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Abstract
There is now very strong evidence that our Universe is undergoing an accelerated expansion
period as if it were under the influence of a gravitationally repulsive “dark energy” component.
Furthermore, most of the mass of the Universe seems to be in the form of non-luminous
matter, the so-called “dark matter”. Together, these “dark” components, whose nature remains
unknown today, represent around 96 % of the matter-energy budget of the Universe. Unravel-
ing the true nature of the dark energy and dark matter has thus, obviously, become one of the
primary goals of present-day cosmology.
Weak gravitational lensing, or weak lensing for short, is the effect whereby light emitted by
distant galaxies is slightly deflected by the tidal gravitational fields of intervening foreground
structures. Because it only relies on the physics of gravity, weak lensing has the unique ability
to probe the distribution of mass in a direct and unbiased way. This technique is at present
routinely used to study the dark matter, typical applications being the mass reconstruction of
galaxy clusters and the study of the properties of dark halos surrounding galaxies. Another
and more recent application of weak lensing, on which we focus in this thesis, is the analysis
of the cosmological lensing signal induced by large-scale structures, the so-called “cosmic
shear”. This signal can be used to measure the growth of structures and the expansion history
of the Universe, which makes it particularly relevant to the study of dark energy.
Of all weak lensing effects, the cosmic shear is the most subtle and its detection requires the
accurate analysis of the shapes of millions of distant, faint galaxies in the near infrared. So far,
the main factor limiting cosmic shear measurement accuracy has been the relatively small
sky areas covered. Next-generation of wide-field, multicolor surveys will, however, overcome
this hurdle by covering a much larger portion of the sky with improved image quality. The
resulting statistical errors will then become subdominant compared to systematic errors, the
latter becoming instead the main source of uncertainty. In fact, uncovering key properties of
dark energy will only be achievable if these systematics are well understood and reduced to
the required level.
The major sources of uncertainty resides in the shape measurement algorithm used, the
convolution of the original image by the instrumental and possibly atmospheric point spread
function (PSF), the pixelation effect caused by the integration of light falling on the detector
pixels and the degradation caused by various sources of noise. Measuring the Cosmic shear
thus entails solving the difficult inverse problem of recovering the shear signal from blurred,
pixelated and noisy galaxy images while keeping errors within the limits demanded by future
weak lensing surveys.
Reaching this goal is not without challenges. In fact, the best available shear measurement
methods would need a tenfold improvement in accuracy to match the requirements of a space
mission like Euclid from ESA, scheduled at the end of this decade. Significant progress has
nevertheless been made in the last few years, with substantial contributions from initiatives
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Abstract

such as GREAT (GRavitational lEnsing Accuracy Testing) challenges. The main objective of
these open competitions is to foster the development of new and more accurate shear mea-
surement methods.

We start this work with a quick overview of modern cosmology: its fundamental tenets,
achievements and the challenges it faces today. We then review the theory of weak gravitational
lensing and explains how it can make use of cosmic shear observations to place constraints on
cosmology. The last part of this thesis focuses on the practical challenges associated with the
accurate measurement of the cosmic shear. After a review of the subject we present the main
contributions we have brought in this area: the development of the gfit shear measurement
method, new algorithms for point spread function (PSF) interpolation and image denoising.
The gfit method emerged as one of the top performers in the GREAT10 Galaxy Challenge.
It essentially consists in fitting two-dimensional elliptical Sérsic light profiles to observed
galaxy image in order to produce estimates for the shear power spectrum. PSF correction is
automatic and an efficient shape-preserving denoising algorithm can be optionally applied
prior to fitting the data.
PSF interpolation is also an important issue in shear measurement because the PSF is only
known at star positions while PSF correction has to be performed at any position on the sky.
We have developed innovative PSF interpolation algorithms on the occasion of the GREAT10
Star Challenge, a competition dedicated to the PSF interpolation problem. Our participation
was very successful since one of our interpolation method won the Star Challenge while the
remaining four achieved the next highest scores of the competition.
Finally we have participated in the development of a wavelet-based, shape-preserving denois-
ing method particularly well suited to weak lensing analysis.

Keywords: astrophysics, cosmology, cosmological parameter, gravitational lensing, weak
lensing, cosmic shear, shape measurement, shear measurement, point spread function, PSF,
deconvolution, denoising, GREAT08, GREAT10.
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Résumé
De très concordantes observations suggèrent que notre Univers subit une phase d’accélération
de son expansion sous l’influence d’une forme d’énergie gravitationnellement répulsive bapti-
sée “énergie noire”. De plus, l’essentiel de la masse de l’Univers semble se trouver sous la forme
d’une matière non-lumineuse, appelée pour cette raison “matière noire”. Ensemble, ces deux
composants “sombre”, dont la nature reste inconnue aujourd’hui, représentent environ 96%
du total de la quantité de matière et d’énergie de l’Univers. Découvrir la véritable nature de
l’énergie et de la matière noires est donc devenu l’un des principaux enjeux de la cosmologie
moderne.

Le phénomène de lentille gravitationnelle dit “faible”, est l’effet par lequel la lumière émise
par les galaxies lointaines est très légèrement défléchie par l’effet de marée gravitationnelle
des structures se trouvant en avant-plan. Parce qu’il ne dépend que de la physique de la
gravitation, cet effet offre l’opportunité unique de pouvoir sonder la distribution de masse de
façon directe et sans biais. Cette technique est maintenant devenue routine pour étudier la
matière noire, des exemples bien connus d’application étant la reconstruction de la masse
des amas de galaxies et l’étude des propriétés des halos de matière noire amassés autour des
galaxies. Une autre application plus récente de l’effet gravitationnel faible est l’analyse du
signal cosmologique induit par les structures à grande échelle, appelé “cisaillement cosmo-
logique”. Ce signal peut être exploité pour retracer la croissance des structures cosmiques et
celle de l’Univers dans son ensemble, ce qui le rend particulièrement attrayant pour l’étude
de l’énergie noire.

De tous les effets de lentilles gravitationnelle, celui dû au cisaillement cosmologique est le
plus subtil et sa détection requiert une analyse très précise des formes de millions de galaxies
lointaines et très peu lumineuses dans le spectre infrarouge proche. Le facteur qui a le plus
limité la précision des mesures de cisaillement cosmologique a été jusqu’à présent le degré de
couverture relativement réduit du ciel par les campagnes d’observation. Les campagnes de
prochaine génération s’affranchiront de cette limitation en explorant une portion bien plus
grande du ciel avec une meilleure qualité d’image. Les erreurs statistiques consécutives à ces
nouvelles études deviendront alors négligeables au regard des erreurs de mesure à caractère
systématique. Ces dernières proviennent en majeure partie des algorithmes de mesure de
forme des galaxies, de la convolution des images par la fonction d’étalement du point (PSF)
instrumentale et éventuellement atmosphérique, auxquels s’ajoutent l’effet de pixellisation
engendré par l’intégration des rayons lumineux sur les détecteurs et les dégradations dues à
diverses sources de bruit. Mesurer le cisaillement cosmologique impose donc de résoudre le
problème inverse consistant à recouvrer le signal de cisaillement originel à partir d’images
de galaxies brouillées par la PSF, pixellisées et altérées par le bruit, tout en maintenant le
niveau d’erreur dans les limites exigées par les futures campagnes de mesure de lentille
gravitationnelle faibles.
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Résumé

Le chemin pour y parvenir n’est pas exempt d’obstacles. En fait, l’on a estimé qu’un gain
de l’ordre de 10% est encore nécessaire pour atteindre les niveau de précision exigés par
une mission spatiale telle que la future sonde Euclid de l’ESA, dont le lancement est prévu
à la fin de la décennie. Des progrès substantiels ont néanmoins été effectuées ces quelques
dernières années, grâce en particulier à des initiatives comme la série des "GREAT challenges"
(GRavitational lEnsing Accuracy Testing). Le but de ces compétitions est essentiellement de
promouvoir le développement de méthodes de mesures de cisaillement cosmologique plus
précises. Les contributions de chercheurs travaillant dans des domaines non directement
liés à l’astronomie, comme les sciences informatique ou statistique, sont également invités à
participer.

Nous débutons ce rapport de thèse par une introduction à la cosmologie moderne : ses
fondements, ses succès et les défis auxquels elle est aujourd’hui confrontée. Nous continuons
avec un exposé de la théorie décrivant le phénomène de lentille gravitationnelle faible. Cela
nous permet d’expliquer comment l’étude du cisaillement cosmologique permet de placer
des contraintes précises sur les paramètres cosmologiques. La dernière partie de cette thèse
est consacrée à la mesure du cisaillement cosmologique dans ces aspects pratiques. Après une
revue du sujet, nous exposons les principales contributions que nous avons apportées dans
ce domaine durant notre thèse : le développement d’une nouvelle méthode de mesure de ce
cisaillement ainsi que de nouveau algorithmes pour l’interpolation de la PSF et la réduction
du bruit.
La méthode gfit de l’auteur s’est distinguée comme l’une des procédés de mesure du cisaille-
ment les plus performantes dans la récente compétition "GREAT10 Galaxy Challenge". Cette
méthode consiste essentiellement à ajuster les profils de lumière des galaxies sur les images
observées afin d’estimer le spectre de cisaillement cosmologique. La correction des effets de
la PSF est automatique et un algorithme de réduction du bruit auquel l’auteur a contribué,
peut optionnellement être appliqué au préalable.
Un autre problème important à résoudre dans le cadre de la mesure du cisaillement est celui
de l’interpolation de la PSF. Cette dernière n’est vraiment connue qu’aux positions occupées
par les étoiles alors que la correction de la PSF est en fait requise à n’importe quelle autre
position dans le ciel. Nous avons développé de nouvelles techniques d’interpolation de PSF, à
l’occasion de la compétition "GREAT10 Star Challenge", dédiée à la résolution de ce problème.
Notre participation s’est avérée être un grand succès car l’une de nos méthodes d’interpolation
a remporté la première place de cette compétition, et quatre autres, les places suivantes.
Enfin, nous avons contribué au développement d’une méthode de réduction du bruit basée
sur l’utilisation des ondelettes. Cette technique est particulièrement bien adaptée au domaine
des lentilles gravitationnelles faibles car n’altérant pas les formes des galaxies.

Mots-clés : astrophysique, cosmologie, paramètre cosmologique, lentille gravitationnelle, effet
de lentille gravitationnnelle faible, cisaillement cosmologique, mesure de forme, measurement
de cisaillement cosmologique, fonction d’étalement du point, PSF, deconvolution, réduction
du bruit, GREAT08, GREAT10.
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1 Introduction

1.1 Concordance cosmology
How did the Universe happen to be? How did it evolve? What is it made of? Will it last forever?
Such simple, yet fundamental questions have haunted mankind since the edge of time.

Modern cosmology attempts to provide quantitative answers through the application of the
scientific method. Physical cosmology, as it is also called, was essentially born in the early
twentieth century with the formulation of Albert Einstein’s theory of general relativity (Ein-
stein 1915, 1917). Einstein realized that the application of his field equations produced valid
solutions when applied to a Universe modeled as a homogeneous and isotropic distribution
of matter and energy. Since then, increasingly accurate astronomical observations combined
with constant progress in the mathematical and physical sciences have succeeded in pro-
ducing today’s standard model of cosmology. This theoretical framework is very successful
in reproducing all observations we have accumulated about our Universe, which is in it-
self an extraordinary achievement. Particularly remarkable is the fact that each of the key
cosmological parameters governing the model has been corroborated by at least two very
different observational methods, which is why the theory is often referred to as “concordance
cosmology”.

1.2 The dark Universe
Two of the key parameters of the standard model are the mass and energy densities of the
Universe. The latest measured values of these parameters reveal that ordinary baryonic matter
represents only a most 5% of the total mass of the Universe. The greatest challenge of cos-
mology today is perhaps to explain the physical nature of the “missing” matter and energy
components, the so-called “dark matter” and “dark energy”. Unfortunately, although concor-
dance cosmology agrees very closely with the measured amount of these “dark” components
— around 27% attributed to dark matter and about 68% to dark energy — it does not provide
definitive answers about their true physical nature.

Dark matter does not mediate the electromagnetic force and its presence can only be indirectly
detected trough its gravitational effect on massive structures. This explains why it has taken so
long to discover its existence. Indeed, until the first evidence of dark matter were discovered
in 1933 by Fritz Zwicky (Zwicky 1933), astronomers had firmly believed they could faithfully
rely on light or other types of electromagnetic radiation to infer knowledge about the Universe.
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Although Zwicky’s observations were initially received with great skepticism, the existence of
a non-luminous matter was subsequently confirmed in the 1970s (e.g., Rubin & Ford 1970;
Ostriker & Peebles 1973; Einasto et al. 1974; Ostriker et al. 1974; Mathews 1978; Faber &
Gallagher 1979). It further became clear in the 1980s and 1990s that only a small fraction of
the missing mass could be in baryonic form and that dark matter might be “cold”, that is, in
the form of some as yet unknown species of non-relativistic elementary particles (e.g., Rees
& Ostriker 1977; White & Rees 1978; Doroshkevich et al. 1981; Zeldovich et al. 1982; Bond
& Szalay 1983; White et al. 1993; Dekel 1994; Bahcall et al. 1995; Copi et al. 1995; Navarro
et al. 1997). If this is indeed the case, we can then hope to discover dark matter candidates in
high-energy particle accelerator experiments.

The situation is much less optimistic as regards dark energy. Like dark matter, this elusive
quantity does not seem to interact with ordinary matter either. For decades, astronomers and
cosmologists had believed the evolution of the Universe was solely governed by its matter
content and geometry. But at the turn of the millenium, the analysis of the light curves of
type Ia supernovae and the temperature anisotropies of the relic background radiation of
the Universe revealed a very different — and perplexing — picture. The first surprise was
that the geometry of the Universe was found to be flat to a high precision even though the
combined densities of visible and dark matter alone are not sufficient to close the Universe
(Smoot et al. 1992; Bennett et al. 2003b; Spergel et al. 2003; Tegmark et al. 2004b). Secondly,
cosmic expansion appeared to be speeding up and not slowing down as expected (Perlmutter
et al. 1997; Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999; Knop et al. 2003; Riess
et al. 2004). The immediate response was to reintroduce Einstein’s cosmological constant
Λ in the cosmological model, now acting as a new energy-momentum source originating
from the vacuum (Zeldovich 1967; Zeldovich & Novikov 1983). The resulting model, which
has become the concordance model, is able to reproduce the kinematics of acceleration very
well. But despite this success, fundamental physics is proving unable to explain the smallness
of Λ, which casts doubts on the validity of that interpretation. In desperation, cosmologists
have invoked a new, as yet unknown, exotic form of energy with negative pressure — the dark
energy — which has the virtue of simultaneously making up for the missing energy density and
explaining accelerated expansion. There are quite a few possible alternative models of dark
energy, notably in the form of time-evolving scalar fields and modified gravity, but current
observational constraints are not tight enough to discriminate between them. In any case,
the extremely low density of dark energy — less than 10−29g cm−3 — means it is hopeless to
measure it from particle physics experiments as may be possible for dark matter. Answers can
only come from extremely accurate astronomical observations.

1.3 Gravitational lensing
Light rays emitted by distant sources are deflected in different ways as they cross the grav-
itational field of intervening matter along their path to the observer. This phenomenon is
commonly referred to as “gravitational lensing”. The fact that gravity could bend light was
hypothesized by Isaac Newton in his Opticks treatise and theoretically predicted by the the-
ory of general relativity. This phenomenon was experimentally verified for the first time by
Frank Dyson and Arthur Eddington when they measured the deflection of star light by the
gravitational field of the Sun on the occasion of the 1919 solar eclipse (Dyson et al. 1920). In
fact, Albert Einstein remained skeptical about propects of detecting such small deflections
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on more distant astronomical objects (Einstein 1936). In 1937, Fritz Zwicky contradicted this
point of view, predicting some of the effects of gravitational lensing and suggesting practical
astrophysical applications (Zwicky 1937a). But despite this, one had to wait until the discovery
in 1979 of the first gravitationally lensed system (QSO 0957+561 A & B) (Walsh et al. 1979) for
the potential of gravitational lensing for astronomy and cosmology to be rediscovered. That
event triggered an enormous amount of publications and has now become a very active field
of research.

In the case of QSO 0957+561 A & B) the gravitational field of the lens, a giant elliptical galaxy, is
so strong that two images of the same distant quasar QSO 0957+561 are observed. This is a
particular example of “strong” lensing, which manifests itself by the observation of multiple or
distorted images. Sometimes, the distortion is so extreme that the source objects are barely
recognizable. Gravitational lensing in that regime is very useful to probe the source objects or
the lensing system itself. Another important application is the measurement of the Hubble
constant (Refsdal 1964a,b), which is only known with an accuracy of the order of 5% today.

1.4 Weak gravitational lensing and the cosmic shear
In most cases, however, the lensing effect is much more subtle, where intervening foreground
structures induce weaker gravitational fields. Such “weak lensing” occurs around every mas-
sive object, like galaxies, galaxy clusters or strand of dark matter, but contrary to strong lensing,
the weak lensing effect is far too small to be measurable from a single source. Instead, an
integrated lensing signal can be reconstructed by performing a statistical analysis of the distor-
tion of the apparent shapes of a large number of source galaxies. Because it only relies on the
physics of gravity, gravitational lensing is sensitive to any form of energy and matter, whatever
its physical state. So, in principle, key information about dark matter and dark energy can be
extracted from the weak lensing signal.

In fact, since the first evidence of weak lensing effect around foreground clusters were detected
by Anthony J. Tyson and collaborators (Tyson et al. 1990), weak lensing has become a well-
established tool for estimating the total mass of galaxy clusters (e.g., Kochanek 1990; Miralda-
Escude 1991a), mapping the distribution of their luminous and dark matter mass content (e.g.,
Dahle et al. 2002; Gray et al. 2002; Clowe & Schneider 2002; Wittman et al. 2003; Margoniner
et al. 2005; Umetsu 2010; Pires et al. 2010), constraining the properties of galaxy dark matter
halos (e.g., Hoekstra et al. 2004; Sheldon et al. 2004) and recently, detecting dark matter
filaments (e.g., Jauzac et al. 2012).

Weak gravitational lensing has also emerged as a powerful technique that can potentially
place very tight constraints on cosmological parameters and dark energy. The idea that
this technique could constrain cosmology was postulated as early as 1966 (Kristian & Sachs
1966; Gunn 1967) but only theoretically investigated in the 1990s by a number of authors
(e.g., Jaroszynski et al. 1990; Babul & Lee 1991; Blandford et al. 1991; Miralda-Escude 1991b;
Kaiser 1992; Villumsen 1996; van Waerbeke et al. 1997; Mellier & Fort 1997; Jain & Seljak 1997;
Kaiser 1998; Hu & Tegmark 1999; van Waerbeke et al. 1999). It was found that the lensing of
distant background galaxies due to surrounding foreground large-scale structures should be
detectable as a faint, but statistically correlated signal, now called the “cosmic shear”. The
cosmic shear is directly related to the matter power spectrum and can thus be used to probe
the recent expansion history of the Universe and the growth of cosmic structures. This makes it
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a very promising technique for investigating the properties of dark energy and the distribution
of dark matter on cosmological scales. In 2000, the cosmic shear was eventually detected
in random patches of sky by four research groups (Bacon et al. 2000; Kaiser et al. 2000; Van
Waerbeke et al. 2000; Wittman et al. 2000).

1.5 Measuring the cosmic shear
Accurately and reliably measuring the cosmic shear poses a number of challenges. The signal
itself is subtle and its extraction requires the careful analysis of a great number of small, faint
and noisy galaxy images. A first difficulty is thus to study a large enough sky area in order to
reduce statistical errors as much as possible. Obtaining accurate redshift information is also
very important. Future wide-field surveys such as those envisaged for LSST on the ground and
ESA Euclid from space will likey overcome these hurdles. The main challenges will rather lie in
reduction of systematic errors so that these do not overwhelm the subtle lensing signal. The
most critical sources of uncertainty reside in the insufficient inaccuracy of the existing galaxy
shape measurement algorithms and the convolution of the original image by the point spread
function due to the optics and atmosphere. Successfully resolving these issues is critical
for reaching a better understanding of the nature of dark energy and dark matter through
gravitational lensing.

1.6 Outline of this thesis
Weak gravitational lensing and its applications to cosmology constitute the primary topic of
this thesis. Our main objective is to describe how weak gravitational lensing by large-scale
structures, the “cosmic shear”, can be used to probe dark matter and dark energy, with an
emphasis on the latter.

This thesis is structured as follows. We provide in Chapter 2 a critical view of the concordance
cosmological model and take the opportunity to present the latests observational results. We
also highlight possible extensions to the ΛCDM cosmological model. We are then in position
in Chapter 3 to introduce the theory of weak lensing and to explain how it can be used to
constrain cosmological parameters and shed light on the dark Universe. In Chapter 4, we cover
the practical aspects of weak lensing, describing in particular two very active fields of research:
galaxy shape measurement and point spread function (PSF) correction and interpolation.
After a review of the latest developments, we introduce the research we have performed in
these areas and published in Gentile et al. (2012) and Gentile et al. (2013).
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2 Quick overview of modern cosmology

We introduce in this chapter the main physical principles, concepts and theory underlying
modern cosmology. We also take the opportunity to give an account of the most recent
cosmological observations.

Throughout the text we adopt Einstein’s notation, natural units with c = 1 and metric signature
(−,+,+,+), unless stated otherwise.

2.1 Early cosmological models and fundamental assumptions
After the development of general relativity, Albert Einstein turned his attention to potential
cosmological applications of his theory. At that time, our knowledge about the structure,
matter distribution and dynamics of the Universe was still at the stage of conjectures. The
most advanced telescopes were barely powerful enough to image what looked like nebulae and
astronomers were still debating whether these objects were just gas clouds inside the Milky
Way or more distant galaxies (e.g., Smith 1982). To build his cosmological model, Einstein
could only rely on the equations of general relativity and on philosophical considerations on
the nature of the Universe, especially from physicist and philosopher Ernst Mach. He was also
influenced by discussions and correspondence with Dutch astronomer Willem de Sitter (de
Sitter 1916a,b). The result is the cosmological model he published in 1917 (Einstein 1917).

The starting point of that model is the postulate that the theory of general relativity is a correct
description of gravity and can be applied to the Universe as a whole. The original form of the
field equations used by Einstein was

Rμν− 1

2
gμνR = 8πG Tμν (2.1)

These equations relate the geometry of the Universe (left-hand part) to its content (the right-
hand part). The geometry is mathematically described as a four-dimensional manifold with
space-time metric gμν and the two successive contractions of the Riemann curvature tensor,
the Ricci tensor Rμν = Rα

μαν and the Ricci scalar R. The matter and radiation constituting the
Universe are modeled by the energy-momentum tensor Tμν. With these equations at hand,
the problem is then to find the gμν and the Tμν that correspond to an adequate description of
our Universe.

To tackle this daunting task, Einstein did not have other choice than to make a series of bold
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Figure 2.1: The final results of the 2dF Galaxy Redshift Survey (Colless et al. 2003). Galaxies are
not distributed randomly, but are clumped together in groups and clusters connected by large
filaments that enclose regions largely devoid of galaxies.

and simplifying assumptions about the Universe, which remain valid today.

1. The Universe is, on a sufficiently large scale, homogeneous and isotropic
2. The constituents of the Universe can be well modeled as a perfect fluid

2.1.1 The “Cosmological Principle”

The first assumption is known as the "Cosmological principle", as later coined by Milne (1935),
which states that at a given point in time and on a sufficiently large scale, the Universe is
homogeneous and isotropic. Isotropy means that at some specific space-time location in
the Universe, the space appears the same no matter in what direction one looks (invariance
under rotation). Homogeneity is the statement that the properties of the Universe do not
depend on location (invariance under translation). There is no necessary relationship between
homogeneity and isotropy, as a manifold can be homogeneous without being isotropic (like
a torus) or isotropic around a point without being homogeneous (such as a cone around its
vertex). However, a manifold that is symmetric everywhere is also homogeneous. Likewise, if
a manifold is isotropic around one point and also homogeneous, it will be isotropic around
every point.

The cosmological principle was truly a remarkable assumption as it is obvious that, on the
small scale, the Universe is clearly not homogeneous, nor it is isotropic. However, the most
recent observations show that the cosmological principle appears valid on scales larger
than about 100 Megaparsecs (Mpc), where 1 Mpc is a distance of 3.26 million light-years
or 3.08× 1022 meters. This corresponds to the scale of the largest single structures of the
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Universe: the superclusters (clusters of clusters) of galaxies, and the vast non-luminous re-
gions that separate them, known as giant voids. These structures form a sponge-like network,
were superclusters occupy about 10% of the total volume and the voids, the remaining 90%.
Beyond that characteristic scale, the Universe appears truly homogeneous and isotropic. An
illustration of these structures is given in Fig. 2.1.

2.1.2 Modeling the content of the Universe

Einstein further simplified the problem by supposing the Universe was uniformly filled with
an idealized form of ordinary matter, which he modeled as a perfect fluid. In such fluids, the
energy momentum tensor Tμν on the right-hand side of (2.1) is of the form

Tμν = (p +ρ)UμUν−p gμν (2.2)

where Uμ = gμνUν = gμν
d xμ

d s is the fluid four-velocity. The quantities p and ρ are respectively
the pressure and density of the fluid, while xk denotes the trajectory in space-time of a particle
in the fluid. Such idealized fluids have no shear stress, viscosity, or heat conduction.

In fact, as shown in the remaining sections, the perfect fluid approximation is still retained in
the present-day standard cosmological model for the representation of radiation, matter and
various possible forms of dark energy.

2.1.3 Einstein’s static Universe and the cosmological constant

Einstein found an exact solution given by a metric with line element

d s2 =−d t 2 +dl 2 =−d t 2 +R2
[

dr 2

1− r 2 + r 2(dθ2 + sin2θdφ2)] (2.3)

where dl represents the spacelike part in spherical coordinates {r, θ, φ} and d t is the timelike
coordinate. That metric describes a Universe with flat cylindrical geometry, where the spatial
sections of the cylinder are 3-spheres of radius R. Such a Universe was stationary, neither
expanding nor collapsing.

He realized, however that in such a Universe would have a mean negative pressure and hence
not physically viable. Instead of looking for a better model, he chose to adjust the left-hand
side of the field equations of general relativity, introducing a small positive Λ term known as
the “cosmological constant”. The cosmological term had to be positive, curving space-time
so as to counteract the attractive gravitation of matter and reach equilibrium. The Λ term
also had to be small relative to 4πGρ in order to satisfy Poisson’s equation ∇2Φ = 4πGρ in
the Newtonian approximation, since in this case the Newtonian potential is approximated by
Φ≈ g00 = 4πGρ−Λ. After such modification the field equations became

Rμν− 1

2
gμνR +Λgμν = 8πG Tμν (2.4)

Skeptical about the idea of a stationary Universe, de Sitter soon found another valid solution of
an empty but expanding Universe (de Sitter 1917). In 1922, the Russian mathematician Alexan-
der Friedmann had noticed that the Einstein and de Sitter cosmological models were just but
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Chapter 2. Quick overview of modern cosmology

Figure 2.2: In Hubble (1929a), E. Hubble showed that almost all galaxies receded from ours
with radial velocities proportional to their distances, implying the Universe was in expansion.

special cases of a broader class of solutions (Friedmann 1922, 1924, 1999a,b). The Belgian
priest Georges Lemaître had also independently explored similar solutions between 1925 and
1927 (Lemaître 1925, 1927). Despite being well aware of the work of de Sitter and Friedmann
(Einstein 1922, 1923), Einstein persisted in his view until incontestable observational evidence
for an expanding Universe were found by Edwin Hubble and his assistant Milton L. Humason
between 1929 and 1931 (Hubble 1929a,b; Humason 1931; Hubble & Humason 1931).

2.1.4 An expanding Universe

In his 1929 paper (Hubble 1929a), Edwin Hubble observed that almost all galaxies receded
from ours with radial velocities proportional to their distances. He postulated the so-called
“Hubble law”

v = H0 D (2.5)

In the above expression, v is the radial velocity of the galaxy, D its distance and H0 is called
the “Hubble constant”, in honor of E. Hubble. More details are provided in Sect. 2.2.2.

It became apparent that neither Einstein’s model nor de Sitter’s could provide a realistic
approximation of the observed Universe. On one hand, Einstein’s stationary model could not
explain the observations of redshift in the spectra of extragalactic sources. On the other hand,
de Sitter’s Universe had too low a density as regards the observed density of matter (de Sitter
1930). Moreover, Eddington showed Einstein’s solution was unstable (Eddington 1930). At
the same time, the papers from Friedmann and Lemaître were rediscovered and translated
(Robertson 1929; Lemaître 1931b; de Sitter 1931).

In 1931, after visiting Edwin Hubble and discussing with Richard C. Tolman, Einstein finally
recognized the shortcomings of his cosmological model (Einstein 1931). The next year, Einstein
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2.2. Modeling the expansion of the Universe

and de Sitter wrote a paper that laid the foundation to the so-called “Einstein–de Sitter”
cosmological model (Einstein & de Sitter 1932), a simple model with flat geometry and without
cosmological constant. The Einstein–de Sitter model would prevail as the standard model of
cosmology until the 1980s.

2.2 Modeling the expansion of the Universe

2.2.1 The Friedmann–Lemaître–Robertson–Walker metric

Postulating the cosmological principle as valid severely constrains the geometry of possible
cosmological models of the Universe. The models of de Sitter, Friedmann and Lemaître
featured a spatially symmetrical Universe evolving in time. This can be mathematically
decomposed as a R × Σ space-time where R represents the time direction and Σ a maximally-
symmetric three-dimensional manifold (e.g., Hawking & Ellis 1975). Such a space has a
constant spatial curvature and a space-time metric with line element of the form

d s2 =−d t 2 +S2(t )
[

A(r )dr 2 +B(r )dΩ2]
The exact form was independently derived between 1935 and 1936 by the two mathematicians
Howard P. Robertson and Arthur G. Walker (Robertson 1935; Walker 1935; Robertson 1936a,b).
The resulting metric is called the Friedman–Lemaître–Robertson–Walker (FLRW) metric to
honor these two mathematicians and acknowledge earlier contributions from A. Friedmann
and G. Lemaître. The FLRW metric is of the form

d s2 = gμνd xμd xν =−d t 2 +R2(t )

[
dr 2

1−kr 2 + r 2(dθ2 + sin2θdφ2)] (2.6)

This metric assumes one can associate a timelike coordinate t , called the “cosmic time”, to
every spacelike event (r , θ, φ). The cosmic time is the proper time measured by a special class
of observers, called fundamental observers who always perceive the Universe around then as
isotropic even though the Universe expands. These notions form the basis of Hermann Weyl’s
postulate (Weyl 1923). The timelike geodesics of these observers are assumed to never cross
except at some single point (past or future), used to define the origin of cosmic time. Weyl’s
postulate implies in particular the choice of g00 =−1 and the absence of cross terms g0ν in the
line element of Robertson–Walker metric.

The (r , θ, φ) coordinates are known as “comoving coordinates”, defined so as to always keep
the same value even though proper distances increase because of the general expansion flow.
In the FLRW metric, the relation between comoving and proper distance is explicit through
the presence of the R(t ) term, called the “scale factor”, where the physics of the expansion has
been absorbed. A proper distance Dp (t) should have a unit of length, so it is conventional
to treat comoving coordinates as dimensionless and to assign a dimension of length to R(t ).
Proper distances Dp (t ) and comoving distances h are then related by Dp (t ) = R(t )h.

The constant k, known as the “curvature parameter”, describes the spatial curvature ascribed
to the model Universe. The radial coordinate r is often rescaled so that k takes the values 0 or
± 1 in the FLRW metric. A metric with k = 0 describes a spatially flat, open, euclidean space.
A space with k =−1 is also open, but resembles a saddle and is negatively curved, whereas a
space with k =+1 has the geometry of a 3-sphere, hence closed and positively curved. This
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Chapter 2. Quick overview of modern cosmology

geometrical interpretation is more explicitly seen by introducing a new radial coordinate χ

such that dr =
�

1−kr 2dχ, which when integrated, gives r (χ) = Sk (χ), with

Sk (χ) =
⎧⎨
⎩

sin(χ) k =+1
χ k = 0
sinh(χ) k =−1

(2.7)

The metric (2.6) can then be expressed as

d s2 =−d t 2 +R2(t )
[
dχ2 +Sk (χ)2(dθ2 + sin2θdφ2)] (2.8)

It is conventional to normalize r → r /R0, define κ= k/R0 and use a dimensionless form of the
scale factor, replacing R(t ) with

a(t ) = R(t )

R0
(2.9)

In (2.9), R0 is the present-time value of the scale factor, so that a(0) = a0 = 1. The FLRW metric
(2.6) then becomes

d s2 =−d t 2 +a2(t )

[
dr 2

1−κr 2 + r 2(dθ2 + sin2θdφ2)] (2.10)

2.2.2 Rate of expansion

The rate of expansion of the Universe with respect to time is defined by the “Hubble parameter”

H(t ) =
( ȧ

a

)
= d

d t
ln(a(t )) (2.11)

As it names suggests, the present-time value of this parameter yields the Hubble constant H0.
Indeed, the Hubble law (2.5) between the observed radial velocities vr of nearby galaxies and
their physical distances Dp can be derived from the FLRW metric. Writing (2.8) as

d s2 =−d t 2 +a2(t )R2
0

[
dχ2 +Sk (χ)2(dθ2 + sin2θdφ2)] (2.12)

the instantaneous physical (proper) distance Dp (t ) between a comoving observer at χ= 0 and
a source at comoving radial coordinate χ is given by 1 Dp (t ) ≈ a(t )R0χ . Then,

vr ≈
dDp

d t
= Ḋp (t ) = ȧ(t )R0χ= ȧ(t )

a(t )
Dp (t ) = H(t )Dp (t ).

Hence vr ≈ H0Dp (t0) = H0D when evaluated today, which is the Hubble law (2.5). In fact,
G. Lemaître used a similar reasoning to theoretically derive the Hubble law two years before
E. Hubble’s discovery (Lemaître 1927).

Current observations yield a value of H0 is of the order of 70 km s−1 Mpc−1 (e.g., Freedman et al.
2001; Paraficz & Hjorth 2010). The value of H0 remains imprecise today and it is conventional
to parametrize it as H0 = 100 h km s−1 Mpc−1. The inverse of H0, H−1

0 ≈ 10h−1 Gyr, is called

1This derivation assumes peculiar velocities are ignored, i.e. χ≈ constant
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2.2. Modeling the expansion of the Universe

the “Hubble time” and would be equal to the age of the Universe if the expansion rate would
have been constant. The “Hubble radius”, RH = c/H0 ≈ 3h−1 Gpc, is the distance a photon
would have traveled without interacting during the Hubble time.

A second-order measure of the rate of expansion is provided by the “deceleration parameter”,
a dimensionless quantity defined by

q(t ) =−a(t )ä(t )

ȧ2(t )
=− ä(t )

a(t )H 2(t )
(2.13)

This parameter was defined to be positive upon deceleration of the rate of the expansion. It
turns out that the current value of this parameter is negative, signaling a Universe in acceler-
ated expansion. This will be discussed further in Sect. 2.5.3.

2.2.3 Cosmological redshift

A light ray follows a null geodesic d s2 = 0 in the metric (2.10). It follows that the radial
trajectory of a light ray emitted by a distant comoving source r1 at time t1 and towards a
comoving observer at r = 0 at time t0 is determined by the relation

∫t1

t0

d t

a(t )
=
∫r1

0

dr�
1−κr 2

(2.14)

Differentiating both sides of this expression and noting that r1 is time-independent, yields

δ1

a(t1)
= δ0

a(t0)
(2.15)

where δ1 represents the time interval between two light signals departing from the source and
correspondingly, δ0 is the time interval separating the signals upon reaching the observer. The
respective wavelengths, λ1 and λ0 are then related by

λ0

λ1
= a(t0)

a(t1)
. (2.16)

The observer at r = 0 with see λ0 as shifted relative to λ1 by a factor conventionally denoted by
z with

z = λ0 −λ1

λ1
= a(t0)

a(t1)
−1 (2.17)

Letting a(t0) = a0 = 1, a(t ) and z are then related at any time t by

a(t ) = 1

1+ z
(2.18)

In an expanding Universe, a(t) is increasing and the observed wavelengths will be redshifted
relative to the emitted wavelengths.

The cosmological redshift z is caused by the stretching of space itself between the observer
the source, which creates the illusion that they move away from each other. It should not be
confused with the Doppler redshift, which arises as a consequence of observer and source
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moving away through space.

The cosmological redshift was first observed by Walter S. Adams in 1912 (Adams 1908) and
further observed by Vesto Slipher (Slipher 1913, 1915) and Edwin Hubble (Hubble 1929a,b). It
was again G. Lemaître who first proposed the observed redshift of galaxies as arising from the
expansion of the Universe (Lemaître 1927).

2.2.4 Dynamical equations

Substituting gμν components of the FLRW metric (2.8) and the energy–momentum tensor Tμν

of the perfect fluid (2.2) in the field equations (2.4) yields a set of two independent equations
that together govern the dynamics of the expansion.

The first equation was derived by A. Friedmann in 1922 (Friedmann 1922) and is for this reason
commonly referred to as the “Friedmann equation”:

H 2 =
(

ȧ

a

)2

= 8πG

3
ρ− 1

a2 κ+ 1

3
Λ Friedmann equation (2.19)

The Friedmann equation relates the rate of increase of the scale factor, as encoded by the
Hubble parameter (2.11), to the total energy density of all matter in the universe.

The second equation is usually called the “acceleration equation” because of is aspect and
describes of the expansion accelerates or decelerates as the energy and matter content of the
Universe evolves.

ä

a
=−4πG

3

(
ρ+3p

)
+ 1

3
Λ Acceleration equation (2.20)

A third “conservation” 2 equation can be derived by combining equations (2.19) and (2.20)
or directly from the conservation of energy-momentum, ∇μT μν = 0, where ∇ denotes the
covariant derivative associated with the metric gμν.

ρ̇+3H(ρ+p) = 0 Conservation equation (2.21)

2.2.5 Scaling of matter and energy components

The field equations of general relativity produce the two independent equations (2.19) and
(2.20) with three unknown a, ρ and p. A third equation relating pressure and energy density,
i.e. an equation of state (EOS), is therefore required to determine the evolution of the mean
energy density and pressure with the scale factor.

As explained in Sect. 2.1.2, one fundamental assumption of the cosmological model is that
each of the the constituents of the Universe can be modeled as a perfect fluid. For such fluids,
the EOS takes the simple form

p = p(ρ) = w ρ (2.22)

where w is a dimensionless constant. Substituting (2.22) in (2.21) gives dρ/ρ =−3(1+w)ȧ/a,

2Also referred to as the “adiabatic” or “energy” equation
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2.2. Modeling the expansion of the Universe

Table 2.1: Idealized constituents of the Universe and their scaling

Component wi ρ a(t )

Pressureless Matter 0 a−3 t 2/3

Radiation 1/3 a−4 t 1/2

Cosmological constant (Λ) −1 a0 exp(H(t ))

which, integrated, tells how components with different EOS evolve with the scale factor

ρ(a) = ρ0a−3(1+w) ∝ a−3(1+w), ρ0 = ρ(t0) (2.23)

The Friedmann equation (2.19) also yield the time evolution of the scale factor

a(t ) ∝ t
2
3 (1+w)−1

(2.24)

The content of the Universe is idealized into:

• A component with density ρm and pressure pm , that represents homogeneously dis-
tributed matter, assumed to be non-relativistic, with velocity v much smaller than c.
The pressure of such matter, of the order of (v/c)2, is thus considered negligible, leading
to w = 0 in (2.22).

• A component with density ρr and pressure pr , that models the behavior of radiation,
neutrinos or other relativistic species, with w = 1/3 in (2.23).

• A component identified with a non-zero cosmological constant Λ, interpreted as an
energy density ρΛ arising from the vacuum (Zeldovich 1967; Zeldovich & Novikov 1983)
and with negative pressure pΛ = −ρΛ, i.e. with w = −1 in (2.23). We will discuss this
topic in more details in Sect. 2.5.3.

The EOS and scaling of these components are summarized in Table 2.1.

It is customary to express ρ as ρ =∑
i
ρi and p as p =∑

i
pi , where i = {m,r,Λ} represents the

individual component of the Universe. The dynamical equations are then rewritten as

H 2 =
(

ȧ

a

)2

= 8πG

3

∑
i
ρi − 1

a2 κ+ 1

3
Λ Friedmann equation (2.25)

ä

a
= −4πG

3

(∑
i
ρi +3

∑
i

pi

)
+ 1

3
Λ Acceleration equation (2.26)

2.2.6 Critical density and density parameters

The Friedmann equation relates the rate of increase of the scale factor, as encoded by the
Hubble parameter, to the total energy density of all matter in the Universe. It is useful to define
a time-dependent critical energy density for which the spatial curvature is exactly flat (k = 0).

ρc = ρc (t ) = 3H 2(t )

8πG
(2.27)
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and then define for each specie a dimensionless density parameter at time t by

Ωi (t ) = ρi (t )

ρc (t )
= 8πG

3H 2(t )
ρi (t ) (2.28)

where

Ωr = 8πG

3H(t )2 ρr (t ) Ωm = 8πG

3H(t )2 ρm(t ) ΩDE =ΩΛ = 8πG

3H(t )2 ρΛ (2.29)

We denote the current value of Ωi (t ) by

Ωi ,0 =
ρi ,0

ρc,0
= 8πG

3H 2
0

ρi ,0 (2.30)

It is also conventional to ascribe a fictitious density to curvature, use ρk = −3k/(8πGR2
0 a2)

and define

Ωk (t ) = ρk (t )

ρc (t )
= −κ

H 2(t )a2(t )
= −k

R2
0 H 2(t )a2(t )

(2.31)

The Friedmann equation (2.25) can then be simplified into

1 =Ωm +Ωr +ΩΛ+Ωk (2.32)

It can also be written as

H 2(a) = H 2
0

(
Ωr a−4 +Ωm a−3 +Ωk a−2 +ΩΛ

)
(2.33)

The corresponding equation in terms of the redshift z = (1/a −1) is

H 2(a) = H 2
0 E 2(z) (2.34)

where

E(z) =
(
ΩΛ+Ωk (1+ z)2 +Ωm(1+ z)3 +Ωr (1+ z)4

)1/2
(2.35)

2.2.7 Extreme scenarios of evolution

Radiation-dominated Universe

A small value of the scale factor in (2.33) implies the early Universe was dominated by radiation.
In this limit, the equation reduces to

H 2(a) = H 2
0

(
Ωr a−4

)
(2.36)

with solution

a(t ) = H0
1/2Ω1/4

r t 1/2 ∝ t 1/2 (2.37)

The transition between a radiation-dominated and a matter-dominated Universe roughly
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occurs when Ωr a−4
eq =Ωm a−3

eq =Ωr /Ωm . The exact value of aeq depends on the cosmological
model, especially on the presence of a cosmological constant. In any case, aeq occurs before
ar ec , the scale factor at the time of recombination (see Sect. 2.4.2).

Matter-dominated Universe

The scaling of a matter-dominated Universe is obtained by neglecting the curvature and
cosmological constant terms in (2.33), which gives

H 2(a) = H 2
0

(
Ωr a−3

)
(2.38)

The scale factor evolution is then of the form

a(t ) =
(

3

2
H0

)2/3

Ω1/3
m t 2/3 ∝ t 2/3 (2.39)

The evolution at later times will be first determined by the curvature terms and later on, by
the cosmological term.

Universe dominated by a cosmological constant

For a 	 aeq , the radiation and matter related terms in the acceleration equation (2.20) can be
neglected, yielding

ä

a
= 1

3
Λ= H 2

Λ ⇒ a(t ) = A exp HΛt +B exp H−Λt (2.40)

The range of solutions depend on the curvature parameter k

a(t ) ∝
⎧⎨
⎩

cosh(HΛt ) k =+1
exp(HΛt ) k = 0
sinh(HΛt ) k =−1

(2.41)

We note that a flat Universe dominated by a cosmological constant has an exponentially
growing scale factor at later times.

2.2.8 Cosmological distances

The Robertson–Walker metric (2.10) provides the rules for assigning coordinates to astro-
nomical objects and for turning such coordinates into physical cosmological distances. Two
ways of measuring distances are possible. One possibility is to rely on comoving coordinates
that remain fixed as the Universe expands; the other is to convert comoving coordinates into
physical ones, taking into account the physics underlying the expansion.
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Comoving distances

Setting d t = 0 in the FLRW metric yields the proper distance, at constant proper time, between
a comoving observer at χ= 0 (us) and a source at comoving radial coordinate χ.

DP (t ) = R(t )
∫r

0

dr�
1−kr 2

= R(t )χ= a(t )R0χ (2.42)

This expression assumes that χ remains constant, the observer being located at χ= 0, and that
the source are perfectly comoving. The present-time distance is usually called the “comoving
distance” and denoted by

DC = DP (t0) = R0χ (2.43)

This instantaneous distance, although conceptually useful, cannot be used in practice. One
can only rely on light or other radiation to observe astronomical objects. But light takes a
finite time to reach us and, in the interval, the scale factor will have changed. More practical
comoving distances are those who involve the past light cone.

One such comoving distance is the distance light would have traveled in the absence of
interaction since time t = 0

η=
∫t

0

d t

a(t )
(2.44)

No information can propagate faster than light, so this distance delimits regions of space-
time that are causally connected and can be thought as a “causal horizon”. Since η increases
monotically, it is often used as a time variable, called the “conformal time”. The proper distance
associated to η is obtained by multiplying by the scale factor and is called the “particle horizon”.

Rp = a(t )
∫t

0

d t

a(t )
= a(η)η(t ) (2.45)

The particle horizon corresponds to the maximum physical distance over which causal pro-
cesses can ever have had an effect up to time t. The particle horizon should be distinguished
from the “Hubble radius”

RH (t ) = 1

H(t )
(2.46)

also called “Hubble horizon”, which is approximately the maximum distance over which causal
processes can operate at a given time t. The Hubble radius is usually preferred when studying
the formation of structures.

Another related comoving distance is the so-called “lookback distance”, defined as the distance
between us (at present time t0) and a distant comoving source at time t (a)

DLookback =
∫t0

t (a)

d t

a(t )
=
∫1

a

d t

a2(t )H(a)
(2.47)
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Physical distances

When it comes to measuring physical distances at large redshifts, two distances are classically
used: the “luminosity distance” and the “angular diameter distance”.

The luminosity distance relies on the known luminosity of an observed object, a “standard
candle” to infer its distance. Neglecting the expansion flow, the observed flux at a distance d
from a source of known luminosity L is

F = L

4πd 2 (2.48)

In an expanding Universe, equation (2.48) must be modified to account for a number of effects:

• The area A of a spherical object centered at comoving distance χ will become, according
to the FLRW metric (2.8), A = 4πR0

2Sk
2(χ)

• The rate of arrival of individual photons is lower than the rate at which they were emitted
by the redshift factor 1/(1+ z)

• The energy of the individual photons received by an observer on earth is reduced by the
same redshift factor 1/(1+ z)

The correct expression for F is therefore

F = L

(1+ z)2 A
(2.49)

Comparing (2.48) and (2.49) yields the expression for the luminosity distance dL

dL = (1+ z)R0Sk (χ) (2.50)

One problem with this formula is that the quantity χ is not an observable. It can however be
converted into the more useful form by using (2.18) and the expression of χ on a null radial
geodesic

χ= 1

R0

∫t0

t

d t

a(t )
= 1

R0

∫1

a

d a

a2H(a)
= 1

R0

∫z

0

d z

H(z)
(2.51)

The resulting distance is then

dL = (1+ z)R0Sk

[
1

R0

∫z

0

d z

H(z)

]
(2.52)

The luminosity distance can also be obtained by expressing R0 in terms of the present-time
density parameter Ωk,0 =−k/(R0

2H0
2) (see 2.31), leading to

dL = (1+ z)
1

H0

1√⏐⏐⏐Ωk,0

⏐⏐⏐
Sk

[
H0

√⏐⏐⏐Ωk,0

⏐⏐⏐∫z

0

d z

H(z)

]
(2.53)

The angular diameter distance is based on the measurement of the angle δθ subtended by a
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object of known physical size l , a “standard ruler”, and is defined as

dA = l

δθ
(2.54)

where δθ is small.

Assuming the observed object was at redshift z at comoving coordinate χ and the Uni-
verse the scale factor a(t), then the angular part of the metric. The expression (2.8) gives
l = a(t )R0Sk (χ)δθ and

dA = R0Sk (χ)

1+ z
(2.55)

Reusing the expression of χ in 2.51 and expressing in terms of Ωk,0, leads to

dL = (1+ z)2dA (2.56)

2.3 Formation of cosmic structures
The cosmological framework described in the last section models a Universe obeying the
cosmological principle: isotropic and homogeneous on a large scale, as discussed in Sect. 2.1.1.
On smaller scales, however, the Universe is obviously far from meeting these criteria and
indeed, we can observe today massive structures such as galaxies, isolated or in clusters,
that have a mean density up to several hundred times larger than the average density of the
Universe.

As we will see later in Sect. 2.4.2, The average amplitude of the temperature anisotropies in the
Universe at the time of recombination (z ∼ 1000) was of the order ΔT /T ∼ 10−5. This suggests
the density of inhomogeneities at that epoch were indeed of very small amplitude. So what is
still missing in the cosmological framework we have described so far is an understanding of
how these tiny density fluctuations were able to grow to form the structures we see today.

The origin of the initial inhomogeneities themselves is still controversial. One possibility is
that they arose from quantum fluctuations in the very early Universe (∼ 10−43s) that grew
enormously during a phase of exponentially accelerated expansion called “inflation” (e.g.
Guth 1997; Liddle & Lyth 2000; Mukhanov 2005).

The conventional approach to the problem consists in investigating the effect of a small
perturbation Δ(r, t ) = ρ(r, t )− ρ̄(t ) in the gravitational field on top of the average gravitational
field of the average matter density ρ̄(t ). It is then convenient to introduce the “relative density
contrast”, defined as

δ= δ(r, t ) = Δ(r, t )

ρ̄(t )
= ρ(r, t )− ρ̄(t )

ρ̄(t )
(2.57)

where ρ̄(t ) denotes the mean cosmic matter density in the Universe at time t.

A full treatment of the formation of cosmic structures would involve the use of general relativity
(e.g., Amendola & Tsujikawa 2010; Mo et al. 2010). We will only provide a limited treatment
here, centering the discussion around weak gravitational perturbations δ(r, t ) � 1 for which
the Newtonian description of gravity can be applied.

18



2.3. Formation of cosmic structures

We first consider structures that are much smaller than the Hubble radius RH given by (2.46),
so that so that causality can be considered instantaneous.

2.3.1 Newtonian fluid equations of a collisional fluid

∂ρ

∂t
+∇r · (ρu) = 0 Continuity equation (2.58)

∂u

∂t
+ (u ·∇r)u = −∇rp

ρ
−∇rΦ Euler equation (2.59)

∇2
rΦ = 4πGρ Poisson equation (2.60)

Equations (2.58)–(2.60) respectively represent the continuity equation (conservation of mass),
Euler equation (conservation of momentum), and Poisson equation (gravitational field). The
quantities ρ, p and u denote respectively the mass density, pressure and velocity of the fluid.
Dissipative terms arising from viscosity or thermal conductivity are neglected. It is also
assumed the fluid is isentropic.

2.3.2 Newtonian linear perturbation equations in comoving coordinates

For studying cosmological perturbations in the context of an expanding Universe, it is more
appropriate to use comoving coordinates x instead of the proper coordinates r. Both coordi-
nates are related through r = a(t)x. With (x, t) replacing (r, t) as the space-time coordinates
and using ∂x/∂t =−(ȧ/a)x, the time and spatial derivatives transform as

∇r → 1

a
∇x

∂

∂t
→ ∂

∂t
− ȧ

a
·∇x (2.61)

From (2.57), the perturbed density can also be expressed as ρ = ρ̄(t)
[
1+δ

]
. The pressure,

velocity and gravitational can be perturbed the same way, so that

ρ → ρ̄(t )
[
1+δ

]
(2.62)

p → p̄(t )+δp (2.63)

u → ȧ x+v (2.64)

Φ → Φ̄+φ Φ̄= aä

2
|x2| (2.65)

where v is the peculiar velocity describing the motion of the fluid element relative to the
fundamental comoving observer at x. Noting that ρ̄∝ a−3, applying the transformation rules
(2.61) and substituting in equations (2.58)–(2.60), lead to perturbed equations in comoving
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coordinates

∂δ

∂t
+ 1

a
∇x ·

[
(1+δ)v

] = 0 Perturbed continuity equation (2.66)

∂v

∂t
+ ȧ

a
v+ 1

a
(v ·∇x)v = − 1

a

∇xδp

ρ̄(1+δ)
− 1

a
∇xφ Perturbed Euler equation (2.67)

∇2
xφ = 4πGρ̄a2δ= 3H 2

0Ωm

2a
δ Perturbed Poisson equation (2.68)

The assumption that the perturbations are small, that is, δ(r, t ) � 1 and v � H r , means that
only first-order terms can be kept in equations (2.66)–(2.68), so that

∂δ

∂t
+ 1

a
∇x ·

[
(1+δ)v

] = 0 (2.69)

∂v

∂t
+ ȧ

a
v = − 1

a

∇xδp

ρ̄
− 1

a
∇xφ (2.70)

∇2
xφ = 4πGρ̄a2δ (2.71)

These equations can be combined as one single equation, which is the linear perturbation
equation for δ in the Newtonian approximation 3

∂2δ

∂t 2 +2
ȧ

a

∂δ

∂t
= ∇2

xδp

a2ρ̄
+4πGρ̄δ (2.72)

The different terms have the following physical interpretations:

• 2 ȧ
a
∂δ
∂t represents the “Hubble drag”, the direct effect of the expansion of the Universe.

This term tends to suppress perturbation growth due to the expansion.
• 4πGρ̄δ represents the effect of the self-gravity of the perturbation. This term causes

perturbations to grow via gravitational instability.

•
∇2

xδp
a2ρ̄

describes the effect of pressure due to the spatial variations in density.

The evolution of the density perturbations is therefore the result of the competition between
the Hubble drag on the left-hand side and the self gravity and pressure on the right-hand side
of (2.72).

2.3.3 Density perturbations of a non-relativistic fluid with zero pressure

Setting ∇2p = 0 in (2.72) gives

∂2δ

∂t 2 +2H(t )
∂δ

∂t
−4πGρ̄δ= 0, H = ȧ

a
(2.73)

This equation admits solutions of the form

δ(x, t ) = A(x)D+(t )+B(x)D−(t ) (2.74)

3The effect of relativistic pressure as an additional energy source is not included.
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where D(t ) is called the “linear growth factor” and the two A(x) and B(x) functions are arbitrary.
The notation highlights the fact that D+ is growing or constant in time, a growing mode,
whereas D− is decreasing with time, a decaying mode.

The equations can be solved explicitly in the case of the Einstein–de Sitter Universe (EdS)
(Einstein & de Sitter 1932), matter-dominated, with flat geometry (k = 0) and without cos-
mological constant (Λ = 0). This model is a good approximation of the Universe after the
period of matter–radiation equality but well before Λ starts to dominate. In this simplified
case, a ∝ t 2/3, so that H = 2/(3t ) and ρ̄ = 1/(6πGt 2), which yields

D+ ∝ t 2/3 D− ∝ t−1 (2.75)

The D− decaying with time, the only relevant solution is therefore

δ(x, t ) ∼ A(x)D+(t ) = A(x)t 2/3 (2.76)

In a EdS Universe, the density perturbation would therefore be allowed to grow as a power-law
δ∝ a ∝ t 2/3 after the radiation-matter equality. But the real Universe is not EdS and, as shown
in the next sections, incorporating the effects of a non-zero pressure leads to a different result
for ordinary matter, whereby the perturbations is only allowed to grow after recombination.
On the other hand, dark matter is able to grow just after aeq at a rate D+ ∝ t 2/3.

2.3.4 Density perturbations in a non-relativistic fluid with non-zero pressure

Assuming a barotropic fluid with p = p(ρ), δp = (∂p/∂ρ
)
ρ̄δ= c2

s ρ̄δ, where cs = (∂p/∂ρ)1/2 is
the adiabatic sound speed, equation (2.72) can then be rewritten as

∂2δ

∂t 2 +2H(t )
∂δ

∂t
= c2

s

a2 ∇2
xδ+4πGρ̄δ (2.77)

This equation is that of a damped oscillator where the Hubble drag term 2H
(
∂δ/∂t

)
tends

to damp any growing or oscillatory solution. Considering plane wave solutions of the form
D(t )ei k·x, (2.77) can be expressed as

D̈ +2HḊ =−ω2(t )D, ω2(t ) = c2
s k2

a2 −4πGρ̄ (2.78)

where k is the comoving wave vector, related to the comoving wavelength λc through

k = 2π/λc (2.79)

the corresponding proper wave length being λ= a(t )λc .

The nature of the solutions to equation (2.78) depends on whether ω2(t) > 0 or ω2(t) < 0,
which in turns depends on whether k > kJ or k < kJ where kJ is the comoving Jeans wave
vector

kJ =
√

4πGρ̄
a

cs
(2.80)
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The corresponding characteristic proper length is the Jeans wavelength λJ is

λJ = 2π

kJ
a = cs

√
π

Gρ̄
(2.81)

There are two families of solutions:

• For λ<λJ , (ω2 > 0), the solution corresponds to a sound wave that propagates with the
sound speed cs .

