Walter, 2004]. It has been shown that both NIR and visible

wavelength ranges offer valuable information that provides bio-signatures for different classes

of vegetation and soil properties [Blackburn, 2007].

In both remote sensing and NIR spectroscopy applications, hyper-spectral data is needed to

accurately identify material classes. These capturing devices, however, are highly specialized

and expensive, hence of limited usefulness in the ubiquitous consumer scenario we envision.
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Recent studies show that combining the RGB image with even a single NIR channel (captured

as mentioned above) can be successfully exploited in image processing and computer vision

tasks. The use of NIR imaging combined with visible imaging has also been applied in real-

time 3-dimensional depth imaging [Salvi et al., 2004]. In this application, scene depth is

inferred from a pattern that is projected onto the scene. This pattern is projected using NIR

illumination. Videoconferencing is another area in which NIR imaging is used [Gunawardane

et al., 2010]. In this application, NIR illumination is placed on the monitor, which provides

NIR radiation from several known directions. The information from the captured image in

the NIR part of the spectrum is used for simultaneous relighting of the video stream. In both

applications, NIR illumination is incorporated to provide more information about the scene

in real-time imaging.

NIR imaging is also proposed to be incorporated into “everyday” photography. For example,

Fredembach and Süsstrunk [2008] suggest a method that fuses visible images with details

from NIR in landscape photography to obtain images with a greater perceived local contrast.

In face recognition tasks, NIR imagery has recently received much attention due to the high

quality of acquired images as well as high performance of NIR cameras under illumination

variations [Li et al., 2005, Shen et al., 2012]. It is shown that fusing NIR and visible images could

improve the robustness of face recognition algorithms to illumination variations, without

losing important texture information. They proposed a framework in which local binary

pattern features are extracted to compensate monotonic transform and obtain illumination

invariant face representation using NIR images, and statistical learning algorithms are used to

decrease the dimension of features and extract most discriminative features. Guoying et al.

[2011] also stated that NIR imaging is robust to illumination variations, and proposed a method

that combines such images and local binary pattern features for illumination invariant facial

expression recognition.

The intrinsic properties of material classes in the NIR band make this information a relevant

choice in material-based segmentation and classification. Hence, we [Salamati and Süsstrunk,

2010] show that introducing NIR information into low-level segmentation makes it less prob-

able that changes of the color within the material or changes in the lighting condition are

mis-detected as object boundaries.

Closer to our work, Brown and Süsstrunk [2011] propose to use the 4-channel images (RGB+NIR)

to better classify different image scenes.

As a preliminary study in this thesis, we also investigate the potential offered by NIR images to
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Visible Spectrum Near-infrared

Figure 2.4: Typical transmittance curves of RGB filters of the NikonD90.

classify 4 classes of material:

2.3 Material Classification Using Color and NIR Images

In this section, we classify four different types of materials: textile, tile, wood, and linoleum.

All the images were taken under controlled viewpoint and illumination conditions and their

analysis was conducted in both the frequency and spatial domain. Image features include the

relation between materials’ intensity in the NIR and luma in the color images, texture (in the

frequency domain), and color.

After extracting the relevant features and calculating the corresponding feature values, the

materials were classified according to a simple probability function. The results show that our

limited database is classified almost exactly, and comparisons with visible-only features show

that adding NIR information yield a substantial increase in the classification rates.

2.3.1 Classification Framework

To classify the materials in the database, visible and NIR images were analyzed according to

their lightness, texture, and color. The database consists of 51 wood, tile, textile and linoleum

samples. The analysis results are the input to a classifier in form of feature vectors to calculate

the probability of that sample to belong to a material category.
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Image Analysis

The images analysis comprises three steps. First, a comparison is made between the samples’

luma in the visible and NIR images, followed by a texture and color analysis.

Figure 2.5: Intensity in NIR versus luma in color images. In wood, tile and linoleum, linear
behavior is observed while for textile a two dimensional Gaussian can be fitted. The solid lines
represent the respective linear regressions and the ellipse is the projection of the 2D Gaussian.
The two textile samples specified by black arrows have roughly the same luma but different
NIR intensities.

• Luma Analysis Since the pigments used for colorizing materials are somewhat transpar-

ent to NIR [2], we start by comparing the luma of the visible image to the NIR intensity.

The Y CbCr color space separates chroma information of an image from luma informa-

tion. Luma (Y), which is the weighted sum of the non-linear RGB components after

gamma correction, is determined by:

Y = 0.2989R ′+0.5870G ′+0.1140B ′ (2.2)

Where R ′, G ′ and B ′ are the normalized sRGB values.

Y in color images (YV I S) and intensity in NIR images (IN I R ) [Fredembach and Süsstrunk,

2008] are calculated for all samples. Figure 2.5 plots IN I R versus YV I S for all samples in

the database. Note that the intensity in the NIR images is always higher than luma in the

visible images. In addition, samples in each of the wood, tile, and linoleum classes form

a line, which can be represented by a linear regression, The regression lines show high

correlation coefficient values of r 2 = 0.93, 0.86, and 0.93, for tile, wood, and linoleum,

respectively.
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2.3. Material Classification Using Color and NIR Images

The IN I R for almost all textile samples, however, lies in the narrow range between 0.6

and 0.8. YV I S , on the other hand, lies in a broader range. As illustrated in Figure 2.5, the

relation between textile intensity in NIR and luma in color images can be modeled by a

two dimensional Gaussian, whose mean and variance are:

µv = 0.4 µh = 0.7 σv = 0.13 σh = 0.07 (2.3)

Figure 2.6: Samples in the spatial (left) and frequency (right) domain. The frequency spectra
shows energy patterns that are characteristic of the materials’ surfaces. A line can be observed
in the wood sample due to the existing parallel lines on the surface. The peaks for the textile
sample are due to the nature of the woven fabric. In tile and linoleum there exists high energy
in low frequencies.

• Texture Analysis Images of real objects often do not exhibit regions of uniform lightness.

For instance, the image of a wooden surface contains variations in intensities that form

certain repeated patterns due to its specific surface characteristics. Figure 2.6 displays

samples from different materials in the spatial and corresponding frequency domain.

Due to the nature of woven fabric, where the surface is formed by a series of straight

parallel lines crossing each other, a number of peaks in certain frequency bands can

be witnessed. The naturally existing parallel lines on the wood surface result in the

formation of a line at a specific angle in the frequency domain. Tiles’ smooth surface

leads to most energy being located in low frequencies.

To analyze these texture characteristics, we use here filters adapted from [Randen and

Husoy, 1999], namely ring and rectangular filters. Ring filters are used for analyzing the

energy in certain frequency bands, while rectangular filters are employed for orientation
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detection. Ring filters Hr i ng
(i ) are Gaussian functions and defined according to:

Hr i ng
(i )(w1, w2) = exp

(
−

((
r −µi

)
σi

)2)
(2.4)

r =
√

w2
1 +w2

2 (2.5)

where w1, w2 are spatial frequencies in the spatial domain. µi and σi are parameters

determining the center frequency and the bandwidth of each ring filter, respectively. The

filters are nondirectional (See Figure 2.7). In this work, 13 ring filters have empirically

been chosen and applied.

The other set of filters are rectangular filters Hr ect that are constructed according to:

w1 − tan(θ×w2)− 0.1

2×cosθ
≤ Hr ect ≤ w1 − tan(θ×w2)+ 0.1

2×cosθ
(2.6)

where θ varies from 0 to π, i.e., the rectangular filter is rotated and the energy is calcu-

lated at each angle. The width of the filters is constant and empirically chosen to be

0.2.

Different materials can be colorized in such way that their patterns give the same

features as other materials in the texture analysis. Knowing that some colorants used in

printed material are usually transparent to NIR, using NIR images for texture analysis

avoids such problems.

• Color Analysis The process of colorizing a manufactured object is complex and varies

according to the material; the colorants themselves are also diverse. Although different

colorants may look identical in color images, they have different responses in NIR images.

Therefore, color information of the samples and the corresponding NIR intensities can

be an important cue.

We employ the hue, saturation and luminance (HSL) space, used in color image pro-

cessing. Although almost all colors of the visible spectrum can be produced by merging

primaries, the process of colorizing different material makes each class of material

capable of having only a limited gamut (i.e., the set of possible colors within a material)

of the visible spectrum (see Figure 2.8 for illustration). Samples that have the same

luma in color images may or may not have the same NIR intensity (see Figure 2.5). The
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(a)

(b)

Figure 2.7: Representations of one of the a) ring and b) rectangular filters in the frequency
domain. The height of the surface above the w1, w2 plane and the color level values represent
the filter’s amplitude.

two textile samples indicated by black arrows in Figure 2.5 have roughly the same luma

but different NIR intensities. The hue values in these two samples are different (see

Figure 6.6), i.e., the difference in NIR intensity for the same material can be related to

the difference in hue. Hence, analyzing the gamut of each existing material, obtained

using hue and saturation from the color image and the intensity from the NIR image of

each sample may lead us to a better classification of material.

To do so, the RGB values of each sample are first converted into HSL and the luminance

is replaced by the intensity of the NIR image. A 3-D convex hull algorithm was applied

to determine the position and the volume of the gamut for each material class.

From Features to Classification

In this section, we explain how to obtain feature vectors and classify materials from the

acquired features. First, features are selected and then the probability of a sample to belong to

a material class is calculated. We explain how to calculate the probability pertinent to each

analysis.
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Figure 2.8: Hue versus saturation in color images. In wood samples, hue varies within a narrow
angle, however, they have a wide range of saturation. To be expected tile and textile samples
cover almost all hue and saturation values. The linoleum samples in our database are also
within a narrow hue range and are not very saturated. However, this is due to our limited
sample selection.
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2.3. Material Classification Using Color and NIR Images

(a) (b)

Figure 2.9: Images of two textile samples with the same luma in the visible part of the spectrum
but different NIR intensity. The difference in intensity in the NIR images can be related to the
difference in their hue.

• Feature Extraction From each analysis, features are selected to quantify material char-

acteristics. The choice of appropriate descriptive parameters will significantly influence

the effectiveness of the classification.

Intensity in NIR and luma in color images are taken to be feature values T1 and T2.

T1 = IN I R T2 = YV I S (2.7)

For texture, we normalized the energy existing in different ring filters.

Ē (i )
r i ng =

E (i )
r i ng

maxi=1...13

(
E (i )

r i ng

) (2.8)

E (i )
r i ng = ‖FI (w1, w2)×H (i )

r i ng‖2 (2.9)

Where Ēr i ng is the normalized energy, FI (w1, w2) is the Fourier transform of the image

I , and ‖.‖ denotes the Frobenius norm (see Fig. 2.10 for a representative sample from

each material category).

For all the non-textile samples, the larger the diameter of the ring filter, the less the

spectral energy in the corresponding ring filtered image, i.e., most of the energy lies in

the low frequency part of the spectrum. For the textile samples, however, the existing

peaks in the high frequencies due to the nature of the woven fabric will result in an

increase of the energy in the ring filtered images incorporating those peaks. Hence, the

filtered image for which the energy is maximum can be taken into consideration as a

feature value, which we call T3. For simplicity, this feature value can be reduced to a
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binary value:

T3 =

0 if ar g maxi=1...13

(
Ē (i )

r i ng

)
= 1

1 otherwise
(2.10)

Figure 2.10: Relative energy Ē (i )
r i ng in all 13 ring filtered images for a random sample in each

class. The corresponding T3 value for each sample is: [0,0,0,1].

Figure 2.11 displays the energy existing in different rectangular filters for all angles

between 0 and π, one degree interval, for a random sample from each material category.

In the smooth samples, like tiles, the energy is constant at all angles, for oriented texture

samples (such as wood), an energy peak is observed at a specific angle. For textile

samples, due to the existence of peaks in the frequency domain, more than one peak of

energy is observed at some specific angles.

The energy peak at a certain angle is detected when its distance to the energy of sur-

rounding angles is more than a certain threshold. The considered threshold δwill reduce

the sensitivity of the algorithm to noise, thus it is taken as the variance of that signal,

δx =
∑180

i=1

(
Ex

(i ) − Ēx
(i )

)2

180
(2.11)

24
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Figure 2.11: The energy in the rectangle filter from 0 to 180 degrees for a random sample in
each class. The detected peaks are marked by red circles. The corresponding T4 value for each
sample is: [1,0,0, 2].

E (i )
x = ‖FI (w1, w2)×H (i )

r ect‖2 (2.12)

where Ex
(i ) is the energy existing in the i th rectangular filtered image and Ēx

(i ) is the

average of the energy over all rectangular filters. As a result, the existence of one or more

peaks at an angle is used as the feature value T4.

T4 =


0 if NP = 0

1 if NP = 1

2 other wi se

(2.13)

Where Np is the number of detected peaks.

The fifth feature vector contains the hue, saturation, and NIR intensity coordinates.

T5 = {Hue,Satur ati on, IN I R } (2.14)
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• Luma Related Probability As seen in section 2, wood, tile, and linoleum have YN I R

varying linearly with YV I S . This behavior is easily modeled by linear regression:

ˆYi j = Xi j β̂i (2.15)

where β̂i =
(
Xi

T Xi
)−1

Xi
T Ŷi , and Ŷi = Xi

(
Xi

T Xi
)−1

Xi
T Yi . Yi is the luma of the visible

images and Xi contains the corresponding intensity in NIR images.

From this, the vector of residuals can be defined as [Cook and Weisberg, 1982]:

ε̂i = Yi − Ŷi (2.16)

By studentizing the residuals [12], we are able to determine the probability of sample x

belonging to tile, wood, or linoleum. For each line, the variance of the residuals for all

samples can be calculated under a certain confidence level αi . Variance of residual of

each sample defines the distance from the regression line that shows how much further

from the regression line a new samples in that material class can fall. In other word,

we can be αi % sure that all samples in the material class fall in the area around the

regression line that has been defined by the maximum variance of residual. Moreover,

we are (1−αi )% sure that our target sample belongs to the line representing the class

when that sample is located outside of that area. The probability for any new sample to

belong to each class can be calculated by the maximum confidence interval that makes

an area so that the target sample is outside of the area:

PL ((x ∈ Ai=1···3) | T1,T2) = 1−α (2.17)

where α is the maximum confidence interval forming an area to which sample x doesn’t

belong, A = {Ai | i = 1 · · ·3} represent tile, wood, and linoleum, respectively. The residual

variance is calculated within the confidence interval of α, thus 1−α is the probability

that the sample belongs to that class (see Fig. 2.11 for illustration).

For the textile class, we model the relationship between IN I R and YV I S as a 2D Gaussian

function. P (texti l e | T1,T2) is thus given by:

PL ((x ∈ A4) | T1,T2) = 1

2πσvσh
e

−1
2

(
T 2

1 −µv
σv

+ T 2
2 −µh
σh

)
(2.18)

where σv and σh are the variance and µv and µh are the mean of the two Gaussians
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Figure 2.12: The residuals of the wood samples within 63% confidence interval. The black line
is the regression line representing the correlation of the wood samples in the database. The
area in which we are 63% confident that samples are wood is shaded gray. Thus the probability
of the target sample (green point) to be wood is 37%.

with respect to the color and NIR images. The values of σ and µ were given in section 2.

We are, however, interested in the probability of a sample belonging to one class (Ai )

but not the other
(
x 6= A j 6=i

)
:

PL
((

x ∈ Ai ∩
(
x 6= A j 6=i

)) | T1,T2
)= P (x ∈ Ai | T1,T2)×P (Ai )∑n

i=1 (P (T1,T2 | Ai )×P (Ai ))
(2.19)

where

P (Ai ) = Ni

NT
(2.20)

and Ni is the number of samples existing in the i th material in the database and NT is

the total number of samples in the database.

Texture Related Probability

In order to calculate the probability of a sample to belong to a material category, knowing

T3 , T4, the Bayes theorem is used.

PT ((x ∈ Ai ) | T3,T4) = P (T3,T4 | Ai )×P (Ai )∑n
i=1 (P (T3,T4 | Ai )×P (Ai ))

(2.21)

P (T3,T4 | Ai ) can be defined as number of cases favorable for the feature vector [T3,T4],

over the number of total samples in material Ai . We calculate this probability for each

feature vector, i.e., the probability of each sample of a certain material to have a certain

feature value [T3,T4] (see Table 2.1).

• Color Related Probability Knowing the position of a new sample in H ,S and IN I R color

space (T5) as well as the gamut for each material class, we can conclude that if (T5) exists
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T3 T4 Textile Tile Wood Linoleum

1 0 4/30 0 0 0
1 1 6/30 0 0 0
1 2 13/30 0 0 0
0 0 3/30 6/6 7/8 0
0 1 4/30 0 1/8 7/7
0 2 0 0 0 0

Table 2.1: P (T3,T4 | Ai ) in the database.

in the gamut of material Ai , then that sample will belong to the class Ai . Therefore, the

following statement can be used to specify the probability of a sample to belong to the

material class Ai :

PC (x ∈ Ai ) =


1
n if T5 ∈GamutAi

0 if T5 6∈GamutAi

(2.22)

where n is the number of material classes whose gamuts intersect at the position of T5.

Final Probability Estimation

We assume that the probabilities resulting from luma and color analysis is independent

from texture analysis, so for that neither luma nor color of a material impact the surface

characteristics of that material.

To investigate the dependency of color and luma analysis, we should mention the fact

that three attributes of color in HSL are decorrelated [13], i.e., knowing the relation

between luma and NIR intensity does not give us any information about the relation

between hue, saturation and NIR intensity.

Thus the corresponding probabilities are independent. The final probability for each

sample can be calculated by multiplying the probabilities given from each analysis:

P (x ∈ Ai | T1, · · · ,T5) = PL ∩PT ∩PC = PL ×PT ×PC (2.23)

P (x ∈ Ai | T1, · · · ,T5) represents the probability of a sample x to belong to a material

category Ai according to feature values T1 to T5.
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Textile Tile Linoleum Wood

Textile 25/30 0 0 5/30
Tile 0 6/6 0 0
Linoleum 0 7/8 0 1/8
Wood 0 0 1/7 6/7

Table 2.2: The confusion matrix using just visible information

Textile Tile Linoleum Wood

Textile 29/30 0 0 1/30
Tile 0 6/6 0 0
Linoleum 0 0 8/8 0
Wood 0 0 0 7/7

Table 2.3: The confusion matrix using both visible and NIR information.

2.3.2 Experiment

All samples were photographed in the visible and in the near-infrared range of the spectrum in

a controlled environment. The camera we used in these experiments is a Canon EOS 300D and

the light source was incandescent. The photography operation followed the same procedures

for the two types of photographs taken from the samples. The database on which the training

and testing were conducted consists of 30 textile, 5 tile, 8 linoleum and 7 wood samples.

