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Abstract
This thesis is a study of harmonic maps in two different settings. The first part is concerned

with harmonic maps from smooth metric measure spaces to Riemannian manifolds. The

second part is study of harmonic maps from Riemannian polyhedra to non-positively curved

(locally) geodesic spaces in the sense of Alexandrov.

The first part is organized as follows. We begin by defining a notion of harmonicity, and justify-

ing the definition by checking it against pre-existing definitions and results in special cases.

There are two main theorems in this section. The first is Theorem 0.1.1, which is the general-

ization of the Shoen-Yau theorem [SY76] in our setting. The second is on the convergence of

harmonic maps between Riemannian manifolds. Specifically we will show that if fi : Mi → N

are a sequence of harmonic maps between Riemannian manifolds, and if the manifolds Mi

converge to a smooth metric measure space M in the measured Gromov-Hausdorff topology,

then the fi converge to a harmonic map f : M → N . This is the content of Theorem 0.1.2

In the second part, we prove Liouville-type theorems for harmonic maps under two different

assumptions on the source space. First we prove the analogue of the Schoen-Yau theorem on

a complete (smooth) pseudomanifolds with non-negative Ricci curvature. To this end we gen-

eralize some Liouville- type theorems for subharmonic functions from [Yau76]. Then we study

2-parabolic admissible Riemannian polyhedra and prove vanishing results for subharmonic

functions and harmonic maps on 2-parabolic pseudomanifolds.

Keywords: Convergence, harmonic maps, Riemannian polyhedra, pseudomanifolds, Liouville-

type theorem, non-negative Ricci, smooth metric measure spaces.
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Résumé
Cette thèse est consacrée à l’étude de deux classes d’applications harmoniques entre espaces

métriques. La première classe d’applications est étudiée dans la première partie de la thèse.

Elle concerne les applications harmoniques définies sur un espace métrique mesuré lisse

(aussi appelé variété riemannienne à poids) à valeurs dans une variété riemannienne. La

seconde partie de la thèse est consacrée à l’étude des applications harmoniques définies sur

un polyèdre riemannien à valeurs dans un espace à courbure (localement) non-positive au

sens d’Alexandrov.

La première partie est organisée comme suit. Nous commençons par définir une notion d’har-

monicité pour les espaces métriques mesurés lisses, et nous justifions cette définition en

la comparant avec les définitions et les résultats classiques dans des cas particuliers. Cette

partie contient deux théorèmes principaux. Le premier est le théorème 0.1.1, qui est l’ana-

logue du théorème Schoen-Yau [SY76] dans notre contexte. La deuxième résultat (théorème

0.1.2) est un théorème de convergence pour les suites d’applications harmoniques entre

variétés riemanniennes. Plus précisément, nous montrons que si fi : Mi → N est une suite

d’applications harmoniques entre variétés riemanniennes et si les Mi convergent au sens

de Gromov-Hausdorff un espace métrique mesuré lisse M , alors les fi convergent vers une

application harmonique f : M → N .

Dans la deuxième partie, nous obtenons des obstructions (théorèmes de type Liouville) pour

les applications harmoniques sous deux hypothèses différentes sur l’espace source. Le pre-

mier résultat est un analogue du théoréme de Schoen-Yau sur une pseudo-variété complète à

courbure de Ricci positive ou nulle. Pour démontrer ces résultats, nous généralisons certains

théorèmes de type Liouville pour les fonctions sous-harmoniques dus à Yau [Yau76]. Ensuite

nous étudions le cas des polyèdres riemanniennes admissibles qui sont 2-paraboliques et nous

prouvons des obstructions pour les fonctions harmoniques et sous-harmoniques définies sur

ces espaces.

Mots clés : Convergence, applications harmoniques, polyèdres riemanniens, pseudo-variétés,

théorèmes de type Liouville, Ricci non-négative, espace métrique mesuré lisse
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Introduction

This work is a study of harmonic maps in two different settings. The first part is concerned

with harmonic maps from smooth metric measure spaces to Riemannian manifolds. In the

second part we study harmonic maps from Riemannian polyhedra to non-positively curved

(locally) geodesic spaces in the sense of Alexandrov.

0.1 Part I

A smooth metric measure space is a triple (M , g ,Φdvol), where (M , g ) is an n-dimensional

Riemannian manifold, dvol denotes the corresponding Riemannian volume element on M ,

and Φ is a smooth positive function on M . These spaces have been used extensively in

geometric analysis and they arise as smooth collapsed measured Gromov-Hausdorff limits

in the works of Cheeger-Colding [CC97, CC00a, CC00b], Fukaya [Fuk89] and Gromov [Gro07].

They have been studied recently by [Mor05]. See also [Lot03, Qia97, FLZ09, WW09, Wu10,

SZ11, MW11]

Harmonic maps are critical points of the energy functional defined on the space of maps

between Riemannian manifolds. Their theory was developed by J. Eells and H. Sampson

[ES64] in the 1960s. In [ES64], it was proved that if N is a compact manifold with non-positive

sectional curvature, any continuous map from a compact manifold into N is homotopic to

a harmonic map. Eells and Sampson also proved that every harmonic map from a compact

manifold with positive Ricci curvature to a negatively curved manifold is constant. In [SY76],

Schoen and Yau improved this and proved that if M is a complete manifold with non-negative

Ricci curvature and N is a compact manifold with non-positive curvature then any smooth

map from M to N with finite energy is homotopic to constant on each compact set.

In this part, we are going to study the behavior of harmonic maps under convergence. Let

M (n,D) denote the set of all compact Riemannian manifolds M such that dim(M) = n,

diam(M) < D , and the sectional curvature RM satisfies, |RM | ≤ 1, equipped with the measured

Gromov-Hausdorff topology. Let (Mi , gi ,dvoli ) in M (n,D) be a sequence of manifolds which

converge to a smooth metric measure space (M , g ,ΦdvolM ). Suppose fi : (Mi , gi ) → (N ,h) is

a sequence of harmonic maps. We are interested to know under what circumstances the fi

converge to a harmonic map f on the smooth metric measure space (M , g ,Φ).
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As a first step, we specify what we mean by harmonicity on smooth metric measure spaces.

Let f : M → N be a smooth map where (N ,h) is a Riemannian manifold. We say that f is

harmonic on (M , g ,Φ) if it satisfies

τ( f )+d f (∇ lnΦ) = 0, (1)

where τ( f ) denotes the tension field of the map f defined in Subsection 1.1. This notion has

been introduced by Lichnerowicz in [Lic69]. The stationary points of the energy functional

E( f ) = EΦ( f ) =
∫

M
e( f ) Φdvol,

are solutions to equation (1). Here e( f ) = 1
2 |d f |2 is the energy density of f . Riemannian

submersions on smooth metric measure spaces with minimal fibers are examples of harmonic

maps in this setting.

We will prove the analogues of the Schoen-Yau theorem for harmonic maps in this setting. As

a replacement for the Ricci curvature, we use the Bakry-Émery Ricci tensor which first showed

up in the study of diffusion processes. Specifically this tensor is defined as

R̃ic∞ = Ric−Hess(lnΦ).

Geometric, topological and analytical properties of smooth metric measure spaces with Bakry-

Émery Ricci tensor bounded below have been subject to intensive study. See for example

[Lot03], [WW09] and the references therein. We have the following theorem:

Theorem 0.1.1. Let (M , g ,Φ) be a complete non-compact smooth metric measure space with

Φ bounded, and non-negative Bakry-Émery Ricci curvature, N a manifold with non-positive

sectional curvature, and f : M → N a harmonic map of finite energy, EΦ( f ) <∞. Then f is a

constant map.

We now state our main result of this part, which is a compactness theorem for sequences of

harmonic maps.

Theorem 0.1.2. Let (Mi , gi ) be a sequence of manifolds in M (n,D) which converges to a metric

measure space (X , g ,Φµg ) in the measured Gromov-Hausdorff Topology. Suppose (N ,h) is a

compact Riemannian manifold. Let fi : (Mi , gi ) → (N ,h) be a sequence of harmonic maps

such that ‖egi ( fi )‖L∞ <C , where ‖egi ( fi )‖L∞ is the L∞-norm of the energy density of the map

fi and C is a constant independent of i . Then fi has a subsequence which converges to a map

f : (X , g ,Φ ·µg ) → (N ,h), and this map is a harmonic map in H 1((X ,Φµg ), N ).

By H 1(X , N ) we mean

{ f ∈H 1(X ,Rq ) | f (x) ∈ N for almost all x ∈ M },

2



0.2. Part II

where H 1(M ,Rq ) is the standard Sobolev space for some isometric embedding N in Rq . We

should mention also that in this work we use the notions H 1 and W 1,2 interchangeably.

This part consists of two chapters. The second chapter contains the main result, and the first

sets in place the basic notions and results of the theory of harmonic mappings on a smooth

metric measure space. Although I worked independently on this part, I recently learned that

some of the results in the first chapter appear in the works of Lichnerowicz and Eells-Lemaire

[Lic69, EL78] and some have been proved more recently in [Cou07, WX12, RVar] (see also

[CJQ12] for some other results in this subject). Detailed references are given in the first chapter.

In the second chapter we prove Theorem 0.1.2. The proof is based on an explicit description

of the limit space X as a quotient of a Riemannian manifold by some action of an orthogonal

group obtained by Fukaya [Fuk88, Fuk89]. When a sequence of manifolds converges in the

setting of Theorem 0.1.2 to a manifold, they form a fiber bundle over the limit manifold. As a

main step in the proof, we show that the fi are almost constant on the fibers of this bundle,

see Lemma 2.2.3.

0.2 Part II

In this part, we concentrate on harmonic maps from admissible Riemannian polyhedra to

non-positively curved (locally) geodesic spaces in the sense of Alexandrov. Harmonic maps

between singular spaces have received considerable attention since the early 1990s. Existence

of energy minimizing locally Lipschitz maps from Riemannian manifolds into Bruhat-Tits

buildings and Corlette’s version of Margulis’s super-rigidity theorem were proved in [GS92].

In [KS93] Korevaar and Schoen constructed harmonic maps from domains in Riemannian

manifolds into Hadamard spaces as a boundary value problem. [EF01] contains a description

of the application of the methods of [KS93] to the study of maps between polyhedra.

In this part we prove Liouville-type theorems for harmonic maps under two different as-

sumptions on the source space. First we prove the analogue of the Schoen-Yau theorem on a

complete (smooth) pseudomanifolds with non-negative Ricci curvature. To this end we gener-

alize some Liouville-type theorems for subharmonic functions from [Yau76]. Then we study

2-parabolic admissible Riemannian polyhedra and prove vanishing results for subharmonic

functions and harmonic maps on 2-parabolic pseudomanifolds.

The classical Liouville theorem for functions on manifolds states that on a complete Rie-

mannian manifold with non-negative Ricci curvature, any harmonic function bounded from

one side must be a constant. In [Yau76], Yau proves that there is no non-constant, smooth,

non-negative, Lp , p > 1, subharmonic function on a complete Riemannian manifold. He

also proves that every continuous subharmonic function defined on a complete Riemannian

manifold whose local Lipschitz constant is bounded by L1-function is also harmonic. Fur-

thermore if the L1-function belongs to L2 as well, and the manifold has non-negative Ricci

curvature, then the subharmonic function is constant. In the smooth setting, there are two

3
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types of assumptions that have been studied on the Liouville property of harmonic maps. One

is the finiteness of the energy and the other is the smallness of the image. For example, as

we mentioned above Schoen and Yau proved that any non-constant harmonic map from a

complete manifold of non-negative Ricci curvature to a manifold of non-positive sectional

curvature has infinite energy. Hildebrandt-Jost-Widman [HJW81] (see also [Hil82, Hil85])

proved a Liouville-type theorem for harmonic maps into regular geodesic (open) balls in a

complete C 3-Riemannian manifold from a simple or compact C 1-Riemannian manifold. For

more references for Liouville-type theorems for harmonic maps and functions in both smooth

and singular setting see the introduction in [KS08].

A connected locally finite n-dimensional simplicial polyhedron X is called admissible, if X is

dimensionally n-homogeneous and X is locally (n −1)-chainable. It is called circuit if instead

it is (n − 1)-chainable and every (n − 1)-simplex is the face of at most two n-simplex and

pseudomanifold if it is admissible circuit. A polyhedron X becomes a Riemannian polyhedron

when endowed with a Riemannian structure g , defined by giving on each maximal simplex s

of X a Riemannian metric g (bounded measurable) equivalent to a Euclidean metric on s (see

[EF01]).

There exist slightly different notions of boundedness of Ricci curvature from below on general

metric spaces. See for example [Stu06, LV09, Oht07, KS01, KS03] and the references therein. In

the following by RicN ,µg ≥ K we mean that (X , g ,µg ) satisfies the measure contraction property.

This is the convention adopted in [Oht07, Stu06]. As this definition is somewhat technical we

refer the reader to Chapter 4 for a precise statement.

The definition of harmonic maps from admissible Riemannian polyhedra to metric spaces

is similar to the one in the smooth setting. However due to lack of smoothness some care is

needed in defining the notions of energy density, the energy functional and energy minimizing

maps. Precise definitions and related results can be found in Section 3.7.

We can state now the main results which we obtain in this direction.

Theorem 0.2.1. Suppose (X , g ) is a complete, admissible Riemannian polyhedron, and f ∈
W 1,2

loc (X )∩L2(X ) is a non-negative, weakly subharmonic function. Then f is constant.

Theorem 0.2.2. Let (X , g ,µg ) be a complete non-compact pseudomanifold. Let f be continuous,

weakly subharmonic and belonging to W 1,2
loc (X ), such that ‖∇ f ‖L1 is finite. Then f is a harmonic

function.

Theorem 0.2.3. Let (X , g ,µg ) be a complete, smooth n-pseudomanifold. Suppose X has non-

negative n-Ricci curvature. Let f be a continuous, weakly subharmonic function belonging to

W 1,2
loc (X ) such that both ‖∇ f ‖L1 and ‖∇ f ‖L2 are finite and |∇ f | is locally bounded. Then f is a

constant function.

Here by a smooth pseudomanifold we mean a simplexwise smooth, pseudomanifold which

is smooth outside of its singular set. That situation arises for instance when the space is a

4



0.2. Part II

projective algebraic variety. The difficulty in extending existing results lies in the lack of a

differentiable structure on admissible polyhedron in general, and the loss of completeness

outside the singular set even in the case of smooth pseudomanifolds. Moreover the classical

notion of Laplace operator doesn’t exist in the non-smooth setting. To circumvent this latter

problem, and following the work of [Gig12], we define the Laplacian of a subharmonic function

as a measure for which the Green formula holds, see Theorem 5.1.1.

The following two corollaries are important consequences of theorems 0.2.1 and 0.2.3.

Corollary 0.2.4. Let (X , g ,µg ) be a complete, smooth n-pseudomanifold. Suppose X has non-

negative n-Ricci curvature. Suppose Y is a Riemannian manifold of non-positive curvature,

and u : (X , g ) → (Y ,h) a continuous harmonic map belonging to W 1,2
loc (X ,Y ). If u has finite

energy, and e(u) is locally bounded, then it is a constant map.

Corollary 0.2.5. Let (X , g ,µg ) be a complete, smooth n-pseudomanifold. Suppose X has non-

negative n-Ricci curvature. Let Y be a simply connected, complete geodesic space of non-positive

curvature and u : (X , g ) → Y a continuous harmonic map with finite energy, belonging to

W 1,2
loc (X ,Y ). If

∫
M

p
e(u) dµg <∞, and e(u) is locally bounded, then u is a constant map.

Our second objective in this thesis is the study of 2-parabolic admissible polyhedra. We say

a connected domainΩ in an admissible Riemannian polyhedron is 2-parabolic, if for every

compact set inΩ, its relative capacity with respect to Ω is zero. Our main theorem is

Theorem 0.2.6. Let X be 2-parabolic pseudomanifold. Let f in W 1,2
loc (X ) be a continuous,

weakly subharmonic function, such that ‖∇ f ‖L1 and ‖∇ f ‖L2 are finite. Then f is constant.

Just as in the case of complete pseudomanifolds

Corollary 0.2.7. Let (X , g ) be a 2-parabolic pseudomanifold with g simplexwise smooth. Let Y

be a simply connected complete geodesic space of non-positive curvature and u : (X , g ) → Y a

continuous harmonic map with finite energy belonging to W 1,2
loc (X ,Y ). If we have

∫
X

p
e(u)dµg <

∞ then u is a constant map.

Corollary 0.2.8. Let (X , g ) be a 2-parabolic admissible Riemannian polyhedron with sim-

plexwise smooth metric g . Let Y be a complete geodesic space of non-positive curvature and

u : (X , g ) → Y a continuous harmonic map belonging to W 1,2
loc (X ,Y ), with bounded image. Then

u is a constant map.

In order to prove Theorem 0.2.6, we need to generalize some of the results in [Hol90]. This is

done in Chapter 6. In particular we will need following propositions.

Proposition 0.2.9. Let (X , g ) be 2-parabolic admissible Riemannian polyhedron. Suppose f in

W 1,2
loc (X ) is a positive, continuous superharmonic function on X . Then f is constant.

Proposition 0.2.10. Let X be 2-parabolic admissible Riemannian polyhedron. Let f in W 1,2
loc (X )

be a harmonic function such that ‖∇ f ‖L2 is finite. Then f is constant.

5
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The proofs of the propositions above follow a similar pattern as their equivalents for Rieman-

nian manifolds. They are based on the fact that admissible Riemannian polyhedra admits

an exhaustion by regular domains, and the validity of comparison principle on admissible

Riemannian polyhedra. The main new ingredient in the proof of Theorem 0.2.6 is

Proposition 0.2.11. Let X be a 2-parabolic pseudomanifold. Let f in W 1,2
loc (X ) be a continuous,

weakly subharmonic function, such that ‖∇ f ‖L1 and ‖∇ f ‖L2 are finite. Then f is harmonic.

The organization of the second part of our thesis is as follows. In Chapter 3, we give a complete

background on Riemannian polyhedron and analysis on them. Most definition and results

have been taken directly from [EF01]. In Section 3.2, we compare the L2 based Sobolev

space on admissible Riemannian polyhedra as in [EF01], with the one in [Che99], and show

that they are equivalent. As we couldn’t find references in the literature we provide a rather

detailed explanation of this fact. In Chapter 4, we discuss the definition of two notions of

Ricci curvature the curvature dimension condition C D(K , N ) and the measure contraction

property MC P (K , N ) on metric measure spaces. We show that both notions are applicable

to Riemannian polyhedra. In Proposition 4.0.14 we show that any non-compact complete n-

dimensional Riemannian polyhedron of non-negative Ricci curvature MC P (0,n), has infinite

volume. Section 5.1 is devoted to Theorems 0.2.1, 0.2.2, 0.2.3 and Section 5.2 to Corollaries

0.2.4, and 0.2.5. In Chapter 6 we show that as in the smooth case the “approximation by

unity” property holds on admissible 2-parabolic polyhedra (Lemma 6.0.2). Moreover, we

prove that removing the singular set of a 2-parabolic pseudomanifold yields a 2-parabolic

manifold (Lemma 6.0.3). The rest of this Chapter is the detailed proof of Theorem 0.2.6 and its

corollaries.

6



Part IHarmonic maps on smooth metric
measure spaces and their

convergence
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1 Harmonic Maps on Smooth Metric
Measure Spaces

1.1 Definition

In this section we justify the definition of harmonicity on smooth metric measure spaces by

showing that harmonic maps are critical points of the energy functional (see also Lemma 1.8

[Cou07]). We first recall the definition of harmonic map. Let f : (M , g ,Φ) → N be a smooth map

where (M , g ,Φ) is an n-dimensional smooth metric measure space and (N ,h) is a Riemannian

manifold. Let {ei }n
i=1 denote a local orthonormal frame field on M . The energy density of f is

defined

e( f ) = 1

2
|d f |2 = 1

2

n∑
i=1

〈 f∗(ei ), f∗(ei )〉

and the energy functional E( f ) with respect to the measure Φdvol is defined

E( f ) = EΦ( f ) =
∫

M
e( f ) Φdvol .

Its tension field τ( f ) is the trace of second fundamental form of f

τ( f ) = (∇ei d f )(ei ).

We say that a map f is harmonic on (M , g ,Φ) if it satisfies

τ( f )+d f (∇ lnΦ) = 0. (1.1)

Proposition 1.1.1. The map f is harmonic if and only if for every compactly supported smooth

variation ft of f , such that f0 = f , we have d
d t |t=0E( ft ) = 0.

9



Chapter 1. Harmonic Maps on Smooth Metric Measure Spaces

Proof. If ft is a smooth variation of f , then in local coordinates we have

E( ft ) = 1

2

∫
g i j hαβ

∂ f αt
∂xi

∂ f βt
∂x j

Φdvol

and so

d

d t

∣∣∣
t=0

E( ft ) = 1

2

∫
g i j hαβ∇x i

(
∂

∂t
|t=0 f αt

)
∂ f βt
∂x j

Φdvol (1.2)

= 1

2

∫
g i j hαβ∇i V α ∂ f βt

∂x j
Φdvol

= 1

2

∫
〈∇V ,d f 〉Φdvol

where V is the variation vector of ft . We have V ∈ Γ( f −1T N ) and ∇V ∈ Γ(T M∗⊗ f −1T N )

and d f ∈ Γ(T M∗ ⊗ f −1T N ). Here Γ(E) for a vector bundle E over M denotes the infinite

dimensional vector space consisting of all sections of E . Equation (1.2) is called first variation

formula. We define a vector X on M as

X = g i j hαβV α ∂ f β

∂xi

∂

∂x j

If we calculate the div(X ) =∇i X i , here ∇X =∑∇i X j d xi ⊗ ∂
∂x j , we have

div(X ) = 〈∇V ,d f 〉+〈V ,τ( f )〉

since ft has compact support on M , so does X . By using Green formula

∫
div(ΦX ) dvol =

∫
Φ ·div(X )+〈∇Φ, X 〉 dvol = 0

and so∫
〈∇V ,d f 〉Φdvol+

∫
〈V ,τ( f )〉Φdvol+

∫
〈∇Φ, X 〉 dvol = 0.