• For λ > λJ , (ω2 < 0), the pressure can no longer support gravity and the solution to
(2.78) represents a non-propagating, stationary wave, with an amplitude that will either
increase (growing mode) or decrease (decaying mode) with time. The Hubble drags
has the effect of slowing down the growth of perturbations that would be exponential
otherwise.

So it is clear that a perturbation cannot grow unless λ>λJ . For λ	λJ , the pressure term in
(2.85) can be neglected and the solutions are of the form

δ(x, t ) = A(x)D+(t )+B(x)D−(t ) (2.82)

with

D+ ∝ t 2/3 D− ∝ t−1 (2.83)

so that δ(x, t ) ∼ t 2/3 at later times for λ	λJ .

In Summary, in the a > aeq epoch:

• For λ<λJ , the growth of perturbation is suppressed.
• For λ>λJ , the perturbations grow as D+∝ a ∝ t 2/3 during a > aeq .

2.3.5 Density perturbations in a relativistic fluid with non-zero pressure

This case is relevant to approximate the behavior of perturbations in a radiation-dominated
Universe, where p = (1/3)ρc2. It is still assumed that bulk velocities are non-relativistic.
Such conditions can be approximately modeled by the so-called “modified” Newtonian fluid
equations (e.g., Lima et al. 1997) where pressure constitutes an additional source of energy.

For a radiation-dominated Universe, the linearized perturbation equation is

∂2δ

∂t 2 +2
ȧ

a

∂δ

∂t
= ∇2

xδp

a2ρ̄
+ 32πG

3
ρ̄δ, δp = 1

3
ρ̄δ (2.84)

The explicit equation then reads

∂2δ

∂t 2 +2
ȧ

a

∂δ

∂t
= 1

3

∇2
xδ

a2 + 32πG

3
ρ̄δ (2.85)

The analysis is similar to that of Sect. 2.3.4. Considering plane waves D(t)ei k·x, the damped
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oscillator equation is slightly modified as

D̈ +2HḊ =−ω2(t )D, ω2(t ) = c2
s k2

3a2 − 32

3
πGρ̄ (2.86)

The comoving wave vector kJ is

kJ =
√

32

3
πGρ̄

a

cs
(2.87)

The corresponding characteristic proper Jeans wavelength λJ is

λJ = 2π

kJ
a =

√
3π

8

cs√
Gρ̄

(2.88)

There are again two families of solutions:

• For λ<λJ , (ω2 > 0), the solution corresponds to a sound wave that propagate with the
sound speed c2

s = 1/3.
• For λ>λJ , (ω2 < 0), the solution represents a non-propagating, stationary wave, with

an amplitude that will either increase (growing mode) or decrease (decaying mode) with
time.

Therefore, a perturbation cannot grow unless λ>λJ , as for a non-relativistic fluid with pres-
sure. For λ	λJ , the pressure term in 2.85 can be neglected and the solutions are of the form

δ(x, t ) = A(x)D+(t )+B(x)D−(t ) (2.89)

with

D+ ∝ t D− ∝ t−1 (2.90)

so that δ(x, t ) ∼ t at later times. Therefore, the growing mode in the radiation-dominated era,
a < aeq has D+∝ a2 ∝ t compared to D+∝ a ∝ t 2/3 during a > aeq .

2.3.6 Density perturbations in a Λ-dominated Universe

As we will see in Sect. 2.4.4, there is now very strong evidence that the Universe is currently
in a phase of accelerated expansion. One possibility is that Einstein’s cosmological constant,
interpreted as vacuum energy, is responsible for this effect (see Sect. 2.5.3). In this particular
case, δρΛ = 0 and δρ ≈ ρm . Equation (2.73) can then be rewritten as

∂2δm

∂t 2 +2H(t )
∂δm

∂t
− 3

2
Ωm(t )H 2(t )δm = 0, H = ȧ

a
(2.91)

which, because Ωm � 1 and H = constant, simplifies to

∂2δm

∂t 2 +2H(t )
∂δm

∂t
= 0 (2.92)
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The solutions are of the form

δ(x, t ) = A(x)+B(x)e−2H t (2.93)

The growth of perturbation during the Λ–dominated era is thus suppressed: the self-gravity of
the matter is overwhelmed by the expansion driven by the vacuum energy.

2.3.7 Evolution of the density perturbations of baryonic matter

It is now possible, based on the results of Sects. 2.3.4 and 2.3.5, to retrace the evolution of
perturbations for baryonic matter at different epochs (within the Hubble horizon).

• During the radiation domination era (a < aeq ), it is thought that matter was mostly in
the form a non-baryonic, pressureless, collisionless, non-relativistic “cold” dark matter
(CDM). Baryonic matter was thus subdominant. The fluid during that era was a mix
of relativistic collisional radiation and CDM. Peter Mészáros has shown that, in that
case, the perturbation in such a fluid were “frozen” until the epoch of radiation-matter
equality, an effect known as the “Mészáros effect” (Meszaros 1974).

• During the matter domination era (a > aeq ), and before recombination (ar ec ), photons
and electrons were tightly coupled by Compton scattering and baryons and photons
behaved as a single fluid. Just before recombination, the sound speed in such a fluid was
about 1.3×108m s−1 and the length scale corresponded to that of a supercluster (∼ 2500
Mpc). Under such conditions, the scale of λJ was much too high for perturbations to
have a chance to grow. According to the results of Sect. 2.3.5, the growth of structures of
baryons was thus effectively suppressed before recombination.

• Just after recombination (a > adec ), the sound speed dropped by a factor of ∼ 104, to
∼ 6× 103m s−1. the Jeans length then became much smaller (∼ 10 kpc), enough for
perturbations to start growing at a rate D+ ∝ a ∝ t 2/3, according to (2.83).

2.3.8 Evolution of the density perturbations of non-baryonic dark matter

Based on the results of the last sections, the evolution of cold dark matter within the Hubble
horizon can be summarized as follows:

• During the radiation domination era (a < aeq ), we saw in Sect. 2.3.7 that the CDM
perturbations were “frozen” due to the “Mészáros effect” (Meszaros 1974).

• As soon as the radiation-matter equality was reached, (a > aeq ), the results obtained
in Sect. 2.3.3 for pressureless matter applies. The CDM was then able to grow at a rate
D+ ∝ a ∝ t 2/3.

2.3.9 Linear structure growth on super-horizon scales

The description of the previous sections applies to density perturbations of scales much
smaller than the size of the Hubble horizon. The description of larger scale perturbation would
require a relativistic treatment which is beyond the ambitions of this thesis. We nevertheless
outline some important results below.
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Evolution of horizon size

The sizes of the Hubble horizon RH in the different epochs are 2c t and (3/2)c t during the
radiation and matter dominated epochs, respectively. Therefore RH ∝ t .

RH ∝
{

t ∝ a2 radiation–dominated epoch
t ∝ a3/2 matter–dominated epoch

(2.94)

On the other hand, the proper lengths of perturbations λ scale as λ= (2π)/ka ∝ a. Therefore:

• The perturbations are initially inside the horizon (λ < RH ) and then grow to a point
where they leave the horizon (λ > RH ). The horizon exit time is defined by texi t =
RH (texi t ).

• λ grows slower than RH during the radiation and matter-dominated epochs, so, during
these eras, perturbations are outside the horizon (λ> RH ) and then enter the horizon
(λ< RH ). The horizon entry time is defined by tenter = RH (tenter ).

This is illustrated in Fig. 2.3.

Evolution of perturbations over different epochs

It can be shown that for λ	 RH , the perturbations grow in the same way as for λ� RH , that
is

D+ ∝
{

a2 ∝ t radiation–dominated epoch
a2/3 ∝ t matter–dominated epoch

(2.95)

The case of small perturbations that enter the horizon before matter–radiation equality
(a < aeq ) is illustrated in Fig. 2.4, left. Outside the horizon, the perturbations evolve as
D+ ∝ a2 and all components, baryons (b), photons (γ), cold dark matter (DM) evolve in the
same way, maintaining adiabatic ratios: δb ∝ δDM ∝ (3/4)δγ. But as soon as they enter the
horizon during a < aeq , the perturbations cease to grow, as explained in Sect. 2.3.7, because of
the Mészáros effect. Once matter-radiation equality is reached (a > aeq ), the CDM component
is allowed to grow at a rate D+ ∝ a ∝ t 2/3 as explained in Sect. 2.3.8. In contrast, the growth
of baryonic matter is still suppressed until recombination, as described in Sect. 2.3.5. After
recombination (a > ar ec ) can start growing at a rate D+ ∝ a ∝ t 2/3.

The case of larger-size perturbations enters the horizon after matter–radiation equality (a > aeq )
is illustrated in Fig. 2.4, right. All components remain outside the horizon during the radiation
and matter domination eras a < aeq and grow without being affected at a rate D+ ∝ a. As
soon as they reach aeq , the baryons see their growth suppressed, as described in Sect. 2.3.5.
In contrast, the CDM component continues to grow according to D+ ∝ a (see Sect. 2.3.8).
After recombination, the baryonic matter resumes its growth at a rate D+ ∝ a ∝ t 2/3 (see
Sect. 2.3.5).

2.3.10 Statistical properties of the matter density field

On large scales (i.e. δ � 1), gravity competes with cosmic expansion and structures grow
according to the linear theory of cosmic structures we have outlined in the previous sections.
In this regime, the matter density field can be considered as a Gaussian random process whose

26



2.3. Formation of cosmic structures

statistical properties that can be completely described by second-order (two-point) statistics
such as a correlation function or a power spectrum. The power spectrum of the matter density
perturbations is often referred to as the “matter power spectrum”.

On small scales, gravitational collapse is non-linear and much more difficult to model ana-
lytically, requiring the use of numerical simulations. Higher-order statistics are necessary to
describe the full field on small scales and non-linear corrections have to be brought to the
matter power spectrum.

Matter power spectrum in the linear regime

We first focus on statistical properties in the linear regime. The power spectrum of the density
perturbations Pδ is defined by

〈
δ̂
(
k , t
)
δ̂∗
(
k ′, t

)〉= (2π)3δD
(
k −k ′)Pδ(k, t ) (2.96)

where angle brackets denote ensemble averages. At a given time t , the power spectrum only
depends on the wave vector k . The power spectrum Pδ(k, t ) at a given time t is related to the
primordial power spectrum Pδ(k, ti ) at time ti through

Pδ(k, t ) = T 2(k)Pδ(k, ti ) (2.97)

where T (k) is called a “Transfer function”. This function describes how the shape of the
initial power spectrum is modified by the different processes occurring during the growth
of structures. The exact form of T (k) depends on the matter content of the Universe and in
particular, on the type of dark matter (see Sect. 2.4.3). The transfer function is for instance
very different between cold (CDM) and hot (HDM), since HDM particles were relativistic at
the time of radiation–matter equality, contrary to CDM particles. Several transfer functions
corresponding to different kinds of matter are plotted in Fig. 2.5. In the linear regime, each
Fourier mode evolves independently and the power spectra at times t and t1, (t1 < t ) are
related by

Pδ(k, t ) = Pδ(k, t1)
D2+(t )

D2+(t1)
= Pδ(k, ti )T 2(k)

D2+(t )

D2+(t1)
(2.98)

Standard cosmology assumes a primordial power spectrum in the form of a power law, i.e.

Pδ(k, ti ) ∝ A kns (2.99)

with “spectral index” ns and normalization A. A primordial power spectrum with ns = 1 is
known as the “Harrison-Zeldovich” power spectrum (Harrison 1970; Zeldovich 1972), is in
good agreement with the spectrum predicted by the theory of inflation (e.g., Dodelson 2003)
and is favored by observations. In fact, the final results from WMAP (Hinshaw et al. 2012)
and the latest findings from the Planck probe (Ade et al. 2013b), both suggest a value slightly
lower than unity, around 0.96, favoring simple single-field “slow-roll” inflationary models (e.g.,
Mukhanov 2007).

In the case of a “Harrison-Zeldovich” power spectrum, the evolution of the overall power
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Figure 2.5: Adiabatic transfer functions corresponding to baryons, hot dark matter (HDM),
cold dark matter (CDM) and other possible forms of matter (Peacock 1998).

spectrum evolution is approximated by

Pδ(k) =
{

k for small k (large scales)
k−3 for large k (small scales)

(2.100)

The evolution of the matter power spectrum on different scales is depicted in Fig. 2.6. The
large-scale perturbations (small k) remained outside the horizon and, not being impacted by
physical processes inside RH , were able to grow (i.e. their amplitude increased). This explains
why the power power spectrum curve increases in height on large scales. In contrast, small-
scale perturbations were suppressed upon entering the horizon (RH ) before matter-radiation
equality (aeq ), as described in Sects. 2.3.2 – 2.3.9. This is reflected in the steep decrease of the
power spectrum curve toward high k. The bump in the curve is thus explained by the different
growth rates between large and small-scale perturbations. After aeq the Universe became
pressureless (dominated by dark matter) and all scales were able to clump together more and
more. The power spectrum thus essentially grew the same way on all scales and its shape
became more or less frozen starting from that epoch. The turnover point in the processed
power spectrum is therefore an indication of Jeans length at aeq .

Completely specifying the power spectrum requires the determination of its overall amplitude.
The theory of structure formation is not yet refined enough to predict this quantity, which is
instead fixed by observations. The estimated value is used to normalize the power spectrum
and enters the cosmological model via theσ8 normalization parameter, defined as the variance
of the density perturbations within a sphere of radius 8h−1 Mpc. This choice of scale was
motivated observationally by the variance of galaxy counts, estimated to lie around unity. The
σ8 ∼ 1 value identifies the transition from the linear to the non-linear scales.

As shown in the above discussion, the shape and amplitude of the power spectrum are a
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Figure 2.6: Matter power spectrum computed using the WMAP + SDSS cosmological parame-
ters estimated in (Tegmark et al. 2004b). The solid and dashed curves respectively show the
non-linear and linear power spectra. The linear power spectrum asymptotically falls off as
∼ k−3, whereas the non-linear spectrum deviates from the linear curve due to the enhanced
contributions of non-linear effects on small-scale perturbations. The non-linear effects were
computed using the fitting functions from Peacock & Dodds (1996).

sensitive probe of cosmology. The determination of σ8 through observations is, however, very
challenging. One approach is to combine cosmic shear measurements with galaxy number
counts (Simon et al. 2004). Recent studies (e.g., Van Waerbeke et al. 2005; Hinshaw et al. 2012;
Ade et al. 2013b) favor a value slightly smaller than unity, around 0.8. This topic will be covered
in more details in Sect. 3.4.

Matter power spectrum in the non-linear regime

As mentioned earlier, the theory of linear structure formation ceases to be accurate for δ� 1.
Gravitationally-bound low-redshift structures have a density contrast larger than unity and
galaxy clusters have δ ∼ 1000. Unlike in the linear case, the Fourier k-modes are no longer
independent but instead interacting with each other, introducing features in the matter density
field that can no longer be fully described by random Gaussian processes, i.e. by two-point
statistics (e.g., Munshi et al. 2008). The linear power spectrum described in the previous
section is therefore no longer an adequate description of the statistical property of the density
field and must be corrected.

Unfortunately, an analytical treatment that would account for all non-linear physical phenom-
ena is still beyond reach. Such a treatment is only possible in special cases such as the spherical
collapse model in EdS cosmology (e.g., Peacock 1998). Numerical calculations, such as the
N-Body simulations of the Millennium project (Springel et al. 2001, 2005) are nevertheless able
to reproduce the observed filamentary structures of the Universe at various scales. Relying
on such simulations, the computation of the required corrections to the power spectrum
in the non-linear regime have been estimated by several authors (Hamilton et al. 1991; Jain
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et al. 1995; Peacock & Dodds 1996; Smith et al. 2003). One important parameter involved in
the corresponding transfer functions is the shape parameter Γ=Ωmh which determines the
location of the peak in the power spectrum.

2.4 “Concordance” cosmology

2.4.1 The “Big Bang”

Georges Lemaître was the first to propose the observed redshift of galaxies could be interpreted
as evidence for the expansion of the Universe (Lemaître 1927), and by 1933, the theory of the
expanding universe was accepted by a majority of astronomers and the subject of detailed
reviews by O. Heckmann, H. P. Robertson and R. C. Tolman (Heckmann 1932; Robertson
1933; Tolman 1934). One year earlier, A. Einstein and W. de Sitter had advocated a simple
cosmological model, now known as the ‘Einstein–de Sitter” cosmological model (EdS) (Einstein
& de Sitter 1932), with a flat geometry (k = 0) and no cosmological constant (Λ= 0).

But other possible models were being explored, notably by G. Lemaître who envisaged cos-
mological models starting with a singularity and having a positive cosmological constant. In
1931, Lemaître went further, suggesting the Universe could have originated at a finite point in
time from a “primeval atom” (Lemaître 1931a,c).

Indeed, the Friedmann, EdS and Lemaître models do allow such a possibility. The acceleration
equation (2.20) can be expressed in terms of w as

ä

a
=−4πG

3
ρ
(
1+3w

)
+ 1

3
Λ (2.101)

In the case of a zero cosmological constant, this equation implies that ä < 0 for all time, pro-
vided w >−1/3, establishing that the expansion of the corresponding Universe is decelerating
and that a(t ) must have been zero at some finite time in the past. Since a(0) = 0 at that point,
the density ρ diverges, as does the Hubble parameter H(t). In fact, this singularity cannot
even be ruled out when Λ> 0, provided it does not dominate at early time, and indeed this
scenario is precisely the one favored today by standard cosmology.

Lemaître’s idea was received with skepticism by the scientific community, notably Arthur Ed-
dington (Eddington 1931). Sir James Jeans, in the 1920s, was the first to raise the possibility of
a Universe with continuous creation of matter (Jeans 1928). But its was not until the end of
the 1940s that the subject was revisited. Two competing theories that could explain the ex-
pansion of the Universe were proposed. The first one, in favor of an ever-lasting Universe was
a “steady state” cosmological model put forward by Fred Hoyle (Hoyle 1948), Thomas Gold,
Hermann Bondi and others. The second, advocated by Georges Gamov and his student
Ralf A. Alpher (Alpher et al. 1948; Alpher & Herman 1949), was proposing a Universe born
in a initial singularity, a “Big Bang”, as Fred Hoyle called it during a BBC Radio broadcast in
1949. The paper from Alpher et al. (1948) explained how light elements of the Universe could
have been created during the first few minutes of the “Big Bang”, a process called “Big Bang
Nucleosynthesis” (BBN), and predicted the expected abundance of hydrogen and helium.
These calculations were further refined in 1953 by Alpher et al. (1953).
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2.4.2 The Cosmic Microwave background

Equation (2.101) implies that the early Universe was radiation-dominated. Since radiation
behaves as ρr ∝ T 4, i.e. T ∝ t−1, the Universe was much denser and hotter than it is today,
in the form of a plasma made of free nuclei and electrons, continuously interacting with
each other through Thomson scattering. All these particles were in thermal equilibrium with
photon energies described by the Planck distribution.

Eventually after about 380,000 years of expansion, the universe cooled to the point (around
3000K) where electrons could be captured into atomic orbits, a process known as “recombi-
nation”. This event had two important consequences. Firstly, matter and radiation were no
longer in thermal equilibrium. As a result, perturbations in matter were no longer damped by
interaction with radiation and could start to grow through gravitational instability, eventually
forming the structures of the Universe. Secondly, the photons, no longer being scattered with
electrons, were able to stream freely through the Universe. In 1948, Georges Gamov and sepa-
rately, Ralf A. Alpher and Robert Herman (Alpher & Herman 1948), worked out this last process.
Alpher and Herman predicted that the last scattering surface would be detectable in the form
of a thermal radiation that would uniformly fill the observable Universe and would have a
temperature around 5K. This relic radiation is known as the Cosmic Microwave Background
(CMB).

Strangely, the paper of Alpher & Herman (1948) failed to attract the attention of the scientific
community. Between 1948 and 1954, Alpher and Herman tried to convince astronomers
to measure the CMB but without success. Georges Gamov and Robert Dicke also made
various estimates of the CMB temperature. It was only in 1965 that Arnold Penzias and
Robert W. Wilson fortuitly detected the CMB signal (Penzias & Wilson 1965). In the 1970s,
further theoretical work from Edward R. Harrison (Harrison 1970), James E. Peebles (Peebles &
Yu 1970), Yakov B. Zeldovich (Zeldovich 1972) and Rashid A. Sunyaev (Sunyaev 1978) estimated
the observable imprint that these inhomogeneities would have on the CMB.

The definitive proof that the CMB was truly a remnant of the Big Bang came after the Cosmic
Background Explorer (COBE) satellite confirmed their theoretical predictions in 1992 (Smoot
et al. 1992). COBE’s measurement found in particular the expected level of anisotropies and
showed that the spectrum of the CMB was that of a thermal black body to a high precision.
COBE’s measurements were further confirmed and refined by NASA’s Wilkinson Microwave
Anisotropy Probe (WMAP) (Bennett et al. 2003a,b, 2012; Hinshaw et al. 2012) and by ESA’s
Planck satellite (Tauber et al. 2010a,b; Ade et al. 2013a), respectively launched in 2001 and
2009. The latest measurements from Planck (Ade et al. 2013a) give the CMB temperature to be
2.725K and temperature fluctuations of the order of ΔT /T ∼ 10−5. The latest CMB temperature
fluctuation map and power spectrum measured by the Planck satellite are shown in Fig. 2.7.

After the discovery of the CMB, the BBN abundance estimates were refined by Peebles (1966);
Wagoner et al. (1967), and together with more recent calculations (e.g., Olive & Steigman
1995; Schramm & Turner 1998; Tytler et al. 2001; Charbonnel 2002; Mathews et al. 2005) fully
confirmed the predictions of the Big Bang. Fig. 2.8, left, summarizes the current constraints
on the baryon densities.

The expansion of the Universe, the CMB and the BBN constitute the three pillars of the Big
Bang. Additional pieces of evidence have been found since, notably from the study of large
scale structures, the age of stars and the formation and evolution of galaxies.
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Figure 2.7: Left: The CMB temperature fluctuations from the Planck probe data seen over the
full sky (Ade et al. 2013a). Right: the angular power spectrum of the temperature anisotropies
measured by the Plank probe (Ade et al. 2013a). This plot shows the temperature fluctuations
as a function of angular size. The Planck data are in red color, with error bars, the best fit
model is the blue curve, and the smoothed binned cosmic variance curve is the shaded region.

2.4.3 Dark matter and the “cold” dark matter paradigm

Main evidence for dark matter

We outline in this section the main evidence for the existence of dark matter. Possible explana-
tions on the actual nature of dark matter will be discussed in Sect. 2.5.2.

The presence of an unseen, yet real, material in the Universe was suspected as early as the
1920s and 1930s by astronomers such as Jacobus C. Kapteyn (Kapteyn 1922), Jan H. OOrt (Oort
1932) and above all, Fritz Zwicky. To carry out his observations, Zwicky persuaded Caltech to
build a 18-inch Schmidt telescope that would be able to capture large numbers of galaxies in a
single wide-angle photograph. He used the instrument to make a survey of all the galaxies in
the Coma cluster and used measurements of the Doppler shift of their spectra to determine
their velocities. Applying the virial theorem, he obtained a mass estimate considerably greater
than that expected from luminosity of the galaxies alone (Zwicky 1933, 1937b), suggesting the
presence of unseen matter.

Zwicky’s findings were received with great skepticism and it was not until several decades
later that further evidence was found. One way to explore the properties of dark matter
is to measure the gravitational influence it exerts on nearby luminous matter. It is indeed
by observing the motion of galaxies that the first pieces of evidence for dark matter were
discovered. In 1970, Vera Rubin and Kent Ford measured the rotation velocities of spiral galaxy
M31 using the 21cm line of neutral hydrogen. They were expecting velocities at a radius r
around galaxies to decrease as v(r ) ∝ 1/

�
r but instead found approximately “flat” rotation

curves where v(r ) ≈ constant (Rubin & Ford 1970). More observations of flat 21cm rotation
curves subsequently followed (e.g., Rogstad & Shostak 1972; Roberts & Whitehurst 1975;
Krumm & Salpeter 1976; Bosma 1978; Rubin et al. 1978, 1980), and reached general acceptance
among the astronomers by the end of the 1970s. Fig. 2.8, right, shows the rotation curve of the
NGC 3198 spiral galaxy along with the assumed respective dynamical contributions of the disk
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Figure 2.8: Left: Big Bang Nucleosynthesis predictions and observations. The boxes indicate
the observational estimates for the primordial abundances of helium 4 (observed in galactic
HII regions), deuterium (inferred from the absorption spectra of high-redshift quasars) and
Lithium 7 (deduced from the surface of the oldest stars in our Galaxy). The horizontal arrow
points to the upper limit of the abundance of helium 3, relative to hydrogen (Charbonnel
2002). Right: Several rotation curves of spiral galaxies, as determined by Vera Rubin and
collaborators (Rubin et al. 1978). Predictions based on the mass of visible matter and gas
would have resulted in curves that would decrease at large distances rather than remaining
approximately constant.

and dark matter halo.

In the mean time, theorists found that the flat rotation curves were consistent with the pres-
ence of a massive “dark halo” of matter surrounding spiral galaxies but other types of galaxies
as well (e.g., Ostriker & Peebles 1973; Einasto et al. 1974; Ostriker et al. 1974; Turner & Ostriker
1977; Faber & Gallagher 1979).

Around the same time, X-ray satellites detected strong thermal X-ray sources in clusters of
galaxies. Detailed observations of the Virgo cluster, in particular, highlighted the fact that
the cluster had to contain considerably more mass (other than the mass of the gas) in order
prevent the hot X–ray-emitting gas from escaping via evaporation (e.g., Mathews 1978). In fact,
the distribution of the gas can be used to map the distribution of the dark matter in the cluster.
Subsequent concordant observations were made in the 1980s and 1990s (e.g., Forman & Jones
1982; Schindler et al. 1999) and are now considered as additional clues of the existence of dark
matter. Mass-to-light ratios for large galaxy clusters are typically of 10 to 1.

Another way of study dark matter is to directly probe the gravitational field itself. As described
by general relativity, light rays follow the curvature of space-time induced by the concentra-
tions of matter or energy (luminous or not) that they cross. Careful measurements of the tidal
deviations of light bundles along the line of sight, an affect known as “gravitational lensing”,
can produce very useful information about the spatial distribution and other properties of
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Figure 2.9: Left: The telescope image of the “Bullet” cluster with the white bar indicating
200 kpc at the distance of the cluster. Right: Chandra image of the cluster. Shown in green
contours in both panels are the weak-lensing reconstructions. The white contours correspond
to 68.3%, 95.5%, and 99.7% confidence levels (Clowe et al. 2006).

these structures. Fritz Zwicky had advocated in 1937 the use of gravitational lensing as an
astrophysical tool (Zwicky 1937a), but as before was not taken seriously. But in 1979, interest
in the use of gravitational lenses was revived after the discovery of the first strongly lensed
system by Walsh et al. (1979). In the years that followed, this technique was used to measure
the total mass of the clusters, confirming the estimates from X-ray studies.

The 1990s also saw the development of statistical techniques for analyzing weaker gravitational
lensing effects (e.g., Tyson et al. 1990). Weak lensing has now become a powerful probe of dark
matter. Examples of applications are the measurement of the total mass of galaxy clusters (e.g.,
Wittman et al. 2003; Margoniner et al. 2005), the mapping of the distribution of dark matter
(e.g., Dahle et al. 2002; Gray et al. 2002; Clowe & Schneider 2002; Umetsu 2010; Pires et al. 2010)
or the study of the properties of dark matter halos (e.g., Hoekstra et al. 2004; Sheldon et al.
2004).

The conjoint analysis of X-ray and weak gravitational lensing data is also particularly useful.
A striking evidence for dark matter has been recently obtained by Clowe et al. (2006) from
the combined analysis of X-ray and weak lensing data of the so-called “Bullet” cluster (1E
0657-558), which in fact consist of two colliding clusters of galaxies (see Fig. 2.9). It is thought
that after colliding, the collisional visible matter of each cluster remained at the center of the
system, while the supposedly collisionless dark matter passed through. Weak gravitational
lensing is a central topic of this thesis and is covered in detail in Chapter 3.

Cold dark matter

At the same time the evidence for dark matter was being confirmed in the 1970s, suggestions
were made regarding its possible nature. Candidates made of ordinary baryonic matter were
considered first, but it became clear in the 1980s and 1990s that only a small fraction of
the missing mass could be in baryonic form. Measurements from entirely different origins
now all agree that baryonic matter can only represent a small fraction of the total amount
of dark matter in the Universe. As we will see in Sect. 2.4.5, the density parameter for all
baryons is estimated to be Ωm ≈ 0.3, whereas that solely due to baryons is Ωb ≈ 0.05. The
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main constraints are provided by Big Bang nucleosynthesis (see Sect. 2.4.1) (e.g., Steigman
2006), measurements of the CMB (see Sect. 2.4.2), the theory of galaxy formation (e.g., Rees
& Ostriker 1977; White & Rees 1978; Fall & Efstathiou 1980) and the estimated population of
massive astrophysical compact halo object (“MACHOs”) (e.g., Hewitt et al. 1987; Alcock et al.
1993; Afonso et al. 2003).

Once it was established that most of dark matter is not made of baryons, two competing theo-
ries were put forward regarding the properties of that matter. The first one, led by Iakov B. Zel-
dovich and his group, advocated that dark matter was mostly in the form of light neutrinos
(e.g., Doroshkevich et al. 1981; Zeldovich et al. 1982). That theory predicted a top–down model
of structure formation where massive objects would have formed first, smaller structures
subsequently created by fragmentation and instabilities. That approach was nick-named
“hot dark matter” (HDM), since it involved fast, relativistic particles. The second scenario
assumed dark matter is made of massive, non-relativistic particles (e.g., Efstathiou & Silk
1983; Blumenthal et al. 1984) and was, for this reason, dubbed “cold dark matter” (CDM) by
Phillip J. E Peebles in 1982. That model predicted smaller structures would form early after
recombination (see Sect. 2.3) and more massive ones later, through coalescence and clustering
of from larger-scale density perturbations.

The CDM model has since then proved very successful in reproducing the observed late
formation of galaxies, the level of anisotropies in the CMB, the power spectrum of the spatial
distribution of galaxies and the results of numerical simulations (e.g., Bond & Szalay 1983;
White et al. 1993; Dekel 1994; Bahcall et al. 1995; Copi et al. 1995; Navarro et al. 1997; Somerville
& Primack 1999; Katz & Gunn 1991; Navarro & White 1994). Starting from the publication of
White et al. (1983), the HDM scenario was progressively rules out.

With the emergence of the CDM paradigm in the 1980s, the then standard Einstein–de Sitter
(EdS) cosmological model (Einstein & de Sitter 1932) began to be refined to incorporate cold
dark matter. In the 1990s, the favored model was the so-called “standard cold dark matter
model” or SCDM with ΩΛ = 0 and Ωm = 1. But cosmologists were also considering more
“lightweight models”, in particular, the ΛCDM models with ΩΛ = 0.7 and Ωm = 0.3.

The possible composition of cold dark matter according to particle physics along with potential
issues with the CDM model will be outlined in Sect. 2.5.2.

2.4.4 Accelerated expansion and the ΛCDM cosmological model

First evidence from type Ia supernova data

The observation of fainter than expected type Ia supernovae (SNe Ia) in the years 1997–98,
which strongly suggested a Universe in accelerated expansion, has revolutionized the entire
field of cosmology.

In principle, supernovae can be used to measure the luminosity distance as a function of
redshift. The idea of using type Ia supernovae as standard candles for measuring the history
of cosmic expansion dates back to the 1970s, the first serious attempt having been made
with the pioneering work of Norgaard-Nielsen et al. (1989). But the systematic search and
analysis of such objects on a large scale only became possible in the mid–1990s, which saw
the constitution of two large international projects, the Supernova Cosmology Project (SCP),
joined later by the High–z Supernova Search Team (HSZT). Supernovae as cosmological tools
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Figure 2.10: Left: First evidence for cosmic acceleration from the Supernova Cosmology Project
(SCP): the Hubble diagram shows the evolution of the apparent luminosity mB with the redshift
z for 42 high-redshift SNe Ia from the SCP (Perlmutter et al. 1999) and 18 low-redshift SNe
1a from the Calan/Tololo Supernova Survey (Hamuy et al. 1996). Right: The cover of Science
Magazine in December 1998, celebrating the breakthrough of the year: the discovery of cosmic
acceleration from supernovae.

have been described in many papers and reviews, e.g. (Astier et al. 2006).

The first results obtained by the SCP team initially showed the expansion of the Universe was
slowing down, in accordance with SCDM (Ωm = 1, ΩΛ = 0), the standard Robertson–Walker
cosmology at that time (Perlmutter et al. 1997). But when they later included the high redshift
type Ia supernova SN 1997ap to their sample, they found, to their astonishment, evidence for
an accelerating Universe (Perlmutter et al. 1998). The discovery of 33 new supernovae in 1998
and the re-analysis of their previous sample allowed the SCP team to confirm their early results
(Perlmutter et al. 1999), as shown in Fig. 2.10, left. At the end of 1998, working independently
and with a different supernova sample, the HZT team reached a similar conclusion (Riess et al.
1998; Schmidt et al. 1998). The cover of Science magazine celebrating the discovery of the
accelerating Universe from supernovae is reproduced in Fig 2.10, right.

Further confirmations from supernova data and other sources

Although both the HZT and SCP teams had independently reached the same conclusion,
uncertainties were large, raising the possibility that acceleration was a side-effect of some
systematic phenomenon such as dust extinction (Drell et al. 2000; Filippenko 2001; Leibundgut
2002).

Between 2000 and 2002, various balloon experiments designed to measure the CMB fluctu-
ations found evidence for a flat Universe (i.e. Ω0 ≈ 1) (e.g., de Bernardis et al. 2000, 2002;
Pryke et al. 2002; Rubiño-Martin et al. 2003). Moreover, the outcome from various deep galaxy
redshifts surveys, in particular the 2dF Galaxy Redshift Survey (2dGRS), favoured a value of
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Ωm ≈ 0.3 (Peacock et al. 2001; Efstathiou et al. 2002). These results seemed inconsistent with
a matter-only dominated Universe and gave additional credit to the findings obtained from
supernovae.

In September 2003, Knop et al. (2003) found Ωm ≈ 0.25 from a completely independent sample
comprising 11 new high-redshift SNe Ia observed, not from telescopes on the ground, as
before, but from space with the Hubble Space Telescope (HST). Later the same month, the
HZT team reported on the observation of 8 newly-discovered SNe Ia at redshifts in the region
0.3 < z < 1.2, finding Ωm ≈ 0.3. As the HZT paper was near completion they heard about the
results from observations of the fluctuations in the CMB spectrum from the WMAP (Wilkinson
Microwave Anisotropy Probe) satellite. The data from WMAP established the Universe has a
flat geometry to a high precision, finding Ω0 ≈ 1.02. It also further confirmed the value of Ωm ,
finding Ωm ≈ 0.27 (Bennett et al. 2003b; Spergel et al. 2003). The data from WMAP combined
with results from the Sloan Digital Sky Survey (SDSS) also agreed well (Tegmark et al. 2004b).

The confirmation from WMAP of a flat, low-density Universe, strongly suggested the existence
of a third, as yet unknown, component in the Universe besides matter and radiation, driving
the current period of accelerated expansion. Because it would have a similar effect on the
rate of expansion, a non-zero cosmological constant appeared as the prime candidate for
such a dark component. Actually, it had already been observed that ΛCDM, a model with a
substantial cosmological constant, had the potential to reconcile a flat Universe, as predicted
by inflation, with the apparent age of globular clusters (Turner 1991; Krauss & Turner 1995;
Ostriker & Steinhardt 1995). If so, the cosmological constant would have just enough density
to close the Universe with ΩΛ ≈ 1.0−0.3 = 0.7.

The case for accelerating expansion was further strengthened when HZT published the results
from 16 new high-redshift SNe Ia obtained with the HST in the course of the GOODS ACS
Treasury program (Riess et al. 2004). This paper confirmed again Ωm ≈ 0.3 for a flat Universe
and saw compelling evidence for a transition from a decelerating towards an accelerating
Universe around z ≈ 0.46.

The confirmation of accelerated expansion promoted ΛCDM as the new standard cosmologi-
cal model.

Latest evidence for accelerated expansion

As of 2013, that the expansion of the Universe is accelerating due to some “dark energy”
component, whatever its real physical nature, is a well established fact. Since the pioneering
work of the SCP and HSZT teams, further support in favor of dark energy has come mainly
from more detailed analysis of the CMB spectrum, new Supernovae observations, baryonic
acoustic oscillations (BAO) and, more recently, weak gravitational lensing.

New supernovae data are now available from the ESSENCE supernova survey (Miknaitis
et al. 2007; Wood-Vasey et al. 2007), the Supernova Legacy Survey (SNLS) (Pritchet & SNLS
Collaboration 2005; Sullivan & Supernova Legacy Survey Collaboration 2005; Astier et al. 2006;
Conley et al. 2011; Sullivan et al. 2011), the Sloan Digital Sky Survey-II (SDSS-II) Supernova
Survey (Frieman et al. 2008; Kessler et al. 2009), along with smaller samples from the HST that
extend to higher redshifts (Riess et al. 2007).

These data have confirmed and sharpened the evidence for accelerated expansion. By them-
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selves supernova data cannot constrain all cosmological parameters but they can be efficiently
combined with CMB data. The latter complement the measurements of luminosity distances
from supernovae with estimates of the position, relative amplitude and width of the peaks in
the CMB power spectrum, as described by the CMB shift parameter (Bond et al. 1997; Ödman
et al. 2003). The measurements of the CMB obtained by the Planck satellite, the European
successor of WMAP, have just been published and are available in Ade et al. (2013a). These
results confirm and further refine those obtained by WMAP, like the presence of several large
scale anomalies in the CMB temperature distribution and the non-detection of non-Gaussian
statistics.

Around 2005, a new independent dark energy test has become available in the form of baryonic
acoustic oscillations (BAO), reinforcing the standard theory of formation of cosmic structures
(see Sect. 2.3). Such structures are believed to have resulted from the competition between
self-gravity and the expansion of the Universe. As described in Sect 2.3, perturbations were
able to grow as the decreasing rate of expansion allowed self-gravity to dominate other time.
The early universe was a mixture of baryonic gas (nuclei, electrons), neutrinos, photons and
cold dark matter (CDM). In overdense regions, CDM clustered, whereas the gas which was
ionized and extremely hot was locked with the photons in a single plasma fluid. Consequently,
that plasma expanded as an spherical acoustic wave. Over time the Universe cooled down
and the spherical shell of the gas perturbation imprinted itself in the dark matter, forming
the baryon acoustic oscillations in the galaxy power spectrum. Structures formed around the
center of the initial perturbations of gas and dark matter in a shell of about 150 Mpc in radius.
Because of the small scale of the perturbations, such a signature could only be clearly detected
by probing very large volumes of space of order 1h−3 Gpc3. More detailed descriptions of the
underlying physics can be found in (e.g., Peebles & Yu 1970; Bond & Efstathiou 1984; Hu &
Sugiyama 1996; Eisenstein & Hu 1998).

Since its detection in 2000 (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al. 2000;
Wittman et al. 2000), weak lensing has emerged as a very promising probe of cosmological
parameters and especially the dark sector. The lensing of distant background galaxies due to
surrounding foreground large-scale structures generates a faint but coherent signal called the
“cosmic shear”, which can be exploited to probe the growth of cosmic structures and the recent
expansion history of the Universe (e.g., Bartelmann & Schneider 2001; Hoekstra & Jain 2008;
Refregier 2003b; Munshi et al. 2008; Huterer 2010).

A considerable amount of work has been devoted during the last decade to the measurement
of the cosmic shear. Several large weak lensing surveys were performed, among them the
Red Cluster Sequence (RCS) (Hoekstra et al. 2002), VIRMOS-Descart (Van Waerbeke et al.
2002a, 2005), CFHTLS (Hoekstra et al. 2006; Fu et al. 2008), CTIO (Jarvis et al. 2006), GaBoDS
(Hetterscheidt et al. 2007) and COSMOS (Massey et al. 2007b). The still limited area of sky
covered, the lack of knowledge of source redshifts and the still high level of systematic errors
remain significant sources of uncertainty in these studies. Nevertheless, all tend to confirm
an accelerating expansion of the Universe. They also place independent constraints on the
Ωm and σ8 parameters consistent with those found by other methods (see Fig. 2.11, top
right). Next-generation lensing surveys will be capable of probing a larger set of cosmological
parameters. Weak gravitational lensing and how it can be used to constrain cosmological
parameters are the main subjects of this thesis and covered in detail in the next chapter.
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Figure 2.11: Left: joint constraints on Ωm and ΩΛ from the SNe Union2.1 compilation, WMAP
7-years CMB and BAO from SDSS DR 7, at 68.3%, 95.4%, and 99.7% confidence level (assuming
w = −1) Suzuki et al. (2012). The Union2.1 compilation combines multiple SNe data sets
based on a scheme described by Kowalski et al. (2008). Top right: Joint constraints on the
dark energy equation of state parameter w(z) = w0+wa

[
1−a(z)

]= w0+wa
(
z/(1+z)

)
(Linder

2003; Chevallier & Polarski 2001) from the Planck data (Ade et al. 2013a,b), the WMAP 9-year
data (Hinshaw et al. 2012) (denoted by WP), BAO from SDSS DR7 and SNe data (Union2.1)
(Suzuki et al. 2012) and SNLS (Conley et al. 2011), consistent with a cosmological constant
with w =−1. Bottom right: Similar joint constraints on the dark energy equation of state from
the combined Planck, WMAP 9-year (WP) and BAO SDSS DR7 data, showing the dependency
on the value of H0 (Ade et al. 2013b).
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Figure 2.12: The respective contributions of the constituents of the Universe at present time
(left) and at the epoch of recombination (about 380,000 years after the Big Bang), right. The
WMAP data revealed that the universe is made of about 5% atoms (baryons), whereas dark
matter and dark energy comprise respectively about 23% and 72% (source: WMAP 7-year
data). The more recent results from the Planck CMB satellite (Ade et al. 2013a,b) suggest a
weaker cosmological constant (by ∼ 2%), more baryons (by ∼ 3%) and more cold dark matter
(by ∼ 5%).

2.4.5 Latest constraints on cosmological parameter

Remarkably, the observations from Supernovae, CMB power spectrum, BAO, weak lensing
and other probes such as the integrated Sachs–Wolfe effect (e.g., Boughn & Crittenden 2004;
Dupé et al. 2011) or the Lyman–α forest (e.g., Viel et al. 2010) converge to the predictions of
the ΛCDM cosmological model.

All cosmological probes reach the conclusion that our Universe has a locally flat geometry
(Ωk ≈ 0), a low density Ωm ≈ 0.30 with the remaining energy density being dominated
by a cosmological constant, such that ΩΛ ≈ 0.70. Recent constraints on the cosmological
parameters from Supernova, the CMB (WMAP), BAO and lensing are illustrated in Fig. 2.11.
The results published by the Planck Collaboration in March 2013 (Ade et al. 2013a), confirmed
this picture and are in especially good agreement with those from BAO. There exists, however,
tensions with the measurements obtained from SNe and weak lensing by large-scale structures.
The respective contributions of baryonic matter, dark matter and dark energy are also slightly
altered: a weaker cosmological constant (by ∼ 2%), more baryons (by ∼ 3%) and more cold
dark matter (by ∼ 5%). The origin of these discrepancies is still unclear. They may originate
from residual systematic errors or may in fact constitute hints of new physics beyond that of
the standard model.

Another source of worry is the still high level of uncertainty in the determination of the Hubble
constant H0. An illustration of this situation is the tension between the value of H0 = 72±8
km s−1 Mpc−1 determined by the HST Key Project (Freedman et al. 2001) and the recent
measurement by the Planck CMB probe, H0 = 67.3±1.2 km s−1 Mpc−1 (Ade et al. 2013a). It is
hoped that measurements of time delays from the study of strongly lensed QSO can reduce
that uncertainty by a factor of 10 in the near future.
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Figure 2.13: Left: The history of the Universe as we understand it today. Right: Thermal history
of the Universe (source: NASA/WMAP Science Team).

2.4.6 Timeline

Fig . 2.13, created by the WMAP team, is a good illustration of what we think were the main
events that took place in Universe history, up to the present time.

2.5 Unsolved problems
Standard cosmology in the form of the ΛCDM cosmological model has achieved remarkable
successes:

• It accounts very well for the dynamics of expansion of the Universe (see Sect. 2.1.2)
• It predicts the observed abundance of light-elements produced during Big Bang nucle-

osynthesis (see Sect. 2.4.1).
• It explains the observation of the cosmic microwave background (see Sect. 2.4.2).
• It account correctly for the observed small and larger-scale structures of the Universe

though the theory of structure formation (see Sect. 2.3).

Despite these successes, a number of fundamental questions remain unanswered, in particu-
lar:

1. Why is the Universe so homogeneous and why is its geometry flat to such a high preci-
sion?

2. What is dark matter? Is it some as yet unknown type of particle or something else? It is
related to dark energy?

3. What is dark energy? Is it the cosmological constant or an evolving scalar field? If
dark energy is the cosmological constant, why is its value precisely the value measured
today and how can we explain that value? Is dark energy a manifestation of the failure
of general relativity under some conditions? It is really by chance that we are able to
witness the transition from a matter-dominated Universe to one dominated by dark
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energy?

2.5.1 The “Horizon” and “Flatness” problem

The analysis of the CMB has shown that the average amplitude of the temperature anisotropies
in the Universe at the time of recombination (z ∼ 1000) was very small, of the order of
Δ T /T ∼ 10−5. Very distant regions in the Universe appear to share the same properties even
though they could not have been causally connected in the past. This “cosmological Horizon
problem” was pointed out by Charles Misner in the 1960s.

Another issue is the observation that the Universe is “flat” to a high degree, the so-called
“Flatness problem”. Since the total density departs rapidly from the critical value over cosmic
time, this means the Universe must have been even flatter in the past.

The “Horizon” and “Flatness” problems have found an elegant explanation in the 1980s, with
the theory of “Inflation”, originally put forward by Alan Guth (Guth 1981) and later improved
by Andrei Linde (Linde 1982a,b), Andreas Albrecht, Paul Steinhardt (Albrecht & Steinhardt
1982) and others. The Universe is supposed to have experienced a huge and extremely rapid
phase of expansion soon after the Big Bang that rendered its curvature flat to such a degree
that it is still flat today. Before inflation, the Universe is supposed to have been small enough,
making it possible for all regions to be causally connected and reach thermal equilibrium,
which provides an explanation for the observed homogeneity. Although hints of inflation
have been found, e.g. in the CMB spectrum (Peiris et al. 2003), the evidence is still not strong
enough for inflation to be included in the standard cosmological model. For a recent review
see e.g. Baumann (2009).

2.5.2 The physical nature of dark matter

As of 2013, the physical nature of dark matter is still unknown. Most scientists think non-
baryonic dark matter is composed of elementary particles created early in the history of the
Universe. Dark matter candidates must meet a number of criteria: they must be stable on
cosmological time scales in order to still exist at present time, they must interact very weakly
with electromagnetic radiation and they must have the right range of mass. As we saw in
(see Sect. 2.4.3), theory and observations also favor a “cold” form of dark matter made of
particles that were already non-relativistic at the time of recombination. These considerations
still allow a wide range of dark matter candidates and current observational constraints are too
weak to discriminate between them. Favored dark matter candidates include axions, sterile
neutrinos, gravitinos and weakly interacting massive particles (WIMPs). There are a dozen
experiments planned or under way, but so far, none have detected dark matter candidates.
For reviews, see e.g. Feng (2005); Trodden (2006); Bertone (2010).

Cold dark matter (CDM) is the preferred model and one of the pillar of the standard ΛCDM
cosmological framework, which is indeed quite successful in reproducing the large-scale struc-
ture of the Universe. However, small-scale observations have proven harder to explain and
there remains observations that seem to contradict the CDM model. In particular, simulations
based on ΛCDM predict a larger number of dwarf galaxies that has been found in the Local
Group (e.g., Kauffmann et al. 1993; Mateo 1998; Klypin et al. 1999; Moore et al. 1999) although
new recent observations may provide solutions (e.g., Simon & Geha 2007; Vegetti et al. 2012).
Other issues are related to the shape of the dark halo central density profiles. A CDM model
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predicts cuspier density profiles than observed (e.g., Navarro et al. 1997; Swaters et al. 2003;
Navarro et al. 2004; Diemand et al. 2005; Spano et al. 2008; Oh et al. 2011), although possible
explanations have been put forward in e.g. Wechsler et al. (2002); Zentner & Bullock (2002).

For general reviews on dark matter, see e.g., Bahcall et al. (2004); Livio (2004); Drees & Gerbier
(2012); Peter (2012).

2.5.3 The physical nature of dark energy

Dark energy as the “Cosmological constant”

To explain the current phase of cosmic expansion, the most obvious candidate is the old cos-
mological constant originally introduced by A. Einstein (Einstein 1917). And indeed, as shown
in Fig. 2.11 bottom right, a ΛCDM cosmological model with Ωm ≈ 0.28 and ΩDE =ΩΛ ≈ 0.72
is still very much consistent with the latest observations.

A. Einstein originally introduced his cosmological constant on the left-hand side of the field
equations (2.1) in order to curve space-time geometry just enough to obtain a static Universe
(Sect. 2.1.3). The modern approach is to view the cosmological term as an additional source of
gravity and move Λ to the right-hand side of (2.1), to obtain:

Rμν− 1

2
gμνR = 8πG Tμν−Λgμν (2.102)

Writing

T Λ
μν =Λgμν (2.103)

the energy-momentum tensor of the gravity source associated to Λ, one can rewrite (2.102) as

Rμν− 1

2
gμνR = 8πG

∼
T μν (2.104)

with an effective energy-momentum tensor
∼
T μν = Tμν−1/(8πG)T Λ

μν. A value Tμν = 0 can be
physically interpreted as having empty space also filled with vacuum energy of mass density

ρΛ = Λ

8πG
(2.105)

and pressure

pΛ =− Λ

8πG
(2.106)

Around 1967, Y. B. Zeldovich showed zero-point vacuum fluctuations would have the form
(2.103) to respect Lorentz-invariance (Zeldovich 1967). In this sense, (2.105) and (2.106) can
be considered as the density and pressure of the vacuum, with an equation of state

wΛ = pΛ

ρΛ
=−1 (2.107)

Within the ΛCDM framework, the negative pressure (2.106) is seen as responsible for the

43



Chapter 2. Quick overview of modern cosmology

current accelerated expansion of the Universe. Indeed, using wi = pi /ρi , the deceleration
parameter (2.26) can be expressed as

q =− ä

aH 2 =
∑

i

(
4πGρi

3H 2

)(
1+3wi

)
≈ 1

2
Ωm −ΩΛ = 1

2
(1+3wΛΩΛ) (2.108)

With Ωm,0 ≈ 0.30 and ΩΛ,0 ≈ 0.70 as currently observed, (2.108) is negative, meaning acceler-
ated expansion.

Even though the ΛCDM model predicts accelerated expansion as shown above, the physical
nature of Λ is uncertain. There are essentially three problems affecting the cosmological
constant, referred to in the literature as the “cosmological constant problem”, the “fine-tuning
problem” and the “coincidence problem” (e.g., Weinberg 1989).

Considering Ω0 ≈ ΩΛ ≈ 1 at the present epoch, ρΛ ≈ 3H 2
0Ω0/(8πG) and so, from (2.105),

Λ≈ H 2
0 . According to current observations ρΛ ≈ 10−47GeV4 and Λ≈ (2.13h×10−42GeV2). On

the other hand, assuming ρΛ ≡ ρvacuum, the quantum field theories predict ρΛ ≈ 1074 GeV4,
some 123 orders of magnitude greater. The absence of a fundamental mechanism which sets
Λ to its tiny observed value is the “cosmological constant problem”.

Moreover, Λ is not zero, so it seems its value is precisely fine-tuned for no apparent reason. If
ρΛ had been a little larger, then the Universe would have expanded too fast for structures to
form. This is also known as the “fine-tuning problem”.

The “coincidence problem” implies that we live at a special epoch: today, the dark energy
density is approximately equal to the matter density. However, since matter and radiation
evolved rapidly

(
ρm ∝ a−3(t) and ρr ∝ a−4(t)

)
while ρΛ remained constant, it is difficult to

understand why we are precisely living in an epoch where Ωm and ΩΛ are of the same order or
magnitude.

Alternative models of Dark energy

Uncertainties related to the physical origin of the cosmological constant have motivated the
search for alternative theories, broadly classified in three groups: “dynamical dark energy”,
“unified dark energy” (UDE) and “modified gravity”.

In the first group of models, dark energy is modeled as an effective fluid whose origin lies
in a scalar field φ, evolving in time under the action of some self-interacting potential V (φ).
Different functional expressions for V (φ) have been investigated, from power laws to expo-
nentials or a combination of both. Popular models are “quintessence”, “Phantom” (ghost) and
“k-essence”. These models are able to correctly reproduce the observed data, but are affected
by “fine-tuning” problems and the issue of the origin of the scalar field itself.

There is also the possibility that dark energy and dark matter be two different aspects of the
same fluid and could thus be modeled by a single equation of state. Such a fluid would behave
as dark matter at high densities and dark energy at low densities. Examples of unified dark
energy models are the Chaplygin gas and the tachyonic fluid.

In both cases, dark energy is modeled as a new fluid within the framework of general relativity.
However, Einstein’s theory of gravity, has not been experimentally verified on cosmological
scales. This leaves open the option that dark energy may not have an existence of its own but
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may just be the manifestation of a different behavior of gravity on such scales. Based on this
idea, "modified gravity" theories are able to explain acceleration in a matter-only Universe
without the need of any dark energy. Notable examples are the Dvali-Gabadadze-Porrati (DGP)
model and fourth-order theories of gravity. Issues remain, however, such as their compatibility
with the predictions of standard general relativity on small scales.

Dynamical models of dark energy

The main idea behind such models is to view dark energy as a new kind of energy arising
from a time varying scalar field φ(t ) whose evolution is governed by a potential V (φ). Such a
field would contribute to the total energy density of the Universe, together with matter and
radiation.

Mathematically, a scalar field can be regarded as a fluid with a time-dependent equation of
state. By analogy, it is possible to find potentials such that dark energy would behave like as a
cosmological fluid with negative effective pressure in order to reproduce acceleration within a
FLRW framework. The desired potential V (φ) would also ensure that the huge energy density
of the vacuum in the Planck era would decay to the currently observed tiny value of Λ. This
would provide an answer to the "cosmological constant problem". Some models also attempt
to address the “coincidence problem”. Scalar fields naturally arise in particle physics where
they are associated with spin-0 particles.

There are several dark energy models based on scalar fields. Their detailed description is
beyond the scope of this thesis. For a review see e.g. Amendola & Tsujikawa (2010). We outline
below three important models of this class: Quintessence, Phantom (ghost) and k-essence.

Quintessence is defined as “a time-dependent and spatially non-homogeneous component
with negative pressure” (Steinhardt et al. 1999). It can be modeled as an ordinary scalar field
with negative pressure and EOS such that −1 < wφ = (pφ/ρφ) < 0. Phantom fields were first
studied by Caldwell (2002), who called them “Phantom” because of their negative kinetic
energy and “supernegative” EOS

wφ = pφ

ρφ
<−1 (2.109)

which implies their energy density increases with cosmic expansion, unlike most cosmological
models. Fundamental physics strongly suggests instabilities at the quantum level should
rule-out their existence (Cline et al. 2004). Moreover, (2.109) means violation of the “dominant
energy condition” (DEC)

ρφ+pφ ≥ 0 (2.110)

believed to be required for stable cosmological solutions (Carroll et al. 2003). But despite this,
Phantom cosmology is revealing itself surprisingly consistent with observations (Alam et al.
2004) and remains a possible option for dark energy.

Quintessence provides a mechanism for solving the “coincidence problem” thanks to the
judicious choice of a suitably chosen potential. Potentials providing attractor-like solutions
allow the Quintessence field to remain negligible until some value of the potential energy at
φ =

_
φ is reached. From that time, Quintessence overtakes the background matter density,
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φ becomes frozen and cosmic acceleration begins. A weakness of the model is that the
potential must be precisely adjusted so that

_
φ corresponds to the present epoch. So, despite

the progress made, Quintessence does not allow a complete resolution of the “coincidence
problem”. Moreover, the theory does not solve the “cosmological constant” and “fine tuning”
problems. Instead of asking why the cosmological constant is so small, the same question can
be asked about the initial value of the scalar field and the parameters of the potential. Another
issue lies in the origin of the scalar field itself. There is hope that answers to these problems
will come from advances in particle physics theories and experiments. Progress may come
from further collaboration between the cosmology and particle physics communities.

Regarding Phantom fields, the fact that they are unstable at the quantum level, have negative
kinetic energy, break the DEC and predict a Universe with a future singularity, suffice to make
them very controversial, even if they seem to fit current observations. Phantom cosmology
addresses the “cosmological” and “coincidence” problems no better than Quintessence, al-
though (Scherrer 2005) pointed out that the coincidence problem is “significantly ameliorated”
in Phantom cosmologies, as ρφ and ρm remain comparable during a significant portion of the
Universe-life time. It was also claimed “Unified Phantom cosmology” models (González-Díaz
2003) could help solving these issues.