In order to determine how accurately this learning algorithm will be able to predict a new

sample’s material, leave-one-out cross validation has been applied. When using the leave-

one-out method, the learning algorithm is trained multiple times, using all but one of the data

points and then testing the removed data point and calculating the probability of that sample

to belong to each class.

For the entire database, the feature vectors are formed and the probability of each sample

having a certain feature vector, given the material, is calculated. The probability of each sample

belonging to each material given the feature vector is calculated according to Equation 2.23

for each left-out sample.

The algorithm was applied to all the samples in our dataset and the probability of each left-out

sample belonging to each material category was calculated. The higher the probability, the

better we could come to the conclusion that the sample belongs to a certain category.

To assess the usefulness of NIR information, the classification was performed using visible
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features only (results in Table 2.2) as well as using visible and NIR features (results in Table 2.3).

We see that the additional NIR information makes the proposed classification more accu-

rate. The wood and textile samples were classified better due to transparency of most of the

colorants to the NIR light in the sample; as a result the NIR images provide more effective data.

2.4 Conclusion

In this chapter, we have discussed NIR imaging and particularities of such images, as well as

common difficulties of capturing in this part of the spectrum using a normal digital camera. We

have also reviewed the relevant literature on incorporating NIR into digital photography and

computer vision tasks. We showed that the relation between the visible and NIR information

yields an improvement in classification of 4 different types of material: textile, tile, wood, and

linoleum. The material classes were more accurately classified when NIR information was

present. Whereas the result and framework are suited for the samples in our database and

they may not generalize to more material classes, one could still conclude that incorporating

the intrinsic characteristics of NIR images leads to an improvement of the accuracy of image

classification tasks, which we will show in later chapters.
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My research for this thesis draws on prior work in different aspects of image classification and

segmentation in scene understanding.

In the computer vision community, most of the earlier object and scene recognition work

assigns a single label to an image, for example an image of a forest, a mountain, or a beach.

Some go further by creating a list of annotations without localizing where in the image each

annotation belongs. Previous work on low-level image segmentation mostly considered

local descriptors and often ignored the photo contents. More recent work, however, has

discovered that visual matching and modeling of object appearance can be of great assistance.

In this chapter we discuss image representations and machine learning techniques for image

classification and semantic segmentation. A short background is also provided on low-level

boundary detection. Another area of relevance includes forming intrinsic images in order to

find image boundaries that are robust to different illumination conditions.

This chapter provides, for the convenience of a reader unfamiliar with them, the image

representation and machine learning concepts used in the later chapters, and helps placing

my contribution in the wider context of the state of the art in these fields.

3.1 Image Representations for Classification

In this section, we discuss image classification frameworks with a special emphasis on the

Fisher Vector (FV) representation [Perronnin and Dance, 2007, Perronnin et al., 2010]. We focus

on this representation and also give a short overview of Bag-of-Visual-Words (BOW) [Sivic and

Zisserman, 2003, Csurka et al., 2004], as they are efficient and have shown to be among the

state-of-the-art representations used for image classification.
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For any image processing operation, we need to represent an image by features extracted

therefrom. The image is usually represented by a set of local feature descriptors extracted from

a set of regions in the image. There are generally two attributes for local features: a feature

detector and a feature descriptor [Forsyth and Ponce, 2002, Mikolajczyk and Schmid, 2004]. A

feature detector detects interesting locations in the image, for example corners and edges. A

feature descriptor describes the image patch around that interest point, usually by histograms

of gradients or orientation.

• Feature Detectors:

The first approach in detecting features is based on key-points detection, where image

content is used to select a set of points that are of specific interest. There are different

kinds of feature detectors, but among the most common ones are difference of Gaussians

(DoG) [Lowe, 2004], Hessian affine, and Harris affine [Mikolajczyk and Schmid, 2004].

The second approach, that we also use it in this thesis, is based on dense sampling of

points from the image [J. Winn and Minka, 2005]. All points on a regular dense grid over

different scales are used as key-points. The main reason to use dense sampling is to

avoid early removal of potentially interesting points.

• Feature Descriptors:

Feature descriptors are used for describing local image features. The aim of a descriptor

is to find an image feature and describe it in a way that is not affected by perspective,

scale, occlusion or illumination. One of the most common methods for this is scale-

invariant feature transformation (SIFT), that was developed by Lowe [1999], this is

considered to be one of the most robust feature descriptors [Bauer et al., 2007]. The

speeded-up robust features (SURF) descriptor developed by Bay et al. [2006] is a method

inspired by SIFT and it is considered to be equally robust as SIFT and is more efficient.

The SIFT descriptor describes a sampled point, by a histogram of image gradients

(illustration in Figure 3.1). The gradients are computed over the intensity levels of the

image, and aggregated in several spatial bins around the sampled point, using both the

magnitude and the orientation. As a result of using gradients, the descriptor is invariant

to the intensity changes. Also, due to the use of spatial histograming of gradients, the

descriptor is to some extent robust to geometric distortion.

To increase discriminative power, color descriptors have also been used [Clinchant et al.,

2007, Perronnin et al., 2010]. Local RGB color statistics computes the mean value and

standard deviation of each RGB channel around the sampled point using a 4x4 spatial
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Figure 3.1: Illustration of the SIFT descriptor, Around each keypoint, a 8×8 window is formed
and divided into 4×4 cells. Within the window, gradient magnitude are computed. For each
cell, accumulate an 8-orientation histogram, then concatenate them to form a 4 x 4 x 8 =
128-dimensional vector. Image courtesy of Lowe [1999].

grid, like the SIFT descriptor. This feature possesses no invariance properties, and is

often combined with invariant descriptors such as SIFT.

The features that we use in this thesis are SIFT, color, and the late fusion of SIFT and

color.

The notion of image classification in the user’s mind is mostly based on high-level concepts

(or semantics), such as activities, objects, or events. Therefore, classification by similarity

using low-level features like color or texture will not be very effective. Hence, an intermediary

level representation is introduced as a first step between low-level descriptors and scene

classification in order to deal with the semantic gap between low-level features and high-

level concepts. In the image classification literature, the traditional approach to transform

low-level features into high-level representations is the bag-of-visual-words (BOW) [Sivic and

Zisserman, 2003, Csurka et al., 2004]. Recently, Perronnin and Dance [2007] proposed Fisher

representation as an alternative to BOW at the patch level.

3.1.1 Bag-of-Visual-Words

The BOW methodology was first proposed in the text retrieval domain problem for text docu-

ment analysis, and it was further adapted for computer vision applications [Sivic and Zisser-

man, 2003, Csurka et al., 2004]. For image analysis, after feature detection and description,

a visual vocabulary is formed in the BOW model, which is based on the vector quantization

process by clustering low-level feature descriptors of local regions, such as color, texture, or a

combination of them. Figure 3.2 describes these four steps to extract the BOW features from

images.
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-­‐-­‐-­‐	
  
-­‐-­‐-­‐	
  
-­‐-­‐-­‐	
  

-­‐-­‐-­‐	
  
-­‐-­‐-­‐	
  
-­‐-­‐-­‐	
  

-­‐-­‐-­‐	
  
-­‐-­‐-­‐	
  
-­‐-­‐-­‐	
  

Feature detection	

 Descriptors (d1,d2,…, dn)	

 Vector quantization 
k-means or GMM	



(w1,w2,w3,w4)	



Bag-of-Words	



Imagej, with 
descriptors dj	



How often wj occurred 
in the image 	



w1	
   w2	
  

w3	
  

w4	
  

w1	
   w2	
   w4	
  w3	
  

Figure 3.2: Different steps for constructing the bag-of-words for image representation. Image
adapted from [Sun et al., 2010].

Given a training dataset containing n images, d1,d2, · · · ,dn are extracted local features for

each image. The visual dictionary (codebook) is often created from this large set of local image

descriptors. A specific unsupervised learning algorithm, such as k-means or Gaussian Mixture

Models (GMM), is used to group the training set into a fixed number |W | of visual words W =
w1, w2, · · · , w|W |. Experimentally it has been shown that classification performance improves

with the size of the dictionary [van Gemert et al., 2010, Chatfield et al., 2011]. Examples

of other approaches to learn a codebook are: mean shift clustering to create a codebook

that better represents a non-uniform distribution of descriptors [Jurie and Triggs, 2005], or

sparse dictionary learning that learns a codebook to minimize the reconstruction error of

local descriptors [Mairal et al., 2008, Wang et al., 2010]. Each of the local features can now

be encoded using the learned codebook. The goal is to represent the original local feature

by one or more visual words such that a reconstruction error or expected distortion function

is minimized. The most frequently used encoding is probably vector quantization (VQ, also

known as hard-assignment): a local feature is assigned to its nearest neighbor in the dictionary.

To reduce the reconstruction error, local features can be encoded using soft-assignment. If the

codebook is based on a mixture of Gaussians, the posterior probabilities of each Gaussian can

be used as weights in the soft-assignment. As the final step, we can summarize the data in a

|W |×n concurrence table of counts Ni j = n(wi ,d j ), where n(wi ,d j ) denotes how often the

word wi occurred in an image with descriptor d j .
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3.1.2 Fisher Vectors

The Fisher Vector (FV) [Perronnin and Dance, 2007] is an extension of the BOW representa-

tion [Csurka et al., 2004], which, instead of describing images as histograms of visual word

occurrences, considers higher order statistics [Jaakkola and Haussler, 1999, Perronnin and

Dance, 2007].

The principle is the following: First, a set of low-level features is extracted from each image.

Patches are extracted according to a regular grid (dense detector) and a local descriptor is

computed for each patch. As the next step, a principle component analysis (PCA) projection

is applied to the descriptors. Projected descriptors are used to build a visual codebook that

describes the descriptor space as a Gaussian mixture model (GMM), with N Gaussians. The

GMM distribution can be written as:

uλ(x) =
N∑

i=1
wi N (x|µi ,Σi ) (3.1)

This visual codebook is used to transform each image into a global signature (FV). To compute

the FV for one image, we consider its set of low-level features X = {xt , t = 1. . .T }. The FV

G X
λ

characterises the sample X by its deviation from the distribution uλ (with parameters

λ= {µi ,Σi , i = 1..N }):

G X
λ = LλG X

λ (3.2)

where G X
λ

is the gradient of the log-likelihood with respect to λ:

G X
λ = 1

T
∇λ loguλ(X ) (3.3)

Lλ is the Cholesky decomposition of the inverse of the Fisher information matrix Fλ of uλ,

i.e., F−1
λ

= L′
λ

Lλ, where by definition:

Fλ = Ex∼uλ

[∇λ loguλ(x)∇λ loguλ(x)′
]

(3.4)

More details on the FV computation and its theoretical foundations can be found in Jaakkola

and Haussler [1999], Perronnin and Dance [2007]. As suggested in Perronnin et al. [2010],

square-root and L2-normalisation needs to further be applied to the FV based image signature.

Due to its high performance, we use FV as an image representation for our study.
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Figure 3.3: SVMs maximize the margin around the separating hyperplane.

3.1.3 Learning Model

After the BOW or FV feature is extracted from images, it is entered into a classifier for training

or testing. The learning task is to compute a classifier or model f̂ that approximates the

mapping between the input-output examples and correctly labels the training set with some

level of accuracy. This can be called the training or model generation stage. After the model f̂

is generated or trained, it is able to classify an unknown instance into one of the learned class

labels in the training set.

Most of the widely developed classifiers are based on support vector machines (SVMs). SVMs

are designed to solve two-class problems1. Two approaches can be used for a multi-class

problem:

1. One against all: |C | classifiers are iteratively applied on each class against the rest, the

highest scoring label is kept for each vector.

2. One against one: |C |(|C |−1)
2 classifiers are applied on each pair of classes, the most often

computed label is kept for each vector.

The aim of SVMs [Vapnik, 1999] is to find the separating hyperplane, to which the distance to

the nearest training data points on each side is maximal. These are called support vectors and

their distance is the optimal margin (see Figure 3.3).

SVMs in their base form assign one of two labels to each data point in feature space by dividing

1We only consider linear, single-class SVMs here, as they work well with the Fisher Vectors we use as feature
representation.
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it into two half-spaces, one for each label. In particular, they divide it along the hyperplane

that has the largest distance to the nearest training data points of both classes. The key

insight is that a larger margin equals better generalization performance, and hence, a higher

performance on the test case. Thus, SVMs consider the loss function

l (xi , yi ,w) = max(0, 1− yi w>xi ) (3.5)

and minmize
∑
i

l (xi , yi ,w), where the xi are the training feature vectors, while w and the yi

are the parameters to be varied. The offset 1 enforces the margin, since zero loss implies

yi w>xi ≥ 1.

While a basic SVM outputs only the classification sign(w>x), the method known as Platt

scaling [Platt, 1999] is frequently used to obtain a probabilistic output.

3.2 Boundary Detection and Low-Level Segmentation

Boundary detection is a low-level operation that aims at partitioning images by determining

homogeneous regions and forming a boundary around them. This task is important in several

applications of image processing and computer vision since it represents the very first step of

low-level processing of imagery.

This section provides a review of the method we used for the low-level segmentation in

Chapter 6.

3.2.1 Mean Shift

Mean shift is a clustering algorithm that has been published in the context of image segmenta-

tion [Comaniciu and Meer, 2002]. The main idea behind the algorithm is to compute for every

single pixel a series of mean values in the feature space. The mean is shifted towards more

densely populated regions in the feature space.

The Algorithm

Each pixel is represented as a point xi in a feature space. In their article, the authors propose

to use a 5-dimensional feature space with two axes for the spatial position and three axes

for the CIELUV values of every pixel. Then, for every single pixel xi , the same procedure is

undertaken:
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1. Initialize yi ,1 = xi as a starting point

2. Calculate a series of shifted means

yi , j+1 =
n∑

i=1
xi

K

h2
s h2

r
G

(∣∣∣∣∣
∣∣∣∣∣ y s

i , j −xs
i

hs

∣∣∣∣∣
∣∣∣∣∣
2)

·G
(∣∣∣∣∣

∣∣∣∣∣ y r
i , j −xr

i

hr

∣∣∣∣∣
∣∣∣∣∣
2)

j = 1,2, . . .

where the superscripts s and r denote the spatial and the range part of the feature vector

respectively. The function G is usually a Gaussian. The constant K is a normalizing

factor. hs and hr are tunable parameters, see below for their interpretation.

The series ends when it converges after m iterations. The convergence point is called

zi = yi ,m .

3. Delineate in the joint domain the clusters C j , j = 1. . .k by grouping together all zi that

are closer than hs in the spatial domain and hr in the range domain.

4. Each pixel xi is assigned the label C j with zi ∈C j .

5. Refinement step: Eliminate labels that occur on less than a threshold number of pixels.

There is a very intuitive and easy to understand explanation for this mean shifting. At every

step, it shifts the mean towards the highest density in the local neighborhood of the joint

spatial-range domain. The convergence point is the point of maximal point density. This

process is illustrated in Figure 3.4. The choice of the two parameters hs and hr influences the

granularity of the segmented result. The higher hs and hr , the fewer classes the algorithm will

create.

In the work by Christoudias et al. [2002], the mean shift idea of Comaniciu and Meer [2002] is

combined with an edge-detection algorithm, resulting in a synergetic method that exploits

both algorithms’ strengths. This algorithm is implemented in EDISON2, a software that allows

various combinations for test purposes.

Results

Figure 3.5 shows a Baboon image and its filtered versions for different parameters hs ,hr .

When looking at the first column and the first row, the filtering effects for different parameter

combinations can be observed. Two regions show the effects well: the beard and the reflections

on the cheeks. An increasing spatial parameter hs (first column) causes the reflections to

2EDISON: Edge Detection and Image SegmentatiON
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Point of 
maximal density

A data point

The convergence 
direction

Figure 3.4: Illustration for mean shift algorithm.

be more and more blurred. However, the beard does not loose too much contrast, since the

range in value (hr ) is rather small. In the case of increasing range value (first row) the beard

gets blurred, however, the reflections on the cheeks remain. This is because the beard has

high-value changes on a small spatial range and the cheeks have a low-value change on a large

spatial range.

Discussion

A very useful property of this algorithm is that it can separate two interlaced classes in feature

space as shown in Figure 3.6. If most of the points are within the regions and get denser

towards the middle, the mean will be shifted along the contour of each region. It is evident

that this is only true if the parameters hs ,hr are not too large and thus the neighborhood for

the mean calculation is not much bigger than the width of each region.

The problem is that the choice of the parameters hr ,hr is not automatic. The extreme cases,

where they tend to zero or infinity, can be excluded as not useful, but a proper choice is not

evident. Basically, smaller values will lead to more classes since the mean shifting procedure

has a smaller reach in the feature space.

For an arbitrary image, the number of classes is not a priori clear. Hence, one strength of this

39



Chapter 3. Tools Used in the Thesis

Figure 3.5: Mean shift filtered baboon image. Each color represent a segment. Image courtesy
of Comaniciu and Meer [2002].

algorithms is that it finds the right number of classes based on the input image and input

parameters. However, in more specialized cases, the number of classes can be a priori known.

In this case the mean shift segmentation is not suited or has at least to be modified.

In Chapter 6, we specifically address the low-level segmentation task. In that chapter, mean

shift is applied to segment images based on pixel values.

3.3 Semantic Image Segmentation

Semantic image segmentation is the process of partitioning an image into different regions,

where each region corresponds to a class within a predefined list of labels. The appearances of
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The convergence 
direction

Class A

Class B

Figure 3.6: Interlaced classes in feature space.

these labels are learned during a training step on labeled images.

Recently, there have been two main trends of research in semantic segmentation:

• Development of new algorithms that can deal with both local and global characteristics

of an image, e.g., based on graph theory or on feature-space analysis.

• Determination of relevant features to describe the image characteristics, e.g., color

and texture representations that are both perceptually relevant and simple enough for

real-time processing.

One of the lines of work is tree-based approaches, such as the semantic texton forest [Shotton

et al.]. In this method, each forest is a combination of decision trees, and each tree is trained

independently to predict the label for each pixel in an image. A decision tree is a directed

graph, in which each node has a parent and can have many children. At each node one

question is answered and a child is chosen accordingly. This process is repeated until the last

generation is reached, where the node has no child and it contains the determined label of the

pixel [Shotton et al.].

The segmentation can be seen as a graph labeling problem. The simplest case is the binary

segmentation (foreground/background). This means that pixels need to be labeled either as

positive (foreground) or negative (background). This can be trivially extended to a multi-class

problem, in case we would like to segment several objects simultaneously. We assume that

neighboring pixels are connected in the graph. We could consider for instance 4-connectivity

or 8-connectivity. In Figure 3.7, the red circles show an example of a 4-neighborhood graph.
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Figure 3.7: Graph over the pixels. Red nodes represent the labels of the pixels, these are
estimated values. The blue nodes represent the observations. Note that observations contain
information from multiple sources, and edges are associated to weights and depend on
observations from neighboring pixels.

