
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Grossglauser, président du jury
Prof. K. Aberer, directeur de thèse

Prof. R. Cheng, rapporteur
Prof. C. Koch, rapporteur

Prof. G. Trajcevski, rapporteur

Statistical Models for Querying and Managing Time-Series
Data

THÈSE NO 5705 (2013)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 21 jUIN 2013

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES D'INFORMATION RÉPARTIS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2013

PAR

Saket SATHE

To my dear parents,

Vandana Sathe and late Keshav Sathe.

i

Acknowledgements

The first person I would like to thank is my thesis supervisor, Prof. Karl

Aberer. He did an excellent job in supporting me throughout my PhD and at

the same time gave me the opportunity to concentrate on the topics I liked

most. I learnt a lot from Karl and I consider myself very lucky that I did my

PhD in his lab.

I am very thankful to the members of my thesis committee: Prof Christoph

Koch, Prof. Reynold Cheng, Prof. Goce Trajcevski and Prof. Matthias

Grossglauser for their important comments and discussions to improve my

dissertation.

I wish to thank all my colleagues whom I collaborated with during the work

on this thesis, especially Dipanjan Chakraborty, Hoyoung Jeung, Thanasis

Papaioannou, Sebastian Cartier, and Gleb Skobeltsyn. I thank all my col-

leagues from LSIR - we have a great team. A special thanks goes to Chantal

who helped me sort out so many not only administrative issues.

I thank all my friends from the doctoral school group and beyond, for their

support and for all the great moments we spent together, including all our

travels, sports, adventures and parties: Surender, Dipanjan, Rammohan,

Mehdi, Michele, Prem, Devika, Marc, Tri, Alexendra, Nishanth, Abhishek,

Raj, Shobha, Laura, Shrinivas, Dinkar, Satish, Sanket, Sayali and many

many others.

I would like to especially thank Nicola Pozza, who not only did a French-

Hindi tandem with me for the last 4 years, but also perfectly translated the

abstract of this thesis. I owe all my knowledge of the French language, Hindi

Grammar, and Swiss politics to him.

Finally, I would like to thank my parents for their love and support, and

for the many sacrifices that they’ve had to make. And, of course, I must

never ever forget my wife Aishwarya. Not only is she the most intelligent

and beautiful person I know, but she is also an amazing mother; our son

Devansh is 10 months old and is learning to stand on his own.

i

Abstract

In recent years we are experiencing a dramatic increase in the amount of

available time-series data. Primary sources of time-series data are sensor

networks, medical monitoring, financial applications, news feeds and social

networking applications. Availability of large amount of time-series data calls

for scalable data management techniques that enable efficient querying and

analysis of such data in real-time and archival settings. Often the time-series

data generated from sensors (environmental, RFID, GPS, etc.), are imprecise

and uncertain in nature. Thus, it is necessary to characterize this uncertainty

for producing clean answers. In this thesis we propose methods that address

these important issues pertaining to time-series data. Particularly, this thesis

is centered around the following three topics:

Computing Statistical Measures on Large Time-Series Datasets.

Computing statistical measures for large databases of time series is a funda-

mental primitive for querying and mining time-series data [31, 81, 97, 111,

132, 137]. This primitive is gaining importance with the increasing number

and rapid growth of time-series databases. In Chapter 3, we introduce the

Affinity framework for efficient computation of statistical measures by ex-

ploiting the concept of affine relationships [113, 114]. Affine relationships can

be used to infer a large number of statistical measures for time series, from

other related time series, instead of computing them directly; thus, reducing

the overall computational cost significantly. Moreover, the Affinity frame-

work proposes an unified approach for computing several statistical measures

at once.

Creating Probabilistic Databases from Imprecise Data.

A large amount of time-series data produced in the real-world has an inher-

ent element of uncertainty, arising due to the various sources of imprecision

affecting its sources (like, sensor data, GPS trajectories, environmental mon-

itoring data, etc.). The primary sources of imprecision in such data are:

imprecise sensors, limited communication bandwidth, sensor failures, etc.

Recently there has been an exponential rise in the number of such imprecise

sensors, which has led to an explosion of imprecise data. Standard database

techniques cannot be used to provide clean and consistent answers in such

scenarios. Therefore, probabilistic databases that factor-in the inherent un-

certainty and produce clean answers are required. An important assumption

i

while using probabilistic databases is that each data point has a probability

distribution associated with it. This is not true in practice — the distribu-

tions are absent. As a solution to this fundamental limitation, in Chapter 4

we propose methods for inferring such probability distributions and using

them for efficiently creating probabilistic databases [116].

Managing Participatory Sensing Data.

Community-driven participatory sensing is a rapidly evolving paradigm in

mobile geo-sensor networks. Here, sensors of various sorts (e.g., multi-sensor

units monitoring air quality, cell phones, thermal watches, thermometers in

vehicles, etc.) are carried by the community (public vehicles, private vehicles,

or individuals) during their daily activities, collecting various types of data

about their surrounding. Data generated by these devices is in large quantity,

and geographically and temporally skewed. Therefore, it is important that

systems designed for managing such data should be aware of these unique

data characteristics.

In Chapter 5, we propose the ConDense (Community-driven Sensing of the

Environment) framework for managing and querying community-sensed data

[5, 19, 115]. ConDense exploits spatial smoothness of environmental param-

eters (like, ambient pollution [5] or radiation [2]) to construct statistical

models of the data. Since the number of constructed models is significantly

smaller than the original data, we show that using our approach leads to

dramatic increase in query processing efficiency [19, 115] and significantly

reduces memory usage.

Keywords: time-series data management, statistical query processing, adap-

tive clustering, community sensing, probabilistic databases, affine transfor-

mations, view generation, approximate caching.

Résumé

La quantité de données sous forme de série temporelle a augmenté de manière

spectaculaire ces dernières années. Les sources principales de ces données

proviennent de réseaux de capteurs, du monitoring médical, des applications

financières, de flux d’actualités et des réseaux sociaux. Afin que ces quantités

importantes de données issues des séries temporelles soient disponibles, des

techniques de gestion de données extensibles permettant un trâıtement des

requêtes efficace et une analyse de ces données en temps réel et en tant

qu’archives sont nécessaires. Ces données, quand elles sont issues de capteurs

(environnementaux, RFID, GPS, etc.), sont toutefois souvent imprécises et

peu fiables. Il est par conséquent nécessaire de caractériser cette incertitude,

afin de pouvoir fournir des réponses fiables. Dans cette thèse, nous proposons

certaines méthodes permettant de traiter ces importants problèmes liés aux

données des séries temporelles. Cette thèse se concentre en particulier sur

les trois sujets suivants:

Calcul de mesures statistiques sur des séries temporelles à large

échelle: Le calcul des mesures statistiques de données de séries temporelles

à large échelle est un prérequis indispensable à la récolte et à l’examen de ces

données [31, 81, 97, 111, 132, 137]. Ce prérequis gagne en importance au fur

et à mesure qu’augmentent la quantité et la taille des bases de données. Le

chapitre 3 présente l’architecture Affinity, nécessaire au calcul efficace des

mesures statistiques et basé sur le concept de relations affines [113, 114]. Les

relations affines peuvent être utilisées pour déduire un nombre important

de mesures, à partir d’autres séries temporelles qui leur sont liées, plutôt

qu’en les calculant des séries originales; réduisant ainsi de manière drastique

le calcul numérique global. De plus, l’architecture Affinity propose une

approche unifiée pour calculer en une seule fois plusieurs mesures statistiques.

Création de bases de données probabilistes à partir de données

imprécises: Une grande quantité de données de séries temporelles produites

dans le monde réel comporte une part inhérente d’incertitude, en raison des

diverses causes d’imprécision affectant leurs sources (par ex., les capteurs,

la géolocalisation, les observatoires environnementaux, etc.). Les principales

sources d’imprécisions proviennent de capteurs imprécis, de bandes passantes

limitées, de pannes des capteurs, etc. Récemment, le nombre de capteurs

i

imprécis a augmenté de manière exponentielle, ce qui a entrâıné une explo-

sion des données imprécises. Par ailleurs, les techniques habituelles utilisées

pour les bases de données ne permettent pas de fournir des réponses fiables

et cohérentes dans de tels cas de figure. Il est par conséquent nécessaire

d’utiliser des bases de données probabilistes qui tiennent compte de cette

incertitude et fournissent des réponses fiables. Quand ce genre de données

est utilisé, il est souvent admis que chaque donnée est associée à une loi de

probabilité. Ce n’est cependant pas le cas en pratique: ces lois de proba-

bilité sont absentes. Comme solution à cette limitation fondamentale, nous

proposons dans le chapitre 4 des méthodes permettant de déduire ces lois et

de créer efficacement des bases de données utilisant les lois déduites [116].

Gestion de données de type participatory sensing : La méthode de

participatory sensing est un modèle évoluant rapidement parmi les réseaux

de géo-capteurs mobiles. Dans ce cas de figure, différentes sortes de capteurs

(par exemple, des unités de capteurs multiples observant la qualité de l’air,

des téléphones mobiles, des montres thermiques, des thermomètres installés

dans les véhicules, etc.) sont transportés par les gens (véhicules publics

et privés, individus) pendant leurs activités quotidiennes, recueillant divers

types de données sur leur environnement. Les aspects spatio-temporelles

des nombreuses informations collectées par ces capteurs sont fréquemment

biaisées. C’est pourquoi il est important que les systèmes conçus pour gérer

ces données tiennent compte de leurs caractéristiques propres.

Au chapitre 5, nous proposons l’architecture ConDense (Community-driven

Sensing of the Environment) pour gérer et trâıter des requêtes sur ce type de

données [5, 19, 115]. ConDense exploite la régularité spatiale des paramètres

environnementaux (par exemple, la pollution ambiante, le rayonnement, etc.),

afin de construire les modèles statistiques de ces données. Comme le nombre

de modèles construits est beaucoup plus faible que celui des données, nous

pouvons montrer que l’utilisation de cette approche entrâıne une augmenta-

tion spectaculaire de l’efficacité du traitement des requêtes [19, 115] et une

diminution considérable de l’utilisation de la mémoire.

Mots-clés: gestion des données de séries temporelles, traitement de requête

statistique, clustering adaptif, community sensing, base de données proba-

biliste, transformation affine, génération de vue, caching approximatif.