The “k-essence” model was introduced by Armendariz-Picon et al. (2000); Chiba et al. (2000)
with the objective to provide better answers than Quintessence to the “coincidence” and the
“cosmological constant” problems. Like Quintessence, k-essence relies on the dynamics of
light scalar fields. But unlike Quintessence, k-essence features a non-canonical kinetic term
and does not necessarily require any potential term. k-essence models can have “tracker-like”
behaviour during the radiation era and “cosmological constant-like” behaviour after transi-
tion to the matter-dominated epoch. Unlike Quintessence, k-essence adjusts its behaviour
automatically, for purely dynamical reasons, so there is no need to fine-tune any potential
parameters as for Quintessence. In this regard, k-essence seems to provide a better answer to
the coincidence problem. Additional details on k-essence can be found in e.g. Chiba (2006);
Malquarti et al. (2003); Steinhardt (2003); Rendall (2006); Sen (2006); Copeland (2007).

Modified gravity

We found in previous sections that dynamical dark energy is still unable to provide satisfactory
explanations for the origin and physical nature of dark energy. Despite the progress made,
scalar field models still do not solve the coincidence problem in a compelling way nor do they
answer the long-standing cosmological constant problem. Moreover, to many theorists, the
introduction of a “dark energy” fluid seems artificial. Instead of supplementing the source
terms of Einstein’s field equation with a cosmological constant or scalar field, another and
possibly more “natural” way to obtain accelerated expansion is to introduce corrections to the
geometrical part of the field equations. For a review of modified gravity see e.g. Amendola &
Tsujikawa (2010).

Several families of models claim to obtain late-time cosmic acceleration in this way, without
relying on dark energy. A popular family of models, known under the generic term “ f (R)
theories of gravity” (in metric or Palatini formulations), attempt to supplement the Einstein-
Hilbert action with some function of the Ricci curvature scalar f (R) which would only start
dominating at very low curvature, i.e. at present time (e.g., Carroll et al. 2004; Capozziello et al.
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2003; Vollick 2003; Wang & Meng 2004; Abdalla et al. 2005; Nojiri & Odintsov 2006; Sotiriou
2006). Another prominent model, initiated by Dvali, Gabadadze and Porrati (DGP), explains
acceleration by the leakage of gravity into a large extra-dimension (the “bulk”) where our four-
dimensional spacetime (“three-brane”) is assumed to be embedded (e.g., Randall & Sundrum
1999; Dvali et al. 2000; Lue 2006; Copeland 2007).
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3 Constraining cosmology with weak
gravitational lensing
According to the theory of general relativity, light rays follow null geodesic of the space-time
metric associated with a gravitational field. In the astronomical context, the tidal deviation of
these light bundles along the line of sight bears some resemblance with the lensing effect in
optics and for this reason has been called “gravitational lensing”. This technique only relies on
the physics of gravity and depends neither on the physical state of the matter generating the
gravitational field nor on the underlying form of that matter. Gravitational lensing in its strong
and weak regimes is thus very useful as an astrophysical tool.

The past decade has seen the rapid development of cosmological applications of gravitational
lensing, on which we concentrate in this chapter. We start by introducing the theoretical
foundation of gravitational lensing and then focus on gravitational lensing in its weak regime
— weak gravitational lensing — as a tool to constrain cosmological parameters and probe the
dark Universe.

Throughout the text we adopt Einstein’s notation and metric signature (−,+,+,+), unless
stated otherwise. Vectors are denoted by boldface letters. In some places we use the coma
operator denote partial (non-covariant) differentiation.

3.1 Fundamentals of gravitational lensing
We provide in this section the fundamentals of gravitational lensing theory. The monograph
from Schneider et al. (1992) contains probably the most detailed exposition of the theory.
General review articles on the subject have also been provided in e.g. Wu (1996); Narayan &
Bartelmann (1996); Courbin & Minniti (2002); Schneider et al. (2006).

3.1.1 Deflection of light and the weak field approximation

The propagation of light in curved space-time is governed by the non-linear field equations
of general relativity, which are in general difficult to solve analytically. Fortunately, most
astrophysical situations of interest in gravitational lensing only involve deflecting objects with
weak gravitational potentials (‖Φ‖� c2) and small peculiar velocities (v � c). Within these
limits, the space-time metric is well approximated by a metric of the form

d s2 =−
(
1+ rs

r

)
d t 2 +

(
1− rs

r

)
dl 2, dl 2 = dχ2 +Sk (χ)2(dθ2 + sin2θdΦ2) (3.1)
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Figure 3.1: A light ray intersects the lens plane at xi and is deflected by an angle α̂.

where rs = 2GM/c2 is the Schwarzschild radius and we used the notations of Sect. 2.2. Since
photons travel on null geodesics (d s = 0 in this metric), it can be shown (e.g., Schneider
et al. 1992) that the bending of light rays can be modeled in terms of an effective index of
refraction n = 1−2Φ/c2 = 1+2|Φ|/c2, where Φ is the Newtonian gravitational potential. So
the gravitational field can indeed be seen as a refracting medium, distorting light rays as if they
were going through a glass prism. The path of light rays is then determined by the application

of the variational principle δ

∫
n dl , where dl is an infinitesimal arc path length. The amount

of deflection of light rays by a potential Φ is given by the line integral, along photons trajectory
of the gradient of n taken perpendicular to the light path,

α̂=−
∫

∇⊥n dl = 2

c2

∫
∇⊥Φdl Deflection angle (3.2)

where α̂ denotes the deflection angle by a point mass. In general, the deflection angle is a
two-component vector. Fig. 3.1 illustrates the situation where a light ray emitted from a source
S gets deviated by a point mass M and reaches observer O. The distance of the unperturbed
ray from M , orthogonal to the direction of propagation is the impact parameter, usually
denoted by ξ. In practice, because the angle α̂ is so small, an additional simplification comes
by integrating not along the actual photon path but along the unperturbed trajectory, keeping
the same impact parameter. If one sets a coordinate system such that the source and the lens
lie along the z-axis, and the origin is chosen at the position of the lens, the deflection angle by
a point mass is then readily obtained from equation (3.2) as

α̂=−
∫

∇⊥Φd z = 4G M

ξc2 (3.3)

In this case, the lens is called a “Schwarzschild lens” or a “point-mass lens”.
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Figure 3.2: Geometry of a typical gravitational lensing system. A light ray travels from the
source S at transverse distance η from the optic axis to the observer at O, passing the lens at
transverse distance ξ. As a result, that light ray is deflected by an angle α̂. The observer at
O measures the respective angular separation of the source and the image as β and θ. The
distances between the observer and the source, the observer and the lens, and the lens and the
source are respectively Ds , Dd and Dd s . The angles α̂ and α are related through αDs = α̂Dd s .

3.1.2 “Thin lens” approximation and the lens equation

Most of the deflection occurs within the distance of the point of closest ‖ξ‖ approach. This
distance is quite small compared to the distances from M to the source S or the observer
O, so the actual thickness of the lens can be safely neglected. In the so-called “thin Lens
approximation”, the lens is reduced to a plane perpendicular to the line of sight, the “lens
plane”, onto which all the lens mass distribution gets projected. The mass distribution is then

characterized by its surface density Σ
(
ξ
)=∫ρ(ξ, z)d z where ξ is a two-dimensional vector in

the lens plane. The deflection angle is then

α̂= 4G

c2

∫∫
ξ−ξ′

‖ξ−ξ′‖2 Σ
(
ξ′
)

d 2ξ′ (3.4)

Fig. 3.2 depicts the lensing geometry of a typical gravitational lensing system. The distances
between observer and lens, lens and source and observer and source are Dd , Dd s and Ds

respectively. A light ray emitted at S at a transverse distance η, passes the lens at a distance ξ

and is deflected by an angle α. The angular separations of the source and image as observed
at O are β and θ respectively.

It is clear from the figure that αDs = α̂Dd s and θDs =αDd s +β. Hence, the following relation,

51



Chapter 3. Constraining cosmology with weak gravitational lensing

called the “lens equation” holds

β= θ−α(θ) = θ− α̂
Dd s

Ds
Lens equation (3.5)

This equation is valid in curved space-time geometry because Dd , Dd s and Ds are actually
angular-diameter distances (see Sect. 2.2.8). With such distances, Ds �= Dd s +Dd . In general,
the angles α, β and θ are not coplanar and the Lens Equation is a vector equation. Depending
on the mass distribution and the position of the source, it can have more than one solutions.

3.1.3 Deflection potential

Using the fact that ξ= Ddθ, equation (3.4) gives

α̂= 4G

c2

Dd Dd s

Ds

∫∫
θ−θ′

‖θ−θ′‖2 Σ
(
θ′)d 2θ′ (3.6)

Defining the “critical surface mass density”

Σcr = c2

4πG

Ds

Dd Dd s
Critical surface mass density (3.7)

and the dimensionless quantity

κ(θ) = Σ(θ)

Σcr
Convergence (3.8)

known as the “convergence”, the deflection angle α̂ becomes

α̂= 1

π

∫∫
κ(θ)

θ−θ′

‖θ−θ′‖2 d 2θ′ (3.9)

The deflection angle in equation (3.4) can be also written as

α̂=∇θψ(θ) (3.10)

where

ψ(θ) = 1

π

∫∫
κ(θ) ln‖θ−θ′‖d 2θ′ Deflection potential (3.11)

is called the “deflection potential”. This quantity can be seen as the two-dimensional analogue
of the Newtonian gravitational potential and obeys the Poisson equation

∇2
θψ(θ) =∇θα̂= 2κ(θ) (3.12)

3.1.4 Image magnification and distortion

An observer looking directly at the source plane would see the source as it is, without alteration.
The various effects introduced by the lens can be mathematically formalized as a mapping
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β←→ θ between the source plane and the lens plane. So, in principle, some of the properties
of the source can be deduced by analyzing its projected image onto the lens plane. More
insight into the mapping transformation is obtained by locally linearizing the lens equation
(3.5) in the vicinity of some angle θ = θ0

β≈ θ0 + (θ−θ0)

[
∂β

∂θ

]
θ=θ0

=β0 + A(θ)(θ−θ0) (3.13)

Taking β0 and θ0 to be the centers of light for the unlensed and lensed images respectively,
the lensing transformation can simply be written as β=A(θ)θ. The Jacobian matrix

A(θ) = ∂β/∂θ (3.14)

describes the local properties of the lens mapping and can be expressed as

A=
(
δi j − ∂

∂θ j
αi (θ)

)
=
(
δi j − ∂2

∂θi∂θ j
ψ(θ)

)
=M−1 (3.15)

M is referred to as the “magnification matrix” and characterizes the magnification performed
by the lens: gravitational lensing preserves the surface brightness of the source but alters the
solid angle subtended by the image, so the end result is a magnification effect in proportion to
the ratio

μ= image area

source area
= detM= 1

detA (3.16)

The distortion induced by the lens results from the combination of a “convergence” effect and
a “shear” effect. They can be formalized in terms of the components of the Hessian matrix
of ψ, H(θ) = ∂2(ψ)

/(
∂θi∂θ j

)
, which describes the deviation of the lens mapping from the

identity mapping.

Convergence is defined as the scalar

κ=κ(θ) = 1

2
∇2ψ= 1

2
(ψ,11 +ψ,22) (κ� 0) (3.17)

while shear is determined by the pseudo-vector γ=γ(θ) whose components are

γ1 = γ1(θ) = 1

2
(ψ,11 −ψ,22), γ2 = γ2(θ) =ψ,12 =ψ,21 (3.18)

An expression of A in terms of κ and γ is obtained by substituting (3.17) and (3.18) into (3.15):

A(θ) = δi j −ψ,i j =
(

1−ψ,11

−ψ,21

−ψ,12

1−ψ,22

)
=
(

1−κ−γ1

−γ2

−γ2

1−κ+γ1

)
(3.19)
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Figure 3.3: Geometrical effects of the transformation θ→β described by the A matrix.

3.1.5 Geometrical interpretation

The A(θ) transformation θ→β

As shown in Appendix A.1.1, the geometrical effects of the transformation θ→β described by
the A matrix are to compress by an factor λ− in the U− direction and to stretch by a factor λ+
in the U+ direction, where λ± and U± are respectively the eigenvalues and eigenvectors of A
given by

λ± = 1−κ± ∣∣γ∣∣ , (λ− <λ+) U± ∝
(
γ1 ∓

∣∣γ∣∣
γ2

)
(3.20)

The area of the transformed object is reduced by a factor (1−κ)2 − ∣∣γ∣∣2 =λ−λ+. Applied to a
circular image of radius R, the θ→β transformation will result in an ellipse with semi-major
and semi-minor axis a′ and b′ respectively given by:

a′ = R λ+ = R (1−κ+ ∣∣γ∣∣) (3.21)

b′ = R λ− = R (1−κ− ∣∣γ∣∣) (3.22)

This is illustrated in Figure 3.3.

The M(β) transformation β→ θ

The magnification transformation matrix M(β), is given by (3.15) and reads

M(β) =μ

(
1−κ+γ1

γ2

γ2

1−κ−γ1

)
(3.23)
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Figure 3.4: Geometrical effects of the transformation β→ θ described by the M matrix.

According to (3.16) and as shown in Appendix A.1.2, the magnification factor μ is

μ= 1

(1−κ)2 − ∣∣γ∣∣2 (3.24)

As shown in Appendix A.1.2, the transformation β→ θ will tend to compress by a factor Λ−
in the V − direction and to stretch by a factor Λ+ in the V + direction, where λ± and U± are
respectively the eigenvalues and eigenvectors of the M matrix given by

Λ± = 1

λ∓ , (Λ− <Λ+) V ± =U∓ (3.25)

Overall, the area of the source is increased the factor μ=Λ−Λ+. As illustrated in Figure 3.4, if
applied to a circular source of radius R, these effects will result in a ellipse with semi-major
and semi-minor axis a and b respectively given by:

a = R ′Λ+ =μR (1−κ+ ∣∣γ∣∣) = R ′

λ−
= R

1−κ− ∣∣γ∣∣ =μa′ (3.26)

b = R ′Λ− =μR (1−κ− ∣∣γ∣∣) = R ′

λ+ = R

1−κ+ ∣∣γ∣∣ =μb′ (3.27)

Convergence and shear

Decomposing the matrices A and M respectively as

A(θ) = (1−κ)I− ∣∣γ∣∣ Sφ (3.28)
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Figure 3.5: Geometrical effects of convergence and shear: convergence magnifies the source
without altering its shape, while shear only changes the shape. The case of the magnification
transformation β→ θ is shown.

and

M(θ) =μ (1−κ)I+μ
∣∣γ∣∣ Sφ (3.29)

emphasizes the effect of the convergence and shear components. By acting only on the identity
matrix I, convergence acts to alter the size of the image but without introducing distortion.
On the other hand, the remaining component involves the matrix

Sφ =
(

cos2φ
sin2φ

sin2φ
−cos2φ

)
(3.30)

which describes a reflection transformation about eigenvector U− for A and V + for M. This
results in an asymmetric shear along the directions U± and V ± respectively. This is covered
in more details in Appendix A.1.2.

3.1.6 Representation in polar coordinates

Comparing equations (3.28) with (3.15) one finds (see Appendix A.1.1, A.1.2) that the compo-
nents of the shear in polar coordinates are

γ1 = ∣∣γ∣∣cos2ϕ (3.31)

γ2 = ∣∣γ∣∣sin2ϕ (3.32)

where ϕ is given by

ϕ= arctan

(
− γ1 +

∣∣γ∣∣
γ2

)
+kπ= 1

2
arctan

(
γ2

γ1

)
+kπ (k ∈ Z) (3.33)

56



3.1. Fundamentals of gravitational lensing

The corresponding relations for the magnification transformation are

γ1 = ∣∣γ∣∣cos2φ (3.34)

γ2 = ∣∣γ∣∣sin2φ (3.35)

with

φ= arctan

( ∣∣γ∣∣−γ1

γ2

)
+kπ= 1

2
arctan

(
γ2

γ1

)
+kπ (k ∈ Z) (3.36)

In general, if a phase angle ϑ specifies the orientation of the semi-major axis of the ellipse with
respect to the horizontal axis, then the shear will be oriented with twice that angle, i.e. 2ϑ. The
shear is therefore invariant under a rotation of angle π radians.

The two components of shear γ1 and γ2 can be conveniently expressed in Complex space for
form a complex shear with modulus

∣∣γ∣∣ and phase angle ϑ, i.e.

γ= ∣∣γ∣∣e2iϑ = ∣∣γ∣∣ (cos2ϑ+ i sin2ϑ) (3.37)

One can also defines tangential and cross components of the shear as

γt = −Re
(∣∣γ∣∣e−2iϑ

)
=− ∣∣γ∣∣cos2ϑ (3.38)

γ× = −Im
(∣∣γ∣∣e−2iϑ

)
=+ ∣∣γ∣∣sin2ϑ (3.39)

These two components are sketched in Fig. 3.10.

3.1.7 Reduced shear

In the literature, A(θ) is often expressed as

A(θ) = (1−κ)

(
1− g1

−g2

−g2

1− g1

)
(3.40)

after introducing the "reduced shear"

g = g1 + i g2 =
∣∣γ∣∣

1−κ
e2iϑ (3.41)

The corresponding expressions of the magnification tensor M(ϑ) and magnification factor μ
are

M(θ) =μ(1−κ)

(
1− g1

g2

g2

1− g1

)
(3.42)

μ= 1

(1−k)2
(
1− ∣∣g ∣∣2) (3.43)
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One should bear in mind that the shear γ is not directly observable. The only quantity that
can be measured is the reduced shear g . Existing shear measurement methods usually approx-
imate γ with g , neglecting the effect of the convergence κ. But, as shown by e.g. White (2005);
Dodelson et al. (2006), such an approximation, if left uncorrected, will bias the determination
of cosmological parameters by future cosmic shear surveys.

3.1.8 “Strong” versus “weak” lensing

When the deflection of the source light is strong enough to form multiple images, gravitational
lensing enters the regime of “strong” lensing. In such a case, at least one point of the lens has
Σ≥Σcr , i.e. κ(θ) ≥ 1 and the mapping between source and lens plane is not one-one. The lines
joining the points in the source plane where the mapping diverges constitute closed curves
called “caustics”. The caustics themselves appear as “critical” curves in the lens plane and
whenever a ray from the source comes close to a caustic, its magnification increases. Also, the
caustics separate images of different multiplicities, so that the number of images is multiplied
by two whenever a source crosses a caustic. The production of multiple images is governed by
the “odd number theorem” (Burke 1981). The first formally identified strong lensing system
was a double image of the quasar Q0957+56 (Walsh et al. 1979) lensed by an intervening galaxy
(see Fig. 3.6, upper left). Near the caustics magnification is maximum and images can take
complicated shapes. For example, giant luminous arcs are produced by the lensing of rich
galaxy clusters on extended sources like the optical image of a galaxy or the lobe of a radio
galaxy, as illustrated in Fig. 3.6. When a source is almost perfectly aligned with a deflector
along the line of sight, a ring-like shape called a “Einstein ring” forms. Fig. 3.7 illustrates some
of these effects on a generic elliptical lens with four sources. Microlensing effects (Chang &
Refsdal 1979; Alcock et al. 1993; Paczynski 1996; Schneider et al. 2006) can also occur where no
distortion in shape can be seen but the amount of light received from a background object
changes in time. We summarize some major applications of strong lensing in Sect. 3.2.1.

The “weak” lensing regime corresponds to lenses where Σ�Σcr , i.e. κ(θ) � 1 everywhere on
the lens plane. Such lenses are unable to produce multiple images and the transformation
matrix A is very close to the unit matrix. Weak lensing is thus no longer detectable from a
single source but only through the statistical analysis of a sufficiently large populations of
objects. A typical shear distortion will be of the order of one percent on angular scales of a
few arc minutes, which will cause the image of an intrinsically circular source to acquire a
change in ellipticity of ∼ 0.01. The main, non-cosmological applications of weak lensing are
summarized in Sect. 3.2.2.

3.2 Main applications of gravitational lensing

3.2.1 Strong gravitational lensing

Strong lensing not being a primary topic of this thesis, we only outline below some classical
applications of strong gravitational lensing. For reviews, see e.g. Courbin & Minniti (2002);
Schneider et al. (2006).

Strong lensing is typically used to probe the inner parts of galaxy clusters and massive eliptical
galaxies. For instance, giant arcs can be exploited to model the gravitational potential of the
lens and probe the dark and luminous matter distribution. Such arcs may also prove to be
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Figure 3.6: Up-left: the two images (A & B) of the quasar Q 0957+561 (Fischer et al. 1997).
Up-right: the quadruple images of the “cloverleaf” quasar H1413+117 (Turnshek et al. 1997) as
observed with the Hubble Space Telescope. Bottom-left: a 8GHz VLA map of the radio ring
MG1131+0456. Bottom-right: giant arcs in the lensed galaxy cluster Abell 2218.

Figure 3.7: Mapping of a lens with four sources: three sources A, B, C on caustics and one
on-axis source (square). Adapted from Peacock (1998).
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Chapter 3. Constraining cosmology with weak gravitational lensing

highly magnified high-redshift galaxies that can be detected and studied this way (e.g., Fort &
Mellier 1994).

Strong lensing statistics can also produce constraints on Ωm andΩΛ: the number of multiplied-
images quasars found in lens surveys increases dramatically with larger ΩΛ (e.g., Turner et al.
1984; Turner 1990), This relation can be quantified by the “optical depth”, that is, the probability
for a source to be imaged in a certain way by a population of lenses. A related statistic is the so-
called lensing “cross section”, which is the area in the source plane where strong lensing events
with a certain property are observed (e.g. observation of two images). The technique consists
in setting up a model of lens population, calculating the cross sections of individual lenses
for the desired properties using and comparing the results with observed image statistics.
Cosmological parameters are then varied until agreement between the observations and the
calculations is reached (e.g., Mitchell et al. 2005).

Another important application of strong lensing is the determination of the Hubble constant
H0 using the “time delay” method (Refsdal 1964a,b). The Lens Equation (3.5) which relates
small displacements of a source to small displacement of its image is dimensionless and does
not contain any cosmological information. The overall light travel time from the source to
the observer is the only quantity that depends on the scale and the distance of a lens system:
because of the lensing effect, light will take some extra-time, a time delay, to reach the observer.
S. Refsdal realized H0 could be determined by measuring the time delays of strongly lensed
variable sources with multiple images. The time delay results from the competition between a
geometrical time delay tg eom and a gravitational time delay tg r av . The delay tg eom reflects the
additional travel time due the difference in length between the paths followed by deflected
and undeflected photons while tg r av is the retardation caused by the gravitational potential of
the lensing mass. One cannot directly measure the individual time delay of an image, but the
relative time delays between pairs of images can be, by correlating their respective light curves.
The total time delay is related to the term (1+ zd )Dd Ds/(cDd s), where zd is the redshift of the
lens, which yield an estimate of H0.

3.2.2 Weak gravitational lensing

Weak gravitational lensing has so far been primarily used to (1) study the distribution of dark
and luminous matter on the scale of a galaxy cluster; (2) probe the Universe on even larger
scale and place constraints on cosmology. The remainder of this thesis is dedicated to the
use of weak lensing as a cosmological probe, starting from Sect. 3.3. In the mean time, we
summarize here the most important aspects of (1).

Galaxy clusters are massive enough to induce detectable weak lensing effects in the form of
distorted images of background galaxies called “arclets” (Fort et al. 1988). Several authors
(Kochanek 1990; Tyson et al. 1990; Miralda-Escude 1991a) have shown that these structures
exhibit a coherent pattern of distortion throughout the cluster that can be used to model the
gravitational potential of the lens. Among the available techniques for reconstructing the
projected mass distribution of the cluster are the so-called “direct” (Kaiser & Squires 1993;
Broadhurst et al. 1995; Seitz & Schneider 1995) and “inverse” methods (Bartelmann et al. 1996;
Squires & Kaiser 1996). Parameterized mass models are also often used to fit the observed
data, for example using Navarro–Frenk–White (NFW) mass profiles (Navarro et al. 1997).

The chief advantage of weak lensing lies in its ability to directly probe the gravitational poten-
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tial of the cluster regardless of the type of matter involved or the physical state of that matter.
Weak lensing estimates can then be critically compared to those obtained from dynamical
methods and the study of X-ray emissions from intra-cluster gas.

The reconstruction of cluster mass distribution is now primarily used to study dark matter (e.g.,
Dahle et al. 2002; Gray et al. 2002; Clowe & Schneider 2002; Wittman et al. 2003; Margoniner
et al. 2005; Umetsu 2010; Pires et al. 2010), constrain the properties of galaxy dark matter halos
(e.g., Hoekstra et al. 2004; Sheldon et al. 2004) and detect dark matter filaments (e.g., Jauzac
et al. 2012). For review see e.g. (Bartelmann & Schneider 2001; Schneider et al. 2006; Hoekstra
& Jain 2008).

3.3 The “cosmic shear”, weak lensing by large-scale structures
As explained in Sect. 2.1.1, the cosmological principle ceases to be valid on scales � 100 Mpc,
which corresponds to superclusters and giant voids. The possibility that the propagation
of light through such large-scale structures (LSS) could generate a weak but statistically
detectable lensing signal was envisaged as early as 1966 (Kristian & Sachs 1966; Gunn 1967)
and revived in the 1990s (e.g., Jaroszynski et al. 1990; Babul & Lee 1991; Blandford et al. 1991;
Miralda-Escude 1991b; Kaiser 1992; Villumsen 1996; Bernardeau et al. 1997; van Waerbeke
et al. 1997; Mellier & Fort 1997; Seljak 1995; Jain & Seljak 1997; Kaiser 1998; Hu & Tegmark 1999;
van Waerbeke et al. 1999). The coherent shear distortion of distant background galaxy images
by the foreground large-scale structures along the line of sight is referred to as the “cosmic
shear” or “gravitational lensing by large-scale structures”.

As we explain in more details below, the cosmic shear signal reflects the statistical properties
of the large-scale structures themselves and, as such, contains a wealth of cosmological
information. Provided the cosmic shear signal can be recovered accurately enough (see
Chapter 4), its study can help validate the models of structure growth and accurately retrace
the recent expansion history (z � 2) of the Universe. Indeed, as shown by the results of recent
surveys (e.g., Hoekstra et al. 2002; Van Waerbeke et al. 2002a, 2005; Hoekstra et al. 2006; Fu
et al. 2008; Jarvis et al. 2006; Hetterscheidt et al. 2007; Massey et al. 2007b), weak lensing by
large-scale structures is emerging as a powerful probe of dark matter and dark energy, despite
still being limited by a still relatively-high level of statistical and systematic errors.

In this section we introduce the equations of propagation of light in an inhomogeneous Uni-
verse and present the statistical tools for describing the cosmic shear signal. The cosmological
implications of the cosmic shear will be covered in Sect. 3.4.

3.3.1 Propagation of light in an inhomogeneous Universe

As illustrated in Fig. 3.8, the light emitted by background distant galaxies gets continuously
deviated by foreground large-scale structures, resulting in distorted images of those galaxies as
observed from Earth. Assuming a Universe with a geometry described by a weakly-perturbed
Robertson–Walker metric, the propagation of light rays in a light bundle is governed, within
the framework of general relativity, by the geodesic equation

d 2x

dχ2 +kx =− 2

c2 Δ
[
∇⊥Φ

(
x(θ,χ),χ

)]
(3.44)
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Figure 3.8: Simulation of the propagation of three light rays through the large-scale structures
of the Universe. The rays are deflected and distorted in numerous ways and both the location
and shape of the original light sources are altered as seen by an observer on Earth. Credit:
S. Colombi (IAP), CFHT Team.

where k is the curvature parameter and χ is the comoving radial coordinate along the light
ray defined by (2.7). All rays in the light bundle have a common intersection point which
corresponds to the position of the observer at χ= 0. The vector x represents the comoving
transverse separation vector between two neighboring light rays in the bundle and θ is the
angle between these rays as seen by the observer. In an homogeneous Universe, the right-hand
side term in (3.44) would be zero. The non-zero term account for the perturbation effect of a
weak comoving gravitational potential |Φ| � c2, where Φ is given by (2.65) and ∇⊥ denotes
differentiation perpendicular to the path of the light ray. That extra term can be derived by
applying the Fermat principle on the light rays (e.g., Blandford & Narayan 1986).

The solution can be found by the method of Green’s function and reads

x(θ,χ) = Sk (χ)θ− 2

c2

∫χ

0
Sk (χ−χ′)Δ

[
∇⊥Φ

(
x(θ,χ′),χ′)]dχ′ (3.45)

where the radial coordinate Sk (χ) is defined by (2.7). By definition of the comoving angular
diameter distance, the true position of a source at x(θ,χ) is given by β= x/Sk (χ). The Jacobian
matrix (3.14) becomes in this particular case

Ai j (θ,χ) = ∂β

∂θ
= 1

Sk (χ)

∂x

∂θ
(3.46)
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or

Ai j (θ,χ) = δi j − 2

c2

∫χ

0

Sk (χ−χ′)Sk (χ′)
Sk (χ)

Φ,i k
(
x(θ,χ′),χ′)Ak j (θ,χ′)dχ′ (3.47)

This equation is exact in a Universe with a geometry described by a metric of the form (3.1).
It is conventional to simplify this expression by only keeping first-order terms in Φ, that is,
by replacing Φ,i k

(
x(θ,χ′),χ′) by Φ,i k

(
Sk (χ′)θ,χ′) in (3.47). This is equivalent to integrating

over the potential Φ along the unperturbed light ray (e.g., Schneider et al. 1998; Hilbert et al.
2009). This approximation is the analog of the “Born approximation” used in scattering theory.
Equation (3.47) then becomes

Ai j (θ,χ) = δi j − 2

c2

∫χ

0

Sk (χ−χ′)Sk (χ′)
Sk (χ)

Φ,i k
(
Sk (χ′)θ,χ′)dχ′ (3.48)

Defining the deflection potential ψ(θ,χ) as

ψ(θ,χ) = 2

c2

∫χ

0

Sk (χ−χ′)Sk (χ′)
Sk (χ)

Φ,i k
(
Sk (χ′)θ,χ′)dχ′ (3.49)

the transformation matrix A can be expressed as A = δi j −ψ,i j which is just the equation
(3.19) of ordinary lens theory.

3.3.2 Effective convergence

The analog of the deflection angle (3.10) is given by the difference between the unperturbed
and perturbed separations, divided by the angular diameter distance, so that

α̂(θ,χ) = Sk (χ)θ−x(θ,χ)

Sk (χ)
= 2

c2

∫χ

0

Sk (χ−χ′)Sk (χ′)
Sk (χ)

∇⊥Φ,i k
(
Sk (χ′)θ,χ′)dχ′ (3.50)

Similarly to ordinary lensing, an “effective convergence” (which this time also depends on χ)
can be defined by

2κ(θ,χ) =∇θα̂(θ,χ) =∇2
θψ(θ,χ) (3.51)

and the shear by

γ=ψ1,1 −ψ2,2 − iψ1,2 (3.52)

The effective convergence (3.51) can be further expressed in terms of the density contrast
(2.57). Using the three-dimensional Poisson equation in comoving coordinates (2.68), (3.51)
becomes

κ(θ,χ) = 3H 2
0Ωm

2c2

∫χ

0

Sk (χ−χ′)Sk (χ′)
Sk (χ)

δ
(
Sk (χ′)θ,χ′)

a(χ′)
dχ′ (3.53)

This quantity is the effective convergence for a source at comoving coordinate χ, observed at
position θ and taking into account all the intervening matter integrated along the line of sight.
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Cosmic shear studies require the observations of a large number of sources (e.g. galaxies)
along the line of sight. It is therefore of interest to obtain the integrated effective convergence
for a population of sources spread over a range of distances (or redshifts z). Assuming the
distribution of distance is well described by a probability density function pχdχ= pz d z, one
defines the total convergence by integration the effective convergence of each source along
the line of sight, weighted by pχdχ up to a maximum distance χh such that p(χh) → 0 (akin to
a horizon).

κ(θ) =
∫χh

0
p(χ)κ(θ,χ)dχ =

3H 2
0Ωm

2c2

∫χh

0
g (χ)Sk (χ)

δ
(
Sk (χ)θ,χ

)
a(χ)

dχ (3.54)

where g (χ) is called the “lensing efficiency”, defined as

g (χ) =
∫χh

χ
pχ(χ′)

Sk (χ′ −χ)

Sk (χ′)
dχ′ (3.55)

The lensing efficiency g (χ) can be interpreted as Dd s/Ds , weighted over the source population
for a lens at comoving distance χ.

3.3.3 Effective convergence power spectrum

As shown in Sect. 3.3.5 below, effective convergence statistics can be derived by computing
second-order or higher-order statistics on the observed shear field. It is therefore of great
interest to relate the two-dimensional effective convergence power spectrum Pk to the three-
dimensional matter power spectrum Pδ (2.98). Pk is defined as

〈k̂(l ) k̂∗(l ′)〉 = (2π)2δD (l − l ′)Pk (l ) (3.56)

where l is a two-dimensional wave vector, δD is the two-dimensional Dirac delta function and
k̂(l ) is the Fourier transform of the convergence defined by

k̂(l ) =
∫

k(θ)ei l ·θdθ (3.57)

The respective power spectra Pk (l ) and Pδ(k) can be related through the use of the Limber
equation (Limber 1953). The corresponding expression (e.g., Kaiser 1992, 1998) is

Pk (l ) = 9H 4
0Ω

2
m

4c4

∫χh

0

g 2(χ)

a2(χ)
Pδ

(
l

Sk (χ)
,χ

)
(3.58)

where the lensing efficiency g (χ) was defined by (3.55).

It follows from (3.51) and (3.52) that the Fourier transform of the convergence and shear are
related by

γ̂(l ) =
(

l 2
1 − l 2

2 +2i l1l2

|l |2
)
k̂(l ) = e2iφk̂(l ) (3.59)

where φ is the polar angle of the wave vector l . This has the useful consequence that the
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Figure 3.9: Upper row: a mass overdensity (left) or underdensity (right) generates curl-free
patterns called E-modes where the shear is respectively tangentially aligned (left) or radially
aligned (right); Lower row: divergence-free B-mode pattern, obtained from the E-mode pattern
by rotating all shears by 45◦. B-modes cannot be produced by gravitational lensing (Van
Waerbeke & Mellier 2003).

two-point correlation functions (or power spectra) of convergence and shear are identical:

〈γ̂(l ) γ̂∗(l ′)〉 = 〈k̂(l ) k̂∗(l ′)〉 (3.60)

As shown later in Chapter 4, the shear power spectrum can be estimated from the observations
of galaxy shapes. The equality relation (3.60) yields the corresponding effective convergence
power spectrum which, in turn, can be used to constrain the matter power spectrum Pδ. This
will be discussed in Sect. 3.4.

3.3.4 E-modes and B-modes

The shear field which can be described by a symmetric and traceless two-dimensional tensor
field. Crittenden et al. (2002) have shown that such a field can be decomposed into a curl-free
E-mode and a divergence-free B-mode component, in analogy with the decomposition of the
electromagnetic field into a electric E-mode and a magnetic B-mode. The two-point statistics
described in Sect. 3.3.5 can therefore also be expressed in terms of E-modes and B-modes.

In fact, it can be shown (Stebbins 1996; Kaiser 1992; Pen 2000) that gravitational lensing,
deriving from a scalar potential, can only generate curl-free fields, i.e. pure E-modes. The
B-mode components of the aforementioned two-point statistics must therefore vanish.

If non-zero B-modes are observed they can arise from essentially three kinds of sources: (1) sys-
tematic measurement errors such as inaccurate shear measurement or imperfect point spread
function (PSF) correction; (2) errors related to lensing itself like source redshift clustering
(Schneider et al. 2002b) and lens-lens coupling neglected when modeling the propagation
of light (Schneider et al. 1998) (see Sect. 3.3.1); (3) the intrinsic correlation between galaxy
orientations, also called “intrinsic alignments” (Crittenden et al. 2002).
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3.3.5 Second-order measures of cosmic shear

The most commonly-used statistics are quadratic in the shear, that is, two-point statistics1,
namely:

• The shear correlation function
• The shear dispersion
• The aperture mass dispersion

All these statistics are linearly filtered versions of the effective convergence power spectrum
Pk and constrain the matter power spectrum Pδ. We show in Sect. 3.4 how these second-order
measures of the shear can be exploited to probe cosmology. For a review, see e.g. Schneider
et al. (2002a, 2006).

Shear correlation function

One considers pairs of points (e.g. galaxy images) with separation θ and phase angle φ. The
tangential and cross components of the shear, defined by (3.38) and (3.39), can be used to
define the correlation functions for such pairs

ξ±(θ) = 〈γtγt 〉(θ)±〈γ×γ×〉(θ), ξ×(θ) = 〈γtγ×〉(θ) (3.61)

The cross-component γ× changes sign under parity transformations (γt → γt , but γ× →−γ×)
and is expected to vanish for a sufficiently-large number of pairs.

It can be shown (e.g., Blandford et al. 1991; Miralda-Escude 1991b; Kaiser 1992), that the shear
correlation functions are related to the effective convergence power spectrum Pk through

ξ+(θ) = 1

2π

∫∞

0
l J0(lθ)Pk (l )dl , ξ−(θ) = 1

2π

∫∞

0
l J4(lθ)Pk (l )dl (3.62)

where Jn(x) is the nth order Bessel function of the first kind. These two-point correlation
functions have, for instance, been used in recent weak lensing analyses, such as Hoekstra et al.
(2006); Benjamin et al. (2007); Fu et al. (2008).

Shear dispersion

The shear dispersion 2 〈|γ̄|2〉(θ) is a real-space two-point statistic, evaluated over a sufficiently
large number of circular apertures or varying radii θ in order to reduce cosmic variance.
Denoting the mean shear in an aperture as γ̄, it can be shown (e.g., Blandford et al. 1991;
Miralda-Escude 1991b; Kaiser 1992) that the shear dispersion is related to the effective conver-
gence power spectrum Pk through

〈|γ̄|2〉(θ) = 1

2π

∫
l Pk (l )WT H (l θ)dl (3.63)

where WT H is the top-hat filter function defined by

WT H (η) = 4J 2
1

η2 (3.64)

1Also called “second-order” statistics
2Also called “shear top-hat variance”
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Figure 3.10: Left: the tangential and cross components of the shear as defined in (3.38) and
(3.39); Right: illustration of the aperture mass statistics.

For examples of use in weak lensing surveys, see e.g. Maoli et al. (2001); Hoekstra et al. (2006);
Fu et al. (2008).

Aperture mass dispersion

A two-point statistics similar to the shear dispersion (3.63) is the aperture mass in a circular
aperture with radius θ centered at ϑ (Kaiser 1994; Schneider 1996; Schneider et al. 1998;
Bartelmann & Schneider 1999), defined by

Map (θ) =
∫

Qθ(‖ϑ−ϑ′‖)γt (ϑ′)d 2ϑ′ (3.65)

where Qθ is the weight function in θ introduced by Schneider et al. (1998) of the form

Qθ =
6

πθ2

(
θ

ϑ

)2[
1−

(
θ

ϑ

)2]
H(ϑ−θ) (3.66)

where H is the Heaviside step function. The Aperture mass dispersion can be expressed in
terms of the effective convergence power spectrum Pk as

〈M 2
ap〉 = 1

2π

∫
l Pk (l )Wap (θ l ), Wap = 576

η4 J 2
4 (η) (3.67)

The aperture mass statistic along with the tangential and cross components of the shear are
illustrated in Fig. 3.10.

This statistic was used in e.g. Van Waerbeke et al. (2002a); Hoekstra et al. (2006); Semboloni
et al. (2006); Fu et al. (2008).

Cosmic shear statistics compared

The shear correlation function has a number of advantages over shear dispersion and aperture
mass dispersion:

• The shear correlation function ξ± , as shown by ( 3.61) contains all second-order statisti-
cal information present the effective convergence power spectrum. Moreover, the other
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two-point statistics can be derived from ξ±.
• It is not always possible to use circular apertures on real data, for instance in the presence

of CCD defects, fringes or bright stars. In contrast, it is always possible to find usable
pairs of galaxies to calculate the correlation function.

• Calculating the correlation function is usually computationally faster.

On the negative side, the correlation functions do not yield an accurate separation between
E-modes and B-modes. In contrast, this is easily achievable with the aperture mass Map (e.g.,
Crittenden et al. 2002; Schneider et al. 2002b).

All statistics are complementary in the sense that the filter functions they use probe different
scales of the convergence power spectrum. The Bessel functions J0 and J4 in (3.62) and
the WT H used in (3.63) are quite broad filters, implying that these statistics depend on the
power spectrum over a wide range of scales. Contrary to the correlation functions and shear
dispersion, the aperture mass (Wap filter) is more localized and more sensitive to the shape of
the power spectrum. This makes Map a more suitable probe of cosmological parameters (e.g,
Bartelmann & Schneider 1999).

3.4 Constraining cosmology with cosmic shear

3.4.1 Cosmic shear and cosmology

We saw in Sect. 2.3.10 how the evolution and properties of the three-dimensional matter power
spectrum Pδ trace the evolution of the composition of the Universe and the growth rate of
perturbations. Cosmology influences Pδ in many ways: it changes the observed shape of the
power spectrum at z = 0 and its amplitude at any redshift z through the growth factor. It also
affects the separation between galaxies, which is reflected by the wave number k. Finally, it
determines the volume in which the matter power spectrum is calculated. Two properties in
particular characterize the matter the power spectrum and are potential cosmological probes:
Γ, the shape of the power spectrum and σ8, the normalization of its amplitude.

We also described in Sect. 3.3 how the two-dimensional effective convergence κ obtained
from cosmic shear analysis can be related to the matter power spectrum through equation
(3.58). The cosmic shear signal, in the form of the effective convergence κ, thus provides
a way to directly probe the matter power spectrum Pδ and through it, the past expansion
history of the Universe and the growth of cosmic structures. Fig. 3.13 shows how κ depends
on cosmological parameters and the growth rate of perturbations through equation (3.53).
Cosmic shear can therefore specifically constrain the density parameters Ωm and ΩΛ, the
power spectrum normalization σ8, the shape of the power spectrum Γ and the characteristic
redshift of the sources zs .

The measurement of the matter power spectrum has been the primary target of several
observational surveys, such as the 2dF Galaxy Redshift Survey (2dGRS) (Peacock et al. 2001;
Efstathiou et al. 2002) and Sloan Digital Sky Survey (SDSS) (Tegmark et al. 2004b,a). The
corresponding data have been studied using various cosmological probes such as cluster
abundance (e.g., Rozo et al. 2010), Lyman–α forest (e.g., Viel et al. 2010) and galaxy redshift
distribution. Constraints have also be obtained from the WMAP and Planck measurements of
the cosmic background radiations (CMB) (Bennett et al. 2012; Hinshaw et al. 2012; Ade et al.
2013a).
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Figure 3.11: Constraints on the matter power spectrum obtained from the Sloan Digital Sky
Survey (SDSS) by various probes, including cosmic shear. A ΛCDM cosmological model with
Ωm = 0.28, h = 0.72, Ωb/Ωm = 0.16 was used. Picture from Tegmark et al. (2004a).
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Figure 3.12: The effective convergence power spectrum Pk (left) and its dimensionless form
(right) plotted for different cosmological models. The figure illustrates the sensitivity of Pk on
cosmology. A mean source distribution zs = 1.5 was assumed. The thin curves were calculated
taking into account linear evolution only whereas the thick curves were derived using the full,
non-linear evolution according to (Peacock & Dodds 1996). Plots from (Schneider et al. 1998).

Fig. 3.11, from Tegmark et al. (2004a), illustrates which region of the Pδ power spectrum these
different methods were able to probe based on the SDSS data. This figure also shows that
cosmic shear surveys can complement these surveys in very useful ways:

• Cosmic shear is the only method that can map out the dark matter distribution directly
without any assumptions about the relation between dark and baryonic matter.

• Cosmic shear measures the mass distribution at redshifts z � 2 and therefore probes
the non-linear portion of the matter power spectrum. This characteristic makes it a
very promising tracer of dark energy. In contrast, the CMB measurements are relatively
insensitive to the properties of the dark energy, as the latter was subdominant at the
epoch of recombination. Cosmic shear measurement can also be confronted with those
from type Ia supernovae (SNe Ia) which also probe the recent history of the Universe.

• The strongest constraints on cosmological parameters are obtained by combining mea-
surements on large scales (e.g. from the CMB) and smaller scales (e.g. cosmic shear). It
also permits to break degeneracies between parameters as shown by (e.g., Hu & Tegmark
1999; Spergel et al. 2003) and also illustrated in Fig. 3.15 in the case of the degeneracy
between Ωm and σ8.

3.4.2 Determination of cosmological parameters from cosmic shear data

We have described in 3.3.5 several two-point statistics that can be computed from the cosmic
shear data. The correlation functions, shear dispersion and aperture mass, once measured,
directly constrain the effective convergence power spectrum Pk and through it, the matter
power spectrum Pδ. Moreover, the E-mode–B-mode decomposition scheme is a powerful
test of the corruption of the signal by systematic errors and other spurious effects, given that
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Figure 3.13: Illustration of the dependence of the effective convergence on cosmology. The
Terms in green color fixes H0 and Ωm . The terms terms highlighted in red and blue depend on
cosmological distances and yield constraints on cosmological parameters. The term in blue is
determined by the amplitude and shape of the matter power spectrum and can be used to
probe the growth function (see Sect. 3.4.4).

lensing can only generate a pure E-mode signal. The theoretical and derived power spectra
can then be compared and exploited to extract cosmological information. These statistics are
self-sufficient but it is often worth combining them, as explained in Sect. 3.3.5.

The next step is then to derive estimates and error bars on cosmological parameters. The
conventional method for doing so is to calculate the Gaussian log-likelihood

χ2 =− lnL(p) = 1

2

∑
i j

(
di −mi

)(C−1)
i j

(
d j −m j

)
(3.68)

on a grid of n-dimensional space, where n is the number of parameters, including e.g.
{
σ8,

Ωm , h, zs
}

. An element di in (3.68) is one of the measured two-point statistics ξ±(θi ), 〈|γ̄|2〉(θi )
or Map (θi ). The quantity mi denotes the theoretical prediction of the shear statistics for the
same angular separation θi and is a function of the cosmological parameters p = (p1 · · ·pn). C
represents the covariance matrix of each of the estimators di (see e.g. Schneider et al. 2002a).
The confidence contours are then calculated from the χ2 values for each parameter.

The estimates obtained from the log-likelihood can be confronted to the best statistical errors
achievable given by the Fisher matrix (Fisher 1935; Tegmark et al. 1997; Stuart et al. 2009)

Fi j =
〈
∂2
[− lnL(p)

]
∂pi ∂p j

〉
=
(
∂2
[− lnL(p)

]
∂pi ∂p j

)
p=p0

(3.69)

where p0 denotes the true parameters.

3.4.3 Cosmological constraints from cosmic shear observations

Instrumental developments (e.g. wide-field CCD cameras) and the availability of new image
processing software in the 1990s greatly contributed to the first detections of cosmic shear
at the turn of the millennium (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al. 2000;
Wittman et al. 2000). A first generation of cosmic shear surveys soon followed, initially cov-
ering small sky areas but rapidly increasing up to several tens of square degrees. A detailed
description of these early surveys and the corresponding results can be found in e.g. Refregier
(2003b); Schneider et al. (2006) and the shear dispersion of several of them are plotted in
Fig. 3.14. Despite having used different instruments and image analysis software, all results
are broadly consistent with each other and favor a ΛCDM with σ8 ≈ 1.

More recent “second generation” surveys include VIRMOS-Descart (Van Waerbeke et al. 2002a,
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Figure 3.14: Shear dispersion of several early cosmic shear surveys (CFHT vW+: Van Waerbeke
et al. (2000);CFHT K+: Kaiser et al. (2000); CTIO: Wittman et al. (2000); VLT: Maoli et al.
(2001); CFHT vW++ Van Waerbeke et al. (2001)). The inner and outer error bars respectively
correspond to statistical and total uncertainties. The expected shear dspersion for a ΛCDM
cosmological model with Ωm = 0.3 and Γ= 0.21 are also shown for a range of values for the
median source redshift zs , corresponding approximately to the uncertainty in this parameter.
The models are shown both for σ8 = 1 (solid lines) and σ8 = 0.7 (dashed) cluster normalization.
All results are broadly consistent with each other as well as with ΛCDM with σ8 = 1. Source
Bacon et al. (2003).
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Figure 3.15: Top left: Joint (Ωm ,σ8) constraints obtained by Contaldi et al. (2003) from the
combination of the red-sequence cluster weak lensing survey (RCS) (Hoekstra et al. 2004)
and the WMAP 1st year CMB data (Bennett et al. 2003b). Top right: Joint (Ωm ,σ8) constraints
(68.3, 95.5, and 99.7 %) found by Benjamin et al. (2012) from the CFHTLenS survey (5 years of
CFHTLS data) (blue), combined with the WMAP 7th year CMB results ( black), SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS) (Anderson et al. 2012) and the R11 HST constrains
on H0 (Riess et al. 2011) (pink). A flat ΛCDM cosmological model is assumed. Bottom left:
Contour plots computed by Jarvis et al. (2006), showing the combined (Ωm ,σ8) constraints
between the weak lensing CTIO survey (Jarvis et al. 2003), WMAP 1st year (Bennett et al. 2003b)
and Type Ia surpernovae, assuming a variable dark energy equation of state. Bottom right:
Constraints obtained by Jarvis et al. (2006), on the dark energy equation of state (w0, wa) in
the parametrization (3.71).
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2005), CFHTLS (Hoekstra et al. 2006; Fu et al. 2008; Erben et al. 2012; Heymans et al. 2012),
CTIO (Jarvis et al. 2006), GaBoDS (Hetterscheidt et al. 2007) and COSMOS (Massey et al. 2007b).
A summary of the corresponding results can be found in Hoekstra & Jain (e.g., 2008); Munshi
et al. (e.g., 2008). The main lessons as far as cosmology is concerned are summarized below.

• The recent weak lensing studies favor a value of σ8 ≈ 0.8 (Ωm = 0.3), which is com-
petitive and in good agreement with the latest estimates from the Planck CMB probe
σ8 = 0.828±0.012 (Ade et al. 2013b) and the results from cluster abundance.

• Since the completion of early surveys, constraints on cosmological parameters have not
greatly improved and the dispersion between σ8 or Ωm estimates is still relatively large,
in the range [0.7 – 0.9]. One reason lies in lack of source redshift information. Another is
the still high level of systematic errors due in particular to still imperfect PSF correction
and shear measurement schemes, a topic we will cover in Chapter 4.

• The limited knowledge of the source redshifts also limits the accuracy with which one
can measure the growth of structures, key to probing dark energy (e.g., Linder & Jenkins
2003; Hu & Jain 2004) (see also Sect. 3.4.4 below). The first attempt to probe dark
energy with cosmic shear was made by Jarvis et al. (2006) (see Fig. 3.15, bottom), but
with limited source redshift data. The most recent surveys (GaBoDS, COSMOS) have,
however, started making use of photometric redshifts. The COSMOS survey (Massey
et al. 2007b) in particular, was for the first time able to make a 3D cosmic shear analysis
via redshift tomography. We outline some of the latest developments in this area in
Sect. 3.4.5.

• Another issue is the degeneracy between σ8 and Ωm (e.g., Eke et al. 1996; Wang &
Steinhardt 1998; Henry et al. 2009; Rozo et al. 2010). The obvious way to circumvent
this problem is to combine the cosmic shear measurements with those from other
complementary probes (e.g., CMB, SNe, BAO). In this regard, the combination of lensing
and CMB studies is particularly powerful. Fig. 3.15 shows the joint Lensing – CMB
constraints obtained by Contaldi et al. (2003) (RCS+WMAP), (Jarvis et al. 2003, 2006)
(CTIO+WMAP+SNe) and Fu et al. (2008) (CFHTLS+WMAP). New promising lensing-
specific techniques have also been recently developed, which we outline in Sect. 3.4.6.

3.4.4 Probing dark energy with cosmic shear

We saw in Sect. 3.4.1 how the last term under the integral sign of equation (3.53) relates the
effective convergence κ and the growth of structures (see also Figs. 3.12, 3.13). That term
depends on dark energy in two ways. Firstly, the radial comoving coordinate χ in (3.53)
and given by (2.7) relates κ to the angular diameter distances Ds , Dd and Dd s (see Fig. 3.2).
Secondly, the density contrast also depends on the amplitude of the power spectrum. Dark
energy alters the expansion rate of the universe at redshifts z � 2, which in turns affects the
growth of structures. Since the CMB fixes the amplitude of the power spectrum at z ≈ 1100, the
comparison with cosmic shear measurements of σ8 place constraints on the growth function.

This topic has been explored in (e.g., Hu 1999, 2002a; Huterer 2002; Jain & Taylor 2003; Munshi
& Wang 2003; Bernstein & Jain 2004; Hu & Jain 2004; Albrecht et al. 2006; Heavens et al. 2006;
Jarvis et al. 2006; Huterer 2010).

Assuming a flat Universe, the dark energy modifies the expansion of the universe according to
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the equation (e.g., Linder & Jenkins 2003; Hu & Jain 2004)

H 2(a) = H 2
0 (a)

[
Ωm a−3 +ΩDE exp

(
−3

∫a

1

d a

a

[
1+w(a)

])]
(3.70)

where the equation of state w(a) is approximated by the parametrization (Linder 2003; Cheval-
lier & Polarski 2001)

w(a) = w0 +wa
[
1−a(z)

]= w0 +wa
[
z/(1+ z)

]
, w0 = w(z = 0) (3.71)

and ΩDE = 8πG ρΛ/
[
3H(t )2

]
denotes the density parameter associated with dark energy

(see Sects. 2.2.6 and 2.5.3).

The growth function G is related to the matter power spectrum through

Pδ(k, z) =
[

1

1+ z

G(z)

G0

]2

Pδ(k,0), G0 =G(z = 0) (3.72)

and G(z) depends on dark energy through
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]
ΩDE (a)G = 0 (3.73)

The derivative of the growth function, the growth rate f (z) can be simply related to the matter
density as f (z) =Ω

γ
m and the growth index γ provides a way to discriminate between models

of dark energy. In particular, the ΛCDM model is characterized by γ≈ 0.55 and any significant
deviation from this value would favor a different model of dark energy.

3.4.5 Tomography and 3D lensing

The shear field depends on redshift and the imperfect knowledge of the source redshift
distribution thus constitutes a significant source of uncertainty in cosmic shear surveys. As
more accurate redshift data becomes available, it makes sense to exploit this information not
only to improve the overall accuracy of a survey, but also, and most importantly, to tighten the
constraints on dark energy, as outlined in Sect. 3.4.4. Indeed modern weak lensing surveys,
such as GaBoDS (Hetterscheidt et al. 2007), COSMOS (Massey et al. 2007b), CFHTLenS (5 years
of CFHTLS data) (Erben et al. 2012; Heymans et al. 2012) and the ongoing KIDS survey (de
Jong et al. 2012), are designed to measure photometric redshifts (“photo-z”) from multi-band
photometry (e.g., Baum 1962; Puschell et al. 1982; Koo 1985, 1999; Benítez 2000; Ilbert et al.
2006; Hildebrandt et al. 2010; Bellagamba et al. 2012) at the same time as weak lensing data. In
particular, next-generation surveys (see Sect. 3.4.7), which will probe large sky areas with a
very low level of statistical errors, will require extremely accurate photo-z measurements to
reduce systematic errors as much as possible. Other sources of systematics will be discussed
in Chapter 4. We summarize below two technical approaches that have been discussed in the
literature: “redshift tomography” and “3D lensing”.

Redshift tomography consists in dividing a survey into slices (bins) at different distances,
study the shear field on each slice and integrate over all slices to obtain a three-dimensional
view of that shear field. Cosmological information is extracted by computing cross- and
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auto-correlation power spectra between slices and within each slice. The techniques behind
tomography have been initially developed by Hu (1999, 2002b,a), while e.g. Taylor (2001);
Huterer (2002); Heavens (2003) have estimated the accuracy with which cosmological parame-
ters and the dark energy properties can be determined. The gains in accuracy are significant
for a small number of bins but decrease rapidly with the number of slices. However, much
tighter constraints are obtained on the equation of state of dark energy than with 2D lensing.
Tomography has been applied to the COSMOS (Massey et al. 2007b; Schrabback et al. 2010)
and the CFHTLenS survey data (Benjamin et al. 2012; Erben et al. 2012; Heymans et al. 2012).

Several authors (Heavens 2003; Heavens et al. 2006; Kitching et al. 2007, 2011) have considered
using accurate photo-z data to reconstruct the 3D shear field in its entirety and developed
the required formalism. The three-dimensional shear power spectrum is reconstructed using
spherical harmonics and the cosmological signal is extracted from the covariance of the
coefficients. 3D lensing has some advantages over tomography. In particular, no binning is
required, avoiding its consequent loss of information and every galaxy contributes directly
and individually to the signal (e.g., Kitching et al. 2011). Bacon et al. (2005); Kitching et al.
(2007) applied 3D lensing to the COMBO17 survey data and found improvements in the
determination of σ8 compared to the 2D cosmic shear analysis of the same data (Brown et al.
2003).