We can easily show

〈∇Φ, X 〉 = 〈V ,d f (∇Φ)〉

10



1.2. Minimal Immersion in Smooth Metric Measure Spaces

By using the variation formula (1.2), we have

d

d t

∣∣∣
t=0

E( ft ) = 1

2

∫
〈∇V ,d f 〉Φdvol

= −1

2

∫
〈V ,τ( f )+d f (∇ lnΦ)〉Φdvol

now the proof is complete.

1.2 Minimal Immersion in Smooth Metric Measure Spaces

We begin first by definition of minimal immersions in smooth metric measure spaces.

Definition 1.2.1. Let (M , g ,φ) be a smooth metric measure space. Suppose (M , g ) is a Rieman-

nian manifold and f : M → M be an immersion with mean curvature vector H. We define

HΦ = H− 1

n
(∇ lnΦ)N .

where (∇ lnΦ)N denotes the normal part of ∇ lnΦ to the tangent space on f (M). We call HΦ the

Φ-mean curvature vector of M in the smooth metric measure space (M ,Φ). The immersion f is

called minimal if HΦ ≡ 0.

To justify our definition of minimality we prove a variation formula as in classical literature.

Let volΦ denotes the volume with respect to the measure ΦdvolM . Consider I (M , M), the

space of all immersions f : M → M . Then volΦ( f (M)), is a functional on this space. The critical

points of the volume functional are minimal submanifolds by the following proposition.

Proposition 1.2.2. Let M and M be as in definition above and f : M → M be an isometric

immersion with mean curvature vector H. Let ft , |t | < ε, f0 = f be a smooth family of immersion

satisfying ft |∂M = f |∂M and denote V = ∂ ft

∂t |t=0 to be the variational vector field along f . Then

d

d t
|t=0 volΦ( ft (M)) =

∫
M
〈(∇ lnΦ)N −n H,V 〉ΦdvolM

= −n
∫

M
〈HΦ,V 〉ΦdvolM .

Proof. Suppose g t to be the induced metric of the immersion ft and dvolt its corresponding

volume element. Choose a local orthonormal frame field e1, . . . ,en in M with respect to metric

g0. In this coordinate, gi j (t ) = 〈 ft∗ei , ft∗e j 〉 and g (t ) = det(gi j (t )). Thus we have

volΦ( ft (M)) =
∫

M

√
g (t ) ΦdvolM .

11



Chapter 1. Harmonic Maps on Smooth Metric Measure Spaces

We have

d

d t
|t=0 volΦ( ft (M)) = 1

2

∫
M

g ′(0) ΦdvolM +
∫

M
〈∇ lnΦ,V 〉ΦdvolM ,

and so

d

d t
|t=0 dvolt = 1

2

n∑
k=1

g ′
kk (0)dvol .

After some calculation ([Xin03] Theorem 1.2.2), we find

1

2

n∑
k=1

g ′
kk (0) = div(V T )−〈n H,V 〉,

and finally,

d

d t
|t=0 volΦ( ft (M)) =

∫
M

div(V T )−〈n H,V 〉ΦdvolM +
∫

M
〈∇ lnΦ,V 〉ΦdvolM

=
∫

M
div(Φ ·V T ) dvol−

∫
M
〈∇Φ,V T 〉 dvolM −

∫
M
〈n H,V 〉ΦdvolM

+
∫

M
〈∇ lnΦ,V 〉ΦdvolM

=
∫

M
〈∇ lnΦ,V N 〉−〈n H,V 〉ΦdvolM

=
∫

M
〈(∇ lnΦ)N −n H,V 〉ΦdvolM .

The calculations show that this notion of mean curvature of an isometric embedding into a

metric measure space is consistent with the one introduced in [WW09] for geodesic spheres

and with the one in [Mor05] for hypersurfaces.

1.3 Examples of Harmonic Maps

1. Weighted curves: A map u : (R,Φ) → N is harmonic if it satisfies

∇u̇Φ · u̇ = 0.

In fact every solution of the equation above is reparametrization of a geodesic in the manifold

(N ,h), u(t ) = γ(ρ(t )), where ρ′(t ) = c 1
Φ(t ) , and c is an arbitrary constant.

2. Riemannian Submersions: Let u : (M , g ,Φ) → (N ,h) be a Riemannian submersion. Then a

12
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necessary and sufficient condition for u to be a harmonic map is that the fibers be minimal

as Riemannian submanifolds of (M , g ,Φ). We choose a point x in M and an orthonormal

frame {e ′i }n
i=1 around u(x). Denote by {ei }n

i=1 its horizontal lift at point x. We extend {ei } to the

orthonormal basis {e1, . . . ,en ,en+1, . . . ,em} at x. u is harmonic if and only if

τ(u)+du(∇ lnΦ) =
m∑

i=1
(′∇ei du(ei )−du(∇ei ei ))+du(∇ lnΦ) = 0.

Name ′∇ the induced connection on N . Also for 1 ≤ i ≤ n we have

′∇ei du(ei ) = du(∇ei ei ).

For n +1 ≤ i ≤ m, we have ′∇ei du(ei ) = 0. Finally we have

−du(
m∑

i=n+1
∇ei ei )+du(∇ lnΦ) = 0,

and so

m∑
i=n+1

∇ei ei −∇ lnΦ ∈Vx ,

where Vx is tangent to the fiber u−1(u(x)). This means that u is a harmonic map if and only if

its fibers are minimal submanifolds in (M , g ,Φ).

1.4 Co-differential and Bochner’s Formula

In this section we are going to prove a Bochner formula for harmonic maps in the smooth

metric measure space setting. This formula has also appeared in [Lic69] page 188 and has

been proved in [RVar] explicitly. First we set in place some definitions. Let E be a Riemannian

vector bundle over the Riemannian manifold (M , g ) and Φdvol denote the density on M . For

ω, ν in Γ(Λp T M∗⊗E) and θ in Γ(Λp+1T M∗⊗E), we define the following inner products

(ω | ν) =
∫
〈ω,ν〉 dvol

(ω | ν)Φ =
∫
〈ω,ν〉Φdvol .

13
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We define the exterior differential and co-differential of a form ω on M as follow,

dω(X0, X1, . . . , Xp ) = (−1)k (∇Xkω)(X0, . . . , X̂k , . . . , Xp )

δω(X1, . . . , Xp−1) = (∇eiω)(ei , X1, . . . , Xp−1)

where {ei } is a local orthonormal frame filed on M and

(∇Xω)(X1, . . . , Xp ) =∇X (ω(X1, . . . , Xp ))−Σ jω(X1, . . . , X j , . . . , Xp )

Now let us compute the formal adjoint of d , δ̃, with respect to inner product (· | ·)Φ. We know

on a compact manifold M (without boundary), d and −δ are adjoint.

(dω | θ) = (ω | −δθ)

here ω ∈ Γ(Λp T M∗⊗E) and θ ∈ Γ(Λp+1T M∗⊗E). We have

(dω | θ)Φ =
∫
〈dω,Φ ·θ〉 dvol

=
∫
〈ω,−δ(Φ ·θ)〉 dvol

=
∫
〈ω,−(dΦ(ei ) · ieiθ+Φ ·δθ)〉dvol

= (ω | − (d lnΦ(ei ) · iei +δ)θ)Φ.

We put

δ̃ω= δω+ i∇ lnΦω.

Therefore we can introduce a new notion of the Laplace-Beltrami operator ∆̃ as

∆̃ = d δ̃+ δ̃d

= ∆+ (d ◦ i∇ lnΦ+ i∇ lnΦ ◦d).

where ∆ = dδ+δd . It is easy to show that on a compact manifold, ∆̃ is a self-adjoint semi-

negative elliptic operator.

Lemma 1.4.1. A map f : (M , g ,Φ) → N is harmonic on (M , g ,Φ) if and only if d f is co-closed.

(δ̃d f = 0)

14



1.4. Co-differential and Bochner’s Formula

Proof.

δ(d f ) = (∇ei d f )(ei ) = τ( f )

and

δ̃d f = d f (∇ lnΦ)+τ( f ) = 0

To obtain our Bochner type formula we use a Weitzenbock formula on a Riemannain manifold

which we represent in the following proposition (see [Xin96] Proposition 1.3.4).

Proposition 1.4.2. Let ω be a p-form with values in a vector bundle. Then

∆ω=∇2ω−S (1.3)

where ∇2 denotes the trace-Laplace operator

∇2ω=∇ei ∇eiω

where ∇ei e j = 0 and for any X1, . . . , Xp in Γ(T M)

S(X1, X2, . . . , Xp ) = (−1)k (R(ei , Xk )ω)(ei , X1, . . . , X̂k , . . . , Xp )

here R denotes the curvature connection.

For a given smooth map f , f : M → N , we have

S(X ) =−RN ( f∗ei , f∗X ) f∗ei + f∗(RicM X )

Proposition 1.4.3. Let f : (M , g ,Φ) → (N ,h) be a harmonic map, then the following formula is

satisfied

∆̃e( f ) = |B( f )|2 −〈RN ( f∗(ei ), f∗(e j )) f∗ei , f∗e j 〉+〈 f∗(R̃ic∞ei ), f∗ei 〉 (1.4)

Proof. If we put ω= d f ∈ Γ(T M∗⊗ f −1T N ) in formula (1.3) and for T =∇ lnΦwe have

∆̃e( f ) = ∆e( f )+ iT ◦d e( f )

= 〈∇2d f ,d f 〉+ |B( f )|2 + iT ◦d e( f )

= 〈∆d f +S,d f 〉+ |B( f )|2 + iT ◦d e( f )

15
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The first equality comes from ∆e( f ) = 〈∇2d f ,d f 〉+ |B( f )|2, so

∆̃e( f ) = 〈∆̃d f − (d ◦ iT + iT ◦d)d f ,d f 〉
+ |B( f )|2 + iT ◦d e( f )

− 〈RN ( f∗(ei ), f∗(e j )) f∗ei , f∗e j 〉+〈 f∗Ri cM ei , f∗ei 〉

Since f is harmonic then ∆̃d f = 0 and (iT ◦d)d f = 0, and therefore

∆̃e( f ) = 〈−d ◦ iT d f ,d f 〉+ iT ◦d e( f )

+ |B( f )|2 −〈RN ( f∗(ei ), f∗(e j )) f∗ei , f∗e j 〉+〈 f∗(R̃ic∞ei ), f∗ei 〉
+ 〈 f∗(Hess(lnΦ)(ei )), f∗ei 〉.

We have

〈d ◦ iT d f ,d f 〉 = 〈∇ei (d f (T )),d f (ei )〉
iT ◦d e( f ) = 1

2
T.〈d f ,d f 〉 = 〈∇T d f ,d f 〉 = 〈B( f )(ei ,T ),d f (ei )〉

〈 f∗(Hess(lnΦ))(ei ), f∗(ei )〉 = 〈d f (∇ei T ), f∗(ei )〉.

On the other hand we have

〈B( f )(ei ,T ),d f (ei )〉 = 〈∇ei (d f (T )),d f (ei )〉−〈d f (∇ei T ),d f (ei )〉

Finally we get the Bochner-type formula (1.4).

Using a Bochner-type formula we have the following results:

Theorem 1.4.4. Let (M , g ,Φ) be a compact smooth metric-measure space with non-negative

Bakry-Émery Ricci curvature, (N ,h) a Riemannian manifold with non-positive sectional curva-

ture and f : M → N a harmonic map. Then f is a totally geodesic map. Furthermore,

(a) If the Bakry-Émery Ricci curvature of the domain manifold M is positive somewhere, then f

is a constant map.

(b) If the sectional curvature of the target manifold N is negative then f is either a constant map

or f (M) is a closed geodesic in N .

Proof. We integrate formula (1.4) on M with respect to the measure ΦdvolM , to get

−
∫

M
|B( f )|2Φdvol =

∫
M
−〈RN ( f∗(ei ), f∗(e j )) f∗ei , f∗e j 〉+〈 f∗(R̃ic∞ei ), f∗ei 〉Φdvol
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1.4. Co-differential and Bochner’s Formula

The right hand side of the equality is positive and the left hand side is negative so we have

|B( f )|2 ≡ 0

therefore f is totally geodesic.

(a) From the above we also have

−〈RN ( f∗(ei ), f∗(e j )) f∗ei , f∗e j 〉+〈 f∗(R̃ic
M
∞ei ), f∗ei 〉 ≡ 0

Suppose that the Bakry-Émery Ricci curvature is positive at some point x. Choose a local frame

field {ei } at point x which coincides with the principle direction of R̃ic∞ (R̃ic∞ is symmetric).

We have R̃ic∞(ei ) =λi ei and λi > 0 for each i at point x.

〈 f∗(R̃ic∞(ei )), f∗(ei )〉 =λi 〈 f∗(ei ), f∗(ei )〉

and we have

minλi |d f |2 ≤λi 〈 f∗(ei ), f∗(ei )〉 = 0

so |d f |2 = 0 at point x. On the other hand ∆̃ is an elliptic operator. So according to the

maximum principle e( f ) must be constant and so f is a constant map.

(b) Note that we have

−〈RN ( f∗(ei ), f∗(e j )) f∗ei , f∗e j 〉 ≡ 0 (1.5)

Here, there is no summation over the indices i and j . If there exists a point x such that at least

two vectors f∗e1 and f∗e2 among f∗ei , are linearly independent at x, then when the sectional

curvature of N is negative,

〈RN ( f∗(e1), f∗(e2)) f∗e1, f∗e2〉 < 0

This contradicts (1.5). Hence the rank of f is at most one. If the rank of f is zero at one point,

then from the above discussion e( f ) is constant and the rank is zero everywhere. Otherwise

the rank of f is equal to one everywhere and f (M) is a closed geodesic in N .

Theorem 1.4.5. For every smooth map f : (M , g ,Φ) → (N ,h), where M is a compact manifold

and N is a negatively curved compact manifold, there is a harmonic map homotopic to f .

For the proof of the above theorem, one can follow the heat flow method for deforming a given

map to a harmonic map (see the proof in [Nis02] for the proof in classical case when Φ≡ 1
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). The classical case have been proved first by Eells and Sampson in [ES64]. In the classical

case, for a given map f : (M , g ) → (N ,h), the following initial value problem of the parabolic

equation for harmonic maps is considered,{
∂u
∂t (x, t ) = τ(u(x, t )) (x, t ) ∈ M × (0,T )

u(x,0) = f (x)

the solution is called the local time dependent solution. It is proved that the above equation

has solution on M × (0,∞) and thus there is a subsequence ti such that u(·, ti ) converges to

a harmonic map u(x,∞) which is homotopic to f . Now if we consider the smooth metric

measure space (M , g ,Φ) and the initial value f , we should solve{
∂u
∂t (x, t ) = τ(u(x, t ))+du(∇ ln(Φ)) (x, t ) ∈ M × (0,T )

u(x,0) = f (x).
(1.6)

Since M is compact, we still have a nonlinear parabolic equation with the same nonlinearity

and the classical proof works here. If we follow the same procedure as in [Nis02], we will see

there are not many changes in the proof. We will leave the proof to the section Appendix.

There we explain very briefly why each step in the original proof works in our case.

For a Riemannian manifold M of m = dim(M) ≥ 3, a map f : (M , g ,Φ) → (N ,h) is harmonic

if and only if the map f : (M ,Φ
2

m−2 g ) → (N ,h) is harmonic. Lichnerowicz in [Lic69] and Eells-

Lemaire in [EL78] used this fact and proved the above two theorems.

We state now the Theorem 0.1.1 and we prove it. See also [WX12, RVar] for similar result.

Theorem. Let (M , g ,Φ) be a complete non-compact, smooth metric-measure space with Φ

bounded, and non-negative Bakry-Émery Ricci curvature, N a manifold with non-positive

sectional curvature, and f : M → N a harmonic map of finite energy, EΦ( f ) <∞. Then f is a

constant map.

Proof. By Bochner formula we have

∆̃e( f ) ≥ |B( f )|2

and by Schwarz inequality we have

|∇e( f )|2 ≤ 2e( f )|B( f )|2.

From the equations above we conclude

∆̃
√

e( f ) ≥ 0
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or ∫
M
〈∇

√
e( f ),∇η〉Φdvol ≤ 0

for any η ∈ C∞
0 (M). This means that

√
e( f ) is Φ-subharmonic and it is in L2. Therefore by

lemma below we have
√

e( f ) is constant. According to theorem 1.3 in [WW09], M has at least

linear Φ-volume growth and so e( f ) ≡ 0 on M . Therefore f is a constant map.

Lemma 1.4.6. Let h be a non-negative smooth Φ-subharmonic function on M. Then
∫

M hpΦ ·
dvol =∞ for p > 1, unless h is a constant function.

By Stokes formula for complete manifold (see Lemma 1 in [Yau76]), one can prove every Φ-

subharmonic function h with
∫

M |dh|Φdvol <∞ isΦ-harmonic. Then it is enough to repeat

the argument in Theorem 3 in [Yau76], this time forΦ-subharmonic function and ∆̃ to prove

the lemma.

Remark 1. In Theorem 0.1.1, it is sufficient to have
∫

M Φdvol M =∞.
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2 Harmonic Maps and Convergence

2.1 Preliminaries

2.1.1 Weakly harmonic maps

In this subsection, we first recall the definition of a weakly harmonic map on smooth metric

measure spaces. We then briefly review this concept on Riemannian polyhedron. Let (N ,h)

be a compact Riemannian manifold and i be an isometric embedding i : N →Rq . Since i (N )

is a smooth, compact submanifold, there exists a number κ> 0 such that the neighborhood

Uκ(N ) = {y ∈Rq : dist(y, N ) < κ}

has the following property: for every y ∈Uκ(N ) there exists a unique point πN (y) ∈ N such

that

|y −πN (y)| = dist(y, N )

The map πN : Uκ(N ) → N defined as above is called the nearest point projection onto N .

The HessπN defines an element in Γ(T N∗⊗T N∗⊗T N⊥) which coincides with the second

fundamental form of i : N →Rq up to a negative sign

〈HessπN (y)(X ,Y ),η〉 =−〈∇Y η, X 〉 (2.1)

where X and Y are in T N , y in N and η in T N⊥ (see [Mos05]).

Before we define a weakly harmonic map on a Riemannian manifold (M , g ), we define the

Sobolev space W k,q (M). The space W k,q (M) is the set of f ∈ Lq (M), such that f is k-times

weakly differentiable and |∇ j f | ∈ Lq (M) for j ≤ k. Define the Sobolev norm on W k,q (M) to be

‖ f ‖W k,q =
(

j=k∑
j=0

∫
M
|∇ j f |q dvolg

)1/q

.
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Then W k,q is a Banach space with the above norm. Furthermore H 1 := W 1,2 is a Hilbert

space.

A map f : (M , g ,Φ) → (N ,h), belonging to H 1
l oc ((M ,Φdvol), N ) is called weakly harmonic map

if and only if

∆i ◦ f −Π( f )(d f ,d f )+di ◦ f (∇ ln(Φ)) = 0 (2.2)

in the weak sense. Here

Π( f )(d f ,d f ) = trace Hess(πN )(i ◦ f )(di ◦ f ,di ◦ f ) (2.3)

and in coordinate

Π( f )(d f ,d f ) =∑
g i j ∂2πA

N

∂zB∂zC

∂ f B

∂xi

∂ f C

∂x j

For the map f : (M n , g ) → (N m ,h) and η : M →Rq , we define

Ξg ( f ,η) = 〈di ◦ f ,dη〉−〈Π( f )(d f ,d f ),η〉. (2.4)

We explain now the definition of harmonic maps on Riemannian polyhedra. We refer the

reader to the Subsection 3.7 for complete review on this subject. Following [EF01], on an

admissible Riemannian polyhedron X , a continuous weakly harmonic map u : (X , g ,µg ) →
(N ,h) is of class H 1

loc (X , N ) and satisfies: For any chart η : V → Rn on N and any open set

U ⊂ u−1(V ) of compact closure in X , the equation∫
U

g (∇λ,∇uk ) dµg =
∫

U
λ(Γk

αβ ◦u)g (∇uα,∇uβ) dµg (2.5)

holds for every k = 1, . . . ,n and every bounded function λ ∈ H 1
0 (U ). Here Γk

αβ
denotes the

Christoffel symbols on N . Similarly on a polyhedron X with a measure Φµg a continuous

weakly harmonic map is a map in H 1
loc ((X ,Φµg ), N ) which satisfies equation (3.9) with Φdµg

in place of dµg .

We present some theorems and lemmas that we need in this chapter.

Theorem 2.1.1. [Mos05] Let f ∈H 1(U , N )∩C 0(U , N ) be a weakly harmonic map, where U is

an open domain in Rn . Then f ∈C∞(U , N ).

The energy functional is lower semi continuous, and we have

Lemma 2.1.2. [Xin96] Let S ⊂H 1(M , N ) on which the energy is bounded and S is closed under

weak limit, then S is sequentially compact.

The following lemma shows a formula on the second fundamental form of the composition of

two maps.
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Lemma 2.1.3. Let M, N and N̄ be Riemannian manifolds, f : M → N and f̄ : N → N̄ smooth

maps. For the composite f̄ ◦ f : M → N̄ , we have the following composition formula. For X and

Y in Γ(T M)

BX ,Y ( f̄ ◦ f ) = B f∗X , f∗Y ( f̄ )+d f̄ (BX ,Y ( f )).