Contents

Dedication i

Acknowledgment i

Abstract i

Résumé i

Contents iii

List of Figures ix

List of Tables xiii

List of Algorithms xv

1 Introduction 1

1.1 The Time-Series Database Model . 5

1.2 Contributions . 6

1.3 Thesis Organization . 8

1.4 Selected Publications . 8

2 State of the Art 11

2.1 Introduction . 11

2.1.1 Chapter Organization . 13

2.2 Model-Based Data Acquisition . 13

iii

CONTENTS

2.2.1 The Sensor Data Acquisition Query 14

2.2.2 Pull-Based Data Acquisition . 14

2.2.2.1 In-Network Data Acquisition 14

2.2.2.2 Multi-Dimensional Gaussian Distributions 16

2.2.3 Push-Based Data Acquisition . 17

2.2.3.1 PRESTO . 17

2.2.3.2 Ken . 19

2.2.3.3 A Generic Push-Based Approach 20

2.3 Model-Based Data Cleaning . 20

2.3.1 Overview of the Data Cleaning System 21

2.3.2 Models for Data Cleaning . 22

2.3.2.1 Regression Models . 22

2.3.2.2 Probabilistic Models . 24

2.3.2.3 Outlier Detection Models 25

2.3.3 Declarative Data Cleaning Approaches 25

2.4 Model-Based Query Processing . 26

2.4.1 In-Network Query Processing . 26

2.4.2 Model-Based Views . 27

2.4.3 Symbolic Query Evaluation . 28

2.4.4 Processing Queries over Uncertain Data 29

2.4.4.1 Dynamic Probabilistic Models 29

2.4.4.2 Static Probabilistic Models 30

2.4.5 Query Processing over Semantic States 31

2.4.6 Processing Event Queries . 31

2.5 Model-Based Data Compression . 32

2.5.1 Overview of Data Compression System 32

2.5.2 Methods for Data Segmentation 34

2.5.3 Piecewise Approximation . 34

2.5.3.1 Swing and Slide Filters 35

2.5.3.2 Piecewise Linear Approximation 36

2.5.4 Compressing Correlated Data Streams 37

2.5.5 Multi-Model Data Compression . 38

iv

CONTENTS

2.5.6 Orthogonal Transformations . 38

2.5.6.1 Discrete Fourier Transform (DFT) 39

2.5.7 Lossless vs. Lossy Compression . 40

2.6 Summary . 40

3 Affinity: Efficiently Querying Statistical Measures on Time-Series Data 43

3.1 Introduction . 43

3.1.1 Chapter Organization . 46

3.2 Foundation . 47

3.2.1 Statistical Measures . 47

3.2.2 Query Types . 49

3.2.3 Affine Transformations . 49

3.3 Affine Clustering . 51

3.3.1 Computing the Dot Product . 51

3.3.2 Computing Other Measures . 52

3.3.3 The AFCLST Clustering Algorithm 53

3.4 Computing Affine Relationships . 56

3.4.1 Measure Computation Query . 58

3.5 Indexing Affine Relationships . 59

3.5.1 Scalar Projection (SCAPE) Index 60

3.5.2 Processing Threshold and Range Queries 62

3.5.3 Index-based Pruning for D-Measures 62

3.6 Experimental Evaluation . 64

3.6.1 Analyzing Trade-Off . 65

3.6.2 Impact of Online Environments . 67

3.6.3 Scalability of the SYMEX Algorithm 68

3.6.4 Impact of using the SCAPE Index 68

3.7 Related Work . 70

3.8 Conclusion . 71

4 Creating Probabilistic Databases from Imprecise Time-Series Data 73

4.1 Introduction . 73

4.1.1 Chapter Organization . 76

v

CONTENTS

4.2 Foundation . 76

4.2.1 Framework Overview . 76

4.2.2 Evaluation of Dynamic Density Metrics 78

4.3 Naive Dynamic Density Metrics . 79

4.4 GARCH Metric . 80

4.4.1 The GARCH Model . 81

4.5 Enhanced GARCH Metric . 83

4.5.1 C-GARCH Model . 83

4.5.2 Successive Variance Reduction Filter 84

4.6 Probabilistic View Generation . 86

4.6.1 σ–cache . 87

4.6.2 Constraint-Aware Caching . 88

4.7 Experimental Evaluation . 91

4.7.1 Comparison of Dynamic Density Metrics 91

4.7.2 Impact of C-GARCH . 93

4.7.3 Impact of using σ–cache . 94

4.7.4 Verifying Time-Varying Volatility 95

4.8 Related Work . 96

4.9 Conclusion . 97

Appendix 4.A Probabilistic Query Evaluation 97

5 ConDense: Managing Data in Community-Driven Mobile Geosensor

Networks 101

5.1 Introduction . 101

5.1.1 Chapter Organization . 102

5.2 Sensors, Deployment, and Data Collection 103

5.3 Related Work . 104

5.4 Problem Characterization . 105

5.5 Non-Adaptive Methods for Model Cover Estimation 108

5.5.1 Grid-Based Model Cover . 108

5.5.2 Kriging-Based Model Cover . 109

5.6 Adaptive Methods for Model Cover Estimation 109

5.6.1 Adaptive DBSCAN . 110

vi

CONTENTS

5.6.2 Adaptive K-Means . 112

5.6.3 Efficiently Maintaining the Model Cover 114

5.7 Experimental Evaluation . 114

5.7.1 Error Analysis . 115

5.7.2 Comparing Efficiency of Model Cover Estimation Methods 116

5.7.3 Analyzing Temporal Validity of Model Cover 118

5.8 Conclusion . 118

6 Conclusion and Future Directions 121

6.1 Conclusion . 121

6.2 Future Directions . 122

6.2.1 AFFINITY . 122

6.2.2 Creating Probabilistic Databases 123

6.2.3 ConDense . 124

List of Symbols 125

Bibliography 129

Curriculum Vitae 139

vii

CONTENTS

viii

List of Figures

1.1 A sensor data processing system. 1

1.2 Time-series database table containing the data values. The position of a

data source wj is denoted as (xj , yj). In cases where the data sources are

assumed to be stationary, the position can also be stored using a foreign-

key relationship between wj and (xj , yj). But, for simplicity, we assume

that the sensor data table is in a denormalized form. 5

2.1 Various time-series data management tasks performed using models. (a)

to improve data acquisition efficiency, a function is fitted to the first three

values, and the remaining values (shown dotted) are not acquired from the

data sources (e.g., sensors), since they are within a threshold δ, (b) data

values are cleaned by identifying outliers after fitting a linear model, (c) a

query requesting the value at time t′ can be answered using interpolation,

(d) only the first and the last time-series data value can be stored as

compressed representation of the data values. 12

2.2 Push- and pull-based methods for sensor data acquisition. 15

2.3 Toy example of a Semantic Routing Tree (SRT) and Acquisitional Query

Processing (ACQP) over a sensor network with five sensors. Dotted ar-

rows indicate the direction of query response. A given sensor appends its

identifier wi and value sij to the partial result, which is available from its

sub-tree. 16

2.4 Architecture of time-series data cleaning system. 21

2.5 Detected anomalies based on a degree-2 Chebyshev regression. 23

ix

LIST OF FIGURES

2.6 An example of data cleaning based on a probabilistic model. 24

2.7 An example of anomaly detection using a SQL statement. 25

2.8 Example of the RegModel view with three sensors. RegModel is incremen-

tally updated as new sensor values are acquired. 28

2.9 Particle filtering stores p weighted data values for each time instance ti. . 30

2.10 The database schema for multi-model materialization. 33

2.11 Poor Man’s Compression - MidRange (PMC-MR). 35

3.1 Stock prices for symbols INTC, AMD and MSFT on 2nd January 2003. . . 44

3.2 Architecture of the Affinity framework. 48

3.3 Illustration of an affine transformation. 50

3.4 (a) the 2-D hyperplane H, and (b) directional view of the hyperplane H. . 54

3.5 Procedure for generating the pivot pairs. 56

3.6 Toy example demonstrating Observation 3.1. 60

3.7 Example of the SCAPE index for indexing a C-measure and a D- measure. 61

3.8 Index-based pruning for processing MET and MER queries on D-measures. 63

3.9 Efficiency and accuracy tradeoff for sensor-data. Note the logarithmic

scale for the speedup in (c). 65

3.10 Efficiency and accuracy tradeoff for stock-data. Note the logarithmic scale

for the speedup in (c). 66

3.11 Absolute time comparison for stock-data. Note the logarithmic scale for

the speedup in (c). 66

3.12 Comparing query processing efficiency. 67

3.13 Scalability of the SYMEX algorithm. (a) sensor-data and (b) stock-data. . 68

3.14 Scalability of the index construction on sensor-data. 69

3.15 Comparing efficiency of the SCAPE index for the MET query. 69

3.16 Comparing efficiency of the SCAPE index for the MER query. 70

4.1 An example of creating a tuple-level probabilistic database from time-

dependent probability distributions. 74

4.2 Architecture of the framework. 77

4.3 Examples of naive dynamic density metrics. 79

x

LIST OF FIGURES

4.4 Regions of changing volatility in (a) ambient temperature and (b) relative

humidity. 81

4.5 (a) Behavior of the GARCH model when window sHl−1 contains erroneous

values. (b) Result of using the C-GARCH model. 84

4.6 Showing sample run of the Successive Variance Reduction Filter (Algo-

rithm 4.2). 85

4.7 An example illustrating that ou remains unchanged under mean shift op-

erations when two Gaussian distributions have equal variance. 88

4.8 Structure of the σ–cache. 89

4.9 Comparing quality of the dynamic density metrics. 92

4.10 Comparing efficiency of the dynamic density metrics. Note the logarith-

mic scale on the y-axis. 92

4.11 Effect of model order on campus-data. 93

4.12 Comparing C-GARCH and GARCH. (a) Percentage of erroneous values

successfully detected and (b) average time for processing a single value. . 94

4.13 (a) Impact of using the σ–cache on efficiency. (b) Scaling behavior of the

σ–cache. Note the exponential scale on the x-axis. 94

4.14 Verifying time-varying volatility. 96

5.1 Community-driven mobile geosensor network infrastructure. 103

5.2 Architecture of the ConDense framework. 106

5.3 Weighting scheme for Ad-DBS. (a) shaded area shows an example of two

overlapping regions, (b) shows the regions with the corresponding sensor

values s, (c) and (d) present the weighting functions Ko and κo used for

interpolation. 112

5.4 Ad-KMN iterations on toy data. (a) the centroids of regions R1 and R2

are computed, after which models M1 and M2 are estimated. (b) since

error u1 > τn and u2 > τn, we add two new clusters R3 and R4 using

k-means clustering algorithm. 113

5.5 Comparing the decrease in percentage error as the number of regions

increase. Unweighted Ad-DBS denotes Ad-DBS without the weighting

scheme of Eq. (5.5). Note the different ranges on the y-axis. 115

xi

LIST OF FIGURES

5.6 Comparing the percentage normal error for Ad-KMN and GRIB over

randomly chosen windows Bc. Note the different ranges on the y-axis. . . 116

5.7 Comparing efficiency of (a) model cover estimation and (b) processing a

point query (interpolation) on opensense. 117

5.8 Comparing the memory requirement of all the model cover estimation

methods. 117

5.9 Comparing temporal validity of the model cover produced by (a) Ad-KMN

and (b) GRIB on opensense. 118

xii

List of Tables

1.1 Summary of notations. 6

3.1 Summary of notations. 47

3.2 Choices of αq and βqd. The third column refers to the affine relationship

(A, b) between pq and eqd. 62

3.3 Summary of the datasets. 65

3.4 Query processing speedup computed when the query returns the maxi-

mum size of the result set AT or AR. 70

4.1 Summary of Notations. 78

4.2 Summary of Datasets . 91

5.1 Characteristics of sensors and pollutants. 103

5.2 Summary of the Datasets. 104

xiii

LIST OF TABLES

xiv

List of Algorithms

3.1 The AFCLST affine clustering algorithm. 55

3.2 The SYMEX algorithm. 58

4.1 Inferring ŝl and σ̂2
l using ARMA-GARCH. 83

4.2 The Successive Variance Reduction Filter. 86

5.1 The adaptive DBSCAN algorithm. 111

5.2 The adaptive k-means model cover method. 113

xv

LIST OF ALGORITHMS

xvi

Chapter 1
Introduction

It is not the mountain we
conquer, but ourselves.

Sir Edmund Hillary, 2003

Time-series data is becoming one of the fundamental primitives in many database

operations. Therefore, there is an eminent need for scalable data management tech-

niques that enable efficient querying and analysis of large amounts of time-series data in

real-time and archival settings. Primary sources of time-series data are sensor networks,

medical monitoring, financial applications, news feeds and social networking applica-

tions. Managing and querying such data poses several important challenges. Before

diving into the details of these challenges, let us first understand the operation of one

particular time-series data processing system, namely the sensor data processing system.

base stationsensor network

w1

w2 w4

w3 w7

w6

w5

w8

w10

w9

user

query

sensor values

query

deviated sensor values

query
sensor values

sensor values

energy
efficient

sensor_data

sij

01:00
01:00
01:00
01:05
01:05
01:05

3.4
5.2
7.1
3.4
5.2
7.1

1
2
3
1
2
3

yjxjwjti

0.1
0.8
0.2
0.7
0.9
1.0

7.2
8.5
2.2
7.2
8.5
2.2

1
1
1
2
2
2

i

query

database

Figure 1.1: A sensor data processing system.

Figure 1.1 shows an example of a sensor data processing system consisting of a net-

work of sensors w1, w2, . . . , w10. Let us assume that these sensors are monitoring an

environmental parameter, say, ambient temperature. These sensors transmit the sensed

temperature values as time-series data to the base station. The base station trans-

mits these values to a centralized database, shown in Figure 1.1 by the table called

sensor data. The user of this system can query the table sensor data for obtaining

answers or, if the queries are simplistic, he/she can directly query the sensor network.

1

1. Introduction

During querying and managing time-series data, the sensor data processing system per-

forms the following tasks:

• Data Acquisition: The sensors are remotely deployed and are often battery-

powered. For this reason, the system has to acquire sensor values as efficiently as

possible. In the existing literature several approaches have been proposed for this

task [29, 38, 39, 82, 121]. Other proposals, like TinyDB [87, 88, 89], Cougar [134]

and TiNA [117], advocate combining the task of data acquisition and query process-

ing and collectively refer to it as in-network query processing or acquisitional query

processing.

• Data Cleaning: Due to several reasons (poor weather conditions, faulty sensors,

etc.), sensors often generate dirty or erroneous data. The sensor data processing

system has to clean the sensor values by eliminating and interpolating the erroneous

data values. This task is performed occasionally when the time-series data is streamed

into the system. Several model-based time-series data cleaning techniques have been

suggested in the literature [64, 91, 109, 116, 122].

• Data Compression: The data generated from sensor networks, like the one shown

in Figure 1.1, is significantly large. At the same time, not all the data collected may

be needed for processing user-queries [8, 29, 48, 111]. Therefore, the system has to

optimally compress the collected data. This task is performed on the database side,

by utilizing a wide-variety of signal processing techniques (refer Section 2.5). Some

techniques, however, perform this task indirectly. Here, sensor values are transmitted

only if they change considerably, leading to a collection of step functions that can be

compressed efficiently [82, 121].

• Data Retrieval: In certain cases the users are interested in efficiently retrieving the

data from the sensor data processing system. If the data is compressed, it may have

to be reconstructed – at least partially – and presented to the user [21, 125]. Ap-

proaches like MauveDB [40] advocate to maintain model-based views in the form of

regression models, and subsequently reconstruct the data using models as required.

Other approaches propose methods for retrieving the time-series data based on simi-

larity queries [6, 69, 83, 107, 108]. These techniques mainly rely on signal processing

methods like DFT (Discrete Fourier Transform) or DWT (Discrete Wavelet Trans-

form).

• Query Processing: The sensor data processing system processes many other queries

than the ones discussed above. They include aggregation queries [48, 87, 89, 97], event

queries [110], continuous queries [94, 95, 96], probabilistic queries [24, 25, 66, 100,

116, 126], etc. All these queries are processed over the sensor data table.

While performing the above tasks there are several important and relevant challenges

that we discuss in the sequel:

• Data Scale: There has been a tremendous increase in the number of sensors that are

sensing different aspects of our environment or day-to-day lives. As a consequence,

2

the data available from these devices is growing at a tremendous rate. For example,

since environmental monitoring sensors are capable of operating at a sampling rate of

30 samples/minute, a single sensor can collect approximately 43K samples in one day.

Another example are the accelerometers used in smartphones. These accelerometers

operate at a much higher sampling frequency as compared to the environmental

sensors [133]. The data generated by these sensors is mainly time-series data. The

growing scale of this data opens up many interesting query processing problems.

• Data Uncertainty: Time-series data generated especially by sensors (environmen-

tal sensors, RFID, GPS, etc.) is uncertain due to several reasons: (a) imprecise or

inaccurate sensors, (b) intermittent sensor failures, (c) background noise influencing

the sensor values, (d) loss of communication that produces erroneous sensor values,

(e) other types of sensor failures, for example, snow accumulation on the sensor, etc.

One of the most effective ways to deal with imprecise and uncertain data is to employ

probabilistic approaches. In recent years there have been a plethora of methods

for managing and querying uncertain data [24, 32, 34, 57, 100, 110, 124]. These

methods are typically based on the assumption that probability distributions used

for processing queries are available; however, this need not be always true – in many

cases the distributions are absent.

• Data Abstraction: One important step for managing and querying sensor net-

work data is to create abstractions of the data in the form of models. These models

can then be stored, retrieved, and queried, as required. There has been significant

amount of prior literature on using models for query processing [14, 24, 40, 53, 110].

These approaches do not consider the community sensing scenario, where the data

is generated by sensors carried by the community (public or private vehicles, indi-

viduals). Admittedly, there has been a lack of understanding on developing reliable

models, considering the unique characteristics (e.g., high spatio-temporal skewness)

of community-sensed data.

In this thesis we present contributions addressing each of the three above mentioned

challenges, which are applicable in different data processing stages. Below we briefly

discuss our proposed solutions:

1. Handling Large-Scale Data: One important query that is sensitive to the scale of

the data, involves computing statistical measures (for e.g., the correlation coefficient

matrix) on large time-series datasets [31, 81, 97, 111, 132, 137]. The trivial solution

to this problem is to compute the correlation coefficient for each pair of time series

from scratch. But, since the number of pairs is quadratic, computing the pairwise

correlation coefficients from scratch becomes infeasible for large time-series datasets.

As a solution to this problem, in Chapter 3 we introduce a framework for efficient

computation of statistical measures by exploiting the concept of affine relationships.

Affine relationships can be used to infer statistical measures for time series from other

related time series instead of directly computing them; thus, reducing the overall

3

1. Introduction

computation cost significantly. The resulting methods show at least one order of

magnitude improvement over the best known methods.

2. Characterizing Data Uncertainty: Creating probabilistic data that will capture

the uncertainty is an every-challenging problem. Prior work on this problem has

only limited scope for domain-specific applications, such as handling duplicated tu-

ples [10, 56] and deriving structured data from unstructured data [55]. Evidently,

a wide range of applications still lack the benefits of existing query processing tech-

niques that require probabilistic data. Time-series data is one important example

where probabilistic data processing is currently not widely applicable due to the lack

of proper probabilistic description of the uncertain data values. One of the most

important challenges in creating a probabilistic database from time series is to deal

with evolving probability distributions, since time series often exhibit highly irregu-

lar dependencies on time [32, 126]. For example, temperature changes dramatically

around sunrise and sunset, but changes only slightly during the night. This implies

that the probability distributions that are used as the basis for deriving probabilistic

databases also change over time, and thus must be computed dynamically.

In order to capture the evolving probability distributions of time series, in Chapter 4

we introduce various dynamic density metrics, each of which dynamically inferring

time-dependent probability distributions from a given time series. We identify and

adopt a novel class of dynamical models from the time-series literature, known as the

GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model [116].

We show that the GARCH model can be used for accurately inferring dynamic prob-

ability distributions. The distributions derived by these dynamic density metrics are

used for creating probabilistic databases. Furthermore, for enhancing the efficiency

of database creation, we propose a caching mechanism called σ-cache. We prove

theoretical guarantees that are used for setting the cache parameters. Lastly, we

show that by using the σ-cache the performance of creating probabilistic databases

is enhanced by at least an order of magnitude as compared to the baseline approaches.

3. Creating Succinct Abstractions: Participatory sensing in Community-driven

Mobile GeoSensor Networks (CGSN) is a rapidly evolving paradigm. Here, sensors

of various sorts (e.g., multi-sensor units monitoring air quality, cell phones, thermal

watches, etc.) are carried by the community (public or private vehicles, individuals)

during their daily activities, collecting various types of data about their surrounding.

Data generated by these devices is in large quantity and geographically and tempo-

rally skewed. For example, in highly populated areas or city centers we will have

large number of data values and vice-versa or in the night the sampling frequency

dramatically reduces due the sensors being turned off or stationary.

Thus, creating succinct abstractions in the form of models from the data generated

by CGSNs is a new and challenging problem. In an effort to address this challenge, in

4

1.1 The Time-Series Database Model

Chapter 5 we propose various approaches for modeling the data from a community-

driven mobile geo-sensor network. This data is typically collected over a large geo-

graphical area with mobile sensors having uncontrolled or semi-controlled mobility.

We propose adaptive techniques that take into account such mobility patterns and

produce an accurate representation of the sensed spatio-temporal phenomenon.

Next, we start by defining the time-series data model and the technical terms that

are used in the rest of the thesis. We also describe the framework and establish a handful

of basic notations.

1.1 The Time-Series Database Model

In this section we will give the time-series database model and the basic notation that

will be consistently used in the rest of the thesis. In this thesis we consider a database

consisting of time-series data. An example of such database is the sensor data table

shown in Figure 1.2. Each column in the sensor data table is a function of time.

Another example of a time-series database is a collection of stock quotes. In such a

collection each stock’s values are ordered according to time.

pf_sensor_data

yjxjwjtii

sensor_data

sijyjxjwjtii p p
ij
s po

Figure 1.2: Time-series database table containing the data values. The position of a
data source wj is denoted as (xj , yj). In cases where the data sources are assumed to
be stationary, the position can also be stored using a foreign-key relationship between
wj and (xj , yj). But, for simplicity, we assume that the sensor data table is in a
denormalized form.

Now, let us consider the formal definition of time-series data and time-series data

source.

Definition 1.1: Time-series data and time-series data source. A time series

or time-series data is a sequence of real numbers, where these numbers are ordered

according to time of their occurrence, arrival or acquisition. A time-series data source1

is defined as the entity that is producing time-series data.

For example, in a scenario where a sensor is monitoring ambient temperature, the

temperature sensor is the time-series data source and the data generated by it is the

time-series data. Now, we describe our model of a time-series database. The time-series

1In this thesis we use time-series data source and data source interchangeably.

5

1. Introduction

database considered in this thesis consists of a set of time-series data sources denoted

as W = {wj |1 ≤ j ≤ n}. The value obtained from a source wj at time ti is denoted as

sij , which is a real number. In addition, note that we use wj , where j = (1, . . . , n), as

data source identifiers. In most of the cases that we consider in this thesis, the sampling

interval is considered uniform; ti+1 − ti is same for all the values of i ≥ 1. In such

cases, the time stamps ti become irrelevant, and it is sufficient to use only the index i

for denoting the time axis.

The random variable associated with the data value sij is denoted as Rij . We denote

the row vector of all the data values observed at time ti as r>i ∈ Rn; the vector-valued

random variable associated with ri is denoted as Ri. In some instances (refer Chapter 3)

we consider n time series, each of fixed length m. In these cases, we can compose a

matrix consisting of m rows by concatenating the n column vectors s1, s2, . . . , sn as

S = [s1, s2, . . . , sn] ∈ Rm×n. We refer to this matrix S as the data matrix.

Table 1.1: Summary of notations.

Symbol Description

W Time-series database consisting of sources wj , where j = (1, . . . , n).
wj Time-series data source in the database W.
sij Data value observed by the source wj at time ti, such that sij ∈ R.
sj Column vector of all the data values observed by the data source wj ,

such that sj ∈ Rm.
S Data matrix S = [s1, s2, . . . , sn] ∈ Rm×n.
ri Row vector of all the data values observed at time ti, such that r>i ∈ Rn.
Rij Random variable associated with the data value sij .
Ri Random variable associated with the row vector ri.

We summarize the basic notation used in this thesis in Table 1.1. Naturally, these are

not the only notations that are required for the thesis. A complete list of symbols used

in this thesis can be found from page 125 onward. Moreover, for the sake of convenience,

in each chapter we summarize the notation used in it, by including a table like Table 1.1.

1.2 Contributions

Our proposed solutions lead to the following concrete contributions:

• End-to-end solution for creating probabilistic databases: The first con-

tribution of this thesis is a generic end-to-end solution for creating probabilistic

databases from arbitrary imprecise time-series data. Specifically, we introduce var-

ious dynamic density metrics for associating tuples of raw time-series data values

with probability distributions. Then, we define a qualitative measure known as

the density distance that quantifies the effectiveness of the dynamic density met-

rics. This serves as an important measure for indicating the quality of probabilistic

databases derived using a dynamic density metric. Since time-series data sources

6

1.2 Contributions

often deliver error prone data values we propose effective enhancements that make

the dynamic density metrics robust against unclean data.

We then present approaches that allow applications to efficiently create probabilis-

tic databases by using a SQL-like syntax. We present a generic framework com-

prising of a malleable query provisioning layer, called Ω–View builder, which allows

us to create probabilistic databases with minimal effort. Furthermore, we propose

a space- and time-efficient caching mechanism, called σ–cache, which produces

manyfold improvement in performance. In addition, we prove useful guarantees

for effectively setting the cache parameters.

• Methods for fast computation and querying of statistical measures: To

the best of our knowledge, the Affinity framework proposed in Chapter 3 is the

first work that exploits multi-dimensional affine transformations for time-series

data management. The fundamental contribution here is the introduction of affine

relationships for efficiently querying and computing several statistical measures.

Compared to the existing state of the art methods [97, 137], which use the Discrete

Fourier Transform (DFT) to approximate the correlation coefficient, our methods

use affine relationships that are amenable to indexing, thus resulting in orders

of magnitude performance improvement over the state of the art methods. Fur-

thermore, our methods are more general and can be used for computing many

other statistical measures with even better performance gains as compared to the

correlation coefficient.

The technical contributions that we make on this topic are as follows:

– We propose a distance metric called the least significant frobenius distance

(LSFD) for characterizing the quality of affine relationships.

– We present a novel clustering algorithm called affine clustering (AFCLST)

that is capable of clustering the given data, such that high-quality (low LSFD)

affine relationships could be found within the cluster members.

– We introduce an efficient algorithm called the systematic exploration algo-

rithm (SYMEX), that generates high-quality affine relationships on-the-fly,

by utilizing the output of the AFCLST clustering algorithm.

– We show that indexing affine relationships with the SCAPE index that we

introduced in [114], results in orders of magnitude performance improvement

for processing statistical queries.

• Adaptive techniques for managing data in CGSNs: Our main contribu-

tion on this topic are the adaptive strategies for modeling data from a CGSN. Our

techniques discover spatial areas that can be modeled using a single or multiple sta-

tistical models. To capture the phenomena with high fidelity, our strategies adapt

to the changing nature of the sensed phenomena by adjusting the geographical

7

1. Introduction

granularity of the models. In addition, our strategies have user-defined approxi-

mation error thresholds, which can be used for adjusting the level of geographical

granularity and quality of the models produced by our approaches. On the tem-

poral dimension, we use slack functions (on the models) to time-out low quality

models (i.e., models that no longer fit the current data).

• Extensive experimental evaluation on real datasets: One of the most no-

table contributions of this thesis is the extensive experimental evaluation of all

the proposed approaches on real datasets. To increase empirical confidence in our

methods, the datasets that we use are obtained from various data sources: (a) stock

markets, (b) environmental monitoring applications, (c) sensor networks and (d)

GPS trajectories.