3.4.6 Breaking the (Ωm , σ8) degeneracy

As highlighted in Sect. 3.4.3, the degenerate relation between Ωm and σ8 (e.g., Eke et al. 1996;
Wang & Steinhardt 1998; Henry et al. 2009; Rozo et al. 2010) currently forces weak lensing to
rely on other probes for breaking that degeneracy. Two alternatives have been suggested in the
literature: the first is to reconstruct and exploit 3D shear information as outlined in Sect. 3.4.5.
We focus here on the second alternatives, which relies on the use of higher-order statistics
to extract the cosmological information associated with the non-linear region of the matter
power spectrum (see Sect. 2.3.10 and Fig. 2.6). Significant non-Gaussian signatures were
detected for the first time by Bernardeau et al. (2002) in the VIRMOS-DESCART survey data
and later confirmed by Pen et al. (2003). Two-point statistics, such as the shear power spectrum
are not sensitive to the non-Gaussian cosmic shear signal and must be supplemented by a new
set of statistical tools. Breaking the (Ωm and σ8) degeneracy can then be achieved by either
combining two- and three-point statistics or by only relying on pure higher-order indicators
(e.g., Bernardeau et al. 1997; Jain & Seljak 1997; Pen et al. 2003; Takada & Jain 2003; Jarvis et al.
2004; Kilbinger & Schneider 2005). For recent reviews, see e.g., Munshi et al. (2008); Pires et al.
(2010).

3.4.7 Future prospects

A number of new-generation surveys with sky coverage greater than 1000 degree2 are either
ongoing or planned in the medium or longer term (∼ 2020) (Fig. 3.16). Table 3.1 summarizes
the main characteristics of these studies.

• The Kilo-Degree Survey (KIDS) (de Jong et al. 2012), complemented in the near-infrared
with data from the VIKING survey, is studying a 1500 deg2 area with weak lensing, as
part of its dark energy science goal. It makes use of the 2.6m VLT Survey Telescope (VST)
and the 4.1m VISTA (Visible and Infrared Survey Telescope for Astronomy) in ESO’s

76



3.4. Constraining cosmology with cosmic shear

Figure 3.16: Planned survey with a weak lensing component.

Table 3.1: Ongoing and planned surveys.

Survey Start Telescope Area (deg2) Space/Ground

KIDS 2011 VST & VISTA 2.6m, 4.1m 1500 Ground

HSC ∼ 2012 Subaru 8.2m ∼ 2000 Ground

DES ∼ 2013 CTIO 4m 5000 Ground

PAN STARRS > 2012 PS4 4x2m 30000 Ground

LSST ∼ 2022 LSST 8.2m 20000 Ground

Euclid ∼ 2019 1.2m 15000 Space

WFIRST ∼ 2020 1.3m 2700/yr Space
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Paranal Observatory, Chile.
• The Hyper Suprime-Cam (HSC) camera achieved first light in 2012 on the 8.2m Subaru

telescope, Hawaii, and will survey over 1500 deg2 until around 2018 with weak lensing.
• The Dark Energy Survey (DES) (Frieman & Dark Energy Survey Collaboration 2013)

is expected to start in 2013 and will perform a 5-year cosmic shear survey of a 5000
deg2 area with the Cerro Tololo Inter-American Observatory (CTIO) 4m telescope in La
Serena, Chile.

• The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is a new
four-mirror telescope, one of which is already operational in Hawaii. It will survey
30000 deg2 with weak lensing (Heavens 2011).

• The Large Synoptic Survey Telescope (LSST) (e.g., LSST Science Collaboration et al.
2009; Chang et al. 2013) is a 8.4m telescope that will start observing 20000 deg2 for weak
lensing around 2022 from Cerro Pachon in Chile (Abell et al. 2009).

• Euclid (e.g., Laureijs et al. 2011) is a space mission from the European Space Agency
(ESA) that will survey 15000 deg2 from space with its weak lensing instruments once
launched around 2019.

• The Wide-Field Infrared Survey Telescope (WFIRST) mission from NASA (e.g., Goullioud
et al. 2012) aims to survey 2700 deg2 per year from space with its weak lensing probe
around 2020.

In order to achieve their science goals, these next-generation survey will have to probe cosmic
shear field to sub-percent accuracy. For this purpose they will use state of the art imaging
equipment and will target large sky areas to reduce statistical errors to a minimum. They will
also collect themselves photometric redshift data and probe both second- and higher-order
statistics to improve accuracy, break the (Ωm , σ8) degeneracy and tighten constraints on dark
energy, as explained in Sect. 3.4.5.

The main challenge of these surveys will be to maintain the level of systematic errors to that of
statistical errors. In fact, the main sources of systematic uncertainty will likely not reside in the
determination of accurate redshifts or theoretical approximations, but rather in the insufficient
accuracy of the existing galaxy shape measurement algorithms and the convolution of the
original image by the point spread function due to the optics and atmosphere. Whether this
challenge will be met within the time frame of the surveys or not is still uncertain. We will
cover these two aspects in the next chapter.
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We showed in the last chapter that the cosmic shear contains a wealth of cosmological infor-
mation whose statistical analysis can produce tight constrains on cosmological parameters,
the growth of structures and the properties of dark energy. We also noted that the science goals
of next-generation cosmic shear surveys will only be achieved provided the level of systematic
uncertainties is kept below that of statistical ones.

Throughout Chapter 3, it was assumed the cosmic shear data were fully available and known
to arbitrary accuracy, which in practice is obviously not the case. In this chapter, we investigate
the practical aspects of cosmic shear measurement and in particular:

• How to observationally detect the cosmic shear and how to measure the cosmic shear
field.

• What are the most challenging tasks and the main sources of uncertainty to tackle during
the shear measurement process.

• What are the different approaches explored in the literature to address those issues and
what are the prospect of success.

In the process, we also present the main research performed during this thesis:

• The development of a gfit shape measurement method (Gentile et al. 2012) and its
experimentation in the GREAT08 (Bridle et al. 2009, 2010) and GREAT10 challenges
(Kitching et al. 2010, 2012a).

• The application of novel spatial PSF interpolation techniques (Gentile et al. 2013) and
their successful use in the GREAT10 Star challenge (Kitching et al. 2012c).

• The contribution to the development of DWT-Wiener an innovative, wavelet-based and
shape-preserving denoising method (Nurbaeva et al. 2011).

Lastly, we have included in Appendix the derivations of results frequently quoted in the lensing
literature without explicit proofs.

4.1 Principles and challenges

4.1.1 Cosmic shear from galaxy shapes

In order to apply the formalism described in chapter 3, a lensing survey will require mea-
surements of the shear field γ over many areas in the sky. Second or higher-order statistics
can then be computed which ultimately yield constraints on cosmology. And obviously, the
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final error bars on cosmological parameters will largely depend on the accuracy of the shear
measurement process.

The shear transformation slightly alters the apparent shape of galaxies and this effect is in
principle measurable by observing a sufficiently large number of galaxies with the adequate
technology. The weak lensing community has therefore concentrated its efforts toward devel-
oping the required shear measurement methods and image processing tools to extract the
shear signal from the analysis of many galaxy shapes.

An accurate shear measurement process is however proving very challenging to implement:

1. The first challenge is observational. The shear effect is very subtle and requires the
statistical analysis of millions of faint and noisy galaxy images in the near infrared.
Moreover, several additional effects, unrelated to lensing, come into play to modify and
degrade the original shear signal. The most critical of these effects are the convolution of
the sheared source galaxy image by the instrumental and/or atmospheric point spread
function (PSF), the degradation due to various sources of noise and the pixelation effect
caused by the integration of light falling on the detector pixels. In other words, the
challenge here is to deal with loss of information.

2. The next challenge relates to extraction of information. This entails developing a shear
measurement method that can first, infer the shape a galaxy had just after being sheared
but before being altered by the PSF and other effects and second, measure the amount
of shear. This involves in particular, the definition of a practical “shear estimator” that
can provide an estimate of the shear based on the photometric data of a galaxy.

3. Computation of information: lastly, having to measure large numbers of galaxies also
implies very large amounts of data to process. The third challenge is thus computational
because the shear measurement software must be capable of processing huge quantities
of galaxy images (terabytes and even more) within a reasonable amount of time.

In the next sections, we describe these difficulties in more detail and outline the main ap-
proaches followed to address them.

4.1.2 Observational challenges

Weak lensing cosmological surveys rely on the shape measurement of galaxy images. A number
of practical difficulties complicate the measurement process, which we review in this section.

Distortions by large scale structures are tiny

The change in ellipticity due to the shear is about 10 times smaller than the typical ellipticity
of a galaxy. It is therefore hopeless to attempt measuring the shear effect from the observation
of individual galaxies, which makes the analysis of sufficiently-large numbers of galaxies
mandatory. Thus:

• One should first consider as many objects as possible, by observing a large number
density of galaxy sources, or by considering a large solid angle on the sky (a few arcmin2

or more), or both. This entails making use of large wide-field detectors at the best
observing locations. Only the optical sky has a dense enough population of sources
and weak lensing are therefore performed with optical or near-infrared (NIR) digical
CCD cameras. Such device are able to capture large sky areas in reasonable amounts of
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observation time and their numerical output is directly exploitable by computers. The
advent of such wide-field cameras was decisive in making possible the first detection
of cosmic shear in year 2000 by several groups (Bacon et al. 2000; Kaiser et al. 2000;
Van Waerbeke et al. 2000; Wittman et al. 2000). In fact, the formalism for extracting
cosmological information from the shear was ready several years before.

• Then employ statistical techniques to estimate the shear. The greater the number of
sources subject to weak lensing analysis, the better the accuracy of the shear measure-
ment will potentially be.

The study of faint, distant galaxies is required

• The study of faint, distant galaxies is required because the densest and more numerous
populations available for weak lensing study are remote galaxies lying in the optical
or NIR range, and also because the more distant the observed sources, the greater the
shear signal contained in their image. In fact, when averaging over N galaxies, the
lensing signal to noise ratio S/N ∝�N/σε, where σε is the dispersion of intrinsic (i.e.
unsheared) galaxy ellipticity. This is another justification for covering large sky areas.

• This also means that these galaxies are small and that they are likely to be strongly
affected by sources of noise and spurious distortions (see remaining sections and
Sect. 4.1.3).

The Intrinsic shape or orientation of source galaxies is poorly known

• Galaxies greatly vary in size, orientations and morphology but only their projected
shapes are accessible.

• Moreover, individual projected shapes are not circular but elliptical, so one cannot just
measure the shear as a mere deviation of circularity.

• The observed image of an individual galaxy does not give any information about the
intrinsic shape or exact intrinsic orientation it had before being sheared. If it was the
case then one would be able to directly use transformation (3.40) and related equa-
tions to estimate the shear (assuming being able to accurately quantify shapes through
observation).

• It is not possible to tell from the observed shapes of two individual galaxies which one
has been affected by the shear and which one has not.

The PSF distortion is comparable or larger than the shear signal one intend to measure

One can only observe astronomical objects through dedicated intruments, which introduce
various types of distortion to the original image.

Light beams from an observed point source are not focused perfectly on a detector. Images
observed from a telescope in space are dominated by diffraction and aberration phenomena
originating from the optical system (system pupils, mirror struts and other incident light
perturbation structures) and possibly pointing errors and other thermal or mechanical effects.
For ground-based observations, turbulence, refaction and convection phenomena in the at-
mosphere (the “seeing”) constitute additional source of distortion. The Point Spread Function
(PSF) describes how the image of a point source is modified by all these phenomena.
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The surface brightness distribution I (θ) of an observed image resulting from the combina-
tion of a source image and a PSF kernel can be mathematically described by a convolution
operation

I (θ) =O(ν)�P (θ) =
∫

P (θ−ν)O(ν)d 2ν (4.1)

assuming the distortion process can be considered linear and shift-invariant. The quantities
O(ν) and P (θ−ν) respectively represent the surface brightness of the source image and PSF
kernel.

The PSF is one of the largest contributors of systematic errors in cosmic shear observations for
the following reasons:

• The PSF kernel P is generally not circularly symmetric and is made of an isotropic and an
anisotropic component. The effect of the isotropic part of the PSF kernel is to dilute the
cosmic shear signal and to make the source image appear rounder, while the anisotropic
part introduces an artificial shear effect which may be confused with the genuine shear
lensing signal. That anisotropy is in fact comparable or larger than the shear signal one
intend to measure. Moreover, in real ground-based data the size of the PSF is roughly
comparable to the size of the observed galaxies. Clearly, both dilution and anisotropy
phenomena, if left uncorrected, will ruin all attempts to determine the tiny change in
galaxy shape due to lensing.

• Another difficulty arises because the PSF often varies in space and over time. The PSF-
convolved shape of a galaxy at the given location will depend on the PSF kernel at the
very same position. But the PSF is not known at galaxy positions because it can only be
tracked at the positions of stars, assumed to be point sources. With a varying PSF, one
can no longer assume the PSF kernel at the position of the galaxy is the same as that
observed at the star position. The PSF kernel determined from the star must then be
interpolated and reconstructed at the position of the target galaxy. The lack of stability of
the PSF in time further complicates the process. Additional issues may also complicate
the interpolation process. For instance, the PSF, instead of varying smoothly throughout
the image, may experience more rapid variations near the corners or between chip
boundaries in multi-chip cameras.

The above considerations imply accurate cosmic shear observations requires the best possible
seeing:

• A PSF in good and stable atmospheric conditions from the best astronomical sites is
of the order of 1 arcsec or less. This is a maximum for ground-based cosmic shear
observations which ideally require � 0.8′′. Exceptionally, images with ∼ 0.5′′ can be
obtained.

• Observations from space can benefit from a much better seeing. A probe such as Euclid
from ESA (see Sect. 3.4.7) will have a PSF resolution better than 0.2”, with 0.1” pixels
in one wide visible band (R+I+Z). PSF measured from space are also likely to be more
stable. On the other hand, diffraction-limited PSFs are more complex to model, which
complicates the task of PSF correction and interpolation schemes. It is thus essential
during the design of a space mission with a weak-lensing science goal, to ensure the PSF
is as simple and predictable as possible.
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Approaches for interpolating the PSF are presented in Sect. 4.5, where we present our research
in this area.

Various sources of noise degrade the shear signal in galaxy images

Correcting astronomical images from the effect of noise has always been a challenging task.
This is particularly true for galaxy images captured for weak lensing analysis because noise
not only degrades the overall quality of these images but also alters the shapes of the galaxies.
Unfortunately the images with the strongest shear signal are also the faintest and often the
noisiest ones, which makes the issue of denoising a prominent one. It is especially difficult to
solve because the noise correction scheme must preserve the shape of the galaxy.

The noise in astronomical images comes from various sources,

• Nearly constant noise introduced by the sky background and the detector. In the op-
tical and near infrared wavebands (wavelength λ� 2μm) emission from the sky is the
primary source of background radiation. The main emission sources come from the
Zodiacal light (sunlight scattered by dust particles in the Solar System interplanetary
medium) air glow (photochemical reactions in the Earth’s upper atmosphere) and diffuse
galactic light. The average sky surface brightness is about 23 B-mag arcsec−2 (measured
in the B wavelength band) and greater than all but the inner core of a typical galaxy. The
detector itself can be another strong source of thermal radiation in wavebands λ� 2μm,
particularly at wavelength λ≈ 10μm at which a Plank function at 300K has maximum
intensity.

• Combination of Gaussian and Poisson noise added to the image. In an ideal world,
every photon striking a detector pixel would be converted into exactly one electron. The
number of electrons would then be precisely counted and converted to a number, telling
how much light struck each pixel. Unfortunately, the process of converting light to pixel
values in the detecting device is governed by some fundamental physical laws and other
factors that generate various types of noise. Some of this noise is introduced during
the image integration, like the photon noise (shot noise) or dark current, or during the
process of reading out the pixels.

A denoising scheme that gives good results in weak lensing applications and to which I have
contributed during this thesis is described in Sect. 4.6.

Pixelization effect introduced by the detector

Detectors used for weak lensing are typically made of multiple CCD chips whose surface is
divided into individual elements (pixels). Photons striking individual pixels are converted
to electrons (also called “photoelectrons”) which are stored in each pixel well. The count of
electrons in each pixel is proportional to the count of photons that struck that pixel. After an
exposure has been completed, the electrons in each pixel are read out of the detecting device
and converted to a number, indicating how dark or light each particular pixel should be, and
stored in a computer image file. Pixelation is equivalent to a convolution of the image with the
pixel response function (PRF) R(θ) of each pixel

I (θ) = O(ν)�P (θ) �R(θ)
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The PRF may vary from pixel to pixel and with color. This effect is significant enough to distort
the weak lensing signal from faint, distant galaxies. A recent study on the effects of pixelisation
in weak lensing can be found in e.g. High et al. (2007).

4.1.3 Methodological challenges

The sequence of transformations a galaxy image undergoes, from its formation to its restitution
by a detector, is shown in Fig. 4.1.

1. The process starts with the formation of the source galaxy image.
2. The image is then weakly gravitationally sheared through the transformation (3.23).
3. The quality of the image is degraded by the sky background noise.
4. That image can only be observed through the atmosphere (if from the ground) and the

telescope. The lensing signal is diluted and distorted by the convolution with a PSF
kernel.

5. That image is also contaminated by photon (shot) Poisson noise and by the Gaussian
noise introduced by the detector itself.

The shear measurement problem consists in estimating the tiny change in the (unknown)
shape of the source galaxy caused by the shear field. This is an example of an inverse prob-
lem. The only data available are the right-hand images of the observed galaxy and PSF. This
illustrates how the different difficulties identified in Sect. 4.1.2 come together to render the
resolution of the shear measurement problem very difficult indeed.

A shear measurement method must overcome the observation-related difficulties highlighted
in Sect.4.1.2 and summarized in Fig. 4.1. To this end, a satisfactory solution should be found
to each of the following problems:

1. PSF correction: determine the shape or light profile a galaxy had before being convolved
with the PSF. If the spatial variation of the PSF over the field of view is significant, this
step also requires interpolating the PSF to the positions of the galaxies in the sky.

2. Shape measurement: determine the galaxy shape or light profile after it has been altered
by the cosmic shear but before PSF convolution and other subsequent distortions. We
refer to the corresponding shape as the sheared galaxy shape. The real galaxy shape
prior to gravitational lensing (i.e. unsheared) is referred to as the intrinsic shape.

3. Shear measurement: extract the shear signal from the sheared galaxy shapes estimated
in the previous step. The shear field can seldom be assumed constant. A spatially-
varying shear field is commonly described by two-point statistics such as a power
spectrum or a correlation function. A shear estimator that relates the shear to the
shape or light profile of the observed galaxy image must be defined. Moreover, what is
actually measured is not the lensing shear γ but the reduced shear g , which includes the
effects of the convergence κ. Correcting that approximation is required for the accurate
determination of cosmological parameters and other cosmological constraints.

4. Pixelation and noise: additional steps can be incorporated to correct the images from
these effects, prior or during the determination of the shear, to improve the overall
accuracy of the measurement.

Prior to performing these steps, non-trivial tasks are to identify, stars and galaxies, separate
them and select the objects suitable for shear measurement. We do not consider here that
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Intrinsic Galaxy
(shape unknown)

Gravitational Lensing 
causes a shear

Image is convolved 
with the PSF

Image produced by 
detector is pixelated

Various sources of noise 
degrade the image

Intrinsic Star
(point source)

Image is convolved 
with the PSF

Image produced by 
detector is pixelated

Various sources of noise 
degrade the image

Figure 4.1: Upper panel: schematic view of the different intervening processes, from the
formation of the galaxy image to its restitution by the detector. (1) The original image (shape
unknown) is changed with an unknown amount of shear to be estimated (2). The effect is
exaggerated ∼ 10 times here. The sheared image is then (3) convolved with the PSF resulting
e.g. from the telescope and atmosphere. The resulting blurred image is further altered by a
nearly constant sky background noise and pixelated (4). Finally (5), Poisson and Gaussian
noised are generated during the image acquisition and restitution. Lower panel: star image
experiences a similar sequence of transformation, except that the shear effect is negligible.
Picture adapted from the GREAT08 handbook (Bridle et al. 2009).

such tasks should be carried out by the shear measurement method itself.

How to approach the shear measurement problem and how to solve it are the focus of active
research, which we review in Sect. 4.3.

4.1.4 Computational challenges

The cosmic shear signal is very small and its analysis requires the observations of millions of
galaxies over large sky areas, as explained in Sect. 4.1.2. This represents huge quantities of
data, mostly in the form of astronomical images. Such data cannot be efficiently compressed
and typically occupy large volumes on computer discs.

Once the images are collected and stored, the next step is to process them. A typical shear
measurement algorithm has to iterate over each galaxy image and perform some image
processing operations to best determine its shape. Deconvolution, interpolation or denoising
tasks also involve heavy processing tasks. In any case, even if the CPU time for such tasks may
be reduced to a small amount by an efficient algorithm, the total number of objects to process
is such that the overall processing time quickly explodes. Splitting the workload over a large
number of processors executing concurrently is probably the only way out.

Euclid-like surveys will collect petabytes of data. Extracting and analyzing the cosmic shear
signal in such a large amount of data will require the use of supercomputers or computer
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clusters with hundreds or thousands of CPUs. In order to process the data within reasonable
time scale, any serious shear measurement method will have to be able to take full advantage
of such advanced distributed, multi-processor machines. One can hope that computer tech-
nology will progress at a fast enough pace to compensate for the relative slowness of software
algorithms, whose efficiency typically improve more slowly.

4.2 The STEP and GREAT initiatives

4.2.1 The STEP programs

As highlighted in Sect. 3.4.3, first-generation cosmic shear surveys showed a relatively large dis-
persion in their cosmological σ8 or Ωm estimates. The TEsting Programme (STEP) (Heymans
et al. 2006; Kitching et al. 2012b), hereafter STEP 1, was launched in 2004 to assess whether
the discrepancies found between the cosmic shear results were caused by variations in the
accuracy of the different shear measurement pipelines used. A secondary goal was to improve
the reliability and accuracy of available cosmic shear measurement methods, in preparation
for next-generation wide-field surveys.

The STEP I data consisted of a large volume of images containing a mixture of simulated
stars and galaxies. The participants were asked to run their shear measurement methods and
determine the (constant) shear encoded in the images. The competition was blind, so that
the answers were kept unknown to the participants during the competition and only revealed
after the deadline. The estimates from each participants would then be compared to the
answers and analyzed. The STEP 1 results pointed out large variations in accuracy between
KSB+ variants, from 1 to 20%. The STEP 2 (Massey et al. 2007a), STEP 3 editions introduced
more complicated Shapelet-based galaxy morphologies and larger amounts of data. Despite
this added complexity, significant improvements were observed (Massey et al. 2007a) between
STEP 1 and STEP 2. STEP 3 focused on space-based observations with very complicated PSFs.
STEP 4, on the other hand, marked a return to less complexity and the desire to focus on the
basic factors impacting the accuracy of shear measurement.

Overall, the main lessons from the STEP programs was that accurate shear measurement is far
from trivial and that the shear measurements methods in frequent used at the time (such as
KSB+) were sufficiently accurate compared to the level of statistical errors of that generation
of cosmic shear surveys.

4.2.2 The GREAT08/10 challenges

The Gravitational LEnsing Accuracy Testing 2008 (GREAT08) Challenge (Bridle et al. 2009,
2010) continued the trend initiated by STEP 4, to “step back” and focus on the core problems
to be solved for achieving the greater accuracy requirements of more ambitious cosmic shear
surveys. Difficulties not purely related to the problem of shear measurement such as the
presence of overlapping stars and galaxies or the necessity to separate stars and galaxies, were
put aside. The simulated images therefore consisted of postage stamps of galaxy images with
two levels of noise contamination: low and high. The shear field and PSF were set as constant.
Training sets were also made available, but the challenge was blind, as in STEP.

It was also recognized that the shear measurement problem could also be formulated as a
statistical problem and that experts from other disciplines may be in a position to participate
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and bring original and innovative contributions. The challenge, which ran during 6 months,
from October 2008 until the end of April 2009, was a success in this respect, since it turned out
the winners were not astronomers (Bridle et al. 2010).

One of the outcomes of STEP and GREAT08 was the introduction of a split of the total bias
into an shear-independent additive bias and a shear-dependent multiplicative bias between
the measured and true shear, respectively denoted as c and m where c = 〈ci 〉 and m = 〈mi 〉,
i = (1,2). The ci and mi are respectively the additive and multiplicative biases over the two
component of shear γ1 and γ2. The ci and mi coefficients are calculated by assuming the
shear field is constant and that the error on the shear, γi −γtr ue

i , and the true shear γtr ue
i obeys

a linear relationship of the form

γi −γtr ue
i = mi γ

tr ue
i +ci (i = 1,2) (4.2)

The GREAT08 results confirmed the shear measurement method available at the time were
able to match the accuracy requirements of CFHTLens-like surveys, that is, an additive bias of
c ≈ 0.001 and a multiplicative bias of m ≈ 0.02.

The continuation of GREAT08, the GREAT0 challenge (Kitching et al. 2010, 2012a), ran for 9
months, between December 2010 and September 2011. Unlike GREAT08, the cosmic shear
and PSF were no longer kept constant but instead varied spatially across images. Indeed, the
cosmic shear intrinsically variable whereas the PSF also varies spatially across images because
of telescope optics and atmospheric effects, among others.

So GREAT10 was effectively two challenges in one: the “Galaxy challenge” was to reconstruct
the cosmic shear field in the form of shear catalogs at requested positions or shear power
spectra. The “Star Challenge”, on the other hand, was to recreate the PSF field at non-star
positions. The Star challenge is discussed in more details in Sect. 4.5.

The volume of data significantly increased compared to that of GREAT08 and reached approxi-
mately 1 Terabyte, with 50 millions galaxies. The challenge thus also became computational.

The introduction of variable shear and PSF fields also meant that the evaluation metrics for
accuracy and bias used in STEP and GREAT08 had to be extended (see e.g. Kitching et al.
(2012a); Gentile et al. (2012) for more details). According to these metrics, the GREAT10
Galaxy Challenge saw a factor of 3 improvement in the accuracy achieved by other shape
measurement methods. A majority of methods also reached additive biases below 10−3 and a
few methods (which included the author’s gfit), achieved sub-percent multiplicative biases.
This is shown in Fig. 4.5 from the GREAT10 Galaxy challenge results paper (Kitching et al.
2012a).

This level of multiplicative and additive bias corresponds to the level expected by next-
generation surveys like KIDS, HSC or DES, c ≈ 0.0006 and m ≈ 0.004. However, all meth-
ods fell short of meeting the Euclid requirements c ≈ 0.0003 and m ≈ 0.001 on images with
S/N < 20. The approximate targeted bias values of current and future cosmic shear surveys
are summarized in Table 4.1.

The third GRavitational lEnsing Accuracy Testing challenge, GREAT3 (Mandelbaum et al. 2013),
is in preparation and will start in July 2013, running for a period of 6 months. Compared to
GREAT10, GREAT3 will include more realistic simulated data. It will include in particular
galaxies with realistic morphologies based on real images, realistic space- and ground-based
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Table 4.1: Approximate targeted bias of current and future cosmic shear surveys

Targeted Bias m c

CFHTLens, etc. ∼ 2×10−2 ∼ 1×10−3

KIDS, DES, HSC, etc. ∼ 4×10−3 ∼ 6×10−4

Euclid, WFIRST, LSST ∼ 1×10−3 ∼ 3×10−4

PSF and multi-epoch data, all combined.

4.3 Main approaches to shear measurement
Every shape measurement methods is unique in the way it tackles the problems of PSF correc-
tion, shape measurement, shear estimation, noise and pixelation described in the previous
sections. The methods presented in this section illustrate different possible approaches to
solving these problems:

4.3.1 Shear estimation from second-order brightness moments (KSB, KSB+)

In order to be measured the shape of a galaxy must be quantified. Real galaxies differ widely in
morphology and elongation. They also have structure and their light profile is far from being
smooth. Taking all these characteristics into account seems, at first sight, quite difficult.

In images used for weak lensing analysis, however, the combined effects of noise, PSF convolu-
tion and pixelation destroy most of these distinguishing features. For instance the distinction
between elliptical and spiral galaxies disappears. What remains of the original galaxy images
is a structureless, more or less elliptical distribution of light. The prominent characteristics
that can be realistically measured with accuracy are the surface brightness profile and the
deviation of the shape from circularity.

The most ancient and popular technique for measuring ellipticity is to use second-order
geometrical moments calculated from the surface brightness of the galaxy as recorded in
its image. Methods such as KSB (Kaiser et al. 1995) and its variants, referred to as “KSB+”
(e.g., Luppino & Kaiser 1997; Hoekstra et al. 1998) rely on the observation that the average
projected shape of observed galaxies is elliptical and that the orientation of galaxies is random.
According to weak lensing theory, the shear is a very small perturbation on the galaxy ellipticity,
which is largely intrinsic. The shear being independent of intrinsic ellipticity, averaging over
the measured galaxy ellipticities yields an estimate of the reduced shear signal.

The main steps are: measure the surface brightness of individual galaxies taken from a large
population (ideally tens of thousands or millions), quantify galaxy shapes by computing
second order brightness moments and use these to construct a shear estimator χ, usually
called “polarization” of “complex ellipticity”. Then deduce the reduced shear from χ.

An more detailed description along with an assessment of the KSB/KSB+ method can be found
in Sect. 4.4.2.
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4.3.2 “Forward model fitting” methods (DeepZot, gfit)

Instead of modeling the light profile and ellipticity of a galaxy with second brightness moments
like in KSB/KSB+, one can also start from a more or less elaborate model of a typical galaxy
and then fit the observed shape and profile to that model. A good galaxy model does not
need to quantify as many features of a galaxy as possible. Rather, it should only capture
the features that are considered essential to the current generation of shear measurement
methods: information on the shape and light distribution of the galaxy.

The most popular model for the surface brightness profile of a galaxy is certainly that of
Sérsic (Sérsic 1968). This profile describes a two-dimensional circularly-symmetric surface
brightness distribution, with parameters for specifying the central intensity, the size and the
degree of curvature of the light profile. The profile can be made elliptical to approximate the
shape of a galaxy by the application of the shear transformation (3.42), where the convergence
is considered as negligible (κ≈ 0). A galaxy can then be modeled using either a single Sérsic
function or a combination of multiple Sérsics, for instance one describing the disk and the
other its bulge. The gfit method from the author, described in Sect. 4.4.3 provides an example
of the use of a single component Sérsic. Galaxy models based on bulge/disk Sérsics are used
in e.g. the DeepZot (Kitching et al. 2012a), im3shape (Zuntz et al. 2013) and lensfit (Miller et al.
2007; Kitching et al. 2008; Miller et al. 2013) methods. Another rather successful model is that
of a combination of Gaussian functions, explored by the im2Shape method (Bridle et al. 2002).
See also Kuijken (1999).

A model-fitting method proceeds by iteratively modifying the parameters of the galaxy model
until a satisfactory match is found between the modeled galaxy and its observed image. Shape
information (e.g. ellipticity) is then derived from the fitted model parameters. A example of
a simple shape measurement algorithm based on model fitting is the following: (1) Modify
the parameters of the galaxy model; (2) convolve the resulting galaxy image with the PSF;
(3) Estimate the fidelity of the match between the PSF-convolved model and the observed
galaxy using .e.g. the chi-squared statistics; (4) Stop if the match is satisfactory, otherwise
continue iterating, moving back to step (1). The algorithm produces an estimate of the model
parameters and an image of the best-fitted unconvolved source galaxy. This algorithm is
referred to as ‘forward model fitting”. For a detailed description of the use of this kind of
algorithm for galaxy shape measurement, see the Gentile et al. (2012) gfit paper reproduced in
Sect. 4.4.3.

Methods based on model-fitting have performed well in the GREAT08 (Bridle et al. 2010)
and GREAT10 challenges (Kitching et al. 2012a) (DeepZot was actually the GREAT10 winning
method). The implementation of such methods is not as straightforward as it may seem. Firstly,
model-fitting necessarily introduces a “model bias” arising from fitting an incorrect model to
the data. Such as bias can be minimized, but at the price of additional complexity of the model,
which in turns increases the difficulty and computational cost of the fitting process. Secondly,
model-fitting methods critically rely on the accuracy and speed of their minimizer. Fitting
galaxy models typically involve non-linearly varying parameters. Unlike linear minimizations
schemes that only involve a matrix inversion, non-linear optimization requires iterating over
the parameter space to find the minimum value of the objective function. As the number of
parameter increases (such as with a combined bulge/disk Sérsic model), the CPU cost per
galaxy increases rapidly as well as the risk of degeneracies between parameters. Moreover, a
minimizer may find an excellent fit, but with a set of parameters that are totally unphysical.
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These issues have been discussed in e.g. Gentile et al. (2012).

4.3.3 Analytical image decomposition (Shapelets, Reglens)

Images of galaxies are decomposed as truncated series of orthogonal basis functions. Essen-
tially two techniques have been proposed: the first is the so-called "Shapelets” (Refregier
2003a; Refregier & Bacon 2003; Massey & Refregier 2005; Massey et al. 2005; Kuijken 2006)
which adopted Gauss-Hermite or Gauss-Laguerre polynomials as basis functions, depending
on the coordinate system chosen. The second uses elliptical Gauss-Laguerre polynomials as
basis functions (Bernstein & Jarvis 2002; Hirata & Seljak 2003; Nakajima & Bernstein 2007).

In such methods, a two-dimensional image is represented as a linear combination of coeffi-
cients in the chosen specific basis function. The effect of a given operation (such as shear or
convolution) on an image can then be analytically traced through its contribution on each
coefficient in the basis function expansion. For example, the second-order f2,2 coefficient of a
Shapelet is the KSB ellipticity shear estimator.

As more detailed description of Shapelets is provided in Sect. 4.4.4.

4.3.4 Bayesian analysis of galaxy shapes (lensfit, Im2Shape)

Two examples of this approach are provided by the im2shape (Bridle et al. 2002) and lensfit
(Miller et al. 2007; Kitching et al. 2008; Miller et al. 2013) methods. The idea behind these
schemes is also to measure the shear through it effects on the shape of galaxies, quantified
by their ellipticities. A Bayesian analysis of ellipticities is then performed, which leads to the
definition of a Bayesian shear estimator.

In the case of lensfit, the galaxy model is chosen to be a sum of Sérsic functions for he
galaxy bulge and disk, whereas it is a sum of two Gaussian functions in im2shape. This last
representation was however found to have difficulties for describing galaxies with peaky
profiles on real data. In lensfit, the likelihood can be directly computed through model fitting,
whereas in im2shape the parameters of the galaxy model are estimated using Monte Carlo
Markov Chain (MCMC) (e.g., Gregory 2005).

MCMC sampling has the advantage of dealing with complex models with more or less the
same CPU cost (which can nevertheless be high). Running a minimizer on the same model
may take a prohibitively high amount of processing time with no guarantee of a successful
convergence. The case may arise, for example, when dealing with a sum of Sérsics, which
requires the estimation of around 10 parameters. The lensfit method avoids this issue by
marginalizing over some parameters and keeping others constant.

The principles and algorithms underlying lensfit are described in more details in Sect. 4.4.5.

4.3.5 Image stacking

The so-called “stacking” methods (Bridle et al. 2010) were the revelation of the GREAT08 Chal-
lenge. As the name indicates, such a method consists essentially in (1) accurately estimating
the location of the centroid in images, (2) aligning the images so that they all share the same
centroid and (3) averaging the pixel values over all the images. This can be done for galaxies
and the PSF. The key assumption behind this technique is the constancy of the PSF and shear
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fields, a condition which was indeed fulfilled in GREAT08 simulations. But it is questionable
whether this kind of methods can be applied on real astronomical images where both the PSF
and shear are spatially variable fields.

4.3.6 Application of machine learning techniques (DeepZot, MegaLUT, TVNN)

The latest GREAT10 Galaxy Challenge (Kitching et al. 2012a) has seen for the first time the
application of machine learning techniques to the shear measurement problem. The GREAT10
winning method, DeepZot (Kitching et al. 2012a) makes use of a 13-input neural network to
correct the ellipticities obtained from model-fitting.

The MegaLUT method (Tewes et al. 2012) performs a classification of galaxies and associated
PSF kernels according to measured shape parameters, and builds a lookup table of ellipticity
corrections by supervised learning.

Lastly, the TVNN method (Nurbaeva et al. 2013), applies a PSF deconvolution algorithm
based on a Hopfield neural network (Hopfield 1982). The ellipticities of the galaxies are then
estimated by computing the second brightness moments of the auto-correlation function
(ACF) of the deconvolved images.

Neural networks and other supervised or unsupervised machine learning algorithms surely
have a role to play in the next-generation of shear measurement methods. They may provide
the performance leap to match the sub-percent accuracy level required by the next-generation
of cosmic shear surveys.

4.4 A closer look at some shear measurement methods
We illustrate in this section several shear measurement approaches by providing an overview
of KSB/KSB+, the authors method (gfit), Shapelets and lensfit.

4.4.1 Moment-based shear measurement: idealized case

Before introducing the underlying formalism of KSB/KSB+ methods, we first describe a ide-
alized case, based on second brightness moments, but where the effects of noise and PSF
convolution are ignored.

This approach is based on the observations that the average projected shape of observed
galaxies is elliptical and that the orientation of galaxies seems random. According to weak
lensing theory, ellipticity only depends on shear and is proportional (to first order) to the
reduced shear g . The approach can be summarized as follows:

1. Measure surface brightness I of individual galaxies taken from a large galaxy population
with size N 	 10000.

2. Construct a shear estimator, the so-called “complex ellipticity” or “Polarisation” χ, from
observed images by computing second or higher moments from these values. The
observed ellipticity χ is related to the ellipticity χsr c of sources and to the reduced shear
(3.41), g = g (κ,γ), κ� 1,

∣∣γ∣∣� 1.
3. Assume the intrinsic orientation of galaxies is random, so that

〈
χsr c

〉= 0 and γ≈ 〈χ〉.

These steps are described in more details below.
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Galaxy shape from surface brightness

One considers the second-order brightness moments

Q = (Qi j
)=

∫
wI [I (θ)] I (θ)

(
θi − θ̄i

) (
θ j − θ̄ j

)
d 2θ∫

wI [I (θ)] I (θ) d 2θ

i , j ε {1,2} (4.3)

based on the distribution of surface brightness I = I (θ), measured within a region around the
centroid

θ̄ = θ̄(θ̄i , θ̄ j ) =

∫
wI [I (θ)] I (θ)θd 2θ∫
wI [I (θ)] I (θ)d 2θ

(4.4)

of the observed galaxy (usually several half-light radii away, the half-light radius rh being
defined as the effective radius within which half of the galaxy luminosity is contained, assum-
ing a radially symmetric galaxy. The weight function wI is arbitrarily chosen, provided the
integrals converge. It can be, for instance, a function of the Heaviside step function.

Gravitational lensing conserves surface brightness, so if Isr c (β) is the surface brightness in the
source plane, the observed surface brightness distribution I (θ) in the lens plane is

I (θ) = Isr c
[
β(θ)

]
(4.5)

It is then possible to define, in an equivalent way, the second brightness moments for the
unlensed source

Qsr c =
(
Qsr c

i j

)
=

∫
wI
[
Isr c (β)

]
Isr c (β)

(
βi − β̄i

) (
β j − β̄ j

)
d 2β∫

wI
[
Isr c (β)

]
Isr c (β) d 2β

i , j ε {1,2} (4.6)

and, using the linearised Lens equation (3.5), one obtains the transformation formula between
Qsr c and Q

Qsr c =AQAT = A Q A (4.7)

Ellipticity from surface brightness

A measure of the size of an observed image is given by

ω= (Q11 Q22 −Q2
12

)1/2
(4.8)

But, more importantly, the second moments characterize the elliptical area formed by dis-
torting a circularly symmetric distribution of points along two orthogonal directions (while
preserving the area). Second-order moments weighted by surface brightness thus provide a
measure of the ellipticity and orientation, i.e. the “shape”, of a projected, two-dimensional
galaxy light profile.
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4.4. A closer look at some shear measurement methods

There are several possible parametrizations, but the following two are the most commonly
used. The first, denoted by χ is given in complex space by

χ=χ1 + i χ2 = Q11 −Q22

T
+ i

2Q12

T
(4.9)

where T is the trace of the matrix (4.3)

T =Q11 +Q22 (4.10)

The characterization of ellipticity using χ is illustrated in Figure 4.2. The second parametriza-
tion is

ε= ε1 + i ε2 = Q11 −Q22

T +2ω
+ i

2Q12

T +2ω
(4.11)

For an idealized galaxy image with elliptical isophotes, of semi-minor to semi-major axis ratio
q = b/a, (b < a), these complex ellipticities have moduli

|χ| = 1−q2

1+q2 = a2 −b2

a2 +b2 |ε| = 1−q

1+q
= a −b

a +b
(4.12)

A derivation of χ is given in Appendix A.2. The ellipticities ε and χ transform into one another
through the equations

ε= χ

1+
(
1− ∣∣χ∣∣2 )1/2

, χ= 2ε

1+|ε|2

These two ellipticities have the advantage to be simply related to the reduced shear g . If we
define the ellipticities χ and ε of the source in analogy with (4.9) and (4.11), one can derive
the transformation equations (e.g., Schneider & Seitz 1995; Seitz & Schneider 1997)

χsr c = χ−2 g + |g |2χ∗

1+ ∣∣g ∣∣2 −2Re
(
g χ∗) (4.13)

εsr c =

⎧⎪⎨
⎪⎩

ε−g
1−g ∗ε if

∣∣g ∣∣< 1

ε−g ε∗
ε∗−g ∗ if

∣∣g ∣∣> 1
(4.14)

where the asterisk ∗ denotes complex conjugation.

Interchanging source and image ellipticities and setting g −→ (−g ) yield the inverse transfor-
mations.

Shear from Ellipticity

Equations (4.13) and (4.14) show that the transformation of image ellipticities expressed as
quadrupole moments depends only on the reduced shear g and not on κ or γ. The reduced
shear is therefore the only relevant observable when it comes to measuring the shear from
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Chapter 4. Cosmic shear measurement

Figure 4.2: Illustration of the complex ellipticity χ=χ1+ i χ2. Circular images have both χ1 = 0
and χ2 = 0.

ellipticities.

Cosmic Shear is weak, hence κ� 1,
∣∣γ∣∣� 1 and to this limit, the aforementioned equations

become

χsr c ≈χ−2g ≈χ−2γ εsr c ≈ ε−g ≈ ε−γ (4.15)

Assuming the intrinsic orientation of galaxies is random,

〈
χsr c〉= 〈εsr c〉= 0 (4.16)

which gives the shear estimator

γ= g = 1

2

〈
χ
〉

γ= g = 〈ε〉 Shear estimator (4.17)

Further, one can show that the lensing signal to noise ratio S/N , when averaging over N
galaxies, can be expressed in terms of 〈ε〉 as

S/N = |〈ε〉|�N
σε

where σε is the dispersion of galaxy ellipticity. This expression shows the signal to noise ratio
becomes stronger as the number of background sources increases.

The formalism just described forms an ideal theoretical construct that does not account for
noise and PSF convolution. In fact, a weighting function wI that directly depends on surface
brightness leads to practical difficulties. Shear measurement methods (especially KSB/KSB+,
see next section) usually use customized weighting schemes in order to prevent the noise in
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4.4. A closer look at some shear measurement methods

the image from dominating the signal to be measured. This formalism nevertheless forms
the underlying theoretical framework of measurement methods that aim to estimate the true
shear from ellipticities.

4.4.2 Moment-based shear measurement with KSB/KSB+

The original method was developed by Nick Kaiser, Gordon Squires and Thomas Broadhurst
in 1995 (Kaiser et al. 1995), hence its name. Its formalism was later corrected and improved by
Luppino & Kaiser (1997), Hoekstra et al. (1998). The enhanced method is known under the
generic name of “KSB+” and is described in more details below. KSB+ is the most ancient and
still probably most widely-used shear measurement method.

The method is based on the following key assumptions

1. The intrinsic orientations of galaxies is random, that is

〈
χsr c〉= 0 (4.18)

2. The PSF is assumed to consist of a small, highly anisotropic kernel q , convolved with a
large isotropic component P i so and reads

P (θ) =
∫

q(θ)P i so(θ−ν)d 2ν (4.19)

Shape measurement

Cosmic shear introduces a coherent perturbation on top of the intrinsic ellipticities of galaxies.
According to assumption (1), galaxies can be considered as randomly oriented and the average
galaxy shape will be circular. By considering a large number of galaxies and measuring the
statistical deviation of their average shapes from circularity, one can therefore, in principle,
obtain an estimate of the shear. The shapes of individual galaxies are considered elliptical and
a measure of their ellipticity is estimated based on the second brightness moments (4.3) &
(4.6) and complex ellipticities (4.9) & (4.11) described in the previous section.

However, the second brightness moments are not normalized by the flux contrary to the
standard definition:

QK SB =
(
QK SB

i j

)
=
∫

Wθ(|θ− θ̄|) I (θ)
(
θi − θ̄i

) (
θ j − θ̄ j

)
d 2θ i , j ε {1,2} (4.20)

The effect of the components of χ on the galaxy shape has been illustrated in Fig 4.2.

In expression (4.20), θ = (θ1,θ2) is a position vector within the observed image plane, I (θ) is
the surface brightness at position θ and Wθ is a weighting function that depends on position
only and not on surface brightness. Central moments are very sensitive to noise and the role
of the Wθfunction is to give more weight in the moment calculation to areas with high signal
to noise ratios. If it were not so, the convergence of the Q integral would not be guaranteed.

The reason for choosing the polarisation χ as estimator of ellipticity is that, in the absence of
noise, the reduced shear g = (g1, g2) is simply related to the source and image polarisations χ
through (4.13) or (4.14) and, in the weak lensing regime applicable to cosmic shear by (4.15).
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Chapter 4. Cosmic shear measurement

Unfortunately, in more realistic situations where noise levels are significant, equation (4.17)
generally does not produce reliable enough results. In order to improve this, it is replaced by
an equation that rely on a improved position-dependent weighting function Wθ, that attempts
to filter out the effects of noise. This, however, comes at the price of an increased complexity:
instead of equation (4.17), KSB/KSB+ thus makes use of the more complicated expression

〈
gi
〉=

〈
χi −P sm

i j q j

P g−1
i j

〉
(4.21)

with

P g
i j = P sh

i j −P sm
i j P sh∗

i j

(
P sm∗

i j

)−1
(4.22)

The quantities P sh
i j = ∂χi

∂g j
and P sm are respectively called the “shear polarisation tensor” and

the “smear polarisation tensor”. The P sh matrix encodes the lensing shear effect, whereas the
P sm matrix and the q vector describe the “smearing” , i.e. blurring effect of convolution with
the PSF (the ∗ symbol denotes the corresponding tensor is measured from a star).

In expression (4.22),
(
P sm∗

i j

)−1
is the inverse matrix of P sm∗

i j . To calculate P sh , P sm and P g , the

getshape program is available as part of the freely available Imcat set of tools, developed by
Nick Kaiser (http://www.ifa.hawaii.edu/~kaiser/).

PSF modeling and correction

In KSB/KSB+, the PSF is inferred from carefully-selected stars: bright stars provide a way of
measuring the PSF and its distribution across a field, because they are point-like object and the
effect of shear on them negligible. A PSF is modeled as a small anisotropic kernel convolved
with an isotropic larger component (assumption 2). In equation (4.21), the q vector describes
the anisotropic PSF kernel, while the P sm matrix represents the larger isotropic portion. The q
vector for stars, denoted q∗ is estimated from a set of stars selected within the field of view
using equation

q∗
i =χ∗

i

(
P sm∗

i j

)−1
(4.23)

while the P sm∗
i j is calculated by the getshape program. However, the values of q∗ obtained in

this way have to be measured at the positions of galaxies instead of stars: the values for the
galaxy PSF kernels, qi , are usually and typically found by polynomial interpolation or some
finite-difference method, assuming a smooth enough variation of the PSF across the field. An
critical review of such interpolators is available in the author’s paper on PSF interpolation
(Gentile et al. 2013).

Noise reduction

To minimize the effects of noise on the quadrupole moment calculation, KSB/KSB+ typically
employ as weighting function Wθ, the “Mexican Hat”, which is a circularly symmetric Gaussian
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4.4. A closer look at some shear measurement methods

Figure 4.3: Left: the GREAT08 leaderboard of the low-noise dataset at the close of the challenge
(gfit is in third position). Right: the corresponding leaderboard for the high-noise dataset. The
CVN Fourier and KK99 entries are stacking methods (see Sect 4.3.5). gfit is in fifth position.
Source: GREAT08 results paper (Bridle et al. 2010).

with a scale demoted by σ and of the form

Wθ

(
|θ− θ̄|

)
= 1

2πσ2 exp

(
− |θ− θ̄|2

2σ2

)
(4.24)

The actual value of σ depend on KSB/KSB+ implementations, but is a function of the size of
the object, like its half-light radius. The quadrupole moment (4.20) is calculated over a circle
centered at the image centroid and of specific radius “window”, even though, isophotes are
not generally of circular shape.

Strength

• The KSB method has been historically, the first method able to provide reliable and
reasonably accurate shear estimates, and as such, has been extensively tested. KSB
is actually the most widely-used shear measurement methods and astronomers have
accumulated a significant experience as regards its behavior on real data. In particular,
they have learned how to correct its bias or inaccuracy in certain situations.

• Implementations of the method has shown a good accuracy of the order of 5−10%,
often working better than expected given is oversimplifying assumptions Nevertheless,
the KSB method is not expected to improve enough to reach the level accuracy of ∼ 1%
expected for next-generation surveys such as Euclid (see Sect. 3.4.7).

• The method is fast.

Weaknesses

• Assumption (2) of a PSF distortion described as a small highly anisotropic kernel con-
volved with a large isotropic disk, is not realistic in most cases. It constitutes a reasonable
approximation, for example, in the case of atmospheric seeing in the presence of small
amplitude telescope guiding errors. But this approximation breaks down when the PSF
strongly deviates from a Gaussian function, as it is likely to happen for space-based
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imaging.
• The method for estimating the PSF distribution from individual stars is prone to er-

rors, because the PSF often varies spatially across the image field, requiring the use of
interpolation techniques. Moreover, possible temporal variations of the PSF are not
accounted for. However, this problem is more general and not specific to KSB/KSB+ (see
e.g. Gentile et al. (2013)).

• The convolution kernel q is assumed to only depend on the coordinates θ, but is was
found that q∗ and its interpolated value q , also vary according to object sizes. Indeed, the
weighting function Wθ depends on object sizes though σ and also affects the calculation
of the relevant polarizations and tensors χ, P sh , P sm , P g as well as q through equation
(4.23). To circumvent this, some KSB/KSB+ implementation group galaxies in a number
of bins, each bin containing objects with a given range of sizes. When it comes to
calculate the PSF correction and shear for a specific galaxy of size s, the polarization and
tensor values calculated for the bin corresponding to size s are used. Nevertheless, it
is not clear how many bins there should be and which range of object sizes should be
used.

• The description of shapes using second surface brightness moments Qi j may not be
good enough: it is possible to have zero Qi j but non-zero anisotropy (Kuijken 1999).
Also, central moments are notoriously sensitive to noise and the use of the weighting
function Wθ is only a crude way to address this. Moreover, KSB/KSB+ assumes circular
isophotes when calculating the moments.

• Another issue lies with the presence of inverted matrices in equations (4.23) and (4.22).
For some objects the matrices are not invertible and give rise to very high values which
must be discarded. The high variance of q and P g quantities makes, it difficult to
improve the accuracy of the calculations. In this respect, the stability of the KSB/KSB+
algorithm and its ability to reach high precision is thus questioned.

• No specific treatment is performed to correct for pixelation. It is assumed the image
data have been depixelated during data reduction.

• The issues just listed certainly gives some clues about why it is that known implemen-
tations of KSB/KSB+, despite using the same framework, vary significantly in terms of
accuracy of result. This is apparent, for example, when looking at the results of the STEP
programs (Heymans et al. 2006; Massey et al. 2007a).

4.4.3 Galaxy model fitting with gfit

The gfit “Forward model fitting” shear measurement method was developed by the author,
inspired by a prototype in IDL from Stéphane Paulin-Henrikson.

The method was first tested on the GREAT08 challenge, where it respectively finished third
and fifth on low-noise and high-noise data, as shown in the leaderboard, Fig. 4.3, reproduced
from the GREAT08 results paper (Bridle et al. 2010). gfit was then enhanced to compete in
the GREAT10 Galaxy challenge, where it obtained good results: as highlighted in the Kitching
et al. (2012a) paper and illustrated in Fig. 4.5, it obtained the lowest additive bias and the
second lowest multiplicative bias on the shear power spectrum. gfit was therefore among the
methods that could reach a sub-percent multiplicative bias.

The method and an analysis of the GREAT10 results are described in detail in the Gentile et al.
(2012) paper, which we have also reproduced below for convenience.
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4.4. A closer look at some shear measurement methods

Figure 4.4: The results of the 12 top-ranking methods of the GREAT10 Galaxy challenge out of
95 submissions. The bias metrics A and M, along with the quality Q, Qdn and Qdn & tr ai ned

have been specified in Kitching et al. (2012a).

Figure 4.5: Left plot: multiplicative and additive biases of the ten leading shear measurement
methods. Right plot: the biases of the four best performing methods.
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ABSTRACT

It is anticipated that the large sky areas covered by planned wide-field weak lensing surveys will reduce statistical errors to such
an extent that systematic errors will instead become the dominant source of uncertainty. It is therefore crucial to devise numerical
methods to measure galaxy shapes with the least possible systematic errors. We present a simple ”forward deconvolution” method,
gfit, to measure galaxy shapes given telescope and atmospheric smearings, in the presence of noise. The method consists in fitting
a single 2D elliptical Sérsic profile to the data, convolved with the point spread function. We applied gfit to the data proposed in
the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. In spite of its simplicity, gfit obtained the lowest

additive bias (
√A = 0.057 × 10−4) on the shear power spectrum among twelve different methods and the second lowest multiplicative

bias (M/2 = 0.583 × 10−2). It remains that gfit is a fitting method and is therefore affected by noise bias. However, the simplicity
of the underlying galaxy model combined with the use of an efficient customized minimization algorithm allow very competitive
performances, at least on the GREAT10 data, for a relatively low computing time.

Key words. Gravitational lensing: weak – Methods: data analysis

1. Introduction

Weak gravitational lensing (e.g., Bartelmann & Schneider 2001;
Hoekstra & Jain 2008), whereby the gravitational bending of
light by structures in the Universe slightly distorts images of dis-
tant galaxies, is now recognized as a powerful means to study the
history of the Universe and probe the mysterious nature of the
dark matter and dark energy (Munshi et al. 2008; Huterer 2010).

Since the first detection of weak lensing (Maoli et al. 2001;
Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al. 2000;
Wittman et al. 2000), a number of methods have been devised
and implemented to tackle the inverse problem of recovering
the lensing signature from observed, distorted galaxy images
(Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al.
1998; Bernstein & Jarvis 2002; Hirata & Seljak 2003; Refregier
& Bacon 2003; Heymans et al. 2006; Massey et al. 2007; Miller
et al. 2007; Kitching et al. 2008; Bridle et al. 2010; Kitching
et al. 2012).

We describe in this paper gfit, a simple shear measure-
ment method that nevertheless obtained good results in the lat-
est GRavitational lEnsing Accuracy Testing 2010 (GREAT10)
Galaxy challenge (Kitching et al. 2011, 2012). Galaxies are
assumed to be well modeled by a seven-parameter, single-
component elliptical Sérsic profile. The shape measurement al-
gorithm essentially consist in iteratively shearing and convolving
the galaxy model until a sufficiently close match with the ob-
served galaxy is reached. Instead of an out-the-box minimizer,
we employ a custom-developed minimizer well suited to fitting
faint and noisy images like those frequently found in weak lens-
ing.

The paper is structured as follows. We provide in Sect. 2 a
description of the underlying principles, galaxy model and shape
measurement algorithm of gfit. We continue in Sect. 3 with a pre-

sentation of the pipeline we used to participate in the GREAT10
Galaxy challenge and follow with a analysis of the gfit results in
Sect. 4. We conclude in Sect. 5.

2. The gfit shear measurement method

2.1. The shear measurement problem

According to the theory of weak gravitational lensing, the light
emitted by a galaxy is slightly deviated by the foreground grav-
itational field, an effect that can be modeled to first order as the
combination of two effects, the convergence κ and the shear γ,
that describe how light bundles emitted by a source are distorted
by a potential well. The convergence models the magnification
effect whereby the galaxy image see its apparent size increased
without altering its shape, whereas the shear describes a stretch-
ing effect where only ellipticity is altered, not size.

All so-called “shear measurement methods” attempt to re-
construct the reduced shear g = γ/(1 − κ − γ) which is approx-
imately equals to the shear γ in the weak gravitational limit,
where κ � 1 and γ � 1.

The lensing effect is very subtle, however, and requires mea-
suring the shapes of thousands of faint galaxies. Moreover, be-
fore they reach the observer, the apparent galaxy images undergo
a number of additional distortions, unrelated to lensing, that fur-
ther complicates that task, mainly:

– The convolution of the images by the instrumental and/or at-
mospheric point spread function (PSF) that flattens and cir-
cularizes the galaxy light profile.

– The Gaussian and Poisson noise introduced by the surround-
ing sky emissions and the detecting device.