Taking its trace we have,

τ( f̄ ◦ f ) = B f∗(ei ), f∗(ei )( f̄ )+d f̄ (τ( f )).

Here we present a theorem which shows the relation between the tension field of equivariant

harmonic maps under Riemannian submersions.

Theorem 2.1.4. [Reduction Theorem][Xin96] Let π1 : E1 → M1 and π2 : E2 → M2 be Rieman-

nian submersions, H1 the mean curvature vector of the submanifold F1 in E1 and B2 the second

fundamental form of the fiber submanifold F2 in E2. Let f : E1 → E2 be a horizontal equivalent

map, f̄ its induced map from M1 to M2 with tension field τ( f̄ ). f ⊥ denotes the restriction of f

on the fibers F1. Then we have following formula,

τ( f ) = τ∗( f̄ )+B2( f∗(et ), f∗(et ))− f∗(H1)+τ( f ⊥)

where {et }, t = n1 +1, . . . ,m1 is local orthonormal frame field of fibers F1 and τ∗( f̄ ) denotes the

horizontal lift of τ( f̄ ).

2.1.2 Hölder spaces on manifolds

Let (M , g ) be a Riemannian manifold and let ∇ be the Levi-Civita connection on M . Let

V → M be a vector bundle on M equipped with the Euclidean metric on its fibers. Let ∇̂ be a

connection on V preserving these metrics. Let C k (M) be the space of continuous, bounded

function f that have k continuous, bounded derivatives, and define the norm ‖ ·‖C k on C k (M)

by, ‖ f ‖C k =∑k
j=0 supM |∇ j f |.

Now we define the Hölder space C 0,α(M), for α ∈ (0,1). The function f on M is said to be

Hölder continuous with exponent α, if

[ f ]α = sup
x 6=y∈M

| f (x)− f (y)|
d(x, y)α

is finite. The vector space C 0,α(M) is the set of continuous, bounded functions on M which

are Hölder continuous with exponent α and the norm C 0,α(M) is ‖ f ‖C 0,α = ‖ f ‖C 0 + [ f ]α.

In the same way, we shall define Hölder norms on spaces of sections v of a vector bundle V

over M , equipped with Euclidean metrics in the fibres as above. Let δ(g ) be the injectivity
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radius of the metric g on M , which we suppose to be positive and set

[v]α = sup
x 6=y∈M

d(x,y)<δ(g )

|v(x)− v(y)|
d(x, y)α

(2.6)

We now interpret |v(x)−v(y)|. When x 6= y ∈ M , and d(x, y) ≤ δ(g ), there is unique geodesic

γ of length d(x, y) joining x and y in M . Parallel translation along γ using ∇̂ identifies the

fibres of V over x and y and the metrics on the fibres. With this understanding, the expression

|v(x)− v(y)| is well defined.

So define C k,α(M) to be the set of f in C k (M) for which the supremum [∇k f ]α defined by 2.6

exists, working in the vector bundle
⊗k T ∗M with its natural metric and connection. The

Hölder norm on C k,α(M) is ‖ f ‖C k,α = ‖ f ‖C k + [∇k f ]α.

Lemma 2.1.5. Let Ω ⊂ Rn be a bounded domain. Suppose that F : Ω→ Rq is bounded and

Hölder continuous. Let Q :Rq →Rp be a quadratic function, then Q ◦F :Ω→Rp is also Hölder

continuous and

[Q ◦F ]α ≤ A sup
Ω

‖F‖Rq [‖F‖Rq ]α

where A is a constant.

In the above lemma by a Quadratic function we mean

Q(y) =
q∑

i , j=1
Qi j yi y j Qi j ∈C 1(Ω).

We have

Corollary 2.1.6. Let f ∈C 1,α(M , N ), then

[Π( f )(d f ,d f )]Cα ≤ A · ‖d( f )‖L∞ · [d f ]Cα

Proof. Let {Ω j } be an atlas of M , such that diam(Ω j ) ≤ injrad(M) and set F j = d f |Ω j and

Q = HessπN (X , X ), for an smooth vector field X . Then using the previous lemma and an

appropriate partition of unity we will have the result.

Schauder Estimate. In this part, we give a quick review on the Schauder estimate of solutions

to linear elliptic partial differential equations. Suppose (M , g ) is compact and L is an elliptic

operator, L = ai j∇i∇ j +bi∇i +c, where a symmetric and positive definite tensor, b is a C 0,α

vector field on M and c ∈C 0,α(M), and that L satisfies the conditions

‖a‖C 0,α +‖b‖C 0,α +‖c‖C 0,α ≤Λ
λ‖ξ‖2 ≤ ai j (x)ξiξ j ≤Λ‖ξ‖2, for all x ∈ M , and ξ ∈Rn .

24



2.1. Preliminaries

Consider the following problem,

Lu = f in M ,

if ∂M =; and{
Lu = f in M

u = g on ∂M .

if ∂M 6= ;. Then we have

Theorem 2.1.7. [Schauder Estimate] [GT83] If f ∈C 0,α(M) and u ∈C 2(M), then u ∈C 2,α(M)

and we have

‖u‖C 1,α ≤C (‖ f ‖L∞ +‖u‖L∞),

‖u‖C 2,α ≤C (‖ f ‖C 0,α +‖u‖L∞),

where C depends on M, λ, Λ.

Hereafter we present an introduction to the convergence and collapsing theory. Most of the

materials in this part was gathered from [Ron10].

2.1.3 Gromov-Hausdorff distance

Let X and Y be two compact metric spaces. The Gromov-Hausdorff distance between X and

Y is defined as

dG H (X ,Y ) = inf
Z

{
d Z

H (φ(X ),ψ(Y )) : ∃ isometric embedding φ : X ,→ Z , ψ : Y ,→ Z
}

where Z runs over all such metric spaces and φ and ψ runs over all possible isometric embed-

ding and dH is Hausdorff distance.

Let MET denote the set of all isometry class of nonempty compact metric spaces, then

(MET ,dG H ) is a complete metric space.

An alternative definition of Gromov-Hausdorff distance. Let X and Y be two elements of

MET , a map φ : X → Y is said to be an ε-Hausdorff approximation, if the following two

conditions satisfied,

i) ε-onto: Bε(φ(X )) = Y .

ii) ε-isometry: |d(φ(x),φ(y))−d(x, y)| < ε for all x, y ∈ X .

The Gromov-Hausdorff distance d̂G H (X ,Y ), between X and Y defined to be the infimum of

the positive number ε such that there exist ε−Hausdorff approximation from X to Y and form
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Y to X . In fact d̂G H doesn’t satisfy triangle inequality and d̂G H 6= dG H but we can show that

2

3
dG H ≤ d̂G H ≤ 2dG H

because a sequence in MET converges with respect to dG H if and only if it converges with

respect to d̂G H , we will not distinguish d̂G H from dG H .

Lipschitz distance. Let X , Y in MET and f : X → Y be a Lipschitz map. We put

dil f = sup
x,y∈X

d( f (x), f (y))

d(x, y)

We define the Lipschitz distance, dL(X ,Y ), between X and Y by

log(dL(X ,Y )) = inf{max{dil f ,dil f −1}| f : X → Y is a Lipschitz homeomorphism}

Lemma 2.1.8. [Fuk88] Let Xi , Yi , X , Y be compact metric spaces. Suppose that

lim
i→∞

dG H (Xi , X ) = 0, lim
i→∞

dG H (Yi ,Y ) = 0

Let for any i , dL(Xi ,Yi ) ≤ ε. Then dL(X ,Y ) ≤ ε.

Pointed Gromov-Hausdorff Convergence. The goal here is to extend the notion related to

GH-convergence to complete metric spaces that are primarily non-compact or their diameters

go to infinity.

let (X , p) and (Y , q) be pointed metric space. A pointed map f : (X , p) → (Y , q) is called ε-

pointed Gromov-Hausdorff approximation (ε-PGHA) , if

i) B 1
ε
(q) ⊆ Bε(Φ(B 1

ε
(p))).

ii) |d(φ(x),φ(y))−d(x, y)| < ε for all x, y ∈ B 1
ε
(p).

The pointed Gromov-Hausdorff distance

d p
G H ((X , p), (Y , q)) = inf

ε

{
ε, ∃ ε−PGHA from (X , p) to (Y , q) and from (Y , q) to (X , p)

}
.

We say that a sequence {(Xi , pi )} in MET p , (the isometric classes of all pointed complete

metric spaces such that any closed bounded subsets are compact), converges to {(X , p)} if

there is a sequence of εi -PGHA, fi : (Xi , pi ) → (X , p), such that εi → 0.

Equivariant Gromov-Hausdorff Convergence. Let X (resp. Y ) be a compact metric space on

which a compact group G (resp. H) acts isometrically. For ε> 0, a triple of maps ( f ,φ,ψ) is

called an ε-equivariant GHA (briefly, ε-EGHA), if, for x ∈ X and y ∈ Y , t ∈ G and s ∈ H , the

following applies,
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i) f : X → Y is an ε-GHA,

ii) φ : G → H is a map such that d( f (t (x)),φ(t ) f (x)) < ε.

iii) ψ : H → G is a map such that d( f (ψ(s)(x)), s( f (x))) < ε. We define the equivariant GH-

distance (briefly GHD) by

deqG H ((X ,G), (Y , H)) = inf{ε, ∃ ε−EGHA f : (X ,G) → (Y , H) and h : (Y , H) → (X ,G)}

Lemma 2.1.9. Let Xi
dG H→ X . Assume that for any i , a compact group Gi acts isometrically on Xi .

Then there is a closed group G of isometries on X and a subsequence such that (Xik ,Gik )
deqG H→

(X ,G).

The following lemma determines the relation between equivariant GH-convergence and the

convergence of obtained quotient spaces.

Lemma 2.1.10. If (Xi ,Gi )
deqG H→ (X ,G), then Xi /Gi

dG H→ X /G.

Convergence of maps. Let (Xi , pi ), (X , p), (Yi , qi ) and (Y , q) be pointed metric spaces, such

that (Xi , pi ) converges to (X , p) in the pointed Gromov-Hausdorff topology (resp. (Yi , qi )

converges to (Y , q)). We say that a sequence of maps fi : (Xi , pi ) → (Yi , qi ) converges to a map

f : (X , p) → (Y , q), if there exists a subsequence Xik such that if xik ∈ Xik and xik converges to

x (in
∐

Xik

∐
X with the admissible metric), then fik (xik ) converges to f (x) and we have

Lemma 2.1.11. i) If fi s are equicontinuous, then there is uniformly continuous map f and a

converging subsequence Xik such that fi → f .

ii) If fi s are isometries, then the limit map f : (X , p) → (Y , q) is also an isometry.

For the proof of the above lemma see [Ron10] Lemma 1.6.12.

Measured Gromov-Hausdorff Convergence. Let MM denotes the class of all pairs (X ,µ)

of compact metric space X and a Borel measure µ on it such that µ(X ) = 1. Let (Xi ,µi )

be a sequence in MM . We say that (Xi ,µi ) converges to an element (X ,µ) in MM with

respect to measured Gromov-Hausdorff topology if there exist Borel measurable ε-Hausdorff

approximation fi : (Xi ,µi ) → (X ,µ) and fi ∗(µi ) converges to µ with respect to weak∗ topology.

when M is a Riemannian manifold with finite volume, we put µM = dvolM
vol(M) , where dvolM

denotes the volume element of M and regard (M ,µM ) as an element in MM .

2.1.4 Convergence Theorems, Non-Collapsing

This subsection is devoted to the theory of convergence of manifolds in non-collapsing case.

A sequence of n-manifolds Mi converging to a metric space X is called non-collapsing, if

vol(Mi ) ≥ v > 0. Otherwise it is called collapsing. For a non-collapsing sequence of manifolds,

there is a uniform lower bound on the injectivity radius of Mi and thus Mi s are diffeomor-

phic for large i . The next result is due to Cheeger-Gromov in [Che70, Pet84, GW88] and is

formulated as following.
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Theorem 2.1.12. Let Mi be a sequence of closed n-manifolds such that |secMi | ≤ 1 and vol(Mi ) >
v > 0, and Mi converges to the metric space X . Then X is homeomorphic to manifold M, and

for large i , there are diffeomorphisms, φi : M → Mi such that the pullback metric converges to a

C 1,α-metric on M in the C 1,α-norm.

The following smoothing result concerns the approximation of Riemannian manifolds uni-

formly by the smooth one.

Theorem 2.1.13. [BMOR84] Let (M , g ) be a compact n-manifold with |secM | < 1. For any ε> 0,

there is a metric gε such that

|gε− g |C 1 < ε, |sec(M ,gε) | ≤ 1, |∇k Rgε | ≤C (n,k) ·εk .

In particular
e−ε injrad(M , g ) ≤ injrad(M , gε) ≤ eε injrad(M , g )

e−εdiam(M , g ) ≤ diam(M , gε) ≤ eεdiam(M , g )

e−ε vol(M , g ) ≤ vol(M , gε) ≤ eε vol(M , g )

2.1.5 Convergence Theorems-Collapsing

This subsection is devoted to the theory of convergence of manifolds, in the collapsing case.

Here we state some of the main results in this context.

Theorem 2.1.14. [Fibration theorem] [Fuk87b] Let M n and N m be compact manifolds satisfy-

ing

secM n ≥−1, |secN m | ≤ 1 (m ≥ 2), injrad(N m) ≥ i0 > 0

There exist a constant ε(n, i0) such that if dG H (M n , N m) < ε ≤ ε(n, i0), then there is a C 1-

fibration map f : M n → N m with connected fibre such that

i) The diameter of any f -fibres is at most c ·ε, where c = c(n,ε) is such that c → 1 as ε→ 0.

ii) f is an almost Riemannian submersion , that is for any vector ξ ∈ T M orthogonal to a fibre,

e−τ(ε) ≤ |d f (ξ)|
|ξ| ≤ eτ(ε),

where τ(ε) → 0 as ε→ 0.

iii) If in addition, secM n ≤ 1, then f is smooth and the second fundamental form of any fiber

satisfies |I I f −1(x̄)| ≤ c(n).

We have the following complement of the previous theorem.
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Theorem 2.1.15. [Equivariant affine fibration theorem] Let M n and N m be compact manifolds

satisfying

secM n ≥−1, |secN m | ≤ 1 (m ≥ 2), injrad(N m) ≥ i0 > 0.

Assume M n and N m admit isometric compact Lie group G-actions. There exist a constant

ε(n, i0) > 0 such that if deqG H ((M n ,G), (N m ,G)) < ε ≤ ε(n, i0), then there is a C 1-fibration G-

map, f : M n → N m satisfies i-iii above and the following.

iv) The fibers are diffeomorphic to an infranilmanifold, Γ\N , where N is simply connected

nilpotent group, Γ⊂ N nAut(N ), such that [Γ, N ∩Γ] ≤ω(n).

v) There are canonical flat connections on fibres that vary continuously and the G-action

preserves flat connections.

vi) The structure group of the fibration is contained in cent(N )
cent(N )∩ΓnAut(N ∩Γ).

By the Fibration Theorem, each fiber is an almost flat manifold and so is diffeomorphic to an

infranilmanifold Γ\N . First any Lie group has a canonical flat connection ∇can, for which left

invariant fields are parallel. The N -action on Γ\N from the right generate the left invariant

fields on Γ\N and thus defines the canonical flat connection. By Malcev’s rigidity theorem,

any affine structure on Γ\N are affine equivalent to (Γ\N ,∇can). If the flat connection on the

fibre can be chosen smoothly, then the structure group of the fibration reduces to a subgroup

of the affine transformation on Γ\N . The flat connection on Γ\N may depend on the choice

of base point on the fiber. By averaging among all flat connections from the various choices of

base points, a continuous family of flat connections on each fibers are constructed. In this

way we can construct a canonical invariant metric for the left action of N .

When a sequence of n-manifolds with bounded curvature collapses, the limit space can be a

singular space. We have

Theorem 2.1.16. [Singular fibration theorem][Fuk88] Let Mi be a sequence of closed n-manifolds

with |secMi | ≤ 1 and diam(Mi ) ≤ D, which converges to the closed metric space (X ,d) in MET .

Then

i) The frame bundles equipped with canonical metrics converge, (F (Mi ),O(n)) → (Y ,O(n)),

where Y is a manifold.

ii) There is an O(n)-invariant fibration f̃i : F (Mi ) → Y satisfying the conditions in Theorem

2.1.14 which becomes for ε > 0, a nilpotent Killing structure with respect to an ε C 1-closed

metric. Moreover each fibre on Mi has positive dimension.

iii) For any x̄ ∈ X , a fibre f −1
i (x̄) is singular if and only if p−1(x̄) is a singular O(n)-orbit in Y .

In the above theorem, the fibration map f̃i descends to a (singular) fibration map fi : Mi →
X = Y /O(n) such that the following diagram commutes

A pure nilpotent Killing structure on M n , is a fibration N → M n → N m , with fibre N a nilpotent

manifold (equipped with flat connection) on which parallel fields are Killing fields and the
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F (Mi )
f̃i //

pi

��

Y

p

��
Mi

fi // X

G-action preserves affine fibration. The underlying G-invariant affine bundle structure is

called a pure N -structure. When we have a pure nilpotent Killing structure on M n as before,

we can construct an invariant metric (invariant under the left action of N ), and therefore the

fibration map f is a Riemannian submersion considering the induced metric on N m . Let

〈 , 〉 denotes the original metric and ( , ), the invariant one and suppose M n and N m are

A-regular, which means that for some sequence A = {Ak } of real non-negative numbers, we

have

|∇k R | ≤ Ak , (2.7)

then we have

|∇k (〈 , 〉− ( , ))| ≤ c(n, A) ·ε · injrad(N )−(k+1), (2.8)

where c(n, A) is a generic constant depending to finitely many Ak and n (see Proposition 4.9

in [CFG92]). Here the GH-distance M n and N m is less than ε.

In the following M (n,D) denotes the set of all compact Riemannian manifold M such that,

dim(M) = n, diam(M) < D and sectional curvature |secM | ≤ 1, and M (n,D, v) the set of

manifolds in M (n,D), with volume ≥ v . In the following remark we collect the main points

that we need from the theorems above and explain the classification in the proof of Theorem

0.1.2.

Remark 2. When a sequence of manifolds Mi converges in M (n,D) to a metric space X , then

according to Theorem 2.1.16, the frame bundles over Mi equipped with canonical metrics g̃i

converge to a manifold Y , and f̃i : (F (Mi ), g̃i ,O(n)) → (Y ,O(n)) is an O(n) invariant fibration

map. To see this, let g̃i ε be the smooth metric as it appeared in Theorem 2.1.13, then (F (Mi ), g̃i ε)

converges to smooth manifold Yε. For a small fixed ε0 and ε< ε0, the sectional curvature on

(F (Mi ), g̃i ε) is uniformly bounded and we can apply Theorem 2.1.15, to conclude that there

exists an O(n)-invariant smooth fibration map f̃i ε. By the continuity (F (Mi ), g̃i ε) is conjugate

to (F (Mi ), g̃i ε0
). This implies that Yε→ Y is equivalent to a convergent sequence of metrics on
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Yε0 and so (Y ,O(n)) conjugate (Yε0 ,O(n))

(F (Mi ),O(n)) ' (F (Mi ), g̃i ε0
,O(n))

f̃i ε0→ (Yε0 ,O(n)) ' (Y ,O(n)),

and it induces a fibration map (F (Mi ), g̃i ,O(n))
f̃i→ (Y ,O(n)) (see proof of Theorem 4.1.3 in

[Ron10]). Note that (F (Mi ), g̃i ε,O(n)) is a pure nilpotent Killing structure and so there exists an

invariant Riemannian metric close to g̃i ε which satisfies the inequality (2.8). Consequently the

fibration map f̃i ε is a Riemannian submersion (considering the induced Riemannian metric on

Yε by this map).

2.1.6 Density function

Let DM (n,D) denote the closure M (n,D) in MM with respect to the measured Hausdorff

topology. Then DM (n,D) is compact with respect to measured Hausdorff topology. Let

(Mi , gi ,
dvolMi
vol(Mi ) ) ∈M (n,D), be a sequence of manifolds which converges to a manifold (M , g ,µ)

in measured Gromov-Hausdorff topology. Then there exists a fibration map ψi : Mi → M

satisfying the following: for x ∈ M , we put

Φ′
i (x) = vol(ψ−1

i (x)), Φi =
Φ′

i

vol(Mi )
.

Then there exists Φ such that Φ= limi→∞Φi and µ is absolutely continuous with respect to

dvolM , µ=Φ ·dvolM (see §3 in [Fuk87a]).

In the general case, for (X ,µ) ∈DM (n,D), we recall first a remark on quotient spaces. Here

S(B) denotes the singular part of B .

Remark 3. [Bes08] Let (M , g ) be a Riemannian manifold and G a closed subgroup of isometries

of M. Assume that the projection π : M → M/G is a smooth submersion. Then there exist one

and only one Riemannian metric ǧ on B = M/G such that π is a Riemannian submersion.

We recall that using the general theory of slices for the action of a group of isometries on a

manifold, one may show that there always exists an open dense submanifold U of M (the union

of the principle orbits), such that the restriction π|U : U →U /G is a smooth submersion.

Considering now M/G as a Riemannian polyhedron and µg as its Riemannian volume, the

restriction of µg on U /G is equal to dvolU /G = dvolB−S(B).