1.3 Thesis Organization

We begin by surveying the state of the art techniques that are relevant to this thesis in

Chapter 2. This is followed by a discussion of the Affinity framework for fast compu-

tation of various statistical measures in Chapter 3. Then we present the SCAPE index

structure, which is used for processing threshold and range queries for a large number of

statistical measures in Section 3.5. Statistical time-series models for efficiently creating

probabilistic databases are presented in Chapter 4. Tunable caching techniques for effi-

ciently generating probabilistic views are presented in Section 4.6, along with provable

accuracy and memory guarantees. The issue of modeling and querying community-

sensed data over large geographical areas is covered in Chapter 5. Chapter 5 also intro-

duces the ConDense framework designed for processing such data. Lastly, we summarize

and conclude this thesis in Chapter 6, followed by detailed suggestions for future work.

1.4 Selected Publications

During the course of this thesis several research papers were published, but, this thesis

is mainly based on the following research papers:

• S. Sathe, T. Papaioannou, H. Jeung, and K. Aberer. Managing and Mining Sensor

Data. Springer, 2012, ch. A survey of model-based sensor data acquisition and

management, ed. Charu Aggarwal. (Chapter 2)

• S. Sathe and K. Aberer. Affinity: Efficiently querying statistical measures on

time-series data. In ICDE (to appear), 2013. (Chapter 3)

• S. Sathe, H. Jeung, and K. Aberer. Creating probabilistic databases from imprecise

time-series data. In ICDE, pages 327–338, 2011. (Chapter 4)

8

1.4 Selected Publications

• S. Sathe, S. Cartier, D. Chakraborty, and K. Aberer. Effectively Modeling Data

from Large-area Community Sensor Networks. In IPSN, pages 95–96, 2012. (Chap-

ter 5)

• S. Cartier, S. Sathe, D. Chakraborty, and K. Aberer. ConDense: Managing data in

community-driven mobile geosensor networks. In IEEE SECON, 2012. (Chapter 5)

9

1. Introduction

10

Chapter 2
State of the Art

All models are wrong. But some
are useful.

George Box, 1979

2.1 Introduction

In this chapter, we survey a large number of state-of-the-art model-based techniques for

querying and mining time-series data. These techniques use mathematical models for

solving problems pertaining to time-series data management. Model-based techniques

use different types of models: statistical, signal processing, regression-based, machine

learning, probabilistic, or time series. These models serve various purposes in time-

series data management.

We review four broad categories of time-series data management tasks: data acquisi-

tion, data cleaning, query processing, and data compression. These tasks are pictorially

summarized in the toy example shown in Figure 2.1. From Figure 2.1, it is interesting to

note how a single type of statistical model (linear regression) can be used for performing

these various tasks. For each task considered in this chapter, we extensively discuss

various, well-researched model-based solutions. Following is the detailed discussion on

the time-series data management tasks covered in this chapter:

• Data Acquisition: This task is mainly relevant for data that is acquired or

collected from remotely located sources. In wireless sensor networks, the primary

objective of the data acquisition task is to attain energy efficiency. This objective

is driven by the fact that most remotely located data sources are battery-powered

and are located in inaccessible locations (e.g., environmental monitoring sensors

are sometimes located at high altitudes and are surrounded by highly inaccessible

terrains).

In the literature, there are two major types of acquisition approaches: pull-based

and push-based. In the pull-based approach, data is only acquired at a user-defined

11

2. State of the Art

v
f(t)

t1
data acquisition

(a)
data cleaning

(b)

t2
t

v

t1 t2
t

outlier

eliminated

δ

query processing
(c)

f(t)
v

t1 t2
t

f(t)

t1 t2
t

f(t)=at+b
store

v

data compression
(d)

value

t'

v

f(t)

t1
data acquisition

(a)

data cleaning
(b)

t2

t

v

t1 t2
t

outlier

eliminated

δ

query processing
(c)

f(t)
v

t1 t2
t

f(t)

t1 t2
t

store
v

data compression
(d)

value

t'

v

t1
data acquisition

(a)

t2

δ

f(t)

t

Figure 2.1: Various time-series data management tasks performed using models. (a) to
improve data acquisition efficiency, a function is fitted to the first three values, and the
remaining values (shown dotted) are not acquired from the data sources (e.g., sensors),
since they are within a threshold δ, (b) data values are cleaned by identifying outliers
after fitting a linear model, (c) a query requesting the value at time t′ can be answered
using interpolation, (d) only the first and the last time-series data value can be stored
as compressed representation of the data values.

frequency of acquisition. On the other hand, in the push-based approach, the data

sources and the base station agree on an expected behavior; data sources only send

data to the base station if the data values deviate from such expected behavior. In

this chapter, we cover a representative collection of model-based data acquisition

approaches [9, 29, 38, 39, 40, 53, 54, 82, 127].

• Data Cleaning: As discussed in Chapter 1, the data obtained from the data

acquisition task is often erroneous. Model-based approaches for data cleaning

often use a model to infer the most probable data value. Then the raw data value

is marked erroneous or outlier if it deviates significantly from the inferred data

value. Another important approach for data cleaning is known as declarative data

cleaning [64, 91, 109]. In this approach, the user registers SQL-like queries that

define constraints over the data values. Data values are marked as outliers when

these constraints are violated. In addition to these methods, we also discuss many

other data cleaning approaches [44, 47, 63, 105, 126, 138]

• Query Processing: Obtaining desired answers by processing queries is another

important aspect in time-series data management. In this chapter, we discuss the

most significant model-based techniques for query processing. One of the objectives

of these techniques is to process queries by accessing/generating minimal amount

of data [14, 125]. Model-based methods that access/generate minimal data, and

also handle missing values in data, use models for creating an abstraction layer

over the time-series database [40, 66]. Other approaches model the data values by

a hidden Markov model (HMM), associating state variables to the data values. It is

more efficient to process queries over the state variables, which are less in number

as compared to the data values [14]. Furthermore, there are approaches that use

12

2.2 Model-Based Data Acquisition

dynamic probabilistic models (DPMs) for modeling spatio-temporal evolution of

the data [60, 66], and the estimated DPMs are used for query processing.

• Data Compression: Eliminating redundancy by compressing time-series data

for various purposes (like, storage, query processing, etc.) becomes one of the

most challenging tasks. Model-based time-series data compression proposes a large

number of techniques, mainly from the signal processing literature, for this task

[6, 22, 46, 107, 137]. Many approaches assume that the user provides an accuracy

bound, and based on this bound the sensor data is approximated, resulting in

compressed representations of the data [48]. A large number of other techniques

exploit the fact that time-series data is often correlated; thus, this correlation can

be used for approximating one data stream with another [12, 48, 102, 129].

One of the main source of time-series data considered in this chapter is the data

generated by sensors that are sensing physical attributes. It is well-known that many

physical attributes, such as, ambient temperature or relative humidity, vary smoothly. As

a result of this smoothness, time-series data generated from sensors sensing such physical

attributes typically exhibits the following properties: (a) it is continuous (although we

only have a finite number of samples), (b) it has finite energy or it is band-limited, (c)

it exhibits Markovian behavior or the value at a time instant depends only on the value

at a previous time instant. Most model-based techniques exploit these properties for

efficiently performing various tasks.

2.1.1 Chapter Organization

The rest of the chapter is organized as follows. In Section 2.2, we discuss important

techniques for time-series data acquisition. In Section 2.3, we survey model-based time-

series data cleaning techniques, both on-line and archival. Model-based query processing

techniques are discussed in Section 2.4. In Section 2.5, model-based compression tech-

niques are surveyed. At the end, Section 2.6 contains a summary of the chapter along

with conclusions.

2.2 Model-Based Data Acquisition

In this section, we discuss various techniques for model-based1 data acquisition. The

main sources used for acquiring data for the techniques described in this section are

battery-powered sensors. We only consider sensors as the data sources, ignoring issues

like connectivity, sleep scheduling, etc. Additionally, since many approaches proposed

in Chapter 3, Chapter 4, and Chapter 5 use sensor data, here we review the techniques

for efficiently acquiring sensor data. Particularly, we discuss pull- and push-based sensor

data acquisition methods. In general, model-based sensor data acquisition techniques

are designed for tackling the following challenges:

1We use model-based and model-driven interchangeably.

13

2. State of the Art

• Energy Consumption: Transmitting values from a sensor requires high amount

of energy. In contrast, since most sensors are battery-powered, they have limited

energy resources. Thus, a challenging task is to minimize the number of samples

transmitted from the sensors. Hence one use of models for selecting sensors, such

that user queries can be answered with reasonable accuracy using the data acquired

from the selected sensors [9, 38, 39, 53, 54].

• Communication Cost: Another energy-intensive task is to communicate the sensed

values to the base station. There are, therefore, several model-based techniques

proposed in the literature for reducing the communication cost, and maintaining the

accuracy of the sensed values [29, 40, 82, 127].

2.2.1 The Sensor Data Acquisition Query

Let us consider the time-series database model described in Section 1.1 (page 5). Con-

sider the same scenario where the sensors wj are monitoring the ambient temperature

and the sensed data values are stored in the sensor data table.

Sensor data acquisition can be defined as the processes of creating and continuously

maintaining the sensor data table. In existing literature many techniques have been

proposed for creating and maintaining the sensor data table [29, 38, 39, 82, 87, 88, 89,

117, 134]. We shall discuss these techniques briefly, describing their important charac-

teristics and differences with other techniques. We use the sensor data acquisition query

shown in Query 2.1 for discussing how different sensor data acquisition approaches pro-

cess such a query. Query 2.1 triggers the acquisition of ten sensor values sij from the

sensor wj at a sampling interval of one second, and it is a typical sensor data acquisition

query used by many methods for creating and maintaining the sensor data table.

SELECT wj , sij FROM sensor data SAMPLE INTERVAL 1s FOR 10s

Query 2.1: Sensor data acquisition query.

2.2.2 Pull-Based Data Acquisition

Recall there are two major approaches for data acquisition: pull-based and push-based

(refer Figure 2.2). In the pull-based approach, the user defines the interval and frequency

of data acquisition. Pull-based systems only follow the user’s requirements, and pull

sensor values as defined by the queries. For example, using the SAMPLE INTERVAL clause

of Query 2.1, users can specify the number of samples and the frequency at which the

samples should be acquired.

2.2.2.1 In-Network Data Acquisition

This approach of sensor data acquisition is proposed by TinyDB [87, 88, 89], Cougar

[134] and TiNA [117]. They tightly link query processing and sensor data acquisition.

Due to the lack of space, we shall only discuss TinyDB in this subsection.

14

2.2 Model-Based Data Acquisition

base stationsensor network

w1

w2 w4

w3 w7

w6

w5

w8

w10

w9
user

query

query

sensor values

expected behavior

deviated sensor values

query

sensor values

sensor values

energy
efficient

pull-based
push-based

Figure 2.2: Push- and pull-based methods for sensor data acquisition.

TinyDB refers to its in-network query processing paradigm as Acquisitional Query

Processing (ACQP). Let us start by discussing how ACQP processes Query 2.1. The

result of Query 2.1 is similar to the table shown in Figure 1.2. The only difference, as

compared to Figure 1.2, is that the result of Query 2.1 contains 10× n rows. The näıve

method of executing Query 2.1 is to simultaneously poll each sensor for its value at the

sampling interval and for the duration specified by the query. This method may not

work due to limited range of radio communication between individual sensors and the

base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a tree-based overlay

that is constructed using the sensors W. This tree-based overlay is used for aggregating

the query results from the leaf nodes to the root node. The overlay network is especially

built for efficient data acquisition and query processing. TinyDB refers to its tree-based

overlay network as Semantic Routing Trees (SRTs). A SRT is constructed by flooding

the sensor network with the SRT build request. This request includes the attribute

(ambient temperature), over which the SRT should be constructed. Each sensor wj ,

which receives the build request, has several choices for choosing its parent: (a) if wj

has no children, which is equivalent to saying that no other sensor has chosen wj as its

parent, then wj chooses any sensor as its parent and sends its current value sij to the

chosen parent in a parent selection message, or (b) if wj has children, it sends a parent

selection message to its parent indicating the range of ambient temperature values that

its children are covering. In addition, it locally stores the ambient temperature values

from its children along with their sensor identifiers.

Next, when Query 2.1 is presented to the root node of the SRT, it forwards the query

to its children and prepares for receiving the results. At the same time, the root node

also starts processing the query locally (refer Figure 2.3). The same procedure is followed

by all the intermediate sensors in the SRT. A sensor that does not have any children,

processes the query and forwards the value of sij to its parent. All the collected sensor

values sij are finally forwarded to the root node, and then to the user. This completes

the processing of the sensor data acquisition query (Query 2.1). The SRT, moreover, can

also be used for optimally processing aggregation, threshold, and event based queries.

We shall return to this point later in Section 2.4.1.

15

2. State of the Art

1
w

5
w

2
w

4
w

3
w

SELECT wj , sij
FROM sensor_data

w5 si5

w1 si1

w5 si5

w3 si3

w3 si3
w4 si4

w1 si1

w5 si5

w3 si3

w4 si4
w2 si2

Figure 2.3: Toy example of a Semantic Routing Tree (SRT) and Acquisitional Query
Processing (ACQP) over a sensor network with five sensors. Dotted arrows indicate the
direction of query response. A given sensor appends its identifier wi and value sij to the
partial result, which is available from its sub-tree.

2.2.2.2 Multi-Dimensional Gaussian Distributions

The Barbie-Q (BBQ) system [38, 39] employs multi-variate Gaussian distributions for

sensor data acquisition. BBQ maintains a multi-dimensional Gaussian probability dis-

tribution over all the sensors in W. Data is acquired only as much as it is required

to maintain such a distribution. Sensor data acquisition queries specify certain confi-

dence that they require in the acquired data. If the confidence requirement cannot be

satisfied, then more data is acquired from the sensors, and the Gaussian distribution

is updated to satisfy the confidence requirements. The BBQ system models the sen-

sor values using a multi-variate Gaussian probability density function (pdf) denoted as

P(Ri1, Ri2, . . . , Rin), where Ri1, Ri2, . . . , Rin are the random variables associated with

the sensor values si1, si2, . . . , sin respectively. This pdf assigns a probability for each

possible assignment of the sensor values sij . Now, let us discuss how the BBQ system

processes Query 2.1.

In BBQ, the inferred sensor value of sensor wj , at each time ti, is defined as the

mean value of Rij , denoted s̄ij . For example, at time t1, the inferred sensor values of the

ambient temperature are s̄11, s̄12, . . . , s̄1n. The BBQ system assumes that queries, like

Query 2.1, provide two additional constraints: (i) error bound ε, for the values s̄ij , and

(ii) the confidence 1 − δ with which the error bound should be satisfied. Admittedly,

these additional constraints are for controlling the quality of the query response.

Suppose we already have a pdf before the first time instance t1, then the confidence

of the sensor value s1j is defined as the probability of the random variable R1j lying in

between s̄1j− ε and s̄1j + ε, and is denoted as P(R1j ∈ [s̄1j− ε, s̄1j + ε]). If the confidence

is greater than 1 − δ, then we can provide a probably approximately correct value for

the temperature, without spending energy in obtaining a sample from sensor wj . If a

sensor’s confidence is less than 1 − δ, then we should obtain one or more samples from

the sensor (or other correlated sensors), such that the confidence bound is satisfied. In

16

2.2 Model-Based Data Acquisition

fact, it is clear that there could be potentially many sensors for which the confidence

bound may not hold.

As a solution to this problem, the BBQ system proposes a procedure to chose the

sensors for obtaining sensor values such that the confidence bound specified by the query

is satisfied. First, the BBQ system samples from all the sensors W at time t1, then it

computes the confidence Bj(W) that it has in a sensor wj as follows:

Bj(W) = P(R1j ∈ [s̄1j − ε, s̄1j + ε]|r1), (2.1)

where r1 is the row vector of all the sensor values at time t1. Second, for choosing sensors

to sample, the BBQ system poses an optimization problem of the following form:

min
Wo⊆W and B(Wo)≥1−δ.

C(Wo), (2.2)

where Wo is the subset of sensors that will be chosen for sampling, C(Wo) and B(Wo) =
1
|Wo|

∑
j:wj∈Wo

Bj(W) are respectively the total cost (or energy required) and average

confidence for sampling sensors Wo. Since the problem in Eq. (2.2) is NP-hard, BBQ

proposes a greedy solution to solve this problem. Details of this greedy algorithm can

be found in [39]. By executing the proposed greedy algorithm, BBQ selects the sensors

for sampling, then it updates the Gaussian distribution, and returns the mean values

s̄11, s̄12, . . . , s̄1m. These mean values represent the inferred values of the sensors at time

t1. This operation when performed ten times at an interval of one second generates the

result of the sensor data acquisition query (Query 2.1).

2.2.3 Push-Based Data Acquisition

Both TinyDB and BBQ are pull-based in nature: in these systems the central server/base

station decides when to acquire sensor values from the sensors. On the other hand, in

push-based approaches, the sensors autonomously decide when to communicate sensor

values to the base station (refer Figure 2.2). Here, the base station and the sensors

agree on an expected behavior of the sensor values, which is expressed as a model. If

the sensor values deviate from their expected behavior, then the sensors communicate

only the deviated values to the base station.

2.2.3.1 PRESTO

The Predictive Storage (PRESTO) [82] system is an example of the push-based data ac-

quisition approach. One of the main arguments that PRESTO makes against pull-based

approaches is that such approaches will be unable to observe any unusual or interest-

ing patterns between any two pull requests. Moreover, increasing the pull frequency

for better detection of such patterns, increases the overall energy consumption of the

system.

17

2. State of the Art

The PRESTO system contains two main components: PRESTO proxies and PRESTO

sensors. As compared to the PRESTO sensors, the PRESTO proxies have higher com-

putational capability and storage resources. The task of the proxies is to gather data

from the PRESTO sensors and to answer queries posed by the user. The PRESTO

sensors are assumed to be battery-powered and remotely located. Their task is to sense

the data and transmit it to PRESTO proxies, while archiving some of it locally on flash

memory.

Now, let us discuss how PRESTO processes the sensor data acquisition query (Query 2.1).

For answering such a query, the PRESTO proxies always maintain a time-series predic-

tion model. Specifically, PRESTO maintains a seasonal ARIMA (SARIMA) model [120]

of the following form for each sensor:

sij = s(i−1)j + s(i−L)j − s(i−L−1)j + Φei−1 −Θei−L + ΦΘei−L−1, (2.3)

where Φ and Θ are parameters of the SARIMA model, ei are the prediction errors and L

is known as the seasonal period. For example, while monitoring temperature, L could be

set to one day, indicating that the current temperature (sij) is related to the temperature

yesterday at the same time (s(i−L)j) and a previous time instant (s(i−L−1)j). In short,

the seasonal period L allows us to model the periodicity that is inherent in certain types

of data.

In the PRESTO system the proxies estimate the parameters of the model given in

Eq. (2.3), and then transmit these parameters to individual PRESTO sensors. The

PRESTO sensors use these models to predict the expected sensor value ŝij , and only

transmit the raw sensor value sij to the proxies when the absolute difference between the

predicted expected sensor value and the raw sensor value is greater than a user-defined

threshold δ. This task can be summarized as follows:

|sij − ŝij | > δ, transmit sij to proxy. (2.4)

The PRESTO proxy also provides a confidence interval for each predicted value it

computes using the SARIMA model. Like BBQ (refer Section 2.2.2.2), this confidence

interval can also be used for query processing, since it represents an error bound on

the predicted sensor value. Similar to BBQ, a given PRESTO proxy will query the

corresponding sensors only when the desired confidence interval, specified by the query,

could not be satisfied with the values stored at that proxy. In most cases, the values

stored at the proxy can be used for query processing, without acquiring any further

values from the PRESTO sensors [82]. The only difference between PRESTO and BBQ

is that, PRESTO uses a different measure of confidence as compared to BBQ. Further

details of this confidence interval can be found in [82].