– The pixelation effect caused by the integration of light falling
on the detector pixels.

1

ar
X

iv
:1

21
1.

48
47

v2
  [

as
tro

-p
h.

C
O

]  
21

 N
ov

 2
01

2



M. Gentile, F. Courbin and G. Meylan: A simple fitting method (gfit) for galaxy shape measurement in weak lensing surveys

The traditional approach for estimating the shear is to mea-
sure the deviation from circularity of a large number of galaxy
shapes. But this technique assumes the shear remains con-
stant across the field of view, which is generally not the case.
Moreover, accurate shear measurement must also account for a
spatially varying PSF that must be interpolated at the positions
of the galaxies.

A shear measurement pipeline must overcome all the above
difficulties, typically going through the following steps:

1. PSF correction, whose goal is to restore the shape a galaxy
had before being convolved with the PSF. If the spatial
variation of the PSF over the field of view is significant, this
step also requires interpolating the PSF to the position of the
galaxies in the sky.

2. Shape measurement, that is, the estimation of the galaxy
shape after it has been altered by the cosmic shear but before
PSF convolution and other subsequent distortions. In this
paper, we call the corresponding shape the sheared galaxy
shape. The real galaxy ellipticity prior to gravitational lens-
ing (i.e. unsheared) is referred to as the intrinsic ellipticity.

3. Shear measurement, that is, the task of extracting the shear
signal from the sheared galaxy shapes estimated in the pre-
vious step. A spatially-varying shear field is commonly de-
scribed as a power spectrum or a correlation function.

Additional steps may also be performed to correct the images
from the effects of pixelation and noise.

2.2. Shear measurement with gfit

The gfit “galaxy fitting” method grew from a prototype initially
developed by Stéphane Paulin-Henrikson on the occasion of the
GREAT08 challenge (Bridle et al. 2008), where it obtained the
third and fifth ranks on images with high and low signal to noise
ratios respectively (Bridle et al. 2010).

The GREAT10 gfit code was subsequently made more
generic in order to satisfy the more demanding requirements of
the Galaxy challenge. It was also enhanced in several aspects
that we describe in subsequent sections of this paper.

It is also worth mentioning that a wavelet-based denoising
algorithm described in Nurbaeva et al. (2011) was also exper-
imented in the Galaxy challenge and proved quite successful.
This denoising scheme is presented in Sect. 2.7.

The overall shape measurement procedure is the following:

1. Application of the denoising algorithm on the galaxy and/or
PSF images [optional]

2. Estimation of the galaxy and PSF centroids in all images
3. Application of the PSF correction and shape measurement

algorithm
4. Generation of the ellipticity catalogs
5. Production of various statistics and plots for analysis [op-

tional]

We detail in the next sections the shape measurement algo-
rithm along with its underlying models and components.

2.3. Modeling the galaxies

gfit is fundamentally a model-fitting method. We describe here
the model used to represent galaxies and cover the fitting-related

aspects in Sects. 2.4 and 2.5.

Galaxies are assumed to have a surface brightness distribu-
tion well described by an elliptical Sérsic function (Sérsic 1968),
defined by:

I(ξ, n, re) = Isky + I0 exp
[
− bn

( ξ
re

)1/n]
(1)

where:

– Isky represents the sky brightness
– I0 is the central surface brightness of the galaxy
– n denotes the Sérsic index that determines the degree of cur-

vature of the profile. A small value of n leads to a less cen-
trally concentrated profile and a shallower logarithmic slope
at small radii.

– The scale radius parameter re is defined as the effective ra-
dius encircling half of the total light of the profile (e.g. Ciotti
1991; Trujillo et al. 2004; Graham & Driver 2005).

– The factor bn (e.g. Ciotti & Bertin 1999) arises from the def-
inition of re and is related to the Sérsic index n through the
equation Γ(2 n) = 2 γ (2n, bn) where Γ and γ functions are
respectively the complete and incomplete gamma functions
(Abramowitz & Stegun 1965).

– The parameter ξ in Eq. (1) is defined as

ξ =

√
(x′ − xc)2 +

(y′ − yc)2

q2
(2)

and denotes the distance from the centroid (xc, yc) of the
galaxy to a point on an elliptical isophote at spatial coor-
dinate (x′, y′)[

x′ − xc
y′ − yc

]
=

[
cos φ sin φ
− sin φ cos φ

] [
x − xc
y − yc

]
,

obtained after counterclockwise rotation through an angle φ
with respect to the (0, x) axis.

– The quantity q in expression (2) of ξ is the ratio of the semi-
minor axis b to the semi-major axis a of the isophote el-
lipse. It is related to the complex ellipticity e = (e1, e2)
of the galaxy through q = b/a = (1 − |e|)/(1 + |e|) with

|e| = √
e1

2 + e2
2, e1 = |e| cos 2φ and e2 = |e| sin 2φ.

This model was initially chosen for its simplicity and has the
other merit of being relatively easy to fit. A galaxy represented
as the sum of a bulge and a disc would be more realistic, but it
is not clear whether such a model would prove more accurate on
weak lensing images and worth the additional complexity and
computational cost, given degeneracies between parameters. As
regards gfit, the GREAT10 results does not provide a definitive
answer (see Sect. 4).

2.4. Galaxy shape measurement and PSF correction

We describe in this section the shape measurement algorithm of
gfit. It is based on iterative fitting of observed galaxies to the
galaxy model described in Sect. 2.3. The basic assumptions of
the algorithm are the following:

– All galaxy and PSF fields have been reduced and the ob-
jects they contained assumed available in the form of square
postage stamps in FITS format. We denote by O a galaxy
field image of the GREAT10 Challenge and by o any of its
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10,000 galaxy postage stamps. The GREAT10 PSF field im-
age corresponding to O is labeled as P and any of its individ-
ual PSF kernel as p.

– The O and P images have been denoised beforehand if re-
quested. The denoising tool described in Sect. 2.7 is the de-
fault choice.

– The centroids of all galaxies and PSF to be processed
have been estimated. A tool based on SExtractor (Bertin
& Arnouts 1996) has been written for this purpose (see
Sect. 2.6.)

– The PSF field at the position of each galaxy is known, so that
we can always find the PSF p that matches galaxy o.

The fitting algorithm itself is summarized below:

– For each galaxy object o in observed galaxy field O
� Extract a square stamp cutout of a given dimension NG ×

NG around the centroid (xc, yc) of o.
� Remove the sky background from o after having esti-

mated its variance σ2
sky.

� Estimate the galaxy noise variance σ2 of o.
� Select guess parameters for the 7 model parameters{

I0, (xc, yc), (e1, e2), n, re

}
described in Sect. 2.3.

� Construct an initial galaxy postage stamp g based on the
Sérsic profile having these parameters.

� Select the PSF p that matches the spatial coordinates of
o in O and extract a cutout of dimension NP × NP about
the centroid. Make sure the PSF is normalized and has
the sky background removed.

� Iteratively vary the model parameters with the objective
of minimizing the residuals between g and o.
At each step:

⇒ Convolve the model galaxy g with the observed PSF
p and compute a new galaxy estimate k = p � g

⇒ Compute the residuals between o and k using the
chi-squared statistics

χ2 =
∑

n

∑
m

(
on,m − kn,m

)2

σ2
n,m

where on,m and pn,m represent the pixel value at po-
sition (n,m) in o and p respectively. Similarly, σn,m
denote the standard deviation of the noise associated
with each pixel at (n,m).

⇒ If the minimum χ2 has not been reached, select a
new set of parameters and construct the correspond-
ing model galaxy g. Otherwise, exit the minimiza-
tion loop.

� At the end of the iteration cycle, the algorithm yields:

⇒ An estimate for all 7 model parameters and for the
complex ellipticity (e1, e2) in particular.

⇒ A postage stamp for the best-fitted intrinsic galaxy
postage stamp g.

⇒ A postage stamp for the best-fitted convolved galaxy
k.

� The same procedure is followed for the next galaxy o in
O, until all galaxies have been processed.

– Once the shape of all galaxies have been measured, pro-
duce a catalog containing the fitted parameters at the posi-
tions of the galaxies o in O and optionally, additional statis-
tics and plots. Quantities such as the ellipticity modulus |e|,
the position angle φ or the minor-to-major axis ratio q can

be respectively derived from (e1, e2) using |e| = √
e1

2 + e2
2,

φ = 1
2

arctan (e2/e1) and q = (1 − |e|)/(1 + |e|).

The algorithm just described is not dependent on the galaxy
or the PSF model. It would remain unchanged, for instance, if the
centroid of the PSF itself was taken into account during fitting
or if a bulge and a disc were incorporated in the galaxy model.
The quality of the whole shape measurement procedure can thus
be increased by improving the models.

The shape measurement algorithm has its own strengths and
weaknesses, outlined below:

– Strengths:
� Simplicity.
� PSF deconvolution and galaxy model estimation are per-

formed simultaneously.
� The deconvolution process does not involve any ma-

trix inversion and its side effects (numerical instabilities,
presence of artifacts, noise amplification, etc.).

� The intrinsic and best-fitted modeled galaxies are ob-
tained as a by-product of the algorithm, in addition to
the estimated model parameters.

– Weaknesses:
� A bias in introduced through the choice of a galaxy

model, which is necessarily imperfect.
� The choice of the initial guess parameters of the galaxy

model are more or less arbitrary and may also influence
the final model parameter estimates:

� The algorithm relies heavily on the accuracy and robust-
ness of the minimizer.

� The methods is sensitive to noise bias
� No estimate of errors is available

2.5. The gfit minimizer

The gfit galaxy model expressed by Eq. (1) varies linearly with
the parameter I0, but non-linearly with the remaining parameters{
(xc, yc), (e1, e2), n, re

}
. This requires the use of a non-linear min-

imization algorithm over a seven-dimensional parameter space.
Unlike linear minimizations schemes that only involve a ma-

trix inversion, non-linear optimization requires iterating over the
parameter space to find the minimum value of the objective func-
tion, which is in our case the χ2 of the residuals between ob-
served and estimated images. That minimum is not necessarily
the absolute minimum of the χ2 function but the most relevant
from the point of view of the physics of the problem. In our case,
the minimum should coincide with the Sérsic model parameters
that best fit the galaxy shape.

A good minimizer is essential to any galaxy model fitting
algorithm, but finding such a minimum in a reliable manner can
prove tricky for a number of reasons:

– Parameter degeneracy, where different combinations of the
parameters yield similar χ2 values.

– Errors related to noise and undersampling may degrade the
accuracy of the fit in several ways: (1) the distortion of the
galaxy image may be such that the minimizer fits a wrong
shape, even if it does it accurately. (2) The minimizer may
be fooled by a “false” local minimum and converge toward
wrong fitted parameter values. (3) The minimizer may fail to
converge altogether if it cannot reconcile the model with the
observed image.

– The choice of initial guess values for the parameters can in-
fluence the outcome of the minimization algorithm: depend-
ing on the starting location on the parameter hypersurface,
the algorithm may tend to follow a different path and con-
verge to a different minimum.
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In this regards, the choice of the galaxy model used by gfit
leads to a number of challenges:

– The total flux I0 is degenerate with the n and re parameters,
so that, for instance, in Eq. (1), a low I0 flux may be compen-
sated by a higher exponential function of n, re and (xc, yc),
modifying the shape of the fitted galaxy profile. Similarly, an
error in the estimation of the sky brightness Isky may “drive”
the minimizer toward a wrong combination of the remaining
parameters. This is why we estimate Isky separately in the
algorithm described in Sect. 2.4.

– gfit attempts to limit the effect of noise by applying the de-
noising method described in Sect. 2.7. As regards pixeliza-
tion, gfit can optionally construct the galaxy model in higher
resolution and rebin the pixels before fitting.

– To estimate the initial guess values for fitting a particular
galaxy, gfit can be setup to either accept default values or use
estimates from SExtractor.

Several families of optimization algorithms were ex-
perimented on GREAT08 and GREAT10 images: simplex
(Nelder-Mead downhill), gradient descent (Powell), Newton &
quasi-Newton (Newton-CG, BFGS) and Levenberg-Marquardt
(LVM). Descriptions of these algorithms can be found in (e.g.
Levenberg 1944; Marquardt 1963; Powell 1964; Nelder & Mead
1965; Zhu et al. 1997; Nocedal & Wright 1999; Bonnans et al.
2006).

None of these methods proved entirely satisfactory, either
failing to converge or yielding insufficient accuracy, especially
on low signal to noise ratio (S/N) images. The LVM implemen-
tation from the SciPy library (Jones et al. 2001–; Community
2010) that we used was the fastest and the most accurate. For
these reasons we used it in the GREAT08 version of gfit, but that
implementation of LVM:

– Failed to converge in about 5-10% of the time on GREAT08
“real noise blind” images.

– Was occasionally tricked by “false” local minima, producing
the smallest residuals but with unphysical Sérsic parameters
or ellipticities.

– Required good estimates of guess parameters in order to con-
verge towards the right minimum.

We also experimented a parameter estimation scheme based on
a Bayesian approach and implemented using the pymc Markov
Chain Monte Carlo (MCMC) library of Patil et al. (2010), but
that method produced less accurate estimates while being less
computationally efficient.

In an attempt to overcome these issues, we eventually de-
cided to implement a custom minimizer, better suited to fitting
noisy, pixelized galaxy images than vanilla minimization algo-
rithms. We found that a scheme based on an adaptive cyclic
coordinate descent algorithm (CCD) was able to produce more
accurate estimates while at the same time being more robust:

– Able to better cope with degenerate and correlated parame-

ters: LVM has difficulties with the
{
I0, n, re

}
degeneracy and

coupling and the steepest descent algorithm used in LVM
occasionally jumps without precaution to a minimum value
that may be the smallest but not the most appropriate one. To
avoid this, the CCD algorithm ensures that these parameters
are carefully varies in a “round-robin” manner at the begin-
ning of the fitting process, where the amplitudes in variation
are the greatest. This scheme is also much more tolerant with
regards to initial guess values and converges reliably, making
it more robust overall.

– More resilient to noise and on average more accurate than
LVM, especially on low S/N images.

The CCD algorithm proved suitable for fitting without any single
failure the huge number of GREAT10 galaxies. It nevertheless
has a number of drawbacks, namely:

– The convergence rate is lower than that of LVM, resulting
in a greater number of function evaluation. It is thus much
slower than LVM.

– Its efficiency decreases rapidly with the number of parame-
ters. The algorithm performance is also influenced by factors
such as the specific stopping conditions chosen or the range
if iteration step sizes specified for the parameters.

The current gfit implementation can be configured to use ei-
ther the CCD, LVM or MCMC-based minimizer.

2.6. Centroid estimation

gfit does not assume objects to be correctly centered within their
postage stamps and accurate estimates for galaxy and PSF ob-
jects are required for two main reasons:

– gfit does not necessarily use the whole postage stamps for the
galaxy and the PSF to save computational time and reduce
noise: the corresponding postages stamps are cut out to a
smaller dimension (e.g. 24×24 instead of e.g., 48×48 around
the estimated centroid.

– The coordinates of the galaxy and PSF centroids are pro-
vided to the minimizer as initial guess values before the fit-
ting cycle can begin. Accurate centroids are especially im-
portant if the LVM minimization algorithm is used (CCD is
much more tolerant in this respect).

gfit relies on centroid estimates obtained from the SExtractor
tool (Bertin & Arnouts 1996). A catalog is generated with cen-
troid information and additional data such as flux, ellipticities
and position angles, that can be optionally used to set guess pa-
rameter values.

2.7. Denoising

Correcting astronomical images from the effect of noise has al-
ways been a challenging task. This is particularly true for galaxy
images captured for weak lensing analysis because noise not
only degrades the overall quality of these images but also al-
ters the shapes of the galaxies. This causes serious difficulties to
all existing shear measurement schemes that found their shear
extraction algorithms on the accurate measurement of galaxy
shapes.

The challenge is then to correct galaxy images from
noise without compromising the shear signal they encode.
Unfortunately, popular denoising algorithms based on median
filtering (Arce 2005; Arias-Castro & Donoho 2009), Wiener fil-
tering (Wiener 1949; Khireddine et al. 2007) or discrete wavelet
transform (DWT) (Bruce et al. 1994; Vetterli & Kovacevic 1995)
are not shape preserving and do not meet that requirement.

By default, gfit uses DWT-Wiener, a shape-preserving de-
noising technique combining DWT and Wiener filtering devel-
oped at the laboratory of astrophysics of EPFL by Nurbaeva
et al. (2011). That algorithm has been experimented during the
GREAT10 Galaxy challenge and was able to significantly im-
prove the quality factors of all the shear measurement methods
from EPFL that participated in the Galaxy challenge (Kitching
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et al. 2012): that was the case for gfit but also for MegaLUT
(Tewes et al. 2012) and TVNN (Nurbaeva et al. in prep.).

Interestingly, denoising improves the shape measurement of
the three algorithms even though they are fundamentally differ-
ent from each other.

Beyond shape-preservation, another advantage of the
DWT-Wiener algorithm lies in its ability to denoise “in one go”
images containing a great number of objects, without having to
individually process each object in turn. In GREAT10, for in-
stance, DWT-Wiener was directly applied to images containing
100 × 100 PSF or galaxy postage stamps.

3. Applying gfit to the GREAT10 data

3.1. The GREAT10 Galaxy challenge

We describe in this section the specific pipeline we used in
the GREAT10 Galaxy Challenge competition that took place
between December 2010 and September 2011. The aim, content
and rules of the challenge have been described in the GREAT10
Handbook (Kitching et al. 2011, 2012). In a nutshell, the main
goals of the GREAT Challenges are (i) to test existing weak
lensing measurements methods and (ii) to promote the develop-
ment of new, more accurate, shear measurement techniques.

The data consist of 24 datasets of 200 simulated galaxy
images, each containing 10,000 noisy, PSF-convolved 48 × 48
pixel galaxy postage stamps, arranged on a 100 × 100 grid (see
Fig. 1). The GREAT10 edition includes spatially-varying PSF
and shear fields, contrary to its predecessor, the GREAT08 chal-
lenge (Bridle et al. 2008; Bridle et al. 2010), where these fields
were set as constant.

Each of the 24 sets is designed to evaluate the ability of com-
peting methods to deal with galaxy or PSF fields with different
properties (e.g. size, signal to noise ratio). We have reproduced
in Table 2 the main PSF and galaxy characteristic attached to
each of the GREAT10 set, as specified in the Galaxy Challenge
results paper (Kitching et al. 2012), Appendix D.

The sets were also classified into “Single epoch”, “Multi-
epoch” and “Stable single epoch”, depending on whether the in-
trinsic ellipticities and PSF keep the same or change their spatial
distribution between images in a set (see Table 1).

Participating methods were ranked according to the follow-
ing metrics :

– A “Raw” quality factor Q according to which the live leader
board was scored and that measures the difference, averaged
over all sets, between the reconstructed and true shear power
spectra.

– A quality factor Qdn obtained after estimation and correction
of pixel noise.

– A quality factor Qdn & train after application of an additional
training step on top of pixel-denoising. That step consists es-
sentially in estimating the multiplicative and additive biases
on high S/N galaxy images (set 7) and applying that calibra-
tion on the remaining sets.

– A split of the total bias into an shear-independent additive
bias and a shear-dependent multiplicative bias between the
measured and true shear, respectively denoted as c and m
where c = 〈ci〉 and m = 〈mi〉, i = (1, 2). The ci and mi are
respectively the additive and multiplicative biases over the
two component of shear γ1 and γ2 and are similar to those
used in STEP I (Heymans et al. 2006) and GREAT08 (Bridle
et al. 2010) for a constant shear field. They are calculated by

GALAXY 
CHALLENGE

SET 01 SET 24...

Galaxy
Image 001

Galaxy
Image 001

Galaxy
Image 200

Galaxy
Image 200

...

Challenge contains 24 sets

Each Set contains 200 galaxy images, each with 
10000 galaxy postage stamps. Each galaxy has a 
matching PSF in the corresponding PSF image

PSF
Image 001

PSF
Image 001

PSF
Image 200

PSF
Image 200

To each galaxy image corresponds a PSF 
image with 10000 PSF postage stamps...

Fig. 1. The GREAT10 Galaxy challenge dataset structure. There
are 24 galaxy sets, each containing 200 galaxy images with
10000 galaxy postage stamps each. To each galaxy postage
stamp corresponds a matching PSF postage stamp at the same
spatial position in the galaxy image.

assuming the error on the shear, γi − γtrue
i , and the true shear

γtrue
i obeys a linear relationship of the form

γi − γtrue
i = mi γ

true
i + ci (i = 1, 2) (3)

More details are provided in Appendix B of (Kitching et al.
2012). See e.g. Huterer et al. (2006) for a discussion on the
origin of additive and multiplicative errors in weak lensing
studies.

– Additional bias metrics A 
 σ2(c) and M 
 m2 + 2m, in-
tended to measure the additive and multiplicative biases cal-
culated at power spectrum level. Unlike c and m, these met-
rics account for spatial variability.

3.2. The GREAT10 gfit implementation

The GREAT10 version of gfit only implements the first two steps
described in Sect. 2.1, that is, PSF correction and galaxy shape
measurement.

In GREAT10, the estimation of the shear field (third step in
Sect. 2.1) was not mandatory as participants were allowed to
supply for each image a catalog of estimated galaxy elliptici-
ties instead of a shear power spectrum (Kitching et al. 2011): an
analysis program was written by the GREAT10 team to calculate
a shear power spectrum from user-supplied ellipticity catalogs.
Consequently, like most other competing methods, gfit only pro-
vided its estimates in the form of a catalog of estimated elliptic-
ities at requested positions within the images. Future version of
gfit will allow the extraction of a spatially varying shear.

The gfit implementation used in GREAT10 consisted of the
following stages:

Table 1. Spatial variability of PSF and intrinsic ellipticities: im-
ages within a set may keep or not the same PSF or intrinsic el-
lipticity pattern of variation.

Type of variability within a set PSF Intrinsic ellipticity

Type 1: “Single epoch” Variable Variable

Type 2: “Multi-epoch” Variable Fixed

Type 3. “Stable single epoch” Fixed Variable
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Table 2. Some of the PSF and galaxy properties characterizing
the GREAT10 image sets. The second and third columns specify
whether the PSF or intrinsic ellipticity field were kept constant
for all images within a set. The parameters in the fourth column
have been detailed in Kitching et al. (2012). The default signal to
noise (S/N) ratio is 20, while low and high S/N ratios are 10 and
40 respectively. All sets, except the last four, have galaxies with
co-centered bulges and disks with a 50/50 bulge-to-disk ratio.

Set PSF Intrinsic ellipticity Property of images

1 Variable Variable Fiducial

2 Fixed Variable Fiducial

3 Variable Fixed Fiducial

4 Variable Variable Low S/N

5 Fixed Variable Low S/N

6 Variable Fixed Low S/N

7 Variable Variable High S/N

8 Fixed Variable High S/N

9 Variable Fixed High S/N

10 Variable Variable Smooth S/N

11 Fixed Variable Smooth S/N

12 Variable Fixed Smooth S/N

13 Variable Variable Small galaxy

14 Fixed Variable Small galaxy

15 Variable Variable Large galaxy

16 Fixed Variable Large galaxy

17 Variable Variable Smooth galaxy

18 Fixed Variable Smooth galaxy

19 Variable Variable Kolmogorov PSF

20 Fixed Variable Kolmogorov PSF

21 Variable Variable Uniform bulge/disc ratios

22 Fixed Variable Uniform bulge/disc ratios

23 Variable Variable 50/50 bulge/disc offset

24 Fixed Variable 50/50 bulge/disc offset

1. Optional denoising of the galaxy and PSF images with the
DWT-Wiener method presented in Sect. 2.7.

2. Centroid estimation using SExtractor (Bertin & Arnouts
1996) as described in Sect. 2.6.

3. Galaxy shape measurement with the gfit program, config-
ured to use the CCD minimization algorithm described in
Sect. 2.5. We used 24 × 24 pixel cutouts instead of the full
48 × 48 pixel original galaxy postage stamps. Similarly, the
size of PSF postage stamps was reduced to 12 × 12 pixels.
That decision was made in order to keep the overall compu-
tation time within acceptable limits and avoid picking-up too
much noise near the borders of the postage stamps.

Because of the large number of galaxies, running the pipeline
on one single processor would not have allowed to meet the
GREAT10 deadline. Even with a processing time per galaxy of
0.5 seconds, it would have taken about one month to complete
process the full GREAT10 dataset. The ability to simultaneously
run multiple program instances use of parallelism is thus im-
perative and all programs (denoising, SExtractor wrapper, gfit)
are written to take advantage of of parallel computers through
the Message Passing Interface (MPI) (Forum 1995, 1998). When
only a few processors are required, the same programs can also
run on machines with symmetric multiprocessing (SMP) archi-
tecture. It took about 5 days to process the entire GREAT10 chal-

Table 3. Main metrics for “gfit den” and “gfit’ .

Method Q Qdn Qdn & train M/2 × 10−2
√A × 10−4

gfit den 103.81 197.88 229.19 −2.067 +0.061

gfit 50.11 122.74 249.88 +0.583 +0.057

lenge images on a 64-processor machine, which corresponds to
a processing time between 1 and 2 seconds per galaxy.

The pipeline is implemented in Python, a programming lan-
guage known for its power, flexibility and short development
cycle. The usual standard Python libraries are used, notably:
NumPy, SciPy, PyFITS and matplotlib. SciPy is the standard
scientific library for Python and most of its functions consist of
thin Python wrappers on top of fortran, C and C++ functions.
SciPy takes advantage of installed optimized libraries such as
LAPACK (Linear Algebra PACKage) library (Anderson et al.
1990).

4. Analysis of the gfit GREAT10 results

We summarize and analyze in this section the main Galaxy
Challenge results as far as gfit is concerned. An overview of the
GREAT10 results for available participating shear measurement
methods has already been performed in the GREAT10 Galaxy
challenge paper (Kitching et al. 2012). Our objective here is to
provide a more detailed analysis of the gfit results.

We do not, however, analyze the influence of the pixel-
denoising and training calibration schemes applied in (Kitching
et al. 2012), which we leave for future investigation.

4.1. Overall results

The results of the best 12 methods that participated in the
GREAT10 Galaxy Challenge are listed in Table 3 of the
Kitching et al. (2012) GREAT10 result paper. That list aggre-
gates results submitted before the official challenge deadline as
well as submissions made during the so-called “Post challenge”,
a one-week extension to the competition following the deadline.

Two versions of gfit were submitted during the challenge,
one named “gfit den cs” that included a denoising step using
the DWT-Wiener algorithm described in Sect. 2.7 and the other,
simply named “gfit”, that did not. The results obtained by both
methods are shown in Table 3.

The gfit version presented in Kitching et al. (2012) is what
we refer to here as ”gfit”. In addition, we also present ”gfit
den cs”, described in Appendix E5 of Kitching et al. (2012)
but whose results were not included in the analysis. The “gfit”
version is identical except that no denoising was applied to
the data before applying the shape measurement algorithm. To
simplify, we shorten he name “gfit den cs” to “gfit den” in the
remainder of this article.

It can be seen from Table 3 that “gfit den” reaches a raw
quality factor Q twice as high as that of “gfit”. This illustrates
the gain in accuracy provided by the DWT-Wiener denoising al-
gorithm. This is further analyzed in Sect. 4.2.2. When the pixel-
level denoising algorithm of Kitching et al. (2012) is applied, the
Qdn quality factors of both “gfit” and “gfit den” are improved
by a factor ∼ 2, “gfit den” scoring the best Qdn of all methods
(Qdn = 197.88). The training calibration further increases both

6



M. Gentile, F. Courbin and G. Meylan: A simple fitting method (gfit) for galaxy shape measurement in weak lensing surveys

Fig. 2. Quality factors per set for “gfit” (left) and “gfit den” (right). The various colors and patterns in the legend indicate the types
of features simulated in the sets. The acronyms S/N, b/d respectively refer to the signal to noise ratio and galaxy bulge/disc ratio
or offset. The fiducial S/N was 20 whereas the low S/N and high S/N were respectively set to S/N = 10 and S/N = 40. The
labels “Fixed PSF” and “Fixed intrinsic ellipticity” correspond to sets where the PSF and intrinsic galaxy ellipticities were spatially
varying across the field but that variation did not change between images within a set. Further details on the structure of the Galaxy
challenge dataset and the procedures for calculating the quality factor can be found in in the GREAT10 Galaxy challenge results
paper Kitching et al. (2012).

Qdn & train quality factors, especially that of “gfit” (two-fold in-
crease).

We have also included in Table 3 the average additive and
multiplicative biases A and M/2 over all 24 sets. Comparing
with Table 3 of the Kitching et al. (2012) result paper,
we see that “gfit” reached the lowest average additive bias

(
√A = 0.057 × 10−4) and the second lowest average multiplica-

tive bias (M/2 = 0.583 × 10−2) of all twelve methods (see also
the plot in Figure. 1, page 6 of that paper).

We stress that, contrary to what is suggested in Sect. 4.4 of
Kitching et al. (2012), the low overall bias of “gfit” is intrinsic
to the method and does not result from the application of a de-
noising step. The DWT-Wiener algorithm was only used in “gfit
den”, not “gfit” and actually, the average multiplicative bias of
“gfit den” (M/2 = −2.067 × 10−2) is higher than that of “gfit”.
Moreover, both methods have similar additive biases. Drawing a
more refined conclusion about these biases requires an analysis
at individual set level, which we perform in Sect. 4.3.

4.2. Method accuracy

In this section we use the quality factor as a measure of accuracy
and assess the influence of:

– Galaxy and PSF characteristics included in the images (size,
signal-to-noise, etc.)

– Denoising with the DWT-Wiener algorithm

The quality factors scored for each individual image set are
plotted on the left-hand side part of Fig. 2, for each gfit variant.
They are also quoted in Tables A.1 and A.2.

Due to an editorial mistake, the shear power spectra at-
tributed to “gfit” in the GREAT10 Galaxy Challenge paper,
Figure E9, is that from the “fit2-unfold” method. The correct
picture was made available at the time of publication and can be
found here. We also provide the correct figure in Fig. B.1. We

include the “gfit den” power spectrum in Fig. B.2 as well.

We focus first on the influence of galaxy and PSF features on
accuracy. We leave aside the effects of DWT-Wiener denoising
for now and thus base our analysis on the results of the “gfit”
variant which is devoid of built-in denoising scheme. The data
of interest are summarized in Figs. 2 and B.1 and in Tables A.1,
A.2.

4.2.1. Influence of Galaxy and PSF characteristics

– Influence of signal-to-noise ratio: this is best reflected on
the results of the “gfit” variant, since it has no built-in noise
correction scheme. All that was done regarding noise was to
cut out galaxy and PSF postage stamps to lower dimensions:
12 × 12 pixels for the PSF and 24 × 24 pixels for galaxies.
As expected, higher S/N yields higher Q factors: we observe
a roughly linear progression with a ∼ two-fold increase
from low S/N = 10 to fiducial S/N = 20 and a ∼ three-fold
increase from low S/N = 10 to higher S/N = 40 (see sets 4
to 12 in Fig. 2).

– Influence of galaxy size: as seen from the results of sets
13 to 18 in in Fig. 2), “gfit” seems quite sensitive to galaxy
size, the worst Q factors being obtained on smaller galaxies
and the best on the larger ones, with a factor ∼ 2 difference.
The use of postage stamp cut-outs of identical dimensions,
regardless of the actual FWHM of the galaxy they contain
could be responsible for this effect, as cut-outs with smaller
galaxies are likely to be more noise-dominated than those
with larger objects. It may also be that the minimizer is
less accurate on smaller objects. “Smooth” galaxies have
sizes varying according to a Rayleigh distribution (Kitching
et al. 2012), so it is not surprising that the Q factors of the
corresponding sets 10, 11, 12 take values in between those
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of small and large galaxies.

– Influence of bulge/disc distribution and offset: having
varying b/d ratios (sets 21, 22) seems to decrease accuracy
down to the level of small-size galaxies (sets 13, 14). On the
other hand, introducing a non-zero 50/50 bulge-to-disc (b/d)
offset (sets 21, 22) tends to yield slightly higher accuracy
compared to “smooth” galaxies (sets 17, 18). So it seems
the single-component galaxy model (see Sect. 2.3) of “gfit”
is more sensitive to b/d ratio than to b/d separation. The use
of a more sophisticated galaxy model would certainly yield
a small gain for some types of galaxies but at the price of
an additional computational time for model fitting. On real
data, the importance of the b/d distribution and offset will
probably depend on the available galaxy sample.

– Influence of turbulence: The raw Q factor plot in Fig. 2
does not show a strong impact from the inclusion of a
Kolmogorov power spectrum in the PSF ellipticities. We
note however a higher score on the fiducial turbulent set
compared to the non-turbulent one for no obvious reason.
This seems counter intuitive as PSF turbulence usually
degrades accuracy and this phenomenon may actually not
be related to turbulence.

– Influence of spatial variability between images: as de-
scribed in Kitching et al. (2012), the Galaxy challenge data
are divided into so-called “Single epoch”, “Multi-epoch” and
“Stable single epoch” depending on whether the intrinsic el-
lipticities and PSF keep the same or change their spatial dis-
tribution between images in a set (see Table 1). It seems that
having fixed instead of variable intrinsic ellipticities (“Multi-
epoch” sets) slightly decreases accuracy. Apart from this, no
clear trend really stands out from the results and it is not
clear whether the difference in accuracy is due to the type
of spatial variability used or to the specific sample of im-
ages chosen for a set. This topic nevertheless deserves to be
investigated further in a separate work.

4.2.2. Effect of denoising on accuracy

We discuss in this section the effect on accuracy of the ap-
plication of the DWT-Wiener denoising scheme described in
Sect. 2.7. The influence of denoising can be clearly observed by
comparing the plot of “gfit den” (left) with that of “gfit” in Fig. 2
(right). The corresponding scores are also listed in Tables A.1
and A.2.

We find an average two-fold increase in accuracy, the effect
being stronger on high S/N images and larger galaxies. Sets with
small galaxies are only slightly improved, however. We also no-
tice that the plots of “gfit” and “gfit den” show identical quality
factors for low S/N sets 4 to 6. Further investigation showed that
denoising was, by mistake, not applied on those sets. This would
probably have improved the overall Q factor of “gfit den”.

These results strongly suggest that the DWT-Wiener algo-
rithm really improves the overall accuracy on galaxy shape mea-
surement. We also note that denoising does not alter the quality
factor hierarchy between sets: the sets with best scores in the
“gfit” plots remain the same in the “gfit den” plot.

4.3. Bias analysis

We investigate in this section how multiplicative and additive
biases are affected by galaxy properties and the use of denoising.

4.3.1. Influence of Galaxy and PSF characteristics

To complement the results of Table 3 relative to bias, we have
plotted in Figs. 3 and 4 the multiplicative and additive biases of
each set. As noted in Sec. 4.1, “gfit den” reached the lowest av-
erage additive bias and the second lowest average multiplicative
bias of all 12 twelve competing methods.

Focusing on the multiplicative bias and leaving aside the ef-
fect of denoising for now, we can make a few observations from
the left-hand side plot of Figs. 3.

– Highest and lowest multiplicative bias: all multiplicative
bias values, except one (set 5), lie belowM/2 = 3.5 × 10−2

in absolute value. The largest biases are found on fiducial set
1 (fixed PSF & variable ellipticities), set 5 (low S/N, fixed
PSF) and set 18 (smooth galaxies, fixed PSF). The smallest
biases are obtained on set 4 (low S/N, fixed PSF & variable
ellipticities), set 17 (smooth galaxies, fixed PSF) and sets
22 to 24 (galaxies with varying b/d ratios and fixed PSF,
galaxies with non-zero b/d offset).

– Influence of signal-to-noise ratio: the results from sets 1
and 7 suggest, as expected, that multiplicative bias decreases
with S/N. The low S/N set 4, however, shows a very small
bias. It may be that the true bias is large and positive but that
it was offset by e.g. a negative bias due to the contribution
of large galaxies in that particular set. The relatively large
bias of set 5 compared to sets 4 and 6 may also be an
consequence of the PSF having a fixed variation pattern in
that set.

– Influence of galaxy size: small galaxies (sets 13, 14)
and large galaxies (sets 15, 16) have comparable biases
in absolute value, smaller galaxies having a positive bias
and larger ones a negative bias. A lower bias is reached
on “Smooth” galaxy images (set 17), likely because the
negative and positive biases of small and large galaxies
respectively compensate each others. The bias in set 18 may
also have been artificially amplified by the fixed variation
pattern of the PSF in that set.

– Influence of bulge/disc distribution and offset: letting
the b/d ratios of galaxy vary within a set tends to yield a
multiplicative bias comparable to that of small-size galaxies,
probably causing the decrease in accuracy mentioned in
Sect. 4.2. In contrast, the biases associated with a non-zero
50/50 b/d offset are among the lowest. As noted earlier, the
underlying single-component Sérsic-based galaxy model of
“gfit” (see Sect. 2.3) seems handle quite well profiles with
an off-centered bulge and disk.

– Influence of turbulence: the introduction of PSF with
turbulent ellipticities (set 19) does not induce a particularly
significant bias compared to the average.

– Influence of spatial variability between images: we note
that having “Fixed PSF” and “Fixed intrinsic ellipticity” sig-
nificantly alters the multiplicative bias, especially on low
S/N and smooth galaxy sets. Because all images have the

8
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Fig. 3. Multiplicative biasM/2 per set. The legend patterns and colors are identical to those of Fig. 2

Fig. 4. Additive bias
√A per set. The legend patterns and colors are identical to those of Fig. 2

same spatial variation within a set, its is likely that the bias
of one image is just amplified as many times as there are
images (i.e. 200 times). The effect is particularly strong on
image with low S/N (set 5) and smooth galaxies (set 18).

As far as additive bias is concerned, we note the following trend:

– Highest and lowest additive bias: “gfit” obtains an additive

bias
√A � 10−5 on all types of sets, except on the low

S/N ones. All values are positive. The lowest bias is reached
on small galaxies (sets 13, 14) and the largest on low S/N
images (sets 4 to 6).

– Influence of signal-to-noise ratio: as for multiplicative
bias, we find a trend toward higher biases for lower S/N
(sets 1 to 9).

– Influence of turbulence: the introduction of a Kolmogorov
power spectrum in PSF ellipticity induces a slightly greater
additive bias than average (see set 19).

– Influence of galaxy size: as for multiplicative bias, we note
a tendency of smaller galaxies to have a higher additive bias,
as reflected by the values for sets 15 to 18.

– Influence of bulge/disc distribution and offset: the additive
bias appears larger on galaxies with varying b/d ratios (sets
21, 22) and non-zero b/d offset (sets 23, 24).

4.3.2. Effect of denoising on bias

Comparing the plots for “gfit” and “gfit den” in Figs. 3 and 4, we
find that the additive bias does not change significantly, keeping
about the same bias values per set. In contrast, the structure of
the multiplicative plots is significantly altered.

As seen on the “gfit den” plot, denoising tend to intro-
duce some amount of negative multiplicative bias on all sets.
Although the amount of bias on fiducial sets remains roughly
the same in absolute value, the DWT-Wiener algorithm clearly
impacts the multiplicative bias relative to galaxy size, b/d ratio
and turbulence.

9
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As regards galaxy size, even though the multiplicative bias
on small galaxies is almost unchanged, that on large galaxies
increases about six-fold. Because of that, the bias on “Smooth”
galaxies, which also includes large galaxies, also increases.

DWT-Wiener denoising seems to also improves the resolu-
tion of the bulge and disk components, so that “gfit” has more
difficulty fitting its underlying single-component Sérsic model to
images with “uniform” and “offset” b/d. The effect is stronger on
larger galaxies, causing a � tenfold multiplicative bias increase.

Lastly, the introduction of PSF turbulence result in a ∼ five-
fold multiplicative bias degradation.

Despite the degradation of multiplicative bias on some
sets, the accuracy of shape measurements increases two-fold as
shown by the corresponding gain in Q factor. We also note that
denoising improves the results on sets that already have a high
S/N. All in all, the use of denoising is thus clearly beneficial.

5. Conclusions

We have described in this paper the gfit shape measurement
method, a model-fitting based on a simple Sérsic galaxy model
(Sect. 2). The method uses a custom-developed minimizer based
on a “coordinate descent” algorithm that finds a local minimum
with the lowest χ2 of the residuals between true and modeled
galaxy.

We have also performed an analysis of our results in the
GREAT10 Galaxy Challenge (Sect. 3). We participated in the
competition with two gfit variants: “gfit den”, which applied
a denoising step before performing model-fitting, and “gfit”,
which did not use denoising. The noise removal technique
employed is DWT-Wiener, a wavelet-based, shape-preserving
algorithm particularly suitable for shape measurement. (see
Sect. 2.7).

We highlight below the main conclusions of your analysis.

– Method accuracy: accuracy improves significantly as
S/N gets higher and galaxy size larger. The underlying
simple Sérsic-based galaxy model of gfit has more difficulty
handling galaxies with a non-zero 50/50 offset between
bulge and disc. The inclusion of Kolomogorov turbulence
in ellipticities is not seen to yield a significant change in
accuracy.

– Additive and multiplicative bias: the non-denoised “gfit”
variant reached the lowest average additive bias and second
lowest average multiplicative bias of all twelve competing
methods. Both additive and multiplicative bias tend to be
larger on galaxies with high S/N, smaller size and galaxies
with b/d ratio differing from 50/50.

– Impact of denoising: the application of the DWT-Wiener
noise removal algorithm yields a two-fold improvement in
accuracy (Q factor) despite significantly degrading the mul-
tiplicative bias on galaxies with a high S/N, small size and
significant bulge/disk ratio and separation.

It is interesting to see that, despite the simplicity of the
galaxy model used, its results in the Galaxy Challenge estab-
lished gfit as one of the four top-performing methods, both in
terms of accuracy and bias. Given that the results were obtained
on simulated data, this raises the question of how important
having a realistic galaxy model really matters when measuring

galaxy shapes from real data. Providing more clues on this
question is one of the objectives of the forthcoming GREAT3
challenge.
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Table A.1. “gfit”: results per set. Sets with S/N 10, 40 are re-
spectively highlighted in orange and blue. Fiducial sets with S/N
20 are represented in green and all remaining sets also have a
S/N of 20.

Set Q Qdn Qdn & train M/2 × 10−2
√A × 10−4

1 28.26 50.44 205.57 +3.542 +0.0487

2 41.98 78.50 352.54 +2.770 +0.0347

3 31.60 77.86 411.57 +1.539 +0.054

4 17.01 38.11 114.55 −0.432 +0.103

5 18.71 34.41 89.59 −7.345 +0.150

6 14.95 31.32 63.61 −2.136 +0.118

7 100.75 450.35 111.06 +2.270 +0.041

8 120.18 308.43 143.61 +0.176 +0.028

9 82.27 185.17 184.27 +1.780 +0.011

10 39.72 89.40 319.88 +0.964 +0.057

11 35.49 81.86 357.68 +1.327 +0.053

12 35.74 86.16 348.86 +2.141 +0.043

13 48.10 121.62 215.05 +2.010 +0.023

14 44.70 114.73 254.17 +0.740 +0.050

15 72.48 155.84 193.04 −1.732 +0.065

16 87.13 245.81 135.62 −1.238 +0.047

17 52.88 125.30 246.64 +0.334 +0.050

18 44.95 117.64 180.68 +3.366 +0.035

19 58.01 113.55 284.16 −0.593 +0.064

20 44.52 90.47 436.67 +1.465 +0.049

21 39.32 73.23 291.54 +1.732 +0.053

22 35.65 67.33 345.03 +0.271 +0.073

23 54.12 105.81 339.60 −0.382 +0.062

24 54.15 102.45 372.16 −0.164 +0.062

All 50.11 122.74 249.88 +0.583 +0.057

Appendix A: Accuracy and bias per set

Tables A.1 and A.2 respectively quote the actual quality factor
and bias values reached by the non-denoised and denoised vari-
ants of the gfit shape measurement method.

Appendix B: Sear power spectra

Figs B.1 and B.2 respectively show the shear power spectra of
the non-denoised and denoised variants of gfit submitted in the
GREAT10 galaxy Challenge.

Table A.2. “gfit den”: results per set. Sets with S/N 10, 40 are
respectively highlighted in orange and blue. Fiducial sets with
S/N 20 are represented in green and all remaining sets also have
a S/N of 20.

Set Q Qdn Qdn & train M/2 × 10−2
√A × 10−4

1 56.20 182.89 269.98 +1.761 +0.028

2 96.00 316.69 291.60 −0.154 +0.030

3 61.98 271.56 272.04 −1.321 +0.045

4 17.01 38.11 59.06 −0.432 +0.103

5 18.71 34.41 54.09 −7.345 +0.150

6 14.95 31.32 45.34 −2.136 +0.118

7 251.08 518.17 143.08 +0.671 +0.037

8 471.69 203.29 108.09 +0.821 +0.052

9 204.28 503.64 156.95 +0.137 +0.027

10 83.59 303.87 269.16 −1.647 +0.050

11 62.04 162.31 285.93 −1.556 +0.058

12 68.65 258.49 412.10 −1.022 +0.049

13 51.27 165.24 259.73 +2.166 +0.022

14 45.73 127.28 258.15 +0.863 +0.045

15 101.04 100.83 85.12 −9.790 +0.083

16 98.26 101.14 94.13 −8.678 +0.075

17 122.36 207.82 266.86 −3.468 +0.065

18 108.10 264.72 204.89 −0.202 +0.008

19 98.59 154.86 286.79 −0.301 +0.072

20 91.17 198.34 548.31 −1.640 +0.059

21 93.58 158.18 257.46 −3.363 +0.074

22 71.84 137.44 327.12 −3.189 +0.078

23 97.43 144.90 265.60 −0.037 +0.073

24 105.79 163.57 278.86 −3.339 +0.072

All 103.81 197.88 229.19 −2.067 +0.061
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Fig. B.1. The shear power spectra of the “gfit” variant over the 24 sets of the Galaxy challenge. The red lines denote the estimated
shear power spectra while the green lines represents the true shear power. The blue lines indicate the spectra after application of
pixel-level denoising (not DWT-Wiener denoising). The code run to plot these power spectra is identical to that used in the (Kitching
et al. 2012) paper. Note that the power spectra attributed to “gfit” in the Figure E9 of (Kitching et al. 2012) are actually those of the
“fit2-unfold” method.
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Fig. B.2. The shear power spectra of the “gfit den” variant over the 24 sets of the Galaxy challenge. This variant has a preliminary
denoising step using the DWT-Wiener algorithm. The red lines denote the estimated shear power spectra while the green lines
represents the true shear power. The blue lines indicate the spectra after application of pixel-level denoising (not DWT-Wiener
denoising). The code run to plot these power spectra is identical to that used in the (Kitching et al. 2012) paper.
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Chapter 4. Cosmic shear measurement

4.4.4 Image decomposition with Shapelets

“Shapelet” is the name given to the basis function used to decompose a 2D object (shape
inferred from surface brightness distribution or whole image) in terms of Hermite or La-
guerre polynomials (e.g., Abramowitz & Stegun 1965). The basis functions is also referred to
as “Gaussian-Hermite” or “Gaussian-Laguerre” because they involve the Gaussian function
exp(−x2/2) and can be interpreted as perturbations around a circular Gaussian. They form a
complete set of smooth, integrable, orthonormal basis functions of two variables (Refregier
2003a; Refregier & Bacon 2003; Massey & Refregier 2005; Massey et al. 2005; Kuijken 2006).

A method implementing the Shapelet formalism will analytically decompose the galaxy images
into a truncated series of orthogonal polynomials. It then becomes possible to manipulate
the image by altering the coefficients of each Shapelet polynomial basis. Useful applications
are: PSF correction, depixelation, noise reduction and shear measurement. It is also possible,
for instance, to derive the image flux and the various central moments from a Shapelet
decomposition. One of the advantages of using an orthogonal basis is that each coefficient in
a basis can be independently manipulated without altering the others.

Shapelets come in two variants, “cartesian” and “polar”, depending on the coordinate system
chosen. The choice of one or another depends on the situation.

Cartesian Shapelets

In a 2D cartesian coordinate system, the dimensional basis functions are of the form

Bn(x ;β) = 1

β
φn

( x

β

)
(4.25)

with

φn(x) =φn1(x1)φn2(x2) x = (x1, x2) n = (n1,n2) (4.26)

and

φn(x) =
[

2n π
1
2 n!
]− 1

2
Hn(x)e−

x2

2 (4.27)

The quantity β represents the characteristic scale of the Shapelet, typically close to the size
or radius of the object and φn(x) is the dimensionless basis function. Hn(x) is a Hermite
polynomial or order n. The basis functions Bn(x ;β) are orthogonal, that is∫

R

∫
R

Bn(x ;β)Bm(x ;β)d 2x = δn1m1δn2m2 (4.28)

where δi j denotes the Kronecker symbol.

A sufficiently well-behaved 2D object represented by a function f (x) can then be expanded as

f (x) =
∞∑

fn
n1,n2=0

Bn(x ;β) (4.29)
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Figure 4.6: The basis functions, up to order nmax = 6, parametrized by two integers n1,n2

(Massey & Refregier 2005).

the coefficients fn being given by

fn =
∫
R

∫
R

f (x)Bn(x ;β)d 2x (4.30)

In practice the series expansion (4.29) will be truncated at a finite order n1+ n2 � nmax. The
expansion will converge fast enough provided the object f (x) is sufficiently localized and
if the scale β and the origin of x = 0 are not too different from the size and location of the
object respectively. An appropriate choice for these values should then produce a faithful
representation of an object with a minimum number of Shapelet coefficients. How to find
the optimal values for objects of different shapes and size is one key issue to address when
implementing a Shapelet-based method. The first 28 basis functions of a Cartesian SAhapelet
are plotted in Fig. fig:cartesian shapelets.

Polar Shapelets

Polar Shapelets are the equivalents of cartesian Shapelets, but expressed in polar coordinates
(r,θ). A variant of the same formalism was also independently proposed by Bernstein &
Jarvis (2002). The use of polar coordinates makes the basis function separable in r and θ,
which may make them more intuitive and convenient to use in practice. Instead of Gaussian-
Hermite polynomials Hnl ,nr , polar Shapelets use Gauss-Laguerre polynomials Lnr

nl
, but both

polynomials are related by

Hnl ,nr (x) = (−1)nl (nl !)xnr −nr Lnr −nl
nl

(x2) (nr ,nl ) ∈N2, (nr > nl � 0) (4.31)
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Figure 4.7: The first few polar Shapelets basis functions χn,m . The real components of the
Shapelet basis functions are plotted in the top panel and the imaginary components in the
bottom panel (Massey & Refregier 2005).

Letting n = nr +nl and m = mr −ml , the 2D polar Shapelet basis functions are

χn,m(r,θ;β) = (−1)
n−m

2

β|m|+1

⎡
⎣
(

n−|m|
2

)
!

π
(

n+|m|
2

)
!

⎤
⎦

1/2

r |m|L
|m|
(n−|m|)/2

(
r 2

β2

)
e
− r 2

2β2 e−i mθ (4.32)

The index n describes the total number of oscillations (spatial frequency) and also the radius
of the basis function; the index m represents the degree of rotational symmetry of the basis
function. m can be any any integer between −n and +n in steps of 2.

Therefore the basis functions with m = 0 are rotationally invariant and their use would be
sufficient to describe a circularly symmetric object. Basis functions with |m| = 1 are invariant
only under rotation of a 2π radians angle.

The corresponding coefficients describe the location of the object centroid, the real and
imaginary parts representing respectively relative displacements towards the x or y direction
in complex space. At the next higher order, |m| = 2, the basis functions are invariant under
angle rotation ofπ radians and become negative representations of themselves under rotations
of π/2 radians; They represent ellipses. The first few polar Shapelets basis functions χn,m are
shown in Fig. 4.7.

Expression (4.32) allows the decomposition of a well behaved function using the expression

f (r,θ) =
∞∑

n=0

n∑
m=−n

fn,mχn,m(r,θ;β) (4.33)
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The Polar Shapelet coefficients are then given by

fn,m

∫
R

∫
R

f (r,θ)χn,m(r,θ;β)r dr dθ (4.34)

For practical reasons, as for cartesian Shapelets, the series expansion in terms of polar
Shapelets is truncated at some order n � nmax. An expansion using low m indice is already
capable, in principle, of giving a good representation of a typical galaxy.

Shear measurement

The operation of convergence and shear take a simple form when expressed in terms of
Shapelets. They allow to construct a more accurate shear estimator that supersedes the
ellipticity shear estimator: the location of the centroid, flux and all the information about a
shape can be parametrized using Shapelets, not only the second order ellipticity like in KSB
variants. Moreover, various higher-level shear estimators can be formed from combinations of
Shapelet estimators.

Assuming the unlensed surface brightness of a galaxy is described by the 2D function f (x),
it has been shown (Refregier 2003a) that the lensed surface brightness f ′(x) is given to first
order after a weak shear γ= (γ1,γ2) by

f ′(x) � (1+γi Ŝi ) f (x) (4.35)

where Ŝ is the shear operator. Using (4.33), f ′ can then be expanded in terms of cartesian
Shapelets, and it is found that unlensed and lensed coefficients are related by

f ′
n = (δnm +γi Si nm) fm (4.36)

where

Si nm =
∫
R

∫
R

Bn(x ;β) Ŝi Bm(x ;β)d 2x (4.37)

is known as the “shear matrix”. One can then form the following pair of shear estimators

γ̃1n = f ′
n −〈 fn

〉
S1nm

〈
fm
〉 n1,n2 even (4.38)

γ̃2n = f ′
n −〈 fn

〉
S2nm

〈
fm
〉 n1,n2 odd (4.39)

The angle brackets denote averaging over a large enough population of galaxies where the
effective mean shear is zero. Combinations of estimators γ̃i n can be used to construct high-
level estimators. One example is the weighted estimator

γ̃i =

∑
n

wi nγ̃i n∑
n

wi n
(4.40)
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PSF modeling and correction

The goal is to obtain the deconvolve coefficients of a galaxy image and use them to form the
shear estimators described by equations (4.38) and (4.39).

Convolution in the Shapelet formalism The convolution product function h of two func-
tions f and g having respective scales α, β and γ is

h(x) = f (x)� g (x) =
∫∫

f (x −x ′) g (x ′)d 2x (4.41)

As shown in Refregier (2003), the convolved coefficients hn can be expressed in terms of the
unconvolved coefficients fn and gn by

hn =∑
ml

Cnml fm gl (4.42)

Where Cnml =Cnml (α,β,γ) is the 2D “convolution tensor”, which can be written in terms of a
product of 1D convolution tensors Cnml (α,β,γ) as

Cnml (α,β,γ) =Cn1m1l1 (α,β,γ)Cn2m2l2 (α,β,γ) (4.43)

where

Cnml (α,β,γ) =�
2π (−1)n i n+m+l B (3)

nml (α−1,β−1,γ−1) (4.44)

with

B (3)
nml (a1, a2, a3) =

∫
R

Bl (x, a1)Bm(x, a2)Bn(x, a3)d x (4.45)

= ν
[

2l+m+n−1�π l !m!n! a1a2a3

]
Llmn(

�
2
ν

a1
,
�

2
ν

a2
,
�

2
ν

a3
)

and υ= a−2
1 +a−2

2 +a−2
3 , the expression for Llmn being given by recurrence by

Ll+1,m,n = 2l (a2 −1)Ll−1,m,n +2mab Ll ,m−1,n +2nac Ll ,m,n−1 L0,0,0 = 1 (4.46)

and similarly for Ll ,m+1,n and Ll ,m,n+1.

PSF correction approaches Two approaches have been used for PSF correction:

• Straight inversion of the convolution matrix
• Convolution and fitting of a PSF model

The most intuitive technique is to extract the original unconvolved coefficients through matrix
inversion (Refregier & Bacon 2003). Equation (4.42) can be expressed as

hn =∑
m

Pnm fm (4.47)
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having defined the so-called “PSF matrix” as

Pnm =∑
l

Cnml gl (4.48)

Inverting the PSF matrix then gives the unconvolved coefficients fm , i.e.

fm = P−1
nm hn (4.49)

This procedure assumes the matrix Pnm is invertible, but unfortunately this is not the case in
common situations: high-order modes with high frequency oscillations are usually strongly
altered by convolution and the PSF matrix typically only includes small values for these high-
order modes. As a result, Pnm may not be invertible. One can make it invertible but at the cost
of only keeping low enough modes. This amounts to eliminate from the reconstruction all
relevant information encoded within high-order modes. Another drawback is that inversion
algorithms are often numerically unstable. Melchior et al. (2009) claim, however, they have
succeeded in developing a deconvolution method that overcomes these problems.

Instead the following method is preferred, as it only involves a convolution operation (not a
deconvolution) and no matrix inversion (Kuijken 1999; Massey & Refregier 2005):

1. The observed galaxy image is decomposed into a set of basis function (here Shapelet
functions) and a model of unconvolved galaxy is constructed.

2. A model convolution kernel is defined as well (e.g. from stars) and then decomposed
into basis function the same way.

3. The model galaxy image obtained in (1) is then convolved with the model kernel of (2)
until the convolution product model � PSF best fits the observed galaxy image. This
process yields the basis coefficients of the galaxy prior to convolution.

4. An approximation of the unconvolved image is then made by series expanding the
coefficients obtained in (3) with the basis function obtained in (1).