Random fields (RF): Markov Random Fields (MRF) or conditional random fields (CRF) [Kohli

and Kumar, 2010, Ladicky et al., 2010] are then applied over the graph of labels. Some alterna-

tives have been proposed to RF, for instance use of a super-pixel representation to group and

regularize evidence at the pixel level. Ladicky et al. [2010] incorporate object co-occurance in

CRFs, and Krähenbühl and Koltun [2011] propose fully connected CRF models defined on the

complete set of pixels in an image.

In CRF-based semantic segmentation systems, we represent a pixel (or patch) i with a random

variable Xi taking a value from the set of labels L = {l1, . . . , ln}, n being the number of classes.

Let X be the set of variables representing the image and X = x a possible labeling of it.

The posterior distribution P (X = x | D), given the observation D over all possible labelings of a

CRF is a Gibbs distribution and can be written as:

P (X = x | D) = 1

Z
exp( − ∑

c∈C
ψc (xc )︸ ︷︷ ︸
E(x)

) (3.6)

where ψc (xc ) are potential functions over the variables xc
i = xi for i ∈ c, and Z is a normaliza-

tion factor. In this equation a clique c is a set of random variables Xc ⊆ X that depend on each

other, and C is the set of all cliques.

Accordingly, Gibbs energy is formed. The energy function is applied over the graph of labels.

Each possible labeling corresponds to an energy value. The model is designed so that the

labeling producing the minimum energy is the solution of our problem. Gibbs energy is
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3.3. Semantic Image Segmentation

defined as:

E(x) =− log(P (X = x | D))− log Z (3.7)

Providing these notations, the goal of semantic segmentation is to find the most probable

labeling x∗, which is defined as the maximum a posteriori (MAP) labeling:

x∗ = argmaxx∈L P (X = x | D) = argminx∈L E(x) (3.8)

In the CRF model, the energy function E(x) is composed of two terms, a unary potential Eun

and a pairwise potential Epai r
3.

E(x) = Eun(x)+λEpai r (x)

= ∑
i∈ν

ψi (xi )+λ ∑
(i , j )∈ε

ψi , j (xi , x j ) (3.9)

The unary part ψi (xi ) of the CRF is defined as the negative log of the likelihood of a label xi

being assigned to pixel i . It can be computed from the local appearance model for each class.

More specifically, given a training set, we assume that the labeling takes the form of a ground

truth segmentation. The procedure is as follows; patches are extracted and corresponding

low-level descriptors, such as texture (filter banks), color statistics, and SIFT are computed

across a training set. The collection of the descriptors are clustered with an unsupervised

k-means/nearest neighborhood or Gaussian mixture model. The resulting clusters produce

a code book of visual words. These vectors are inputs to a linear classifier. An example

of such a method can be found in [Csurka and Perronnin, 2011]. One of the advantages

of linear classifiers is computational efficiency. It is shown that the classification result of

fast linear classifiers on higher-dimensional descriptors (i.e., FV) is as accurate as nonlinear

classifiers on low-dimensional BOW [Chatfield et al., 2011]. A detailed comparison of these

high-dimensional descriptors was performed in [Chatfield et al., 2011]; it is shown that the FV

representation outperforms the others.

When segmenting an image, each pixel is represented by a surrounding patch, and the same

representation as before is computed (for instance an FV). The representation is given to the

learnt classifiers that predict scores for that pixel. These scores can be easily transformed into

3More complex models can contain higher order potentials
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probabilities (see in [Perronnin and Dance, 2007]). Any other classification method could be

used. For each pixel, its probability to belong to a class of interest is known for each of the

classes. That is the information we use in the graph. More precisely, the unary term of the

energy function is

Eun(x) = ∑
i∈ν

ψi (xi ) = ∑
i∈ν

− log(P (Xi = xi | D)) (3.10)

The pairwise term is responsible for the regularization in the model: neighboring pixels are

encouraged to share the same label (avoiding noise in labeling). This term is also responsible

for aligning the segmentation with the object borders. The pairwise terms ψi , j (xi , x j ) usually

take the form of a Potts model.

Epai r (x) = ∑
(i , j )∈ε

ψi , j (xi , x j )

= ∑
(i , j )∈ν

(1−δxi ,x j )exp(−β‖pi −p j‖2) (3.11)

Rother et al. [2004] proposed to set β= 1
2<‖pi−p j ‖2> .

An exhaustive search of the best labels is in general intractable, but many exact or approximate

optimization methods are applicable to our problem, for instance Gibbs sampling or graph-cut.

More details on how the energy function can be minimized are given in Appendix A.

Semantic segmentation models can be enhanced using object detectors or global consistence

models [Csurka and Perronnin, 2011] and a fully connected CRF model [Krähenbühl and

Koltun, 2011]. These approaches are computationally more involved and also require some

feature tunings. We restrict ourselves to an efficient method to show the potential advantage

of introducing NIR in semantic image segmentation. For the recognition part, we compute

FV descriptors and use a linear SVM classifier, and for the regularization part we use a stan-

dard CRF model. However, similar improvements are expected when the model is used in

combination with more advanced approaches.

3.4 Conclusions

In this chapter we have reviewed the relevant literature on image classification and object

segmentation tasks. For high-level classification methods, we have reviewed state-of-the-art

44



3.4. Conclusions

techniques and analyzed some of the algorithms. Finally, we have also discussed the clustering

and low-level segmentation algorithms that are put to use in later chapters.
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4 Visual Recognition

In this chapter, we evaluate the usefulness of near-infrared (NIR) images for cognition tasks.

We will see that human recognition occurs in NIR images at a lower bitrate than in visible

images. As different material classes have a consistent response in NIR images, color patterns

on objects are most of the time transparent in such images. High-frequency information,

however, tends to be preserved. Thus, an NIR image is easily interpreted by a human observer

in more extreme cases of highly cluttered scenes or too low resolution. All this can be seen in

Figure 4.1: half of the picture shows the visible spectrum image, and half shows the NIR image.

The NIR response is completely independent of the object’s color, but the object edges are

clearly seen.

Figure 4.1: A typical photograph of a porcelain cup. (left) visible RGB image, (right) NIR image.
The presence of confusing color patterns on the object makes the cognition task more difficult,
especially at lower resolutions.

To evaluate the usefulness of distorted images in cognitive tasks, Rouse and Hemami [2007]

introduces a utility assessment framework that specifies the largest distortion level that can

be applied to images while still providing observers with enough information to identify the
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scene. Their goal is to compare the cognition threshold for signal-based and structural-based

representations of a scene, based on visible information. To generate different images in the

signal-based sequence, the authors remove high frequency components of the image. The

sequence of structural-based representations is formed by sequentially removing the low

frequency information but keeping the edges of the image.

Utility assessment is usually studied with images that represent the scene in the visible part

of the spectrum [Ullman and Power, 1997, Kosslyn, 1975]. In this chapter, our goal is to

explore whether or not using representations of a scene other than visible spectrum images

can facilitate the cognition task. To this end, we study how well NIR images perform in utility

assessment.

Since the general shape of the objects does not change in the NIR images, edges that cor-

respond to the object boundaries are present in these images, as can be seen in Figure 4.2.

On the other hand, reflection in the NIR part of the spectrum mostly does not depend on

color, so some of the patterns and fine details in the real scene disappear from the NIR images

while they are perceivable in the visible images. For instance, in Figure 4.2, patterns on the

cup and the background are attenuated or disappear altogether in the NIR image. As visual

cognition occurs mostly based on the shape properties of the objects rather than the objects’

patterns and the fine details in the scene [Ullman and Power, 1997, Sassi et al., 2010] the lack

of fine details in NIR images compared to visible should not considerably affect the cognition

threshold. Moreover, in some cases the presence of surface patterns in the visible image

may create more difficulties in recognizing the scene. For example in Figure 4.2, the surface

patterns of the cup and the background in the visible image are distracting, while in the NIR

image the shape of the cup can easily be perceived.
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(a) (b)

(c) (d)

Figure 4.2: (a) Visible image, (b) NIR image, (c) Edge map of the smoothed visible image, (d)
Edge map of the smoothed NIR image. The edge maps were produced by using difference of
Gaussians on the low-pass filtered image.

4.1 Methodology

We apply the signal-based representation framework proposed in Rouse and Hemami [2007]

to generate the sequence of distorted images for visible and NIR representations, and conduct

a subjective test to measure the human cognition threshold for these representations.

We acquire 22 images of size 412×412, which represent 11 different natural scenes in the

visible (luma channel only) and NIR parts of the spectrum. Figure 4.3 shows the images and

a description for each image. The scenes are chosen to be similar to the images used in

Rouse and Hemami [2007]. The sequence of distorted images is generated with JPEG2000

image compression [Taubman et al., 2002], which is fairly consistent with human perception.

JPEG2000 mostly removes highly textured regions in the image [Sheikh et al., 2005], which are

not considered useful information for cognition [Ullman and Power, 1997].

The bitrates of the compressed images were at first chosen to be logarithmically equally

spaced between 0.017 and 0.765 bpp, to generate 16 images (as as been proposed in Rouse
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(a) girl in a field (b) girl playing keyboard

(c) guitar player (d) girl in a library

(e) train (f) cyclist

(g) car (h) soccer player

Figure 4.3: The visible and NIR representations of the scenes used in the test.
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(i) boat (j) building

(k) girl reading book

Figure 4.3: The visible and NIR representations of the scenes used in the test (cont.).

and Hemami [2007]). After conducting a preliminary test, however, we find that this results

in the same cognition thresholds for different observers. To increase our accuracy, we then

generate 31 images with the following bitrates and use those in our main experiment:

bitrate/bpp ∈ { 0.0170, 0.0201, 0.0210, 0.0222, 0.0229, 0.0234, 0.0239, 0.0246, 0.0278, 0.0307,

0.0327, 0.0344, 0.0393, 0.0457, 0.0550, 0.0644, 0.0774, 0.0920, 0.1078, 0.1255, 0.1511, 0.1815,

0.2041, 0.2396, 0.2864, 0.3411, 0.4078, 0.4863, 0.5481, 0.6480, 0.7600 }

Figure 4.4 shows some images in that sequence.

A subjective test is conducted to identify the observers’ cognition threshold for both types

of representations. Since there are two representations of each scene (NIR and visible), it is

important to make sure that each subject observes only one type of representation per scene.

Thus, observers who view the NIR image of a specific scene do not judge the corresponding

visible image and vice versa. Each observer views a set of 31 compressed versions of each

scene, which evolves from very low quality to the highest quality. At each version, they are

asked to provide a general description of the scene. No time limit is imposed in the test. The

bitrate of the first image from which the observer is able to describe the scene correctly is

recorded as the cognition threshold for each scene and observer. The average cognition bitrate
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for each scene and all the observers is computed as the cognition threshold for that scene.

30 observers (11 female, 19 male) with normal or corrected-to-normal acuity participate in the

test, with ages from 24 to 39. Thus, each representation of the scene is viewed by 15 observers.

A 24" display (Apple LED cinema display) with a resolution of 1920×1200 pixels is used to

display the images, and normal office lighting is used in the test environment. The observers

are seated at a distance of 40cm from the display. The 412×412 images are displayed on a gray

background (R =G = B = 128).

4.2 Results and Discussion

To study the difference between the cognition threshold for NIR and visible images, we first

analyze the mean cognition bitrate (Mi ) for both the NIR and visible representations of all

scenes in the database.

Mk =
∑N

i=1 mk,i

N
k ∈ {NIR,VIS} (4.1)

where N = 15 is the number of valid observations for evaluating the k representation. mk,i is

the cognition threshold for evaluation of the k representation by the i th observer. Figure 4.5

shows Mk for all the images in the database. The confidence interval for each image, as shown

in Figure 4.5, corresponds to the 95% confidence level. For 10 images, the NIR representation

has a cognition threshold at a lower bitrate than the visible representation. We apply the

analysis of variance (ANOV A) test [Snedecor and Cochran, 1989] in order to find out if the

difference of the mean cognition bitrate is statistically significant. The smaller the p, the

more significant the difference between the cognition bitrate of NIR and visible images. A

typical value for rejecting the hypothesis that the scores for different representations come

from the same population is p < 0.05. As noted in Table 4.1, for 8 out of the 11 images in the

database, observers are able to accurately describe the scene in the NIR representation at a

bitrate that is statistically significantly smaller than required for the visible images. For the

“soccer player” (h) and “boat” (i) images, although the cognition bitrates of the NIR images are

lower than the cognition threshold for the visible images, the difference is not significant. We

notice that for the “soccer player” image, the observers were mainly focusing on the central

part of the images and could not recognize the ball and the pose of the soccer player’s foot,

thus they could not come up with the exact description of “soccer player” at low bitrates for

the NIR or visible representations. In the case of the “boat” image, the visible representation

does not contain many fine details. Therefore, both the NIR and visible image have little
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(a) 0.020 bpp (b) 0.026 bpp

(c) 0.039 bpp (d) 0.067 bpp

Figure 4.4: Four of 31 images of the scene “guitar player” with bitrate increasing from 0.020 to
0.067 bpp (top: NIR image, bottom: visible image).
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Figure 4.5: Mean cognition bitrate for both visible and NIR representation of all the images in
the database.

high-frequency information and their cognition thresholds do not differ significantly. As can

be seen in Figure 4.5, it is easier to recognize the “building” scene (image (j)) in the visible

representation. However, the difference in cognition thresholds in NIR and visible images is

not statistically significant.

Image label (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

p value 0.002 0.036 0.007 0.022 0.000 0.009 0.001 0.190 0.314 0.072 0.0011

Table 4.1: p value for all the image pairs in the database.

These results suggest that in many cases it is easier to recognize scenes from distorted NIR

images than visible images. However, when different colors (or intensities) within the same

material are essential for scene recognition, the NIR representation might fail. For instance, a

scene containing a flower surrounded by other vegetation would be recognizable in the visible

image even if the image is highly distorted (see Figure 4.6). Flower and grass have the same

chemical composition and appear the same in the NIR images. Thus, choosing the NIR or the

visible representation in cognition tasks depends on the specific application. While in many

situations compressed NIR images are more easily recognized than their visible counterparts,

the appropriateness of their material dependency needs to be evaluated for a given scenario.
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(a) Visible image (b) NIR image

(c) Compressed visible image (d) Compressed NIR image

Figure 4.6: A typical photograph with vegetation. Flower and grass have the same chemical
characteristics and appear the same in the NIR image.

4.3 Conclusion

We have examined the usefulness of the NIR representation in cognition tasks and compared

the cognition thresholds of NIR and visible images. The cognition thresholds in NIR and

visible images were evaluated using a sequence of compressed images. The results of the

subjective test verified the hypothesis that for scene recognition, in many cases the NIR image

is a better representation than a visible image. By extending this result to automatic scene

recognition and object detection, we expected that recognizing those classes of objects will be

easier for computers when NIR information is available.
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5 Incorporating NIR in Image Classifica-

tion

In this chapter, we tackle the scene categorization problem in the context of images where

both standard visible RGB channels and near-infrared (NIR) information are available. Using

efficient local patch-based Fisher Vector (FV) image representations, we show, based on

thorough experimental studies, the benefit of using this new type of data. We investigate

which image descriptors are relevant, and how to best combine them. In particular, our

experiments show that when combining texture and color information, computed on visible

and near-infrared channels, late fusion is the best performing strategy and outperforms the

state-of-the-art categorization methods on RGB-only data.

Scene recognition is a long-standing problem in computer vision, being an important element

in contextual vision [Heitz and Koller, 2008, Torralba, 2003, Qiang et al.]. Scene recognition

capabilities are also beginning to appear in digital cameras, where “Intelligent Scene Recog-

nition” modules can help in the selection of appropriate aperture, shutter speed and white

balance.

Scene recognition is a core task of computer vision. Various methods have been proposed

using different types of descriptors [Oliva and Torralba, 2001, Fei-Fei and Perona, 2005, Vogel

and Schiele, 2007, Lazebnik et al., 2006, Xiao et al., 2010]. The recent study of Xiao et al. [2010]

shows evidence in favour of patch-based local descriptors for color images, which has also

been extended by Brown and Süsstrunk [2011] to the context of Color+NIR images.

This chapter contributes an extensive study on how NIR information can be efficiently in-

tegrated in scene categorization frameworks. Experiments are conducted on a recently re-

leased [Brown and Süsstrunk, 2011] Color+NIR semantic categorisation dataset. When rel-

evant, some of our observations are also confirmed on two additional visible-only datasets.
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Figure 5.1: The proposed framework overview.

In our study, we apply a well-performing and generic categorisation method that works as

follows: Texture or color local descriptors are encoded using Fisher Vectors [Perronnin and

Dance, 2007] to produce image signatures that are then fed into discriminative classifiers.

We show evidence that the categorisation method we use is highly competitive, for both

Color+NIR images and standard datasets, making it a suitable framework for our study. Our

contributions are three-fold: First we confirm the observation that, consistent with previous

work, the combination of both color and NIR cues can be useful for image categorisation tasks

on a state-of-the art pipeline. Second, we propose a thorough study on how to compute and

best use texture and color descriptors when NIR information is available. Third, we investigate

the complementarity between the different descriptors considered and propose efficient ways

to combine them. This chapter is based on Salamati et al. [2011b].

5.1 The Proposed Approach

For our study, we use the Fisher Vector as an image representation (see Section 3.1.2 for more

details). We vary the number of Gaussians in the visual codebook from 64 to 2048 and observe

very little difference between classification scores, for both SIFT and color descriptors. We

set 128 Gaussians for all our experiments on NIR. Similarly, for the PASCAL dataset we obtain

no more improvement after 256 Gaussians. Consequently, we used this number for the two

visible datasets.

During training, signatures from all training images are used to train a classifier. This classifier

is then applied to each testing image signature. We use linear SVMs with a hinge loss as

classifier and stochastic gradient descent (SGD) algorithm [Bottou] to optimise it in the primal

formulation. The framework is fully discussed in Section 3.1, and an overview of this framework
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Figure 5.2: RGB-NIR color components of a scene and the corresponding channels in the
PC-space. Note that there is visibly less energy in the later components.

is illustrated in Figure 5.1.

Image Channels and Feature Vectors. We use two types of feature vectors. First we consider

the popular SI F T [Lowe, 2004] descriptor. We use the classical 4-by-4 bins decomposition of

the patch, with 8 orientation histograms computed for each bin. The concatenation of these

histograms leads to a 128-dimensional descriptor (see Section 3.1 for more details).