18

2.2 Model-Based Data Acquisition

2.2.3.2 Ken

To reduce the communication cost, the Ken [29] framework employs a similar strategy

as PRESTO. The key difference between Ken and PRESTO is that PRESTO uses a

SARIMA model; which only takes into account temporal correlations. On the other

hand, Ken uses a dynamic probabilistic model that takes into account spatial and tem-

poral correlations in the data. Since a large quantity of sensor data is correlated spatially,

and not only temporally, Ken derives advantage from such spatio-temporal correlation.

The Ken framework has two types of entities, sink and source. Their functionalities

and capabilities are similar to the PRESTO proxy and the PRESTO sensor respectively.

The only difference is that the PRESTO sensor only represents a single sensor, as opposed

to a Ken source that could include multiple sensors or a sensor network. The sink is

the base station to which the sensor values sij are communicated by the source (refer

Figure 2.2).

The fundamental idea behind Ken is that both the source and the sink maintain

the same dynamic probabilistic model of data evolution. The source only communicates

with the sink when the raw sensor values deviate beyond a certain bound, as compared

to the predictions from the dynamic probabilistic model. In the meantime, the sink uses

the sensor values predicted by the model.

As discussed before, Ken uses a dynamic probabilistic model that considers spatio-

temporal correlations. Particularly, its dynamic probabilistic model computes the fol-

lowing pdf at the source:

P(R(i+1)1, . . . , R(i+1)n|r1, . . . , ri) =

∫
P(R(i+1)1, . . . , R(i+1)n|Ri1, . . . , Rin)

P(Ri1, . . . , Rin|r1, . . . , ri)dRi1 . . . dRin. (2.5)

This pdf is computed using the observations that have been communicated to the sink;

the values that are not communicated to the sink are ignored by the source, since they

do not affect the model at the sink. Next, each sensor contained in the source computes

the expected sensor value using Eq. (2.5) as follows:

s̄(i+1)j =

∫
R(i+1)jP(R(i+1)1, . . . , R(i+1)n)dR(i+1)1 . . . dR(i+1)n. (2.6)

The source does not communicate with the sink if |s̄(i+1)j − s(i+1)j | < δ, where δ is a

user-defined threshold. If this condition is not satisfied, the source communicates to the

sink the smallest number of sensor values, such that the δ threshold would be satisfied.

Similarly, if the sink does not receive any sensor values from the source, it computes

the expected sensor values s̄(i+1)j and uses them as an approximation to the raw sensor

values. If the sink receives a few sensor values form the source, then, before computing

the expected values, the sink updates its dynamic probabilistic model.

19

2. State of the Art

2.2.3.3 A Generic Push-Based Approach

The last push-based approach that we will survey is a generalized version of other push-

based approaches [75]. This approach is proposed by Silberstein et al. [121]. Like other

push-based approaches, the base station and the sensor network agree on an expected

behavior, and, as usual, the sensor network reports values only when there is a substantial

deviation from the agreed behavior. But, unlike other approaches, the definition of

expected behavior proposed in [121] is more generic, and is not limited to a threshold δ.

In this approach a sensor can either be an updater (one who acquires or forwards

sensor values) or an observer (one who receives sensor values). A sensor node can be

both, updater and observer, depending on whether it is on the boundary of the sensor

network or an intermediate node. The updaters and the observers maintain a model

encoding function fenc and a decoding function fdec . These model encoding/decoding

functions define the agreed behavior of the sensor values. The updater uses the encoding

function to encode the sensor value sij into a transmission message gij , and transmits

it to the observer.

The observer uses the decoding function fdec to decode the message gij and construct

ŝij . If the observer finds that sij has not changed significantly, as defined by the encoding

function, then the observer transmits a null symbol. A null symbol indicates that the

sensor value is suppressed by the observer. Following is an example of the encoding and

decoding functions [121]:

fenc(sij , si′j) =

{
gij = sij − si′j , if |sij − si′j | > δ;

gij = null, otherwise.
(2.7)

fdec(gij , ŝ(i−1)j) =

{
ŝ(i−1)j + gij , if gij 6= null;

ŝ(i−1)j , if gij = null.
(2.8)

In the above example, the encoding function fenc computes the difference between the

model predicted sensor value si′j and the raw sensor value sij . Then, this difference

is transmitted to the observer only if it is greater than δ, otherwise the null symbol

is transmitted. The decoding function fdec decodes the sensor value ŝ(i−1)j using the

message gij .

The encoding and decoding functions in the above example are purposefully chosen to

demonstrate how the δ threshold approach can be replicated by these functions. More

elaborate definitions of these functions, that may be used for encoding complicated

behavior can be found in [121].

2.3 Model-Based Data Cleaning

A well-known characteristic of time-series data is that it is uncertain and erroneous. This

is due to the fact that the data sources often operate with discharged batteries, network

failures, and imprecision. Other factors, such as low-cost sensors, freezing or heating of

20

2.3 Model-Based Data Cleaning

the casing or measurement device, accumulation of dirt, mechanical failure or vandalism

(from humans or animals) heavily affect the quality of the time-series data [47, 63, 138].

This may cause a significant problem with respect to data utilization, since applications

using erroneous data may yield unsound results. For example, scientific applications that

perform prediction tasks using observation data obtained from cheap and less-reliable

sensors may produce inaccurate prediction results.

To address this problem, it is essential to detect and correct erroneous values in time-

series data by employing data cleaning. The data cleaning task typically involves complex

processing of data [62, 136]. In particular, it becomes more difficult for time-series data,

since true data values corresponding to erroneous data values are generally unobservable.

This has led to a new approach – model-based data cleaning. In this approach, the most

probable data values are inferred using well-established models, and then anomalies are

detected by comparing raw data values with the corresponding inferred data values. In

the literature there are various suggestions for model-based approaches for data cleaning.

This section describes the key mechanisms proposed by these approaches, particularly

focusing on the models used in the data cleaning process.

2.3.1 Overview of the Data Cleaning System

A system for cleaning time-series data generally consists of four major components: user

interface, stream processing engine, anomaly detector, and data storage (refer Figure 2.4).

In the following, we describe each component.

ti
10:2
11:2

:

data
sources

i
2
1
:

sij

10.1
10.9

:

stream processing engine

raw data values cleaned data
(materialized views)

user interface

data storage

anomaly detector

ti
10:2
11:2

:

i
2
1
:

sij

fixed
10.9

:

off
lin

e

online

Figure 2.4: Architecture of time-series data cleaning system.

User Interface: The user interface plays two roles in the data cleaning process. First,

it takes all necessary inputs from users to perform data cleaning, e.g., name of data

source and parameter settings for models. Second, the results of data cleaning, such as

‘dirty’ data values captured by the anomaly detector, are presented using graphs and

21

2. State of the Art

tables, so that users can confirm whether each candidate of such dirty values is an actual

error. The confirmed results are then stored to (or removed from) the underlying data

storage or materialized views.

Anomaly Detector: The anomaly detector is a core component in data cleaning. It

uses models for detecting abnormal data values. The anomaly detector works in online

as well as offline mode. In the online mode, whenever a new data value is delivered

to the stream processing engine, the dirtiness of this value is investigated using various

techniques and the errors are filtered out instantly. In the offline mode, the data is

cleaned periodically, for instance, once per day. In the following subsections, we will

review popular models used for online anomaly detection.

Stream Processing Engine: The stream processing engine maintains streaming data,

while serving as a main platform where the other system components can cooperatively

perform data cleaning. The anomaly detector is typically embedded into the stream

processing engine, it may also be implemented as a built-in function on database systems.

Data Storage: The data storage maintains not only original data values, but also

the corresponding cleaned data, typically in materialized views. This is because many

applications often need to repeatedly perform data cleaning over the same data using

different parameter settings for the models, especially when the previous parameter

settings turn out to be inappropriate later. Therefore, it is important for the system to

store cleaned data in database views without changing the original data, so that data

cleaning can be performed again at any point of time (or time interval) as necessary.

2.3.2 Models for Data Cleaning

This subsection reviews popular models that are widely used in the data cleaning process.

2.3.2.1 Regression Models

Since time-series data values are a representation of physical processes, it is naturally

possible to uncover the following properties: continuity of the sampling processes and

correlations between different sampling processes. In principle, regression-based models

exploit either or both of these properties. Specifically, they first compute the depen-

dency from one variable (e.g., time) to another (e.g., data value), and then consider

the regression curves as standards over which the inferred data values reside. The two

most popular regression-based approaches use polynomial and Chebyshev regression for

cleaning sensor values.

Polynomial Regression: Polynomial regression finds the best-fitting curve that min-

imizes the total difference between the curve and each raw data value sij at time ti.

Given a degree D, polynomial regression is formally defined as:

sij = α0 + α1 · ti + · · ·+ αD · tDi , (2.9)

22

2.3 Model-Based Data Cleaning

Figure 2.5: Detected anomalies based on a degree-2 Chebyshev regression.

where α0, α1, . . . , αD are regression coefficients.

Polynomial regression with high degrees approximates the given time series with

more sophisticated curves, resulting in theoretically more accurate description of the

raw data values. Practically, however, low-degree polynomials, such as constant (D = 0)

and linear (D = 1), also perform satisfactorily. In addition, low-degree polynomials can

be more efficiently constructed as compared to high-degree polynomials. A (weighted)

moving average model [138] is also regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is another popular model class for

fitting data values, since they can quickly compute near-optimal approximations for a

given time series. Suppose that time values ti vary within a range [min(ti),max(ti)].

We, then, obtain normalized time values t′i within a range [−1, 1], by using the following

transformation function f(ti) and its inverse transformation function f−1(t′i) as follows:

f(ti) =

(
ti −

max(ti) + min(ti)

2

)
· 2

max(ti)−min(ti)
, (2.10)

f−1(t′i) =

(
t′i ·

max(ti)−min(ti)

2

)
+

max(ti) + min(ti)

2
. (2.11)

Next, given a degree D, a Chebyshev polynomial is defined as:

sij = f−1(cos(D · cos−1(f(ti)))).

Figure 2.5 illustrates a data cleaning process using degree-2 Chebyshev polynomials.

Here, the raw sensor values are plotted as green curves, while the inferred values, ob-

23

2. State of the Art

tained by fitting a Chebyshev polynomials, are overlaid by black curves. The anomaly

points are then indicated by the underlying red histograms as well as red circles.

2.3.2.2 Probabilistic Models

In data cleaning, inferring data values is perhaps the most important task, since systems

can then detect and clean dirty data values by comparing raw data values with the

corresponding inferred data values. Figure 2.6 shows an example of the data cleaning

process using probabilistic models. At time ti = 6, the probabilistic model infers a

probability distribution using the previous values s2j , . . . , s5j in the sliding window. The

expected value s̄6j (e.g., the mean of the Gaussian distribution in the future) is then

considered as the inferred data value for data source wj .

Next, the anomaly detector checks whether the raw data value s6j resides within a

reasonably accurate area. This is done in order to check whether the value is normal.

For instance, the 3σ range can cover 99.7 % of the density in the figure, where s6j is

supposed to appear. Thus, the data cleaning process can consider that s6j is not an

error. At ti = 7, the window slides and now contains raw sensor values s3j , . . . , s6j . By

repeating the same process, the anomaly detector finds s7j resides out of the error bound

(3σ range) in the inferred probability distribution, and is identified as an anomaly [116].

anomaly

va
lu

e

sliding window

3σ

ti = 6

probability
distribution inferred

expected value

3σ

ti = 7
time

s5j s6j

s6j

s3j
s6j

s7j

s7j

μ
s
2j

Figure 2.6: An example of data cleaning based on a probabilistic model.

A vast body of research work has utilized probabilistic models for computing inferred

values. The Kalman filter is perhaps one of the most common probabilistic models to

compute inferred values corresponding to raw sensor values. The Kalman filter is a

stochastic and recursive data filtering algorithm that models the raw sensor value sij as

a function of its previous value (or state) s(i−1)j as follows:

sij = α1s(i−1)j + α2ui + xi,

24

2.3 Model-Based Data Cleaning

where α1 and α2 are constants defining the state transition from time ti−1 to time ti, xi

is the time-varying input at time ti, and zi is the process noise drawn from a zero mean

multi-variate Gaussian distribution. In [123], the Kalman filter is used for detecting

erroneous values, as well as inter/extrapolating missing sensor values. Jain et al. [60]

also use the Kalman filter for filtering possible dirty values.

Similarly, Elnahrawy and Nath [44] proposed to use Bayes’ theorem to estimate a

probability distribution Pij at time ti from raw data values sij , and associate them with

an error model, typically a normal distribution. Built on the same principle, a neuro-

fuzzy regression model [105] and a belief propagation model based on Markov chains [30]

were used to identify anomalies. Tran et al. [126] propose a method to infer missing or

erroneous values in RFID data. All the techniques for inferring data values also enable

quality-aware processing of sensor data streams [73, 74], since inferred data values can

serve as the bases for indicating the quality or precision of the raw data values.

2.3.2.3 Outlier Detection Models

An outlier is a data value that largely deviates from the other data values. Obviously,

outlier detection is closely related to the process of data cleaning. The outlier-detection

techniques are well-categorized in the survey studies of [23, 104].

In particular, some of the outlier detection methods focus on sensor data [37, 119,

136]. Zhang et al. [136] offer an overview of such outlier detection techniques for sensor

network applications. Deligiannakis et al. [37] consider correlation, extended Jaccard

coefficients, and regression-based approximation for model-based data cleaning. Shen et

al. [119] propose to use a histogram-based method to capture outliers. Subramaniam

et al. [122] introduce distance- and density-based metrics that can identify outliers.

In addition, the ORDEN system [47] detects polygonal outliers using the triangulated

wireframe surface model.

2.3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, supporting a declarative interface

is important since it allows users to easily control the system. This idea is reflected in a

wide range of prior works that propose SQL-like interfaces for data cleaning [64, 91, 109].

These proposals hide complicated mechanisms of data processing or model utilization

from the users, and facilitate data cleaning in time-series database.

DEFINE [rule name]

ON [table name]

FROM [table name]

CLUSTER BY [cluster key]

SEQUENCE BY [sequence key]

AS [pattern]

WHERE [condition]

ACTION [DELETE | MODIFY | KEEP]

Figure 2.7: An example of anomaly detection using a SQL statement.

25

2. State of the Art

More specifically, Jeffery et al. [63, 64] divide the data cleaning process into five tasks:

Point, Smooth, Merge, Arbitrate, and Virtualize. These tasks are then supported within

a database system. For example, the SQL statement in Query 2.2 performs anomaly

detection within a spatial granule by determining the average of the data values from

different data sources in the same proximity group. Then, individual data values are

rejected if they are outside of one standard deviation from the mean.

SELECT spatial granule, AVG(temp)

FROM data s [Range By 5 min]

(SELECT spatial granule, avg(temp) as avg,

stdev(temp) as stdev

FROM data [Range By 5 min]) as a

WHERE a.spatial granule = s.spatial granule

AND a.avg + (2*a.stdev) < s.temp

AND a.avg - (2*a.stdev) > s.temp

Query 2.2: An example of anomaly detection using a SQL statement.

As another approach, Rao et al. [109] focus on a systemic solution, based on rewriting

queries using a set of cleansing rules. Specifically, the system offers the rule grammar

shown in Figure 2.7 to define and execute various data cleaning tasks. Unlike the prior

relational database approaches, Mayfield et al. [91] model data as a graph consisting of

nodes and links. They, then, provide an SQL-based, declarative framework that enables

data owners to specify or discover groups of attributes that are correlated, and apply

statistical methods that validate and clean the data values using such dependencies.

2.4 Model-Based Query Processing

In this section we elaborate another important task in time-series data management–

query processing. We primarily focus on in-network and centralized query processing

approaches. We consider different queries assuming the time-series database model de-

scribed in Section 1.1, and then discuss how each approach processes these queries.

In Section 2.2, however, we followed an approach where we chose a singe query (i.e.,

Query 2.1) and demonstrated how different techniques processed this query. On the

contrary, in this section, we chose different queries for all the approaches, and then dis-

cuss these approaches along with the queries. We follow this procedure since, unlike

Section 2.2, the assumptions made by each query processing technique are different.

Thus, for highlighting the impact of these assumptions and simplifying the discussion,

we select different queries for each approach.

2.4.1 In-Network Query Processing

In-network query processing first builds an overlay network (like, the SRT discussed in

Section 2.2.2.1). Then, the overlay network is used for increasing the efficiency of ag-

gregating data values and processing queries. For instance, while processing a threshold

26

2.4 Model-Based Query Processing

query, parent nodes send the query to the child nodes only when the query threshold

condition overlaps with the range of data values contained in the child nodes, which is

stored in the parent node’s local memory.

Consider the threshold query given in Query 2.3. Query 2.3 requests the data source

identifiers of all the data sources that have reported a temperature greater than 10◦C at

the current time instance. Before answering this query, we assume that we have already

constructed a SRT as described in Section 2.2.1 (refer Figure 2.3). Query 2.3 is sent by

the root node of the SRT to its children that are a part of the query response. The child

nodes check whether the data value they have sensed is greater than 10◦C. If the data

value is greater than 10◦C at a child node, then that child node appends its identifier to

the query response. The child node, then, forwards the query to its children and waits

for their response. Once all the children of a particular node have responded, then that

node forwards the response of its entire sub-tree to its parent. In the end, the root node

receives all the source identifiers wj that have recorded temperature greater than 10◦C.

SELECT wj FROM sensor data WHERE sij > 10◦C AND ti == NOW()

Query 2.3: Return the sensor identifiers wj where sij > 10◦C.

2.4.2 Model-Based Views

The MauveDB [40] approach proposes standard database views [42] as an abstraction

layer for processing queries. These views are maintained in a form of a regression model;

thus they are called model-based views. The main advantage of this approach is that the

model-based view can be incrementally updated as fresh data values are obtained from

the data sources. Furthermore, incremental updates is an attractive feature, since such

updates are computationally efficient.

Before processing any queries in MauveDB, we have to first create a model-based

view. The query for creating a model-based view is shown in Query 2.4. The model-based

view created by this query is called RegModel. RegModel is a regression model in which

the temperature is the dependent variable and the position (xj , yj) is an independent

variable (refer Figure 2.8). Note that RegModel is incrementally updated by MauveDB.

At time t1 values from sources w1, w3 and at time t2 the value from data source w2 are

respectively used to update the view. The view update mechanism exploits the fact that

regression functions can be updated. Further details regarding the update mechanism

can be found in [40].

CREATE VIEW RegModel AS FIT s OVER x2, xy, y2, x, y TRAINING DATA SELECT xj , yj , sij
FROM sensor data WHERE ti > tstart AND ti < tend

Query 2.4: Model-based view creation query.

27

2. State of the Art

Once this step is performed many types of queries can be evaluated using the

RegModel view. For instance, consider Query 2.5. MauveDB evaluates this query by in-

terpolating the value of temperature at fixed intervals on the x- and y-axis; this is similar

to database view materialization [42]. Then the positions (x, y) where the interpolated

temperature value is greater than 10◦C are returned.

t1 t2

model-based
views

10
20

40

10
20

50

10
20

40

10
20

50

w1

w2 w3
w1

w2 w3
s11

s13
s22

-- sensors -- sensor values

model-based
views are

continuously
updated

time

Figure 2.8: Example of the RegModel view with three sensors. RegModel is incrementally
updated as new sensor values are acquired.