Suppose Mi in M (n,D) converges to the metric space X . We may assume that F Mi with

the induced O(n)-invariant metric g̃i , converges to (Y , g ,ΦY ·dvolY ) with respect to the O(n)-

measured Hausdorff topology, g , ΦY are C 1,α-regular. Moreover, since πi : F (Mi ) → Mi is

a Riemannian submersion with totally geodesic fibres and since the fibres are isometric to

each other, it follows that (F Mi ,dvolF Mi )/O(n) = (Mi ,dvolMi ). Hence by equivariant Gromov-

Hausdorff convergence Mi converges to (X ,ν) = (Y ,ΦY ·dvolY )/O(n) (see Theorem 0.6 in
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[Fuk89]) and by Remark (3)

ν(S(X )) = 0

For all x in X , we put

ΦX (x) =
∫

y∈p−1(x)
ΦY (y) dvolp−1(x)

where π : Y → X is the natural projection. For each open set U

ν(U ) =
∫

U
ΦX (x) dvolX−S(X )

Now we are ready to start the proof of Theorem 0.1.2.

2.2 Proof of the Convergence Theorem

In this section we are going to prove Theorem 0.1.2. First we recall the statement.

Theorem. Let (Mi , gi ) be a sequence of manifolds in M (n,D) which converges to a metric

measure space (X , g ,Φµg ) in the measured Gromov-Hausdorff Topology. Suppose (N ,h) is a

compact Riemannian manifold. Let fi : (Mi , gi ) → (N ,h) be a sequence of harmonic maps

such that ‖egi ( fi )‖L∞ <C , where ‖egi ( fi )‖L∞ is the L∞-norm of the energy density of the map

fi and C is a constant independent of i . Then fi has a subsequence which converges to a map

f : (X , g ,Φ ·µg ) → (N ,h), and this map is a harmonic map in H 1((X ,Φµg ), N ).

We split the proof in three cases:

Case 1 [non-collapsing]. Mi converge to M in M (n,D, v). We first consider the situation

where Mi = M and gi converges to a metric g in M (n,D, v). Then we study the problem in

the general case using Theorem 2.1.12.

Case 2 [collapsing to a manifold]. (Mi , gi ) converge to manifold (M , g ) in M (n,D) with g a

C 1,α-metric. We first consider the situation when (Mi , gi ) satisfies some regularity assumption

(see Assumption 1 below). Then we discuss the general case using the fact that there is always

a sequence of metric gi (ε) on Mi , C 1-close to the the metric gi which satisfies Assumption 1

as it is explained in Remark 2.

Case 3 [collapsing to a singular space]. Mi converge to a metric space (X ,d) in M (n,D).

When a sequence of manifolds Mi converges in M (n,D) to a metric space X , the frame bun-

dles over Mi converge to a Riemannian manifold Y , with a C 1,α-metric and X = Y /O(n). The

harmonic maps over Mi , induce harmonic maps over F (Mi ) and this case followed from the

study of harmonic maps on quotient spaces.
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We fix an isometric embedding i : N → Rq and we often denote the composition i ◦ f simply

by f , unless we need to explicitly distinguish these two maps

Case 1. Mi converge to M in M (n,D, v).

To go through the proof in this case, we consider first the situation when a sequence of metrics

gi on a manifold M , converges to a metric g .

Lemma 2.2.1. Let gi be a sequence of metrics on smooth Riemannian manifold M and (M , gi )

converge to (M , g ) in M (n,D, v). Suppose fi : M → N is a sequence of harmonic maps such that

‖egi ( fi )‖L∞ <C

where C is a constant independent of i . Then there exists a subsequence of fi which converges to

some f in C k -topology for k ≥ 0 and f is also harmonic.

Proof. By Theorem 2.1.12, the metric gi converges to g in M (n,D, v) in C 1,α-topology. Us-

ing Schauder estimate, fi s have bounded norm in C k (M , g ) for every k ≥ 0 and so they are

converging to a map f ∈C k (M , g ). We have

lim
i→∞

∆gi fi =∆g f

and

lim
i→∞

Π( fi )(d fi ,d fi ) =Π( f )(d f ,d f )

The above limits lead to harmoniciity f .

When Mi converges to M in M (n,D, v), by Theorem 2.1.12 there is a C 1,β-diffeomorphism

φn : Mn → M , such that the push forward of φn∗(gn) of the metrics gn on Mn converges to the

metric g (see [Kas89]). Since the mapΦn : (Mn , gn) → (M ,φn∗(gn)) is an isometry

egn ( fn) = eφn∗(gn )( f̄n) (2.9)

where f̄n is the map fn ◦φ−1
n . The map fn is harmonic and so f̄n . So all the assumptions of

Lemma 2.2.1 are satisfied here and the proof of theorem 0.1.2 in this case is complete.

Lemma 2.2.1 is not true if we assume only uniform bound on the energy, Egi ( fi ) <C . To explain

the reason we recall some of the results in [Sch84] and [Lin99]. Suppose fi : (M , g ) → (N ,h)

are smooth harmonic maps and M and N are compact manifolds. We first define

FΛ = {u ∈C∞(M , N ) : u is harmonic, E(u) ≤Λ}.

We have the following theorem.
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Theorem. [Sch84] Let M and N be compact manifolds. Any map u in the weak closure FΛ

is smooth and harmonic outside a relatively closed singular set of locally finite Hausdorff

(n −2)-dimensional measure.

Let ui be a sequence in FΛ, then there exists a subsequence which converges weakly to some

u in H 1(M , N ). Define

Σ= ⋂
r>0

{
x ∈ M , liminf

i→∞
r 2−n

∫
Br (x)

e(ui ) ≥ ε0

}
where ε0 = ε0(n, N ) > 0 is a constant independent of ui as in Theorem 2.2 in [Sch84]. If we

consider a sequence of Radon measure µi = |dui |2d x, without loss of generality we may

assume µi *µ weakly as Radon measures. By Fatou’s lemma, we may write

µ= |du|2d x +ν

for some non-negative Radon measure ν. We can show that Σ= sptν∪singu and ν is absolute

continuous with respect to H n−2|Σ. Therefore ui strongly converges in H 1(M , N ) to u if and

only if |d fi |2d x * |d f |2d x weakly if and only if ν= 0 if and only if H n−2(Σ) = 0 if and only if

there is no smooth non-constant harmonic map from S2 (2-sphere) into N (e.g. negatively

curved manifolds). See [Lin99] for the complete discussion on the mentioned results.

When we have a sequence of manifolds (Mi , gi ) converges in M (n,d , v), then the injectivity

radius is bounded from below and dvolgi converges to dvolg weakly. Therefore if Egi ( fi ) <C ,

C independent of i , then Eg ( fi ) is uniformly bounded and we have the following lemma,

Lemma 2.2.2. Let (Mi , gi ) be a sequence of manifolds in M (n,D, v) which converges to a

Riemannian manifold (M , g ) in the measured Gromov-Hausdorff tpology. Suppose (N ,h)

is a compact Riemannian manifold which doesn’t carry any harmonic 2-sphere S2. Let fi :

(Mi , gi ) → (N ,h) be a sequence of harmonic maps such that ‖Egi ( fi )‖ <C , where C is a constant

independent of i . Then fi has a subsequence which converges to a map f : (M , g ) → (N ,h), and

this map is a weakly harmonic map.

By the above discussion, we know that fi converges strongly in H 1 to the map f . Also Hess(πN )

restricted to a neighborhood of N is Lipschitz and by Lemma 6.4 in [Tay00], Hess(πN ) ◦ fi

converges to Hess(πN )◦ f in H 1-norm and so we have Π( fi )(d fi ,d fi )*Π( f )(d f ,d f ) weakly.

We have the same for ∆ fi and so f is a weakly harmonic map.

Remark 4. In Lemma 2.2.2, if we consider that N is only a non-positively curved manifold,

using Bochner-type formula we can prove that f is strongly harmonic. Also if we only assume

that there is no strictly convex bounded function on f (M), then one can show that f doesn’t

have any singular point and so f is harmonic (see proposition 2.1 and corollary 2.4 in [Sch84]).

Case 2. (Mi , gi ) converge to manifold (M , g ) in M (n,D) with g a C 1,α-metric.
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We first prove the Theorem 0.1.2, under the following assumption:

Assumption 1. We assume first that there exists a sequence C = {Ck } of positive number Ck

independent of i , such that

|∇k
gi

R(M , gi )| <Ck . (2.10)

By the above extra regularity assumption, on (Mi , gi ,
dvolMi

vol (Mi ) ) converges to a smooth Riemannian

manifold (M , g ,Φ), with the smooth pair (g ,Φ) (see Lemma 2.1 in [Fuk89]). By Theorem 2.1.14,

we know that for i large enough there is a fibration map, ψi : Mi → M. Let gi be the invariant

metric as in Remark 2, therefore there exist metrics g M
i on M such that the maps ψi : (Mi , gi ) →

(M , g M
i ) is a Riemannian submersion.

We know that (M , g M
i ) converges to (M , g ) in C 1,α-topology. Before we continue, we recall

some results from [Fuk89] and [Fuk88] in the following remarks.

Remark 5. Under the assumption 2.10, we have Φ is of class C∞ .

Remark 6. Take an arbitrary point p0 in M and choose pi ∈ψ−1
i (p0). By |secMi | ≤ 1, we know

at point pi on Mi , the conjugate radius is greater than some constant name it ρ. If we consider

the pullback metric by exponential map at pi , exppi
, on the conjugate domain on the tangent

space at pi , then the injectivity radius at 0 is at least the conjugate radius at pi (see Corollary

2.2.3 in [Ron10]).

Consider the ball B = B(0,ρ) in Tpi Mi with the metric g̃i induced by the exponential map. By

virtue of assumption (2.10), g̃i will converge to some g0 in the C∞-topology. There are local

groups Gi converging to a Lie group germ G such that

1. Gi acts by isometries on the pointed metric space ((B , g̃i ),0).

2. ((B , g̃i ),0)/Gi is isometric to a neighborhood of pi in Mi .

3. G acts by isometries on the pointed metric space ((B , g0),0).

4. ((B , g0),0)/G is isometric to a neighborhood of p0 in M and the action of G is free.

It follows that there is a neighborhood U of p0 in M and a C∞ map s : U → B such that

1. s(p0) = 0.

2. P ◦ s = I d, where P denotes the composition of the projection map and the above mentioned

isometry in 4.

3. d(B ,g0)(s(q),0) = dN (q, p0) holds for q ∈ N .

Therefore there is some ρ independent of i such that, M =⋃m
j=1 Bρ(x j , M) and Bρ(x j , M) satisfies

the preceding conditions. Also we can construct a C∞ section si , j : B ρ

2
(x j , M) → Mi of ψi , such
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that

|(si , j )∗(v)|
|v | <C (2.11)

for each v ∈ T B ρ

2
(x j , M) and C is a constant independent of i . Hereafter we put pi , j =ψ−1

i (x j )

and by B(pi , j ) we mean a ball centered at pi , j , with radius ρ in Tpi , j Mi .

Now we show that fi ’s are almost constant on the fibers of Mi . The following lemma is similar

to Lemma 4.3 in [Fuk87a]. Recall that if v is a tangent vector to Mi and h is a function on Mi ,

then v ·h = dh(v) denotes the derivative of h in the direction of v .

Lemma 2.2.3. Let hi : Mi → i (N ) ⊂ Rq be a smooth maps which satisfies the Euler-Lagrange

equation (2.2). Suppose vi ∈ Tp (Mi ), satisfies (ψi )∗(vi ) = 0, and v ′
i , v ′′

i ∈ Tp (Mi ) (p ∈ B2ρ/3(pi , j , Mi )).

Then we have

|vi ·hi | ≤ C1 ·ε′i · |vi | · (‖∆hi‖L∞ +‖hi‖L∞) (2.12)

|v ′
i · v ′′

i ·hi | ≤ C2 · |v ′
i | · |v ′′

i | · (‖∆hi‖L∞ +‖hi‖L∞) (2.13)

where C1 and C2 are some constants independent of i and ε′i is a sequence converging to zero.

Proof. We put Φi , j = exppi , j
: B(pi , j ) → Mi , g̃i , j =Φi , j ∗(gi ) and a =Φ−1

i , j (p). We also denote

hi ◦Φi , j by hi , j .

From the Schauder estimate for elliptic equations (see Theorem 2.1.7) we have,

‖hi , j‖C 1,α ≤C ′ · (‖∆hi , j‖L∞ +‖hi , j‖L∞) (2.14)

and hence

‖v ′
i ·hi , j‖Cα ≤C ′ · (‖∆hi‖L∞ +‖hi‖L∞) (2.15)

where C ′ depends on the metric g̃i , j . Since Φi , j is an isometry, by Lemma 2.1.3, we have

∆hi , j (x) =∆hi (Φi , j (x)). Also from (2.14), and the fact that g̃i , j converges in C∞,

‖Π(hi , j )(dhi , j ,dhi , j )‖Cα ≤C ′′ · (‖∆hi‖L∞ +‖hi‖L∞)

where C ′′ is a constant independent of i . By equation (2.2), we have

‖∆hi , j‖Cα ≤C ′′ · (‖∆hi‖L∞ +‖hi‖L∞)
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Using the Schauder estimate for second derivative, we have

‖hi , j‖C 2,α ≤C · (‖∆hi‖L∞ +‖hi‖L∞) (2.16)

for some C independent of i and we have (2.13).

Now we will prove (2.12) by contradiction. Assume |vi | = 1. Letσi (t ) = expFi
p (t vi ) be a geodesic

in the fiber containing p, Fi ⊂ Mi such that d
d t |t=0σ

i (t ) = vi . For 0 ≤ t ≤ ρ
5 this curve has a lift

l i (t ) ⊂ B(pi , j ) such that Φi , j (l i (t )) =σi (t ). We have

d(σi (t ), p) ≤ diam(Fi ) ≤ εi

By contradiction we assume that there is subsequence of hi and a positive number A such that

|vi ·hi , j | > A · (‖∆hi‖L∞ +‖hi‖L∞)

We know that

vi ·hi = vi ·hi , j = d

d t

∣∣∣∣
t=0

hi , j ◦ l i (t ).

There exist β> 0 and δ> 0 independent of i such that for any t < δ, we have

|hi , j ◦ l i (t )−hi , j (a)| >β · t · (‖∆hi‖L∞ +‖hi‖L∞). (2.17)

To explain this, let hi , j ◦ l i (t ) = qi , j (t ). We know from (2.16) that

| d

d t

∣∣∣∣
t=0

q ′
i , j (t )| ≤C (‖∆hi‖L∞ +‖hi‖L∞),

so for some fix δ and 0 < t < δ we have

|q ′
i , j (t )−q ′

i , j (0)| ≤C ′ · t · (‖∆hi‖L∞ +‖hi‖L∞).

On the other hand we have

|q ′
i , j (0)| > A · (‖∆hi‖L∞ +‖hi‖L∞),

so for δ small enough and t < δ we have

|q ′
i , j (t )| >β · (‖∆hi‖L∞ +‖hi‖L∞).
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Therefore

|qi , j (t )−qi , j (0)| = |q ′
i , j (θi ) · t | >β · t · (‖∆hi‖L∞ +‖hi‖L∞).

from which (2.17) follows.

There exists b ∈ B(pi , j ), such that d(a,b) < εi and Φi , j (li (δ′)) = b, for a fixed δ′ < δ we have

|hi , j (b)−hi , j (a)| >β ·δ′ · (‖∆hi‖L∞ +‖hi‖L∞).

If we fix {ξk }k=n
k=0 as a coordinate system at the point a ∈ B(pi , j ), for some b′ ∈ B(pi , j ) we have

k=n∑
k=0

∂hi , j

∂ξk
>C ·β · δ

′

εi
· (‖∆hi‖L∞ +‖hi‖L∞),

and this contradicts (2.15).

As we assumed ‖e( fi )‖L∞ < c and by the Euler-Lagrange equation and Corollary 2.1.6, we have

that ‖∆ fi‖L∞ is uniformly bounded. Moreover, ‖ fi‖L∞ is uniformly bounded, therefore by the

above lemma (2.12), the maps fi s are equicontinuous. By Lemma 2.1.11, there is a limit map

f : M → N which is continuous.

We consider the following maps on M ,

f̃i =
∑
β j · (i ◦ fi )◦ si , j , (2.18)

β j is an arbitrary C∞ partition of unity associated to B ρ

2
(x j , M) and si , j is the section associated

to ψi as mentioned in Remark 6 and i : N → Rq is an an isometric embedding . Along a

subsequence which we again denote by fi , we have

lim
i→∞

fi (si , j (x)) = f (x) for x ∈ B ρ

2
(x j , M),

and also

lim
i→∞

f̃i (x) = i ◦ f (x) for x ∈ B ρ

2
(x j , M).

Since the energy density of fi is bounded and also si , j satisfies in (2.11), we have ‖e( f̃i )‖L∞

is uniformly bounded. Indeed, we have ‖ f̃i‖C 1 is bounded, f̃i converge uniformly to i ◦ f .

Moreover ψi has bounded second fundamental form (see Theorem 2.6 in [CFG92]) and the

same is true for si , j . So f̃i has bounded C 2-norm and there is a subsequence of f̃i which

converges to i ◦ f in C 1-topology.
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Choose a local orthonormal frame {ēk }m
k=1 on (M , g M

i ). Denote its horizontal lift on (Mi , gi )

by {ek }m
k=1. Suppose {et }n

t=m+1 is a local orthonormal frame field of the fiber Fi in Mi . Thus

{ek ,et } form a local orthonormal frame field in Mi . (Note that we omit put the index i for the

orthonormal frame fields on (Mi , gi ) and (M , g M
i ).) Our aim is to show that f is also weakly

harmonic.

Lemma 2.2.4. We have

lim
i→∞

|〈di ◦ fi ,dηi 〉(p)−〈d f̃i ,d η̃〉(ψi (p))| = 0,

where η̃ : M →Rq , is a C∞-map and ηi = η̃◦ψi and p in Mi .

Proof. By inequality (2.12),

|〈di ◦ fi ,dηi 〉(p)−
m∑

k=1
〈di ◦ fi (ek ),dηi (ek )〉(p)| ≤C ·εi

for i large enough and C , a constant. Let Fi denote the fibre containing p and choose a point

q in Fi . By 2.13, and diam(Fi ) ≤ εi

|di ◦ fi (ek )(p)−di ◦ fi (ek )(q)| ≤C ·εi ,

and so

|di ◦ fi (ek )(p)−di ◦ fi (ek )(si , j ◦ψi (p))| ≤C ·εi .

Because ψi ◦ si , j = Id, we have for x ∈ M

ψi ∗
(
ek (si , j (x))− si , j ∗(ēk (x))

)= 0.

By the inequality 2.11, we have

|ek (si , j (x))− si , j ∗(ēk (x))| ≤C ,

for some constant C , therefore by (2.12),

|di ◦ fi (ek )(p)−d(i ◦ fi )◦ si , j ∗(ēk )(ψi (p))| ≤C ·εi .

From the convergence of fi ◦ si , j to f , we have

lim
i→∞

|∑dβ j · (i ◦ fi )◦ si , j −
∑

dβ j · (i ◦ f )| = 0,

So

lim
i→∞

|d f̃i −
∑
β j ·d((i ◦ fi )◦ si , j )| = 0,

39



Chapter 2. Harmonic Maps and Convergence

since
∑

j β j = 1, we finally have

lim
i→

|〈di ◦ fi ,dηi 〉(p)−〈d f̃i ,d η̃〉(ψi (p))| = 0.

Lemma 2.2.5. We have

lim
ı→∞

∣∣Π( fi )(p)(di ◦ fi ,di ◦ fi )−Π( f̃i )(ψi (p))(d f̃i ,d f̃i )
∣∣= 0,

Proof. By the above Lemma, we have

lim
i→∞

|d fi (p)−d f̃i (ψi (p))| = 0

By the same argument as Lemma ??, we can conclude

∣∣Π( fi )(p)(di ◦ fi ,di ◦ fi )−Π( f̃i )(ψi (p))(d f̃i ,d f̃i )
∣∣

≤C · ∣∣d fi (p)−d f̃i (ψi (p))
∣∣

and so we have the result

The map f̃i : (M , g M
i ,dvolg M

i
) →Rq , converges in C 1 to the map i ◦ f , and Φi converges to Φ in

C∞ topology. Also (M , g M
i ) converges to (M , g ) in M (n,D, v). Therefore, we have

∣∣∣∣∫
M
Ξg M

i
(η, f̃i ) Φi dvolg M

i −
∫

M
Ξ(η, f ) Φdvolg

∣∣∣∣≤C ·εi .

where Ξ(·, ·) is defined in 2.4. By Lemma 2.2.4 and 2.2.5, we have

lim
i→∞

∣∣∣∣∫
Mi

Ξgi (ηi , fi )
dvolMi

vol(Mi )
−

∫
M
Ξg M

i
(η, f̃i )ψi ∗

(
dvolMi

vol(Mi )

)∣∣∣∣= 0.

and so we have

lim
i→∞

∫
Mi

Ξgi (ηi , fi )
dvolMi

vol(Mi )
=

∫
M
Ξg (η, f ) ΦdvolM .

This prove the result in Case 2 under assumption 1.

For the general metric, by Theorem 2.1.16 we can obtain C 1-close metric gi (ε) which satisfies

2.10 and such that the map ψi : (Mi , gi (ε)) → (M ,ψi ∗(gi (ε))) is a Riemannian submersion.

40



2.2. Proof of the Convergence Theorem

For small ε, let M(ε) be the Gromov-Hausdorff limit of some subsequence (Mi , gi (ε)). By

Lemma 2.1.8, (Mi , gi (ε)) and (M(ε), g (ε)) converge to (Mi , gi ) and (M , g ) in M (n,D, v) respec-

tively.

fi : (Mi , gi ) → (N ,h) is harmonic and since gi (ε) is C 1-close to g , we have

|Ξgi ( fi ,ηi )−Ξgi (ε)( fi ,ηi )| ≤C ·εi .