The second type of feature vector looks directly at the intensity values in each image chan-

nel [Perronnin et al., 2010]. For a given channel, we similarly consider a 4-by-4 bin decomposi-

tion of the patch, and each bin is described by the mean and standard deviation of the intensity

of pixels in that bin. This produces a 32-dimensional vector per channel, and we obtain the

final feature vector, called COL, by concatenating the vectors of the relevant channels.

For visible-only datasets, images are described by 3 color channels: r , g and b. For the NIR

dataset, the original images contain 4 different channels, r , g , and b for the visible part, and a

near-infrared (NIR) channel denoted by n. We additionally consider the luminance channel

denoted by l , which can be computed on the visible part (r ,g ,b).

As in Brown and Süsstrunk [2011], we consider an alternative way of dividing images into

channels. The initial 4D (r ,g ,b,n) vector is decorrelated and a PCA projection is computed.
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r g b n p1 p2 p3 p4 l
SI F T SI F Tr SI F Tg SI F Tb SI F Tn SI F Tp1 SI F Tp2 SI F Tp3 SI F Tp4 SI F Tl
COL COLr COLg COLb COLn COLp1 COLp2 COLp3 COLp4 -

Table 5.1: Summary of basic features considered for combination.

Afterwards, each pixel can be described in this new four-dimensional space, as p1, p2, p3,

p4. This new color space can replace the conventional channels. This projection takes place

such that the first component, i.e., p1, explains the maximum amount of variance of the

data. In other words, the first component captures the largest amount of information in the

decomposition (see Figure 5.2 for an example). Brown and Süsstrunk [2011] showed that it is

composed of a positive and almost equal contribution of all 4 channels.

The SIFT and COL descriptors can be applied and combined in different ways on these

channels, hence we obtain a large set of possible features for building the image signatures.

Table 5.1 summarises the basic features we consider for further combinations. We use the

following notations. SI F Ti , j ,k denotes the concatenation of the SI F Ti , SI F T j and SI F Tk

features, computed on the channels i , j and k respectively. Similarly, COLi , j ,k concatenates

the COLi , COL j and COLk descriptors into a 96-dimensional descriptor. For 2 and 4 channels

(such as SI F Tl ,n and COLr,g ,b,n) similar rules are applied.

5.2 Datasets

Our experimental study is conducted primarily on a recently released dataset, the EPFL

scene-classification dataset (EPFL) [Brown and Süsstrunk, 2011], containing images that are

composed of visible and infrared channels.

Some of our observations can be transposed to standard color images. In these cases, we show

additional evidence on two other datasets, composed only of traditional visible (RGB) images.

The first one is another scene dataset (MIT-Scene 8), and the other one is a standard object

classification dataset (PASCAL VOC 2007).

Near Infrared Dataset. The EPFL scene-classification dataset consists of 477 images, divided

into 9 scene categories (Country, Field, Forest, Mountain, Old building, Street, Urban, Water,

Indoor). Although the number of images in this dataset is limited, it contains challenging

classes. Some classes are fine-grained and contain several common elements: e.g., Old build-

ing (Figure 5.3(d)) and Urban (Figure 5.3(e)) are overlapping, or Country (Figure 5.3(c)) could

be confused with Water. Also, this is the only available benchmark dataset for categorisation
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that contains both RGB and NIR channels for each image.

As described in Brown and Süsstrunk [2011], the dataset was acquired as follows: To capture

the NIR channel, the NIR blocking filter in the digital camera has been removed. As such

modified cameras do not allow for a joint acquisition, two separate exposures have been

captured, a visible only (with NIR blocking filter) and a NIR one (without NIR filter and with

a filter which suppresses visible light). The possible movements between the two shots are

corrected using an alignment algorithm. At the end, images composed of 4 channels are

produced. More details on the transformation between NIR sensor responses and a single

NIR channel can be found in Fredembach and Süsstrunk [2008]. Examples of the RGB and

NIR channels on some images are displayed as pairs in Figure 5.3. On the left, a conventional

RGB image of a natural scene is shown, the right side shows the NIR representation. Note

that, as expected, NIR images generally have similar appearances, although there are some

differences, e.g., bright vegetation and dark sky and water in the NIR channel.

For evaluation, we follow the same protocol as Brown and Süsstrunk [2011]: We randomly

select for testing 11 images per class (99 total) and train the classifiers using the remaining

images. As they did, we repeat this process 10 times, and we report the mean and standard

deviation of the classification accuracy.

Visible Benchmark Datasets. We also use the following two categorisation datasets.

First, we use the MIT scene-8 classification dataset (MIT) [Oliva and Torralba] as it is com-

posed of similar scene categories as the EPFL dataset. It contains 2688 images of 8 outdoor

scene categories: Coast, Mountain, Forest, Open country, Street, Inside city, Tall buildings and

Highways. Following the work of Oliva and Torralba, we randomly select 100 images per class

for training, and the remaining images are used for testing. We repeat this process 5 times,

and report the mean and standard deviation of the average accuracy.

We also test our observations on the popular PASCAL VOC Challenge 2007 dataset (PAS-

CAL) [Everingham et al., b] to show that similar conclusions can be reached for object cat-

egorisation. It contains 9963 images and 20 object classes. In our experiments, we use the

provided split in a training set and a testing set, and we compute mean average precision

(MAP) over the classes. This allows us to fairly compare our results with the state of the art.
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(a) water (b) field

(c) country (d) old-building

(e) urban

Figure 5.3: Some images of the EPFL dataset are displayed as pairs. On the left: the conven-
tional RGB image of the scene, on the right: its NIR counterpart.

5.3 Experimental Study

In this section we describe the experiments we conducted. First, we show the positive influence

of applying the principal component analysis (PCA) to both local descriptors. Then, we analyse

the behaviour of the SIFT and color descriptors independently. Finally, in order to determine

the best suited strategy, different combinations of these descriptors are discussed.

5.3.1 The Influence of PCA on Local Features

In the state-of-the-art framework, a PCA projection is usually applied to reduce the dimen-

sionality of the local descriptors. Here, we study the influence of this step and compare three

configurations: i) no PCA is applied and the original descriptors are directly used to build the

codebook, ii) the PCA is used in order to reduce the dimensionality to D=64 (as in Perronnin

et al. [2010]), and iii) the PCA is applied and descriptors are projected into the PC space,

but the full dimensionality is kept. For the latter case, referred to as Full PCA, the projected

feature vectors have the same dimensionality as the original descriptors. For “visible-only”
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Descriptor SI F Tl COLr,g ,b

PASCAL
Orig. desc. 51.6 37.6

PCA with 64D 59.4 48.2
Full PCA 59.4 48.2

MIT
Orig. desc. 90.1 ± (0.6) 75.8 ±(1.1)

PCA with 64D 92.1 ±(0.2) 86.9 ±(0.3)
Full PCA 92.2 ±(0.2) 86.9 ± (0.4)

EPFL
Orig. desc. 79.1 ± (4.7) 71.6 ± (2.6)

PCA with 64D 83.4 ± (2.6) 80.2 ± (4.1)
Full PCA 83.4 ± (2.8) 81.7 ± (2.8)

Descriptor SI F Tp1,p2,p3,p4 COLr,g ,b,n

EPFL
Orig. desc. 83.8 ± (3.4) 71.1 ± (3.9)

PCA with 64D 85.1 ± (3.4) 81.7 ± (1.8)
Full PCA 85.9 ± (4.0) 82.2 ± (1.6)

Table 5.2: Mean average precision (MAP) for PASCAL, and class accuracy (mean ± std) for MIT
and EPFL, with different PCA configurations.

descriptors (i.e., SI F Tl and COLr,g ,b that use only RGB channels), the results are reported in

the first three sub-tables of Table 5.2 for all three datasets. To study the PCA effect when the

NIR channel is available, we also evaluate SI F Tp1,p2,p3,p4, used in Brown and Süsstrunk [2011],

and COLr,g ,b,n , as a direct extension of COLr,g ,b . The results are shown in the last sub-table of

Table 5.2.

First, we confirm that this PCA step has a crucial role and is needed in the framework. If we

compare Full PCA to the original descriptors, for visible-only feature vectors, the difference is

of a few percent for SI F Tl (7.8% for PASCAL, 2.2% for MIT, and 4.3% for EPFL). For COLr,g ,b ,

differences are larger, about 10%. Similar results are achieved when the NIR channel is

available (few percent for SI F Tp1,p2,p3,p4 and 11.1% for COLr,g ,b,n).

We now look at PCA as a dimensionality reduction method. Table 5.2 reports results for a

reduction to 64 dimensions. We also compare the final accuracy for a wide range of PCA pro-

jection dimensions, for both RGB+NIR descriptors (Figure 5.4). Results show that increasing

the PCA dimensions only very rarely decreases the accuracy, and we consistently observed the

highest mean accuracy for full-dimension PCA. Therefore, we choose to use the full resolution

descriptors on the PCA space for the rest of our tests. Nevertheless, the stability observed

over the set of dimensions indicates that PCA can also be used to reduce the feature vector

dimension and speed up the computations for larger-scale experiments.
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Figure 5.4: EPFL dataset: varying PCA dimensions for SI F Ti and COLr,g ,b,n

5.3.2 Local Descriptors Study

We begin our study by looking at individual descriptors. As mentioned earlier, we consider

two complementary feature vectors. The SIFT descriptor encodes gradient orientation, and

consequently captures both the image contour, and the texture contained in a patch (Sec-

tion 5.3.2). As color information is also a characteristic of scenes, and as an additional channel

(NIR) is available, we then look at the influence of the simple color descriptor COL. We will

show evidence of their complementarity in Section 5.3.3.

SIFT Features

In this section, we investigate different ways of computing SIFT descriptors on RGB+NIR

images. The standard SIFT feature is SI F Tl , which considers the visible-only luminance

channel. SI F Tn describes the NIR sensor response and is an obvious candidate for evaluation.

We also consider SI F Tp1 as, by construction, the channel p1 incorporates a large amount

of information from r ,g ,b and n. Finally, we combine the first two descriptors, SI F Tl and

SI F Tn by concatenating them, as they contain non-overlapping information. Classification

accuracies are shown in Table 5.3.

First, we observe that all these descriptors perform quite similarly. As expected, SI F Tp1

has a rather similar performance with SI F Tl , as it is achromatic and contains a positive

and almost equal contribution of all 4 (as opposed to 3 for SI F Tl ) original channels. More

surprisingly, SI F Tn performs similarly, whereas SIFT computed on any single visible color

channel performs worse (e.g., SI F Tg gets 82.0%± (2.8)). Nevertheless, the loss is not too

important, which shows that some texture information can be kept in any of these channels.
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Descriptor SI F Tl SI F Tl ,n SI F Tn SI F Tp1 SI F Tp1,p2,p3,p4 SI F Tr,g ,b,n
EPFL Accuracy 83.4 ± (2.6) 84.3 ± (3.3) 83.7 ± (2.4) 83.0 ± (2.3) 85.9 ± (4.0) 82.7 ± (3.1)

Table 5.3: Accuracy (mean ± std) on EPFL for SIFT features extracted on different channels.

This is further confirmed on the 2 other datasets (on MIT for instance, SI F Tl is 92.2± (0.2),

while SI F Tr gives 91.9± (0.3)).

SI F Tl ,n , the concatenation of SI F Tl and SI F Tn , gives an accuracy of 84.3%, a small improve-

ment over their individual results and thus confirming that they indeed contain complemen-

tary information.

Instead of using a dedicated color descriptor, as we will do in the next section, the color

information can be included in SIFT by concatenating SIFT descriptors per channel over

the full 4D space. Results for SI F Tr,g ,b,n and SI F Tp1,p2,p3,p4 are also reported in Table 5.3.

SI F Tr,g ,b,n performs equally, and not better than, luminance SIFT, although it uses additional

NIR information. SI F Tp1,p2,p3,p4, the multi-spectral SIFT descriptor proposed by Brown and

Süsstrunk [2011], stands out with 85.9% accuracy. By using a more adapted color space, it

makes better use of both texture and color information.

We could have compared these with other versions of the color SIFT descriptor, as proposed by

van de Sande et al. [2010], but Brown and Süsstrunk [2011] already showed that SI F Tp1,p2,p3,p4

performs better than them.

Color Features

Another feature relevant to classification is color, which looks at the relation between r , g ,

b, and n channel values. In this part, we compare 4 different color descriptors. COLr,g ,b

is the standard one and considers only visible information. Its direct extension to the NIR

domain is COLr,g ,b,n . We also consider RGB+NIR information in the alternative color PCA

space, COLp1,p2,p3,p4. Finally, as the last channel of this descriptor contains little information

and a significant amount of noise, we also look at the reduced COLp1,p2,p3 descriptor. Table 5.4

compares their classification accuracy.

The first observation is that good performance is obtained, even though these color descrip-

tors encode only simple statistics. For instance, COLr,g ,b,n is only 1.5% below SI F Tn in the

EPFL set. COLr,g ,b on visible datasets, although not competetive with SIFT, still achieves fair

performance, considering the simplicity of this descriptor (48.2% on PASCAL and 86.9% on

MIT).
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Descriptor COLr,g ,b COLr,g ,b,n COLp1,p2,p3,p4 COLp1,p2,p3

EPFL Accuracy 81.7 ± (2.8) 82.2 ± (1.6) 83.0 ± (2.2) 83.2 ± (2.4)

Table 5.4: Accuracy (mean ± std) on EPFL, color features on different channel combinations.

Table 5.4 also confirms that incorporating NIR information increases the classification accu-

racy. The visible baseline COLr,g ,b is slightly below COLr,g ,b,n , and is clearly outperformed by

COLp1,p2,p3,p4. This shows that the PCA projection in the color space, which de-correlates the

channels r , g , b, and n, further improves the results of the COL descriptor.

Finally, we can also observe that removing p4, which contains the least amount of information,

does not change the classification accuracy, while slightly reducing the computation cost

(smaller feature dimension).

5.3.3 Fusion of SIFT and Color Information

Now that we have studied SIFT and color descriptors independently, we are interested in

strategies that combine texture and color information. We already considered the SI F Tr,g ,b,n

and the more successful SI F Tp1,p2,p3,p4, which encode both by using only the SIFT descriptor

on multiple channels. In the following, we show that we can go beyond these accuracies by

combining the previously studied SIFT and COL features.

We consider two types of combination. Early fusion is done at the descriptor level, i.e., we

concatenate both extracted features for each patch, and then apply a full PCA projection on the

concatenated descriptors. Late fusion combines the features at the latest stage by averaging

the classifier outputs obtained for both descriptors. In this study, we use equal weights for late

fusion, because optimisation of the weights on a validation set would be difficult, given our

already small training set.

For SIFT, we keep SI F Tl ,n and SI F Tn descriptors as they obtain best performances in the

first part of our SIFT study. For the color feature we test all features considered in 5.3.2, to

see how well they compliment those two SIFT features. Table 5.5 shows the performance of

early fusion (EF) and late fusion (LF) strategies on all 8 possible SIFT/COL pairs. We can draw

several observations from this table.

First, it is clear that late fusion always outperforms early fusion. The difference is often

significant (3% on average). Similar results are also observed for the two visible-only datasets.

For MIT and PASCAL datasets, early fusion of SI F Tl and COLr,g ,b achieves 90.7% (± 0.4) and

54.9%, whereas late fusion obtains 92.4% (± 0.6) and 61%, respectively. This could be explained
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Classifier Descriptor1 Descriptor2 Fusion type Accuracy

FV + SVM, with NIR

COLr,g ,b

SI F Tl ,n
EF 84.3 ± (1.7)
LF 87.4 ± (2.7)

SI F Tn
EF 84.1 ± (2.6)
LF 86.2 ± (2.0)

COLr,g ,b,n

SI F Tl ,n
EF 84.4 ± (2.8)
LF 85.5 ± (2.1)

SI F Tn
EF 84.1 ± (2.9)
LF 86.5 ± (2.4)

COLp1,p2,p3

SI F Tl ,n
EF 83.3 ± (3.4)
LF 86.7 ± (2.7)

SI F Tn
EF 82.9 ± (2.7)
LF 87.5 ± (2.4)

COLp1,p2,p3,p4

SI F Tl ,n
EF 85.8 ± (2.6)
LF 86.5 ± (2.8)

SI F Tn
EF 83.2 ± (3.0)
LF 87.9 ± (2.2)

FV + SVM, no NIR COLr,g ,b SI F Tl LF 84.5 ± (2.3)

Brown and Süsstrunk [2011] – – – 72.0 ± (2.9)

Table 5.5: Accuracy (mean ± std) for different fusions on the EPFL dataset

by the very different nature of the combined descriptors. Building specific classifiers for each

descriptor, and doing a combination at the decision level, is therefore superior.

Second, we can see that all the late fusion combinations, for which at least one descriptor

contains NIR cues, outperform the “visible-only” baseline, i.e., the results obtained by the late

fusion of SI F Tl with COLr,g ,b . This again underlines the usefulness of the NIR information

for this categorisation task.

Finally, we observe the benefit obtained by the proposed strategy: the fusion of independently

trained SIFT and color descriptor-based signatures gives up to 87.9% accuracy, and outper-

forms the multi-spectral SIFT (SI F Tp1,p2,p3,p4) at only 85.9%. The best results are obtained

with SI F Tn +COLp1,p2,p3,p4, but SI F Tn +COLp1,p2,p3 and SI F Tl ,n +COLr,g ,b yield very sim-

ilar performances. For visible only datasets, the same observation holds: SI F Tr,g ,b obtains

86.9% and 54.1%, and the late fusion of SI F Tl and COLr,g ,b achieves 92.4% and 61.0% (MIT

and PASCAL, respectively). This shows that for both standard and RGB+NIR datasets, color

information can improve SIFT based classifiers the most when used as a specific descriptor in

its own pipeline and combined with late fusion.

Comparison with Previous Work. To improve our results, as the geometry is usually ex-

pected to be consistent across scene categories, we combine the FV representation with the

spatial pyramid (SP) technique [Lazebnik et al., 2006], as suggested in Perronnin et al. [2010].

For the visible datasets, we apply SP to SI F Tl and COLr,g ,b independently, and we combine
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them with late fusion. The results1 are indeed further improved on MIT, from 92.4% to 93.6%

and on PASCAL, from 61.0% to 63.7%.

However, when we apply SP on the EPFL dataset, on COLp1,p2,p3 and SI F Tn , their late fusion

gave 87.5%, which is similar to its no-SP counterpart (87.5%). The absence of improvement

can be justified by the limited size of our training set.