Admittedly, although updating the model-based view is efficient, but for processing

queries the model-based view should be materialized at a certain fixed set of points.

This procedure produces a large amount of overhead when the number of independent

variables is large, since it dramatically increases the number of points where the view

should be materialized.

SELECT x, y FROM RegModel WHERE s > 10◦C

Query 2.5: Querying model-based views.

2.4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [125] system. FunctionDB, like MauveDB,

also interpolates the values of the dependent variable, and then uses the interpolated

values for query processing.

As discussed before, the main problem with value interpolation is that the number of

points, where the data values should be interpolated, increase dramatically as a function

of the number of independent variables. As a solution to this problem, FunctionDB

symbolically executes the filter (for example, the WHERE clause in Query 2.5) and obtains

feasible regions of the independent variables. These feasible regions are the regions

that include the exact response to the query, at the same time contain a significantly

low number of values to interpolate. FunctionDB evaluates the query by interpolating

values only in the feasible regions, followed by a straightforward evaluation of the query.

28

2.4 Model-Based Query Processing

FunctionDB treats the temperature reported by the data source wj as a continuous

function of time fj(t), instead of treating it as discrete values sampled at time stamps ti.

An example of a query in the FunctionDB framework is given in Query 2.6. This query

returns the time values t between tstart and tend where the temperature of the source w1

is greater than 10◦C. Note that the time values t are not necessarily the time stamps ti

where a particular sensor value was recorded.

SELECT t WHERE f1(t) > 10◦C AND t > tstart AND t < tend GRID t 1s

Query 2.6: Continuous threshold query.

For defining the values of the time axis t (or any continuous variable), FunctionDB

proposes the GRID operator. The GRID operator specifies the interval at which the

function f1(t) should be interpolated between time tstart and tend. For instance, GRID t

1s indicates that the time axis should be interpolated at one second intervals between

time tstart and tend. To process Query 2.6, FunctionDB first symbolically executes the

WHERE clause and obtains the feasible regions of the time axis (independent variable).

Then, using the GRID operator, it generates time stamps E in the feasible regions. The

data value is interpolated at the time stamps E using regression functions. Lastly, the

query is processed on these interpolated values, and time stamps E ′ ⊆ E where the

temperature is greater than 10◦C are returned.

2.4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that the time-series data is inherently

uncertain. This uncertainty is especially common with data originating from sensors.

The various factors responsible for this uncertainty are: loss of calibration over time,

faulty sensors, unsuitable environmental conditions, low accuracy, etc. Thus, the ap-

proaches that treat time-series data as uncertain, assume that each data value is asso-

ciated with a random variable, and is drawn from a distribution. In this subsection, we

discuss two such methods that model uncertain data by either a dynamic probabilistic

model or a static probability distribution.

2.4.4.1 Dynamic Probabilistic Models

Dynamic probabilistic models (DPMs) are proposed for query processing in [60, 66].

These models continuously estimate a probability distribution. The estimated probabil-

ity distribution is used for query processing. Mainly, there are two types of models that

are frequently used for estimating dynamic probability distributions: particle filters and

Kalman filters. Particle filters are generalized form of Kalman filters. Since we have

already discussed Kalman filters in Section 2.3.2, here we will focus on particle filtering.

Consider a data source, say w1. The particle filtering approach [13], at each time

instant ti, estimates and stores p weighted tuples {(o1
i1, s

1
i1), . . . , (opi1, s

p
i1)}, where the

weight o1
i1 denotes the probability of s1

i1 being the data value of the data source w1 at

29

2. State of the Art

time ti, and so on. An example of particle filtering is shown in the pf sensor data table

in Figure 2.9.

Now, consider Query 2.7 that requests the average temperature AVG(sij) between time

tstart and tend. To evaluate this query, we assume that we already have executed the

particle filtering algorithm at each time instance ti and have created the pf sensor data

table. We, then, perform the following two operations:

1. For each time ti between tstart and tend, we compute the expected temperature

s̄i1 =
∑p

l=1 o
l
i1 · sli1. The formal SQL syntax for computing the expected values

using the pf sensor data table is as follows:

SELECT ti,
∑p

l=1 o
l
i1 ·sli1 FROM pf sensor data WHERE ti > tstart AND ti < tend GROUP

BY ti

2. The final result is the average of all the s̄i1 that we computed in Step 1.

Essentially, the tuples {(o1
i1, s

1
i1), . . . , (opi1, s

p
i1)} represent a discretized version of P(Ri1),

which is the pdf for the random variable Ri1. The most challenging tasks in particle

filtering are to continuously infer weights o1
i1, . . . , o

p
i1 and to select the optimal number

of particles p, keeping in mind a particular scenario and type of data [13].

SELECT AVG(si1) FROM pf sensor data WHERE t > tstart AND t < tend

Query 2.7: Compute the average temperature between time tstart and tend.

2.4.4.2 Static Probabilistic Models

Cheng et al. [24, 25, 26] model the data value as obtained from an user-defined un-

certainty range. For example, if the value of a temperature sensor is 15◦C, then the

actual value could vary between 13◦C and 17◦C. Furthermore, the assumption is that

the data value is drawn from a static probability distribution that has support over the

uncertainty range.

pf_sensor_data

yjxjwjtii

sensor_data

sijyjxjwjtii p p
ij
s p

ij
o

Figure 2.9: Particle filtering stores p weighted data values for each time instance ti.

30

2.4 Model-Based Query Processing

Thus, for each source wj we associate an uncertainty range between max(sj) and

min(sj) , in which the actual sensor values can be found. In addition, the pdf of the sensor

values of sensor sj is denoted as Pij(s). Note that the pdf has non-zero support only

between min(sj) and max(sj). Consider a query that requests the average temperature

of the sensors w1 and w2 at time ti. Since the values of the sources w1 and w2 are

uncertain in nature, the response to this query is a pdf, denoted as Pavg(s). This pdf

gives us the probability of the sensor value s being the average. Pavg(s) is computed

using the following formula:

Pavg(s) =

∫ min(max(s1),s−min(s2))

max(min(s1),s−max(s2))
Pi1(y)Pi2(s− x)dx. (2.12)

Naturally, Eq. (2.12) becomes more complicated when there are many (and not only

two) sensors involved in the query. Additional details about handling such scenarios can

be found in [24].

2.4.5 Query Processing over Semantic States

The MIST framework [14] proposes to use Hidden Markov Models (HMMs) for deriving

semantic meaning from the time-series data. HMMs allow us to capture the hidden

states, which are sometimes of more interest than the actual time-series data. Consider,

as an example, a scenario where the data sourcesW are used to monitor the temperature

in all the rooms of a building. Generally, we are only interested to know which rooms

are hot or cold, rather than the actual temperature in those rooms. Here, we can use a

two-state HMM with states Hot and Cold to continuously infer the semantic states of

the temperature in all the rooms.

Furthermore, MIST proposes an in-network index structure for indexing the HMMs.

This index can be used for improving the performance of query processing. For instance,

if we are interested in finding the rooms that are Hot with probability greater than 0.9,

then the in-network model index can efficiently prune the rooms that are surely not a

part of the query response. Here, we shall not cover the details of index construction

and pruning. We encourage the interested reader to read the following paper [14].

2.4.6 Processing Event Queries

Event queries are another important class of queries that are proposed in the literature.

These queries continuously monitor for a particular event that could probably occur in

streaming time-series data. Consider a setup consisting of RFID sensors in a building.

An event query could monitor an event of a person entering a room or taking coffee, etc.

Event queries can also be registered, not only to monitor a single event, but a sequence

of events that are important to a user. Again, we shall not cover any of the event query

processing approaches in detail. The interested reader is referred to the prior works on

this subject [89, 110, 126, 131].

31

2. State of the Art

2.5 Model-Based Data Compression

Recent advances in technology has resulted in the availability of a multitude of (of-

ten privately-held) sensors. Embedded sensing functionality (e.g., sound, accelerometer,

temperature, GPS, RFID, etc.) is now included in mobile devices, like, phones, cars,

or buses. The large number of these devices and the huge volume of raw monitored

time-series data pose new challenges for sustainable storage and efficient retrieval of the

time-series data streams. To this end, a multitude of model-based regression, trans-

formation and filtering techniques have been proposed for approximation of time-series

data streams. This section categorizes and reviews the most important model-based ap-

proaches for compression of time-series data. These models often exploit spatio-temporal

correlations within data streams to compress the data within a certain error norm; this

is also known as lossy compression. Several standard orthogonal transformation meth-

ods (like, Fourier or wavelet transform) reduce the amount of storage space required by

reducing the dimensionality of data.

Unlike the assumptions of Section 2.2, where we assumed a time-series database

consisting of several data sources, here we assume that we only have a single data

source. We have dropped the several data sources assumption to simplify the notation

and discussion in this section. Furthermore, we assume that the data values from the

single data source are in a form of a data stream. Let us denote such a data stream as

a sequence of data tuples (ti, si), where si is the data value at time ti.

2.5.1 Overview of Data Compression System

The goal of the data compression system is to approximate a data stream by a set of

functions. Data compression methods that we are going to study in this section permit

the occurrence of approximation errors. These errors are characterized by a specific error

norm. A standard approach to sensor data compression is to segment the data stream

into data segments, and then approximate each data segment, so that a specific error

norm is satisfied. For example, if we are considering the L∞ norm, then each data value

of the data stream is approximated within an error bound ε .

Let us assume that we have K segments of a data stream. We denote these segments

as G1,G2, . . . ,GK , where G1 approximates the data tuples ((t1, s1), . . . , (ti1 , si1)), while

Gk, where k = 2, . . . ,K, approximates the data items ((tik−1+1, sik−1+1), (tik−1+2, sik−1+1),

. . . , (tik , sik)). Similar to [43], we distinguish between two classes of the segments used

for approximation, namely connected segments and disconnected segments. In connected

segments, the ending point of the previous segment is the starting point of the new seg-

ment. On the contrary, in disconnected segments, the approximation of the new segment

starts from the subsequent data item in the stream. Disconnected segments offer more

approximation flexibility and may lead to fewer segments; however, for linear approx-

imation [71], they necessitate the storage of two data tuples (i.e., start tuple and end

tuple) per data segment, as opposed to connected segments.

32

2.5 Model-Based Data Compression

Figure 2.10: The database schema for multi-model materialization.

Since functions are employed for approximating data segments, only the approxi-

mated data segments are stored in the database, instead of the raw data values of the

data stream [103, 125]. A schema for linear segments is presented in [125], consisting of

a table, referred to as FunctionTable, where each row represents a linear model with

attributes start time, end time, slope and intercept (i.e., base) of the segment. In

case of connected segments [43], the end time attribute can be omitted.

A more generic schema for storing data streams, approximated by multiple models

was proposed in [103] that consists of one table (SegmentTable) for storing the data seg-

ments, and a second table (ModelTable) for storing the model functions, as depicted in

Figure 2.10. A tuple of the SegmentTable contains the approximation data for a segment

in the time interval [start time, end time]. The attribute id stands for identification

of the model that is used in the segment. The primary key in the SegmentTable is the

start time, while in the ModelTable it is id. When, both, linear and non-linear models

are employed for approximation, left value is the lowest raw data value encountered in

the segment, and right value is the highest raw data value encountered in the segment.

In this case, start time, end time, left value and right value define a rectangular

bucket that contains the values of the segment.

The attribute model params stores the parameters of the model associated with the

model identifier id. For example, regression coefficients are stored for the regression

model. The attribute model params has variable length (e.g., VARCHAR or VARBINARY

data types in SQL) and it stores the concatenation of the parameters or their compressed

representation, by means of standard lossless compression techniques (refer Section 2.5.7)

or by a bitmap coding of approximate values, as proposed in [12]. Each tuple in the

33

2. State of the Art

ModelTable corresponds to a model with a particular id and function. The attribute

function represents the name of the model and it maps to the names of two user

defined functions (UDFs) stored in the database. The first function implements the

mathematical formula of the model, and the second function implements the inverse

mathematical formula of the model, if any. Both the UDFs are employed for answering

value-based queries. While the first function is used for value regeneration over fixed

time steps (also referred to as gridding), the second function is used for solving equations.

2.5.2 Methods for Data Segmentation

In [70], the piecewise linear approximation algorithms are categorized in three groups:

sliding window, top-down and bottom-up. The sliding window approach expands the

data segment as long as the data tuples fit. The bottom-up approach first applies basic

data segmentation employing the sliding window approach. Then, for two consecutive

segments, it calculates merging cost in terms of an approximation error. Subsequently, it

merges the segments with the minimum cost within the maximum allowed approximation

error, and updates the merging costs of the updated segments. The process ends when

no further merging can be done without violating the maximum approximation error.

The top-down approach recursively splits the stream into two segments, so as to obtain

longest segments with the lowest error until all segments are approximated within the

maximum allowed error.

Among these three groups, only the sliding window approach can be used online, but

it employs look-ahead. The other two approaches perform better than the sliding window

approach, but they need to scan all data, hence they cannot be used for approximating

streaming data. Based on this observation, Keogh et al. [70] propose a new algorithm

that combines the online processing property of the sliding window approach and the

performance of the bottom-up approach. This approach needs a predefined buffer length.

If the buffer is small, then it may produce many small data segments; if the buffer is

large, then there is a delay in returning the approximated data segment. The maximum

look-ahead size is constrained by the maximum allowed delay between data production

and data reporting or data archiving.

2.5.3 Piecewise Approximation

Among several different data stream approximation techniques, piecewise linear approx-

imation has been the most widely used [70, 78]. Piecewise linear approximation models

the data stream with a separate linear function per data segment. Piecewise constant

approximation (PCA) approximates a data segment with a constant value, which can

be the first value of the segment (referred to as the cache filter) [99], the mean value or

the median value (referred to as poor man’s compression - midrange (PMC-MR) [78]).

34

2.5 Model-Based Data Compression

25.9

25.95

26

26.05

26.1

26.15

04.22.08 20:09 04.23.08 00:57

Te
m

pe
ra

tu
re

 (o C
)

Date & Time (mm/dd/yy hours:min)

Raw Data

PMC-MR

2ε

Figure 2.11: Poor Man’s Compression - MidRange (PMC-MR).

In the cache filter, for all the sensor values in a segment Gk, the following condition

should be satisfied: ∣∣sik−1+h − sik−1+1

∣∣ < ε for h = 1, . . . , ik, (2.13)

where ε is the maximum allowed approximation error according to the L∞ norm. Also,

for PMC-Mean and PMC-MR the sensor values in a segment gk should satisfy the

following condition:

max
1≤h≤ik

sik−1+h − min
1≤h≤ik

sik−1+h ≤ 2ε . (2.14)

Furthermore, for PMC-Mean, the approximation value for the segment Gk is given by

the mean value of the sensor values in segment Gk. But, for PMC-MR it is given as

follows:
max1≤h≤ik sik−1+h −min1≤h≤ik sik−1+h

2
.

The data segmentation approach for PMC-MR is illustrated in Figure 2.11.

Moreover, the linear filter [70] is a simple piecewise linear approximation technique

in which the data values are approximated by a line connecting the first and second

point of the segment. When a new data tuple cannot be approximated by this line with

the specified error bound, a new segment is started. In [43], two new piecewise linear

approximation models were proposed, namely Swing and Slide, that achieve much higher

compression compared to the cache and linear filters. We briefly discuss the swing and

slide filters below.

2.5.3.1 Swing and Slide Filters

The swing filter is capable of approximating multi-dimensional data but, for simplicity,

we describe its algorithm for one-dimensional data. Given the arrival of two data tuples

(t1, s1) and (t2, s2) of the first segment of the data stream, the swing filter maintains

35

2. State of the Art

a set of lines, bounded by an upper line max(s1) and a lower line min(s1). max(s1)

is defined by the pair of points (t1, s1) and (t2, s2 + ε), while min(s1) is defined by the

pair of points (t1, s1) and (t2, s2 − ε), where ε is the maximum approximation error

bound. Any line segment between max(s1) and min(s1) can represent the first two

data tuples. When (t3, s3) arrives, first it is checked whether it falls within the lines

min(s1), max(s1). Then, in order to maintain the invariant that all lines within the

set can represent all data tuples so far, min(s1) (respectively max(s1)) may have to

be adjusted to the higher-slope (respectively lower-slope) line defined by the pair of

data tuples ((t1, s1), (t3, s3−ε)) (respectively ((t1, s1), (t3, s3 +ε))). Lines below this new

min(s1) or above this new max(s1) cannot represent the data tuple (t3, s3). The segment

estimation continues until the new data tuple falls out of the upper and lower lines for

a segment. The generated line segment for the completed filtering interval is chosen so

as to minimize the mean square error for the data tuples observed in that interval. As

opposed to the slide filter (described below), in the swing filter the new data segment

starts from the end point of the previous data segment.

In the slide filter, the operation is similar to the swing filter, but upper and lower

lines u and b are defined differently. Specifically, after (t1, s1) and (t2, s2) arrive, max(s1)

is defined by the pair of data tuples (t1, s1 − ε) and (t2, s2 + ε), while min(s1) is defined

by (t1, s1 + ε) and (t2, s2− ε). After the arrival of (t3, s3), min(s1) (respectively max(s1))

may need to be adjusted to the higher-slope (respectively lower-slope) line defined by

((tj , sj + ε), (t3, s3− ε)) (respectively ((ti, si− ε), (t3, s3 + ε))), where i ∈ [1, 2]. The slide

filter also includes a look-ahead of one segment, in order to produce connected segments

instead of disconnected segments, when possible.

Palpanas et al. [101] employ amnesic functions and propose novel techniques that

are applicable to a wide range of user-defined approximating functions. According to

amnesic functions, recent data is approximated with higher accuracy, while higher error

can be tolerated for older data. Yi and Faloutsos [135] suggested approximating a

data stream by dividing it into equal-length segments and recording the mean value

of the sensor values that fall within the segment (referred to as segmented means or

as piecewise aggregate approximation (PAA)). On the other hand, adaptive piecewise

constant approximation (APCA) [21] allows segments to have arbitrary lengths.

2.5.3.2 Piecewise Linear Approximation

The piecewise linear approximation uses the linear regression model for compressing

data streams. The linear regression model of a data segment is given as:

si = α0 · ti + α1, (2.15)

where α0 and α1 are known as the slope and the base respectively. The difference

between si and ti is known as the residual for time ti. For fitting a linear regression

model of Eq. (2.15) to the data values si : ti ∈ [max(ti); min(ti)], the ordinary least

36

2.5 Model-Based Data Compression

squares (OLS) estimator is employed. The OLS estimator selects α0 and α1, such that

they minimize the following sum of squared residuals:

RSS(α0, α1) =

max(ti)∑
ti=min(ti)

[si − (α0 · ti + α1)]2.

Therefore, α0 and α1 are given as:

α1 =

max(ti)∑
ti=min(ti)

 ti − min(ti)+max(ti)
2∑max(ti)

ti=min(ti)
(ti − min(ti)+max(ti)

2)ti

 si,

α0 =

∑max(ti)
ti=min(ti)

si

min(ti)−max(ti) + 1
− α1

min(ti) + max(ti)

2
.