Noise reduction

No provision for noise reduction is built into the Shapelet formalism. Noise is a serious issue
with Shapelet-based methods: they are in most cases able to model shape information very
well (although see Melchior et al. (2010)) but this turns against them because also faithfully
reproduce noise patterns in images with low signal to noise ratio (Melchior et al. 2009). One
way to reduce this "overfitting" is to reduce the order of expansion but this comes at the price
of a lower accuracy.

Strength

• Flexibility and accuracy in analytically describing shapes
• The decomposition approach provides a way to analyze and manipulate an image with

great accuracy. Operations such as pixelation, convolution and shear can be expressed
in terms of Shapelets. The effect of shear can be measured on different basis coefficients
which allows, in theory a more precise estimation. Usual information such as centroid
location, central moments to any order and flux can be derived.

• Shapelets also provide a solution to the PSF interpolation problem: the PSF can be
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modeled as Shapelets. The corresponding coefficients can then be interpolated at a
new position and the PSF reconstructed using these new coefficients. This scheme has
been successfully applied to several weak lensing cluster studies (Jee et al. 2005a,b, 2006,
2007b; Bergé et al. 2008; Romano et al. 2010). However, it has been argued (Jee et al.
2007a; Melchior et al. 2010) that even a high-order Shapelet-based PSF model is unable
to reproduce extended PSF features (such as its wings) and that the flexibility of the
model makes it vulnerable to pixelation and noise. So, although the level of residual
errors after Shapelet decomposition appears low enough for cluster analysis, it may
prove too high for precision cosmic shear measurement.

• Shapelets can be simply expressed and easily manipulated in Fourier space.

Weaknesses

• Sensitivity to noise (overfitting) as previously explained: Shapelets tend to reproduce
noise patterns in data with low signal to noise ratio. Unless noise is reduced by some
other technique, the only way to address this seems to reduce the order of expansion
and chose a scale that is not too fine-grained. But this goes against accuracy.

• Another issue lies in the optimal choice of the scale parameter β and the order of ex-
pansion nmax. Shapelets implementations usually determine nmax by some significance
measure of the model (Massey & Refregier 2005; Melchior et al. 2007) or fix nmax at a
value which seems reasonable to capture the general features of the shape (Refregier &
Bacon 2003; Kuijken 2006).

• Melchior et al. (2010) have questioned the ability of the Shapelet method to provide weak-
lensing measurements for all types of observable galaxies with an accuracy demanded
by upcoming missions and surveys. The have found in particular that highly-elliptical
galaxy shapes cannot be accurately modeled within the circular Shapelet basis system
and are biased towards less elongated shapes.

• The shapelet method is known to be slow compared to other image analysis techniques.

4.4.5 Bayesian shear estimation with lensfit

General approach

The description of lensfit given here is mostly based on the papers from (Miller et al. 2007;
Kitching et al. 2008). For the latest enhancements to the methods, refer to Miller et al. (2013).

Not unlike KSB/KSB+, the idea behind the lensfit method is to quantify the effect of shear on
galaxy shapes from the measurement of ellipticities. However, lensfit differs from KSB/KSB+ in
important respects. Firstly, it uses the definition of ellipticity (4.11) and the relation between
unlensed and lensed ellipticity given by (4.14). It is assumed that ε is a good estimator of
ellipticity e, so that (4.14) yields, for

∣∣g ∣∣< 1,

e = esr c +g

1+g∗ e sr c (4.50)

where e sr c denotes the intrinsic ellipticity and the symbol ∗ complex conjugation. The method
also relies on 〈ε〉 ≈ 〈esr c 〉 ≈ 0 for a large enough sample averaging and uses the shear estimator
in ε given by (4.17).
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Secondly, and more specifically, lensfit attempts to measure 〈e〉 by adopting a Bayesian ap-
proach. So, instead of calculating the expectation value of ellipticity over a population of N
galaxies with probability distribution in ellipticity f (e) as

〈e〉 =
∫

e f (e)de (4.51)

the application of the Bayesian formalism gives

〈e〉 = 1

N
∑

i

∫
e pi

(
e | y i

)
de = 1

N

∫
e
∑

i

pi
(
e | y i

)
de (4.52)

In the above expression, the vector yi contains the pixel values for the surface brightness
distribution of an individual galaxy and

pi
(
e | y i

)= P(e)L(y i | e
)

∫
P(e)L(y i | e

)
de

(4.53)

is the posterior probability in ellipticity. In that expression,

P(e) =
〈

1

N
∑

i

pi
(
e | y i

)〉
(4.54)

is the prior probability distribution of intrinsic ellipticities and L(y i | e
)

is the likelihood of
obtaining yi given the intrinsic (unlensed) ellipticity e of galaxy i .

Starting with a prior that is a good representation of the intrinsic distribution of ellipticities
should produce an unbiased estimated posterior probability distribution, from which the
shear can be deduced. Remains to evaluate the prior P(e) and the likelihood L(y i | e

)
.

Finding the prior

The correct prior cannot be known in advance and a prior that contains a zero shear is used as
a starting point. The assumption of a zero shear is wrong, however, and a correcting factor of
the form ∂〈e〉i

/
∂g , called the “shear sensitivity” must be applied to correct the expectation

values of ellipticity (4.51) for individual galaxies. The Bayesian shear estimator

ĝ =

n∑
i
〈e〉i

n∑
i

∣∣∂〈e〉i
/
∂g
∣∣ (4.55)

is therefore used instead of (4.17). The ĝ value for an individual galaxy should lie in the range
0 < ∂〈e〉i

/
∂g ≤ 1 and for a measurement completely dominated by noise, ∂〈e〉i

/
∂g ≈ 0.
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To first order

∂〈e〉i

∂g
�1−

∫(
〈e〉−eL (e) ∂P(e)

∂e de
)

∫
P(e)L (e) de

(4.56)

which gives an estimate of ĝ. The prior P (e) in (4.56) is evaluated using an iterative method
based on equation (4.53)

P(e)i+1 =
〈

1

N
∑

i
pi
(
e | y i

)〉
(4.57)

that is repeated over i iterations over the N galaxies of the population. After each step, the
prior P(e)i+1 on the left-hand side should becomes closer to the true prior.

In practice, lensfit assumes for the prior a functional of the form

P(e) =P(e1,e2) = A cos

( |e| π
2

)
exp

[
−
(

2 |e|
B
(
1+|e|D)

)C]
(4.58)

whose free parameters B , C , D are fitted by (4.57). The prior is always normalized and the
value of the parameter A is fixed by normalization. The cosine factor ensures the prior goes to
zero as |e| comes closer to 1.

Finding the likelihood

The likelihood is found by fitting a de Vaucouleurs profile to each galaxy image1. This choice
is justified by arguing that, for faint galaxies, de Vaucouleurs and exponential profiles are
indistinguishable. The model depends on six free parameters: positions x and y , ellipticity
components e1 and e1, surface brightness and a scale factor. By working in Fourier space, the
brightness and positions can be marginalized over analytically and the radius, numerically.
What is left is a likelihood as a function of ellipticity, which can be inserted in equation (4.56) to
calculate the shear estimator (4.55). Fast Fourier Transforms allow to calculate the likelihood
for an individual galaxy in about 1 second on a 1 G Hz CPU.

PSF modeling and correction

In lensfit,The PSF is modeled by stacking star images. The data for each star are sub-sampled
onto a 50-times finer pixel grid using sinc function interpolation. The stars are coaligned and
then downsampled to the original pixel sampling. A galaxy model is then convolved with the
PSF model obtained earlier and then fitted to the data from observed galaxies.

Noise reduction

The method does not contain any noise reduction feature. A denoising scheme must be
applied on the data prior to running the methods.

1In recent versions of the code a sum of Sérsic functions is used instead to model a combination of bulge and
disk
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4.5. PSF interpolation for weak lensing analysis

Figure 4.8: The final leaderboard of the Star Challenge, as displayed on the GREAT10 web site
just after the deadline. The six methods, B-Splines, IDW, RBF, RBF-thin, Kriging and IDW-Stk
were developed by the author and are described in Gentile et al. (2013). See also Kitching et al.
(2012c).

Assessment

the lensFIT method did not participate explicitly in the STEP programs, but, subsequently
tested on the same data, it showed good performance according to Miller et al. (2007); Kitching
et al. (2008). It performed relatively well in the GREAT08 challenge, respectively finishing in
fourth and third rank in the leaderboards for the low-noise and real-noise image data sets
(Bridle et al. 2010). On the other hand, although lensfit did initially compete in the GREAT10
challenge, its results were not included of the final leaderboard. It would have been interesting
to see its level of performance compared to the other methods. Recently, a pipeline that uses
the lensfit shear measurement algorithm has been applied to the CFHTLS Lensing survey
(CFHTLenS) (Miller et al. 2013). The authors have claimed the lensfit has been significantly
improved in the process. The method has certainly gained in maturity and possibly in accuracy,
but it is difficult to assess its real level of performance compared to other shear measurement
schemes.

4.5 PSF interpolation for weak lensing analysis
We mentioned PSF interpolation in Sect. 4.1.2 as one significant source of systematic errors
in weak lensing surveys. The importance of this issue for net-generation surveys has only
recently been acknowledged, as illustrated by the inclusion of a PSF interpolation challenge —
the Star Challenge — in GREAT10 (see Sect. 4.2.2).

The author participated in the Star Challenge, presenting six PSF interpolation schemes. One
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of them, the B-Splines method, won the Star Challenge and four methods (IDW, RBF, RBF-thin
and Kriging) took the next four ranks. Fig. 4.8 shows the Star Challenge leaderboard at the
close of the challenge. Refer to the Star Challenge results paper from Kitching et al. (2012c) for
the full details of the results.

The Gentile et al. (2013) paper, reproduced below for convenience, provides a detailed review of
the subject, a description of winning interpolation schemes and a thorough analysis of the Star
Challenge results. The paper also includes a PSF-model independent assessment of several
interpolation techniques, including the traditionally-used polynomial fitting technique.

So far, almost all cosmic shear surveys have been using simple PSF polynomial interpolation
techniques. But the shortcoming of these interpolators have been pointed out by several
authors (e.g., Hoekstra et al. 2004; Jarvis et al. 2004; Van Waerbeke et al. 2002b, 2005; Jee &
Tyson 2011) and we have indeed shown the limitations of polynomials in our paper.

One of the findings of our analysis is that so-called “local” interpolation schemes were more
accurate and more resilient to turbulence when run on the Star Challenge simulated data. One
interpolator in particular, based on radial basis functions (RBF), proved the most accurate
overall. It would be interesting to see if all this remains true on real data. Two aspects in
particular would need to be explored: (1) the behavior of PSF interpolators on space-based
diffraction-limited PSF fields which feature more complicated models, and (2) the influence
of more realistic models of turbulence. The more realistic simulations of the forthcoming
GREAT3 (Mandelbaum et al. 2013) may certainly help in this respect.
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ABSTRACT

Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In
contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that
scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the
PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted
much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be
performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use
low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines
(B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging (OK). These methods are tested
on the Star-challenge part of the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and are compared with
the classical polynomial fitting (Polyfit). In all our methods we model the PSF using a single Moffat profile and we interpolate the
fitted parameters at a set of required positions. This allowed us to win the Star-challenge of GREAT10, with the B-splines method.
However, we also test all our interpolation methods independently of the way the PSF is modeled, by interpolating the GREAT10
star fields themselves (i.e., the PSF parameters are known exactly at star positions). We find in that case RBF to be the clear winner,
closely followed by the other local methods, IDW and OK. The global methods, Polyfit and B-splines, are largely behind, especially
in fields with (ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all interpolators reach a variance on PSF systematics
σ2

sys better than the 1 × 10−7 upper bound expected by future space-based surveys, with the local interpolators performing better than
the global ones.

Key words. gravitational lensing: weak – methods: data analysis

1. Introduction

The convolution of galaxy images with a point spread function
(PSF) is among the primary sources of systematic error in weak
lensing measurement. The isotropic part of the PSF kernel makes
the galaxy shape appear rounder, while the anisotropic part in-
troduces an artificial shear effect that may be confused with the
genuine shear lensing signal.

To tackle these issues, various PSF correction methods have
been proposed (Kaiser et al. 1995; Luppino & Kaiser 1997;
Hoekstra et al. 1998; Kaiser 2000; Bernstein & Jarvis 2002;
Hirata & Seljak 2003; Refregier & Bacon 2003) and some
of them implemented as part of shear measurement pipelines
(Heymans et al. 2006; Massey et al. 2007; Bridle et al. 2010).
However, these correction schemes do not have built-in solu-
tions for addressing another problem: the spatial variation of the
PSF across the instrument field of view that may arise, for in-
stance, from imperfect telescope guidance, optical aberrations
or atmospheric distortions.

A non-constant PSF field implies the PSF is no longer ac-
curately known at galaxy positions and must then be estimated
for the accurate shape measurement of galaxies. Bivariate poly-
nomials, typically used as interpolators for this purpose, have in
several cases been found unable to reproduce sparse, multi-scale
or quickly varying PSF anisotropy patterns (Hoekstra 2004;
Jarvis & Jain 2004; Van Waerbeke et al. 2002, 2005; Jee & Tyson
2011).

This raises the question of whether there exists alternative
PSF models and interpolation schemes better suited for PSF es-
timation than those used so far. Indeed, it seems important to
improve this particular aspect of PSF modeling in the perspec-
tive of future space-based missions such as Euclid or advanced
ground-based telescopes like the LSST (Jee & Tyson 2011).

Only recently has the PSF variation problem begun to be
taken seriously with, notably, the advent of the GRavitational
lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge, one
of the two GREAT10 challenges (Kitching et al., in prep.). The
Star Challenge images have been designed to simulate a variety
of typical position-varying PSF anisotropy patterns and compet-
ing PSF interpolation methods were judged on their ability to
reconstruct the true PSF field at asked, non-star positions.

The Star Challenge gave us the opportunity to evaluate a
number of alternative schemes suitable for the interpolation of
realistic, spatially-varying PSF fields. The objective of this paper
is twofold: (1) to describe our approach for tackling the problems
raised by the Star Challenge and to discuss our results; (2) to per-
form a comparative analysis of the different interpolation meth-
ods after applying them on the Star Challenge simulations.

Our paper is thus organized as follows. We begin by review-
ing the most commonly used PSF representation and interpola-
tion schemes in Sect. 2 and continue with a overview of the inter-
polation schemes mentioned above in Sect. 3. We then describe
our PSF estimation pipeline and analyze our results in Sects. 4
and 5. Lastly, in Sect. 6, we measure the respective accuracy of
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Fig. 1. Interpolating a spatially-varying PSF field. The illustrated field
is a subset of an actual GREAT10 Star Challenge PSF field.

all methods based on the solutions made available after comple-
tion of the challenge and discuss the merits of each method. We
conclude in Sect. 7.

2. An overview of existing PSF interpolation
schemes

Before correcting galaxies in the image for a spatially-varying
PSF field, every shear measurement pipeline has, in one way or
another, to interpolate the PSF between the stars, as illustrated
in Fig. 1. The way this is best achieved depends essentially on
the PSF model used and on the PSF interpolation algorithm. The
PSF model defines which features of the PSF are to be repre-
sented, which also determines on which quantities spatial inter-
polation is performed. The role of the interpolation scheme, on
the other hand, is to apply a prediction algorithm to find the best
estimates for those quantities.

In the KSB method Kaiser et al. (1995) and its KSB+ vari-
ant (Luppino & Kaiser 1997; Hoekstra et al. 1998), the relevant
features of the PSF model are its ellipticity and size, which are
estimated from the second-order geometrical moments of the
PSF image. The main idea behind the PSF correction scheme is
that the PSF distortion on a galaxy image can be well described
by a small but highly anisotropic kernel q, convolved with a
large, circular seeing disk. To find the appropriate q for galaxies,
the values of q∗ at star positions (and sometimes the so-called
“smear” and “shear” polarization tensors Psm∗ and Psh∗) are in-
terpolated across the image. For doing so, the typical procedure
is to fit a second or third-order bivariate polynomial function.

Exactly which quantity is interpolated and which order is
used for the polynomial depends on the KSB+ implementa-
tions. See e.g. Heymans et al. (2006, Appendix A), Massey et al.
(2007) and recently published studies using KSB+ (Hoekstra
et al. 1998; Clowe & Schneider 2002; Heymans et al. 2005;
Hetterscheidt et al. 2007; Paulin-Henriksson et al. 2007; Fu et al.
2008; Umetsu et al. 2010).

A model representing a PSF as only a size and first-order de-
viation from circularity certainly appears quite restrictive. One
can instead look for an extensive, but compact description of the
PSF image, better suited to operations like noise filtering or de-
convolution. A natural approach is to characterize the full PSF as
a compact, complete set of orthogonal basis functions provided
in analytical form, each basis being associated with a particular
feature of the image (shape, frequency range, etc.). Ideally, this
would not only simplify galaxy deconvolution from the PSF but
also allow to better model the spatial variation of the PSF across
the field of view.

Bernstein & Jarvis (2002) and Refregier (2003); Refregier
& Bacon (2003); Massey & Refregier (2005) have proposed
PSF expansions based on the eigenfunctions of the two-
dimensional quantum harmonic oscillator, expressed in terms of
Gauss-Laguerre orthogonal polynomials (Abramowitz & Stegun
1965). These functions can be interpreted as perturbations
around a circular or elliptical Gaussian. The effect of a given
operation (such as shear or convolution), on an image can then
be traced through its contribution on each coefficient in the ba-
sis function expansion. For instance, the second-order f2,2 co-
efficient of a Shapelet is the ellipticity estimator based on the
Gaussian-weighted quadrupole moments used in KSB.

Modeling the PSF variation patterns with Shapelets typi-
cally involves the following steps: stars are expanded in terms
of Shapelet basis functions and the expansion coefficients for
each of the basis functions are fitted with a third or fourth-order
polynomial. The interpolated values of the Shape let coefficients
are then used to reconstruct the PSF at galaxy positions.

This scheme has been successfully applied to several weak
lensing cluster studies (Jee et al. 2005a,b, 2006, 2007b; Bergé
et al. 2008; Romano et al. 2010). However, it has been argued
(Jee et al. 2007a; Melchior et al. 2010) that even a high-order
Shapelet-based PSF model is unable to reproduce extended PSF
features (such as its wings) and that the flexibility of the model
makes it vulnerable to pixelation and noise. So, although the
level of residual errors after Shapelets decomposition appears
low enough for cluster analysis, it may prove too high for preci-
sion cosmic shear measurement.

Actually, it is not clear if there exists any set of basis
functions expressed in analytical form that is capable of accu-
rately describing all the signal frequencies contained in the PSF.
An alternative approach is to decompose the PSF in terms of
basis functions directly derived from the data through Principal
Component Analysis (PCA), as pioneered by Lauer (2002),
Lupton et al. (2001). This approach is supposed to yield a set
of basis function, the so-called “Principal Components”, opti-
mized for a particular data configuration and sorted according to
how much they contribute to the description of the data.

In practice, two main procedures have been experimented
that essentially depend on the type data where PCA is applied.
Jarvis & Jain (2004) and Schrabback et al. (2010) fit selected
components of the PSF (e.g. ellipticity or KSB anisotropy ker-
nel) across all image exposures with a two-dimensional polyno-
mial of order 3 or 4. PCA analysis is performed on the coeffi-
cients of the polynomial, which allows the large-scale variations
of the PSF in each exposure to be expressed as a weighted sum
of a small set of principal components. A further, higher-order
polynomial fit is then conducted on each exposure to capture
more detailed features of the PSF.

On the other hand, and more recently, Jee et al. (2007a),
Nakajima et al. (2009) and Jee & Tyson (2011) experimented
a different procedure for modeling the variation of the Hubble
Space telescope (HST) ACS camera and a simulated Large
Synoptic Survey Telescope (LSST) PSF. Instead of applying
PCA on polynomial coefficients, they perform a PCA decom-
position on the star images themselves into a basis made of the
most discriminating star building blocks. Each star can then be
expanded in terms of these “eigenPSFs” and the spatial varia-
tion of their coefficients in that basis is modeled with a bivariate
polynomial.

Regardless of the procedure used, the PCA scheme proves
superior to wavelets and Shapelet for reproducing smaller-scale
features in the PSF variation pattern, thanks to improved PSF
modeling and the use of higher-order polynomials. In the case
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of Jarvis & Jain (2004), applying PCA across all exposures al-
lowed to compensate for the small number of stars available per
exposure. Moreover, PCA is not tied to any specific PSF model.

It should be noted, however, that at least two factors may
limit the performance of PCA in practical weak lensing applica-
tions: the first is that the PCA algorithm is only able to capture
linear relationships in the data and thus may fail to reproduce
some types of high-frequency variation patterns; the other is that
PCA misses the components of the PSF pattern that are random
and uncorrelated, such as those arising from atmospheric turbu-
lence. How serious these limitations prove to be and how they
can be overcome need to be investigated further (e.g. Jain et al.
2006; Schrabback et al. 2010).

All the above methods attempt to model PSF variation pat-
terns in an empirical way by the application of some mathemat-
ical formalism. It may, on the contrary be more beneficial to un-
derstand which physical phenomena determine the structure of
the PSF patterns and, once done, seek appropriates models for
reproducing them (Jee et al. 2007a; Stabenau et al. 2007; Jee &
Tyson 2011). The PSF of the HST ACS camera, for instance, has
been studied extensively and in some cases, the physical origin
of some of the patterns clearly identified. Jee et al. (2007a) and
Jee & Tyson (2011) could relate the primary principal compo-
nent to changes in telescope focus causes by constraints on the
secondary mirror supporting structure and the “thermal breath-
ing” of the telescope.

In fact, various combined effects make the PSF vary spa-
tially or over time. Some patterns are linked to the behavior
of the optical system of the telescope or the detectors. Others
are related to mechanical or thermal effects that make the tele-
scope move slightly during an observation. For ground-based in-
struments, refraction in the atmosphere and turbulence induce
further PSF distortion.

Incorporating such a wide diversity of effects into a PSF vari-
ation model is not an easy task. However, according to Jarvis
et al. (2008), models of low-order optical aberrations such as fo-
cus and astigmatism can reproduce 90% of the PSF anisotropy
patterns found in real observation data. If so, physically-
motivated models could provide an alternative or a complement
to purely empirical methods such as PCA.

3. Looking for better PSF interpolation schemes

The analysis of commonly used PSF interpolation schemes in
the previous section has shown that the range of PSF interpo-
lation algorithms is actually quite restricted: almost always the
quantities used to characterize the PSF are fitted using a bivariate
polynomial function.

But it is important to acknowledge there may exist alternative
interpolation schemes that would prove more effective for that
purpose than polynomial fitting. Beyond this, it is essential to
recognize the goal here is not to only interpolate changes in the
PSF but also to perform a spatial interpolation of such changes.

Interpolation (e.g. Press et al. 2007) is commonly understood
as the process of estimating of values at location where no sam-
ple is available, based on values measured at sample locations.
Spatial interpolation differs from regular interpolation in that it
can take into account and potentially exploit spatial relationships
in the data. In particular, it is often the case that points close to-
gether in space are more likely to be similar than points further
apart. In other words, points may be spatially autocorrelated, at
least locally. Most spatial interpolation methods attempt to make
use of such information to improve their estimates.

After a critical review of polynomial fitting, we consider and
discuss alternative spatial interpolation schemes for modeling
PSF variation patterns.

3.1. A critical view of polynomial fitting

In the context of spatial interpolation, fitting polynomial func-
tions of the spatial coordinate x = (xi, yi) to the sampled z(x)
values of interest by ordinary least squares regression (OLS) is
known as “Trend Surface Analysis” (TSA). The fitting process
thus consists in minimizing the sum of squares for (ẑ(x) − z(x)),
assuming the data can be modeled as a surface of the form

ẑ(x) =
∑

r+s≤p

brs xr ys (1)

The integer p is the order of the trend surface (and the order
of the underlying polynomial). Finding the bi coefficients is a
standard problem in multiple regression and can be computed
with standard statistical packages.

In the literature reviewed from the previous section, authors
often justify their choice of polynomial fitting by arguing the
PSF varies in a smooth manner over the image. Indeed trend
surfaces are well suited to modeling broad features in the data
with a smooth polynomial surface, commonly of order 2 or 3.

However, PSF variation patterns result from a variety of
physical effects and even though polynomials may adequately
reproduce the smoothest variations, there may exist several other
types of patterns that a low-order polynomial function cannot
capture. Polynomials are also quite poor at handling disconti-
nuities or abrupt changes in the data. This concerns particularly
sharp discontinuities across chip gaps and rapid changes often
found near the corners of the image.

An illustrative example of the shortcomings just described
was the detection of a suspicious non-zero B-mode cosmic shear
signal in the VIRMOS-DESCART survey (Van Waerbeke et al.
2001, 2002). After investigation (Hoekstra 2004; Van Waerbeke
et al. 2005), the small scale component of the signal was traced
to the PSF interpolation scheme: the second-order polynomial
function was unable to reproduce the rapid change in PSF
anisotropy at the edges of the images. In fact, one of the main
limitation of polynomials when used for interpolating PSF im-
ages in weak lensing studies lie in their inability to reproduce
variations on scales smaller than the typical inter-stellar dis-
tance on the plane of the sky (often �1 arcmin at high galactic
latitude).

Unfortunately there are no satisfactory solutions to these
shortcomings. Increasing the order of the polynomial function
does not help as it leads to oscillations while attempting to cap-
ture smaller-scale or rapidly-varying features. The z(x) values
may reach extremely (and unnaturally) small or large values near
the edge or just outside the area covered by the data. Such ex-
treme values can also create problems in calculations.

One way to alleviate such problems is to pack more
densely the interpolating points closer to the boundaries, but this
may not be easy to achieve in practice. Hoekstra (2004) and
Van Waerbeke et al. (2005) also obtained good results with an
interpolator made of a polynomial function to model large-scale
changes combined with a rational function to deal with small-
scale variations. It is not clear, however, if this scheme can be
safely applied on different data and this may require a signifi-
cant amount of fine tuning.

In addition to the issues just mentioned, local effects in one
part of the image may influence the fit of the whole regression
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Table 1. Least squares polynomial fitting/trend surface: Pros and cons.

Least squares polynomial fitting

Pros
Simple and intuitive
Fast to compute

Cons

Usually only able to capture broad features (underfitting)
Increasing the order of polynomials does not improve and
generally degrades accuracy (overfitting)
High-order polynomials generate numerical issues (round-
ing errors, overflow, etc.)
High sensitivity to outliers and fitting errors
Local changes propagate to the whole polynomial surface
No estimation of interpolation errors (deterministic)

surface, which makes trend surfaces very sensitive to outliers,
clustering effects or observable errors in the z(x). Finally, OLS
regression implicitly assumes the z(x) are normally distributed
with uncorrelated residuals. These assumptions do not hold true
when spatial dependence exists in the data.

Actually, the fact that trend surfaces tend to ignore any spa-
tial correlation or small-scale variations can turn into an advan-
tage to remove broad features of the data prior to using some
other, finer-grained interpolator. Indeed, we saw in Sect. 1 that
Jarvis & Jain (2004) took advantage of this feature in their
PCA-based interpolation scheme.

Most of the aforementioned limitations are rooted in the
use of standard polynomials. One possible way out is to aban-
don trend surfaces altogether and use piecewise polynomials
instead (especially Chebyshev polynomials), splines (de Boor
1978; Dierckx 1995; Schumaker 2007; Prenter 2008) or alter-
native schemes that do not involve polynomials. Table 1 recalls
the main advantages and disadvantages of polynomial fitting.

3.2. Toward alternative PSF interpolation methods

Having pointed out some important shortcomings of polynomial
regression, it seems legitimate to look for alternative classes of
interpolators. It is however, probably illusory to look for an ideal
interpolation scheme that can describe equally well any kind
of PSF variation structure. For instance the patterns of varia-
tion in a turbulent PSF are very different from those found in
a diffraction-limited PSF. It is therefore probably more useful to
identify which class of interpolators should be preferably used
for a particular type of PSF pattern.

It is also key to realize that one does not need to reconstruct
the entire PSF field: one only has to infer the PSF at specific
galaxy positions based on its knowledge at sample star positions.
This implies that the class of interpolation schemes applicable
to the PSF variation problem is not restricted to surface fitting
algorithms such as polynomial fitting, but also encompasses in-
terpolation algorithms acting on scattered data.

Such data may also be considered as a partial realization
of some stochastic process. In such case, it becomes possible
to quantify the uncertainty associated with interpolated values
and the corresponding interpolation method is referred to as a
method for spatial prediction. In this article we will neglect this
distinction and use the generic term “spatial interpolation”.

In fact, there are quite a few interpolation schemes that can
be applied to model PSF changes. Over the years a large num-
ber of interpolation methods have been developed in many dis-
ciplines and with various objectives in mind. Spatial interpola-
tors are usually classified according to their range (local versus
global), the amount of smoothing (exact versus approximate)

Table 2. Spatial interpolation methods reviewed in this article.

Interpolation method Scope Exactness Model

Polynomial fitting global approximate deterministic
Basis splines global approximate1 deterministic
Inverse distance weighting local exact2 deterministic
Radial basis function local exact3 deterministic
Ordinary Kriging local exact4 stochastic

Notes. (1) Can be made exact by disabling smoothing. (2) Smoothing
possible with specific algorithms. (3) Some Kriging algorithms are
approximate.

and whether they consider the data as a realization of some ran-
dom process (stochastic versus deterministic).

A global method makes use of all available observations in
the region of interest (e.g. the image of a whole portion of the
sky) to derive the estimated value at the target point whereas a lo-
cal method only considers observations found within some small
neighborhood around the target point. Thus, global methods may
be preferable to capture the general trend in the data, whereas
local methods may better capture the local or short-range vari-
ations and exploit spatial relationships in the data (Burrough
& McDonnell 1998). A trend surface is an example of global
estimator.

An interpolation methods that produces an estimate that is
the same as the observed value at a sampled point is called an
exact method. On the contrary a method is approximate if its
predicted value at the point differs from its known value: some
amount of smoothing is involved for avoiding sharp peaks or
troughs in the resulting fitted surface.

Lastly, a stochastic (also called geostatistical) interpolator
incorporates the concept of randomness and yields both an esti-
mated value (the deterministic part) and an associated error (the
stochastic part, e.g. an estimated variance). On the other hand,
a deterministic method does not provide any assessment of the
error made on the interpolated value.

Table 2 contains the list of spatial interpolation methods cov-
ered in this article along with their classification.

Nearly all methods of spatial interpolation share the follow-
ing general spatial prediction formula

ẑ(x0) =

N∑
i=1

λi z(xi) (2)

where x0 is a target point where the value should be estimated,
the z(xi) are the locations where an observation is available and
the λi are the weights assigned to individual observations. N rep-
resents the number of points involved in the estimation (see
Fig. 2 for an illustration). Each interpolation method has its own
algorithm for estimating the weights λi. All the interpolation
methods evaluated in this article except splines, follow Eq. (2).

We now review several widely used interpolation schemes
that can be applied to the PSF interpolation problem: polynomial
splines, inverse distance weighting (IDW), radial basis functions
(RBF) and Kriging. In the remaining sections, we test these in-
terpolation methods using the GREAT10 Star Challenge simu-
lated data.

3.3. Spline interpolation

A (polynomial) univariate spline or degree p (order p+1) is made
of a set of polynomial pieces, joined together such that pieces
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Fig. 2. An illustration of local interpolation between a set of
neighboring observations Z(xi) at distances di from a target location x0.
In this example, a set of weights λi is assigned to each of the Z(xi), as
in Eq. (2).

and their derivatives at junction points (knots) are continuous up
to degree p − 1 (de Boor 1978; Dierckx 1995; Schumaker 2007;
Prenter 2008).

When it comes to modeling two-dimensional spatially
varying PSF attributes across an image, we are more specifically
interested in bivariate polynomial splines. A function s(x, y) de-
fined on a domain [a, b] × [c, d] with respective, strictly increas-
ing knot sequences λi, i = 0, 1, ..., g + 1 (λ0 = a, λg+1 = b) in the
x direction and μ j, j = 0, 1, ..., h + 1 (μ0 = c, μh+1 = d) in the
y direction is called a bivariate (tensor product) spline function
of degree k > 0 (order k + 1) in x and l > 0 (order l + 1) in y if
the following two conditions are satisfied:

1. on each subregion Di, j = [λi, λi+1] × [μ j, μ j+1], s(x, y) is
given by a polynomial of degree k in x and l in y

s(x, y) ∈ Pk ⊗ Pl i = 0, 1, ..., g; j = 0, 1, ..., h;

2. The function s(x, y) and all its partial derivatives are contin-
uous onDi, j

∂i+ j s(x, y)
∂xi ∂y j ∈ C(Di, j) i = 0, 1, ..., k − 1; j = 0, 1, ..., l − 1.

We saw earlier that polynomial fitting suffers in particular from
two serious drawbacks. One of these is that individual obser-
vations can exert an influence, in unexpected ways, on different
parts of the interpolating surface. The other is the tendency of the
interpolation surface to wiggle without control as soon as one in-
creases the degree of the polynomial to try to obtain a closer fit.

Polynomial splines solve these problems in two ways. First,
a spline is not made of a single “global” polynomial but of a
set of “local” polynomial pieces. This design confines the in-
fluence of individual observations within the area covered by the
enclosing polynomial piece. In most applications, a specific type
of spline is preferred, the so-called “Basis spline” (B-spline),
built from as a linear combination of basis polynomial functions

called B-splines

s(x, y) =
g∑

i=−k

h∑
j=−l

ci, j Ni,k+1(x) Mj,l+1(y)

where Ni,k+1(x) and Mj,l+1(y) are B-splines defined on the λ and
μ knot sequences respectively. B-splines are popular for their
computational efficiency, e.g. with the algorithms of Cox (Cox
1972) or de Boor (de Boor 1972). For a formal definition of the
B-spline basis see e.g. de Boor (1978); Dierckx (1995); Prenter
(2008).

The second issue is solved by the ability to control the
smoothness of the spline. The example of polynomial fitting
shows that a good fit to the data is not the one and only goal in
surface fitting; another, and conflicting, goal is to obtain an es-
timate that does not display spurious fluctuations. A successful
interpolation is, actually, a tradeoff between goodness of fit (fi-
delity to the data) and roughness (or “wiggleness”) of fit: a good
balance between these two criteria will allow the approximation
to not pick up too much noise (overfitting) while avoiding signal
loss (underfitting).

There is an extensive literature on spline interpolation and
many algorithms and variants have been developed since their
invention in the 1960s. Still, one can divide spline interpolation
algorithms into two main families: those based on the so-called
constructive approach, where the form of the spline function is
specified in advance and the estimation problem is reduced to the
determination of a discrete set of parameters; and those that fol-
low a variational approach, where the approximation function is
not known a priori, but follows from the solution of a variational
problem, which can often be interpreted as the minimization of
potential energy. We outline both approaches below.

Variational approach of spline interpolation
The variational approach (Wahba 1990; Green & Silverman
1994) consists in minimizing the functional

S ( f , α) =

N∑
i=1

‖z(si) − f (si)‖2 + α
∫
D
{ f (m)}2dsi (3)

where the bivariate spline function f is fitted to the z(si), i =
0, ...,N set of points in the region D where the approximation
is to be made. It can be shown (e.g. Green & Silverman 1994)
that the solution is a natural spline, that is, a spline whose second
and third derivatives are zero at the boundaries. splines obtained
in such a way as known in the literature as smoothing splines.
The parameter m represents the order of the derivative of f and
α ≥ 0 is a smoothing parameter controlling the tradeoff between
fidelity to the data and roughness of the spline approximation.

1. As α −→ 0 (no smoothing), the left-hand side least squares
estimate term dominates the roughness term on the right-
hand side and the spline function attempts to match every
single observation point (oscillating as required).

2. As α −→ ∞ (infinite smoothing), the roughness penalty term
on the right-hand side becomes paramount and the estimate
converges to a least squares estimate at the risk of underfit-
ting the data.

The most popular variational spline interpolation scheme is
that based on the thin-plate spline (TPS; Duchon 1976;
Meinguet 1979; Wahba & Wendelberger 1980; Wahba 1990;
Hutchinson 1995). The TPS interpolating spline is obtained by
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minimizing an energy function of the form (3)

S ( f , α) =

N∑
i=1

‖z(si) − f (si)‖2 + α Jm(g) dsi (4)

The most common choice of m is 2 with J2 of the form

J2(g) =

∫
D

⎧⎪⎪⎨⎪⎪⎩
(
∂2g

∂x2

)2

+ 2

(
∂2g

∂x ∂y

)2

+

(
∂2g

∂y2

)2
⎫⎪⎪⎬⎪⎪⎭ dx dy (5)

where the roughness function g(x, y) is given by

g(s) = a0 + a1x + a2y +

N∑
1

λi φ(s − si) (6)

φ being the RBF: Φ(x, y) = d2
i ln(di) with Euclidean distance

di =
√

(x − xi)2 + (y − yi)2. The λi are weighting factors.

Constructive approach of spline interpolation

Interpolating splines obtained through such a scheme are often
referred to as least squares splines (Dierckx 1980, 1995; Hayes
& Halliday 1994). For such splines, goodness of fit is measured
through a least squares criterion, as in the variational approach,
but smoothing is implemented in a different way: in the varia-
tional solution, the number and positions of knots are not varied,
and the approximating spline is obtained by minimizing an en-
ergy function. On the other hand, in the constructive approach,
one still tries to find the smoothest spline that is also closest to
the observation points. But this is achieved by optimizing the
number and placement of the knots and finding the correspond-
ing coefficients c in the B-Spline basis. This is measured by a
so-called smoothing norm G(c). Thus, the approximating spline
arises as the minimization of

S ( f , α) =

N∑
i=1

‖z(si) − f (si)‖2 + αG(c) (7)

using the same notation as in (3). An example of knot placement
strategy is to increase the number of knots (i.e. reduce the inter-
knot distance) in areas where the surface to fit varies faster or
more abruptly. By the way, we note that minimization is not ob-
tained by increasing the degree of the spline (which is kept low,
typically 3).

Whatever the approach followed for obtaining a suitable in-
terpolating spline, spline interpolation is essentially global, ap-
proximate and deterministic, as it involves all available observa-
tions points, makes use of smoothing and does not provide any
estimation on interpolation errors. The interpolation can how-
ever be made exact by setting the smoothing coefficient to zero.
Also, for smoothing splines (variational approach) a technique
called generalized cross-validation (GCV; Craven & Wahba
1978; Wahba 1990; Hutchinson & Gessler 1994) allows to au-
tomatically choose, in expression (4), suitable parameters for α
and m for minimizing cross-validation residuals. Otherwise, one
can always use standard cross-validation or Jackknifing to opti-
mize the choice of input parameters (see Sect. 4.3).

The most frequently used splines for interpolation are cubic
splines, which are made of polynomials pieces of degree at
most 3 that are twice continuously differentiable. Experience has
shown that in most applications, using splines of higher degree
seldom yields any advantage. As we saw earlier, splines avoid
the pitfalls of polynomial fitting while being much more flexible,

Table 3. Spline interpolation: Pros and cons.

Spline interpolation

Pros
Able to capture both broad and detailed features
The tradeoff between goodness and roughness of fit can be
adjusted through smoothing

Cons

Overall smoothness may still be too high
Keep a tendency to oscillate
No estimation of interpolation errors in most algorithms
Potentially less efficient to compute than local interpolation
algorithms

which allows them, despite their low degree, to capture finer-
grained details. The method assumes the existence of measure-
ment errors in the data and those can be handled by adjusting the
amount of smoothing.

On the minus side, cubic or higher degree splines are some-
times criticized for producing an interpolation that is “too
smooth”. They also keep a tendency to oscillate (although this
can be controlled unlike with standard polynomials). In addition,
the final spline estimate is influenced by the number and place-
ment of knots, which confers some arbitrariness to the method,
depending on the approach and algorithm used. This can be a
problem since there is, in general, no built-in mechanism for
quantifying interpolation errors. Lastly, spline interpolation is a
global method and performance may suffer on large datasets. A
summary of the main strengths and weaknesses of spline inter-
polation is given in Table 3.

3.4. Inverse distance weighting

Inverse distance weighting (IDW; Shepard 1968) is one of the
oldest spatial interpolation method but also one of the most com-
monly used. The estimated value ẑ(x0) at a target point x is given
by Eq. (2) where the weights λi are of the form:

λi =
1

d β(x0, xi)

/ N∑
i=1

1

d β(x0, xi)
β ≥ 0

N∑
i=1

λi = 1. (8)

In the above expression, d(x0, xi) is the distance between
points x0 and xi, β is a power parameter and N is the number of
points found in some neighborhood around the target point x0.
Scaling the weights λi so that they sum to unity ensures the esti-
mation is unbiased.

The rationale behind this formula is that data points near the
target points carry a larger weight than those further away. The
weighting power β determines how fast the weights tend to zero
as the distance d(x0, xi) increases. That is, as β is increased, the
predictions become more similar to the closest observations and
peaks in the interpolation surface becomes sharper. In this sense,
the β parameter controls the degree of smoothing desired in the
interpolation.

Power parameters between 1 and 4 are typically chosen and
the most popular choice is β = 2, which gives the inverse-
distance-squared interpolator. IDW is referred to as “moving av-
erage” when β = 0 and “linear interpolation” when β = 1.

For a more detailed discussion on the effect of the power pa-
rameter β, see e.g. Laslett et al. (1987); Burrough (1988); Brus
et al. (1996); Collins & Bolstad (1996). Another way to con-
trol the smoothness of the interpolation is to vary the size of the
neighborhood: increasing N yields greater smoothing.
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Table 4. Inverse distance weighting: Pros and cons.

Inverse distance weighting

Pros
Simple and intuitive
Fast to compute

Cons

Choice of interpolation parameters empirical
The interpolation is always exact (no smoothing)
Sensitivity to outliers and sampling configuration (clustered
and isolated points)
No estimation of interpolation errors (deterministic)

IDW is a local interpolation technique because the esti-
mation at x0 is based solely on observations points located in
the neighboring region around x0 and because the influence of
points further away decreases rapidly for β > 0. It is also forced
to be exact by design since the expression for λi in Eq. (8)
reaches the indeterminate form ∞/∞ when the estimation takes
place at the point x0 itself. IDW is further labeled as determin-
istic because the estimation algorithm relies purely on geometry
(distances) and does not provide any estimate on the error made.

IDW is popular for its simplicity, computational speed and
ability to work on scattered data. The method also has a number
of drawbacks. One is that the choice of the β parameter and the
neighborhood size and shape are arbitrary, although techniques
such as cross-validation or jackknifing can provide hints for tun-
ing these parameters (see Sect. 4.3). Another is that there exists
no underlying statistical model for measuring uncertainty in the
predictions. Further, the results of the method method are sen-
sitive to outliers and influenced by the way observations have
been sampled. In particular, the presence of clustering can bias
the estimation since in such cases clustered points and isolated
points at similar but opposite distances will carry about the same
weights. A common feature of IDW-generated interpolation sur-
faces is the presence of spikes or pits around observation points
since isolated points have a marked influence on the prediction
in their vicinity.

The original Shepard algorithm has been enhanced by sev-
eral authors to address some of the shortcomings listed above.
See in particular Renka (1988), Tomczak (1998) and Lukaszyk
(2004). One frequent extension consists in explicitly introducing
a smoothing factor s into Eq. (8), which then becomes

λi =
1(

d(x0, xi) + s
) β

/ N∑
i=1

1(
d(x0, xi) + s

) β (9)

with values of s typically chosen between 1 and 5. Table 4 sum-
marizes the main pros and cons of inverse distance weighting.

3.5. Interpolation with radial basis functions

We just described IDW, a simple form of interpolation on scat-
tered data where the weighting power ascribed to a set neigh-
boring point xi from some point x only depends on an inverse
squared distance function.

We now describe a similar, but more versatile form of in-
terpolation where the distance function is more general and ex-
pressed in terms of a RBF (Buhmann 2003; Press et al. 2007).
A RBF function, or kernel φ is a real-valued function where the
value evaluated at some point x0 only depends on the radial dis-
tance between x0 and a set of points xi, so that φ(x0 − xi) =
φ(‖x0− xi‖). The norm usually represents the Euclidean distance
but other types of distance functions are also possible.

Table 5. Most popular RBF kernels.

RBF kernel φ(r) Expression

Multiquadric
√

1 + (ε r)2

Inverse multiquadric 1/[1 + (ε r)2]

Gaussian exp[−(ε r)2]

Thin-plate r2 ln(r)

Linear r
Cubic r3

The idea behind RBF interpolation is to consider that the in-
fluence of each observation on its surrounding is the same in all
direction and well described by a RBF kernel. The interpolated
value at a point x0 is a weighted linear combination of RBF eval-
uated on points located within a given neighborhood of size N
according to the expression

ẑ(x0) =

N∑
i=1

λi z(xi) =

N∑
i=1

λi φ(‖(x0 − xi‖). (10)

The weights are determined by imposing that the interpolation
be exact at all neighboring points xi, which entails the resolution
of a linear system of N equations with N unknown weighting
factors λi. In some cases, it is necessary to add a low-degree
polynomial Pk(x) of degree k to account for a trend in z(x) and
ensure positive-definiteness of the solution. Expression (10) is
then transformed into

ẑ(x0) = Pk(x0) +

N∑
i=1

λi φ(‖(x0 − xi‖). (11)

Sometimes, an interpolation scheme based on a normalized RBF
(NRBF) of the form

ẑ(x0) =

N∑
i=1

λi φ(‖(x0 − xi‖)
/ N∑

i=1

φ(‖(x0 − xi‖) (12)

is preferred to (10), although no significant evidence for superior
performance has been found.

The actual behavior and accuracy of RBF interpolation
closely depends on how well the φ kernel matches the spatial
distribution of the data. The most frequently used RBF kernels
are listed in Table 5, where r = ‖x − xi‖ and the quantity ε is the
so-called shape parameter. The required conditions for φ to be
a suitable RBF kernel have been given by Micchelli (1986) but
the choice of the most adequate kernel for a problem at hand is
often empirical.

The shape parameter ε contained in the multiquadric, inverse
multiquadric and Gaussian kernels influences the shape of the
kernel function and controls the tradeoff between fitting accu-
racy and numerical stability. A small shape parameter produces
the most accurate results, but is always associated with a poorly
conditioned interpolation matrix. Despite the research work of
e.g. Hardy (1990), Foley (1994) and Rippa (1999), finding the
most suitable shape parameter is often a matter of trial and error.
A rule of thumb is to set ε to approximately the mean distance
to the nearest neighbor.

RBF interpolation based on the multiquadric (MQ) kernel√
1 + (ε r)2 is the most common. It was first introduced by Hardy

(1971) as a “superpositioning of quadric surfaces” for solving a
problem in cartography. In its review of interpolation methods on

A1, page 7 of 20



A&A 549, A1 (2013)

Table 6. Radial basis functions for interpolation: Pros and cons.

Radial basis functions

Pros
Flexibility, thanks to various choice of kernel functions
Relatively fast (local method), but computational speed de-
pends on the kernel function

Cons

Choice of kernel functions and interpolation parameters
empirical
The interpolation is always exact (no smoothing)
Sensitivity to outliers and sampling configuration (clus-
tered and isolated points)
No estimation of interpolation errors (deterministic)

scattered data, Franke (1982) highlighted the good performance
of the MQ kernel, which has, since then proven highly successful
in many disciplines (Hardy 1990).

RBF interpolation is fundamentally a local, exact and deter-
ministic method. There are, however, algorithms that allow to
introduce smoothing to better handle noise and measurement er-
rors in the data. The method can prove highly accurate but this
really depends on the affinity between the data and the kernel
function used. Also, because predictions are exact, RBF func-
tions can be locally sensitive to outliers. As for other determinis-
tic methods like splines or IDW, the optimal set of parameters are
most often determined by cross-validation or Jackknifing (see
Sect. 4.3). Table 6 recapitulates the favorable and less favorable
aspects of interpolation based on RBFs.

3.6. Kriging

Kriging is a spatial prediction technique initially created in the
early 1950’s by mining engineer Daniel G. Krige (Krige 1951)
with the intent of improving ore reserve estimation in South
Africa. But it was essentially the mathematician and geologist
Georges Matheron who put Krige’s work a firm theoretical basis
and developed most of the modern Kriging formalism (Matheron
1962, 1963).

Following Matheron’s work, the method has spread from
mining to disciplines such as hydrology, meteorology or
medicine, which triggered the creation of several Kriging
variants. It is thus more accurate to refer to Kriging as a fam-
ily of spatial prediction techniques instead of a single method.
It is also essential to understand that Kriging constitutes a gen-
eral method of interpolation that is in principle applicable to any
discipline, such as astronomy.

The following textbooks provide a good introduction to
the subject: Journel & Huijbregts (1978); Isaaks & Srivastava
(1989); Cressie (1991); Deutsch & Journel (1997); Goovaerts
(1997); Chilès & Delfiner (1999); Wackernagel (2003); Waller
& Gotway (2004); Webster & Oliver (2007).

Like most of the local interpolation methods described so
far in this article, Kriging makes use of the weighted sum
(2) to estimate the value at a given location based on nearby
observations. But instead of computing weights based on ge-
ometrical distances only, Kriging also takes into account the
spatial correlation existing in the data. It does so by treating ob-
served values z(x) as random variables Z(x) varying according
to a spatial random process1. In fact, Kriging assumes the un-
derlying process has a form of second-order stationarity called

1 Also called random function or stochastic process.
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γ (∞) = C(0)
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γ (h)
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h

Fig. 3. a) Typical variogram γ(h) and its equivalent covariance func-
tion C(h): if the data has some sort of spatial autocorrelation, nearby
(small h) Z(x) observed values will be more similar than more distant
Z(x) values (larger h); b) as the separation distance h grows, the quan-
tity Z(x + h) − Z(x) in expression (16) will tend to increase on average,
but less and less as the influence of Z(h) on Z(x + h) weakens; at some
threshold distance h, called the range, the increase in variance becomes
negligible and the asymptotical variance value is known as the sill

intrinsic stationarity. Second-order stationarity is traditionally
defined as follows:

1. The mathematical expectation E(Z(x)) exists and does not
depend on x

E
[
Z(x)

]
= m, ∀ x. (13)

2. For each pair of random variable
{
Z(x), Z(x + h)

}
, the co-

variance exists and only depends on the separation vector
h = x j − xi,

C(h) = E
{[

Z(x + h) − m
] [

Z(x) − m
]}
, ∀ x. (14)

Kriging’s intrinsic stationarity (Matheron 1963, 1965) is a
slightly weaker form of second-order stationarity where the dif-
ference Z(x+h)−Z(x) is treated as the stationary variable instead
of Z(x):

1. E
[
Z(x + h) − Z(x)

]
= 0, ∀ x (15)

2. Var
[
Z(x + h) − Z(x)

]
= E

{[
Z(x + h) − Z(x)

]2}
= 2γ(h).

(16)

The function γ(h) is called semivariance and its graph semivar-
iogram or simply variogram.

One reason for preferring intrinsic stationarity over sec-
ondary stationarity is that semivariance remains valid under a
wider range of circumstances. When covariance exists, both sta-
tionarities are related through

γ(h) = C(0) −C(h), C(0) = Var
[
Z(x)

]
, (17)

Figure 3 shows a typical variogram along with its equivalent co-
variance function.

Over the years about a dozen Kriging variants have been de-
veloped. We will concentrate here on ordinary Kriging (OK),
which is, by far, the most widely used. The description of other
forms of Kriging can be found in the literature given at the be-
ginning of this section.

ordinary Kriging is a local, exact and stochastic method. The
set of Z(x) is assumed to be an intrinsically stationary random
process of the form

Z(x) = m + ε (x). (18)

The quantity ε(x) is a random component drawn from a prob-
ability distribution with mean zero and variogram γ(h) given
by (16). The mean m = E[Z(x)] is assumed constant because
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Table 7. Authorized Kriging theoretical variogram models.

Model Expression

Pure nugget
γ(h) = 0 h = 0
γ(h) = c0 c0 ≥ 0 h > 0

Spherical
γ(h) = c0 + c

{ 3h
2a − 1

2

( h
a

)3} h ≤ a
γ(h) = c0 + c h > a

Exponential γ(h) = c0 + c
{
1 − exp

( − h
a

)}
Gaussian γ(h) = c0 + c

{
1 − exp

( − h2

a2

)}
Power γ(h) = c0 + b h p b ≥ 0, 0 ≤ p < 2

Notes. The models in this table correspond to purely isotropic Kriging.
More elaborate formulas exist for correcting geometrical anisotropy
through the rescaling or rotation of coordinate axes along the direction
of major spatial continuity. In the above expressions, c0 = limh→0 γ(h)
is the so-called nugget constant that represents measurement errors or
indicates a spatially discontinuous process. The quantities (c0 + c) and
a respectively represent the variogram sill and range. The pure nugget
model corresponds to absence of spatial correlation.

of (15), but remains unknown. The ordinary Kriging predictor is
given by the weighted sum

Ẑ(x0) =

N∑
i=1

λi Z(xi) (19)

where the weights λi are obtained by minimizing the so-called
Kriging variance

σ2(x0) = Var
[
Ẑ(x0) − Z(x0)

]
= E

{[
Ẑ(x0) − Z(x0)

]2
}

(20)

subject to the unbiaseness condition

E
[
Ẑ(x0) − Z(x0)

]
= 0 =

N∑
i=1

λi E
[
z(xi)

] − m. (21)

The resulting system of N + 1 equations in N + 1 unknowns λi is
known as the ordinary Kriging equations. It is often expressed
in matrix form as Aλ = b with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(x1, x1) γ(x1, x2) · · · γ(x1, xN) 1
γ(x2, x1) γ(x2, x2) · · · γ(x2, xN) 1
...

...
...

...
γ(xN , x1) γ(xN , x2) · · · γ(xN , xN) 1

1 1 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

λT =
[
λ1 λ2 · · · λN μ

] N∑
i=1

λi = 1

bT =
[
γ(x1, x0) γ(x2, x0) · · · γ(xN , x0) 1

]
.

The weights λi, along with the Lagrange multiplier μ, are ob-
tained by inversing the A matrix

λ = A−1b. (23)

The main interpolation steps with ordinary Kriging can now be
articulated:

1. Construct an experimental variogram by computing the ex-
perimental semivariance γ̂(h) for a range of separation dis-
tances ‖h‖.

Table 8. Kriging interpolation: Pros and cons.

Kriging

Pros

Predictions based on a spatial statistical analysis of the data
Best linear unbiased estimator (BLUE)
Many forms of Kriging available, applicable to various
data configurations
Automatically accounts for clustering and screening ef-
fects; remains efficient in conditions of sparse data
Can take into account variation bias toward specific direc-
tions (anisotropy)
Able to quantify interpolation errors (Kriging variance)

Cons

Overall complexity
Requires care when modeling spatial correlation structures
Assumptions of intrinsic stationarity may not be valid
(drift) and be handled though an appropriate Kriging vari-
ant
Most Kriging variants are exact (no smoothing)
Kriging is more computationally intensive than other local
methods

2. Fit the experimental variogram against an authorized vari-
ogram model. The mathematical expressions for the most
common authorized theoretical variogram models are sum-
marized in Table 7. After completion of this step, the
γ(xi, x j) value at any separation vector h = x j − xi can be
calculated and used to compute the A matrix (22).

3. Calculate interpolated values: derive the Kriging weights λi
for each point of interest x0 by solving Eq. (23) and obtain
the Kriging estimate at x0 by substituting in (19).

Most of the strengths of Kriging interpolation stem from the use
of semivariance instead of pure geometrical distances. This fea-
ture allows Kriging to remain efficient in condition of sparse data
and to be less affected by clustering and screening effects than
other methods.

In addition, as a true stochastic method, Kriging interpola-
tion provides a way of directly quantifying the uncertainty in
its predictions in the form of the Kriging variance specified in
Eq. (20).

The sophistication of Kriging, on the other hand, may also be
considered as one of its disadvantages. A thorough preliminary
analysis of the data is required or at least strongly recommended
prior to applying the technique (e.g. Tukey 1977). This can prove
complex and time consuming.

One should also bear in mind that Kriging is more computa-
tionally intensive than the other local interpolation methods de-
scribed in this article. The strong and weaker points of Kriging
interpolation are highlighted in Table 8.

4. Applying spatial interpolation schemes
on the GREAT10 Star Challenge data

In 2011, we participated in the GREAT10 Star Challenge com-
petition (Kitching et al., in prep.), which allowed us to evaluate
the performance of the interpolation schemes described above:
those based on splines, IDW, RBF and ordinary Kriging. To our
knowledge, the only reference to a similar work in the field of
astronomy is that of Bergé et al. (2012).

The GREAT10 Star Challenge ran from December 2010
to September 2011 as an open, blind competition. As illus-
trated in Fig. 4, the data consisted in 26 datasets of 50 PSF
fields, each field containing between 500 and 2000 simulated
star images and featuring specific patterns of variation. The stars
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STAR 
CHALLENGE

SET 01 SET 26...

Image 01Image 01 Image 50Image 50...

Challenge 
contains 26 Sets

Each Set contains 50 images, 
with 500-2000 Stars each

Fig. 4. Star Challenge simulated data.

images were supplied as non-overlapping, randomly-scattered
48 × 48 pixels postage stamps, altered by Gaussian noise.

After completion of the challenge, it was revealed the stars
had either a Moffat (Moffat 1969) or pseudo-Airy (Born &
Wolf 1999; Kuijken 2008) profile, with a telescope component
model from Jarvis et al. (2008). Depending on the sets, specific
additional effects, such as Kolmogorov turbulence, were also
incorporated.