All reported results significantly outperform the 72% (± 2.9) on the EPFL dataset reported

in Brown and Süsstrunk [2011]. This difference is partly justified by the FV framework we

used. Using the same local descriptor as Brown and Süsstrunk [2011], i.e., SI F Tp1,p2,p3,p4

reduced to 128D, already leads to a much higher accuracy (85.1 (± 3.4)). Nevertheless, our

experiments confirm that the idea of de-correlating the four color channels allows us to

improve the categorisation accuracy. Based on this color space, our best strategy obtains a

final accuracy of 87.9%.

For the MIT and PASCAL datasets, we obtain results similar or better than the state of the

art. On the MIT dataset, Oliva and Torralba report a classification accuracy of 83.7% with

GIST features. Our best result, 92.4%, was obtained with SI F Tl +COLr,g ,b (LF) and SP. On the

PASCAL dataset we obtain 63.7%, which is comparable to the 64.0% of Zhou et al. [2010].

5.4 Conclusion

In this chapter, we have presented a thorough study of the scene categorisation problem,

in the case where NIR information, which can be captured by a normal digital camera, is

available in addition to visible light. This study is based on the Fisher Vector representation, a

generic and powerful categorisation framework. As a conclusion specific to that method, we

have shown the usefulness of applying a PCA projection to local descriptors.

Through the study of two generic local descriptors, we have obtained NIR specific conclusions.

First, we have shown that NIR is a useful piece of information that, combined with visible

cues, can improve recognition. In particular, the SIFT descriptor in the NIR domain performs

similar to the standard luminance-based SIFT. Both are outperformed by the concatenation of

SIFT descriptors computed on each channel of the alternative PCA color space (p1, p2, p3, p4).

Second, we have also investigated the best way to include the 4D color information in our

categorisation method. We propose using a color descriptor that encodes local statistics about

1As SP increases the image signature dimensionality, we reduce the feature vectors to 64D for these last
experiments.
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color information and the NIR channel. This simple descriptor performs almost as well as the

SIFT alternative, in particular in the alternative PCA color space instead of the conventional

r , g , b, and n space. The late fusion of FV signatures computed on the best color descriptor

(COLp1,p2,p3,p4) and on the NIR SIFT descriptor (SI F Tn) is shown to be the best categorisation

strategy, and outperforms multi-channel SIFT descriptors.

This observation generalises to visible datasets, showing that color information can be bet-

ter used in a specific descriptor. A classifier trained on color-descriptor based signatures,

combined by late fusion with a complementary SIFT based classifier, outperforms the multi-

channel SIFT descriptor (SI F Tr,g ,b).
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6 Material-Based Boundary Detection

In this chapter we determine where material changes occur in an image, based on low-level

features, i.e., we segment the image so that the segment boundaries correspond only to object

boundaries.

NIR radiation generally penetrates deeper than visible light into an object’s surface and can

reveal the underlying material characteristics [Burns and Ciurczak, 2001, Pohl and Van G.,

1998]. As such, changes in intensity in the NIR image are due to material and illumination

changes, but not to color variations within the same material (see Figure 6.1 for illustration).

One source of mis-segmentation are shadows that occur due to the shape of the object and/or

the geometric arrangement of the object and the light source. Many algorithms have been

proposed to correct the color values in an image so that the edges corresponding to shadows

are not confounded with object boundaries [Brill, 1990, G.D. Finlayson and Lu, 2006]. Some

shadow removal frameworks try to recover an image based on the ratios of color bands, in

which the absolute intensity variation over an object is reduced and the result is invariant to

shadows [Funt and Finlayson, 1995].

Inspired by the 4-sensor camera calibration model by Finlayson and Drew [2001], we combine

both visible RGB and near-infrared (NIR) images to obtain an intrinsic image that is inde-

pendent of illumination. Different pixel values represent reflectance variations (thus color

and material changes), but they are shadow-independent. The union of the NIR and intrinsic

image segmentations results in segment borders that are only caused by material changes, but

not by color and shadow variations within the object. This chapter is based on Salamati and

Süsstrunk [2010].
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(a)

B B

(b)

(c) (d)

Figure 6.1: The mean shift segmentation result of visible and NIR images. The first row
shows the color image and its segmentation result, the second row is the NIR image and its
segmentation. Note the oversegmentation resulting from changes in illumination BH

i or
colors BC

i within the object.
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6.1 Our Proposed Approach

Figure 6.1 shows the segmentation result of a visible image and its NIR counterpart. As

illustrated in Figure 6.1 (b), the segment borders in the visible image Bv are due to changes in

color, as well as due to areas with different shadows and shading:

Bv = BC ∪BH (6.1)

where BC is the set of all the borders due to color changes and BH is the set of borders between

areas in which the illumination is different.

In NIR images, changes in material, shading, and cast shadows are responsible for the borders

Bn (see Figure 6.1 (d) for illustration). Thus,

Bn = BM ∪BH (6.2)

where BM is the set of all borders due to material changes.

To achieve an accurate material-based segmentation, we need to eliminate the borders gener-

ated due to different illumination conditions and to varying colors within the same material.

Our proposed approach involves creating an image independent of the lighting conditions,

i.e., an intrinsic image. Its segment borders Bi are therefore due to changes in material or color

only.

Bi = BM ∪BC (6.3)

We then derive our material-based segmentation by applying the "∩" operator to the NIR and

intrinsic image segmentation results:

Bn ∩Bi = (BM ∪BH )∩ (BM ∪BC ) = BM ∪ (BH ∩BC ) ' BM (6.4)

The term BH ∩BC is usually not significant, because an illumination-based border and a color

border are unlikely to randomly coincide for more than a few pixels. However, in cases where

both BH and BC coincide due to the object’s geometry (e.g., the cube in Figure 6.2 with the

sides colored differently has both color and shading borders at its edges), our approach will

incorrectly oversegment the picture.
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B
i

i& B
H

C

Figure 6.2: An example of an object, in which an illumination-based border and a color border
coincide.

6.2 The Physical Properties of Visible and NIR Signals

Visible and NIR image intensities depend on the interaction between the surface properties of

the object, illuminants, and the camera. The color signal C (λ) describes the influence of the

scene, i.e., object and illuminants:

C (λ) = S(λ)×E(λ) (6.5)

where S(λ) is the reflectance of the surface and E(λ) is the illuminant spectral power distri-

bution. Figure 6.3 depicts three different relations that can hold between the signals C (λ) of

different regions in an image and their interpretation.

The sensor response Ik of a sensor k with sensitivity Rk can be simplified as

Ik =
∫ 1100

λ=400
C (λ)×Rk (λ) dλ=

∫ 1100

λ=400
S(λ)×E(λ)×Rk (λ) dλ (6.6)

We use k ∈ {R,G ,B , N I R} for the 4 channels available to us.
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(a) (b)

(c) (d)

Figure 6.3: Three different relations that can hold between the color signals C (λ) of two regions
in an image. (b) Region (2) is under a shadow, (c) (1) and (2) are of the same material but
colored differently, and (d) a color and material change occurs.

Depending on the location of the object with respect to the camera and the light source,

a shadow can be cast. This shadow results in a reduction of measured intensity. As a first

approximation, we describe the image intensity in the lit and shadow part of the object I l i t
k ,

I shade
k as follows (see Figure 6.3 (b) for illustration): If

I l i t
k =

∫ 1100

λ=400
S(λ)×E(λ)×Rk (λ) dλ (6.7)

then the shadow part of that object is described as

I shade
k =

∫ 1100

λ=400
S(λ)×aE(λ)×Rk (λ) dλ (6.8)

where a represents a fraction of the light intensity (0 ≤ a ≤ 1).

We assume thereby that the ambient light (illuminating the shadowed parts of the object)

shares its spectral characteristics with the main light source. Although this assumption does

not hold in general, it has successfully been applied in other color correction models [Levine

75



Chapter 6. Material-Based Boundary Detection

and Bhattacharyya, 2005]. We then consider the following relations and find that the ratio

of the IRGB to the IN I R response across a material with a certain color stays unaffected by

shadows:

[I shade
R , I shade

G , I shade
B ] = a[I l i t

R , I l i t
G , I l i t

B ] and

I shade
N I R = aI l i t

N I R

=⇒ [I l i t
R , I l i t

G , I l i t
B ]

I l i t
N I R

= [I shade
R , I shade

G , I shade
B ]

I shade
N I R

(6.9)

The second interesting case is when both regions belong to the same material, but are colored

differently (see Figure 6.3 (c) for illustration). NIR imaging is ‘transparent’ to a number of

colorants and dyes; it can see through the first layer and reveal the material surface under-

neath [Salamati et al., 2009]. Thus, the NIR images reveal more information about the material

an object is made of.

Each class of material has an affinity towards a certain class of colorants (chemistry and

functional bond specific), due to the chemistry and the process of coloring different materials.

Hence, even if the object colors are not transparent to the NIR spectrum, the NIR response

is likely to be the same (I (1)
N I R = I (2)

N I R ) [Burns and Ciurczak, 2001], because the different

colorants used to dye the material are probably chemically similar. Consequently,

[I (1)
R , I (1)

G , I (1)
B ]

I (1)
N I R

6= [I (2)
R , I (2)

G , I (2)
B ]

I (2)
N I R

. (6.10)

This assumption does not always hold, particularly for very dark dyes that tend to also absorb

in NIR.

Figure 6.3 (d) shows a change in both color and material. In this case, the ratio of IRGB to IN I R

is not constant for the two patches (see Equation 6.10).
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6.3 Forming the Intrinsic Image

Up to now, we have argued that R , G , and B to N I R ratio images are potentially able to present

changes that correspond to either different materials or different colors within that material.

Inspired by the physics of the NIR and color signals of a surface, we modify the algorithm

by Finlayson and Drew [2001]. Their color-constancy-at-a-pixel algorithm tries to find the

coordinates in which the ratio image is invariant to both intensity and color of the illuminant.

It is based on the assumption that the illuminants can be modeled as having black-body

spectra. It also assumes sensors receptive to a single wavelength λk only, i.e., the sensor

response can be modeled by the Dirac delta function. With these assumptions, the logarithmic

response of sensor k for an illuminant E(λ,T ) can be calculated:

E(λk ,T ) = K1λk
−5e

− K2
Tλk

Ik =
∫ 1100

λ=400
S(λ)×E(λ,T )×δλk (λ) dλ= S(λk )×E(λk ,T )

=⇒ log (Ik ) =− 1

T
(

K2

λk︸︷︷︸
Ek

)+ log
(
K1λ

−5S(λk )
)︸ ︷︷ ︸

Sk

(6.11)

Here, S(λk ) is the reflectance of the surface being imaged at wavelength λk , T is the color

temperature of the light, and K1 and K2 are constants. The first term in this equation, − 1
T Ek ,

depends on the illuminant’s color temperature, and the last part, Sk , depends on the surface

reflectance. Given 4 sensors k ∈ {k1,k2,k3,k4}, subtracting the response of one logarithmic

sensor from those of the other 3 sensors gives us the equation of a line in 3-dimensional

space in which the reflectance dependent part appears as the intercept and the illuminant

dependent part is the slope of the line.

log (
Ik1

Ik4

) = l og (Ik1 )− log (Ik4 ) = Sk1 −Sk4 −
1

T
(Ek1 −Ek4 )

log (
Ik2

Ik4

) = l og (Ik2 )− log (Ik4 ) = Sk2 −Sk4 −
1

T
(Ek2 −Ek4 )

log (
Ik3

Ik4

) = l og (Ik3 )− log (Ik4 ) = Sk3 −Sk4 −
1

T
(Ek3 −Ek4 ) (6.12)

Thus, adjusting the color temperature of the light source T changes the log-ratio of the sen-

sor responses along a single direction. This 3-dimensional space can be projected onto
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(a)

(b)

Figure 6.4: (a) The log ratio of 10 samples under different light sources/shadows. The intensity
ratio of all the samples under different lights lies along a single direction, (b) The chromaticity
space given by the projection onto the second and third principle eigenvectors.

a 2-dimensional space where illuminant induced variation is minimized, i.e., the new 2-

dimensional representation of any image will be independent of the illuminant’s color tem-

perature. As we assumed that the illuminant’s only characteristics are intensity and color

temperature and we eliminated both, we now have an illumination-independent representa-

tion.

To find the actual numbers for this conversion on our camera, we measure the reflectances of
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50 objects in the visible and NIR spectrum. Together with the known wavelengths for the 4

camera sensors, they allow us to calculate theoretical sensor responses Ik , k ∈ {R,G ,B , N I R}

under different Planckian light sources with temperatures of 3000,5000,6000,6500 Kelvin, as

well as under equi-energy lighting.

The log-ratios, RI R , BI R and G I R , are then computed as follows:

RI R = ln(
IR

IN I R
), G I R = ln(

IG

IN I R
), BI R = ln(

IB

IN I R
) (6.13)

Figure 6.4 (a) shows the log ratio of 10 samples under 6 different illuminants. All the intensity

ratios of the samples under different lights roughly lie along a single direction. For all the

samples under different light sources, the covariance matrix

cov =


cov(R,R) cov(R,G) cov(R,B)

cov(G ,R) cov(G ,G) cov(G ,B)

cov(B ,R) cov(B ,G) cov(B ,B)

 (6.14)

can then be computed. The best coordinate system is found by the eigenvectors of the

covariance matrix. For our database, the eigenvectors are:

C =


0.378 0.89 0.23

0.54 0.00 −0.84

0.75 −0.44 0.49



The samples’ log-ratios are projected onto the two eigenvectors with smaller eigenvalues using

the following equation:

 PC 2

PC 3

=
 0.89 0.00 −0.44

0.23 −0.84 0.49

×


RI R

G I R

BI R

 (6.15)

Figure 6.4 (b) shows the samples in the database in the new space. In this space, each sample

under a specific light source appears as a dot, and the same sample under other light sources

projects to approximately the same position. Applying Equation 6.13 and 6.15 at each pixel

position produces the desired intrinsic image, see Figure 6.5 for some examples. Figure 6.5 (c)

and (e) are taken under an unknown illuminant. Their results, however, are fairly invariant to

the light source’s intensity. This can be explained by the object reflectances in the NIR part of
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the spectrum, as discussed in Section 6.2.

The primary drawback associated with this approach is its inability to differentiate dark plastic

objects situated close to brighter objects (as illustrated in Figure 6.5 (h) where a black object is

placed in front of the grey background or the white parts of the doll). Carbon black is used as

a pigment in rubber and dark plastic products (polymers in general). This pigment reflects

almost no light in both the visible and the NIR part of the spectrum and therefore appears dark

in both images. Thus, the shadow relation can hold between the black object and brighter

grey or white surroundings, and both will be mapped onto the same value.

6.4 Our Segmentation Procedure

The idea is to segment the illuminant-independent images as well as the NIR images. As it

has already been formulated in Equation 6.2 and 6.3, segment borders Bn in the NIR images

are formed due to changes in material or in the illuminant, and segment borders Bi in the

intrinsic images are formed due to changes in material or color. Thus, logically, the physical

object boundaries are those present in both images.

To segment the images, the mean shift algorithm is applied to both intrinsic and NIR images.

It is an image clustering method based on color and spatial features [Comaniciu and Meer,

2002]. The main idea behind the algorithm is to compute for every single pixel a series of mean

values in feature space. The mean is shifted towards more densely populated regions in the

feature space. Each segment contains all data points in the attraction basin of a convergence

point. This approach does not require a priori knowledge of the number of segments (see

Section 3.2.1 for more details).

The feature space for segmenting NIR images is the pixel intensity, and for illuminant-invariant

images, PC 2 and PC 3 coordinates form the feature vector. A key feature to make our imple-

mentation work is the detection of all the boundaries corresponding to material changes. To

ensure this even for the (single-channel) NIR image segmentation, the resolution parameters

for the mean shift algorithm are chosen 10% larger than those for the intrinsic images.

After segmentation, the borders of all segments form a binary edge map. As the resolution

parameters of the segmentation algorithm are different for the intrinsic and NIR images, the

corresponding segment borders of these two images might not overlap. Thus, the binary edge

maps are dilated with a circle of size 3 as the structuring element. The final segmentation is

the result of applying the "∩" operator on the dilated edge maps of the segmented NIR and
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illumination-invariant images. Figure 6.6 provides a flowchart detailing the segmentation

framework.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: (First Column) visible images and (second column) the illuminant-independent
representation. To visualize images in the new space, we present PC 2 and PC 3 as a and b
values in the C I EL AB color space. Lightness value is chosen to be 60 for all the intrinsic
images.
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6.5 Results

All the images were photographed in the visible and the NIR range of the spectrum. The

camera we used is a modified Canon EOS 300D [Fredembach and Süsstrunk, 2008].

We compare the mean shift visible/NIR segmentation with the mean shift on visible images

only. The results are shown in Figure 6.7. This comparison provides useful insight into how

accurately our segmentation procedure is able to find the physical object’s boundaries. We

notice that regions with a small gradient of illumination or color are successfully segmented

as a single region. For instance, the orange in Figure 6.7 (e) and (i) (visible-only) is divided into

different segments because of the changes in illumination, whereas in Figure 6.7 (f) and (j)

(visible+NIR) the actual physical boundary of the orange is detected.

As the green object on the wall in Figure 6.7 (i) and (j) demonstrates, the precision in object

boundary retrieval is higher using the proposed framework. The visible-only segmentation

results are more sensitive to the resolution parameters in the mean shift algorithm, due to

variations of illumination. In visible-only segmentation there is always a trade-off between

accurate borders and additional segments detected within an object. With our approach,

however, we can simply increase the resolution parameter to obtain the exact boundaries in

both NIR and intrinsic image segmentations. By applying the “∩” operator, all the undesired

segments are removed.

The main drawback of our approach is the loss of the dark plastic objects in segmentation

when they are set against an achromatic background. (see Figure 6.7 (f)). Another drawback

of this method is the presence of some segment borders in the result that do not correspond

to any changes of material (see Figure 6.6: the segmentation result of the doll around the eye

and the collar). This mis-segmentation occurs when there are many variations in the channel

intensities due to the illumination. Then there are be so many borders in the NIR image,

corresponding to the changes of illumination, that they randomly intersect with the borders

due to changes of color in the intrinsic image and form new segments. This could be mitigated

by postprocessing the merged edge map or using a more sophisticated merging operator. Over-

segmentation due to object geometry and corresponding coloring (see Section 6.1) seems to

be unavoidable with this approach.
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Figure 6.6: The flowchart detailing the segmentation framework.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.7: (First Column) visible-only image segmentation result, (second column) segmenta-
tion result using joint information.
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6.6 Conclusion

We have presented a method that accurately detects physical object boundaries in images

by using visible RGB and N I R information. In order to discard the borders corresponding to

color changes within an object, we propose using NIR image segmentation only. By combining

the NIR information as the fourth channel, along with RGB values, to form an illumination-

independent image, we can achieve a shadow-free representation of the scene. The union of

the two segmentation results produce segments that are only material dependent. By applying

the proposed framework on real images, we show that segmentation using NIR information,

as well as visible images, yields more accurate results in detecting physical object boundaries,

especially when the object consists of one material.