(2.16)

Here, the storage record of each data segment of the data stream consists of ([min(ti),

max(ti)]; α0, α1), where [min(ti); max(ti)] is the segment interval, and α0 and α1 are the

slope and base of the linear regression, as obtained from Eq. (2.16).

Similarly, instead of the linear regression model, a polynomial regression model (refer

Eq. (2.9)) can also be utilized for approximating each segment of the data stream. The

storage record of the polynomial regression model is similar to the linear regression

model. The only difference is that for the polynomial regression model the storage

record contains parameters α1, . . . , αD instead of the parameters α0 and α1.

2.5.4 Compressing Correlated Data Streams

Several approaches [36, 48, 84] exploit correlations among different data streams for

compression. The GAMPS approach [48] dynamically identifies and exploits correlations

among different data segments and then jointly compresses them within an error bound

employing a polynomial-time approximation algorithm. In the first phase, data segments

are individually approximated based on piecewise constant approximation (specifically

the PMC-Mean described in Section 2.5.3). In the second phase, each data segment

is approximated by a ratio with respect to a base segment. The segment formed by

the ratios is called the ratio segment. GAMPS proposes to store the base segment and

the ratio segment, instead of storing the original data segment. The idea here is that,

in practice, the ratio segment is flat and therefore can be significantly compressed as

compared to the original data segment.

The objective of the GAMPS approach is to identify a set of base segments, and

associate every data segment with a base segment, such that the ratio segment can be

used for reconstructing the data segment within a L∞ error bound. The problem of

identification of the base segments is posed as a facility location problem. Since this

problem is NP-hard, a polynomial-time approximation algorithm is used for solving it,

and producing the base segments and the assignment between the base segments and

data segments.

37

2. State of the Art

Prior to GAMPS, Deligiannakis et al. [36] proposed the self-based regression (SBR)

algorithm that also finds a base-signal for compressing historical sensor data based on

spatial correlations among different data streams. The base-signal for each segment

captures the prominent features of the other signals, and SBR finds piecewise correlations

(based on linear regression) to the base-signal. Lin et al. [84] proposed an algorithm,

referred to as adaptive linear vector quantization (ALVQ), which improves SBR in two

ways: (i) it increases the precision of compression, and (ii) it reduces the bandwidth

consumption by compressing the update of the base signal.

2.5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the error introduced by the data sources

often result in limited effectiveness of a single model for approximating a data stream

within the prescribed error bound. Acknowledging this, Lazaridis et al. [78] argue that

a global approximation model may not be the best approach and mention the potential

need for using multiple models. In [79], it is also recognized that different approximation

models are more appropriate for data streams of different statistical properties. The

approach in [79] aims to find the best model approximating the data stream based on

the overall hit ratio (i.e., the ratio of the number of data tuples fitting the model to the

total number of data tuples).

Papaioannou et al. [103] aim to effectively find the best combination of different

models for approximating various segments of the stream regardless of the error norm.

They argue that the selection of the most efficient model depends on the characteristics

of the data stream, namely rate, burstiness, data range, etc., which cannot be always

known a priori for some data sources (e.g., sensors) and they can even be dynamic. Their

approach dynamically adapts to the properties of the data stream and approximates

each data segment with the most suitable model. They propose a greedy approach in

which they employ multiple models for each segment of the data stream and store the

model that achieves the highest compression ratio for the segment. They experimentally

proved that their multi-model approximation approach always produces fewer or equal

data segments than those of the best individual model. Their approach could also be

used to exploit spatial correlations among different attributes from the same location,

e.g., humidity and temperature from the same stationary sensor.

2.5.6 Orthogonal Transformations

The main application of the orthogonal transformation approaches has been in dimen-

sionality reduction, since reducing the dimensionality improves performance of indexing

techniques for similarity search in large collections of data streams. Typically, sequences

of fixed length are mapped to points in a multi-dimensional Euclidean space; then,

multi-dimensional access methods, such as R-tree family, can be used for fast access

of those points. Since sequences are usually long, a straightforward application of the

38

2.5 Model-Based Data Compression

above approach, which does not use dimensionality reduction, suffers from performance

degradation due to the curse of dimensionality [112].

The process of dimensionality reduction can be described as follows. The original

data stream or signal is a finite sequence of real values or coefficients, recorded over time.

This signal is transformed (using a specific transformation function) into a signal in a

transformed space. To achieve dimensionality reduction, a subset of the coefficients of the

orthogonal transformation are selected as features. These features form a feature space,

which is simply a projection of the transformed space. The basic idea is to approximate

the original data stream with a few coefficients of the orthogonal transformation; thus

reducing the dimensionality of the data stream.

2.5.6.1 Discrete Fourier Transform (DFT)

The Fourier transform is the most popular orthogonal transformation. It is based on the

simple observation that every signal can be represented by a superposition of sine and

cosine functions. The discrete Fourier transform (DFT) and discrete cosine transform

(DCT) are efficient forms of the Fourier transform often used in applications [6, 46].

The Discrete Fourier Transform of a time sequence x = x0, . . . , xN−1 is a sequence

X = X0, . . . , XN−1 of complex numbers given by:

Xk =

N−1∑
j=0

e−i2π
k
N
j . (2.17)

The original signal can be reconstructed by the inverse Fourier transform of X, which is

given by:

xj =

N−1∑
k=0

Xke
i2π k

N
j . (2.18)

In [6], Agrawal et al. suggest using the DFT for dimensionality reduction of long

observation sequences. They argue that most real signals only require a few DFT co-

efficients for their approximation. Thus similarity search can be performed only over

the first few DFT coefficients, instead of the full observation sequence. This provides

an efficient approximate solution to the problem of similarity search in high-dimensional

spaces. They use the Euclidean distance as the dissimilarity measure.

StatStream [137] is proposed for monitoring a large number of streams in real time.

It employs a sliding window that is subdivided into a fixed number of basic windows. It

also maintains DFT coefficients for each basic window. This allows a batch update of

DFT coefficients over the entire history. StatStream uses the first n̂, n̂ ≤ 2n, dimensions

of the DFT feature space for indexing. They superimpose an n̂-dimensional orthogonal

regular grid on the DFT feature space and partition it into cells with the same size

and shape. Each data stream is mapped to a cell, based on its first n̂ normalized DFT

coefficients. Proximity of these first n̂ normalized DFT coefficients is employed to report

correlations.

39

2. State of the Art

Wavelets are another important class of orthogonal transformation. Wavelets can

be thought of as a generalization of the Fourier transform to a much larger family of

functions than sine and cosine. While Fourier transform has a single basis function

(the exponential function), wavelets use an infinite family of basis functions. Ganesan

et al. [49, 50] proposed in-network storage of wavelet-based summaries of time-series

data. Recently, discrete wavelet transform (DWT) was also proposed in [22, 107] for

data compression. For sustainable storage and querying, they propose progressive aging

of summaries and load sharing techniques.

2.5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately reconstruct the original data, lossy com-

pression techniques approximate data streams within a certain error bound. Most lossless

compression schemes perform two steps in sequence: the first step generates a statistical

model for the input data, and the second step uses this model to map input data to bit

sequences. These bit sequences are mapped in such a way that frequently encountered

data will produce shorter output than infrequent data. General-purpose compression

schemes include DEFLATE (employed by gzip, ZIP, PNG, etc.), LZW (employed by

GIF, compress, etc.), LZMA (employed by 7zip). The primary encoding algorithms

used to produce bit sequences are Huffman coding (also used by DEFLATE) and arith-

metic coding. Arithmetic coding achieves compression rates close to the best possible,

for a particular statistical model, which is given by the information entropy. On the

other hand, Huffman compression is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adequate for a number of reasons:

(a) as experimentally found in [78], gzip lossless compression achieves poor compression

(50%) compared to lossy techniques, (b) lossless compression and decompression are

usually more computationally intensive than lossy techniques, and (c) indexing cannot

be employed for archived data with lossless compression.

2.6 Summary

In this chapter, we presented a comprehensive overview of the various aspects of model-

based time-series data management. We surveyed the model-based techniques for data

acquisition, handling missing data, outlier detection, data compression, data aggregation

and summarization. We started with acquisition techniques like TinyDB [89], Ken [29],

PRESTO [82]. In particular, we focused on how acqusitional queries are disseminated

in the sensor network using routing trees [88]. Then we surveyed various approaches for

time-series data cleaning, including polynomial-based [138], probabilistic [44, 105, 123,

126] and declarative [63, 91].

For processing spatial, temporal and threshold queries, we detailed query processing

approaches like MauveDB [40], FunctionDB [125], particle filtering [66], MIST [14], etc.

Here, our primary objective was to demonstrate how model-based techniques are used for

40

2.6 Summary

improving various aspects of querying time-series data. Lastly, we discussed data com-

pression techniques, like, linear approximation [70, 78, 101], multi-model approximations

[78, 79, 103] and orthogonal transformations [6, 22, 46, 107].

All the methods that we presented in this chapter were model-based. They utilized

models – statistical or otherwise – for describing, simplifying or abstracting various

components of time-series data management. In the next chapter, keeping in mind the

challenge of data scale, we will present the Affinity framework for querying statistical

measures on time-series data.

41

2. State of the Art

42

Chapter 3
Affinity: Efficiently Querying
Statistical Measures on Time-Series Data

To be a good mathematician, or
a good gambler, or good at
anything, you must be a good
guesser. In order to be a good
guesser, you should be, I would
think, naturally clever to begin
with. Yet to be naturally clever
is certainly not enough. You
should examine your guesses,
compare them with the facts,
modify them if need be, and so
acquire an extensive (and
intensive) experience with
guesses that failed and guesses
that came true. With such an
experience in your background,
you may be able to judge more
competently which guesses have
a chance to turn out correct and
which have not.

George Pólya
How to Solve it, 1954

3.1 Introduction

In the recent years we are experiencing a dramatic increase in the amount of available

time-series data. A typical processing need of large-scale time-series data is statistical

querying and mining in order to analyze trends and detect interesting correlations. In

this chapter, we propose the Affinity framework that supports efficient processing of

statistical queries on large time-series databases, based on the use of affine relationships

among different time series. Before rigorously developing the technical approaches, let

43

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

us, in the following, introduce the concept of affine relationships and motivate why they

are a powerful tool to improve efficiency of statistical querying over time-series data.

Computing statistical measures.

An important challenge concerning time-series data processing is computing and storing

statistical measures. For example, the correlation coefficient is a frequently used statis-

tical measure for financial data. It is well-known that stock traders and investors are

interested to find the correlation coefficient among pairs of stocks. Specifically, traders

are interested in solving the following problem [16, 18, 58, 118]:

Problem 3.1: Given the intra-day stock quotes of n stocks obtained at a sampling

interval ∆t, return the correlation coefficients of the n(n−1)
2 pairs of stocks on a given

day.

As an example, let us consider daily time series of three stocks (i.e., n = 3), Intel Cor-

poration (INTC), Advanced Micro Devices (AMD) and Microsoft Corporation (MSFT)

on 2nd January 2003 (refer Figure 3.1). Let us denote the stock price at time i of INTC,

AMD and MSFT as si1, si2 and si3 respectively where 1 ≤ i ≤ m. Using the integers 1,

2, and 3 to identify the time series s1, s2 and s3
1, we can form three pairs of the time

series: (1, 2), (2, 3) and (1, 3). A naive approach for solving Problem 3.1 is to compute

the correlation coefficients for all the pairs of stocks for the day specified by the prob-

lem. Clearly, for high values of n this method does not scale well, since it computes the

correlation coefficient for all the n(n−1)
2 pairs from scratch.

The first idea that this chapter proposes in order to enhance the naive approach is

to exploit affine relationships between pairs of time-series data. For every 1 ≤ i ≤ m,

an affine relationship between pairs (1, 3) and (2, 3) can be defined by using an affine

1s1 = (s11, s21, . . . , sm1) is a vector of size m-by-1. Similarly for s2 and s3.

 15

 16

 17

INTC

 6.5

 7

AMD

 23

 23.5

 24

 0 50 100 150 200 250 300 350

p
ri

c
e

 (
U

S
D

)

time in minutes (i)

MSFT

Figure 3.1: Stock prices for symbols INTC, AMD and MSFT on 2nd January 2003.

44

3.1 Introduction

transformation: (
si2
si3

)
=

(
a11 a12

a21 a22

)(
si1
si3

)
+

(
b1
b2

)
, (3.1)

= Ae

(
si1
si3

)
+ be.

The matrix Ae is known as the transformation matrix and the vector be represents

a translation. Let us assume for the moment that the relationship between pairs of

time series can be described at all time instants i using the same affine relationship.

Obviously, as it can be seen from Figure 3.1, this is not true, but we will deal with

this issue subsequently. Then, given the affine relationship in Eq. (3.1), the correlation

coefficient between a related pair (2, 3) could be computed directly from the correlation

coefficient between pair (1, 3), without accessing the time series. Specifically, consider

the covariance matrix for the pair (1, 3) denoted as Σ13 and defined as:

Σ13 =

(
σ2

1 ρ13σ1σ3

ρ13σ1σ3 σ2
3

)
, (3.2)

where ρ13 denotes the correlation coefficient between time series s1 and s3, similarly

σ2
1 and σ2

3 are the variances of the time series s1 and s3 respectively. Now, given the

following two inputs: transformation matrix Ae from Eq. (3.1) and covariance matrix

Σ13 from Eq. (3.2), we can compute the desired correlation coefficient ρ23 as follows

[90]:

ρ23 =
a>1 Σ13a2√

a>1 Σ13a1 · a>2 Σ13a2

, (3.3)

where a1 = (a11, a21) and a2 = (a12, a22).

It is important to observe the following two advantages regarding the computation

of ρ23 using Eq. (3.3): first, the computation for ρ23 is significantly more efficient as

compared to its computation using the original time series s2 and s3 [90]; second, since

we do not need the original time series s2 and s3, we require significantly lower memory

for computing ρ23. In Section 3.6, we experimentally demonstrate that these advantages

manifest a many-fold increase in performance.

Similarly, many other measures of correlation and similarity, beyond the commonly

used Pearson’s correlation coefficient, can be computed using affine relationships. Thus,

by utilizing affine relationships, our approach provides an elegant solution for comput-

ing a wide range of statistical measures. As a consequence, our proposal to use affine

relationships not only bears the potential of increasing the efficiency of computing the

correlation coefficient, but, at the same time, of many other statistical measures.

Measuring quality of affine relationships.

Affine relationships are unlikely to occur over longer real-world time series, however,

such relationships may hold approximately, when time series are strongly correlated. For

illustration, let us come back to the three stocks from our introductory example. We

45

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

can compute an approximate affine relationship Ae =
(

0.75 −0.3
0 1

)
and be =

(
1.6
0

)
. This

relationship is highly accurate between time 150 and 200, but produces errors between

time 0 and 50. Therefore, for characterizing such approximation errors we propose a

distance metric, Least Significant Frobenius Distance (LSFD), which can take as input,

values from stocks s1, s2, and s3 in a specific time window and could quantitatively

judge the quality of affine relationships. Additionally, we also propose the AFCLST

clustering algorithm that uses the LSFD metric for clustering the time series, such that

good-quality affine relationships could be found between cluster members.

We have found that although, in practice, it is almost impossible to find an exact

affine relationship between time series, interestingly, a large number of high-quality

approximate affine relationships exist in real datasets over longer time intervals. Thus,

queries could leverage from such relationships for computing many statistical measures

on-the-fly, while bounding the approximation error in the computation of these statistical

measures.

Indexing affine relationships.

Consider a slightly modified version of Problem 3.1, where a trader is interested to

find all pairs of stock that have the correlation coefficient greater than τ . One way of

evaluating this query is to compute – either from scratch or using affine relationships

– the correlation coefficient for all the n(n−1)
2 pairs, and then return the pairs having

correlation coefficient greater than τ . This approach, again, is not scalable for increasing

value of n.

A way of circumventing the computation of all the pairwise correlation coefficients is

to index the affine relationships. We call this index the SCAPE index. Prior to indexing,

the SCAPE index establishes a way of ordering affine relationships. Such an ordering

eliminates unnecessary computation and directly gives us the pairs having correlation

coefficient greater than τ . Notably, the ordering established by the SCAPE index is

agnostic to the underlying statistical measure. As a result, the SCAPE index can be

used for simultaneously indexing all the statistical measures.

3.1.1 Chapter Organization

We begin by presenting the details of the Affinity framework in Section 3.2. In Sec-

tion 3.3, we propose the LSFD metric and the AFCLST clustering algorithm for finding

high-quality affine relationships in time series data. In Section 3.4, we introduce the

SYMEX algorithm for generating high-quality affine relationships, while, in Section 3.5,

we propose the SCAPE index for indexing affine relationships. Lastly, comprehensive

experimental evaluations are presented in Section 3.6, followed by the review of related

studies in Section 3.7.

46

3.2 Foundation

Table 3.1: Summary of notations.

Symbol Description

A, . . . Matrices (uppercase boldface)
aij Entry at row i and column j of matrix A

x or x1 Column vectors (lowercase boldface)
xi or xi1 element i of a vector x or x1 respectively

S Data matrix of size m× n
L(S),C(S),D(S) Location, dispersion, and derived measures

e, p Sequence pair and pivot pair
Se, Op Sequence pair matrix and pivot pair matrix

Rn Set of n-dimensional real column vectors
Rm×n Set of m-by-n real matrices

[x1, . . . ,xw] Column-wise concatenation of w vectors

3.2 Foundation

In this section we define the basic concepts and establish the notation used in the rest

of the chapter. A summary of the frequently used notations is presented in Table 3.1.

Then, we define the queries that are processed by the Affinity framework. Most

importantly, we discuss the notion of affine transformations and examine their properties.

Affine relationships are, in fact, enhanced affine transformations designed for facilitating

efficient computation and querying of several statistical measures.

Framework Overview.

Figure 3.2 shows the architecture of the Affinity framework. It consists of various

time series, like, financial market data, RSS news feeds, sensor network data, etc., that

are being stored using a DBMS. Affinity consists of two key components: the affine

relationships and the SCAPE index structure. The affine relationships are inferred using

the data matrix table, and are indexed for processing statistical queries using the SCAPE

index.

Similar to the notation introduced in Section 1.1, let us assume that the Affinity

framework has n time series and m values per time series, which are stored in the

data matrix table. We compose a matrix consisting of m rows by concatenating the n

column vectors as S = [s1, s2, . . . , sn] ∈ Rm×n. We refer to matrix S as the data matrix.

3.2.1 Statistical Measures

In this chapter, we consider three popular classes of statistical measures. The first type of

measures are the location measures or L-measures that define the central tendency of data

(e.g., mean, median, etc.). The second type of measures characterize the joint or pairwise

variability in the data and are called dispersion measures or C-measures (e.g., covariance,

dot product, etc.). The third type are the derived measures or D-measures that are

47

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

threshold
queries

●
●
●

-- preliminary filtering and cleaning

si,1i si,2

● ● ●

si,n● ● ●

1
2
3
4
5

5.1
7.4
2.1
8.9
3.2

9.1
2.3
9.2
3.5
8.5

1.2
4.6
3.2
6.5
7.3

data_matrix

SCAPE-Index

financial data

images

sensor networks

RSS
e

p

pivot pairs

sequence pairs

range queries

computation
queries

measure queries

Figure 3.2: Architecture of the Affinity framework.

derived by normalizing a dispersion measure, for example, the correlation coefficient is

derived by normalizing the covariance.