The challenge itself was to predict the PSF at 1000 requested
positions in each of the 1300 PSF fields (see Fig. 1).

4.1. Which model for the PSF?

The first important step to make was to choose an appropriate
model for the PSF. Indeed, before selecting a particular PSF in-
terpolator, one has to decide on which type of data that interpo-
lator will operate.

Essentially three PSF modeling approaches have been ex-
plored in the literature:

1. PSF as a combination of basis functions;
2. PSF left in pixel form;
3. PSF expressed in functional form.

To help choosing the right model for the data at hand, useful
guidance is provided by the notions of complexity and sparsity,
recently put forward by (Paulin-Henriksson et al. 2008, 2009).
The complexity of a model is characterized by the amount of
information required to represent the underlying PSF image,
which can be expressed as the number of degrees of freedom
(DoF) present in the model. The more sophisticated the model
the greater the number of its DoF. Sparsity, on the other hand,
is meant to describe how efficiently a model can represent the
actual PSF with a limited number of DoF, that is, with a simple
model.

The simulated star images looked relatively simple and we
decided that the right level of sparsity could be achieved with
PSF in functional form (the third option). We then assumed that
the most likely PSF profile used to create the stars was either
Airy or Moffat. We opted for an elliptically symmetric Moffat
function for its simplicity and because the stars did not show
significant diffraction spikes. Each star was thus assumed to have
a light intensity distribution of the form:

I(ξ) = I0

[
1 +

(
ξ

α

)2
]−β
, ξ =

√
(x′ − xc)2 +

(y′ − yc)2

q2
·

In the above expression, I0 is the flux intensity at ξ = 0, ξ being
the radius distance from the centroid (xc, yc) of the PSF to a

Prediction

Fitting

Reconstruction

Input PSF field

- Fit against elliptical Moffat PSF model
- Validation: residual, plots, simulated data...

- Spatial analysis: neighbors, separation distances…
- Spatial prediction: splines, IDW, RBF, Kriging…
- Validation: cross-validation, Jackknifing...

- Reconstruction from predicted parameters
- Validation: visual inspection, quadrupole moments

Reconstructed PSF field
at requested non-star positions

Fig. 5. The three-stage PSF prediction pipeline we used to compete in
the Star Challenge. Elliptical Moffat profiles are fitted to the stars con-
tained in the input Star Challenge PSF field; the model resulting pa-
rameters are then individually interpolated across the field at requested
locations, using one of our PSF spatial interpolator. Lastly, the star im-
ages are reconstructed from the set of Moffat parameters predicted in
the previous stage.

spatial coordinate[
x′ − xc

y′ − yc

]
=

[
cos φ sin φ
− sin φ cos φ

] [
x − xc

y − yc

]
, (24)

obtained after counterclockwise rotation through an angle φwith

respect to the (0, x) axis. The quantity α = FWHM [21/β − 1]
−1/2

is the Moffat scale factor expressed in terms of the full width at
half maximum (FWHM) of the PSF and the Moffat shape pa-
rameter β. Lastly, q is the ratio of the semi-minor axis b to the
semi-major axis a of the isophote ellipse, given by q = b/a =
(1 − |e|)/(1 + |e|), with |e| = √

e1
2 + e2

2, e1 = |e| cos 2φ and
e2 = |e| sin 2φ.

4.2. Our PSF prediction pipeline

The three-stage PSF prediction pipeline we used in the Star
Challenge is sketched in Fig. 5. The purpose of the fitting stage
is to produce a catalog of estimated FWHM and ellipticity val-
ues of the stars found at known spatial positions within the input
Star Challenge PSF image.

In the prediction stage, that catalog is processed by an in-
terpolation algorithm and a catalog is produced with estimated
FWHM and ellipticities at new positions in the same image.
Competitors were required to submit their results in the form of
FITS Cube images (Kitching et al. 2011). In the Reconstruction
stage, each star in a PSF field is thus reconstructed using that
format from the interpolated quantities predicted in the predic-
tion stage. A more detailed description of the pipeline is given
in Appendix A.

4.3. Cross-validation and Jackknifing

The Star Challenge was a blind competition. The true answers
being unknown, it was essential to find ways to evaluate how
far the actual results were from the truth. To assess the fitting
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Table 9. Common diagnostic statistics for use with cross-validation and
Jackknifing.

Statistics Expression

Mean error ME = 1
n

∑n
i=1

[
Z(xi) − Z(x[i])

]
Mean squared error MS E = 1

n

∑n
i=1

[
Z(xi) − Z(x[i])

]2

Mean absolute error MAE = 1
n

∑n
i=1

****Z(xi) − Z(x[i])
****

Mean squared deviation
ratio

MS DR = 1
n

∑n
i=1

{[
Z(xi) − Z(x[i])

]2
/σ2

[i]
}

accuracy in the first stage of the pipeline we could rely some-
what on the analysis of the residuals between observed and fit-
ted star images. But when it came to evaluate prediction results,
we had no such residuals to help us appraise the accuracy of the
interpolation algorithm: we could only rely on the fitted observa-
tions Z(xi). The use of cross-validation and Jackknifing provided
a satisfactory solution to this problem.

Cross-validation

Cross-validation (CV) is a resampling technique frequently used
in the fields of machine learning and data mining to evaluate
and compare the performance of predictive models (Stone 1974;
Geisser 1975; Isaaks & Srivastava 1989; Browne 2000).

In the context of the Star Challenge, we used CV to both
evaluate the performance of an interpolation method and tune
the free parameters of the underlying interpolation models.

As explained earlier, the deterministic interpolation meth-
ods (IDW, RBF, splines) we tested in the competition did not
provide any quantification of residual errors. The first three di-
agnostic statistics mentioned in Table 9 provided a good indica-
tion of the level of accuracy reached. This technique was use-
ful for Kriging as well because we could directly compare the
mean error (ME) and mean squared error (MSE) provided by
CV: Kriging being an unbiased estimator, we expected ME to be
nearly zero, the MSE to be close to the Kriging variance pro-
vided by Eq. (20) and the mean squared deviation ratio (MSDR)
to be around unity.

CV also proved useful for tuning the free parameters of
the models behind the interpolation schemes, as mentioned in
Appendix A.2. For instance, for RBF interpolation, we could
rapidly try and discard the cubic, quintic, Gaussian and inverse
multiquadric kernel functions. Another example was the ability
to find the best search neighborhood size for local distance-based
interpolation methods.

Jackknifing

The Jackknifing resampling technique was first proposed by
Quenouille (1956) and further developed by Tukey (1958). A
classical review on that subject is that of Miller (1974). See also
Efron (1982); Efron & Gong (1983); Davis (1987); Tomczak
(1998) for more general discussions on the use of CV in con-
nection to Jackknifing.

To Jackknife a Star Challenge PSF field image, we would
typically split the set of input coordinates into two equally-sized
sets of star locations, i.e. 1000 randomly-selected star centroid
positions from a set of 2000, one used for input and one used for
prediction. We would then interpolate the PSF of the prediction
set based on the PSF of the input set.

Table 10. Final results obtained by the B-SPLINE, IDW, Kriging and
RBF methods in the Star Challenge, sorted by decreasing P-factors.

Rank PSF interpolation method P σ2
sys

1 Basis spline (B-splines) 13.29 7.53 × 10−5

2 Inverse distance weighting (IDW) 13.17 7.59 × 10−5

3 Radial basis function (RBF) 12.72 7.86 × 10−5

4 Radial basis function (RBF thin) 12.61 7.93 × 10−5

5 Ordinary Kriging (OK) 7.23 1.38 × 10−4

Notes. The B-splines method obtained the highest P-factor of the com-
petition while the remaining four achieved the next highest scores.

5. Analyzing our GREAT10 Star Challenge results

5.1. Results on the Star Challenge data

The results obtained in the Star Challenge by the B-splines,
IDW, Kriging, RBF and RBF-thin PSF interpolation schemes are
shown in Table 10.

The B-splines method won the Star Challenge while the re-
maining four achieved the next highest scores of the competition.

The quantity P refers to the so-called P-factor, specified in
Kitching et al. (in prep.). That P-factor is defined so as to mea-
sure the average variance over all images between the estimated
and true values of two key PSF attributes: its size R and ellip-
ticity modulus e = |e|, estimated using second brightness mo-
ments computed over the reconstructed PSF images. Since the
GREAT10 simulated star images have either Moffat or Airy pro-
files, R is actually an estimator of the FWHM of the stars.

The σ2
sys quantity is related to the P-factor by σ2

sys = 10−3/P
and represents a total residual variance in the measurement of
the PSF. It approximates the corresponding metric specified
in Amara & Réfrégier (2008); Paulin-Henriksson et al. (2008,
2009).

5.2. Performance metrics

In this article, we do not rely on the P-factor as a metric for
assessing the performance of our methods, for the following rea-
sons. Firstly, the P-factor is specific to the Star Challenge and is
not mentioned anywhere else in the literature on PSF interpo-
lation. Secondly, we are really interested in knowing the indi-
vidual accuracy of ellipticity and size but P only appraises the
combined performance of these quantities.

To assess the performance of an interpolator, we calculate
instead the root mean squared error (RMSE) and standard error
on the mean (SEM) of the residuals between true and calculated
values of PSF ellipticity and size. As in Paulin-Henriksson et al.
(2008); Kitching et al. (in prep.), we adopt the ellipticity modu-

lus e = (e2
1 + e2

2)
1/2

and size squared R2 as respective measures
of ellipticity and size, and define the corresponding residuals as

δ(e) = ecalc − etrue, δ(R2) = R2
calc − R2

true.

As regards PSF ellipticity, we adopt as performance metrics

E(e) = RMSE(δ(e)/2), σ(e) = SEM(δ(e)/2)

while for PSF size, we evaluate

E(R2) = RMSE(δ(R2))/〈R2
true〉, σ(R2) = SEM(δ(R2))/〈R2

true〉
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Table 11. Average values of the performance metrics E and σ (see
Sect. 5.2) over all sets, obtained by the B-SPLINE, IDW, Kriging and
RBF methods in the Star Challenge.

Method E(e) σ(e) E(R2) σ(R2)

B-splines 2.03 × 10−2 8.57 × 10−4 1.90 × 10−1 8.25 × 10−4

IDW 2.04 × 10−2 8.69 × 10−4 1.92 × 10−1 1.07 × 10−3

RBF 2.26 × 10−2 9.73 × 10−4 1.98 × 10−1 1.39 × 10−3

Kriging 3.17 × 10−2 1.26 × 10−3 2.22 × 10−1 2.18 × 10−3

Table 12. Performance metrics used in this article.

PSF attribute Metrics

PSF ellipticity
E(e) =

√〈
(ecalc − etrue)2

〉
/2

σ(e) = stdev (ecalc − etrue)/
√

2/
√

N

PSF size
E(R2) =

√〈
(R2

calc
− R2

true)
2
〉
/〈R2

true〉
σ(R2) = stdev (R2

calc
− R2

true)/〈R2
true〉/
√

N

Notes. The angle brackets 〈 and 〉 denote averages and “stdev” the stan-
dard deviation. These statistics are calculated over the N = 1000 stars
in each of the 50 images of each set.

where the angle brackets 〈 and 〉 denote averaging. The fac-
tor 2 in the expressions of E(e) and σ(e) arises because ellip-
ticity has two components. We calculate these metrics over the
N = 1000 stars in each of the 50 images of each set.

The quantity E provides a measure of the global accuracy of
the interpolator (bias and precision combined) while σ provides
insights into the variance of the residuals. The exact expressions
for these performance metrics are given in Table 12.

5.3. Analysis of the star challenge results

The performance metrics of B-splines, IDW, RBF and Kriging
are given in Table 11. The results of RBF and RBF-thin being
very close, we no longer distinguish these two interpolators in
the reminder of this paper and only mention them collectively as
RBF.

Since a detailed analysis of the Star Challenge results of
B-splines, IDW, RBF and Kriging as already been performed in
Kitching et al. (in prep.), a similar analysis would be redundant
here. We do have, however, a couple of observations to make,
based on the metrics in Tables 10 and 11.

We observe that the global σ2
sys variance of the most suc-

cessful interpolation method is on the order of 10−4. As demon-
strated in Amara & Réfrégier (2008); Paulin-Henriksson et al.
(2008) and confirmed by Kitching et al. (2009), future large sur-
veys will need to constrain the total variance in the systematic
errors to σ2

sys < 10−7, which corresponds to E(e) � 10−3 and

E(R2) � 10−3. The Star Challenge results thus tend to suggest
that a ∼10 improvement in E(e) and a ∼100 improvement in
E(R2) are still required for achieving that goal.

Secondly, since we have been using a three-stage pipeline
as described in Sect. 4.2, each stage, fitting, interpolation and
reconstruction, can potentially contribute to the final error in
size and ellipticity. Investigations following the publication of
the true size and ellipticity values after the end of the Star
Challenge, have led us to conclude fitting was actually the main

Table 13. Average values of the performance metrics E and σ (see
Sect. 5.2) over all sets, based on the true input ellipticities and sizes.

Method E(e) σ(e) E(R2) σ(R2)

RBF 1.73 × 10−2 7.18 × 10−4 4.58 × 10−3 1.44 × 10−4

IDW 1.78 × 10−2 7.24 × 10−4 9.25 × 10−3 2.91 × 10−4

Kriging 1.82 × 10−2 7.09 × 10−4 6.47 × 10−3 2.03 × 10−4

Polyfit 2.29 × 10−2 7.52 × 10−4 5.16 × 10−3 1.62 × 10−4

B-splines 2.33 × 10−2 7.39 × 10−4 6.45 × 10−3 2.04 × 10−4

performance limiting factor, not the interpolation or reconstruc-
tion process.

Also, the comparatively lower performance of Kriging is not
related to the interpolation algorithm itself, but is actually due
to an inadequate fitting setup, that was subsequently fixed for
B-splines, IDW and RBF submissions.

As the main goal of this article is to assess the respective
merits of the interpolation methods, we wish to eliminate all in-
accuracies related to fitting. To achieve this, we use instead of
our fitted ellipticity and FWHM estimates at known positions,
the true input values, kindly supplied to us by the GREAT10
team. We interpolate these true input values at the expected tar-
get positions and then measure the error made by the interpo-
lators. We present and analyze the corresponding results in the
next section.

6. Comparing PSF spatial interpolation schemes

The results presented in this section are based on true FWHM
and ellipticity values at known positions in the Star Challenge
PSF images. We are thus confident that error statistics we ob-
tained truly reflect the performance of the PSF interpolation
methods and are not influenced in any way by inaccuracies due
to the fitting of our PSF model or to the image reconstruction
processes.

We compare below the respective performance of five PSF
spatial interpolation schemes:

– The four interpolation schemes introduced in Sect. 3 that
competed in the Star Challenge: B-splines, IDW, RBF and
ordinary Kriging.

– An additional scheme, labeled Polyfit, which corresponds to
a least-squares bivariate polynomial fit of the PSF, similar to
that typically used in weak lensing studies (see Sect. 3.1).

The metric values reflecting the average accuracy E and error
on the mean σ for these five interpolation schemes are given in
Table 13.

6.1. Overall performance

The E and σ metrics on ellipticity and size after interpolation
with all five methods are given in Table 13. These results lead to
the following observations:

– If we compare Tables 13 and 12 we observe a ∼100-fold de-
crease of E(R2) for all interpolators. This confirms that the
fitting of PSF sizes was the main limitation that prevented us
from reaching better results in the Star Challenge. In com-
parison, the fitting of ellipticities was quite good.

– If we now concentrate on Table 13, we find that the RBF in-
terpolation scheme based on the use of radial basis functions,
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has the highest accuracy and smallest error of the mean, both
on size and ellipticity. We also observe that E(e) ∼ 10−2

whereas E(R2) ∼ 10−3. This is because these statistics are av-
erages over 26 image sets with different characteristics (see
Sect. 6.2). In reality, E(e) varies between ∼10−2 and ∼10−4,
whereas E(R2) ∼ 10−3 regardless of the sets.

– If we consider E(e) in particular, two groups emerge.
The first one contains RBF, IDW and Kriging, with
E(e) � 1.8 × 10−2. The interpolators of the second group,
B-splines and Polyfit with E(e) � 2.3 × 10−2. We will see
below that this is essentially due to the better accuracy of
local interpolators on turbulent sets as regards ellipticity. If
we focus on E(R2), the distinction between local and global
interpolation schemes disappears. RBF and Polyfit stand out
from the others with E(R2) 
 5 × 10−3. We also note that
the accuracy of IDW on size is worse by several order of
magnitude.

– The errors on the mean σ(e) and σ(R2) are on the order
of 10−4 for all five schemes. As was observed for E(e), we
find that the local interpolators RBF, IDW and Kriging reach
better σ(e) values compared to global ones, B-splines and
Polyfit. As for σ(R2), the best values are reached by RBF
and Polyfit, similarly to what was found for E(R2).

6.2. Influence of PSF features simulated in the images

As explained in the Star Challenge result paper (Kitching et al.,
in prep.), the image sets were designed to simulate typical PSF
features found in real astronomical images. Each set implements
a unique combination of characteristics against which a method
can be evaluated. All 50 images within a set share the same broad
features, but differ in the way star positions, sizes and ellipticities
are spatially distributed across the field.

The various PSF features tracked in the images are outlined
below:

– PSF model: the fiducial PSF model includes a static and a
dynamic component. The static component is based on a
pseudo-Airy (Born & Wolf 1999; Kuijken 2008) or Moffat
(Moffat 1969) functional form, depending on the set. The dy-
namic component made the ellipticity and size of individual
stars vary spatially across the image of the PSF field.

– Star size: the images from most of the sets share the same
“fiducial” 3-pixel FWHM, except sets 6, 14, 26 and sets 7,
15 whose images have respectively a FWHM of 1.5 and
6 pixels.

– Masking: sets 2, 10, 22 have a 4-fold symmetric mask de-
noted as “+” and sets 3, 11, 23 have a 6-fold mask symbol-
ized by a “∗”. Images from all other sets are unmasked.

– Number of stars: the majority of images contain 1000 stars.
Sets 4, 12, 24 are denser, with 2000 stars, whereas sets 5, 13,
25 are sparser, with only 1500 stars.

– Kolmogorov turbulence (KM): an attempt was made on sets 9
to 15, 17, 19 and 21 to simulate the effect of atmospheric
turbulence by including a Kolmogorov spectrum in PSF el-
lipticity. See Heymans et al. (2012); Kitching et al. (in prep.)
for the details. Figure 6 shows side by side a non-turbulent
and a turbulent PSF.

– Telescope effect: a deterministic component was included
in sets 17, 19 and 21 to reproduce effects from the
telescope optics on the PSF ellipticity and size, essentially
primary astigmatism, primary defocus and coma (Born &
Wolf 1999), based on the model of Jarvis & Jain (2004).

Fig. 6. A Star Challenge non-turbulent PSF (left) compared with a tur-
bulent PSF (right). Each “whisker” represents the amplitude |e| of the
ellipticity of stars. The largest whisker in the left hand side image cor-
responds to an ellipticity of 0.16. The right hand side image has a
maximum ellipticity of 0.37. The ellipticity plots have respectively been
made from the first PSF field image of sets 8 and 14.

In order to determine how interpolation schemes are affected by
the aforementioned PSF characteristics, we have computed for
each of them the performance metrics per individual image sets.
We have plotted the metrics E(e) and E(R2) in Figs. 7 and 8. We
analyze the results below.

– Influence of turbulence: the PSF feature that affects the inter-
polation methods the most is the presence of a Kolmogorov
(KM) turbulence in ellipticity. Figure 6 illustrates how er-
ratic the spatial variation pattern of ellipticity can become in
the presence of KM turbulence. It is clear that a prediction
algorithm faces a much more challenging task on turbulent
images than on images with more regular PSF patterns. To
highlight this, we have averaged in Tables 14 and 15 the
metrics E and σ separately over turbulent and non-turbulent
sets. Comparing these two tables shows that E(e) ∼ 10−4 and
σ(e) ∼ 10−5 on non-turbulent sets, whereas E(e) ∼ 10−2 and
σ(e) ∼ 10−3 on turbulent sets. This represents a ∼100-fold
decrease in accuracy and error on the mean. This effect can
also be seen on the plots of E(e) in Figs. 7 for and 8.
We also observe that, on sets without a KM spec-
trum, all interpolators evaluated in this paper typically
reach σ2

sys ∼ 10−8 already beyond the ∼10−7 goal of next-
generation space-based weak lensing surveys. In contrast,
sets with turbulent PSF do not match that requirement, with
σ2

sys ∼ 10−6.
The similarities between E(e) and σ(e) values for RBF, IDW
and Kriging in Table 15 suggest these methods behave more
or less the same when confronted with turbulent elliptici-
ties. To check this, we have have compiled in Fig. 9 the
true ellipticity pattern of turbulent set 9 along with the ac-
tual predictions of the same pattern by all five interpolators.
The same metrics for Polyfit and B-splines show that these
global methods are even more handicapped by the presence
of a KM spectrum.
Turbulence also makes the spatial distribution of the FWHM
less predictable and the methods are affected to various de-
grees: RBF, IDW, Polyfit and B-Spline are little influenced
with similar E(R2) and σ(R2) values in Tables 14 and 15 and
on the corresponding plots in Figs. 7 and 8. The only one
really impacted is Kriging.

– Influence of star density: following the discussion of
Sect. 3.2, we expect the local interpolation methods to be
more accurate than global ones on images with higher star
density but see their performance degrade on sparser star
fields. Such local interpolators base their predictions on
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Fig. 7. Accuracy per set for the RBF and IDW interpolation methods. Sets with pseudo-Airy and Moffat are respectively colored in different shades
of blue and orange, as specified in the legend at the bottom left of the figure. The various patterns contained in the left hand-side legend indicate
the types of physical PSF features simulated in the images. The values on the bars correspond to log10(1/E(e)) and log10(1/E(R2)) depending on
the quantity plotted, so the taller the bar the greater the corresponding accuracy.

observations found in local neighborhoods and should there-
fore be in position to take advantage of any additional avail-
able. On the other hand, they should suffer comparatively
more from insufficient sampling when the data is too sparse.
This is indeed what we observe in the IDW plot Fig. 7, but
the conclusion is less clear regarding RBF and Kriging: these
schemes are indeed more accurate on denser sets when it
comes to estimate the FWHM but the reverse is seen con-
cerning ellipticities (plots Figs. 7 and 8). This is mostly no-
ticeable on non-turbulent sets and may be caused by some
overfitting taking place on denser ellipticity fields. This
phenomenon does not occur on FWHM possibly because the

FWHM spatial distribution is generally smoother than that of
ellipticities in the Star Challenge dataset.
We also expect the global interpolators B-splines and Polyfit
to be little affected by difference in star density, since such
schemes attempt to find a regression surface that takes all
available data into account but at the same time minimize
the overall bias through the least squares criterion. Such a
surface tends to smooth out small-scale variations, mostly
capturing broad features in the image. The corresponding
predictions may become less accurate but, on the other hand,
remain little influenced by sampling differences. This is ex-
actly what we find in the plots of Polyfit and B-splines Fig. 8.
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Fig. 8. Accuracy per set for Kriging, polynomial fitting and B-splines. The legend is the same as that used in Fig. 7. The values on the bars
correspond to log10(1/E(e)) and log10(1/E(R2)) depending on the quantity plotted, so the taller the bar the greater the corresponding accuracy.

The smoothness of the prediction surfaces of Polyfit and
B-splines compared to that of local interpolators is clearly
noticeable in Fig. 9.

– Influence of the PSF model and size, masking and telescope
effects: although some interpolators do better than others

on a particular PSF models, each individual scheme per-
form equally well on Moffat and Airy images. This can be
seen, for example, on fiducial sets 1 and 8 where the er-
ror statistics on Moffat or Airy sets are almost identical
for a given method. The same can be said of the influence
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True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and σ.

Method E(e) σ(e) E(R2) σ(R2)

RBF 8.26 × 10−4 3.60 × 10−5 4.59 × 10−3 1.45 × 10−4

IDW 1.28 × 10−3 5.67 × 10−5 9.37 × 10−3 2.95 × 10−4

Kriging 7.06 × 10−4 3.16 × 10−5 3.57 × 10−3 1.13 × 10−4

Polyfit 8.37 × 10−4 3.73 × 10−5 5.23 × 10−3 1.64 × 10−4

B-splines 6.28 × 10−4 2.80 × 10−5 6.53 × 10−3 2.06 × 10−4

of FWHM, masking and telescope effects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more effec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and σ.

Method E(e) σ(e) E(R2) σ(R2)

RBF 4.36 × 10−2 1.81 × 10−3 4.57 × 10−3 1.44 × 10−4

IDW 4.42 × 10−2 1.79 × 10−3 9.05 × 10−3 2.85 × 10−4

Kriging 4.61 × 10−2 1.79 × 10−3 1.11 × 10−2 3.49 × 10−4

Polyfit 5.82 × 10−2 1.89 × 10−3 5.04 × 10−3 1.58 × 10−4

B-splines 5.97 × 10−2 1.88 × 10−3 6.31 × 10−3 1.99 × 10−4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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on non-turbulent sets are by far the worst of all five interpo-
lation algorithms, both on ellipticity and size (Table 14). As
found in Sect. 6.2, IDW looks quite sensitive to variations in
star density. In fact, we observe that IDW underperforms on
star fields with low-density and smaller FWHM (sets 5, 6,
13, 14, 25, 26). We were unable to find a setup that signif-
icantly improves that level of accuracy, which suggests the
method has difficulty coping with such constraints in density
and size. All in all, IDW performs quite well overall, know-
ing it is based on a very simple interpolation algorithm, with
fewer adjustable parameters than RBF or ordinary Kriging
(see Sect. 3.4).

– Interpolation with ordinary Kriging (OK): despite its reputa-
tion of best interpolator on spatially-scattered data, ordinary
Kriging, introduced in Sect. 3.6, arrives only third behind
RBF and IDW when considering error statistics in Table 13.
As see in shown in Table 14 and plots Fig. 8, Kriging’s esti-
mates on non-perturbed sets are the best of all five methods.
But this cannot compensate for its relatively poor perfor-
mance on estimating the FWHM on turbulent sets, as shown
in the value of E(R2) in Table 15. The reason for this is prob-
ably related to the significant spatial drift of the FWHM val-
ues across the image. The condition of intrinsic stationarity
required by ordinary Kriging is no longer fulfilled in some
areas, especially near the edges of the image. As a result, we
were forced to reduce the size of the search neighborhood
over which the Kriging weights are calculated, which leads
to a loss in accuracy in the corresponding regions. Kriging
variants with ability to correct such a drift, like Universal
Kriging, would probably achieve better results. Also, our
implementation of Kriging for the Star Challenge assumes
spatial isotropy, even though experimental variograms for
ellipticity on non-turbulent sets also show evidence of ge-
ometric anisotropy, A more sophisticated implementation
could have corrected these effects by rescaling and rotat-
ing coordinate axes along the direction of maximum spatial
continuity.

– Polynomial fitting (Polyfit): the results of Polyfit are of partic-
ular interest since polynomial fitting is currently the method
of choice for modeling spatial variations of a PSF in lens-
ing studies (see Sects. 2 and 3.1). polynomial fitting per-
forms relatively well on non-turbulent sets with E(e) and
E(R2) statistics fairly close to those of RBF (Table 14).
However, the corresponding statistics on turbulent sets are
significantly worse that those achieved by local methods, as
seen in Table 15. This confirms the conclusion of Sect. 3.1
whereby polynomials have difficulty coping with small or
rapid variations found in a PSF pattern. Low-degree poly-
nomials generally produce satisfactory result but tend to un-
derfit the data, which leads to suboptimal accuracy. The re-
sulting interpolation surfaces are characteristically smooth,
as clearly observed in the Polyfit plot of Fig. 9. The Star
Challenge images without KM power spectrum are smooth
enough for Polyfit to approach the accuracy of RBF and ordi-
nary Kriging. These results were obtained with a fifth-degree
polynomial, higher degrees degrading the fit.

– Interpolation with basis splines (B-splines): polynomial
splines are generally considered superior for interpolation
than simple polynomials as explained in Sect. 3.3, and we
would have expected B-splines to achieve better results than
Polyfit on the Star Challenge data. But this is not reflected
in the averaged results from Tables 13. The level of accu-
racy reached by both interpolators is nevertheless of the same
order.

As seen in Table 14 and plots Fig. 8, the ellipticity esti-
mates from B-splines are superior to those of Polyfit on
non-turbulent sets and of similar accuracy on turbulent ones.
This tends to confirm the better ability of splines to capture
small-scale and rapid variations in the data than polynomi-
als. The results show, however, errors E(R2) on the FWHM
much larger for B-splines than for Polyfit, which explains
the relative lower performance compared to Polyfit. The
FWHM spatial distribution being overall quite smooth in the
Star Challenge images, this result suggests polynomials may
be better suited than splines for modeling smoothly-varying
patterns of variation. Combining both schemes may also be
worth investigating.

7. Conclusions

The GREAT10 Star Challenge gave us the opportunity to eval-
uate several interpolation methods on spatially-varying PSF
fields:

– Two global, approximate and deterministic spatial interpola-
tion schemes: polynomial fitting (Polyfit) and basis splines
(B-splines).

– Two local, exact and deterministic techniques relying on
inverse distance weighting (IDW) and radial basis functions
(RBF).

– An implementation of ordinary Kriging, a local, exact and
stochastic spatial prediction method, frequently used in
Geostatistics and environmental sciences.

We used a three-stage PSF estimation pipeline, which we de-
scribed in Sect. 4.2 and Appendix A. Elliptical Moffat profiles
were fitted to the stars contained in each Star Challenge image
and then estimated and reconstructed at new positions in the
same image using one of the five interpolation schemes listed
above.

That approach proved quite successful since it allowed us
to win the GREAT10 Star Challenge. We were, however, disap-
pointed by the relatively high σ2

sys values reached, on the order

of 10−4, i.e., still far from the σ2
sys � 10−7 target demanded by

future large weak lensing surveys. The lack of accuracy could
be traced to the suboptimal fitting of Airy PSF profiles by our
pipeline and not to a deficiency in the PSF interpolation meth-
ods. However, this issue made it difficult to unambiguously con-
clude on the level of accuracy of individual interpolation algo-
rithms, which is the main objective of this article.

In order to measure errors purely due to interpolation and
only these, we used the true input ellipticity and FWHM cat-
alog for the input Star Challenge images instead of our fitted
estimates for these quantities. We also chose new metrics, bet-
ter suited than the P-factor for assessing estimates on ellipticity
and size. The results are summarized in Tables 13–15 along with
the corresponding plots in Figs. 7 and 8. We highlight our main
conclusions below.

– Table 13 shows the overall E(e) and E(R2) errors to be on
the order of 10−2 and 10−3 respectively. Figure 14, however
indicates that E(e) ∼ 10−4 and E(R2) ∼ 10−3 on images de-
void of Kolmogorov turbulence, to be compared with the
E(e) � 10−3 and E(R2) � 10−3 estimated requirements of
future next-generation surveys. Although the Star Challenge
PSF fields lack realism in certain aspects, this suggests that
the best methods, RBF, IDW and OK, may already be suit-
able for space-based surveys where turbulence is absent.
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– All interpolation methods see their accuracy drastically de-
graded in images where atmospheric turbulence effects have
been simulated, with E(e) and E(R2) errors increased by a
factor of ∼100. The better performance on turbulent images
of RBF, IDW and OK compared to Polyfit and B-splines in
the GREAT10 Star Challenge, suggests local methods may
be able to better cope with turbulence than global ones. We
note, however, that these results are only valid for the specific
turbulence model used in the simulations and would have to
be confirmed on real data.

– After turbulence, the factors influencing results the most are
the density of stars and their size. As far as density is con-
cerned, local methods are more impacted than global ones
and generally improve their estimates on denser sets much
more than global methods. A similar conclusion is reached
concerning local methods as far as PSF size is concerned.
However, the results suggest both global and local methods
have difficulty coping with objects smaller than the fiducial
FWHM of 3 pixels. Among all methods, IDW suffered the
most from sparse star fields with small FWHM.

– The RBF interpolator proved the most accurate, reaching the
best results on both turbulent and non-turbulent sets. The use
of kernel functions brings additional versatility compared to
a simpler interpolator like IDW, while avoiding the complex-
ity of Kriging. The selection of the most suitable kernel func-
tion and associated parameters can be greatly simplified by
the use of cross-validation or Jackknifing. These techniques,
as shown in Sect. 4.3, can prove very helpful to tune the run-
time parameters of an interpolation schemes and evaluate the
accuracy of its results.

– Despite its simplicity, the IDW interpolation method ob-
tained better than expected results, outperforming polyno-
mials and splines in the simulations. Fast and easy to tune, it
could potentially constitute a simple alternative/complement
to polynomials before trying more elaborate interpolation
schemes such as Kriging or RBF.

– Ordinary Kriging is, in our opinion, potentially the most ac-
curate method as shown especially by its results on non-
turbulent images. However, the FWHM spatial distributions
in the Star Challenge have a significant spatial drift that the
standard ordinary Kriging algorithm is unable to correct.
Another Kriging variant such as Universal Kriging would
possibly have proved more accurate. It remains that Kriging,
because of its sophistication, is more difficult and time con-
suming to operate than the other interpolators we evaluated.

– Overall, our analysis of the Star Challenge results suggests
local interpolators should be preferred over global ones
based on splines and polynomials. However, one should
bear in mind that (1) these results are based on simu-
lated data where star images are isolated, bright enough
and well sampled; (2) the spatial variation of the PSF as
simulated in GREAT10 may tend to favor local interpo-
lators over global ones. We strongly believe, nevertheless,
that local interpolation schemes for PSF interpolation have
the potential to improve the accuracy of existing and future
ground-based lensing surveys and deserve to be investigated
further.

Acknowledgements. We thank Tom Kitching for his help and especially for
providing us with the true input ellipticity and FWHM catalog of the Star
Challenge PSF images. We also acknowledge support from the International
Space Science Institute (ISSI) in Bern, where some of this research has been
discussed. This work is supported by the Swiss National Science Foundation
(SNSF).

Appendix A: Our PSF prediction pipeline (PSFPP)

A.1. Overview

The PSF prediction pipeline used in the Star Challenge is out-
lined in Fig. 5. A PSF field is fed into the pipeline and goes
through three processing stages:

1. Fitting stage: the Moffat PSF model described in Sect. 4.1 is
fitted to each star at known position (xc, yc) in the PSF field
image. A catalog is produced, containing a set of fitted pa-
rameters

{
(xc, yc); (e1, e2); φ, (α, β)

}
for each star. Instead of

an out-the-box minimizer, we employ a custom minimizer
we developed at the EPFL Laboratory of astrophysics and
well suited to fitting faint and noisy images like those fre-
quently found in weak lensing. The minimizer uses an “adap-
tive cyclic coordinate descent algorithm” that find a local
minimum with the lowest χ2 of the residuals. That same min-
imizer has also been used in the version of the gfit shear mea-
surement method that competed in the GREAT10 Galaxy
Challenge (Kitching et al. 2012). The star images processed
by the minimizer are 16 × 16-pixel cutouts instead of the
original 48 × 48-pixel postage stamps.

2. Prediction stage:
– First, an analysis of the spatial distribution of each pa-

rameter across the image is performed. In particular, all
separation distances between stars are recorded in the
form of KD-trees (Bentley 1975) for efficiently finding
the nearest neighboring stars located within a given sep-
aration distance ‖h‖.

– Second, a spatial prediction scheme is applied to estimate
the values Z′p(x′i , y

′
i) of the parameter p at asked loca-

tions (x′i , y
′
i), given the fitted parameter values Zp(xi, yi)

obtained in the previous stage. One of the four methods
described in Sect. 3 is applied here.

3. Reconstruction stage: All stars in a PSF field are recon-
structed based on the elliptical Moffat model described in
Sect. 4.1, but using the parameters predicted for that star dur-
ing the Prediction stage.

A.2. Pipeline implementation and configuration

The pipeline code is written in Python, a programming language
known for its power, flexibility and short development cycle. The
usual standard Python libraries are used, notably: NumPy, SciPy,
PyFITS and matplotlib. SciPy is the standard scientific library
for Python. Most of its functions are thin Python wrappers on
top of fortran, C and C++ functions. SciPy takes advantage of
installed optimized libraries such as LAPACK (Linear Algebra
PACKage) library (Anderson et al. 1990). We employ the cross-
validation and Jackknifing resampling techniques (see Sect. 4.3)
to tune the run-time parameters for the interpolation schemes
and evaluate the accuracy of the results. We highlight below a
few aspects related to the implementation of the methods.

– IDW: the code for Inverse Distance Weighted interpolation
is written in Python, based on Eq. (2) with weighting factors
specified by (8). The free parameters are the power factor β
and the neighborhood size N (see Sect. 3.4). A configuration
with β = 2, with 5 ≤ N ≤ 15 depending on the density of
stars in images gives the best results according to our tests.

– RBF: we use the rbf() interpolation function available in
the SciPy interpolate module. The number of parameters to
tune is greater compared to IDW: a kernel function chosen
among those listed in Table 5; the neighborhood search size
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N; a shape parameter ε for the multiquadric, inverse multi-
quadric and Gaussian kernels; and a last parameter for con-
trolling the smoothness of the interpolation (see Sect. 3.5).
Only the linear, thin-plate and multiquadric kernels gave
stable enough predictions. Choosing 25 ≤ N ≤ 30 and dis-
abling smoothing (i.e. use exact interpolation) yielded the
best cross-validation and Jackknifing results for the chosen
kernels.

– splines: we have selected the bisplrep() and bisplev()
bivariate B-spline interpolation functions provided by the
SciPy interpolate module. These functions are Python wrap-
pers on top of the fortran FITPACK package (Dierckx 1995).
The underlying algorithms follow the constructive approach
for spline interpolation described in Sect. 3.3 and are spec-
ified in Dierckx (1980). The main parameters affecting the
interpolation are the degree p of the spline, the number of
knots N and a smoothing factor s. We have fixed p to 3 but
let the algorithm automatically set N and s.

– Kriging: we have used our own custom-developed Python
code of ordinary Kriging (see Sect. 3.6). The Kriging used in
the Star Challenge and in this article is isotropic and does not
implement any spatial anisotropy or drift correction scheme.
The accuracy of the ordinary Kriging interpolation scheme
was influenced by the following set of parameters:

– The interpolation range, i.e. the range in pixels used for
interpolation. Depending on the images, we chose a cir-
cular area with a radius between 700 and 1000 pixels
from the center of the 4800 × 4800 PSF field.

– Lag distance h in pixels. We used values in the range
100 ≤ h ≤ 300 depending on the image and the PSF
model parameter to estimate.

– The number of observations N in Eq. (19) to include in
the neighborhood: we used 5 ≤ N ≤ 20 depending on the
image star density.

– Tolerance distance Δh (pixels) and angle Δθ considered
when locating neighboring observations. As a rule of
thumb, we selected Δh ≈ h/2 and Δθ = 22.5◦.

– A theoretical variogram model such as those listed in
Table 7. The experimental variograms were fitted using
the Levenberg-Marquardt least-squares leastsq routine
from the SciPy optimize module. The program dynami-
cally selected the theoretical variogram models and pa-
rameters that produced the best fit.

– The Polyfit code is based on the leastsq() function from
the SciPy optimize Python module. A least-squares fit to a
bivariate polynomial of degree 5 gave the best estimates.
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4.6. A denoising scheme for weak lensing

4.6 A denoising scheme for weak lensing
As discussed in Sect. 4.1.2, the most valuable galaxy images for weak lensing analysis are also
the faintest, which are often the noisiest ones. It is thus of interest to look for noise correction
techniques capable of improving the signal-to-noise ratio ( ) of such images while preserving
the shape information that encodes the shear signal. In fact, any kind of shear measurement
algorithm can potentially improves its accuracy in this way. Moreover, a good denoising
scheme also allows to process galaxy images which otherwise would not be usable for weak
lensing analysis.

The author, in collaboration with Dr. G. Nurbaeva, Dr. F. Courbin and Prof. G. Meylan, explored
the applicability to weak lensing images of three popular denoising schemes: median filtering
(e.g., Arce 2005), Wiener filtering (Wiener 1949) and discrete wavelet transform (DWT) with
Bayes thresholding. We tested these algorithms on synthetic data with known ellipticities and
the same characteristics as the GREAT08 datasets, varying S/N, resolution and sampling. We
also evaluated the same algorithms on the actual low-noise and high-noise GREAT08 datasets
(Bridle et al. 2009, 2010). We measured the effectiveness of these algorithms in eliminating
noise while preserving ellipticities by running the KSB+ code developed by Catherine Heymans
and Ludovic Van Waerbeke (Heymans et al. 2006). The results are discussed in the Nurbaeva
et al. (2011) paper, included below as part of this thesis.

While performing this research we discovered that an algorithm combining DWT and Wiener,
which we called “DWT-Wiener”, significantly improved the accuracy of shape measurement
on our datasets. The corresponding results are also included in our paper. The DWT-Wiener
scheme has been since tested in the GREAT10 Galaxy Challenge by several shear measure-
ment methods developed at the laboratory of astrophysics of EPFL: gfit Gentile et al. (2012),
MegaLUT (Tewes et al. 2012) and TVNN (Nurbaeva et al. 2013). In all cases, significant improve-
ments in accuracy were obtaind. An analysis of the effect of the application of DWT-Wiener
on accuracy and bias by gfit in GREAT10 is also included in Gentile et al. (2012). We will soon
release the code of DWT-Wiener to the image processing and astronomical communities.

We refer the reader to the article below for further details on this study.
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ABSTRACT

Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current
theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the
sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data
both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We
perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method,
based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08
challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a
factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising.

Key words. methods: data analysis – techniques: image processing – gravitational lensing: weak – dark energy –
cosmological parameters – methods: statistical

1. Introduction

The observed accelerated expansion of the Universe
(Riess et al. 1998; Perlmutter et al. 1999) can currently be
explained by either the existence of a repulsive force associated
with so-called “dark energy”, or an erroneous description of
gravity by General Relativity on large spatial scales (for a re-
view, see Frieman et al. 2008). Both explanations have profound
implications for our understanding of cosmology and physics in
general and are the main motivations of future large cosmologi-
cal surveys. These surveys, such as the ESA EUCLID satellite
project (Réfrégier et al. 2010) combine several complementary
cosmological probes to constrain the cosmological parameters,
including the dark energy equation of state parameter w(z) and
its evolution with redshift.

The main cosmological probe to be employed by EUCLID
is weak gravitational lensing, also known as cosmic shear. The
observational signature of cosmic shear is an apparent distor-
tion of the image of distant galaxies under the influence of
gravitational lensing by a foreground potential well. The ex-
act way in which the galaxies are distorted is very sensitive to
the dark matter and dark energy distributions in the foreground
large-scale structures, hence providing an efficient tool for cos-
mological measurements. While the first detections of cosmic
shear are already a decade old and were performed on data with
relatively limited field of view and depth (Bacon et al. 2000;
van Waebeke et al. 2000; Wittman et al. 2000), the use of cos-
mic shear in terms of cosmological applications requires a ma-
jor space survey. However, the effectiveness of the method in
constraining cosmology relies on image processing techniques
that measure the shapes of individual galaxies in the most ac-
curate possible way. These techniques must provide solutions
to the four following problems: (i) the degradations caused by
the dominating Poisson noise; (ii) the sampling adopted to rep-
resent the data; (iii) the convolution by the instrumental point
spread function (PSF) and its possible variations across the field

of view; and (iv) the measurement of the cosmic shear itself and
its power spectrum from all the galaxy shape measurements, i.e.,
billions of galaxies.

The techniques currently in use to measure cosmic shear are
sufficient to detect it and even sometimes to reconstruct the 3D
mass map of large-scale structures (e.g., Massey et al. 2007a)
but it is estimated that a tenfold improvement in the preci-
sion of galaxy shape measurements is needed to place strin-
gent constraints on cosmological models. Thanks to both the
STEP programs (Heymans et al. 2006; Massey et al. 2007b) and
the GREAT081 challenge (Bridle et al. 2010), the lensing com-
munity has made excellent progress toward meeting this goal.
However, even the most successful shear measurement methods
see their accuracy decrease significantly under high noise con-
ditions. It is therefore of interest to develop suitable denoising
techniques that are capable of solving the difficult problem of
removing noise without compromising the fragile shear signal.

In the present work, we focus on the effects of denoising
and pixelisation on shape measurement. Both are closely con-
nected since the spatial frequencies contained in the galaxy im-
ages change with the adopted pixel size, but not the noise fre-
quency. Moreover, for a given exposure time, changing the pixel
size affects the signal-to-noise ratio (SNR) of the data.

For this reason, it is important to explore the large param-
eter space of the problem and to weight the relative impacts of
different samplings and SNRs on the shear measurement. To in-
vestigate this problem, we use sets of synthetic galaxies with
known ellipticities, for different resolutions and samplings span-
ning a range of observational setups. Using these data, as well
as a subset of the GREAT08 data (Bridle et al. 2010), we test the
performance of three popular denoising algorithms: median fil-
tering, Wiener filtering, and discrete wavelet transform (DWT).
We also propose a new denoising method based on a combina-
tion of wavelet transform and Wiener filtering.

1 http://www.greatchallenges.info/
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2. Methods

2.1. Median filter

The median filter is a nonlinear denoising technique widely used
in digital image processing. Apart from its simplicity, median
filtering has two important properties: firstly, it is particularly
effective for images corrupted by Poisson noise and secondly, it
preserves edges in images.

A median filter works by sliding a box of given size
(3 × 3 pixels in our case) over the image, replacing the cen-
tral value by the median of its neighboring pixels (Arce 2005;
Arias-Castro & Donoho 2009).

2.2. Wiener filter

The Wiener filter uses a least mean squares filtering algorithm
(Wiener 1949) based on a stochastic framework that minimizes
the mean square error in the noise. The Wiener filter has become
a classical signal smoothing technique and is widely used in sig-
nal processing (Khireddine et al. 2007; Press et al. 2007). In our
study, we use the following simplified algorithm.

If we define I to be the input brightness of the pixel of the
noisy image, the output brightness Iwiener of the denoised pixel is
then given by

Iwiener =

{
I
(
1 − σ2n/σ2w

)
, σ2w ≥ σn,

0, σ2w < σn,
(1)

where σn is the estimated mean standard deviation of the noise
in the image and σ2w is an average variance in the pixel values
calculated in a local window of 3 × 3 pixels.

The algorithm implemented in this work uses the scientific
libraries (SciPy community 2010) available with the Python pro-
gramming language.

2.3. Discret wavelet transform (DWT)

Wavelet analysis is an efficient and fast computational tech-
nique widely used for data compression and noise reduction
(Bruce et al. 1996). In our study, we apply the 2D discrete
wavelet transform (DWT). Denoising in wavelet space involves
three steps: (i) linear forward wavelet decomposition, (ii) shrink-
age of wavelet coefficients, and (iii) linear inverse wavelet recon-
struction.

As the basis function we adopt the Haar wavelet, which is
orthogonal and computationally simple. The latter property is of
primary importance to preserving shape invariance.

The Haar wavelet is defined by two basic functions: a scaling
function φ and a wavelet function, called the mother wavelet ψ.
The set of basic functions for the 1D case is given by{
φ

j
i (x) = φ(2

k− jx − i)
ψ

j
i (x) = ψ(2

k− jx − i), i = 0, 1, 2, ...,N − 1 (2)

where N = 2k − j is the number of wavelet coefficients, which
also defines the size of the subband of a given decomposition
level j, where k is the coarsest level. The scaling function and
the mother wavelet are defined as follows:

φ(x) =

{
1, 0 ≤ x < 1
0, otherwise ψ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 0 ≤ x < 1/2
−1, 1/2 ≤ x < 1
0, otherwise.

(3)

To decompose a two-dimensional image, the coefficients are
obtained by multiplying the one-dimensional scaling and the

wavelet functions both in the horizontal and vertical directions.
For each resolution level, the image is devided into four im-
ages of coefficients, called subbands. The first, often labeled LL
(low-low), contains the main (low)-frequency features of the sig-
nal. The three others are dominated by the noise in the horizon-
tal direction, HL (high-low), vertical direction, LH (low-high),
and diagonal direction, HH (high-high). Iterating the described
scheme (Eq. (2)), one can obtain an image sequence with a cas-
cading structure as illustrated in Fig. 2.

The most important part of the DWT denoising technique is
the wavelet shrinkage, which drives the efficiency of denoising.
The wavelet shrinkage is applied to the subbands associated with
the noise: HL, LH, and HH. The classical way to suppress the
noise by shrinking the wavelet coefficients is to apply a threshold
to the wavelet coefficients. There are two types of thresholding
algorithms: soft and hard thresholding. For a given value of the
threshold T , hard thresholding sets all coefficients less than T to
zero. For the soft thresholding, T is subtracted from all coeffi-
cients greater than T (see e.g., Vetterli & Kovacevic 1995).

2.3.1. Bayes thresholding

The wavelet shrinkage step depends heavily on the
choice of the thresholding scheme. Popular thresholding
methods include Stein’s unbiased risk estimate (SURE;
Donoho & Johnstone 1994) and universal thresholding
(Donoho & Johnstone 1995), the latter depending on image size.
A more efficient thresholding scheme is the Bayes wavelet
threshold proposed by Chang (2000), which uses a different
threshold level for each of the three HL, LH, and HH noise
subbands. This adaptive threshold, TBayes, is computed to
be

TBayes =
σ2n
σx
, (4)

where σx is the standard deviation in the noiseless coefficients
in a given subband, which can be estimated as

σx =

√
max(σ2y − σ2n, 0), (5)

where σ2y is the variance in the coefficients in a subband. If
σx = 0 then TBayes diverges to infinity, meaning that all coeffi-
cients in the corresponding subband must be set to zero.

2.3.2. Combined DWT-Wiener filter: a new thresholding
scheme

The DWT-Bayes thresholding gives good results for general-
purpose imaging of relatively small dynamical range. However,
it is quickly limited when dealing with astronomical images
where the intensity levels vary sharply on spatial scales in the or-
der of the PSF size. Standard thresholding, where T is the same
across each wavelet subband, degrades galaxy shapes with steep
intensity profiles, especially when images are critically sampled.
This is simply because the light profile between two neighbor-
ing pixels is much steeper than the estimated noise per pixel, σn.
The resulting denoised image is therefore too smooth in rather
flat areas such as the image background, and too noisy in areas
of larger dynamical range, i.e., where galaxies lie. This has a
significant effect on the shape measurement accuracy.
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Fig. 1. Artificial galaxies of different resolutions. From left to right the stamp size is 40, 80, 160 and 320 pixels on a side, corresponding to a mean
SNR per pixel of 1.5, 0.75, 0.37 and 0.19, respectively. The first two samplings on the left correspond to the “realistic sampling” and the “small
sampling” cases, respectively (see text).

For this reason, we propose a simple and effective method
that combines the Haar DWT and the classical Wiener algo-
rithms in the following way:

1. we decompose the image and calculate the HL j, LH j, and
HH j subbands of wavelet coefficients for all resolution levels
j = 1, 2, ..., k, where k is the coarsest level;

2. we then modify the wavelet subbands HLj, LH j, and HH j

using the kernel Wiener algorithm (Eq. (1));
3. we finally apply the inverse DWT to the modified wavelet

coefficient to reconstruct the denoised image.

In other words, we apply the Wiener method to the wavelet co-
efficients rather than to the data pixels themselves. We show in
the following that, for images of faint and small galaxies, this
simple method not only conserves the shape of the galaxies, but
also improves their measurement.

3. Synthetic data

We use a set of 10 000 simulated galaxies in order to (i) test the
effect of the different denoising techniques on the shape mea-
surement and (ii) estimate how this behavior depends on the
sampling and the SNR of the data. Each galaxy is represented
by a Sersic profile of known ellipticity and Sersic index. This
profile is sampled on five different grids of pixels. In doing this,
we keep the size of the galaxy fixed on the plane of the sky.

Our finest sampling has galaxies with a full-width-half-
maximum of FWHM = 17.3 pixels. Each of the 10 000 galaxy
images is represented on a stamp of 320 × 320 pixels. We then
degrade the sampling by a factor of two, four times in a row,
to produce galaxy images with FWHM ∼ 17, 9, 5, 3 pixels,
which correspond, respectively, to image sizes of 320, 160, 80,
and 40 pixels on a side.

We then add Poisson noise to the simulated data, assuming
that the data are sky-dominated, i.e, to a good approximation
the amplitude of the noise is the same for all pixels across the
galaxy image. We generate noisy images that mimic those of the
GREAT08 challenge (Bridle et al. 2010) with a standard devia-
tion set to the value of σn = 1000 for all pixels. Before adding
the noise, we scale the galaxy images so that we probe a range
of realistic SNR. In the rest of the paper, we refer to the mean
SNR per pixel, i.e.,

SNR =
N∑

j=1

I j

N × σn
, (6)

where I j is the image value at pixel j and N is the total number of
pixels in the image. Since the exposure time is limited in real sky
surveys, improving the sampling of the data is done to the cost of
a lower SNR per pixel. All our simulated images are computed
for a fixed integration time.

We use four different samplings, characterized by the typical
FWHM of the simulated galaxies. The first two samplings have
FWHM ∼ 3 and 5 pixels which are typical values for a space
mission such as EUCLID. In the following, we refer to these
as “real sampling” data. We also use two smaller samplings of
FWHM ∼ 9 and 17 pixels. We refer to these as “small sampling”
data. Figure 1 give examples of simulated images for the same
realization of a galaxy. Our simulations span the SNR range be-
tween 0.05 to 4.0.

For reference, the SNR of the GREAT08 challenge data range
from 0.68 to 2.6 in the “low noise” dataset and from 0.003 to
0.38 for the high noise dataset. The FWHM of the galaxies in
GREAT08 varies from 1.1 to 14.5 pixels.

4. Results and discussion

4.1. Denoising efficiency for synthetic galaxies

Using the set of 10 000 artificial galaxies described in Sect. 3, we
test the performance of the fourmethods under different SNR and
sampling conditions. Examples of denoised images are shown in
Fig. 3, where it is immediately seen that the four methods behave
very differently.

The median filtering has a kernel size of 3 × 3 pixels. As a
consequence, when the sampling changes, the spatial frequen-
cies removed by the filter change with respect to the ones con-
tained in the galaxy.When the sampling becomes coarse enough,
the frequencies removed by the filter are close to those contained
in the galaxy. This is seen in Fig. 3, where the size of the granula-
tion in the noise becomes larger as the pixel size becomes larger
(right column of the figure). For this reason, the performance of
the median filtering are expected to degrade quickly in cases of
coarse sampling.

The Wiener filter is a low-pass filter, which translates in
Fig. 3 into a strong “flattening” of the sky noise but almost no de-
noising of the galaxy itself. The wavelet method is fully local and
adaptive, explaining the patchy aspect of the galaxy in Fig. 3:
low frequency signals are represented using a limited number of
coefficients and a high frequency requires more coefficients

Finally, we show the results of both DWT-Wiener and
DWT-Bayes methods. As explained earlier, the standard DWT-
Bayes thresholding is not effective in removing noise from high

A144, page 3 of 8
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Fig. 2. DWT decomposition of the galaxy image, with Poisson noise. Left: original galaxy image. Right: two consecutive resolution levels, as
explained in Sect. 2.3.

Fig. 3. Examples of different denoising methods, using simulated data with three different samplings.

dynamical range data such as astronomical images. In the par-
ticular case of galaxy images, using a fixed threshold for all
the wavelet subbands tends to degrade the galaxy shape in areas
where the difference in brightness between neighboring pixels is
much higher than the standard deviation of the Poisson noise. In
other words, the threshold is too high for the image background,
leading to an excessive smoothing, whereas the same threshold
proves too small for the high intensity pixels of the galaxy image.

This phenomenon is clearly visible in the image denoised with
the DWT-Bayes threshold (middle column of Fig. 3), where the
results of the denoising process leaves the original image almost
unchanged. This is unfortunate because preserving the original
intensity profile of the galaxy is essential for the accuracy of
the measurement of its shape. Removing noise effectively while
preserving the galaxy shape requires a very delicate denoising
approach.
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Fig. 4. Effect of the four denoising methods on the noise properties of the original data. Each panel shows the normalized histograms of residual
images, i.e., the difference between the original noisy data and the denoised data. The red line shows the best-fit Gaussian. In each case, the χ2 of
the fit is indicated. The mean SNR in the image selected to compute the histogram is SNR = 0.38.

The DWT-Wiener method proposed in this paper removes
noise according to the local gradient of luminosity, resulting in
a more adaptive and local denoising process than DWT-Bayes.
The advantage of DWT-Wiener in comparison to the classical
Wiener filter is that DWT-Wiener is applied to high-frequency
subbands coefficients only, which are those associated with
noise, thus preserving the low frequency subband that contains
the main features of the signal.

The effect of the four methods on the noise properties of the
original data is seen more quantitatively in Fig. 4. In this figure,
we choose a galaxy realization with a SNR = 0.38 and sampling
of FWHM = 5 pixels (realistic sampling). We then compute the
difference between the original noisy image and the denoised
image, as obtained from the four methods and plot histograms
of these distributions in Fig. 4. A method that does not affect the
noise properties of the original data should ideally yield a per-
fectly Gaussian histogram. Only the two local denoising meth-
ods using wavelets possess this important property.