By (2.19), we have

lim
i→∞

∣∣∣∣∫
Mi

Ξgi (ε)( fi ,ηi )
dvol(Mi ,gi (ε))

vol((Mi , gi (ε)))
−

∫
M(ε)

Ξg (ε)( f ,η) ·Φ(ε)dvolM(ε)

∣∣∣∣= 0,

and finally since g (ε) converges to g in C 1,α-topology, we have the desired result.

Case 3. Mi Converge to a Metric Space (X ,d) in M (n,D).

Now we are going to investigate the general case when the sequence converges to a singular

space. This means that Mi ∈M (n,D) converges to some metric space (X ,d). First we recall

the following remark.

Remark 7 ([Fuk87a], §7). Let Y be a Riemannian manifold on which O(n) acts as isometries,

and θ : Y → [0,∞) be an O(n)-invariant smooth function. Put X = Y /O(n). Let π : Y → X be the

natural projection, θ̄ : X → [0,∞) the function induced from θ, and S(X ) the set of all singular

points of X . The set S(X ) ⊂ X has a well defined normal bundle on the codimension 2 strata

(X = Y /O(n) is a Riemannian polyhedra and S(X ) is a subset of n −2-skeleton of X ). Set

Lip(X ,S(X )) = {u ∈ Lip(X ) | v ·u = 0 if v is perpendicular to S(X )}.

Define Q1 : Lip(Y )×Lip(Y ) → [0,∞) and Q2 : Lip(X ,S(X ))×Lip(X ,S(X )) → [0,1) by

Q1(k̃, h̃) =
∫

Y
θ · 〈∇k̃,∇h̃〉 dvolY

Q2(k,h) =
∫

X
θ̄ · 〈∇k,∇h〉 dµg

It is easy to see that f ◦π ∈ Lip(Y ) for each f contained in Lip(X ,S(X )). Defineπ∗ : Lip(X ,S(X )) →
Lip(Y ) by π∗( f ) = f ◦π. Let LipO(n)(Y ) be the set of all O(n)- invariant elements of Lip(Y ). Then,

we can easily prove the following:

Lemma 2.2.6. π∗ is a bijection between Lip(X ,S(X )) and LipO(n)(Y ). For elements f , k of

Lip(X ,S(X )), we have

Q1( f ,k) =Q2(π∗( f ),π∗(k)), (2.19)
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and

∫
Y
θ ·π∗( f )π∗(k) dvolY =

∫
X
θ̄ · f k dµg . (2.20)

The frame bundle πi : F (Mi ) → Mi is a Riemannian submersion with totally geodesic fibres. So

using the reduction formula (2.1.4), the map f̃i = fi ◦πi is harmonic on F (Mi ) and it is invariant

under the action of O(n). Furthermore ‖e( f̃i )‖∞ is bounded (πi is a Riemannian submersion).

Using Case 2, f̃i converge to some map f̃ on (Y , g ,ΦY dvolY ). The map f̃ satisfies

∫
Y
Ξg ( f̃ ,η) ΦY dvolY = 0.

where η is a test function. The map f̃ is also O(n) invariant and continuous. Consider the

quotient map f such that f̃ =π∗( f ). First we show that f is in H 1((X ,ν), N ). By the argument

in Case 2, f̃ is in H 1((Y ,ΦY dvolY ), N ) and so by equation (2.19), f is of finite energy.

Now, we show that f is weakly harmonic on (X ,ν). By equation (2.19), for η in Lip(X ,S(X ))∫
Y
〈∇i ◦ f̃ ,∇π∗(η)〉ΦY dvolY =

∫
X
〈∇i ◦ f ,∇η〉ΦX dµg .

We have

∫
Y
〈Π( f̃ )(∇g (i ◦ f̃ ),∇g (i ◦ f̃ )),π∗(η)〉ΦY dvolY

=
∫

X
〈Π( f )(∇(i ◦ f ),∇(i ◦ f )),π(η)〉ΦX dµg

and since ΦY =π∗(ΦX )∫
Y
Ξg ( f̃ ,π∗(η)) ΦY dvolY =

∫
X
Ξ( f ,η) ΦX dµg .

which shows that f : X → N is a weakly harmonic map.

2.2.1 Further Discussion

In this subsection we are going to give a second proof on Theorem 0.1.2 under the following

assumptions:

1. We consider the Assumption 1.
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2.2. Proof of the Convergence Theorem

2. We consider the sections si , j is almost harmonic,

|τ(si , j )| ≤C ·εi , (2.21)

and also

|∇X̄ d si , j (X )| ≤C ·εi . (2.22)

where X is a smooth vector field on M and X̄ is its horizontal lift.

This proof has the advantage of showing how the term d f (∇ lnΦ) appears in the Euler-

Lagrange equation for harmonic maps on weighted manifold (M , g ,Φ).

Let {ek ,et } and ēk be as in Case 2. We compute the tension field of the map fi in these

coordinates.

τ( fi ) = (∇ek d fi )ek + (∇et d fi )et

= (∇ek d fi )ek +∇ fi ∗(et ) fi ∗(et )

− fi ∗(∇et et )H − fi ∗(∇et et )V

= (∇ek d fi )ek − fi ∗(Hi )+τ( fi
⊥)

where fi
⊥ denotes the restriction of fi to the fibers Fi , and Hi is the mean curvature vector of

the submanifold Fi .

By the discussion in Case 2, we know f̃i converges to f in C 1-topology. Now we will investigate

how each term of the equation above behave as fi → f .

Lemma 2.2.7. We have

lim
i→∞

∣∣∣di (∇ek d fi )ek (p)−
(
∆g M

i f̃i −Π( f̃i )(d f̃i ,d f̃i )
)

(ψi (p))
∣∣∣= 0 (2.23)

Proof. By Lemma 2.1.3, we have

di (B fi (X1, X2)) = B(i ◦ fi )(X1, X2)−B(πN )(d(i ◦ fi )(X1),d(i ◦ fi )(X2))

and so for k = 1, . . . ,n

di ((∇ek d fi )ek ) = (∇ek d(i ◦ fi ))ek −B(πN )(d(i ◦ fi )(ek ),d(i ◦ fi )(ek ))
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First we show that

|∇ek d(i ◦ fi )ek (p)−∆g M
i f̃i (ψi (p))| ≤ o(εi )

By definition of f̃i ,

(∇ēk d f̃i )ēk = ∑(
dβ j (ēk ) ·d fi (si , j ∗(ēk ))

+ β j · (∇ēk d( fi ◦ si , j ))ēk +4β j · fi ◦ si , j
)
.

and again by Lemma 2.1.3, we have,

τ( fi ◦ si , j ) = Bsi , j ∗(ēk ),si , j ∗(ēk ) fi +d fi (τ(si , j )). (2.24)

Since fi ◦ si , j converges in C 1 to f , we have

lim
i→∞

|∑dβ j (ēk ) ·d fi (si , j ∗(ēk ))| = 0,

lim
i→∞

∑
∆β j · fi ◦ si , j (x) =∑4β j · f (x) = 0.

Also, ψi ∗(ek − si , j ∗(ēk )) = 0 and so ek − si , j ∗(ēk ) is vertical. On the other hand we have

|ek − si , j ∗(ēk )| ≤ εi .

By inequality (2.12) and assumption (2.21), the second term on the right hand side 2.24

converges to zero. Again by inequality (2.13) and the assumption (2.22), we have

lim
i→∞

|(∇ek d fi )(ek − si , j ∗(ēk ))| = 0,

lim
i→∞

|(∇(ek−si , j ∗(ēk ))d fi )ek | = 0.

Finally

lim→∞ |(∇ek d(i ◦ fi ))ek (p)− (∇ēk d f̃i )ēk (ψ(p))| = 0.

We have the same for the second term

lim
i→∞

|Π( fi )(p)(d fi ,d fi )−Π( f̃i )(ψi (p))(d f̃i ,d f̃i )| = 0.

By the above lemma and ψi ∗(
dvolMi
vol(Mi ) ) =Φi dvolg M

i , we have

lim
i→∞

∣∣∣∣∫
Mi

〈di ((∇ek d fi )ek ),ηi 〉
dvolMi

vol(Mi )
−

∫
M
〈∆g M

i f̃i −Π( f̃i )(d f̃i ,d f̃i ),η〉Φi dvolg M
i

∣∣∣∣= 0
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and we conclude

limi→∞
∫

Mi
〈di ((∇ek d fi )ek ),ηi 〉 dvolMi

vol(Mi )

= ∫
M

[〈d f ,dη〉+〈d f (∇ lnΦ)−Π( f )(d f ,d f ),η〉] ΦdvolM . (2.25)

Now we will consider the second and third term in the decomposition of τ( fi ).

Lemma 2.2.8. With the same assumptions as above, we have

(a) lim
i→∞

∫
Mi

〈d fi (Hx
i ),ηi 〉

dvolMi

vol(Mi )
=−

∫
M
〈d f (∇ lnΦ),η〉ΦdvolM (2.26)

(b) lim
i→∞

‖τ( fi
⊥)‖ = 0 (2.27)

here Hx
i denotes the mean curvature vector of the fiber F x

i =ψ−1
i (x). As before η is a test map on

M and ηi = η◦ψi .

Proof. To prove equality (2.26), we need the following.

Sublemma 1. We have

∇ lnΦ(x) =− lim
i→∞

ψi ∗(Hx
i ) weakly. (2.28)

proof. Suppose X is a smooth vector field on M and Xi its horizontal lift on Mi . The flow θi
t of

Xi sends fibers to fibers diffeomorphically. By the first variation formula

d

d t

∣∣∣∣
t=0

θi
t
∗

(dvolF x
i

) =−
∫

F x
i

〈Xi ,Hx
i 〉 dvolF x

i
(2.29)

Also

Φi (x) = vol(ψ−1
i (x))

vol(Mi )

and by (2.29),

dΦi (X )(x) =−
∫

F x
i

〈Xi ,Hx
i 〉

dvolF x
i

vol(Mi )
,
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For an arbitrary η in C∞(M), we prove

∫
M
ηdΦi (X ) dvolg M

i =−
∫

Mi

ηi 〈Xi ,Hi 〉
dvolMi

vol(Mi )
. (2.30)

If we consider (Uγ,hγ) as a local trivialization of the the fibration ψi , then

∫
M
χUγ

dΦi (X ) ·dvolg M
i =−

∫
Uγ

∫
F x

i

χUγ
〈Xi ,Hx

i 〉
dvolF x

i

vol(Mi )
dvolg M

i

and so∫
M
χUγ

dΦi (X ) dvol
g M

i
M =−

∫
ψ−1

i (Uγ)
〈Xi ,Hi 〉

dvolMi

vol(Mi )

where χUγ
denotes the characteristic function on Uγ and so we have (2.30). Φi tends toΦ in

C∞ and also dvolg M
i tends to dvolM as i goes to infinity. Letting i →∞ on the both hand side

of (2.30) and by the definition of weak derivatives∫
M
η∇ lnΦ(X ) ΦdvolM =− lim

i→∞

∫
M
η〈X ,ψi ∗(Hi )〉Φi dvolg M

i .

This proves the Sublemma 1.

Now recall that by definition of f̃i , we have

d f̃i (x) =∑
dβ j (x) · fi ◦ si , j (x)+∑

β j (x) ·d( fi ◦ si , j )(x)

and so

limi→∞
∫

Mi
〈d f̃i (ψi ∗(Hx

i ))◦ψi ,ηi 〉 dvolMi
vol(Mi )

= limi→∞
∫

Mi
〈∑[dβ j (ψi ∗(Hx

i )) · ( fi ◦ si , j )]◦ψi ,ηi 〉 dvolMi
vol(Mi )

+ limi→∞
∫

Mi
〈∑[β j ·d( fi ◦ si , j )(ψi ∗(Hx

i )]◦ψi ,ηi 〉 dvolMi
vol(Mi )

= limi→∞
∫

Mi
〈d fi (Hx

i ),ηi 〉 dvolMi
vol(Mi ) .

We have

lim
i→∞

∑
dβ j (ψi ∗(Hx

i )) · ( fi ◦ si , j ) = 0,

and by inequality (2.12) and the fact that si , j ∗(ψi ∗(Hx
i ))−Hx

i is vertical, we obtain the last

equality. By the above sublemma,

lim
i→∞

∫
Mi

〈d fi (Hx
i ),ηi 〉

dvolMi

vol(Mi )
=−

∫
M
〈d f (∇ lnΦ),η〉 ·ΦdvolM
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2.2. Proof of the Convergence Theorem

To prove (b) start with

τ( fi
⊥) =∇ fi ∗(et ) fi ∗(et )− fi ∗(∇et et )V

From (2.12) and (2.13)

|∇ fi ∗(et ) fi ∗(et )| <C ·εi (2.31)

where C is a constant independent of i . Again from (2.12), we have

‖ fi ∗(∇et et )V ‖L∞ <C ·εi |(∇et et )V |

and so we see that

lim
i→∞

‖τ( fi
⊥)‖ = 0.

The limits (2.25), (2.26) and (2.27), shows that f satisfies Euler-Lagrange equation in weak

sense.

∫
M
〈d f ,dη〉−〈Π( f )(d f ,d f ),η〉 ·ΦdvolM = 0. (2.32)

When e( fi ) are uniformly bounded, then ‖ fi‖C k are uniformly bounded, for k ≥ 0. By Lemma

1.6 in [Fuk89] or Theorem 6.2 in [CFG92], we have that the map ψi are {Bk }-regular, where Bk

are positive number and so we have f̃i have uniformly bounded C k -norm. Therefore under the

assumption in the beginning of this subsection, we have proved that τ( fi ) → τ( f )+d f (∇ lnΦ).
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Part IIRiemannian polyhedra and
Liouville-type theorems on them
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3 Preliminaries

3.1 Riemannian polyhedra

In this section we recall the definitions and results about Riemannian polyhedra which will be

used in the rest of the manuscript.

Definition 3.1.1. [EF01] A countable locally finite simplicial complex K , consists of a countable

set {v} of elements, called vertices, and a set {s} of finite non void subsets of vertices, called

simplexes, such that

• any set consisting of exactly one vertex is a simplex,

• any non void subset of a simplex is a simplex,

• every vertex belongs to only finitely many simplexes (the local finiteness condition).

To the simplicial complex K , we associate a metric space |K | defined as follows. The space

|K | of K is the set of all formal finite linear combinations α=∑
v∈K α(v)v of vertices of K such

that 0 ≤α(v) ≤ 1,
∑

v∈K α(v) = 1 and {v :α(v) > 0} is a simplex of K . |K | is made into a metric

space with barycentric distance ρ(α,β) between two points α=∑
α(v)v and, β=∑

β(v)v of

|K | given by the finite sum

ρ(α,β)2 = ∑
v∈K

(α(v)−β(v))2.

With this metric |K | is locally compact and separable. The metric ρ is not intrinsic. We denote

by d(α,β) the length metric associated to ρ by the standard procedure [BBI01].

Lemma 3.1.2. [EF01] Let K be a countable, locally finite simplicial complex of finite dimension

n, and V a Euclidean space of dimension 2n+1. There exists an affine Lipschitz homeomorphism

i of |K | onto a closed subset of V .
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Definition 3.1.3. [EF01] We shall use the term polyhedron to mean a connected locally compact

separable Hausdorff space X for which there exists a simplicial complex K and a homeomor-

phism θ of |K | onto X . Any such pair T = (K ,θ) is called a triangulation of X .

Definition 3.1.4. [EF01] A Lipschitz polyhedron is a metric space X which is the image of

the metric space |K | of some complex K under a Lipschitz homeomorphism θ : |K | → X . The

pair (K ,θ) is then called a Lipscitz triangulation (or briefly a triangulation) of the Lipschitz

polyhedron X .

A null set in a Lipschitz polyhedron X is understood a set Z ⊂ X such that Z meets every

maximal simplex s (relative to some, and hence any triangulation T = (K ,θ) of X )) in a set

whose pre-image under θ has p-dimensional Lebesgue measure 0, p = dim s.

From Lemma 3.1.2 follows that every Lipschitz polyhedron (X ,dX ) can be mapped Lipschitz

homeomorphically and (simplexwise) affinely onto a closed subset of a Euclidean space.

Riemannian Structure on a polyhedron. The class of domains that we consider for our har-

monic maps are Riemannian polyhedra. A Riemannian polyhedron is a Lipschitz polyhedron

(X ,d) such that for some triangulation T = (K ,θ), there exist a measurable Riemannian metric

g s = gi j d xi d x j on each maximal simplex s of i (|K |) (i as in Lemma 3.1.2), which satisfies

Λ−2‖ξ‖2 ≤ gi j (x)ξiξ j ≤Λ2‖ξ‖2 (3.1)

almost everywhere in standard coordinate in the simplex s. Here the constantΛ is independent

of a given simplex. The distance d g
X on X is an intrinsic distance with respect to the metric g ,

meaning that d g = d g
X is the infimal length of admissible path joining x to y . Actually (X ,d g ) is

a length space. The detailed definition is somewhat subtle and we refer to [EF01], for a careful

discussion of Riemannian polyhedra.

A Riemannian metric g on a polyhedron X is said to be continuous, if relative to some (hence

any) triangulation, gs is continuous up to the boundary on each maximal simplex s, and for

any two maximal simplexes s and s′ sharing a face t , gs and gs′ induce the same Riemannian

metric on t . There is a similar notion of a Lipschitz continuous Riemannian metric.

A Riemannian polyhedron has a well defined volume element given simplexwise by

dµg =
√

det(gi j (x)) d x1d x2 . . .d xn ,

this measure coincide with Hausdorff measure.

Further definitions.

Definition 3.1.5. [EF01] A polyhedron X will be called admissible if in some (hence in any)

triangulation,
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i) X is dimensionally homogeneous, i.e. all maximal simplexes have the same dimension

n(= dim X ), or equivalently every simplex is a face of some n-simplex and

ii) X is locally (n −1)-chainable, i.e. for every connected open set U ⊂ X , the open set U \X n−2 is

connected.

iii) The boundary ∂X of a polyhedron X is the union of all non maximal simplexes contained in

only one maximal simplex.

In this work we always assume that (X , g ) satisfies ∂X =;.

Definition 3.1.6. [EF01] By an n-circuit we mean a polyhedron X of homogeneous dimension

n such that in some, (and hence any) triangulation,

i) every (n −1)-simplex is a face of at most two n-simplexes (exactly two if ∂X =;), and

ii) X is (n −1)-chainable, i.e. X \X n−2 is connected, or equivalently any two n-simplexes can be

joined by a chain of contiguous (n −1)- and n-simplexes.

Let S = S(X ) denote the singular set of an n-circuit X , i.e. the complement of the set of all

points of X having a neighborhood which is a topological n-manifold (possibly with boundary).

S is a closed triangulable subspace of X of codimension ≥ 2, and X \S is a topological n-

manifold which is dense in X . An admissible circuit is called a pseudomanifold. We call

a pseudomanifold (X , g ,dX ) a Lipschitz pseudomanifold, if g is Lipschitz continuous. If

g is simplexwise smooth such that (X \S, g |X \S) has the structure of a smooth Riemannian

manifold, we call (X , g ,dX ) a smooth pseudomanifold. 1

3.2 The Sobolev space W 1,2(X )

Let (X , g ,dX ) denote an admissible Riemannian polyhedron of dimension n. We denote by

Lip1,2(X ) the linear space of all Lipschitz continuous functions u : (X ,dX ) →R for which the

Sobolev (1,2)-norm ‖u‖ defined by

‖u‖2
1,2 =

∫
X

(u2 +|∇u|2) dµg = ∑
s∈S(n)(X )

∫
s
(u2 +|∇u|2) dµg

is finite, S(n)(X ) denoting the collection of all n-simplexes s of X , and |∇u| the Riemannian

norm of the Riemannian gradient on each s. (The Riemannian gradient is defined a.e. in

X or a.e. in each s ∈ Sn(X ), by Rademacher’s theorem for Lipschitz functions on Euclidean

domains.)

The Lebesgue space L2(X ) is likewise defined with respect to the volume measure.

1In many texts the term pseudomanifold is used for what we called a circuit.

53



Chapter 3. Preliminaries

The Sobolev space W 1,2(X ) is defined as the completion of Lip1,2(X ) with respect to the

Sobolev norm ‖ · ‖1,2. We use the notations Lipc (X ), W 1,2
0 (X ) and W 1,2

loc (X ), for the linear

space of functions in Lip(X ) with compact support, the closure of Lipc (X ) in W 1,2(X ) and all

u ∈ L2
loc(X ) such that u ∈W 1,2(U ) for all relatively compact subdomains U in X .

Sobolev spaces on metric spaces. Here we recall a few basic notions on analysis on metric

spaces. For the sake of completeness, we compare the L2 based Sobolev space on admissible

Riemannian polyhedra as in [EF01], with the one in [Che99], and show that they are equivalent.

We use [Che99] as our main reference. See also [Sha00, HK98, Haj96, HK00] and [BB11] for

further references.

Let (Y ,d ,µ) be a metric measure space, µ Borel regular. Assume also the measure of balls of

finite and positive radius are finite and positive. Fix a set A ⊂ Y . Let f be a function on A with

values in the extended real numbers.