Often the statistical measures considered in this chapter are required to be com-

puted on pairs of time series. A good example are the covariance and the correlation

coefficient. Thus, for conveniently identifying the time series in such scenarios, we define

the following two sets. Let I = {u|1 ≤ u ≤ n} be the set containing series identifiers

(1, 2, . . . , n) that identify the time series s1, s2, . . . , sn respectively. We refer to I as

the series identifier set and each of its elements as the series identifier. Similarly, let

P = {(u, v)|u < v and (u, v) ∈ I × I} be the set containing unique pairs of series iden-

tifiers. We refer to P as the sequence pair set and each of its elements as the sequence

pair.

A sequence pair is used for uniquely identifying a pair of time series in the data

matrix S. Furthermore, the matrix that is formed by concatenating the time series

defined by the sequence pair e = (u, v) ∈ P is known as the sequence pair matrix and is

denoted as Se = [su, sv], Se ∈ Rm×2.

We denote the L-, C-, and D-measures of the matrix S as L(S), C(S) and D(S)

respectively. Here, L(S) is a vector of size n, and C(S) and D(S) are matrices of size n×n.

In the matrices C(S) and D(S), the entry found at row u and column v is respectively

the dispersion and the derived measure between the time series u and v of the matrix

S. The entry found at position (u, v) of C(S) and D(S) is denoted as Cuv(S) and Duv(S)

respectively. The C- and D-measures are symmetric, that is Cuv(S) = Cvu(S) and

Duv(S) = Dvu(S). Secondly, the entry at the position e = (u, v) of the matrix C(S)

denoted as Ce(S) is equal to C12(Se), which is the entry at position (1,2) of the matrix

C(Se). In short, Ce(S) = C12(Se) and De(S) = D12(Se).

In this chapter, we consider three L-measures: mean, mode, and median. In addition,

we consider two C-measures: the covariance matrix and the dot product matrix, which

are of size n-by-n and are denoted as Σ(S) and Π(S). We also consider one D-measure,

namely, the correlation coefficient matrix denoted as ρ(S) . In all these notations sub-

scripts are used to denote specific entries, for example Πuv(S) denotes the dot product

48

3.2 Foundation

between time series u and v and Lu(S) denotes a location measure of the time series u.

We note that all the proposed approaches are also applicable to a large number of

other derived measures that are derived by normalizing the dot product; examples of

such measures are Jaccard coefficient, Dice coefficient, cosine similarity, harmonic mean,

etc.

3.2.2 Query Types

The Affinity framework considers three important and frequently-used statistical queries

that are posed on time series data. Since our approach supports many statistical mea-

sures simultaneously, we generalize the queries by making them independent of the sta-

tistical measures. The first query computes a given statistical measure over a requested

set of time series, and we define it as follows:

Query 3.1: Measure computation (MEC) query. Given a set of series identi-

fiers ψ ⊆ I and a statistical measure (L, C, or D) the measure computation query returns

the value of the given statistical measure for the time series ψ.

For the C- and D-measures, the response is a matrix of size |ψ|-by-|ψ|, and for L-

measures the response is a vector of size |ψ|. For example, the measure computation

query could request the mean or the covariance matrix for a subset of the series identifiers

ψ.

The second query returns all the series identifiers (sequence pairs) where the location

measure (dispersion or derived measure) is greater or lesser than a user-defined threshold.

Query 3.2: Measure threshold (MET) query. Given a statistical measure L

(C or D) and a user-defined threshold τ . The measure threshold query returns the set

AT consisting of the series identifiers u (sequence pairs e) for which the given statistical

measure Lu(S) (Ce(S) or De(S)) is greater or lesser than the threshold τ .

The third query is a range query adaptation of Query 3.2. We define it as follows:

Query 3.3: Measure range (MER) query. Given a statistical measure L (C or

D) and the user-defined lower and upper bounds τl and τu respectively. The measure

range query returns the set AR consisting of the series identifiers u (sequence pairs e)

for which the given statistical measure Lu(S) (Ce(S) or De(S)) is in between the lower

bound τl and upper bound τu.

An example of the above query could be, return all sequence pairs for which the

covariance is in between τl and τu.

3.2.3 Affine Transformations

Consider any two matrices X = [x1,x2] and Y = [y1,y2], where x1,x2,y1,y2 are column

vectors of size m, thus X and Y are of size m-by-2. Then, an affine transformation

between X and Y is defined as:

Y , XA + 1mb
>, (3.4)

49

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

where A ∈ R2×2 is non-singular, b ∈ R2, and 1m = (1, 1, . . . , 1)> ∈ Rm (refer Fig-

ure 3.3). We denote the above affine transformation as (A, b). In addition, we denote

the first and second column of A as a1 and a2 respectively. We refer to X as the source

pair matrix and Y as the target pair matrix. The difference between an affine transfor-

mation and a linear transformation is that an affine transformation is a combination of

a linear transformation (A) and a translation (b). Therefore, an affine transformation

can be considered as a generic form of a linear transformation.

Y = XA+ 1mbTX
Y

()XL ()YL

()XC ()YC
()XD ()YD

(xi1,xi2)

(yi1,yi2)

1 2
(,)
i i
x x

()Y

1 2
(,)
i i
y y

Figure 3.3: Illustration of an affine transformation.

Interestingly, all the statistical measures that we consider are well-behaved under the

action of an affine transformation [90]. Concretely, given the location measure L(X) of

the source pair matrix X, L(Y) can be computed as:

L(Y)> = L(X)>A + b>. (3.5)

Similarly, the covariance and the dot product are also well-behaved under the action of

an affine transformation. Given the covariance matrix Σ(X), Σ(Y) can be computed as

follows:

Σ(Y) = A>Σ(X)A, Σ12(Y) = a>1 Σ(X)a2. (3.6)

The dot product is well-behaved under the action of an affine transformation as follows

[90]:

Π12(Y) = a>1 ·Π(X) · a2 + b>A>
(

h1(X)
h2(X)

)
, (3.7)

where h1(X) =
∑m

i=1 xi1, h2(X) =
∑m

i=1 xi2.

Additionally, the D-measures are derived by normalizing one of the C-measures. The

correlation coefficient is derived by normalizing the covariance as follows:

ρ12(Y) =
Σ12(Y)

ϕ12
, ρ12(Y) =

a>1 ·Σ12(X) · a2

ϕ12
, (3.8)

where ϕ12 is the normalizer and is equal to
√
Σ(y1)Σ(y2). Observe that the normalizer

is separable: Σ(y1) and Σ(y2) can be separately computed. Thus, we simply compute

and store Σ(y1) and Σ(y2) separately and then combine them to form ϕ12 as required.

We denote the normalizer of the sequence pair e as ϕe .

50

3.3 Affine Clustering

3.3 Affine Clustering

Consider the problem of computing a statistical measure, say covariance, for all the

sequence pairs. The naive approach of solving this problem is to compute the covariance

for each pair of sequences from scratch. However, computing covariances from scratch

is inefficient because it requires scanning of the sequence pair matrices Se, for all the

sequence pairs e. Since the number of sequence pairs are O(n2), where n is the number

of time series n, it leads to an overall inefficient operation.

We reduce the O(n2) complexity by selecting a small (nearly linear) number of time

series pairs, which are called the pivot pairs, and the m-by-2 matrices formed by them

are called the pivot pair matrices; we will shortly describe the selection procedure for the

pivot pairs. Then, we compute the covariance for all the pivot pairs and determine the

affine transformations between each sequence pair and one of the pivot pairs. Next, with

the help of Eq. (3.6) and the affine transformations, we approximate the covariance for

all the sequence pairs from the covariance of the pivot pairs. Similarly, other measures

can also be only computed for the pivot pairs; and then approximated for the sequence

pairs. Note that the affine transformations need to be computed only once.

Next, we describe the selection procedure for the pivot pairs. It should satisfy two

requirements: (1) the number of selected pivot pairs should be small, and (2) the affine

transformations, when used for approximating a statistical measure, should produce low

error. In this section we propose techniques for meeting both these requirements.

3.3.1 Computing the Dot Product

For the dot product, as a special case, we can show that the approximation error can be

completely eliminated by having a common time series between the source and target

pair matrices. Let us assume that the affine transformation (A, b) is computed using

the least-squares method, and it transforms X to Y′, instead of Y, where Y′ = [y′1,y
′
2].

Then, for accurately computing the dot product y>2 y1 using affine transformations, we

observe that it is sufficient to have one common time series between X and Y, because

of the following lemma:

Lemma 3.1: The dot product y>2 y1 is preserved under the action of an affine trans-

formation (A, b) that is computed using the least-squares method, if y1 is transformed

with zero error.

Proof. Let the hyperplane spanned by vectors x1 and x2 be denoted as H. Since y′2
is the least-squares approximation of y2, y2 = y′2 + εp, where εp is perpendicular to H.

Then y>2 y1 = y′>2 y1 + ε>p y1. Since y1 is part of the hyperplane H, ε>p y1 = 0. Hence,

y>2 y1 = y′>2 y1

Obviously, Lemma 3.1 holds even if we replace y1 by y2 and y′2 by y′1. A straightfor-

ward way of guaranteeing the transformation of y1 with zero error is to have y1 common

to both the source pair and target pair matrices. In this case, we can guarantee that

51

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

the dot product y>2 y1 is accurately computed if the affine transformations are computed

using the least-squares method. In addition, as we shall show in Section 3.4, having a

common time series reduces the number of pivot pairs, which are generated using the

SYMEX algorithm.

3.3.2 Computing Other Measures

For other dispersion and derived measures the exact computation using affine transfor-

mations is in general not possible. Therefore, we propose a distance measure for mea-

suring the error in affine transformations, and then a clustering algorithm that helps us

identify high-quality affine relationships minimizing this error.

The LSFD Metric.

The Least Significant Frobenius Distance (LSFD) metric, when minimized using the clus-

tering algorithm, results in high-quality (i.e., low error) affine transformations between

the members of a given cluster. A small LSFD between the source pair matrix X and

the target pair matrix Y indicates that X is almost perfectly transformable into Y. The

LSFD metric is defined as follows:

Definition 3.1: LSFD metric. Suppose X̂ and Ŷ are the zero-mean counterparts

of the matrices X and Y respectively. Then the Least Significant Frobenius Distance

(LSFD) metric is defined as:

F(X,Y)2 , λ2
3 + λ2

4, (3.9)

where λ3 and λ4 are the third and fourth singular values of the matrix [X̂, Ŷ], which is

a matrix obtained by column-wise concatenation of X̂ and Ŷ .

The number of non-zero singular values of a matrix is equal to the number of linearly

independent vectors in that matrix. Definition 3.1 assumes that the vectors in X̂ are

linearly independent; therefore, if the third and the fourth singular values of the matrix

[X̂, Ŷ] are zero, then it signifies that vectors y1 and y2 are linearly dependent and

can be expressed as linear combinations of vectors x1 and x2. Thus, an exact affine

transformation between X and Y can be computed. Intuitively, the magnitude of the

third and the fourth singular value of the matrix [X̂, Ŷ] quantifies the effort required for

making y1 or y2 linearly dependent on x1 and x2.

The LSFD is a metric, and therefore obeys the triangular inequality. Since LSFD is

a metric, it can be used as a distance metric for affine clustering. A formal proof of the

triangular inequality is presented in the following theorem:

Theorem 3.1: F(X,Y) is a metric; thus F(X,Y) obeys the following properties:

(a) Non-negativity: F(X,Y) is real-valued, finite, and non-negative,

(b) Positive-definiteness: F(X,Y) = 0 iff there exists an exact affine trans-

formation between X and Y,

(c) Symmetry: F(X,Y) = F(Y,X),

52

3.3 Affine Clustering

(d) Triangular Inequality: F(X,Y) ≤ F(X,Z) + F(Z,Y).

Proof. (a) F(X,Y) is non-negative since it defined as the sum of squares of two real

numbers λ3 and λ4. Moreover, since λ3 and λ4 are finite and real-valued F(X,Y) exhibits

similar characteristics.

(b) ⇒: Let us consider the matrix IX̂Ŷ = [X̂, Ŷ]. F(X,Y) = 0 implies that λ3 and

λ4 of the matrix IX̂Ŷ are zero. The number of non-zero singular values of IX̂Ŷ is equal to

the rank of IX̂Ŷ denoted by rank(IX̂Ŷ) [52]. If λ3 = λ4 = 0 then the rank of the matrix

rank(IX̂Ŷ) ≤ 2. Therefore, there are maximum two linearly independent columns in the

column space of IX̂Ŷ . Thus, 4 − rank(IX̂Ŷ) columns can be expressed in terms of the

rank(IX̂Ŷ) columns or an affine transofrmation exists between X and Y.

⇐: The argument is similar to ⇒, here we use the fact that the existence of an

affine transformation indicates that there are at most two linearly independent columns

in IX̂Ŷ and therefore λ3 = λ4 = 0.

(c) The interchange of columns does not affect the singular values of a matrix [52],

hence F(X,Y) = F(Y,X).

(d) Let us consider three matrices IX̂Ŷ = [X̂, Ŷ], IX̂Ẑ = [X̂, Ẑ], and IẐŶ = [Ẑ, Ŷ].

Let ĨX̂Ŷ be the rank two approximation of the matrix IX̂Ŷ . The Frobenius norm of

‖IX̂Ŷ − ĨX̂Ŷ ‖F is
√
λ2

3 + λ2
4. Similarly, let ĨX̂Ẑ and ĨẐŶ be the rank two approximations

of the matrices IX̂Ẑ and IẐŶ respectively. Then,

IX̂Ŷ = IX̂Ẑ + IẐŶ + [−Ẑ,−Ẑ]. (3.10)

Let B = [−Ẑ,−Ẑ] + ĨX̂Ẑ + ĨẐŶ . From Eq. (3.10),

‖IX̂Ŷ −B‖
F
≤ ‖IX̂Ẑ − ĨX̂Ẑ‖F + ‖IẐŶ − ĨẐŶ ‖F .

Using the Eckart-Young low-rank matrix approximation theorem [52] and the definition

of LSFD in Definition 3.1,

‖IX̂Ŷ − ĨX̂Ŷ ‖F ≤ ‖IX̂Ẑ − ĨX̂Ẑ‖F + ‖IẐŶ − ĨẐŶ ‖F ,

F(X,Y) ≤ F(X,Z) + F(Z,Y). (3.11)

3.3.3 The AFCLST Clustering Algorithm

The affine clustering algorithm clusters the time series in the data matrix S into k

clusters, such that it becomes easier to identify a high-quality affine transformation

between a sequence pair and a pivot pair. We have one common time series between the

sequence pair matrix and the pivot matrix for computing the dot product accurately.

As a result the common time series is transformed with zero LSFD error. Next, for the

other (different) time series in the sequence pair matrix, the affine clustering algorithm

finds the closest match, such that the LSFD between the sequence pair matrix and the

pivot pair matrix becomes as low as possible.

53

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

The closest match for the different time series is its cluster center, which is returned by

the affine clustering algorithm. We show that by following this procedure for constructing

the pivot pair matrix, the LSFD between the pivot pair matrix and the sequence pair

matrix is minimized, resulting in high-quality affine transformations. Thus, the pivot

pair matrix – like the source pair matrix X – can be utilized for accurately computing

the statistical measures over the sequence pair matrix.

The affine clustering algorithm clusters the time series in S into k clusters (refer

Algorithm 3.1). It starts by initializing the cluster centers r`, where ` = (1, . . . , k) (Lines

2 and 3). In the assignment step, the AFCLST algorithm computes the orthogonal

projection of each time series sv, where 1 ≤ v ≤ n, onto the cluster centers r`, and

assigns sv to the cluster that produces the least projection error projε (Lines 10, 15,

and Fig. 3.4(b)). The lesser the orthogonal projection error projε, the more accurately

a time series can be represented by a linear combination of its cluster center; leading to

a lower LSFD between the sequence pair matrix and the pivot matrix.

A,b A,b

Plane 1

sv

r1

affine cluster su

cluster
members

affine cluster r1

sv

su

projls

projε
su

r1

affine clusters

cluster
members

r2

mm

(a) (b) (c)

, ()u vw

affine cluster

cluster
members

affine cluster

projls

projε

m

(a) (b)

hyperplane spanned
by su and rω(v)

()vrc

vs

()vrc

vs

us

us

Figure 3.4: (a) the 2-D hyperplane H, and (b) directional view of the hyperplane H.

In the update phase, the cluster centers r` are re-computed. This is done by forming

a matrix R` for each cluster `, by column-wise concatenation of the time series assigned

to cluster `. The updated cluster center is equal to the left singular vector associated

with the largest singular value of R`. Intuitively, the left singular vector associated with

the largest singular value is the one that minimizes the sum of the orthogonal projection

errors that are computed between the cluster center of cluster ` (i.e., r`) and each of its

members.

The AFCLST algorithm terminates when the number of cluster membership changes

is less than min(δ) or the maximum number of iterations max(γ) are completed. The

AFCLST algorithm returns two quantities: (a) cluster centers r1, r2, . . . , rk and (b) a

cluster assignment function c(v) : v 7→ `, which returns the cluster identifier ` for a given

series identifier v.

For a given sequence pair e = (u, v), we now form a pivot pair matrix [su, rc(v)],

obtained by concatenating the time series su and the cluster center of the time series sv.

Furthermore, let H be the 2-D hyperplane spanned by the vectors su and rc(v) (refer

Figure 3.4). Then there exists a high-quality affine transformation between the pivot

54

3.3 Affine Clustering

pair matrix [su, rc(v)] and the sequence pair matrix Se = [su, sv]. This is true since the

projection error projls, obtained from orthogonally projecting sv onto H, can only be

less than projε. From Fig. 3.4(b), projls is one side of the right-angled triangle where

projε is an hypotenuse. Thus, approximating sv using [su, rc(v)] further reduces the

LSFD.

Now, we present formal, crisp definitions of the pivot pair and the pivot pair matrix,

associated to a sequence pair e = (u, v) ∈ P:

Definition 3.2: Pivot pair and pivot pair matrix. The pivot pair associated

to the sequence pair e = (u, v) is defined as p = (u, c(v)). Moreover, it is a sequence

pair where the series identifier v is replaced by its cluster identifier c(v). The pivot pair

matrix, denoted as Op, is the matrix obtained by concatenating the time series su with

the cluster center rc(v) as follows:

Op , [su, rc(v)]. (3.12)

Observe that (c(u), v) is also considered a pivot pair, but for reasons of brevity we

only use Definition 3.2 of a pivot pair. We end this section by defining the most crucial

concept proposed in this chapter – affine relationships:

Algorithm 3.1 The AFCLST affine clustering algorithm.

Input: Data matrix S, maximum iterations max(γ), number of clusters k, minimum cluster
changes min(δ).