In this chapter we have shown that the material-dependeny characteristics of NIR images

improve the border accuracy of low-level segmentation and the detected borders correspond to

the actual boundaries of the physical object. The results suggest that in order to more precisely

extract the object pixel-level location, the special characteristics of NIR can be incorporated in

a more sophisticated high-level segmentation framework. As the next step, to obtain a better

semantic segmentation result, we propose leveraging the information available in the NIR

domain. Essentially we propose combining both the visible and the NIR information in a joint

graph based model. The 4-channel image is used to efficiently recognize and roughly locate

the object of interest in the image. The NIR information is expected to improve the accuracy

of the recognition results as well as boundary accuracy.
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Our task is to recognize and locate, at the pixel level, different categories of objects (e.g., Tree,

Building, etc.) in an image. For example, in Figure 7.1, the segmentation of a cup (image mask)

is shown in the right image.

Figure 7.1: (left) input image, (right) segmentation of the cup.

Segmentation algorithms usually fail in the presence of a cluttered background or distractor

objects. Even when the appearance of objects can be successfully recognized, the contour of

the objects can be confused with strong edges coming from the background clutter or any

distracting regions. Inhomogeneities, such as shadows, specularities, changes of color within

the object and variations in pigment density, will introduce gradients in the image, which

can confound segmentation algorithms; thus resulting in multiple distinct segments being

assigned to one single object.

In this chapter, we consider how to avoid mis-segmentation due to variations in surface color

and shadows, in both indoor and outdoor scenes. To this end, we incorporate the near-infrared

(NIR) information into low-level and high-level segmentation frameworks.

We are interested in the problem of semantic segmentation, i.e., assigning each pixel in an
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image to one of several semantic classes. This is a supervised learning problem in contrast

to “classic” unsupervised segmentation that groups pixels into homogeneous regions based

on low-level features, such as color or texture. We propose a novel graph-based energy

minimization approach that combines visible and NIR information in order to produce a

segmentation. In this chapter, we describe our graph-based model that captures both the

visible and the NIR channels and uses the unique benefits of each channel in an appropriate

manner to segment a given image. This chapter is based on Salamati et al. [2012].

7.1 Our Proposed CRF Framework

We propose to use the CRF model that is described in Section 3.3. In our CRF model, the

energy function E (x) is composed of two terms, a unary potential Eun and a pairwise potential

Epai r
1. The unary term is responsible for the recognition part of the model and the pairwise

term encourages neighboring pixels to share the same label. We assign a weight λ to Epai r

that models the trade-off between recognition and spatial regularization.

E(x) = Eun(x)+λEpai r (x)

= ∑
i∈ν

ψi (xi )+λ ∑
(i , j )∈ε

ψi , j (xi , x j ) (7.1)

where ν corresponds to the set of all image pixels and ε the set of all edges connecting the

pixels i , j ∈ ν in 4×4 or 8×8 neighborhood.

In this model, both the unary and the pairwise potential are built using information extracted

from the RGB images. In the following, we will show how to extend both the unary and the

pairwise potential by integrating the NIR channel (or denoted for simplicity N channel) in the

above energy term.

7.1.1 The Unary Term

The unary part ψi (xi ) of the CRF is defined as the negative log of the likelihood of a label xi

being assigned to pixel i . It can be computed from the local appearance model for each class.

(See Section 3.3 for more details.)

Eun(x) = ∑
i∈ν

ψi (xi ) = ∑
i∈ν

− log(P (Xi = xi | D))

1As discussed, more complex models can contain higher order potentials

88



7.1. Our Proposed CRF Framework

The local appearance is defined at every pixel location, on a regular grid, or at interest points.

To build our local appearance model, we follow Csurka and Perronnin [2011] and use patch

level Fisher Vectors (FV) to train the classifiers. We then propagate the patch based predictions

to obtain class probability maps.

This consists of extracting overlapping image patches on a multi-scale grid and describing

them with low-level descriptors, such as SIFT. The dimension of these features can optionally

be reduced by using principal component analysis (PCA) before building a Gaussian-mixture-

model (GMM) based visual vocabulary. This allows us to transform, for each patch, the

low-level representation into an FV (see for more details Section 3.3 and Perronnin et al. [2010],

Csurka and Perronnin [2011]).

We use FV representations that encode higher order statistics than the visual word counts in

the bag of visual words (BOW) representation [Csurka et al., 2004]. We choose them not only

because they outperform the BOW (as shown in Csurka and Perronnin [2011]), but also because

they are highly competitive for object classification even with linear classifiers [Chatfield et al.,

2011]. However, the BOW or other low-level to high-level representations could also have been

used.

Then, for each class, we train a patch-level linear classifier by using strongly labeled training

images (segmented images), and we transform the classification scores of each patch in the

test image into probabilities. At the pixel level, the class posterior probabilities are obtained as

a weighted average of the patch posteriors, where the weights are given by the distance of the

pixel to the center of the patch, as in Csurka and Perronnin [2011].

Usually, several types of features are used to model the appearance of a class and to infer the

likelihood of a given object at a given location. The most popular descriptors for the visible-

only datasets are a variation of color and texture features. Here, we consider the popular

SIFT [Lowe, 2004] features to describe the local texture, and local color statistics [Clinchant

et al., 2007] to describe the color. The latter, referred to here as COL, encodes the mean and

standard deviation values of the intensity values in each image channel for each bin of a 4x4

grid covering the patch (same bins as in the case of SI F T ). In our visible-baseline approach,

these color statistics are computed in the R,G and B channels, hence we will denote their

concatenation by COLr g b .

SIFT encodes local texture with a set of histograms of oriented gradients computed on each a

4x4 grid covering the patch. In general, it is computed on the patch extracted from the luma

channel of the visible RGB image that can be approximated by L = 0,299R +0,587G +0,114B .
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Dataset R-G G-B R-B R-N G-N B-N

outdoor 99.07 98.62 97.32 93.07 93.21 88.87
Indoor 97.34 96.80 91.76 90.56 90.89 87.80

Table 7.1: Correlation (Cor rK ,L) between different channels in both outdoor and indoor
scenes.

It will therefore be denoted by SI F Tl .

We can also extract these low-level features in the N channel (computing local moments

or oriented gradients histograms). We will denote them by COLn and SI F Tn respectively.

They can be further concatenated with features extracted from the RGB image, leading to, for

example, COLr g bn or SI F Tr g bn .

Due to the high correlation of RGB and N channels, Brown and Süsstrunk [2011] show that

incorporating NIR information in a de-correlated space improves the performance of image

classification. Table 7.1 shows the correlation Cor rK ,L between different channels (K ,L ∈
{R,G,B,N}) in our outdoor and indoor datasets. It is computed as

Cor rK ,L =
∑

i pK
i pL

i√
(
∑

i (pK
i )2 ×∑

i (pL
i )2)

(7.2)

where pK
i and pL

i are pixel values at location i in channels K and L, respectively.

Therefore, we also consider combining VIS with NIR information in the alternative-color PCA

space denoted by COLp1p2p3p4 and SI F Tp1p2p3p4.

In Section 6, we compare and discuss the performance of using each of these descriptors in

the unary term of our energy function.

7.1.2 The Pairwise Term

The pairwise terms ψi , j (xi , x j ) of our CRF take the form of a Potts model:

Epai r (x) = ∑
(i , j )∈ε

ψi , j (xi , x j )

= ∑
(i , j )∈ν

(1−δxi ,x j )exp(−β‖pi −p j‖2) (7.3)
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where δxi ,x j = 1 if xi = x j , and δxi ,x j = 0 otherwise. We set β= 1
2<‖pi−p j ‖2> , as in the work of

Rother et al. [2004]. This potential penalizes disagreeing labels in neighboring pixels, and the

penalty is lower where the image intensity changes. In this way, borders between predicted

regions are encouraged to follow image edges.

In general, the pixel values pi in the Potts model correspond to the RGB colors in the test

image. In this case we denote the pairwise term by V I S, as it corresponds to the visible image.

However, when NIR information is available, we can use the N channel in the pairwise po-

tential. In this case pi corresponds to the intensity in the N channel and the potential will

be denoted by N I R. Finally, when use the intensity values from all the 4 channels (pi is

4-dimensional) the pairwise potential is denoted by V I S +N I R.

7.1.3 Model Inference

Given our CRF model, we want to find the most probable labeling (x*), i.e., the labeling that

maximizes a posteriori labeling. The MAP labeling for many practical multi-label computer

vision problems is NP-hard and approximation algorithms have to be used.

For our model, the inference, using α-expansion (see Appendix A for more details), is car-

ried out by the multi-label graph optimization library of Boykov et al. [2001], Boykov and

Kolmogorov [2004], Kolmogorov and Zabin [2004]. The idea of this algorithm is to reduce the

NP problem to a sequence of binary optimization problems. Given a labeling x, each pixel i

makes a binary decision to keep its current label or switch to the new label α.

7.2 Datasets and Experimental Setup

In order to evaluate and better understand the gain of incorporating NIR in different parts of

our CRF model, we build two different datasets and test the model on them separately. Exam-

ples of these 4-channel images for both indoor and outdoor datasets and their annotations

can be seen in Figure 7.2.

The outdoor dataset is built from the 477 RGB and NIR image pairs released by Brown and

Süsstrunk [2011]. From these images, we discard 107 images due to mis-registration and

ambiguity of classes. The rest of the images are manually labeled at the pixel level, thus

yielding pixel segmentation masks. The labels are selected from 10 predefined classes2:

2In parentheses we list the number of images containing the given class.
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Outdoor Dataset

Indoor Dataset

Figure 7.2: Sample images from our outdoor and indoor datasets: RGB (left), NIR (middle).
ground truth(right).92
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Building (179), Cloud (161), Grass (159), Road (108), Rock (80), Sky (174), Snow (41), Soil (78),

Tree (274), and Water (79). We follow the MSRC dataset’s annotation style [Shotton et al., 2006],

i.e., each pixel is labeled as belonging to one of the above classes or to a Void class. The latter

corresponds to pixels whose class is not defined as part of our classes of interest, or which are

are too ambiguous to be labeled. Similarly to Shotton et al. [2006], we discard pixels of the

Void class for the evaluation.

The indoor dataset consists of 400 images we gathered ourselves in various office environ-

ments. The registration between RGB and NIR images is conducted, as with the outdoor

dataset [Brown and Süsstrunk, 2011], by using the algorithm proposed in Szeliski [2006]. The

images are processed using automatic max-RGB white balancing for the RGB components,

and equal weights on the RGB sensor responses for the NIR components, as explained in

Fredembach and Süsstrunk [2008]. For these images, we select 12 object categories: Screen

(206), Clothing items (184), Keyboard (178), Cellphone (108), Mouse (145), Office phone (113),

Cup (163), Bottle (130), Potted plant (77), Bag (123), Office lamp (70), Can (59). These objects

are manually segmented and annotated at the pixel level, as in the Pascal VOC Challenge [Ev-

eringham et al., a], where all pixels not belonging to the predefined classes are considered as

Background (the 13th class). Contrary to the Void class, the segmentation performance of the

predicted background is evaluated.

However, the Background class is rather diverse. Therefore, instead of modeling it explicitly, we

first predict only the other classes and then we employe a minimum level of confidence thresh-

old on the predicted classification scores. If the maximum posterior probability is smaller

than a single universal threshold (in our case T = 0.5), the pixel is labeled as Background,

otherwise it is labeled with the class label for which the maximum was found. In other words,

in our CRF model, given the observation D, P (X = B ackg r ound | D) =T .

7.2.1 Evaluation Procedure

In all our experiments, we randomly split the dataset into 5 sets of images (5 folds) and define

5 sets of experiments accordingly. For each experiment, one fold is used as the testing set and

the remaining images are used for training the model. Results (predicted segmentation maps)

for the 5 test-folds are grouped all together and evaluated at once, producing a single score for

each evaluation measure.

To compare the segmentation results of different methods and parameters, we use both region-

based and contour-based measures. The latter are mainly to evaluate the segmentation results
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with a criterium that focuses on the quality of the segmentation borders.

Region based accuracies are generally based on the confusion matrix C that can be com-

puted either individually for each image or as an aggregation of predictions (cumulating the

predictions) for the whole dataset as follows:

Ckl =
∑

I
|{pi ∈ I |S I

g t (pi ) = k & S I
pr (pi ) = l }|

where S I
g t is the ground truth segmentation map of the image I , S I

pr the predicted segmenta-

tion map and |A| is the number of elements in the set. Hence Ckl (the kl th element of matrix

C) represents the number of pixels with ground-truth class label k ∈L , which is predicted

with the label l ∈L .

Denoting by Gk = ∑
l Ckl , the total number of ground-truth pixels labeled with k, and by

Pl =
∑

k Ckl the total number of predicted pixels labeled with l , we can define the following

evaluation measures:

• Overall Pixel Accuracy (O A) measures the ratio of correctly labeled pixels:

O A =
∑ln

k=l1
Ckk∑ln

k=l1
Gk

• Per Class Accuracy (C A) measures the ratio of correctly labeled pixels for each class and

then averages over all classes:

C A = 1

|L |
ln∑

k=l1

Ckk

Gk

• The Jaccard Index (J I ) measures the intersection over the union of the labeled segments.

This measure is computed by dividing the diagonal value Ci i (true positives) by the sum

of all false positives and all false negatives for a given class k ∈L :

J I = 1

|L |
ln∑

k=l1

Ckk

Gk +Pk −Ckk

Note that O A and C A correspond to the measures used in general to compare segmentation

results on the MSRC dataset [Shotton et al., 2006], whereas J I is the measure used in the Pascal
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Segmentation Challenge [Everingham et al., a].

The trimap accuracy (TrimapAcc) evaluates segmentation accuracy around boundaries [Kohli

et al., 2009]. The idea of this measure is to build a narrow-band around each contour and to

compute pixel accuracies O A evaluating only the pixels within the given band. As a single

band gives only partial evaulation, the size of this band r is varied and the overall accuracy

values (denoted here by T (r )) is plotted as a curve. This allows a visual comparison of 2 or

more methods.

Statistical significance tests To examine if our results are statistically different, we also com-

pute paired t-test on the set of image based results. In this case we compute results per image

and compare the two-score distributions. The paired t-test computes the probability p-value

of the hypothesis H1, the two distributions have the same mean. Accordingly, a p-value< 0.05

results in the rejection of H1 (same means) at the 95% confidence level. In such cases, we can

say that the two methods generating the respective mean results are significantly different.

7.3 Experimental Results

In Section 7.1, we describe different ways to integrate NIR information into our segmentation

framework. In this section, we investigate and compare these different issues through a set of

experiments. First, we consider only the recognition part (λ= 0, hence only the unary term)

and compare different descriptors and combinations of visible and NIR based features. The

study for the regularization part (adding the pairwise energy term) is conducted only for the

best performing recognition models.

7.3.1 The Recognition Part

To compare different descriptors and to evaluate them in the recognition part, we produce a

semantic segmentation by assigning pixels to their most likely label with

x∗ = argmaxx∈L C

∑
i∈ν

P (Xi = xi | D)

given the observation D. This is equivalent to the full model when using λ= 0.

As mentioned before in section 7.1.1, although other features could have been considered, here

we will focus on two type of features: SIFT [Lowe, 2004] and local color statistics [Clinchant
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Method Outdoor Indoor
Descriptor

COLr g b

COLr g bn

COLp1234

SI F Tl

SI F Tn

SI F Tp1

SI F Tr g b

SI F Tr g bn

SI F Tp1234

COLr g b +SI F Tl

COLr g bn +SI F Tl

COLr g bn +SI F Tn

COLp1234 +SI F Tn

CA OA JI
74.07 78.25 59.21
76.18 80.56 61.94
76.95 80.63 63.00
66.88 73.36 50.68
67.07 73.96 51.12
61.01 73.44 50.91
75.07 80.13 60.33
76.47 82.38 62.41
76.74 82.55 62.77

79.17 83.52 65.85
80.18 84.76 67.34
80.13 84.88 67.40
80.91 85.19 68.46

CA OA JI
39.94 50.49 24.23
45.33 56.03 28.74
44.57 54.27 28.10
49.19 47.55 32.49
48.32 43.46 31.54
48.30 44.02 31.22
49.75 51.91 33.03
53.79 58.98 36.77
49.75 57.41 33.09

49.47 56.50 32.36
53.64 60.95 36.26
53.20 61.13 35.78
52.78 60.23 35.44

Table 7.2: Evaluation (average of per-class, overall accuracies, and Jaccard index) of the
segmentation for different local descriptors and their combinations both on outdoor and
indoor datasets.

et al., 2007], denoted by COL. To compute these features in any of the considered channels

(R,G,B,N, luma L or alternative color spaces P1,P2,P3,P4), we proceed as follows.

We extract 32×32-sized patches on a regular grid (every 10 pixels), at 5 different scales (the

first 5 terms of the geometric series with ratio
p

2) in the given channel. Hence the coarsest

scale corresponds to resizing the patch by a factor of 4 (
p

2
4

) and the finest corresponds to the

un-resized patch (
p

2
0

).

Low-level descriptors are computed for each patch. We consider two different descriptors:

SI F T , which is 128-dimensional as we compute orientation histograms of 8 bin using a 4x4

grid on the patch; and COL, which is 32-dimensional as we consider the mean and the variance

of the color intensity using the same 4x4 grid of the patch. In general, we consider more than

one channel at a time (at least 3) by concatenating the corresponding features, hence COLr g b

will be 96-dimensional, COLr g bn 128-dimensional and SI F Tr g bn 512-dimensional. For a fair

comparison, we reduce all features to 96 dimensions by using PCA. In the projected space, a

GMM-based visual codebook of 128 Gaussians is built and used to transform the low-level

features into a FV.

By using the same PCA dimension and the same codebook size, the FV representation of all

descriptors share the same dimension. Sparse logistic regression (SLR) [Krishnapuram et al.,
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2005] is used for classification and the ultimate output is the 1
1+exp(−sk ) , where sk ,k ∈L are

the scores of the FVs according to their class relevances. The class probabilities of each pixel

P (Xi = k | D) are then computed as a weighted average of the patch posteriors as described in

Section 7.1.1. For each pixel, the label corresponding to the highest score is retained yielding a

predicted segmentation map. In the case of the indoor datasets, this score is further compared

to the threshold T = 0.5 and if the highest score is below this threshold, the pixel is assigned

to the Background class. The accuracy of the predicted segmentations are then evaluated

with different region-based accuracy measures described in Section 7.2.1. Note that here

the method does not seek to follow any object regions and there is no regularization applied,

therefore using contour based evaluation measures to compare these methods does not make

much sense.