Definition 3.2.1. An upper gradient, for f is an extended real valued Borel function, g : A →
[0,∞], such that for all points, y1, y2 ∈ A and all continuous rectifiable curves, c : [0, l ] → A,

parameterized by arc length s, with c(0) = y1, c(l ) = y2, we have

| f (y2)− f (y1)| ≤
∫ l

0
g (c(s)) d s

Note that in above definition the left-hand side is interpreted as ∞, if either f (y1) =±∞ or

f (y2) =±∞. If on the other hand, the right-hand side is finite then it follows that f (c(s)) is a

continuous function of s. For a Lipschitz function f we define the lower pointwise Lipschitz

constant of f at x as

lip f (x) = liminf
r→0

sup
y∈B(x,r )

| f (y)− f (x)|
r

lip f is Borel, finite and bounded by the Lipschitz constant. Also lip f is an upper gradient for

f . Similarly for Lipschitz function f , the upper pointwise Lipschitz constant f , Lip f , is the

Borel function

Lip f (x) = limsup
r→0

sup
y∈B(x,r )

| f (y)− f (x)|
r

.

For any Lipschitz function f we have lip f (x) ≤ Lip f . In the special case Y = Rn , if x is a

point of differentiability of f , we observe that lip f (x) = Lip f (x) = |∇ f (x)|. We now define the

Soblolev space H 1,p , for 1 ≤ p <∞.
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Definition 3.2.2. Whenever f ∈ Lp (Y ), let

‖ f ‖1,p = ‖ f ‖Lp + inf
gi

liminf
i→∞

‖gi‖Lp ,

where the infimum is taken over all sequence {gi }, for which there exists a sequence fi
Lp

−→ f ,

such that gi is an upper gradient for fi , for all i .

For p ≥ 1, the Sobolev space, H 1,p , is the subspace of Lp consisting of functions, f , for which

‖ f ‖1,p <∞, equipped with the norm ‖ ·‖1,p . The space H 1,p is complete.

We define now the notions of generalized upper and minimal upper gradients. This will allow

us to give a nice interpretation of the H 1,p norm of Sobolev functions.

Definition 3.2.3. i) The function, g ∈ Lp is a generalized upper gradient for f ∈ Lp , if there exist

sequences, fi
Lp

−→ f , gi
Lp

−→ g , such that gi is an upper gradient for fi , for all i .

ii) For fixed p, a minimal generalized upper gradient for f is a generalized upper gradient g f ,

such that ‖ f ‖1,p = ‖ f ‖Lp +‖g f ‖Lp .

The following theorem ensures the existence of minimal generalized upper gradient for any

Sobolev function.

Theorem 3.2.4. [Che99] For all 1 < p <∞ and f ∈ H 1,p there exists a minimal generalized

upper gradient, g f , which is unique up to modification on subsets of measure zero.

We will discuss two important properties of metric spaces called the ball doubling property

and the Poincaré inequality for functions on them. These are essential assumptions to get a

richer theory on metric spaces.

Definition 3.2.5. Let (Y ,d ,µ) be a metric measure space. The measure µ is said to be locally

doubling if for all r ′ there exists κ= κ(r ′) such that for all y ∈ Y and 0 < r < r ′

0 <µ(Br (y)) ≤ 2κµ(Br /2(y)). (3.2)

Definition 3.2.6. Let q ≥ 1. We say that Y supports a weak Poincaré inequality of type (q, p), if

for all r ′ > 0, there exist constants 1 ≤λ<∞ and C =C (p,r ′) > 0 such that for all r ≤ r ′, and all

upper gradients g of f ,

(∫
Br (x)

| f − fx,r |q dµ

)1/q

≤Cr

(∫
λBr (x)

|g |p dµ

)1/p

, (3.3)

where fx,r := ∫
Br (x) f dµ. If λ= 1, then we say that X supports a strong (q, p)-Poincaré inequal-

ity.
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For every admissible Riemannian polyhedron (X , g ,µg ), µg is locally doubling. Moreover X

supports a weak (2,2)-Poincaré inequality and by Hölder’s inequality (1,2)-Poincaré inequality

(see Corollary 4.1 and Theorem (5.1) in [EF01]). In the sequel, the words ”Poincaré inequality”

refer to (2,2)-Poincaré inequality.

By Theorem 4.24 in [Che99], for any metric space which satisfies (3.2) and (3.3), for some

1 ≤ p <∞ and q = 1, the subspace of locally Lipschitz functions is dense in H 1,p . Furthermore

on a locally complete metric space with the mentioned properties, we have for some 1 < p <∞
and for any f locally lipschitz, g f = Lip f , µ-almost everywhere (see [Che99] Theorem 6.1).

Therefore, on a Riemannian polyhedron (X , g ,µg ), for any f ∈ H 1,2, g f (y) = |∇ f (y)| for a.e. y

and it follows that H 1,2 is equivalent to W 1,2. In the following, we always consider X = (X , g ,µg )

to be an admissible Riemannian polyhedron. Some of the concepts below are defined on

metric spaces in general but for simplicity we present them only on Riemannian polyhedron

and for p = 2. For more information on metric spaces we refer the reader to [BB11].

3.3 Capacities

In this section we recall some of the definitions in potential theory. First we define Sobolev

capacity.

Definition 3.3.1. [BB11] The Sobolev capacity of a set E ⊂ X is the number

C (E) = inf‖u‖2
W 1,2(X ),

where the infimum is taken over all u ∈W 1,2(X ) such that u ≥ 1 on E.

The variational capacity is defined as follow,

Definition 3.3.2. [BB11] Assume Ω ⊂ X is bounded. Let E ⊂ Ω. We define the variational

capacity

cap(E ,Ω) = inf
u

∫
Ω
|∇u|2 dµg , (3.4)

where the infimum is taken over all u ∈W 1,2
0 (Ω) such that u ≥ 1 on E.

In the above definitions the infimum can be taken only over u ≤ 1 such that it is equal 1 on a

neighborhood of E . Also we write cap(E) = cap(E , X ).

Definition 3.3.3. [EF01] A set U ⊂ X is quasi open if there are open sets ω of arbitrarily small

capacity such that U \ω is open relative to X \ω.

and a quasicontinuous map is
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3.4. Weakly harmonic and weakly sub/super harmonic functions

Definition 3.3.4. [EF01] A mapφ : U → Y from a quasiopen set U to a topological space Y with

a countable base of open sets is quasicontinuous if there are open sets ω of arbitrarily small

capacity such that φ|U \ω is continuous

Clearly this amounts to φ−1(V ) being quasiopen for every open subset V of Y .

3.4 Weakly harmonic and weakly sub/super harmonic functions

Definition 3.4.1. A function u ∈W 1,2
loc (X ) is said to be weakly harmonic if

∫
X
〈∇u,∇ρ〉 dµg = 0 for every ρ ∈ Lipc (X ).

A function u ∈W 1,2
loc (X ) is said to be weakly subharmonic, resp. weakly superharmonic, if

∫
X
〈∇u,∇ρ〉 dµg ≤ 0, resp. ≥ 0 for every ρ ∈ Lipc (X ).

Now we have,

Proposition 3.4.2. [EF01] A function u ∈W 1,2(X ) is weakly harmonic if and only if u minimizes

the energy E(v) among all functions v ∈W 1,2(X ) such that v −u ∈W 1,2
0 (X ).

[EF01] In the following we discuss on the existence of minimizer under specific assumption

on the Riemannian polyhedra.

Theorem 3.4.3. Suppose the following Poincaré inequality holds:

∫
X
|u|2 dµg ≤ c

∫
X
|∇u|2 dµg for all u ∈W 1,2

0 (X ), (3.5)

with c depending only on the admissible Riemannian polyhedron X . For any f ∈W 1,2(X ) the

class of competing maps

W 1,2
f (X ) = {v ∈W 1,2(X ) : v − f ∈W 1,2

0 (X )}, (3.6)

contains a unique weakly harmonic function u. That function is the unique minimizer of
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E(u) = E0, where

E0 := inf{E(v) : v ∈W 1,2(X ), v − f ∈ Lipc (X )}

= min{E(v) : v ∈W 1,2
f (X )}.

As a corollary of the above theorem we have,

Corollary 3.4.4. Assume that the domainΩ⊂ X is bounded and such that the Sobolev capacity

C (X \Ω) > 0. For any f ∈W 1,2(Ω), the class of functions

W 1,2
f (Ω) = {v ∈W 1,2(Ω) : v − f ∈W 1,2

0 (Ω)}

has a unique solution u of the equation E(u) = EΩ, where

EΩ := inf{E(v) : v ∈W 1,2(Ω), v − f ∈W 1,2
0 (Ω)}.

Proof. Since X satisfies the Poincaré inequality and using Theorem 5.54 in [BB11], Ω satisfies

the inequality (3.5). By the above theorem, there is a unique minimizer which is weakly

harmonic.

We have the following theorem on the regularity of weakly harmonic functions on Riemannian

polyhedra.

Theorem 3.4.5. [EF01] Every weakly harmonic function on X is Hölder continuous (after

correction on a null set).

A continuous weakly harmonic function on X is called harmonic.

Remark 8. From the discussion above one can see in the definition of variational capacity

that there is a harmonic function u which takes the minimum in (3.4). This function is not

necessarily continuous on the boundary of Ω\E.

3.5 Polar sets

Definition 3.5.1. A set S ⊂ X is said to be a polar set for the capacity if for every pair of relatively

compact open sets U1 bU2 ⊂ X such that d(U1, X \U2) > 0 we have

cap(S ∩U1,U2) = 0.
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3.6. The Dirichlet space L1,2
0 (X )

According to Theorem 9.52 in [BB11] (see also section 3 in [GT02]), S is a polar set if and only

if every point of X has an open neighborhood U on which there is a superharmonic function

which equals +∞ at every point of S ∩U .

Lemma 3.5.2. A closed set S ⊂ X is a polar set if and only if for every neighborhood U of S and

every ε> 0, there exists a function ϕ ∈ Lip(X ) such that

i) the support of ϕ is contained in X \S,

ii) 0 ≤ϕ≤ 1,

iii) ϕ≡ 1 on X \U .,

iv)
∫

X |∇ϕ|2 < ε.

Proof. The proof is based on the definition of polar set and it is completely the same as the

case of Riemannian manifolds. See Proposition 3.1 in [Tro99] for the proof of the equivalence

on Riemannian manifolds.

3.6 The Dirichlet space L1,2
0 (X )

In this section we introduce the Drichlet space L1,2
0 (X ) on an admissible Riemannian polyhe-

dron X (see [EF01]). The Drichlet space L1,2
0 (X ) determines a Brelot harmonic structure on X .

Using this fact we can show, X has a symmetric Green function which gives us information on

the singularities of X .

Proposition 3.6.1. [EF01] Suppose that, for every compact set K ⊂ X ,

(∫
K
|u| dµg

)2

≤ c(K )E(u) for all x ∈ Lipc (X ), (3.7)

with c(K ) depending only on X and K . In particular, X is non-compact. The completion L1,2
0 (X )

of space Lipc (X ) within L1
loc(X ) with respect to the norm E(u)1/2 is then a regular Dirichlet

space of strongly local type. L1,2
0 (X ) is a subset of W 1,2

loc (X ).

Note that W 1,2
0 (X ) ⊂ L1,2

0 (X ) ⊂W 1,2
loc (X ). According to the above proposition, (L1,2

0 (X ),E) is a

strongly local regular Drichlet form. Let

∆ : L1,2
0 (X ) ⊃ D(∆) → L2(X )

denote the generator induced from (L1,2
0 (X ),E), which is a densely defined non-positive

definite self-adjoint operator satisfying E(u, v) = (∆u, v)L2 . Here D(∆) denotes the domain of

operator ∆. We have
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Theorem 3.6.2. [EF01] Let (X , g ,µg ) be an admissible Riemannian polyhedra such that the

inequality (3.7) holds. Then X has a unique symmetric Green kernel

G : X ×X → (0,∞]

which is finite and Hölder continuous off the diagonal X ×X .

For local questions, condition (3.7) is not required (it is automatically satisfied with X replaced

by the open star of a point a of X relative to a sufficiently fine triangulation and in view of

inequality (3.3)). As a consequence of Theorem 3.6.2, we have

Proposition 3.6.3. The (n−2)-skeleton X (n−2) of an admissible Riemannian n-polyhedron is a

polar set.

We should note that being polar is independent of the Riemannian structure on the polyhe-

dron.

Remark 9. Every closed polar subset F of X is removable for Sobolev (1,2)- functions, i.e.

W 1,2(X \F ) =W 1,2(X ). A larger class of removable sets in this sense is that of all (closed) sets of

(n −1)-dimensional Hausdorff measure zero (see Proposition 7.7 in [EF01]).

3.7 Harmonic maps on Riemannian polyhedra

The energy of a map from a Riemannian domain to an arbitrary metric space was defined and

investigated by Korevaar and Schoen [KS93]. Here, we give an introduction to the concept of

energy of maps, energy minimizing maps and harmonic maps on a Riemannian polyherdron.

In the case that the target Y is a Riemannian C 1-manifold the energy of the map is given by

the usuall expression (similarly when the target is a Riemannian polyhedron with continuous

Riemannian metric).

Let (X , g ) be an admissible n-dimensional Riemannian polyhedron with simplexwise smooth

Riemannian metric. We do not require that g is continuous across lower dimensional sim-

plexes. Let Y be an arbitrary metric space. Denote by L2
loc(X ,Y ) the space of all µg -measurable

maps ϕ : X → Y having separable essential range (The essential range of a map ϕ is a closed

set of points q ∈ Y such that for any neighborhood V of q , ϕ−1(V ) has positive measure.), and

for which dY (ϕ(·), q) ∈ L2
loc(X ,µg ) for some point q (and therefore by the triangle inequality

for any q ∈ Y ). For ϕ,ψ ∈ L2
loc(X ,Y ) define their distance

D(ϕ,ψ) =
(∫

X
d 2

Y (ϕ(x),ψ(x)) dµg (x)

)1/2

.
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3.7. Harmonic maps on Riemannian polyhedra

The approximate energy density of a map ϕ ∈ L2
loc(X ,Y ) is defined for ε> 0 by

eε(ϕ)(x) =
∫

B(x,ε)

d 2
Y (ϕ(x),ϕ(x ′))

εn+2 dµg (x ′)

The function eε(ϕ) is of class L1
loc(X ,µg ) (see [KS93]).

Definition 3.7.1. The energy E(ϕ) of a map ϕ of class L2
loc(X ,Y ) is defined as

E(ϕ) = sup
f ∈Cc (X ,[0,1])

(
limsup
ε→0

∫
X

f eε(ϕ) dµg

)
.

We say that ϕ is locally of finite energy, and write ϕ ∈ W 1,2
loc (X ,Y ), if E(ϕ|U ) < ∞ for every

relatively compact domain U ⊂ X . For example every Lipschitz continuous map ϕ : X → Y

is in W 1,2
loc (X ,Y ). Now we give a necessary and sufficient condition for a map ϕ to be in

W 1,2
loc (X ,Y ).

Lemma 3.7.2. Let (X , g ) be an admissible n-dimensional Riemannian polyhedron with sim-

plexwise smooth Riemannian metric, and (Y ,dY ) a metric space. A mapϕ ∈ L2
loc(X ,Y ) is locally

of finite energy if and only if there is a function e(ϕ) ∈ L1
loc(X ) such that eε(ϕ) → e(ϕ) as ε→ 0,

in the sense of weak convergence of measures:

lim
ε→0

∫
X

f eε(ϕ) dµg =
∫

X
f e(ϕ) dµg f ∈Cc (X )

Energy of maps into Riemannian manifolds. Let the domain be an arbitrary admissible

Riemannian polyhedron (X , g ) (g is only measurable with local elliptic bounds, unless oth-

erwise specified), and the target is a Riemannian C 1-manifold (N ,h) without boundary, X of

dimension n and Y of dimension m.

A chart η of N , η : V →Rm is bi-Lipschitz if the components hαβ of h|V have elliptic bounds:

Λ−2
V

m∑
α=1

(ηα)2 ≤ hαβη
αηβ ≤Λ2

V

m∑
α=1

(ηα)2. (3.8)

Definition 3.7.3. Relative to a given countable atlas on a Riemannian C 1-manifold (N ,h), a

map ϕ : (X , g ) → (N ,h) is of class W 1,2
loc (X , N ), or locally of finite energy, if

i) ϕ is a quasicontinuous (after correction on a set of measure zero),

ii) its components ϕ1, . . . ,ϕm in charts η : V →Rm are of class W 1,2(U ) for every quasiopen set
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U ⊂ϕ−1(V ) of compact closure in X , and

iii) the energy density e(ϕ) of ϕ, defined a.e. in each of the quasiopen sets φ−1(V ) covering X by

e(ϕ) = (hαβ ◦ϕ)g (∇ϕα,∇ϕβ),

is locally integrable over (X ,µg ).

The energy of ϕ ∈W 1,2
loc (X , N ) is defined by E(ϕ) = ∫

X e(ϕ) dµg .

There is also corresponding definition for the energy of maps into Riemannian polyhedra.

There, (X , g ) is admissible, dim X = n, and g is measurable with elliptic bounds on each n-

simplex of X . The polyhedron Y is not required to be admissible, but its Riemannian metric h

is assumed to be continuous.

Energy minimizing maps. We suppose that (X , g ), n-dimensional admissible Riemannian

polyhedra with g simplexwise smooth and Y any metric space.

Definition 3.7.4. A map ϕ ∈ W 1,2
loc (X ,Y ) is said to be locally energy minimizing if X can be

covered by relatively compact domains U ⊂ X for which E(φ|U ) ≤ E(ψ|U ) for every map ψ ∈
W 1,2

loc (X ,Y ) such that ϕ=ψ a.e. in X \U .

Some of the results concerning energy minimizing maps on Riemannian manifolds, extend to

the case of Riemannian polyhedra with some restrictions on the geometry of the target.

Theorem 3.7.5. [EF01] If Y is a simply connected complete Riemannian polyhedron of non-

positive curvature, every locally energy minimizing map ϕ : X → Y is Hölder continuous.

There is a harmonic map in each homotopy class of every continuous map between Rieman-

nian manifolds. This result can be generalized for the map between Riemannian polyhedra as

following.

Theorem 3.7.6. [EF01] Let X and Y be compact Riemannian polyhedra. Assume that

(i) X is admissible, and

(ii) Y has non-positive curvature.

Then every homotopy class H of continuous maps X → Y has an Energy minimizer relative to

H , and any such is Holder continuous.

Harmonic maps. Consider an admissible Riemannian polyhedron (X , g ), of dimension n,

and a metric space (Y ,dY ),
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3.7. Harmonic maps on Riemannian polyhedra

Definition 3.7.7. A harmonic map ϕ : X → Y is a continuous map of class ϕ ∈ W 1,2
loc (X ,Y ),

which is locally energy minimizing in the sense that X can be covered by relatively compact

subdomains U , for each of which there is an open set V ⊃ϕ(U ) in Y such that

E(ϕ|U ) ≤ E(ψ|U )

for every continuous map ψ ∈W 1,2
loc (X ,Y ) with ψ(U ) ⊂V and ϕ=ψ in X \U .

Every continuous, locally energy minimizing map ϕ : X → Y is harmonic. Also if Y is a simply

connected complete Riemannian polyhedron of non-positive curvature, then a harmonic map

ϕ : X → Y is the same as a continuous locally energy minimizing map. For the definition of

the energy of a map, we consider the case when (X , g ) is an arbitrary admissible Riemannian

polyhedron and g just bounded measurable with local elliptic bounds, X of dimension n, and

(N ,h) a smooth Riemannian manifold without boundary, and the dimension of N is m. We

denote by Γk
αβ

the Christoffel symbols on N .

Definition 3.7.8. A weakly harmonic map ϕ : X → N is a quasicontinuous map of class

W 1,2
loc (X , N ) with the following property: for any chart η : V → Rn on N and any quasiopen

set U ⊂ϕ−1(V ) of compact closure in X , the equation∫
U
〈∇λ,∇ϕk〉 dµg =

∫
U
λ · (Γk

αβ ◦ϕ)〈∇ϕα,∇ϕβ〉 dµg (3.9)

holds for every k = 1, . . . ,m and every bounded function λ ∈W 1,2
0 (U ).

According to [EF01], a continuous map ϕ ∈W 1,2
loc (X , N ) is harmonic (Definition 3.7.7) if and

only if it is weakly harmonic (Definition 3.7.8).
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4 Ricci Curvature on Riemannian Poly-
hedra

In the past few years, several notions of boundedness of Ricci curvature from below on general

metric spaces have appeared. Sturm [Stu06] and Lott-Villani [LV09] independently introduced

the so called curvature-dimension condition on a metric measure space denoted by C D(K , N ).

The curvature dimension condition implies the generalized Brunn-Minkowski inequality

(hence the Bishop-Gromov comparison and Bonnet-Myer’s theorem) and a Poincaré inequality

(see [Stu06, LV07, LV09]). Meanwhile, Sturm and Ohta introduced a measure contraction

property denoted as MC P (K , N ) in Ohta’s work. The condition MC P (K , N ) also implies

the Bishop-Gromov comparison, Bonnet-Myer’s theorem and a Poincaré inequality (see

[Stu06, Oht07]). Note that all of these generalized notions of Ricci curvature bounded below

are equivalent to the classical one on smooth Riemannian manifolds. Here we define both

conditions and show that on a Riemannian polyhedron we can use both of them. In the

following definitions, we always assume that (X ,d) is a seprable length space , P (X ) is the set

of all Borel probability measures µ satisfying
∫

X dX (x, y)2 dµ(y) <∞ for some x ∈ X . P2(X ) is

the set P (X ) equipped with the L2-Wasserstein distance W2 defined as

W2(µ0,µ1)2 = inf
π

∫
X×X

d(x0, x1)2dπ(x0, x1),

For µ0, µ1 in P2(X ) and π in P (X ×X ) ranges between all transference plan between µ0 and µ1

which defined as

p0∗(π) =µ0, p1∗(π) =µ1

p0, p1 : X ×X → X are projection to the first and second factores, respectively.