For each denoising method, we thus compute the χ2 statistics
of its normalized histogram as (Press et al. 2007)

χ2 =
∑

i

(Ni − ni)2

ni
, (7)

where Ni is the number of pixels observed in the ith bin, and ni
is the number for an expected Gaussian distribution.

Our new DWT-Wiener method has the smallest χ2, which in-
dicates that its residuals represent the best fit to a normal distri-
bution. We now test the performance of the four methods on the
sets of 10 000 simulated galaxies described in Sect. 3, without
considering the effect of convolution by the PSF. This is done by
directly comparing the ellipticity measured for the galaxies be-
fore and after denoising. Using 10 000 galaxies ensures that an
ellipticity measurement is accurate to 1%, which is sufficient for
our purposes. In this work, the galaxy ellipticity e = e1 + ie2 was
estimated as

e =
Q11 − Q22 + 2iQ12

Q11 + Q22
, (8)

where Qmn, (m, n ∈ {1, 2}) are the second-order
quadrupole moments of the galaxy surface brightness
(Bartelmann & Schneider 2001).

We define the accuracy of each of the denoising methods as
the inverse of the root mean square deviation (RMSD)

RMSD =

√√√
1
N

N∑
1

(ei − e∗i )2, (9)

where ei and e∗i denote estimated and true galaxy ellipticities,
respectively.
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Fig. 5. Top panels: accuracy, 1/RMSD, of the shape measurement using the four denoising methods (solid curves). The dashed curves show for
comparison the results obtained with the data before denoising. In each panel, the color code indicates different noise levels. Bottom panels: gain
ratio, G, for the four denoising methods. The curves are the ratio of the solid to dashed curves shown in the top panels.

To evaluate the effectiveness of the denoising methods in
providing improvedmeasurement over the original data, we also
define a gain ratio, G, as the ratio of the shape measurement er-
ror using the noisy data, to the same quantity using the denoised
data

G =
RMSDoriginal

RMSDdenoised
· (10)

The results are summarized in Table 1 and Fig. 5. With no big
surprise, all methods lead to high accuracy measurements as
soon as excellent sampling and high SNR are available. However,
when the SNR decreases, the performance of all methods drops
sharply. This means that there is no reason to improve the sam-
pling indefinitely without compensating for an increased SNR,
i.e., exposure time. This also means that the interest in denoising
exceeds the improvement for poor SNR data. Performances im-
prove with high SNR data (red curves in Fig. 5, hence showing
that denoising is as important for well exposed galaxies as for
galaxies barely measurable in the original data.

In coarse sampling conditions, the median filter degrades
shape measurement instead of improving it. This is illustrated in
Fig. 5 by the dashed curves systematically being above the solid
ones. In Table 1, the gain ratio factor, ξ, is indeed lower than 1.
This is because the frequencies removed by the median filter
cannot be easily controlled and depend on the size of the objects
with respect to the size of the median kernel. This makes the

Table 1. Gain ratio (G; see text) for the four denoising methods under
different SNR and sampling conditions.

SNR Stamp FWHM Median Wiener DWT DWT
size galaxies Bayes Wiener

4.00 40 2.99 0.58 1.00 1.00 1.01
2.00 80 4.92 0.83 1.00 1.04 1.01
1.00 160 8.96 3.65 3.91 3.62 6.49
0.50 320 17.30 29.10 10.80 3.12 52.98
2.60 40 2.99 0.64 1.00 1.01 1.01
1.30 80 4.92 0.90 1.06 1.08 1.10
0.65 160 8.96 16.87 14.47 5.45 28.81
0.33 320 17.30 2.63 5.40 1.73 13.15
1.50 40 2.99 0.65 1.00 0.98 1.05
0.75 80 4.92 7.45 1.00 3.38 11.17
0.38 160 8.96 4.08 6.28 1.77 16.48
0.19 320 17.30 1.07 3.18 1.24 1.28
0.40 40 2.99 0.69 3.59 2.67 7.28
0.20 80 4.92 0.74 3.05 0.31 1.01
0.10 160 8.96 1.00 2.25 0.99 1.00
0.05 320 17.30 1.00 1.79 1.00 1.00

Notes. The SNR is per pixel (Eq. (6)).

use of the median filter very hazardous in general, in spite of its
good performance in small sampling conditions. A similar trend
is found for the Wiener filter in realistic sampling conditions,
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Table 2. Q factor for KSB deconvolution for 15 galaxy sets of
GREAT08 low noise-blind (LNBL) and 100 sets of GREAT08 real
noise-blind (RNBL).

Dataset α Original DWT-Bayes DWT-Wiener
denoising denoising

0.01 32.37 32.29 32.37
0.05 32.37 32.36 32.79

LNBL 0.10 32.37 32.37 61.53
(Low-Noise) 0.50 32.37 32.21 60.13

1.00 32.37 31.60 75.70
0.01 11.54 11.32 11.51
0.05 11.54 11.32 11.54

RNBL 0.10 11.54 11.55 15.94
(Real-Noise) 0.50 11.54 11.55 15.12

1.00 11.54 3.34 4.67

although it is not so pronounced. The best gain factors are usu-
ally achieved with the DWT-Wiener method.

Finally, for each method there exists an optimal sampling
where the gain factor is maximum. For realistic sampling and
SNR conditions (blue and orange lines in Fig. 5, this sampling
is about FWHM ∼ 9 pixels. By realistic conditions, we mean
conditions similar to those in the GREAT08 challenge, i.e., data
quality mimicking that of the EUCLID satellite in terms of sam-
pling and SNR.

4.2. Denoising of the GREAT08 challenge dataset

The goal of the previous section was to test the effect of both de-
noising and sampling on the quality of the shape measurement of
galaxies, in the absence of other numerical or instrumental dis-
turbances. For this reason, the convolution of the galaxy images
by the instrumental PSF is not included.

We now test the two most effective denoising methods,
i.e., the DWT-Bayes and the DWT-Wiener, against the addi-
tional effect of PSF deconvolution and centroid shifts. This
requires the use of a shape measurement method. For the
sake of simplicity, we choose the KSB algorithm (Kaiser 1995)
with the code developed by Catherine Heymans and Ludovic
Van Waerbeke (Heymans et al. 2006), which is widely used,
public, and efficient in terms of computing time. In addition, it
does not rely on any fit of an arbitrary galaxy profile to the data.

The GREAT08 challenge dataset is ideal for carrying out our
test in both low noise and real noise conditions. For this pur-
pose, we use the whole low noise-blind (LNBL) dataset and a
subset of 100 frames of the real noise-blind (RNBL) dataset (see
the GREAT08 handbook for more detail, Bridle et al. 2009). The
total number of galaxies used is therefore 15 000 in low noise
and 100 000 in real noise conditions.

The PSF convolution, which modifies the effect of the noise
on the galaxy shape measurement, makes it necessary to control
the effect of denoising, prior to the shape measurements itself.
We therefore introduce a “denoising strength” that allows us to
fine-tune the amount of denoising of the data. In practice, we
replace the noise mean standard deviation, σn, in Eqs. (1), (4),
and (5), with a fractional mean standard deviation ασn, where
0 < α ≤ 1.0.

We run the KSB method on the denoised GREAT08 data us-
ing three denoising strengths α = {0.01, 0.05, 0.1, 0.5, 1.0}. The
results are summarized in Table. 2, where the quality factor,Q, is
defined as in Bridle et al. (2010). High values of Q indicate good

shape measurements. As a sanity check, we run the KSB algo-
rithm on the original noisy data as well and check that we obtain
the same quality factors as in Bridle et al. (2010), i.e., Q = 32.37
in low noise and Q = 11.54 in real noise conditions.

The main result is that the DWT-Bayes method does
not improve the quality factor and even degrades the shape
measurement if full denoising (α = 1.0) is used. The DWT-
Wiener method improves the Q factor by a factor of almost two
in low noise conditions and by 35% in real noise conditions.
Interestingly, we note that full denoising may degrade the re-
sults. One may instead apply partial denoising (α = 0.1), which
allows us to achieve a significant gain in quality factor without
any significant risk of corrupting the data.

5. Conclusions

We have tested four different image denoising techniques on
synthetic data of faint and small galaxies and we evaluate their
effect on the shape measurement of galaxies in view of weak
lensing studies. We have compared the performance of the algo-
rithms for a range of SNR and sampling conditions.

We found that simple median and Wiener filtering degrades
the quality of the galaxy shape measurement unless very fine
sampling is used. Local denoising methods such as wavelet fil-
tering (DWT-Bayes) preserve the shape of galaxies in fine sam-
pling condition but not for coarser sampling. However, a simple
modification of the thresholding scheme of the wavelet method
allows us to improve the SNR of the data and the quality of the
shape measurement. This newmethod, DWT-Wiener, consists of
applying Wiener filtering to the wavelet coefficients rather than
to the data themselves.

The DWT-Wiener method is tested on the GREAT08 chal-
lenge data in low noise and real noise conditions, showing an
improvement of up to a factor of two (on the quality factor Q)
over the shape measurement using the original, noisy, data.

Finally, we have shown that for a fixed SNR there exist an
optimal sampling of the galaxy images. For the typical SNR ex-
pected in weak lensing space surveys, this sampling is about
FWHM ∼ 9 pixels. Satellites such as EUCLID or WFIRST will
have a typical pixel scale of 0.1′′, allowing us to observe typical
z = 1−2 galaxies with almost this optimal sampling. This lends
considerable hope to significantly improving future weak lens-
ing measurements with image denoising.
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5 Conclusion

In Chapter 2, we have shown that the standard ΛCDM cosmological model provides a excellent
phenomenological description of the Universe but hardly no explanation of what dark matter
and dark energy really are. A number of potential extension to standard cosmology have been
proposed, but the corresponding theoretical models cannot be tested until significantly more
accurate measurements become available.

In Chapter 3, we have also explained how weak lensing as a tool can be used to place very
tight constraints on cosmology. We have shown in particular how powerful this technique
is for probing the elusive dark energy. The weak lensing framework itself seems now very
well capable of delivering the required constraints on the theory of structure formation and
the properties of dark energy. Finding out if dark energy really is the cosmological constant
or is instead the manifestation of new physics like a modified gravity law or exotic scalar
fields, seems within reach. Promising extensions have even been recently added in the form of
three-dimensional cosmic shear analysis or higher-order statistical tools.

Despite these advances, a number of challenges of observational nature remain before weak
lensing as a cosmological probe can realize its full potential. The main limiting factor has
long been the small sky area covered by cosmic shear surveys that reduced the accuracy of
their predictions. But recent surveys have already begun addressing this issue and planned
large-scale ground and space-based surveys like LSST and EUCLID will reduce its impact even
further. Such surveys will also capture with high accuracy the redshift data required for cosmic
shear analysis.

The real challenge now instead seems to reside in the area of shear measurement. The ambi-
tious science goals of EUCLID-like surveys will not be fulfilled unless shear measurement data
are measured with the required accuracy. We have explored in Chapter 4 the main difficulties
involved and showed these are not trivial to overcome. Realizing this and worried by signif-
icant discrepancies found between cosmic shear results, the weak lensing community has
reacted by launching initiatives such as the STEP programs and GREAT08/10 challenges to
assess the accuracy of available shear measurement methods and foster the development of
new algorithms. It was further recognized shear measurement could also benefit from contri-
butions of experts from a wider community, especially from the domains of image processing,
data analysis and machine learning. These challenges have shown steady progress in terms of
accuracy and bias reduction. We have presented in this context the main contributions of the
author published in Gentile et al. (2012, 2013). The GREAT10 results have indeed shown the
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best performing methods, which included the author’s gfit, are able to match the requirements
of advanced surveys like KIDS, HSC or DES. The apparition of machine learning algorithms in
shear measurement is also quite promising. Nevertheless it is estimated a tenfold improve-
ment in accuracy is still needed to observationally discriminate between dark energy models
with different equations of state or gravitational physics.

The inaccuracies of shear measurement methods critically depend not only on the quality of
shear measurement algorithms but also on the effectiveness of PSF correction and interpo-
lation techniques. The study we have conducted in Gentile et al. (2013) has highlighted the
current lack of maturity of the PSF correction & interpolation schemes but also explored new
promising possibilities. Now is possibly the time to include in the next editions of the GREAT
series of challenge more realistic models of PSF (as was initially done in STEP) in preparation
of LSST and EUCLID. The forthcoming GREAT3 Challenge (Mandelbaum et al. 2013) is mov-
ing in that direction. Taking into account color information in images is also likely to pose
new conceptual and technical challenges but also to offer new perspectives. It is also worth
exploring new denoising schemes well suited to the specific need of weak lensing such as the
wavelet-based algorithm proposed in Nurbaeva et al. (2011). A good denoising algorithm can
significantly improves the overall effectiveness of shear measurement, independently of the
shear measurement scheme used.

There is good hope that the steady progress made so far and the dedication of the weak lensing
community will make this endeavor successful.
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A Appendix

A.1 Gravitational lensing magnification and shear

A.1.1 Inverse magnification transformation ∂β
/
∂θ

As seen in Sect. 3.1, the inverse magnification transformation from image to source θ→β is
described to first order by the Jacobian matrix

A(θ) =
(

1−κ−γ1

−γ2

é−γ2

1−κ+γ1

)
(A.1)

where κ and
∣∣γ∣∣=√γ2

1 +γ2
2 are the convergence and shear respectively.

Eigenvalues and eigenvectors

The A matrix is symmetric, so one expects two real eigenvalues, which two associated orthog-
onal eigenvectors. The characteristic equation is given by

det(A−λI) = 0 (A.2)

where I is the identity matrix and λ one of the eigenvalues, with

det(A−λI) = (1−κ−γ1 −λ)(1−κ+γ1 −λ)−γ2
2

= (1−κ−λ)2 − ∣∣γ∣∣2
= (1−κ−λ− ∣∣γ∣∣)(1−κ−λ+ ∣∣γ∣∣)

Equation (A.2) thus yields the two real eigenvalues

λ− = 1−κ− ∣∣γ∣∣ (A.3)

λ+ = 1−κ+ ∣∣γ∣∣ (λ− <λ+) (A.4)

The Eigenvectors of A are given by

(A−λI) θ=0 (A.5)
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For λ=λ−, one obtains

(1−κ−γ1 −λ−)θ1 −γ2θ2 = 0 (A.6a)

−γ2θ1 +
(
1−κ+γ1 −λ−

)
θ2 = 0 (A.6b)

Since

1−κ−γ1 −λ− = 1−κ−γ1 −1+κ+ ∣∣γ∣∣=−γ1 +
∣∣γ∣∣

1−κ+γ1 −λ− = 1−κ+γ1 −1+κ+ ∣∣γ∣∣= γ1 +
∣∣γ∣∣

equations (A.6a) and (A.6a) reduce to

(−γ1 +
∣∣γ∣∣) θ1 −γ2θ2 = 0 (A.7a)

−γ2θ1 +
(
γ1 +

∣∣γ∣∣) θ2 = 0 (A.7b)

A unit eigenvector U− for λ− is therefore

U− = 1

η1

(
γ1 +

∣∣γ∣∣
γ2

)
= 1

η1

( γ2

|γ|−γ1

1

)
= 1

η1

(
1

|γ|−γ1

γ2

)
(A.8)

where

η1 =
√
γ2

2 +
(∣∣γ∣∣+γ1

)2 =√2
∣∣γ∣∣ (

∣∣γ∣∣+γ1) (A.9)

For λ=λ+

(1−κ−γ1 −λ+)θ1 −γ2θ2 = 0 (A.10a)

−γ2θ1 +
(
1−κ+γ1 −λ+

)
θ2 = 0 (A.10b)

Since

1−κ−γ1 −λ+ = 1−κ−γ1 −1+κ− ∣∣γ∣∣=−γ1 −
∣∣γ∣∣ (A.11)

1−κ+γ1 −λ+ = 1−κ+γ1 −1+κ− ∣∣γ∣∣= γ1 −
∣∣γ∣∣ (A.12)

equations (A.10a) and (A.10b) reduce to

(−γ1 −
∣∣γ∣∣) θ1 −γ2θ2 = 0 (A.13a)

−γ2θ1 +
(
γ1 −

∣∣γ∣∣) θ2 = 0 (A.13b)

A unit eigenvector U+ for λ+ is

U+ = 1

η2

(
γ1 −

∣∣γ∣∣
γ2

)
= 1

η2

(
− γ2

γ1+|γ|
1

)
= 1

η2

(
1

−γ1+|γ|
γ2

)
(A.14)
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where

η2 =
√
γ2

2 +
(∣∣γ∣∣−γ1

)2 =√2
∣∣γ∣∣ (

∣∣γ∣∣−γ1) (A.15)

So defined, the eigenvectors U− and U+ are orthonormal, verifying

U− ·U+ = 1

η1n2

[
γ2

1 +γ2
2 −
∣∣γ∣∣2]= 0

U− ·U− = 1

η2
1

[
γ2

2 +
(
γ1 +

∣∣γ∣∣)2]= 1

η2
1

(
2
∣∣γ∣∣2 +2

∣∣γ∣∣ γ1

)
= 1

U+ ·U+ = 1

η2
2

[
γ2

2 +
(
γ1 −

∣∣γ∣∣)2]= 1

η2
2

(
2
∣∣γ∣∣2 −2

∣∣γ∣∣ γ1

)
= 1

The diagonalisation of A produces the diagonal matrix DA made of eigenvalues λ− and λ+

DA=
(
λ−
0

0
λ+

)
=
(

1−κ− ∣∣γ∣∣
0

0
1−κ+ ∣∣γ∣∣

)
(A.16)

which shows that the effect of the transformation is to stretch by a factor λ+ = 1−κ+ ∣∣γ∣∣ in the
U+ direction and to compress by a factor λ− = 1−κ− ∣∣γ∣∣ in the U− direction.
Indeed, the diagonal matrix DA can be decomposed in eigenspace (ν1,ν2) as

DA = (1−κ)

(
1
0

0
1

)
− ∣∣γ∣∣( 1

0
0
−1

)
= (1−κ)I− ∣∣γ∣∣ S (A.17)

where S represents a reflection about the U− axis in the (β1,β2) plane (see Fig. A.1).

The (1−κ)I component describes a compression by a factor (1−κ) in the U− and U+ directions.
The matrix −S describes a reflection about the U+ axis and therefore the component − ∣∣γ∣∣ S
describes a compression by a factor

∣∣γ∣∣ in the U− direction and a stretch of the same factor in
the U+ direction. Both effects combine to produce a distortion by an factor λ− = 1−κ− ∣∣γ∣∣ in
the U− direction and by a factor λ+ = 1−κ+ ∣∣γ∣∣ in the U+ direction.

If applied to a circular image of radius R , these effects will result in an ellipse with semi-major
and semi-minor axis a′ and b′ respectively given by:

a′ = R λ+ = R (1−κ+ ∣∣γ∣∣) (A.18)

b′ = R λ− = R (1−κ− ∣∣γ∣∣) (A.19)

These effects, applied to a circular image of radius R are illustrated in Fig. A.1.

In the particular case of γ1 = 0 or γ2 = 0:

γ1 = 0, λ− = 1−κ−γ2, λ+ = 1−κ+γ2, U− =
(
1
1

)
, U+ =

(
1
−1

)

γ2 = 0, λ− = 1−κ−γ1, λ+ = 1−κ+γ1, U− =
(
1
0

)
, U+ =

(
0
1

)

Therefore, the effect of γ2 alone is to compress by a factor λ− = 1−κ−γ2 along the first diagonal
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Figure A.1: Geometrical effects of the transformation θ→β described by the A matrix.

(
ϕ=π/4

)
and stretch by by a factor λ+ = 1−κ+γ2 along the second diagonal

(
ϕ=−π/4

)
;

whereas γ1 alone causes a compression by a factor λ− = 1−κ−γ1 along the θ1 axis and a
stretch by a factor λ+ = 1−κ+γ1 along the θ2 axis. The further a point lies from a eigenvector,
the greater the compression/stretch effect is.

Representation in Polar coordinates

The angle ϕ between the semi-major axis in the U+ directions and the β1 axis can be obtained
from equation (A.13a) or (A.13b). One obtains

tan(ϕ) = θ2

θ1
=−γ1 +

∣∣γ∣∣
γ2

(A.20)

so that

ϕ= arctan

(
− γ1 +

∣∣γ∣∣
γ2

)
+kπ= 1

2
arctan

(
γ2

γ1

)
+kπ (k ∈ Z) (A.21)

Further

sinϕ = − γ1 +
∣∣γ∣∣√

2
∣∣γ∣∣ (

∣∣γ∣∣+γ1)
=−γ1 +

∣∣γ∣∣
η1

=−
√

γ1 +
∣∣γ∣∣√

2
∣∣γ∣∣ (A.22)

cosϕ = γ2√
2
∣∣γ∣∣ (

∣∣γ∣∣+γ1)
= γ2

η1
(A.23)
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The diagonal matrix DA given in (A.16) can be expressed as

DA=P−1AP

where the columns of P are made of the eigenvector U− and U+.
Because A is symmetric, P−1=PT and we also note det(P) = 1. Thus P actually represents
the anticlockwise rotation Rϕ in the (β1,β2) plane, generated by the diagonalisation transfor-
mation, with

Rϕ =
(

cosϕ
sinϕ

−sinϕ

cosϕ

)
(A.24)

Thus

DA=R−1
ϕ ARϕ ⇔RϕDAR−1

ϕ
=Rϕ(R−1

ϕ ARϕ)R−1
ϕ

that is

A=RϕDAR−1
ϕ

=RϕDART
ϕ (A.25)

Equation (A.25) then gives

A = Rϕ

[
(1−κ)I− ∣∣γ∣∣ S]RT

ϕ

= (1−κ)RϕRT
ϕ − ∣∣γ∣∣RϕSRT

ϕ

= (1−κ) I− ∣∣γ∣∣RϕSRT
ϕ (A.26)

with

RϕSRT
ϕ =

(
cosϕ
sinϕ

−sinϕ

cosϕ

)(
1
0

0
−1

)(
cosϕ
−sinϕ

sinϕ

cosϕ

)
(A.27)

=
(

cosϕ
−sinϕ

sinϕ

−cosϕ

)(
cosϕ
−sinϕ

sinϕ

cosϕ

)

=
(

cos2ϕ− sin2ϕ

2sinϕcosϕ
2sinϕcosϕ

−[cos2ϕ− sin2ϕ
] )

=
(

cos2ϕ
sin2ϕ

sin2ϕ
−cos2ϕ

)

Using equation (A.26), A can therefore be expressed as

A=(1−κ)

(
1
0

0
1

)
− ∣∣γ∣∣( cos2ϕ

sin2ϕ
sin2ϕ
−cos2ϕ

)
= (1−κ)I− ∣∣γ∣∣ Sϕ (A.28)

The matrix Sϕ is the representation of the reflexion matrix S in polar coordinates in the (β1,β2)
coordinate system.

161



Appendix A. Appendix

Comparing (A.28) with (A.1), one finds that the shear has components

γ1 = ∣∣γ∣∣cos2ϕ (A.29)

γ2 = ∣∣γ∣∣sin2ϕ (A.30)

and is thus invariant under a rotation of angle π radians.

A.1.2 Magnification transformation ∂θ
/
∂β

The Magnification matrix M of the transformation β→ θ from source to image is

M(θ) =A−1(θ) =μ

(
1−κ+γ1

γ2

γ2

1−κ−γ1

)
(A.31)

with

μ= det
(A−1)= 1

det(A)
=μ2 det(M) = 1

(1−κ)2 − ∣∣γ∣∣2 , μ≥ 1 (A.32)

Magnification factor μ

Let two vectors X and W in the source plane and their respective images Y and Z through the
transformation M=A−1. The areas spanned by these vectors is given by the norm of their
cross product, which is also of the determinant of the matrix they form

‖X ×W ‖ = Xi WJ = X1W1 −X2W2 = det

(
X1 W1

X2 W2

)
(A.33)

‖Y ×Z‖ = Yi ZJ = Y1Z1 −Y2Z2 = det

(
Y1 Z1

Y2 Z2

)
(A.34)

The lensing relations between source and image

X = AY (A.35)

W = AZ (A.36)

translate to

‖X ×W ‖ = ‖(AY )× (AZ )‖ (A.37)

Working through the matrix and vector components yields

‖X ×W ‖ = det(A)‖Y ×Z‖ (A.38)
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so that1

‖Y ×Z‖ = 1

det(A)
‖X ×W ‖ = det(A−1)‖X ×W ‖ =μ ‖X ×W ‖ (A.39)

The magnification factor μ is thus given by equation (A.32).

Eigenvalues and eigenvectors

The eigenvalues are solutions of the characteristic equation

det(M−ΛI) = 0 (A.40)

where I is the identity matrix and Λ one of the eigenvalues.

det(M−ΛI) = [
μ (1−κ+γ1)−Λ

] [
μ (1−κ−γ1)−Λ

]−μ2γ2
2 (A.41)

= [
μ (1−κ)−Λ

]2 −μ2
∣∣γ∣∣2

= μ2(1−κ−Λ− ∣∣γ∣∣) (1−κ−Λ+ ∣∣γ∣∣)
Equation (A.2) thus yields the two real eigenvalues

Λ− = μ
(
1−κ− ∣∣γ∣∣)=μλ− = 1

1−κ+ ∣∣γ∣∣ =
1

λ+
(A.42)

Λ+ = μ
(
1−κ+ ∣∣γ∣∣)=μλ+ = 1

1−κ− ∣∣γ∣∣ =
1

λ−
(Λ− <Λ+) (A.43)

This makes sense, since M is the inverse matrix of A which implies the eigenvalues of M are
also the inverse of the eigenvalues of A.

The Eigenvectors of M are given by

(M−ΛI) β=0 (A.44)

For Λ=Λ−, one obtains

[
μ (1−κ+γ1)−Λ−

]
β1 +μγ2β2 = 0 (A.45)

μγ2β1 +
[
μ (1−κ−γ1)−Λ−

]
β2 = 0 (A.46)

Since

μ (1−κ+γ1)−Λ− = μ
[
1−κ+γ1 − (1−κ− ∣∣γ∣∣)]=μ (γ1 +

∣∣γ∣∣)
μ (1−κ−γ1)−Λ− = μ

[
1−κ−γ1 −

(
1−κ− ∣∣γ∣∣)]=μ (−γ1 +

∣∣γ∣∣)

1This relation holds for any matrix A, not only for the Jacobian matrix of lensing.
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equations (A.45) and (A.46) yield

(γ1 +
∣∣γ∣∣)β1 +γ2β2 = 0 (A.47a)

γ2β1 + (−γ1 +
∣∣γ∣∣)β2 = 0 (A.47b)

A unit eigenvector is

V − = 1

η2

(
γ1 −

∣∣γ∣∣
γ2

)
=U+ = 1

η2

(
− γ2

γ1+|γ|
1

)
= 1

η2

(
1

−γ1+|γ|
γ2

)
(A.48)

For Λ=Λ+, one gets

[
μ (1−κ+γ1)−Λ+

]
β1 +μγ2β2 = 0 (A.49)

μγ2β1 +
[
μ (1−κ−γ1)−Λ+

]
β2 = 0 (A.50)

Since

μ (1−κ+γ1)−Λ+ = μ
[
1−κ+γ1 −

(
1−κ+ ∣∣γ∣∣)]=μ (γ1 −

∣∣γ∣∣)
μ (1−κ−γ1)−Λ+ = μ

[
1−κ−γ1 −

(
1−κ+ ∣∣γ∣∣)]=μ (−γ1 −

∣∣γ∣∣)
equations (A.49) and (A.50) yield

(γ1 −
∣∣γ∣∣)β1 +γ2β2 = 0 (A.51)

γ2β1 − (γ1 +
∣∣γ∣∣)β2 = 0 (A.52)

One can choose the unit eigenvector

V + = 1

η1

(
γ1 +

∣∣γ∣∣
γ2

)
=U− = 1

η1

( γ2

|γ|−γ1

1

)
= 1

η1

(
1

|γ|−γ1

γ2

)
(A.53)

The chosen eigenvectors V 1 and V 2 are orthonormal, verifying

V − ·V + = U+ ·U− = 1

η1n2
(γ2

2 +γ2
1 −
∣∣γ∣∣2) = 0 (A.54)

V − ·V − = U+ ·U+ = 1

η2
2

[
γ2

2 +
(
γ1 −

∣∣γ∣∣)2]= 1

η2
2

(
2
∣∣γ∣∣2 −2

∣∣γ∣∣ γ1

)
= 1

V + ·V + = U− ·U− = 1

η2
1

[
γ2

2 + (
∣∣γ∣∣+γ1)2]= 1

η2
1

(
2
∣∣γ∣∣2 +2

∣∣γ∣∣ γ1

)
= 1

The diagonalisation of M produces the diagonal matrix DM made of eigenvalues Λ− and Λ+

DM=
(
Λ+
0

0
Λ−

)
=μ

(
1−κ+ ∣∣γ∣∣

0
0

1−κ− ∣∣γ∣∣
)

(A.55)

which shows that the effect of the transformation is to stretch by a factor Λ+ = 1−κ+ ∣∣γ∣∣ in
the V + direction and to compress by a factor Λ− = 1−κ− ∣∣γ∣∣ in the V − direction.
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source image

M = A-1

β2

β1

R

φ

θ2

θ1V-

V+

a

b

R'=(1-�)-1 R

ξ
2

ξ
1

Figure A.2: Geometrical effects of the transformation β→ θ described by the M matrix.

In analogy with the inverse magnification transformation, the diagonal matrix DM can be
decomposed in eigenspace (ξ1,ξ2) as

DM =μ (1−κ)

(
1
0

0
1

)
+μ

∣∣γ∣∣( 1
0

0
−1

)
=μ (1−κ)I+μ

∣∣γ∣∣ S (A.56)

where S represents a reflection about the V + axis in the (θ1,θ2) plane (see Fig. A.2). The
μ(1−κ)I component describes a stretch by a factor μ(1−κ) in the V − and V + directions.
The component μ

∣∣γ∣∣ S describes a compression by a factor −μ ∣∣γ∣∣ in the V − direction and a
stretch by a factor μ

∣∣γ∣∣ in the V + direction. Both effects combine to produce a distortion by
a factor Λ− = (1−κ− ∣∣γ∣∣)−1 in the V − direction and by a factor Λ+ = (1−κ+ ∣∣γ∣∣)−1 in the V +
direction.

If applied to a circular source of radius R , these effects will result in an ellipse with semi-major
and semi-minor axis a and b respectively given by:

a = R ′Λ+ =μR (1−κ+ ∣∣γ∣∣) =μa′ = R

1−κ− ∣∣γ∣∣ (A.57)

b = R ′Λ− =μR (1−κ− ∣∣γ∣∣) =μb′ = R

1−κ+ ∣∣γ∣∣ (A.58)

These effects, applied to a circular source of radius R are illustrated in Fig. A.2.
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In the particular case of γ1 = 0 or γ2 = 0:

γ1 = 0, Λ− =μ
(
1−κ−γ2

)
, Λ+ =μ

(
1−κ+γ2

)
, V− =

(
1
−1

)
, V+ =

(
1
1

)

γ2 = 0, Λ− =μ
(
1−κ−γ1

)
, Λ+ =μ

(
1−κ−γ2

)
, V− =

(
0
1

)
, V+ =

(
1
0

)

Therefore, the effect of γ2 alone is to stretch by a factor Λ+ = μ
(
1−κ+γ2

)
along the first

diagonal
(
φ=π/4

)
and compress by a factor Λ− = μ

(
1−κ−γ2

)
along the second diagonal(

φ=−π/4
)
; whereas γ1 alone causes a stretch by a factor Λ+ = 1−κ+γ1 along the β1 axis and

a compression by a factor Λ− = 1−κ−γ1 along the β2 axis. The further a point lies from a
eigenvector, the greater the compression/stretch effect is.

Representation in Polar coordinates

The angle φ between the semi-major axis in the V + directions and the θ1 axis can be obtained
from equation (A.49) or (A.50). One obtains

tanφ= β2

β1
=
∣∣γ∣∣−γ1

γ2
= γ2∣∣γ∣∣+γ1

(A.59)

so that

φ= arctan

( ∣∣γ∣∣−γ1

γ2

)
+kπ= 1

2
arctan

(γ2

γ1

)
+kπ (k ∈ Z) (A.60)

Further

sinφ =
∣∣γ∣∣−γ1√

2
∣∣γ∣∣ (

∣∣γ∣∣−γ1)
=
∣∣γ∣∣−γ1

η2
=
√∣∣γ∣∣−γ1√

2
∣∣γ∣∣ (A.61)

cosφ = γ2√
2
∣∣γ∣∣ (

∣∣γ∣∣−γ1)
= γ2

η2
(A.62)

As in A.1.1, the diagonal matrix (A.55) can be expressed as

D =R−1
φ MRφ ⇔RφDR−1

φ
=Rφ(R−1

φ MRφ)R−1
φ (A.63)

that is

M=RφDR−1
φ

=RφDRT
φ (A.64)

Using (A.56), one obtains

M = Rφ

[
μ (1−κ)I+μ

∣∣γ∣∣ S]RT
φ

= μ (1−κ)RφRT
φ +μ

∣∣γ∣∣RφSRT
φ

= μ
[

(1−κ) I+ ∣∣γ∣∣RϕSRT
φ

]
(A.65)
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with

RφSRT
φ =

(
cos2φ
sin2φ

sin2φ
−cos2φ

)
(A.66)

as in A.1.1. Using equation(A.66), M can therefore be expressed as

M=μ(1−κ)

(
1
0

0
1

)
+μ

∣∣γ∣∣( cos2φ
sin2φ

sin2φ
−cos2φ

)
=μ (1−κ)I+μ

∣∣γ∣∣ Sφ (A.67)

The shear has components

γ1 = ∣∣γ∣∣cos(2φ) (A.68)

γ2 = ∣∣γ∣∣sin(2φ) (A.69)

and is thus invariant under a rotation of angle π radians. One can also check this by using
(A.59) with the identity

tan2α= 2tanα

1− tan2α
(A.70)

which gives

tan2φ= 2

1−
( |γ|−γ1

γ2

)2

∣∣γ∣∣−γ1

γ2
= 2γ2

(∣∣γ∣∣−γ1
)

−2γ2
1 +2γ1

∣∣γ∣∣ =
2γ2

(∣∣γ∣∣−γ1
)

−2γ1
(
γ1 −

∣∣γ∣∣) =
γ2

γ1
(A.71)

A.2 Complex ellipticity χ

The second brightness moments of lensed and unlensed sources are respectively given by (4.3)
and (4.6)

Q = (Qi j
)=

∫
wI [I (θ)] I (θ)

(
θi − θ̄i

) (
θ j − θ̄ j

)
d 2θ∫

wI [I (θ)] I (θ) d 2θ

i , j ε {1,2} (A.72)

Qsr c =
(
Qsr c

i j

)
=

∫
wI
[
Isr c (β)

]
Isr c (β)

(
βi − β̄i

) (
β j − β̄ j

)
d 2β∫

wI
[
Isr c (β)

]
Isr c (β) d 2β

i , j ε {1,2} (A.73)

where the centroid θ̄ has been defined by (4.4).

Gravitational lensing conserves surface brightness, so if Isr c (β) is the surface brightness in the
source plane, the observed surface brightness distribution I (θ) in the lens plane is

I = I (θ) = Isr c
[
β(θ)

]
(A.74)
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Hence

βi = (Aθ)i =
∑

k

Ai kθk i ,k ε {1,2} (A.75)

and

d 2β= det(A)d 2θ (A.76)

where

A=
(

1−κ−γ1

−γ2

−γ2

1−κ+γ1

)
(A.77)

and

M=A−1 =μ

(
1−κ+γ1

γ2

γ2

1−κ−γ1

)
μ= 1

(1−κ)2 − ∣∣γ∣∣2 (A.78)

In the following, we assume without loss of generality that the Qi j components of matrix (A.72)
are evaluated at the centroid of the lensed image, that is θ̄i = 0.

One commonly-used definition of ellipticity in weak lensing is

χ=χ1 + iχ2 = Q11 − Q22

T
+ i

2Q12

T
T =Q11 + Q22 (A.79)

Qi j =

∫
w I (θ)θ j θ j d 2θ∫

w I (θ) d 2θ

(A.80)

so that:

Q11 =

∫
w I (θ)θ1θ1 d 2θ∫

wI I (θ) d 2θ

Q22 =

∫
w I (θ)θ2θ2 d 2θ∫

w I (θ) d 2θ

(A.81)

Q12 =Q21 =

∫
w I (θ)θ1θ2 d 2θ∫

w I (θ) d 2θ

(A.82)

An simple expression for χ can be obtained, assuming the source is circular and variations of
convergence and shear are negligible across the galaxy image.
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A.2.1 Expression for χ1

Using (A.72) and (A.76), one can relate the quadrupole moment of image and source as

Qi j =

∫
w I (θ)θi θ j d 2θ∫

w I (θ) d 2θ

=

∫
w Isr c (β) 1

det(A)

∑
k
A−1

i k βk

∑
l
A−1

j l βl d 2β

∫
w Isr c (β) 1

det(A) d 2β

=

∫
w Isr c (β)

∑
k
A−1

i k βk

∑
l
A−1

j l βl d 2β

∫
w Isr c (β)d 2β

(A.83)

Hence

Q11 =

∫
w I (θ)θ1θ1 d 2θ∫

w Isr c (β)d 2β

= 1∫
w Isr c (β)d 2β

∫
w Isr c (β)

∑
k

A−1
1k βk

∑
l

A−1
1l βl d 2β

Q22 =

∫
w I (θ)θ2θ2 d 2β∫

w Isr c (β)d 2β

= 1∫
w Isr c (β)d 2β

∫
w Isr c (β)

∑
k

A−1
2k βk

∑
l

A−1
2l βl d 2β (A.84)

χ1 = Q11 −Q22

Q11 +Q22
=

∫
w Isr c (β)d 2β∫
w Isr c (β)d 2β

∫(∑
k
A−1

1k βk

∑
l
A−1

1l βl −
∑
k
A−1

2k βk

∑
l
A−1

2l βl

)
w Isr c (β)d 2β

∫(∑
k
A−1

1k βk

∑
l
A−1

1l βl +
∑
k
A−1

2k βk

∑
l
A−1

2l βl

)
w Isr c (β)d 2β

=

∑
k

∑
l

[∫(A−1
1k A−1

1l −A−1
2k A−1

2l

)
βk βl w Isr c (β)dβk dβl

]
∑
k

∑
l

[∫(A−1
1k A−1

1l +A−1
2k A−1

2l

)
βk βl w Isr c (β)dβk dβl

] (A.85)
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Neglecting the variation of convergence and shear on β across the galaxy image, the A−1
1k can

be considered constant and the equation becomes

χ1 =

∑
k

∑
l

[(A−1
1k A−1

1l −A−1
2k A−1

2l

) ∫
w Isr c (β)βk βl dβk dβl

]
∑
k

∑
l

[(A−1
1k A−1

1l +A−1
2k A−1

2l

) ∫
w Isr c (β)βk βl dβk dβl

] (A.86)

The integral
∫

w Isr c (β)βk βl dβk dβl vanishes over a circular source unless k = l , so the above

equation reduces to

χ1 =

∑
k

∑
l

(A−1
1k A−1

1k −A−1
2k A−1

2l

)
δkl∑

k

∑
l

(A−1
1k A−1

1l +A−1
2k A−1

2l

)
δkl

=
(A−1

11

)2 − (A−1
22

)2
(A−1

11

)2 + (A−1
22

)2 +2
(A−1

12

)2 (A.87)

Substituting the expression for the A−1
i j coefficients from (A.78) yields

χ1 = μ2
(
1−κ+γ1

)2 −μ2
(
1−κ−γ1

)2
μ2
(
1−κ+γ1

)2 +μ2
(
1−κ−γ1

)2 +2μ2γ2
2

= 4γ1 (1−κ)

2(1−κ)2 +2μ2
∣∣γ∣∣2 (A.88)

= 2γ1 (1−κ)

(1−κ)2 + ∣∣γ∣∣2 (A.89)

This can also be expressed as

χ1 = 2γ1
λ−+λ+
λ2−+λ2+

where

λ± = 1−κ± ∣∣γ∣∣ , (λ− <λ+)

are the eigenvalues of A.

A.2.2 Expression for χ2

Starting from

Q12 =Q21 =

∫
w I (θ)θ1θ2 d 2θ∫

w Isr c (β)d 2β

(A.90)
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and using (A.72) with (A.76), the second ellipticity component reads

χ2 = 2Q12

Q11 +Q22
= 2

∫
w Isr c (β)d 2β∫
w Isr c (β)d 2β

∫
w Isr c (β)

∑
k
A−1

1k βk

∑
l
A−1

2l βl d 2β

∫(∑
k
A−1

1k βk

∑
l
A−1

1l βl +
∑
k
A−1

2k βk

∑
l
A−1

2l βl

)
w Isr c (β)d 2β

= 2

∫
w Isr c (β)

∑
k
A−1

1k βk

∑
l
A−1

2l βl d 2β

∫(∑
k
A−1

1k βk

∑
l
A−1

1l βl +
∑
k
A−1

2k βk

∑
l
A−1

2l βl

)
w Isr c (β)d 2β

= 2

∑
k

∑
l

[∫
A−1

1k A−1
2l βk βl w Isr c (β)dβk dβl

]
∑
k

∑
l

[∫(A−1
1k A−1

1l +A−1
2k A−1

2l

)
βk βl w Isr c (β)dβk dβl

] (A.91)

Making the same assumptions as before, this reduces to

χ2 = 2

∑
k

∑
l

[
A−1

1k A−1
2l

∫
βk βl w Isr c (β)dβk dβl

]
∑
k

∑
l

[(A−1
1k A−1

1l +A−1
2k A−1

2l

) ∫
βk βl w Isr c (β)dβk dβl

]

= 2

∑
k

∑
l
A−1

1k A−1
2l δkl∑

k

∑
l

(A−1
1k A−1

1l +A−1
2k A−1

2l

)
δkl

= 2
A−1

11 A−1
21 +A−1

12 A−1
22(A−1

11

)2 + (A−1
22

)2 +2
(A−1

12

)2 with A−1
21 =A−1

12 (A.92)

= 2
A−1

12

(A−1
11 +A−1

22

)
(A−1

11

)2 + (A−1
22

)2 +2
(A−1

12

)2 (A.93)

Substituting the expression for the A−1
i j coefficients from (A.78)

χ2 = 2
2μ2γ2 (1−κ)

2μ2(1−κ)2 +2μ2
∣∣γ∣∣2

= 2γ2 (1−κ)

(1−κ)2 + ∣∣γ∣∣2
= 2γ2

λ−+λ+
λ2−+λ2+

(A.94)
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The ellipticity χ thus reads

χ = 2γ1 (1−κ)

(1−κ)2 + ∣∣γ∣∣2 + i
2γ2 (1−κ)

(1−κ)2 + ∣∣γ∣∣2
= 2(1−κ)

(1−κ)2 + ∣∣γ∣∣2 (γ1 + i γ2)

= 2(1−κ)

(1−κ)2 + ∣∣γ∣∣2 γ with γ= γ1 + i γ2

= 2(1−κ)

(1−κ)2 + ∣∣γ∣∣2
∣∣γ∣∣ e2iφ (A.95)

Therefore one can define

∣∣χ∣∣ = 2(1−κ)

(1−κ)2 + ∣∣γ∣∣2
∣∣γ∣∣ (A.96)

= λ2+−λ2−
λ2++λ2−

= Λ2+−Λ2−
Λ2++Λ2−

= Σ+−Σ−
Σ++Σ−

where λ+, Λ± and Σ± are the respective eigenvalues of A, M=A−1 and Q respectively (see
Sects. A.1.1 and A.1.2).

λ± = 1−κ± ∣∣γ∣∣ Λ± =μ
(
1−κ± ∣∣γ∣∣)= 1

λ∓ Σ± =Λ2
±

and write

χ= ∣∣χ∣∣ e2iφ (A.97)

Substituting (A.3), (A.4), (A.18, A.19) into (A.97) yields

χ= a2 −b2

a2 +b2 e2iφ (A.98)

An equivalent form in terms of reduced shear
∣∣g ∣∣= |γ|

1−κ is

χ= 2

(1−κ)2
∣∣g ∣∣ (1+ ∣∣g ∣∣2) e2iφ (A.99)

A.3 Explicit expression of the image
(
Qi j

)
matrix

From Sects. A.2.2 and A.2.2, one obtains the expressions for the individual moments

Q11 +Q22 = 2μ2
[

(1−κ)2 + ∣∣γ∣∣2] Q11 −Q22 = 4μ2γ1 (1−κ) (A.100)
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A.3. Explicit expression of the image
(
Qi j

)
matrix

Q12 = Q21 = 2μ2γ2 (1−κ)

= 2μ (1−κ)μγ2

= 2
M11 +M22

2
M12

= (M11 +M22) M12 = (M11 +M22) M21

where M is the magnification matrix with expression

M=A−1 =μ

(
1−κ+γ1

γ2

γ2

1−κ−γ1

)
(A.101)

and μ is the magnification factor

μ= 1

(1−κ)2 − ∣∣γ∣∣2 (A.102)

Hence

2Q11 = 2μ2
[

(1−κ)2 + ∣∣γ∣∣2]+4μ2γ1 (1−κ) (A.103)

= 2μ2
[

(1−κ)2 + ∣∣γ∣∣2 +2γ1 (1−κ)
]

so that

Q11 = μ2
[

(1−κ)2 + ∣∣γ∣∣2 +2γ1 (1−κ)
]

= μ2 [(1−κ)2 +2γ1 (1−κ)
]+ ∣∣γ∣∣2 −γ2

1

= μ2
[(

1−κ+γ1
)2 + ∣∣γ∣∣2 −γ2

1

]
= μ2

[(
1−κ+γ1

)2 +γ2
2

]
= (M11)2 + (M12)2 (A.104)

The same way

2Q22 = 2μ2
[

(1−κ)2 + ∣∣γ∣∣2]−4μ2γ1 (1−κ) (A.105)

= 2μ2
[

(1−κ)2 + ∣∣γ∣∣2 −2γ1 (1−κ)
]

(A.106)

Therefore

Q22 = μ2
[

(1−κ)2 + ∣∣γ∣∣2 −2γ1 (1−κ)
]

= μ2 [(1−κ)2 −2γ1 (1−κ)
]+ ∣∣γ∣∣2 −γ2

1

= μ2
[(

1−κ−γ1
)2 +γ2

2

]
= (M22)2 + (M21)2 (A.107)
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To summarise

Q11 = μ2
[(

1−κ+γ1
)2 +γ2

2

]
= (M11)2 + (M12)2 (A.108)

Q22 = μ2
[(

1−κ−γ1
)2 +γ2

2

]
= (M22)2 + (M21)2 (A.109)

Q12 = Q21 = 2μ2 (1−κ)γ2 = (M11 +M22) M12 = (M11 +M22) M21 (A.110)

It follows that the quadrupole moment matrix reads

(
Qi j

) = μ2

( (
1−κ+γ1

)2 +γ2
2

2(1−κ)γ2

2(1−κ)γ2(
1−κ−γ1

)2 +γ2
2

)
(A.111)

=
(

(M11)2 + (M12)2

(M11 +M22) M21

(M11 +M22) M12

(M22)2 + (M21)2

)
(A.112)

A.4 Eigenvalues of the image
(
Qi j

)
matrix

A.4.1 First Derivation

The characteristic equation of the
(
Qi j

)
matrix is given by

det

(
Q11 −Σ

Q21

Q12

Q22 −Σ

)
= 0 ⇔ (Q11 −Σ) (Q22 −Σ)−Q21Q12 = 0 (A.113)

where Σ represents a eigenvalue of
(
Qi j

)
. We expect the matrix to be symmetric, thus Q21 =Q21

and the equation becomes

Σ2 −Σ(Q11 +Q22)+Q11Q22 −Q2
12 = 0 (A.114)

Σ2 −2μ2Σ
[

(1−κ)2 + ∣∣γ∣∣2]+μ4
{[

(1−κ)− ∣∣γ∣∣]2[
(1−κ)+ ∣∣γ∣∣]2

}
= 0 (A.115)

where the magnification factor μ is given by (A.102). The discriminant is

Δ′ = μ4
[

(1−κ)2 + ∣∣γ∣∣2]2 −μ4
{[

(1−κ)− ∣∣γ∣∣]2 [(1−κ)+ ∣∣γ∣∣]2
}

= μ4
[

(1−κ)2 + ∣∣γ∣∣2 + [(1−κ)− ∣∣γ∣∣][(1−κ)+ ∣∣γ∣∣]][(1−κ)2 + ∣∣γ∣∣2 − [(1−κ)− ∣∣γ∣∣][(1−κ)+ ∣∣γ∣∣]]
= μ4

[
(1−κ)2 + ∣∣γ∣∣2 + (1−κ)2 − ∣∣γ∣∣2][(1−κ)2 + ∣∣γ∣∣2 − (1−κ)2 + ∣∣γ∣∣2]

= μ4 [2(1−κ)2][2
∣∣γ∣∣2]

= 4μ4(1−κ)2
∣∣γ∣∣2 > 0 (A.116)
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A.4. Eigenvalues of the image
(
Qi j

)
matrix

Which gives the two real positive eigenvalues

Σ− = μ2
[

(1−κ)2 + ∣∣γ∣∣2]−2μ2(1−κ)
∣∣γ∣∣

= μ2 [1−κ− ∣∣γ∣∣]2

= μ2λ2
− =Λ2

− (A.117)

Σ+ = μ2
[

(1−κ)2 + ∣∣γ∣∣2]+2μ2(1−κ)
∣∣γ∣∣

= μ2 [1−κ+ ∣∣γ∣∣]2

μ2λ2
+ =Λ2

+ (A.118)

A.4.2 Second Derivation

The diagonal matrix DQ to be found is assumed to be of the form

DQ =
(
Σ+
0

0
Σ−

)
(A.119)

and the following expression holds

Q=RφDQR−1
φ

where

Rφ =
(

cosφ
sinφ

−sinφ

cosφ

)
(A.120)

represents the anticlockwise rotation Rϕ in the image plane, generated by the diagonalisation
transformation.

Q = RφDQR−1
φ =

(
cosφ
sinφ

−sinφ

cosφ

)(
Σ+
0

0
Σ−

)(
cosφ
−sinφ

sinφ

cosφ

)

=
(
Σ+ cosφ
Σ+ sinφ

−Σ− sinφ

Σ− cosφ

)(
cosφ
−sinφ

sinφ

cosφ

)

=
(
Σ+ cos2φ+Σ− sin2φ

cosφsinφ (Σ−−Σ+)
cosφsinφ (Σ−−Σ+)
Σ+ sin2φ+Σ− cos2φ

)
(
Σ++ sin2φ (Σ−−Σ+)
cosφsinφ (Σ+−Σ−)

cosφsinφ (Σ+−Σ−)
Σ−+ sin2φ (Σ+−Σ−)

)
(A.121)
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Using

sinφ =
∣∣γ∣∣−γ1√

2
∣∣γ∣∣ (

∣∣γ∣∣−γ1)
=
∣∣γ∣∣−γ1

η2
=
√∣∣γ∣∣−γ1√

2
∣∣γ∣∣ (A.122)

cosφ = γ2√
2
∣∣γ∣∣ (

∣∣γ∣∣−γ1)
= γ2

η2
(A.123)

one derives

sinφcosφ= γ2

2
∣∣γ∣∣ sin2φ=

∣∣γ∣∣−γ1

2
∣∣γ∣∣ cos2φ= γ2

2

2
∣∣γ∣∣ (

∣∣γ∣∣−γ1)

Comparing with the Qi j coefficients

Q12 = Q21 = 2μ2 (1−κ)γ2 = γ2

2
∣∣γ∣∣ (Σ+−Σ−) (A.124)

Q11 = μ2
[

(1−κ)2 + ∣∣γ∣∣2 +2γ1 (1−κ)
]
=Σ++

∣∣γ∣∣−γ1

2
∣∣γ∣∣ (Σ−−Σ+) (A.125)

Q22 = μ2
[

(1−κ)2 + ∣∣γ∣∣2 −2γ1 (1−κ)
]
=Σ−+

∣∣γ∣∣−γ1

2
∣∣γ∣∣ (Σ+−Σ−) (A.126)

one finds

(Σ+−Σ−) = 4μ2 (1−κ)
∣∣γ∣∣ (A.127)

Σ+ = μ2
[

(1−κ)2 + ∣∣γ∣∣2 +2γ1 (1−κ)
]
+
∣∣γ∣∣−γ1

2
∣∣γ∣∣ 4μ2 (1−κ)

∣∣γ∣∣
= μ2

[
(1−κ)2 + ∣∣γ∣∣2 +2γ1 (1−κ)+2

(∣∣γ∣∣−γ1
)

(1−κ)
]

= μ2
[

(1−κ)2 + ∣∣γ∣∣2 +2
∣∣γ∣∣ (1−κ)

]
= μ2 [(1−κ)+ ∣∣γ∣∣]2

= μ2λ2
+ (A.128)

= Λ2
+ (A.129)
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A.5. Representation of the image
(
Qi j

)
matrix in Polar coordinates

Σ− = μ2
[

(1−κ)2 + ∣∣γ∣∣2 −2γ1 (1−κ)
]
−
∣∣γ∣∣−γ1

2
∣∣γ∣∣ 4μ2 (1−κ)

∣∣γ∣∣
= μ2

[
(1−κ)2 + ∣∣γ∣∣2 −2γ1 (1−κ)−2

(∣∣γ∣∣−γ1
)

(1−κ)
]

= μ2
[

(1−κ)2 + ∣∣γ∣∣2 −2
∣∣γ∣∣ (1−κ)

]
= μ2 [(1−κ)− ∣∣γ∣∣]2

= μ2λ2
− (A.130)

= Λ2
− (A.131)

A.4.3 Expression in terms of the “shape parameters” Σ and ΔΣ

These eigenvalues can also be conveniently expressed in terms of the shape parameters Σ and
ΔΣ (Kochanek 1990) as

Σ+ =Σ+ΔΣ Σ− =Σ−ΔΣ (A.132)

where

Σ= Σ++Σ−
2

=μ2
[

(1−κ)2 + ∣∣γ∣∣2] ΔΣ= Σ+−Σ−
2

= 2μ2 (1−κ)
∣∣γ∣∣ (A.133)

The shape parameters Σ and ΔΣ respectively describes estimate the size of the galaxy and the
deviation of its shape from circularity.

Equation (A.98) also yields

|χ| = ΔΣ

Σ
= a2 −b2

a2 +b2 = λ2 −λ2

λ2 +λ2 = Λ2 −Λ2

Λ2 +Λ2 (A.134)

A.5 Representation of the image
(
Qi j

)
matrix in Polar coordinates

The diagonal matrix DQ of Q reads

DQ =
(
Σ+
0

0
Σ−

)
=μ2

( [
1−κ+ ∣∣γ∣∣]2

0

0[
1−κ− ∣∣γ∣∣]2

)
=
(
Σ+ΔΣ

0
0

Σ−ΔΣ

)
(A.135)

or

DQ =Σ

(
1
0

0
1

)
+ΔΣ

(
1
0

0
−1

)
=ΣI+ΔΣ S (A.136)

DQ can be expressed as

DQ=R−1
φ QRφ (A.137)

where

Rφ =
(

cosφ
sinφ

−sinφ

cosφ

)
(A.138)
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describes the anticlockwise rotation Rϕ in the image plane, generated by the diagonalization
transformation. Thus

Q =RφDQR−1
φ (A.139)

or

Q = Rφ [ΣI+ΔΣS]R−1
φ

= ΣRφIR−1
φ +ΔΣRφSR−1

φ

= ΣI+ΔΣSφ (A.140)

where the reflection matrix Sφ is

Sφ = RφSRT
φ =

(
cosφ
sinφ

−sinφ

cosφ

)(
1
0

0
−1

)(
cosφ
−sinφ

sinφ

cosφ

)
(A.141)

=
(

cos2φ
sin2φ

sin2φ
−cos2φ

)

It follows from (A.140) that an expression for the matrix Q in terms of the phase angle φ and
the shape parameters Σ and ΔΣ is φ is

Q = ΣI+ΔΣ Sφ (A.142)

= Σ

(
1
0

0
1

)
+ΔΣ

(
cos2φ
sin2φ

sin2φ
−cos2φ

)
(A.143)

= μ2
[

(1−κ)2 + ∣∣γ∣∣2]( 1
0

0
1

)
+2μ2 (1−κ)

∣∣γ∣∣( cos2φ
sin2φ

sin2φ
−cos2φ

)

= μ2

( (
1−κ+ ∣∣γ∣∣)2 +2(1−κ)

∣∣γ∣∣cos2φ
2 (1−κ)

∣∣γ∣∣sin2φ

2(1−κ)
∣∣γ∣∣sin2φ

(1−κ)2 + ∣∣γ∣∣2 −2(1−κ)
∣∣γ∣∣cos2φ

)

With

detQ = μ2
[[

(1−κ)2 + ∣∣γ∣∣2]2 −4(1−κ)2
∣∣γ∣∣2]

=
[

(1−κ)2 − ∣∣γ∣∣2]2

[
(1−κ)2 − ∣∣γ∣∣2]2 = 1 (A.144)

The distortion characterized by the matrix Q is thus area-preserving. Second-order bright-
ness moments characterize the elliptical area formed by distorting a circularly symmetric
distribution of points along two orthogonal directions while preserving the total area of that
distribution.
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