In Table 7.2 (upper part), we show the segmentation results obtained with region-based ac-

curacy measures for different local descriptors. From these tables we can observe that the

accuracy of the recognition using COL features is significantly higher when NIR descriptors are

considered in conjunction with RGB (COLr g bn , COLp1234), compared to the visible-only sce-

nario (COLr g b). Similarly, when we combine several SIFT features, SI F Tr g bn and SI F Tp1234

outperform SI F Tr g bn containing only features from the visible image.

SI F Tn performs similarly to SI F Tl , leading to slightly better performance in outdoor environ-

ment, and slightly worse for the indoor dataset. The reason might be that, in the NIR image,

material-intrinsic texture properties are captured, which might be insufficient to describe

the appearance of our objects in the indoor dataset. For most classes in the outdoor dataset,

however, this appearance seems to be better captured in N than in the L channel.

In both cases, best results are obtained with multi-spectral SIFT when both visible and NIR

image is considered. Note however, that these features incorporate both texture (explicitly)

but also color (implicitly, considering the SIFT in multiple channel). Another way to combine

color and texture is by early or late fusion of COL and SI F T . As in Salamati et al. [2011b] it is

clearly shown for image categorization that the late fusion of these features outperforms early

fusion; here we do not consider the latter. The results of late fusion between different COL

and SI F T are shown in Table 7.2 (lower part). Note that COLr g b +SI F Tl corresponds to our

visible baseline for the recognition part3.

Comparing the results of late fusion of COL and SI F T to the multi-spectral SIFT, we can

observe the following: In the case of the outdoor dataset, the late fusion of COL and SI F T

3Note that it is similar to the approach of Csurka and Perronnin [2011] without region labeling and without
global score-based fast rejection.
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Method Outdoor Indoor
Descriptor Pairwise

SI F Tr g b

V I S
N I R

V I S +N I R

SI F Tr g bn

V I S
N I R

V I S +N I R

SI F Tp1234

V I S
N I R

V I S +N I R

COLr g b +SI F Tl

V I S
N I R

V I S +N I R

COLr g bn +SI F Tl

V I S
N I R

V I S +N I R

COLr g bn +SI F Tn

V I S
N I R

V I S +N I R

COLp1234 +SI F Tn

V I S
N I R

V I S +N I R

CA OA JI
77.02 82.40 62.90
77.00 82.15 62.86
77.05 82.40 62.91
78.07 84.02 64.54
78.07 83.99 64.54
78.25 84.17 64.80
78.30 84.22 67.97
78.30 84.11 67.97
78.35 84.27 68.04

79.97 84.56 67.14
80.05 84.73 67.06
80.24 84.87 67.40
81.22 85.90 68.82
81.15 85.88 68.78
81.22 85.97 68.87
81.14 86.08 68.89
81.20 86.07 69.02
81.31 86.22 69.15
81.69 86.22 69.61
81.56 86.01 69.47
81.86 86.34 69.86

CA OA JI
51.60 60.94 34.69
51.47 60.98 33.42
51.75 60.86 34.79
55.3 68 38.5

55.16 68 38.44
55.67 68.02 38.86
50.72 65.82 34.10
51.27 66.00 34.67
51.26 65.85 34.59

50.84 63.58 33.61
50.70 63.81 33.46

51.113 63.57 33.87
54.54 68.23 37.06
54.63 68.24 37.15
54.65 68.27 37.11
53.86 68.78 36.37
53.97 68.75 36.48
54.37 68.78 36.89
53.54 67.97 36.32
53.77 67.93 36.05
53.91 67.87 36.37

Table 7.3: Results for the full CRF model both for outdoor and indoor datasets.

clearly outperforms the multi-spectral SIFT, whereas this is less true in the case of the indoor

dataset where the two strategies yield similar results. The main reason is probably that color

(RGB) is much more important in the case of the outdoor dataset that in the indoor dataset

where most objects can have different colors that are not specific to a given class. This

observation is confirmed by the low performance of COLr g b compared to the SI F Tl in the

case of indoor, while for the outdoor dataset COLr g b significantly outperforms SI F Tl , showing

how important the color is for predicting the appearance of these scene classes (e.g., Sky, Grass,

Snow, etc). Note that adding the NIR information is very helpful because the intensity in the

N channel captures material information and is more informative concerning these object

classes.

Although the best strategy is dataset dependent, COLr g bn+SI F Tn seems to be a good allround

choice if only a single strategy has to be selected.
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7.3.2 The Full CRF Model

In this section, we consider the most promising recognition models, both for visible only and

for the visible+NIR images, and we apply the full CRF model with regularization based on the

RGB image ( V I S), on the NIR information ( N I R) and on both (V I S +N I R). In our model

(Equation 7.1), we used a fixed weight parameter λ = 5 in all our experiments. Results are

shown in Table 7.3 from which we can deduce the following conclusions:

First, we can see that, consistently for all the descriptors, the accuracy of semantic segmenta-

tion increases when we consider both visible and NIR channels (V I S +N I R) in the pairwise

potential compared to using only visual or only NIR. Second, as expected, the regularization

(any of them) improves the segmentation results obtained for any recognition model compared

to the segmentation without regularization (λ= 0). Finally, the ranking between the models

with different descriptors is similar with or without regularization given a regularization model

(e.g., V I S or V I S +N I R). This is again not surprising, as we use the same regularization term

that is independent of the feature used in the recognition part. Hence again COLr g bn +SI F Tn

and COLp1234 +SI F Tn lead to the best performances in the case of the outdoor dataset, and

SI F Tr g bn performs best in the case of the indoor dataset, COLr g bn +SI F Tn being second

best. Compared to the visible-only baselines COLr g b +SI F Tl or SI F Tr g b with visible image-

based regularization (V I S), they are significantly better and statistically different at the 95%

confidence level according to our t-test applied to the score distributions.

In this section, we are mainly interested in the gain we have when we compare the V I S or

N I R-based regularization with the V I S+N I R-based regularization. Considering region based

evaluation measures, we can see only slight improvements even if the paired t-test often shows

significant differences between the corresponding score distributions. Therefore, to better

evaluate the gain by adding N I R to V I S in the regularization, we also evaluate some of these

results with contour based measures.

We apply the trimap accuracy [Kohli et al., 2009] (overall pixel accuracy in the neighborhood

of object boundaries varying the boundary size) and show some of the results in Figure 7.3

and 7.4.

From these results, we can first notice the importance of the regularization. Indeed in both

cases, any of the edge potentials we use as regularization leads to a significant improvement

(statistically different at the 95% confidence level according to our t-test) on the results ob-

tained by recognition alone (NO, for no pairwise). Comparing different edge potentials, we

can see that, in outdoor scenes, using the visible image leads to better segmentation than
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Figure 7.3: The TrimapAcc plots with different pairwise potentials using COLp1234 +SI F Tn

(top- for the outdoor dataset) respectively SI F Tr g bn (bottom-for the indoor dataset) as unary
potential.
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Table 7.4: Confusion matrix of COLp1234 +SI F Tn and four-dimensional pairwise. For each
class, the corresponding segmentation rates for the best visible scenario ( COLr g b +SI F Tl

with visible-only pairwise) are given in parentheses. Outdoor dataset.

using the NIR image alone4. Fixing the bandwidth at 5 pixels and running the t-test, we found

that all T (5) are statistically different at 95% confidence level.

In order to show also some qualitative comparisons, in Figure 7.9 we further show a few

segmentation results obtained with the visible baseline and the best visible + NIR setting.

These images show again that incorporating NIR significantly increases the border accuracy.

4This behavior can be partially explained by the fact that the manual annotation was done in the RGB images
and in some images of outdoor dataset, the position of some objects, such as clouds or cars, are different between
the two representations because visible and NIR images were acquired in two consecutive shots. Whereas, in the
indoor scenes, there is no significant movement between two shots, as no moving objects are present.
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Figure 7.4: The TrimapAcc plots compare the border accuracy of the results of the visible only
scenario and the proposed strategy, top-for the outdoor dataset and bottom-for the indoor
dataset.
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Table 7.5: Confusion matrix of SI F Tr g bn and four-dimensional pairwise. For each class, the
corresponding segmentation rates for the best visible scenario ( SI F Tr g b with visible-only
pairwise) are given in the parenthesis. Indoor dataset.

7.4 Class-Based Analysis and Discussion

In this section, we analyze and compare class-by-class the segmentation results obtained with

the best visible baseline and the best NIR integration strategy. To do this, we show confusion

matrix Tables 7.4 and 7.5 and example segmentations in Figure 7.9.

From the results, we can deduce the following observations:

Haze Effect. The benefit of using the NIR channel in the presence of haze can be observed

particularly in the case of Sky, Tree and Rock classes, the latter often representing mountains.

As stated by Rayleigh’s law, the light scattered from very small particles (<λ/10) is inversely

proportional to the fourth power of the wavelengthλ (i.e.,∝ 1/λ4) [Fredembach and Süsstrunk,

2008]. Particles in the air (haze) satisfy this condition and are scattered more in the short-

wavelength range of the spectrum. Thus, when images are captured in the NIR, atmospheric

haze is less visible and the sky becomes darker (see Figure 7.5). The “haze transparency”

characteristic of NIR results in sharper images for distant objects. In particular, vegetation at

a distance in the visible image is smoothed and bluish, which can affect the performance of

texture and color features in the classification task. The sharp and haze-free appearance of

vegetation in NIR images helps classification and leads to better segmentation (see also the

diagonal in Table 7.4).

Border Accuracy. In both datasets, for many images, we observe that borders are more
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Figure 7.5: Examples from the outdoor dataset. Note the better classification and recognition
of Clouds and Sky when NIR information is incorporated.

precisely detected when NIR information is incorporated in the pairwise potential. This can

be explained by the material dependency of NIR responses that may reduce wrong edges due

to clutter, or may result in more contrasted edges between classes. This information, used in

the regularization part of our model, helps us to better align borders between regions with the

material change (see Figure 7.6).

The Relevance of Colors. Classes in the outdoor dataset are better recognized by their intrinsic

color such as Sky, Grass, Water and Cloud. Capturing texture in a one-channel image and

fusing it with the color information improves the results, mostly by distinguishing between

Grass and Tree, or Sky and Water, where color is less discriminative. Figure 7.7 shows that

incorporating material-dependent NIR images in the COL descriptor and fusing it with SI F T

features on the NIR image helps to recognize such confusing classes. A linear conversion in

the color space from RGBN to PCA for the COL descriptor improves the accuracy of results.
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Figure 7.6: Examples from both outdoor and indoor datasets. Note that the material depen-
dency of NIR images results in more accurate detection of object boundaries.

By contrast, in the indoor scenes, most of the classes are man-made, hence they contain many

colors (i.e., color is less distinctive for recognizing the classes). For example, Clothing items

can be colored in various different colors and patterns, but the texture of textile material is

pretty unique and discriminative. This is also the case for Screen and Handbag. This can

explain why COL features perform poorly and hence multi-spectral SIFT outperforms the

late fusion of COL and SI F T features. Figure 7.8 shows that incorporating COL gives poor

results in the recognition of colorful classes such as Screen, Clothing items, and Handbag. In

such classes, texture is more intrinsic to the class, therefore multispectral-SIFT (SI F Tr g bn)

outperforms the late fusion of COL and SI F T .

De-correlated Space. Overall, going to the PCA-based de-correlated space gives better per-

formance for the outdoor dataset than for the indoor dataset, where the performance is in

general decreased.

Material Relevance. In general, the classes that correspond to a specific type of material, such

as Water, Tree, Sky, Cloth, Screen, Officephone (plastic), Handbag (fabric, suede, leather), and

Flowerpot exhibit the largest improvement (up to 17%) when NIR is added. In this cases, even
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Figure 7.7: The material dependency characteristics of NIR images helps to distinguish more
accurately between the classes of material with the same intrinsic color. Higher contrast in the
NIR images in the sky makes SI F Tn a more discriminative feature in distinguishing between
Sky and Water.

if in visible images the color can be confused with other classes (Sky, far away Mountains),

they have a unique four-dimensional appearance that leads to a significant improvement

compared to the visible baseline (see e.g., (d) and (e) in Figure 7.2).

7.5 Incorporating Shadow Information in the CRF Model

A common problem in computer vision, when dealing with color images, is the presence

of shadows. A shadow is cast when an object occludes a light source. Due to the difference

between the light intensity reaching a shaded region and a directly lit region, shadows often

are characterised by conspicuously strong brightness gradients. These physical effects cause

strong edges in an image and can be detected as an object edge by our proposed segmentation

technique. Commonly, the edges caused by shadows are not considered for a human when

segmenting, but the shadows cast would be detected by current segmentation algorithms

(Figure 7.10 shows an example of this). It is therefore of great interest to discover ways of

properly detecting shadow edges and removing them from the final result. Fredembach and

Süsstrunk [2010] presents a simple though accurate shadow detection method that employs

the features offered by the NIR band, along with color information. Using the property of the

NIR band, in which most of the colorants are transparent or have higher reflectance [16], the

authors show that combining the dark map of both visible and NIR images with ratios of the

color channels (red, green and blue) to NIR identifies the pixels that are shadow candidates.
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Figure 7.8: multispectral-SIFT (SI F Tr g bn) outperforms the late fusion of COL and SI F T in
recognition of colorful classes where texture is more intrinsic to the class.

Implementing the method by Fredembach and Süsstrunk [2010], we can form a shadow

probability map that gives the probability of each pixel being under the shadow. Salamati

et al. [2011a] suggest incorporating the shadow probability map and forming a shadow-free

image by removing the shadow edges whose surroundings have similar chromaticity values

(See Appendix B for more details).

In this section, we evaluate the possibility of using a shadow map of an RGB and NIR image to

perform a segmentation that is robust to shadows.

Given the RGB and NIR representations of a scene, a high-quality shadow map can be com-

puted by Fredembach and Süsstrunk [2010]. Their proposed method is based on the fact that

shadows are generally found in the dark parts of an image, be it color or NIR. By observing

that commonly encountered light sources have very distinct spectra in the NIR, they proposed

that the ratios of the color channels (red, green and blue) to the NIR give valuable information

about impinging illumination, which they employed to assess the shadow candidate pixels.

The process of how to find shadow-candidate pixels M (Equation B.3) is fully discussed

in Appendix B. To obtain the final shadow mask, M needs to be binarized. To this end,

Fredembach and Süsstrunk [2010] proposes to compute the histogram of M and calculate the

location of its first valley. Let us denote this location as θ. The binary shadow value of each
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Figure 7.9: Sample segmentation results for the outdoor and indoor datasets.
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Figure 7.10: A scene in both visible and NIR representations with a strong cast shadow. The
cast shadow is mis-labeled by our best segmentation algorithms.

Accuracy= 92.00%	



Accuracy= 89.98%	



Accuracy= 91.31%	



RGB	

 NIR	

 Ground truth	

 Result by Fredembach 
and Süsstrunk [2010]  	



Figure 7.11: Input images (RGB and NIR, the manually labelled ground truth, as well as the
resulting shadow masks by Fredembach and Süsstrunk [2010].

pixel x is then given by:

Mbi n(x) =
 1 if M(x) < θ

0 otherwise
(7.4)

Some results of this method are shown in Figure 7.11. The shadow detection accuracy of
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Chapter 7. Semantic Image Segmentation

this framework is 89%(±8). To distinguish between shadow edges and object boundaries,

we propose to construct our pairwise potential in the CRF model, and modify the pairwise

potential to assign a smaller penalty when crossing the shadow edges.

Epai r (x) = ∑
(i , j )∈ν

(1−δxi ,x j )exp(−β‖pi −p j‖2) · (1−η xor(Mbi n(xi ), Mbi n(x j ))) (7.5)

We evaluate this model on a saliency-based object segmentation scenario. In this scenario, we

assume that we are looking for the most salient object of the entire scene, and that we want

to segment it from the background. For this purpose, we assume that a saliency extraction

method is available. Any method could be used. In our experiments, we use a color based

saliency method [Achanta et al., 2009]. We use the saliency method as a coarse localization

method in the 4-channel data, by plugging it into the unary term of our energy function. Given

the saliency map (Ξ), we now assume that for each pixel, we know its probability to belong to

the object of interest. This is the information we use in our graph. More precisely, the saliency

value of the pixels can be encoded with a probability map over the pixels, and can be included

in the unary term as

Eun(x) = ∑
i∈ν

−log(Ξ(xi )) (7.6)

Some results are presented in Figure 7.12, for all the samples η= 1. For these examples, the

CRF model fails to detect the boundary of the actual physical object, because of the large

difference in pixel values around the shadow edges. Using the shadow map and modified

pairwise potential in our model, the object boundaries are detected more accurately.
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7.5. Incorporating Shadow Information in the CRF Model

RGB	

 NIR	

 Shadow map	

 Result without 
the shadow map	



Our proposed 
model	



(a)	



(b)	



Figure 7.12: Binary segmentation of images with strong presence of shadows. Incorporating
shadow mask in the pairwise potential increases the precision of the result by 10% in image (a)
and 1% in image (b).
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8 Conclusion and Future Work

We have explored the idea that near-infrared (NIR) information, captured from an ordinary

digital camera, could be useful in scene understanding and visual recognition. We have shown

in this thesis how, unlike remote sensing and military communities (that employ expensive

hardware to record NIR and experts to digest this information), NIR can be useful in everyday

photography. We have shown that the NIR channel has correlations with the RGB channels

that are significantly lower than those of RGB to each other, and we have studied how to

effectively exploit these differences to improve scene recognition and semantic segmentation

performance. In this chapter, we provide a summary of the major contributions and findings

of the work presented in this dissertation. We also outline prospective directions for further

research.

• Human Cognition: We have conducted a user study that shows the usefulness of using

NIR information in scene understanding by humans. We have shown that, in most

scenarios, the cognition threshold for NIR images is significantly lower than that of the

visible images. One of the basic differences between NIR and visible images is that edges

in the NIR image correspond mostly to physical object boundaries, and the results are

also consistent with the hypothesis that the essential features for visual cognition are

object boundaries rather than color and texture.

It would be interesting to study the human cognition threshold in a scene representation

that only contains the edges of the original scene. This “structural-based” representa-

tion for scene recognition is studied in [Rouse and Hemami, 2007], where the images

represent the scene in the visible part of the spectrum. As future work, we could examine

the performance of NIR and visible structural-based representations and analyze the

advantages and disadvantages of the structural representations of NIR images compared
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to the visible images.

• Image Classification: By extending the result of incorporating NIR images in cognition

tasks to automatic scene classification, we have shown that NIR is useful information

that, combined with visible cues, can improve this task. We have also investigated the

best way to include the 4-dimensional color information in our categorisation method.