Curvature Dimension Condition: We now define the notion of spaces satisfying C D(K , N )

condition following [LV09]. Suppose (X ,d) is a compact length space. Let U : [0,∞) →R be a
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continuous convex function with U (0) = 0. We define the non-negative function

p(r ) = rU ′
+(r )−U (r )

with p(0) = 0. Given a reference probability measure ν ∈ P2(X ), define the function Uν :

P2(X ) →R∪ {∞} by

Uν(µ) =
∫

X
U (ρ(x))dν(x)+U ′(∞)µs(X ),

where

µ= ρν+µs

is the Lebesgue decomposition of µ with respect to ν into an absolutely continuous part ρν

and a singular part µs , and

U ′(∞) = lim
r→∞

U (r )

r
.

If N ∈ [1,∞) then we define DC N to be the set of such functions U so that

ψ(λ) =λNU (λ−N )

is convex on (0,∞). We further define DC ∞ to be the set of such functions U so that the

function

ψ(λ) = eλU (e−λ)

is convex on (−∞,∞). A relevant example of an element in DC N is given by

HN ,ν =
{

N r (1− r−1/N ) if 1 < N <∞,

r logr if N =∞.
(4.1)

Definition 4.0.9. i) Given N ∈ [1,∞], we say that a compact measured length space (X ,d ,ν)

has non-negative N -Ricci curvature if for all µ0,µ1 ∈ P2(X ) with supp(µ0) ⊂ supp(ν) and

supp(µ1) ⊂ supp(ν), there is some Wasserstein geodesic {µt }t∈[0,1] from µ0 to µ1 so that for all

U ∈DC N and all t ∈ [0,1],

Uν(µt ) ≤ tUν(µ1)+ (1− t )Uν(µ0). (4.2)
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ii) Given K ∈ R, we say that (X ,d ,ν) has ∞-Ricci curvature bounded below by K if for all

µ0,µ1 ∈ P2(X ) with supp(µ0) ⊂ supp(ν) and supp(µ1) ⊂ supp(ν), there is some Wasserstein

geodesic {µt }t∈[0,1] from µ0 to µ1 so that for all U ∈DC ∞ and all t ∈ [0,1],

Uν(µt ) ≤ tUν(µ1)+ (1− t )Uν(µ0)− 1

2
λ(U )t (1− t )W2(µ0,µ1)2, (4.3)

where λ : DC ∞ →R∪ {−∞} is defined as,

λ(U ) = inf
r>0

K
p(r )

r
=


K limr→0+ p(r )

r if K > 0,

0 if K = 0,

K limr→∞
p(r )

r if K < 0.

Note that inequalities (4.2) and (4.3) are only assumed to hold along some Wasserstein geodesic

from µ0 to µ1, and not necessarily along all such geodesics. This is what is called weak

displacement convexity.

Proposition 4.0.10. If a compact measured length space (X ,d ,ν) has non-negative N -Ricci cur-

vature for some N ∈ [1,∞), then for all x ∈ supp(ν) and all 0 < r1 ≤ r2 the following inequality

holds.

ν(Br2 (x)) ≤
(

r2

r1

)N

ν(Br1 (x)).

To generalize the notion of N -Ricci curvature to the non-compact case, we always consider

a complete pointed locally compact metric measure space (X ,?,ν). Also for Uν to be a well-

defined functional on P2(X ), we impose the restriction ν ∈ M−2(N−1), where M−2(N−1) is the

space of all non-negative Radon measures ν on X such that

∫
X

(1+d(?, x)2)−(N−1) dν(x) <∞.

We define M−∞, by the condition
∫

X e−cd(x,?)2
dν(x) <∞, where c is a fixed positive constant.

We should mention that most of the results for compact case (for example the Bishop-Gromov

comparison) are valid for the non-compact case.

Measure Contraction Property We define now the notion of measure contraction property

MC P (K , N ) following [Oht07]. Let (X ,dX ) be a length space, and µ a Borel measure on X such

that 0 < µ(B(x,r )) <∞ for every x ∈ X and r > 0, where B(x,r ) denotes the open ball with

center x ∈ X and radius r > 0.
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Let Γ be the set of minimal geodesics, γ : [0,1] → X , and define the evaluation map et by

et (γ) := γ(t ) for each t ∈ [0,1]. We regard Γ as a subset of the set of Lipschitz maps Lip([0,1], X )

with the uniform topology. A dynamical transference plan Π is a Borel probability measure

on Γ, and a path {µt }t∈[0,1] ⊂ P2(X ) given by µt = (et )∗Π is called a displacement interpolation

associated to Π. For the exact definition of dynamical transference plan and displacement

interpolation we refer the reader to [LV09]. For K ∈R, we define the function sK on [0,∞) (on

[0,π/
p

K ) if K > 0) by

sK (t ) :=


(1/

p
K )sin(

p
K t ) if K > 0,

t if K = 0,

(1/
p−K )sinh(

p−K t ) if K < 0.

(4.4)

Definition 4.0.11. For K , N ∈R with N > 1, or with K ≤ 0 and N = 1, a metric measure space

(X ,d ,µ) is said to satisfy the (K , N )-measure contraction property, the MC P (K , N ), if for every

point x ∈ X and measurable set A ⊂ X (provided that A ⊂ B(x,π
p

(N −1)/K ) if K > 0) with

0 < µ(A) < ∞, there exists a displacement interpolation {µt }t∈[0,1] ⊂ P2(X ) associated to a

dynamical transference plan Π=Πx,A satisfying:

(1) We have µ0 = δx and µ1 = (µ|A)− as measures, where we denote by (µ|A)− the normalization

of µ|A , i.e., (µ|A)− :=µ(A)−1 ·µ|A ;

(2) For every t ∈ [0,1],

dµ≥ (et )∗

(
t

{
sK (t l (γ)/

p
N −1)

sK (l (γ)/
p

N −1)

}N−1

µ(A)dΠ(γ)

)

holds as measures on X , where we set 0/0 = 1 and, by convention, we read

{
sK (t l (γ)/

p
N −1)

sK (l (γ)/
p

N −1)

}N−1

= 1

if K ≤ 0 and N = 1.

Here we state two results that we are going to use in the sequel.

Proposition 4.0.12. Let (M , g ) be an n-dimensional, complete Riemannian manifold without

boundary with n ≥ 2. Then a metric measure space (M ,dg ,νg ) satisfies the MC P (K ,n) if and

only if Ricg ≥ K holds. Here dg and νg denote the Riemannian distance and Riemannian

volume element.

In the following theorem we state Bishop volume comparison theorem for the space satisfying

MC P (K , N ).

Proposition 4.0.13. Let (X ,µ) be a metric space satisfying the MC P (K , N ). Then, for any x ∈ X ,
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the function

µ(B(x,r )) ·
{∫ r

0
sK

(
sp

N −1

)N−1

ds

}−1

is monotone non-increasing in r ∈ (0,∞) (r ∈ (0,π
√

N−1
K ) if K > 0).

In the following we show that we can apply both measure contraction property and curvature

dimension condition to a complete Riemannian polyhedra (X , g ,µg ). By previous section,

a Riemannian polyhedron (X , g ,µg ) with the metric dX = d g
X is a length space. Also for any

x, y ∈ X we have

e(x, y) ≤ d e
X (x, y).

It is easy then to show that µg is in M−2(N−1) and so on a complete Riemannian polyhedron we

can use the notion of C D(K , N ). Also µg is Borel and by Lemma 4.4 in [EF01], for any r there

exist a constant c(r ) such that

c(r )−1Λ−2nr n ≤µg (B(x,r )) ≤ c(r )Λ2nr n

for all x ∈ X . Therefore 0 < µg (B(x,r )) <∞ and the notion of MC P (K , N ) is also applicable

here, for N ≥ n. (By Theorem 2.4.3 in [AT04], we have the Hausdorff dimension is n and by

Corollary 2.7 in [Oht07] N should be greater than n.)

In the rest of this work by RicN ,µg ≥ K we mean that (X , g ,µg ) satisfies the MC P (K , N ). In the

following Lemma we show that any complete Riemannian polyhedron with non-negative

Ricci curvature has infinite volume.

Lemma 4.0.14. Let (X , g ,µg ) be a complete, non-compact Riemannian polyhedron. If RicN ,µg (X ) ≥
0, for N ≥ n, then X has infinite volume.

Proof. By the Bishop comparison theorem, Theorem 4.0.13, for x ∈ X and all 0 < r1 ≤ r2,

µg (Br2 (x)) ≤
(

r2

r1

)N

µg (Br1 (x))

By Proposition 10.1.1 in [Pap05], for every point in X , there exist a geodesic ray from that point.

Consider a geodesic ray γ(t ), 0 ≤ t <∞, such that γ(0) = x. We construct the balls B(γ(t ), t −1)
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and B(γ(t ), t +1) centered at γ(t ) with radius t −1 and t +1. We have

µg (B(γ(0),1))+µg (B(γ(t ), t −1))

µg (B(γ(t ), t −1))
≤ µg (B(γ(t ), t +1))

µg (B(γ(t ), t −1))
≤

(
t +1

t −1

)N

,

and so

1+ µg (B(γ(0),1))

µg (B(γ(t ), t −1))
≤

(
t +1

t −1

)N

.

Letting t →∞, we get µg (B(γ(t ), t −1)) →∞ and therefore X has infinite volume.

By Theorem 4.0.10, and since X is a complete locally compact length space, the above theo-

rem is still valid for the case when X satisfies the non-negative N -Ricci curvature condition

C D(0, N ), for N ∈ (1,∞).

Remark 10. By Remark 5.8 in [Stu06] if (X ,d ,µ) satisfy MC P (K , N ) so does any convex set

A ⊂ X . When X is a smooth pseudomanifold, for any point x ∈ X \S, there exist a closed totally

convex neighborhood V around x (for every point in a Riemannian manifold there is a geodesic

ball which is totally convex). Therefore if X satisfies RicN ,µg ≥ K , so does X \S.
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5 Some Function Theoretic Properties
On Complete Riemannain Polyhedra

5.1 Liouville-Type Theorems for Functions

The aim of this chapter is to generalize some of the results in [Yau76] in order to prove some

vanishing theorems for harmonic maps on Riemannian polyhedra. In [Yau76], Yau used the

Gaffney’s Stokes theorem on complete Riemannian manifolds to prove that every smooth

subharmonic function with bounded ‖∇ f ‖L1 is harmonic. He uses this fact to prove that there

is no non-constant Lp , p > 1, non-negative subharmonic function on a complete manifold.

We will prove this theorem on admissible polyhedra for p = 2.

Theorem. Suppose (X , g ) is a complete, admissible Riemannian polyhedron, and f ∈W 1,2
loc (X )∩

L2(X ) is a non-negative, weakly subharmonic function. Then f is constant.

Proof. Fix a base point x0 ∈ X and define ρ : X →R as

ρ(x) = max{0,min{1,2− 1

R
d(x, x0)}}

Observe that ρ is 1
R -Lipschitz and ρ = 0 on X \B(x0,2R) and ρ = 1 on B(x0,R).

Since f is subharmonic,

0 ≥
∫

X
〈∇(ρ2 f ),∇ f 〉 dµg

=
∫

X
〈(∇ρ2) f + (∇ f )ρ2,∇ f 〉 dµg

= 1

2

∫
X
〈∇ρ2,∇ f 2〉 dµg +

∫
X
ρ2|∇ f |2 dµg

= 2
∫

X
〈ρ∇ρ, f ∇ f 〉 dµg +

∫
X
ρ2|∇ f |2 dµg ,
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From Cauchy-Schwarz we have now

∫
X
〈ρ∇ρ, f ∇ f 〉 dµg =

∫
X
〈 f ∇ρ,ρ∇ f 〉 dµg

≥ −
(∫

X
| f ∇ρ|2 dµg

) 1
2
(∫

X
|ρ∇ f |2 dµg

) 1
2

.

Combining the two previous inequality, we obtain

0 ≥ 2
∫

X
〈ρ∇ρ, f ∇ f 〉dµg +

∫
X
ρ2|∇ f |2dµg

≥
∫

B2R \BR

|ρ∇ f |2 dµg −2

(∫
B2R \BR

| f ∇ρ|2 dµg

) 1
2
(∫

B2R \BR

|ρ∇ f |2 dµg

) 1
2 +

∫
BR

|∇ f |2dµg .

The last line is a polynomial, P (ψ) =ψ2 −2bψ+ c, where ψ is

(∫
B2R \BR

|ρ∇ f |2 dµg

) 1
2

and it has non-positive value only if b2 ≥ c, which means that

∫
BR

|∇ f |2dµg ≤
∫

B2R \BR

f 2|∇ρ|2 ≤ c2

R2

∫
B2R

f 2dµg ,

and so

∫
BR

|∇ f |2dµg ≤ c2

R2

∫
X

f 2dµg . (5.1)

Sending R to infinity and using the fact that f has finite L2-norm, we conclude that

∫
X
|∇ f |2dµg = 0.

Since X is admissible, f is constant on X . (First we prove that f is constant on each maximal

n-simplex S and then using the n −1-chainability of X , we prove this in the star of any vertex

p of X and then by connectedness on X .)

In the following theorem, we show that the Laplacian of a weakly subharmonic function

f ∈W 1,2
loc (X ) on a pseudomanifold in the distributional sense is a locally finite Borel measure.

This gives us a verifying of Green’s formula on these spaces. We then use this theorem, to

prove that a continuous weakly subharmonic function with ‖∇ f ‖L1 <∞ on a complete normal

circuit is harmonic.
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Theorem 5.1.1. Let (X , g ,µg ) be an n-pseudomanifold. Let f be a weakly subharmonic func-

tion in W 1,2
loc (X ), such that ‖∇ f ‖L1 is finite. Then there exist a unique locally finite Borel measure

m f on X such that

∫
X

h m f =−
∫

X
〈∇ f ,∇h〉 dµg for all h ∈ Lipc (X ).

Proof. We consider the Lipschitz manifold M = X \S and the chart {(Uα,ψα)} on M . We show

that

Λα(h) =−
∫

Uα

〈∇ f ,∇h ◦ψα〉 dµg ,

is a linear continuous functional on Dα = Lipc (ψα(Uα)) with respect to the topology of uniform

convergence on compact sets. The linearity is obvious. We have

Λα(h) =−
∫

Uα

〈∇ f ,∇h ◦ψα〉 dµg ≤ sup
x∈Uα

|∇h(x)| · ‖∇ f ‖L1(Uα),

and so Λα is continuous. Since Lipc (U ) is dense in Cc (U ) for a locally compact domain U , see

Proposition 1.11 in [BB11], then Λα is also continuous on Cc (ψα(Uα)). By assumption f is

subharmonic and so Λα is positive. By Riesz representation theorem, Λα is a unique positive

Radon measure. It follows that there is a positive Radon measure mα such that

Λα(h) =
∫

Uα

h dmα.

Now we consider the partition of unity {ρα} subordinate to {Uα}. We put m =∑
αραψ∗(mα)

and we define m f (U ) = m(U \S) on each Borel set U . Obviously m f is positive and locally

finite. The uniqueness comes from the uniqueness of mα.

We recall a remark concerning the above theorem.

Remark 11. Gigli introduced the notion of Laplacian as a set of locally finite Borel measure (see

Definition 4.4 in [Gig12]). There he proved that on infinitesimally Hilbertian spaces this set con-

tains only one element 1. Admissible Riemannian polyhedra are the examples of infintesimally

Hilbertian space.

In the smooth setting, as a corollary of Gaffney’s Stokes theorem, we have that on a com-

plete Riemannian manifold every smooth subharmonic function f with bounded ‖∇ f ‖L1 is

harmonic. We can generalize this theorem on pseudomanifolds.

1see Definition 4.18 in [Gig12] for the definition of infinitesimally Hilbertian
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Theorem. Let (X , g ,µg ) be a complete non-compact n-pseudomanifold. Let f be a continuous

weakly subharmonic belonging to W 1,2
loc (X ) such that A1 = ‖∇ f ‖L1 is finite. Then f is a harmonic

function.

Proof. We consider a sequence of cut-off functions ρn for fixed q ∈ X such that ρn is 1
n -

Lipschitz and such that ρn is equal to 1 on B(q,R) and its support is in B(q,R +n). f is a

subharmonic function which satisfies the condition of previous lemma, so there is a unique

Borel measure m f such that

0 ≤
∫

X
ρn dm f =−

∫
X
〈∇ρn ,∇ f 〉 dµg ≤

∫
X
|∇ρn ||∇ f | dµg ≤ 1

n
A1,

and

0 ≤
∫

B(q,R)
dm f ≤

∫
X
ρn dm f ≤

1

n
A1.

Let h be any function in Lipc (X ) with support in B(q,R). We have

0 ≤
∫

X
h dm f ≤ (sup

X
h)

1

n
A1,

and tending n to infinity, we have

∫
X

h dm f =−
∫

X
〈∇h,∇ f 〉 dµg = 0,

and implying that f is harmonic.

Now we prove a generalization of Proposition 2 in [Yau76]. We give here another proof of the

theorem above for smooth pseudomanifolds under the extra assumption that f should have

finite energy. Instead of Theorem 5.1.1, we goal Cheeger’s Green formula on compact smooth

pseudomanifolds in the proof.

Theorem. Let (X , g ,µg ) be a complete non-compact smooth pseudomanifold. Suppose X has

non-negative n-Ricci curvature. Let f be a continuous weakly subharmonic function belonging

to W 1,2
loc (X ), such that both A1 = ‖∇ f ‖L1 and A2 = ‖∇ f ‖L2 are finite and |∇ f | is locally bounded.

Then f is constant.

Proof. We present the proof in several steps.

Step 1. We consider a sequence of cut-off functions ρn as above such that the support of ρn

is in B(q,R +n) for fixed q ∈ X \X n−2 and some R and ρn is equal to 1 on B(q,R) and ρn is
1
n -Lipschitz.
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Step 2. The (n − 2)-skeleton in X , X n−2, is a polar set. We consider, shrinking bounded

neighborhoods U j of X n−2 in B(q,R + j ), such that in each B(q,R + j ), we have

U j ⊃U j+1 ⊃ . . . ⊃
∞⋂

j=1
U j .

By the definition of polar set, for the open domains U j and U j−1, we have cap(X n−2 ∩
U j ,U j−1) = 0. This means that for every j , there exists a function ϕ j ∈ Lip(X ) such that ϕ j ≡ 1

in a neighborhood of X n−2 ∩U j and ϕ j is zero outside U j−1 and
∫

X |∇ϕ j |2 < 1
j . Moreover we

have 0 ≤ϕ j ≤ 1.

We put η j = 1−ϕ j . The function η j has the property that the closure of its support, suppη j ,

is contained in X \X n−2 and the set K j = suppη j ∩B(q,R + j ) is compact. Furthermore K j s

make an exhaustion of M = X \X n−2.

Step 3. According to Theorem 2 in [GW79], for any j , there exist a smooth subharmonic

function f j on M such that supx∈K j
| f j (x)− f (x)| < 1

j and |∇ f j (x)| ≤ |∇ f (x)| on K j .

Step 4. In this step we prove

∫
M
∆ f j ·ξ j dµg = −

∫
M
〈∇ f j ,∇ξ j 〉 dµg .

where ξ j = ρ j ·η j . To prove the above equality, first we recall a Remark from [Che80].

Remark 12. Let (Y ,h) be a closed n-dimensional admissible Riemannian polyhedron, then for

ζ,ψ ∈ Dom(∆) we have the following Stokes theorem on Y \Y n−2 (see Theorem 5.1 in [Che80]),

∫
Y \Y n−2

∆ζ ·ψ dµh =−
∫

Y \Y n−2
〈∇ζ,∇ψ〉 dµh . (5.2)

Also, every closed smooth pseudomanifold (Y ,h) such that h is equivalent to some piecewise flat

metric is admissible (in the sense of Cheeger).

Now we construct the closed Riemannian polyhedron Y j ⊂ X as following: Let Y j be an

arbitrary Riemannian polyhedron containing B(q,R + j ). We consider its double Ỹ j and

equip it with a Riemannian metric g̃ j , which is the same as Riemannian metric on Y j . The

Riemannian polyhedron Y j = Y j ∪ Ỹ j with the metric g j is an admissible closed Riemannian

pseudomanifold. (The metric g j on Y j is equivalent to piecewise flat metric g e (see [EF01],

Chapter 4) and so Ȳ j is admissible.)

We extend ρ j to Y j such that it is zero on the copy of Y j and f j , η j such that they are the same

functions on the copy of Y j . The function f j is in W 1,2
loc (Y j ) (see Theorem 1.12.3. in [KS93]).
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By applying formula (5.2) on Y j , for the functions f j and ξ j , we obtain

∫
M j

∆ f j ·ξ j dµg j = −
∫

M j

〈∇ f j ,∇ξ j 〉 dµg j ,

where M j = Y j \Y
n−2
j . Since ξ j ∈ Lipc (M)∩Y j , we can write the above Stokes formula as

follows∫
M
∆ f j ·ξ j dµg = −

∫
M
〈∇ f j ,∇ξ j 〉 dµg .

Step 5. In this step, we prove that f is harmonic on M . From the fact that supp(ξ j ) ⊂ K j we

have ∫
M
∆ f j ·ξ j dµg = −

∫
M
〈∇ f j ,∇(ρ j ·η j )〉 dµg

= −
∫

M
|〈∇ f j ,η j · (∇ρ j )〉 dµg −

∫
M
〈∇ f j ,ρ j · (∇η j )〉 dµg

≤
∫

K j

|∇ f j ||∇ρ j | dµg +
∫

K j

|∇ f j |2 dµg ·
∫

K j

|∇η j |2 dµg

≤ 1

j

∫
M
|∇ f | dµg + 1

j

∫
M
|∇ f |2 dµg ,

so we have

0 ≤
∫

M
∆ f j ·ξ j dµg ≤ 1

j
(A2 + A1). (5.3)

Let h be any smooth function with compact support in M ∩B(q,R). Then there is a Km such

that the support of h is in B(q,R)∩Km . For j large enough we will have ξ j ≡ 1 on Km and so

we have

0 ≤
∫

B(q,R)∩Km

∆ f j dµg ≤ 1

j
(A2 + A1).

considering the formula (5.2) as above, for j large enough we have

0 ≤
∫

M
∆h · f j dµg =

∫
M

h ·∆ f j dµg

≤ (suph) · 1

j
(A2 + A1).

Letting j go to infinity, we got
∫

M ∆h · f dµg = 0. By use of Weyl’s lemma f is a smooth

harmonic function on M .
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Step 6. Now we show f is constant. Since M has non-negative Ricci curvature, by the Bochner

formula |∇ f | is subharmonic on M and since |∇ f | is locally bounded on X , by Theorem 12.2

in [BB11], |∇ f | is subharmonic on X . By Lemma 0.2.1, |∇ f | is constant. Since the L2-norm of

|∇ f | is finite we have |∇ f | ≡ 0. By Lemma 4.0.14, f should be constant.

5.2 Vanishing Results for Harmonic Maps on Complete Smooth Pseu-

domanifolds

In this section we prove Corollaries 0.2.4 and 0.2.5.

Corollary. Let (X , g ,µg ) be a complete smooth n-pseudomanifold. Suppose X has non-negative

n-Ricci curvature. Suppose Y is a Riemannian manifold of non-positive curvature and u :

(X , g ) → (Y ,h) a continuous harmonic map belonging to W 1,2
loc (X ,Y ). If u has finite energy and

e(u) is locally bounded, then u is a constant map.

Proof. By Remark 10, we know that on the Riemannian manifold M = X \S we have non-

negative Ricci curvature. We show that for ε> 0,
p

e(u)+ε is weakly subharmonic on X . As

the restriction maps u = u|M : (M , g ) → Y is harmonic, we have a Bochner type formula for

harmonic map on M and

∆e(u) > |B(u)|2,

where B(u) is the second fundamental form of the map u. Also by Cauchy-Schwarz we have,

|∇e(u)|2 ≤ 2e(u)|B(u)|2,

and so for ε> 0, on X \S

∆
√

e(u)+ε≥ 0.

See e.g. the calculation in [Xin96] Theorem 1.3.8. Thus
p

e(u)+ε is subharmonic on X \S and

locally bounded, subharmonicity on X follows. Therefore,

∫
X
〈∇

√
e(u)+ε,∇ρ〉 dµg ≤ 0 ρ ∈ Lipc (X ).

As in the proof of Theorem 0.2.1,

∫
BR

|∇
√

e(u)+ε|2 dµg ≤ 1

R2

∫
B2R

e(u)+ε dµg . (5.4)

77



Chapter 5. Some Function Theoretic Properties On Complete Riemannain Polyhedra

Note that
p

e(u)+ε satisfies all the assumptions of the Theorem 0.2.1, except the finiteness of

L2-norm which we do not need in this step.

Set B ′
R = BR \{x ∈ BR ,e(u)(x) = 0}. Then

∫
B ′

R

|∇(e(u)+ε)|2
4(e(u)+ε)

dµg ≤ 1

R2

∫
B2R

e(u)+εdµg . (5.5)

Letting ε→ 0 gives

∫
B ′

R

|∇e(u)|2
4e(u)

dµg ≤ 1

R2

∫
B2R

e(u) dµg , (5.6)

and letting R →∞ and by finiteness of the energy we have

∫
B ′

R

|∇e(u)|2
4e(u)

dµg ≤ 0, (5.7)

which implies that e(u) is constant. If e(u) is not zero everywhere this means that the volume

of X is finite. By Lemma 4.0.14, this is impossible and so u is constant.

Now we extend this theorem to the case when the target Y is a metric space. By the following

lemma, the function d(u(·), q), where q is an arbitrary point in Y , is subharmonic under

suitable assumption on the curvature of Y . We refer the reader to [EF01] Lemma 10.2, for the

proof.

Lemma 5.2.1. Let (X , g ) be an admissible Riemannian polyhedron, g simplexwise smooth.

Let (Y ,dY ) be a simply connected complete geodesic space of non-positive curvature, and let

u ∈ W 1,2
loc (X ,Y ) be a locally energy minimizing map. Then u is a locally essentially bounded

map and for any q ∈ Y , the function d(u(·), q) of class W 1,2
loc (X ,Y ) is weakly subharmonic and

in particular essentially locally bounded.

Now we have

Corollary. Let (X , g ,µg ) be a complete non-compact smooth n-pseudomanifold. Suppose X

has non-negative n-Ricci curvature. Let Y be a simply connected complete geodesic space

of non-positive curvature and u : (X , g ) → Y a continuous harmonic map with finite energy

belonging to W 1,2
loc (X ,Y ). If

∫
M

p
e(u)dµg <∞ and e(u) is locally bounded, then u is a constant

map.

Proof. According the lemma above the function v(x) = d(u(x),u(x0)) for some x0 ∈ X , is

weakly subharmonic. We know that |∇v |2 ≤ ce(u), where c is a constant. v is a continuous

subharmonic function whose gradient is bounded by an L1 and L2 integrable function and
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also it is locally bounded. According to Lemma 0.2.3, v is a constant function and so u is a

constant map.

Remark 13. In Theorem 0.2.3, we hope that we can remove the assumption locally boundedness

on ∇ f . On complete Riemannian manifold and on Alexandrov spaces, every harmonic function

is locally Lipschitz (see [GKO13]). Also using Cheng-Yau’s gradient estimate (see [CY75, Yau75])

one can prove that there is no positive harmonic function on complete Riemannian mani-

fold with non-negative Ricci curvature. We have the same result on Alexandrov spaces with

non-negative Ricci curvature (for some specific notion of Ricci curvature bound, see [ZZ12]).

Therefore in Theorem 0.2.5, we expect that we can remove also the assumption of finiteness of

energy.
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6 2-Parabolic Riemannian Polyhedra

In this last chapter we prove Liouville-type theorems for harmonic maps defined on a Rie-

mannian polyhedra X without any completeness or Ricci curvature bound assumption. We

assume instead X to be 2-parabolic. Some of these results extend known results for the case

of Riemannian manifolds. As for Riemannian manifolds, we say that a domain Ω⊂ X in an

admissible Riemannian polyhedra X is 2-parabolic, if cap(D,Ω) = 0 for every compact set D in

Ω, otherwise 2-hyperbolic. A reference on this subject is [GT02], where the notion is discussed

for general metric measure spaces. The following two Corollaries are the main results of this

chapter:

Corollary. Let (X , g ) be a 2-parabolic smooth pseudomanifold. Let Y be a simply connected,

complete, geodesic space of non-positive curvature and u : (X , g ) → Y a continuous, harmonic

map with finite energy, belonging to W 1,2
loc (X ,Y ). If we have

∫
X

p
e(u) dµg < ∞ then u is a

constant map.

and

Corollary. Let (X , g ) be a 2-parabolic admissible Riemannian polyhedron with simplexwise

smooth metric g . Let Y be a complete, geodesic space of non-positive curvature and u : (X , g ) →
Y a continuous, harmonic map belonging to W 1,2

loc (X ,Y ) with bounded image. Then u is a

constant map.

We will need the following characterization of 2-parabolicity.

Lemma 6.0.2. The domain Ω is 2-parabolic if and only if there exists a sequence of functions

ρ j ∈ Lipc (Ω) such that 0 ≤ ρ j ≤ 1, ρ j converges to 1 uniformly on every compact subset ofΩ and

∫
Ω
|∇ρ j |2 dµg → 0.

Proof. First suppose Ω is 2-parabolic. Then every compact set D ⊂Ω, with nonempty interior

satisfies cap(D,Ω) = 0. We choose an exhaustion D ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Ω of Ω by compact
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Chapter 6. 2-Parabolic Riemannian Polyhedra

subsets such that cap(D j ,Ω) = 0 for all j . Hence we can find the function ρ j ∈ Lipc (Ω) (using

the fact that Lipc (Ω) is dense in W 1,2
0 (Ω)) such that ρ j ≡ 1 on D j and

∫
Ω |∇ρ j |2 dµg ≤ 1/ j 2. We

have constructed the desired sequence ρ j .

Conversely, suppose there exists, a sequence ρ j ∈ Lipc (Ω) with the stated properties. Then

we can find a compact subset B ⊂Ω and j0 such that ρ j ≥ 1/2 for every j ≥ j0. It follows that

cap(B ,Ω) = 0

The following lemma shows that the 2-parabolicity remains after removing the singular set of

a Riemannian polyhedron.

Lemma 6.0.3. If X is a 2-parabolic admissible Riemannian polyhedron and E ⊂ X is a polar

set, then Ω := X \E is 2-parabolic.

Proof. X is 2-parabolic, so by Lemma 6.0.2, there are an exhaustion of X and a sequence of

function ρ j ∈ Lipc (X ) such that 0 ≤ ρ j ≤ 1 and ρ j → 1 uniformly on each compact set, and∫
X |∇ρ j |2 dµg → 0. Also by Lemma 3.5.2, there exist another sequence of functions ϕ j with

support in X \E such that ϕ j → 1 on each compact set of X \E and
∫

X |∇ϕ j |2 dµg → 0. The

functions ρ jϕ j on Ω provides the condition for 2-parabolicity in Lemma 6.0.2.

The following result is an extension of Theorem 5.2 in [Hol90] to admissible Riemannian

polyhedra.

Proposition. Let (X , g ) be 2-parabolic admissible Riemannian polyhedron. Suppose f in

W 1,2
loc (X ) is a positive, continuous superharmonic function on X . Then f is constant.

Proof. Since f is continuous, for any ε and at any point x0 in X there exist a relatively compact

neighborhood B0 of x0 such that f (x) > f (x0)− ε on B0. X is 2-parabolic, so cap(B0, X ) = 0.

Consider an exhaustion of X by regular domains Ui such that B0 bU1 bU2 b . . . b X . By

Corollary 11.25 in [BB11], such exhaustion exists.

There exist functions ui which are harmonic on Ui \B0, ui ≡ 1 on B0 and ui ≡ 0 on X \Ui (See

[GT01] and also Lemma 11.17 and 11.19 in [BB11]). The maximum principle (see Theorem 5.3

in [EF01] or Lemma 10.2 in [BB11] for the comparison principle) implies that{
0 ≤ ui ≤ 1

ui+1 ≥ ui on Ui .

Define the function hi = ( f (x0)−ε)ui , we have limi→∞ hi = f (x0)−ε. On the other hand f ≥ hi

on the boundary of Ui \B0. By the comparison principle f ≥ hi in Ui \B0, so f ≥ f (x0)− ε
on X . Letting ε→ 0, we obtain f ≥ f (x0) on X . If f is non-constant, there exist x1 ∈ X with

f (x1) > f (x0). By the same argument we obtain f > f (x1). This is a contradiction and thus f is

constant.
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We prove the analogue of Theorem 0.2.3, for 2-parabolic admissible Riemannian polyhedra.

Proposition. Let X be 2-parabolic pseudomanifold. Let f in W 1,2
loc (X ) be a continuous weakly

subharmonic function such that ‖∇ f ‖L1 and ‖∇ f ‖L2 are finite. Then f is harmonic.

Proof. since X is 2-parabolic, by Lemma 6.0.2, for every compact set D ⊂ X , and an arbitrary

exhaustion D ⊂ D1 ⊂ D2 ⊂ . . . ⊂ X of X by compact subsets, there exist a sequence of functions

ρ j ∈ Lipc (X ) such that ρ j ≡ 1 on D j and
∫

X |∇ρ j |2 dµg ≤ 1/ j 2.

0 ≤−
∫

X
〈∇ρ j ,∇ f 〉 dµg ≤

(∫
X
|∇ρ j |2 dµg

) 1
2
(∫

X
|∇ f |2 dµg

) 1
2

≤ 1

j
‖∇ f ‖2

L2 .

By Lemma 5.1.1, there is a locally finite Borel measure m f such that

0 <
∫

D
m f ≤

∫
X
ρ j m f ≤ |

∫
X
〈∇ρ j ,∇ f 〉 dµg | ≤ 1

j
‖∇ f ‖2

L2 .

Now let h be an arbitrary test function in Lipc (X ) where its support is in D . We have

0 ≤
∫

D
h m f ≤ (sup

X
h)

‖∇ f ‖2
L2

j
.

and so f is harmonic on X .

Similarly we have the following result generalizing Theorem 5.9 in [Hol90].

Proposition. Let X be 2-parabolic admissible Riemannian polyhedron. Let f in W 1,2
loc (X ) be a

harmonic function such that ‖∇ f ‖L2 is finite. Then f is constant function.

Proof. Set

fi = max(−i ,min(i , f )).

Let U j be an exhaustion of X by regular domains U j ⊂ U j+1 b X . There is a continuous

function ui , j such that ui , j are harmonic on U j and ui , j = fi in X \Ui . Also ui , j is continuous

on X and ‖∇ui , j‖L2 is finite. We have −i ≤ ui , j ≤ i . According to Theorem 6.2 in [EF01], ui , j

are Hölder continuous (after correction on a null set), and since they are uniformly bounded,

by Theorem 6.3 in [EF01], they are locally uniformly Hölder equicontinuous and by Theorem

9.37 in [BB11], there is a subsequence which converges locally uniformly to some ui as j →∞.

(Note that the definition of harmonicity as in [BB11] is consistent with our definition.) The
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function ui is bounded and harmonic and hence is constant (see Proposition ??.). Moreover

ui , j − fi ∈ L1,2
0 and so fi ∈ L1,2

0 . Therefore

∫
X
|∇ f |2 dµg = lim

i→∞

∫
X
〈∇ f ,∇ fi 〉 dµg = 0,

and f is constant.

By use of Lemma 5.2.1 and the above propositions, the proofs of Corollaries 0.2.7 and 0.2.8 are

straightforward.
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7 Appendix

In this section we give the sketch of the proof of Theorem 1.4.5. First we recall the statement.

Theorem. For every smooth map f : (M , g ,Φ) → (N ,h), where M is a compact manifold and N

is a negatively curved compact manifold, there is a harmonic map homotopic to f .

Using the same method of the proof of the Bochner-type formula for harmonic maps we have,

Proposition 7.0.4. Let u ∈C 0(M × [0,T ), N )∩C∞(M × (0,T ), N ) be a solution to the equation

(1.6) and let ut (x) = u(x, t ). We have in M × (0,T ),

(a) Weitzenbock formula for e(ut ):

∂e(ut )

∂t
= ∆̃e(ut )−|B(ut )|2

+〈RN (ut∗(ei ),ut∗(e j ))ut∗ei ,ut∗e j 〉−〈ut∗(R̃i c∞ei ),ut∗ei 〉 (7.1)

(b) Weitzenbock formula for k(ut ):

∂k(ut )

∂t
= ∆̃k(ut )−

∣∣∣∣∇∂ut

∂t

∣∣∣∣2

+〈RN (ut∗(ei ),ut∗(e j ))ut∗ei ,ut∗e j 〉 (7.2)

where k(ut ) = 1
2

∣∣∣∂ut
∂t

∣∣∣2
.

Theorem 7.0.5 (Existence of time-dependent local solutions). Let (M , g ,Φ) be a compact

smooth metric measure space and (N ,h) be compact Riemannian manifold. For a given map

f ∈C 2,α(M , N ), there exist a positive number T = T (M , N ,Φ, f ,α) > 0 and u ∈C 2+α,1+α/2(M ×
[0,T ), N )∩C∞(M × (0,T ), N ) such that{

∂u
∂t (x, t ) = τ(u(x, t ))+du(∇ ln(Φ)) (x, t ) ∈ M × (0,T )

u(x,0) = f (x).
(7.3)
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For the definition of C 2+α,1+α/2(M × [0,T )) we refer the reader to the page 135 of the book

[Nis02].

Proof. To prove this theorem, we reduce equation (7.3) to a system of parabolic differential

equation for vector valued functions. Let i be an isometric embedding of N into an Euclidean

space Rq , for q large enough. Let Ñ be a tubular neighborhood of N

Ñ = {
(x,V )|x ∈ i (N ), v ∈ Tx i (N )⊥, |v | < ε} ,

for sufficiently small ε. For u : M × [0,T ) → Ñ , we consider the following initial value problem.{
∂u
∂t = ∆̃u(x, t )−Π(u)(du,du) (x, t ) ∈ M × (0,T )

u(x,0) = i ◦ f (x).
(7.4)

(see formula (2.2), for the definition ofΠ(u)(du,du).) One can prove that if u is the solution

to the equation (7.4) and u(M × [0,T )) ⊂ i (N ) holds, then u is a solution to the equation (7.4).

The converse also holds true.

The proof of existence of a time-dependent local solution (Theorem 4.7 in [Nis02]) is based

on three steps. We explain why each step works in our situation. The proof uses the inverse

function theorem in Banach spaces. The idea of the inverse function theorem is to reduce

solvability of a nonlinear differential equation to solvability of a linearized equation.

Step 1 (Construction of an approximate solution). By identifying f with i ◦ f , we consider the

following system of linear parabolic equation:{
∂v
∂t = ∆̃v(x, t )−Π( f )(d f ,d f ) (x, t ) ∈ M × (0,1)

v(x,0) = f (x).

By the assumptions on f , there is unique solution v in C 2+α,1+α/2(M × [0,1],Rq ). Then v

approximate u as t goes to zero.

Step 2 (Application of the inverse function theorem). Consider the following differential

operator on C 2+α,1+α/2(M × [0,ε), N ):

P (u) = ∆̃u −∂t u −Π(u)(du,du)

for some 0 <α′ < 1. We define the (Banach) subspaces X and Y in C 2+α′,1+α′/2(M × [0,T ), N )

and Cα′,α′/2(M × [0,T ), N ) respectively (see page 138 in [Nis02] for the exact definition). For a

given z ∈ X if we set

P (z) = P (v + z)−P (v),

then P is a map from X into Y and P (0) = 0. By application of the inverse function theorem,
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P is homeomorphism in a neighborhood of 0 (see page 139 in [Nis02]). Therefore there exists

a small δ = δ(M , N , f ) > 0 such that for k in Y with ‖k‖α,α/2 < δ, there exists unique z in X

such that

P (z) = k, z(x,0) = 0, and ∂t z(x,0) = 0

Set P (v) = w , u = v + z satisfies{
P (u)(x, t ) = (w +k)(x, t ) (x, t ) ∈ M × (0,1)

u(x,0) = f (x)

Step 3. With appropriate choice of a function ζ : R→ R (page 139 in [Nis02]), and setting

k =−ζw , for sufficiently small T there exist some u (constructed as in step 2) which satisfies

in equation (7.4).

Theorem 7.0.6 (Existence of time-dependent global solutions). Let (M , g ,Φ) be a compact

smooth metric measure space and (N ,h) a compact Riemannian manifold with non-positive

sectional curvature. For a given map f ∈C 2,α(M , N ), there exists a unique u ∈C 2+α,1+α/2(M ×
[0,∞), N )∩C∞(M × (0,∞), N ) such that{

∂u
∂t (x, t ) = τ(u(x, t ))+du(∇ ln(Φ)) (x, t ) ∈ M × (0,∞)

u(x,0) = f (x).
(7.5)

Proof. The following propositions are the main steps in the proof of this theorem.

Proposition 7.0.7. Let u ∈C 2,1(M × [0,T ), N )∩C∞(M × (0,T ), N ) be a solution to the equation

(7.3) and let ut (x) = u(x, t). Assume N has non-positive curvature and R̃i c
M ≥ −cg for a

constant c ∈ R. Let 0 < ε< T . Then the following holds for the energy density e(u) of u,

e(ut )(x) ≤ e2ct sup
x∈M

e( f )(x) (x, t ) ∈ M × [ε,T ),

and

e(ut )(x) ≤C (M ,ε)EΦ( f ) (x, t ) ∈ M × [ε,T ).

C (M ,ε) is a constant depending only on M and ε.

Proposition 7.0.8. Let u ∈C 2,1(M × [0,T ), N )∩C∞(M × (0,T ), N ) be a solution to the equation

(7.3). If N is of non-positive curvature, then for any 0 <α< 1, there exists a positive number

C =C (M , N ,Φ, f ,α) such that

|u(·, t )|C 2+α(M ,N ) +
∣∣∣∣∂u

∂t

∣∣∣∣
Cα(M ,N )

≤C (7.6)

at any t ∈ [0,T ).
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The techniques used for the proofs of the propositions above in the classical case, such as the

maximum principle for elliptic and linear parabolic equation, their solutions and their heat

kernels are valid in our setting. These properties have been completely studied in the book

[Gri09] in chapters 4-7.

The proof of the existence of a time-dependant global solution in Theorem 7.0.6, follows from

inequality (7.6) and a contradiction argument. The uniqueness comes from the maximum

principle for parabolic equations.

Finally we verify that u as a solution to the equation (7.5) converges to a harmonic map

which is free homotopic to f . Let {ti } be a sequence of times which tends to infinity. By

inequality (7.6), the sequences u(·, ti ) and ∂t u(·, ti ) converge uniformly to u∞ and ∂t u∞. In

view of equation (7.2), ∂t u∞ = 0 and so u∞ is a harmonic map which is freely homotopic to

f (x) = u(x,0).
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