This study is based on the Fisher Vector (FV) representation, a generic and powerful

categorisation framework. As a conclusion specific to this method, we have shown the

usefulness of applying a PCA projection to local descriptors. We have proposed using

a color descriptor that encodes local statistics about color information and the NIR

channel, and we have shown that the best results can be achieved by the late fusion of

FV signatures computed on the best color descriptor and on the NIR SIFT descriptor.

Our proposed framework outperforms the state-of-the-art framework by 15%.

• Material-Based Boundary Detection: We have presented a method that accurately

detects physical object boundaries in images by using RGB and NIR information. By

incorporating NIR as well as RGB channels, we have extended the 4-sensor camera

calibration model to represent images invariant to shading and shadows. The changes

in color within an object confound many segmentation algorithms so that they assign

different segments to parts of the object in different colors. Due to the transparency

of most of the colorants in the NIR part of the spectrum, the edges in an NIR image

correspond mostly to the boundary of objects in the scene. Hence, in NIR images,

low-level segmentation frameworks do not confuse object boundaries with the color

patterns of the object. Combining the segmentation results of the shadow-free images

with those of NIR images, we have proposed a framework that leads to segments that

are based on changes in material.

• Semantic Image Segmentation: We have also presented a framework for semantic

image segmentation using RGB and NIR information. We propose to formulate the

segmentation problem by using a CRF model, and we have studied how to incorporate

the NIR cue, either in the recognition part or in the regularization part of our model.

Considering the characteristics of NIR images, we have defined color and SIFT features

on different combinations of the RGB and NIR channels. To evaluate this framework, we

have introduced a novel database of outdoor and indoor scene images, annotated at the

pixel level, with 10 categories in the outdoor and 13 categories in the indoor scenes.

We have shown that integrating NIR as additional information along with conventional

RGB images improves the segmentation results. In particular, the overall improvement
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is due to a large improvement for certain classes whose response in the NIR domain is

particularly discriminant, such as Water, Sky or Screen. One of our contributions is that

we systematically studied the reason for this improvement taking into consideration the

material characteristics and the properties of the NIR wavelength range.

To achieve even more accurate results that are not affected by shadow edges, we have

introduced the accurate shadow mask by Fredembach and Süsstrunk [2010] in the

pairwise potential of our CRF model. By assigning a larger penalty to the shadow edges,

we have shown that the object boundaries are detected more accurately.

Overall, this dissertation has shown that introducing NIR information significantly improves

the performance of automatic labeling for many classes: Incorporating NIR information

outperforms the visible-only strategies for the cases when the key attribute for assigning a

certain class to a region is texture (Clothing item) or material (Water), or a combination of

texture and material. For the cases where color is the key to recognizing a class, NIR is unlikely

to significantly improve the accuracy.

There are different ways to extend and build further on the ideas described in this thesis.

• A database of spectral reflectance of different material classes could delineate the parts

of the spectrum where different materials are statistically significantly different. The

idea would be to determine where in the spectrum the differences between different

material spectra occur and which physical or chemical characteristic contributes to

these differences. The reflectance spectra associated with different materials could

then be statistically analyzed to determine whether the variance of reflectance between

material classes is greater than within classes.

This information could also be useful if we know the position of the regions in the

spectra where the reflectance of each class of material is significantly different from the

other classes. This spectral analysis and geometric specification of the most significantly

discriminative regions might be applied to design filters in the NIR region; the output of

these filters can help reaching a higher classification rate.

• To better understand the advantages of incorporating NIR information and to study the

potential of this information, a larger dataset of annotated images with more classes

would be beneficial. The semantic segmentation results presented in this dissertation

cannot be thoroughly discussed for the classes Soil, Snow or Cell phone as they cor-

respond to the three smallest classes of our dataset. The classifier has only very few
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examples to learn the appearance of these categories, and our observation would not

be very reliable. Thus, a larger and more balanced dataset would show the advantages

of incorporating NIR information more accurately. For another improvement to the

dataset, one could acquire a dataset of 4-channel images with only one shot. The border

accuracy in the dataset that is used in this dissertation could not be reliably evaluated

for some classes due to the movement of the objects between two shots (Sky and Cloud),

or the movement of the camera.

• A more thorough study could also be designed to better incorporate shadow information

in the semantic image segmentation. From a dataset where shadows as well as the

classes are annotated, we could design a model that learns the appearance of the classes

both in the illuminated and shadowed parts. The aim would be to incorporate physical

properties of the NIR band, such as generally higher reflectances and very marked

differences in illuminants’ spectral power distribution, to improve the results.
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A Energy Minimization with Graph Cuts

Graph cuts can be used to efficiently minimize energies in CRF models. This section is a

summary of work in Boykov et al. [2001]. Energies that can be minimized are described in

Chapters 3.3 and 7.1 and are of the form

E(x) = Eun(x)+λEpai r (x)

= ∑
i∈ν

ψi (xi )+λ ∑
(i , j )∈ε

ψi , j (xi , x j ) (A.1)

ψi (xi ) ensures that the current labeling agrees with the observed data, i.e., it penalizes if the

label xi assigned to the pixel i is not consistent with the observed data. ψi , j (xi , x j ) ensures that

the current labeling is smooth. Constraints on the pairwise term are explained in Chapter 3.3.

The minimization algorithm that is used in this thesis, α-expansion, is summarized in this

section.

A.1 Theα-Expansion Minimization Algorithm

In the big picture, the algorithm starts with any initial configuration x0. x0 could be set, for

instance, by taking for each pixel the label with maximum prior probability Eun(x). We then

iterate repeatedly over all the possible labels, and try to expand the area covered by the current

label (called α). Each pixel i makes a binary decision: it can either keep its old label xi or

switch to the α label, provided that this change decreases the value of the energy function

E(x). We repeat this until the labeling does not change anymore.
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Appendix A. Energy Minimization with Graph Cuts
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Figure A.1: An α-expansion graph for a 1-dimensional image.

Link Weight When

tαi
∞ xi =α

ψi (xi ) xi 6=α
tαi ψi (xi ) always

e(i , a) ψi , j (xi ,α)
xi 6= x je( j , a) ψi , j (x j ,α)

t a
a ψi , j (xi , x j )

e( j ,k) ψ j ,k (x j , xk ) x j = xk

Table A.1: The weights used in the α-expansion algorithm

In more detail, in each iteration, a graph, such as the one in Figure A.1, is constructed with

two extra terminal nodes α and ᾱ. Two neighbor pixels i , j with different labels are connected

through an intermediate auxiliary node a; neighbor pixels j , k with the same label are directly

connected to each other. The nodes are also connected to α and ᾱ. See Table A.1 for all the

edge weights. In order to find the optimal α-expansion move, the algorithm seeks the cut with

the minimum cost. A cut C is a partitioning of the nodes into two subsets A and Ā such that

α ∈ A and ᾱ ∈ Ā. The cut’s cost is the sum of the weights of the links between A and Ā. After

finding the minimum-cost cut, a pixel i is assigned the label α if the cut separates i from the

terminal α. Otherwise, it keeps its old label.
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B Removing Shadows from Images Us-

ing Color and NIR

Removing shadows from images can significantly improve and facilitate the performance of

certain computer vision tasks, such as tracking, segmentation, and object detection, where

shadow boundaries are often confused with those of different surfaces or objects. It is therefore

of great importance to discover ways of properly detecting shadows and removing them while

keeping other details of the original image intact.

A lot of research has been performed to detect shadows. Finlayson et al. [2002] propose the

invariant image method, which requires the knowledge of the capture device’s characteristics

to color calibrate the camera. Color calibration of the camera leads to 1-dimensional pixel

values, as a function of image chromaticities that is invariant under illuminant color and

intensity changes. Projecting a color image into the illumination invariant direction forms a

gray-scale image, which is independent of the illumination condition. Afterwards, shadow

edges are detected by finding edges in the intensity image that are not in the illumination

invariant image.

(A) (B) (C)

Figure B.1: Column (A) is the color image. Column (B) shows the NIR image of the scene and
column (C) is their corresponding shadow maps.
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Levine and Bhattacharyya [2005] propose to manually train a support vector machine to

segment an image into shadow and non-shadow regions. After validating the classifier, the

shadowed regions are found.

Assuming that the histogram of the illumination is sparse, Weiss [2001] proposes to acquire a

sequence of images in which the shadow edges move, i.e., when just illumination changes. The

median of this sequence is calculated for each pixel and amounts to the maximum-likelihood

estimation of the reflectance only image. Although his method results in very natural looking

images, one of the shortcomings of this method is that it is not always practical to acquire

a sequence of images where all the objects and surfaces do not move and just changing the

illumination generates moving shadow edges.

Fredembach and Süsstrunk [2010] present a simple though accurate shadow detection method

(FS method) that employs the inherent sensitivity of digital camera sensors to the near-infrared

(NIR) part of the spectrum. Using the property of the NIR band, in which most of the colorants

are transparent or have higher reflectance [Burns and Ciurczak, 2001], the authors show that

combining the dark map of both visible and NIR images with ratios of the color channels (red,

green and blue) to NIR identifies the pixels that are shadow candidates. Figure B.1 shows the

shadow map of two images.

As it can be seen in Figure B.1, the results are accurate in real and complex scenes, including

regions that are partially lit (penumbra), and not lit at all (umbra).

After identifying shadows in an image, several methods have been proposed to remove these

shadows. Levine and Bhattacharyya’s method (referred to as “LB” hereafter) is to assign the

average color of the lit region to the adjacent shadowed region [Levine and Bhattacharyya,

2005]. Fredembach and Finlayson (“FF”) [Fredembach and Finlayson, 2006] form the gradient

image and remove the gradient information at the shadow edges. Therefore, the shadow-free

image can be obtained by solving a Poisson’s equation [Fredembach and Finlayson, 2006,

Finlayson et al., 2002].

We hereby propose a new approach to remove the shadows that are detected by applying

the FS shadow detection method [Fredembach and Süsstrunk, 2010]: We create a probability

map that gives us information on how much shadow each pixel contains. Then, we present a

method to lighten up the shadowed regions in order to obtain a shadow free image, which is

natural-looking and keeps all the details and textures intact. The results are compared to the

LB and FF shadow removal frameworks. This chapter is based on Salamati et al. [2011a].
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B.1. Using NIR Information in Detecting Shadows

B.1 Using NIR Information in Detecting Shadows

Prior to removing the shadows, we apply the FS shadow detection framework [Fredembach

and Süsstrunk, 2010], that has shown that NIR wavelengths used along with a color image to

accurately detect shadows in the image. To this end, we formulate a “dark map” and “ratio

map” to find shadow-candidate pixels.

First, a joint dark map of color and NIR images D is formed that is the multiplication of the

visible and NIR dark maps (DV I S and DN I R ):

DV I S = 1−B ; DN I R = 1− IN I R (B.1)

D = f (DV I S) f (DN I R ) (B.2)

where B is the brightness of the visible image, which is calculated as the pixels’ norm in an RGB

cube, and IN I R is the intensity of the NIR image. f (·) is an ascending function that compresses

the shadows [Fredembach and Süsstrunk, 2010]. The argument is that shadow pixels are to be

found in the darker regions of the image. Thus, an “AND” operator on the visible and NIR dark

maps identifies the pixels in the image that are dark in the two representations of the scene.

In the second step, the ratio image F is formed to be combined with the dark map and

generates a final shadow map M .

M = DF (B.3)

The physical property of the NIR band (namely, higher reflectance of different materials as

well as distinct behavior of most illuminants in the NIR part of the spectrum) set the dark

pixels that correspond to dark objects apart from the shadowed pixels in M .

The larger the pixel values in M , the more probable they are to be under the shadow. In [4], it

is proposed that the location of the first valley t1 in the histogram of M specifies the threshold

value to generate the final shadow mask S.

S(x, y) =
 M(x, y) if M(x, y) ≥ t1

0 if el sewher e
(B.4)

We refer the reader to Fredembach and Süsstrunk [2010] for more details about the method.
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Figure B.2: Umbra and penumbra. A non-point light source will produce three distinct lighting
areas; lit regions, partially lit (penumbra), and not lit at all (umbra).

B.2 Shadow Removal Framework

A non-point-light source creates three distinct illuminated areas in a scene, namely non-lit

areas (umbra), partially lit areas (penumbra), and completely lit areas. A “shadow probability

map” S is formulated in a way that regions that are not lit (a shadowing object blocks all the

light from the source) have large values. Pixels in penumbra regions have smaller values in S

as the intensity of light is increasing, and the S value in the lit regions is 0. Consequently, S

values can be seen as the probability of each pixel to be under the shadow (S(x ∈ umbra) >
S(x ∈ penumbra) > S(x ∈ lit regions)). Figure B.2 shows the different shadow regions in the

visible image of a scene. We divide the shadow regions S(x, y) 6= 0 into the penumbra and

umbra according to their pixel values: Analyzing the histogram of S, we can observe two peaks,

which correspond to the umbra and penumbra regions. The position of the valley between

these peaks (t2) gives the threshold to segment S into umbra and penumbra regions.

S(x, y) ∈


umbra if S(x, y) ≥ t2

penumbra if t1 ≤ S(x, y) < t2

non-shadow if S(x, y) = 0

(B.5)

Removing shadows can be performed by lightening umbra and penumbra regions. Since

shadowed regions do not have a constant intensity (the intensity gradually increases from

shadow to light), we propose to increase the lightness of the pixels according to the shadow

probability map S.

L′(x, y) =


L(x, y)g1(S(x, y)) if S(x, y) ∈ umbra

L(x, y)g2(S(x, y)) if S(x, y) ∈ penumbra

L(x, y) if S(x, y) ∈ non-shadow

(B.6)

where L is the lightness value of IV I S in CIELab color space for the shadowed image, L′ is the

lightness value of the corrected image, and g (·) is a function used to increase the intensity of
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(a) (b)

(c) (d)

Figure B.3: (a): Original image. (b): Lightness corrected. (c): Color corrected. (d): Borders corrected.

each pixel under the shadow given the corresponding shadow probability value in S.

g1(s) = se sm

g2(s) = se sn (B.7)

m and n values are parameters that are empirically set at 2 and 4, respectively, for our image

dataset.

Figure B.3 illustrates an image where the lightness is corrected applying our method. In-

creasing the lightness of the shadowed parts using the proposed method keeps the details

of the shadowed surfaces intact. As we can see in Figure B.3, although the lightness of the

shadowed parts are corrected, some shadowed surfaces in the image still do not look similar to

the lit parts. The reason is that, given two pixels with the same surface reflectance, located on

opposite sides of a shadow boundary, the ratios of the two pixels are not the same in all three

color channels because of the ambient light. These two pixels will differ not only in intensity,

but also in hue and saturation. Thus, correcting just the intensity of the shadowed pixels

does not remove the shadow and we need to correct the chromaticity values as well. In the

following, we refer to a∗ and b∗ values in CIELAB color space as the chromaticity attributes.

Applying a mean shift algorithm we segment the entire image according to its color values.

We start with the penumbra pixels in the color image, having the hypothesis that segments

in penumbra are certainly adjacent to a non-shadow region. For each segment in penumbra

P we consider all its neighbor segments LI T j in the lit part of the image (LI T j ∈ lit part &
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Di (P )∩LI T j 6= ;, where Di (·) is a dilation function). Among all the neighbor segments, we

choose the one that is closest in chromaticity to our segment of interest. We call this segment

LI T .

Afterwards, we rescale the shadowed segment’s chromaticity values so that the average of the

chromaticity in that segment P matches the average of the chromaticity in the aforesaid lit

segment LI T .

a∗
P := a∗

P
<a∗

LI T >
<a∗

P>

b∗
P := b∗

P
<b∗

LI T >
<b∗

P>

(B.8)

where a∗
i and b∗

i are the a∗ and b∗ attributes of the corresponding segment and < · > is the

average operator. The chromaticity correction is valid for the surfaces that are partly lit and

partly under shadow. For such regions, the chromaticity can be corrected so that the shadow

part of the surface will have the same chromaticity as the lit part of the surface. However, there

might be surfaces that are completely under shadow. Changing the chromaticity values of

them to the closest adjacent lit segment will introduce false colors. To prevent this effect, if

the chromaticity difference between P and LI T is not small enough, the chromaticity value of

segment P will not be changed.

After “correcting” the color of penumbra regions, we continue rescaling the chromaticity

values of umbra regions by applying the same technique.

Finally, all boundaries between shadowed regions and neighboring lit regions are smoothed

by convolving them with a Gaussian mask. Thus, we introduce a uniform transition between

shadowed regions that were lightened and neighboring non-shadowed regions.

B.3 Result and Discussion

Figure B.4 shows the result of applying our framework to some images. The results are com-

pared to the two state of the art shadow removal frameworks in Levine and Bhattacharyya

[2005] and Fredembach and Finlayson [2006]. We use the same FS shadow map [Fredembach

and Süsstrunk, 2010] for all three algorithms.

We see that the LB framework [Levine and Bhattacharyya, 2005] removes all high frequency

details from the shadow regions. The FF results look acceptable but in some cases the overall

color is different. This is because of the Neumann boundary conditions in solving the Poisson’s
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(A) (B) (C) (D) (E)

Figure B.4: Column (A) is the original image, (B) shows the shadow map, (C) shows the results
with LB [Levine and Bhattacharyya, 2005], (D) shows the results with FF Fredembach and Finlayson
[2006], and (E) shows the results with our algorithm. We can see that the solution we propose pre-
serves not only the colors, but also the textures of the lightened parts.

equation. Additionally, the portion of the information erased at the shadow edges in the

gradient image can result in a smudge effect in the re-integrated image. To remove the

gradient information on shadow edges, the assumption is that the reflectance on the shadow

edges does not change, which is not correct in textured surfaces.

One of the main advantages of our proposed method is that the texture of the surface under

the shadow is preserved to a good extent and no harsh transition between the shadowed

parts and non-shadowed parts can be seen. The shortcoming of our method is that the

result is dependent on the values of the g1 and g2 parameters. The proposed values for these

parameters do not always give the best result. (See last image in Figure B.4 for a case where

the proposed values do not completely remove the shadow.)
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B.4 Conclusion

We described a shadow removal method for real images based on the shadow map proposed

by Fredembach and Süsstrunk [2010]. We increased the lightness of shadowed regions in

an image knowing the shadow probability map. The color of that part of the surface is then

corrected so that it matches the lit part of the surface. Our algorithm worked successfully in

removing both umbra and penumbra shadows.
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Enhancing the Visible with the Invisble: RGB plus Near-Infrared, Presented at: IEEE International
Conference on Computational Photography (ICCP), 2010.
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