Output: Cluster centers r` and cluster assignment function c(v).
1: for ` = 1 to k do . Initialization phase
2: r` ← randcol(S) . choose a random column
3: r` ← r`/‖r`‖ . normalize

4: nChg ← −1
5: for iter = 1 to max(γ) do
6: minProjε ←∞, clustID ← 0
7: for j = 1 to m do . Assignment phase
8: for ` = 1 to k do
9: projr`

← (r`r
>
`)sj

10: projε ← ||projr`
− sj ||

11: if projε < minProjε then
12: clustID ← `
13: if c(j) != clustID then
14: currNChg ← currNChg + 1

15: c(j)← clustID

16: if |nChg − currNChg| ≤ min(δ) then
17: break . Converged

18: for ` = 1 to k do . Update phase
19: R` ← ∅
20: for j = 1 to m do
21: if c(j) == ` then
22: R` ← [R`, sj]

23: r` ← SVDLV(R`) . Largest left singular vector

24: return r`, c(u)

55

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

Definition 3.3: Affine relationship. An affine relationship characterizes a rela-

tionship between the sequence pair e and its pivot pair p. Precisely, it is defined as an

affine transformation between the sequence pair matrix Se and the pivot pair matrix

Op,

Se , OpAe + 1mb
>
e , (3.13)

where Ae ∈ R2×2 is non-singular, be ∈ R2, and 1m = (1, 1, . . . , 1)> ∈ Rm. We use

(A, b)e to denote an affine relationship.

To summarize, we use the following procedure for selecting a pivot pair p for a given

sequence pair e. First, we keep a common time series, namely su, between the sequence

pair matrix and the pivot pair matrix. Second, the other (uncommon) time series in the

pivot pair matrix is the affine cluster center of the time series sv. By this procedure,

the pivot pair of the sequence pair e = (u, v) is p = (u, c(v)). In the following section

we propose an algorithm that systematically follows this procedure for generating pivot

pairs p that correspond to sequence pairs e

3.4 Computing Affine Relationships

In this section we propose an algorithm for generating the pivot pairs p for the given

sequence pairs e using the procedure described in Section 3.3. Secondly, we propose a

method for efficiently computing the affine relationships between the selected pivot and

sequence pairs.

1

n

3
2

n1 2 3 n-1

n-1

pivot pair sequence pair

1

2

3

1 2 3

sequence pairs

u

v
nĕ

sw̆

L

2

1

n

3
2

n1 2 3 n-1

n-1

pivot pair sequence pair

1

2

3

1 3

sequence pairs

u

v

nĕ

2

,

, , , , , , ,
,
,
,
,
,
,

,

,
,
,

,
,

, -- sequence pairs p

,

pivot pairs
c = (u,ω(v))

pivot pairs
c = (ω(u),v)

-- pivot pairs

,

,

,

,
,

,
,

,

,
,

,

,
,

,
,

,

2

first cluster second cluster third cluster

,

-- cluster centersx

,
,

,

1 2 3 4 5 6 7 8

1

3
2

4
5
6
7
8

˘

˘

˘

,

, , ,

,

,

,
,

marching direction

sw̆

()vwr

(,)
p

A b

u
s

v
s

c
O

p
Spivot matrix sequence matrix

affine
relationship

pivot pair sequence pair

(,)p u v=(, ())c u vw=

()vc

(,)
e

A b

u

v

p
O

e
Spivot pair matrix sequence pair matrix

affine relationship
pivot pair sequence pair

(,)e u v=(, ())p u v= c

()vwr u
s

v
s

Figure 3.5: Procedure for generating the pivot pairs.

The proposed algorithm follows the following steps (refer Figure 3.5): (i) select any

sequence pair e = (u, v) ∈ P, (ii) generate both the possible pivot pairs for e: (u, c(v))

and (c(u), v), (iii) associate the pivot pair (u, c(v)) to the sequence pair e, and then

form a new sequence pair by changing the second component of e to another member

of cluster c(v), (iv) repeat Step (iii) with the new sequence pair, until all the members

of the cluster c(v) have been associated the pivot pair (u, c(v)), (v) use the other pivot

pair (c(u), v) and repeat Step (iii), now changing the first component, and (vi) jump to

Step (i) if there are more sequence pairs that have not been associated a pivot pair.

A formal algorithm of the Steps (i)-(vi) is presented in Algorithm 3.2. The only

difference is that, instead of selecting any sequence pair, as per Step (i), Algorithm 3.2

selects them systematically. The algorithm starts processing the sequence pair set P

56

3.4 Computing Affine Relationships

using two fixed sequence pairs: ee = (1, n) and ew = (n−1
2 , n−1

2 + 1). Then, it generates

new sequence pairs by alternatively adding (1,−1) and (−1, 1) to ee and ew respectively

(Line 6 and Line 9). On Line 14, it scans each component of the new sequence pair,

until the boundary of the set P is reached.

During each step of the scan it associates a sequence pair e to a pivot pair p, only

if the sequence pair e has not been associated with a pivot pair earlier (Line 20). On

Line 21, e and p are used for computing the affine relationship (A, b)e. These affine

relationships are stored in the hash map affHash. affHash is returned by the algorithm

along with another hash map pivotHash, which stores the pivot pairs generated by the

algorithm. The algorithm stops when both the sequence pairs ee and ew are equal. Since

Algorithm 3.2 systematically selects the sequence pairs, we refer to it as the SYMEX

(Systematic Exploration of P) algorithm.

The SYMEX algorithm produces maximum nk number of pivot pairs, where k is

the number of affine clusters. But in practice we found that k << n, thus the SYMEX

algorithm produces pivot pairs nearly linear in the number of time series n. Moreover, the

complexity of the SYMEX algorithm isO(g), where g is the number of affine relationships

produced by the algorithm; thus it is linear in the number of affine relationships g.

In Section 3.6, we perform experiments for demonstrating the linear scalability of the

SYMEX algorithm.

Lastly, we stress the fact that in the SYMEX algorithm it is not necessary to store

and track all the affine relationships. We can, if required, prune the unnecessary affine

relationships on the basis of domain knowledge, query requirements etc. This, however,

is not the main focus of this chapter, and would be considered in subsequent works.

On the contrary, here we consider all the affine relationships returned by the SYMEX

algorithm, for clearly demonstrating performance and scalability results.

Pseudo-inverse cache.

Notice that, on Line 26, the SYMEX algorithm computes the pseudo-inverse of the

matrix [Op,1m]. This is necessary for solving the system of equations for finding A and

b by the least-squares method. Since there are many sequence pairs e associated to a

single pivot pair p, the same pseudo-inverse of [Op,1m] is repeatedly re-computed for

each pivot pair.

Thus, we propose another variant of the SYMEX algorithm that caches, instead of

re-computing, the pseudo-inverse. We call this variant the SYMEX+ algorithm. The

proposed pseudo-inverse cache is populated by inserting the pseudo-inverse of [Op,1m]

with key p, before the calls to the SolveInsert function (Line 15 and Line 18). Then,

the pseudo-inverse is only computed if the cache lookup is unsuccessful. As we shall

demonstrate in Section 3.6, the SYMEX+ algorithm is a factor of 4 times faster as

compared to the SYMEX algorithm.

57

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

Algorithm 3.2 The SYMEX algorithm.

Input: Data matrix S, AFCLST algorithm parameters k,max(γ), and min(δ).
Output: Hash maps affHash and pivotHash, containing the affine relationships and the pivot

pairs respectively.
1: (r`, c(u))← AFCLST(S, k,max(γ),min(δ))
2: ee ← (0, n), ew ← (n−1

2 , n−1
2 + 1) . sequence pairs

3: flip← 0
4: while ee != ew do
5: if flip == 0 then
6: ee ← ee + (1,−1), flip← 1 . move towards ew
7: CreatePivots(ee, affHash)
8: else if flip == 1 then
9: ew ← ew + (−1, 1), flip← 0 . move towards ee

10: CreatePivots(ew, affHash)

11: return affHash
12: function CreatePivots(ez = (uz, vz), affHash)
13: for v = uz + 1 to n do . Scan second component
14: e← (uz, v), p← (uz, c(v))
15: SolveInsert(Op, Se, affHash)

16: for u = 0 to vz do . Scan first component
17: e← (u, vz), p← (c(u), vz)
18: SolveInsert(Op, Se, affHash)

19: function SolveInsert(Op, Se, affHash)
20: if affHash.lookup(e) == ∅ then
21: (A, b)← LeastSquares(Op, Se)
22: affHash.insert(e, (A, b)) . insert(key, value)

23: if pivotHash.lookup(p) == ∅ then
24: pivotHash.insert(p, ∅) . null hash values

25: function LeastSquares(Op, Se)
26: pinv ← PseudoInv([Op,1m]) . Pseudo-inverse
27: (A, b)← pinv · Se
28: return (A, b)

3.4.1 Measure Computation Query

We discuss the processing of Query 3.1, or the MEC query, using affine relationships.

Assume that the MEC query has requested to compute the covariance matrix of the

series identifiers ψ. Let us denote the sequence pairs formed by the series identifiers ψ

as eψ ∈ P.

The first step is the pre-processing step. This step fills the values in the empty hash

map pivotHash, which is returned by the SYMEX+ algorithm. For each pivot pair p,

contained in the pivotHash hash map, the value is set to the covariance matrix of the

pivot pair matrix Op. Our task is to compute Σeψ(S) for each sequence pair eψ ∈ P.

For performing this task we search for two things: (a) covariance of the pivot pair pψ in

the pivotHash hash map, denoted as Σ(Opψ), and (b) affine relationship (A, b)eψ for the

sequence pair eψ in the affHash hash map. Using these inputs and Eq. (3.6) we compute

Σeψ(Sψ) as:

Σeψ(S) = Σ12(Seψ) = a>1 Σ(Opψ)a2, (3.14)

58

3.5 Indexing Affine Relationships

where a1 = (a11, a21)> and a2 = (a12, a22)> are the first and second columns of the

transformation matrix Aeψ . This procedure is followed for all the other sequence pairs

eψ.

Similarly, a MEC query requesting computation of a L-measure, dot product, or

D-measure can be processed using their corresponding properties in Eqs. (3.5), (3.7)

and (3.8) along with the output of the SYMEX+ algorithm. For the D-measures the

separable normalizers are computed in the pre-processing step and then utilized for

normalization.

Cost Analysis: The total computational cost of the MEC query can be divided into

three parts: (a) a one-time cost of order O(nk) for computing and storing the covariance

matrices of all the nk pivot pairs, (b) the average run-time cost of finding an affine rela-

tionship from affHash is of order O(1), and (c) a small cost for computing the requested

measure using Eq. (3.6). As it can be seen, the one-time cost O(nk) of (a) dominates

the Big-O complexity. In contrast, the naive approach always computes all the covari-

ance matrices, which are of order O(n2). Moreover, as we shall see in Section 3.6, since

k << n in practice this dominating one-time cost becomes nearly linear in the number

of time series n, leading to significantly large performance improvements.

Error Measurement: Another important issue is the error measure used for charac-

terizing the approximation error. Suppose Σ̂e(S) and Σe(S) respectively are the true

value (computed from scratch) and the approximated value (computed using affine re-

lationships) of the covariance for the sequence pair e. We, then, compute the nor-

malized values Σ̂n
e (S) and Σn

e (S), by dividing Σ̂e(S) and Σe(S) with a normalizer

(max(Σ̂e(S))−min(Σ̂e(S))), where the maximum and the minimum are computed over

all the sequence pairs in P. Next, we compute the RMSE (root-mean-square error)

between the normalized values as follows:

% RMSE =

√√√√∑e∈P

(
Σ̂n
e (S)−Σn

e (S)
)2

|P|
× 100 (3.15)

3.5 Indexing Affine Relationships

In this section we propose efficient methods for processing the MET and MER queries

described in Section 3.2.2. A straight forward way of processing these queries is to either

use the naive approach or the affine relationships approach to first compute the value of

the queried statistical measure and then trivially evaluate the MET and MER queries.

A major drawback of this approach is that we have to re-compute the queried sta-

tistical measure for every query and for all sequence pairs, which makes this approach

inefficient, especially when large number of queries are processed. In contrast, the Scalar

Projection or SCAPE index is designed in such a way that: (a) queries over all the statis-

tical measures can be processed without re-computing the measure for every query, and

(b) a single index can process queries for all the L-, C-, and D-measures. Furthermore,

59

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

using the SCAPE index we can improve the efficiency of processing the MET and MER

queries by orders of magnitude.

The SCAPE index consists of a sorted container, like a B-tree, for each pivot pair.

Each sorted container, associated to a pivot pair, stores the affine relationships assigned

to that pivot pair. The key used for sorting is the most crucial and novel component of

the SCAPE index. The key chosen for the SCAPE index should be measure-independent,

only then we can index all the statistical measures using the same index. Additionally,

the key should be such that a query (MET or MER) over any statistical measure could

be converted into a query (MET or MER) over the keys stored by the SCAPE index,

guaranteeing that the results from the converted and the original query are the same.

For choosing a key with the above properties, the SCAPE index uses an interesting

property of the scalar product between two vectors. Let us briefly understand this

property through an example. Suppose we have a vector α and vectors βl, where l is a

positive integer, and our objective is to order the scalar product α>βl ∈ R. Then, the

scalar product can be defined as α>βl = ‖α‖·‖βl‖ cos(θl), where θl is the angle between

α and βl. Notice, ‖α‖ is common to all the ‖α‖ · ‖βl‖ cos(θl), therefore it is sufficient to

use ‖βl‖ cos(θl) as a key for ordering the scalar product (refer Figure 3.6). ‖βl‖ cos(θl)

is known as the scalar projection of βl on α, and is denoted as ξl. The above example

encourages us to formulate the following observation:

Observation 3.1: Given a vector α and vectors βl, where l is a positive integer.

The scalar projections ξl = ‖βl‖ cos(θl) can be used as a key for ordering the scalar

products α>βl.

αT
β2αT

β1 αT
β4 αT

β3αT
β5

0

m

*
1
p 1

a

*
2
p 2

a

*
Q
p

Q
a

1,1
p

1,1
x 1,2

p
1,2
x

11,D
p

11,D
x

2,1
p

2,1
x 2,2

p
2,2
x

22,D
p

22,D
x

,1Q
p

,1Q
x ,1Q

p
,2Q

x , QQ D
p

, QQ D
x

pivots () sequences ()*p p

*
1
p 1

a

*
2
p 2

a

*
Q
p

Q
a

1,1
p

1,1
x 1,2

p
1,2
x

11,D
p

11,D
x

2,1
p

2,1
x 2,2

p
2,2
x

22,D
p

22,D
x

,1Q
p

,1Q
x ,1Q

p
,2Q

x , QQ D
p

, QQ D
x

pivots () sequences ()*p p

*
1
p

1
a

*
2
p 2

a

*
Q
p

Q
a

1,1
p

1,1
x 1,2

p
1,2
x

11,D
p

11,D
x

2,1
p

2,1
x 2,2

p
2,2
x

22,D
p

22,D
x

,1Q
p

,1Q
x ,1Q

p
,2Q

x , QQ D
p

, QQ D
x

pivots () sequences ()*p p

L

L

1 1
cos()qb

2 2
cos()qb

4 4
cos()qb

3 3
cos()qb

a

4
b

2
b

1
b

3
b

2 2 1 1 3 3
cos() cos() cos()q q q< <b b b

Figure 3.6: Toy example demonstrating Observation 3.1.

3.5.1 Scalar Projection (SCAPE) Index

Now let us discuss the application of Observation 3.1 for indexing affine relationships.

Assume that we obtained Q pivot pairs by executing the SYMEX+ algorithm described

in Section 3.4. Let us denote them as pq where q = (1, 2, . . . Q). Also, assume that each

pivot pair pq has Dq sequence pairs associated with it. Let us denote these sequence

pairs as eqd where d = (1, 2, . . . Dq). Suppose we are interested in processing the MET

60

3.5 Indexing Affine Relationships

and MER queries for the covariance. Recall, given the affine relationship (A, b)eqd for a

sequence pair eqd and the covariance matrix of the pivot matrix Σ(Opq), the covariance

Σeqd(S) can be estimated as follows:

Σeqd(S) = a>2 Σ(Opq)a1, (3.16)

where a1 and a2 are first and second column of the transformation matrix Aeqd . Since

from Definition 3.2, we have a common time series, namely u, between the sequence pair

eqd and the pivot pair pq, it simplifies the structure of a1 to (1, 0)>. Thus, Eq. (3.16)

becomes:

Σeqd(S) = (a12, a22)

(
Σ11(Opq)
Σ21(Opq)

)
. (3.17)

We then define αq = (Σ11(Opq), Σ21(Opq))
>, βqd = (a12, a22)> and thus Σeqd(S) =

α>q βqd. Now, similar to Observation 3.1, for ordering the scalar products α>q βqd it is

sufficient to order only the scalar projections ξqd = ‖βqd‖ cos(θqd) , where θqd is the

angle between αq and βqd. Notice that βqd is derived only using the affine relationships,

and does not change even if αq changes. Thus, we have essentially decoupled the affine

relationship (captured by βqd) from the statistical measure (captured by αq).

This decoupling allows us to define an αq for other measures without affecting the

ordering of the key ξqd. Thus, like covariance, we can find an αq for the other L-measures

and the dot product. Table 3.2 summarizes the values of αq and βqd for all the L- and

C-measures. In summary, by using the same ordering of ξqd we can index all the L- and

C-measures considered in this chapter.

1
p

1
a

1
max()j

2
p

2
a

2
max()j

Q
p

Q
a max()

Q
j

sequence node

1q =

2q =

q Q=sorted containers
(B-tree)

T

pivot nodes

= --qd
e

qd
x

qd
j

1
min()j

2
min()j

min()
Q

j

Figure 3.7: Example of the SCAPE index for indexing a C-measure and a D- measure.

Moreover, the SCAPE index contains two types of nodes: (a) pivot node that includes

the pivot pair pq and ‖αq‖ for all the statistical measures that are indexed by the SCAPE

index, and (b) sequence node that includes the sequence pair eqd and the scalar projection

ξqd = ‖βqd‖ cos(θqd). Furthermore, all the sequence nodes, associated with a pivot node,

are stored in a sorted container, like a B-tree. The key for sorting is the scalar projection

ξqd, which is found in each sequence node. In addition, each pivot node also stores the

reference to the sorted container that stores its sequence nodes. A schematic depicting

the arrangement between the pivot nodes and the sequence nodes is shown in Figure 3.7.

61

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

Table 3.2: Choices of αq and βqd. The third column refers to the affine relationship
(A, b) between pq and eqd.

αq βqd
Location
L2(Seqd) (L1(Opq), L2(Opq), 1)> (a12, a22, b2)>

Covariance
Σ12(Seqd) (Σ12(Opq), Σ22(Opq), 0)> (a12, a22, b2)>

Dot product
Π12(Seqd) (Π12(Opq), Π11(Opq), h1(Opq)) (a12, a22, b2)>

Thus, in short, using the SCAPE index we have essentially indexed all the L- and C-

measures at once.

Indexing D-Measures: For indexing a D-measure, we should additionally store the

following two values with the existing SCAPE index structure. First, in each sequence

node, the normalizer ϕqd of the indexed D measure, for e.g.,
√
Σ(su)Σ(sv) for the

correlation coefficient. Second, in each pivot node, the maximum and the minimum

value of the normalizer, max(ϕq) and min(ϕq), found in the B-tree associated with the

pivot pair pq.

In Section 3.5.3, we show that the above two quantities are sufficient to prune the

SCAPE index and efficiently process the MET and MER queries on the D-measures.

Similarly, other D-measures, which are not included in this chapter, can also be indexed

with the SCAPE index.

3.5.2 Processing Threshold and Range Queries

Consider the MET query requesting the sequence pairs such that the covariance is greater

than a user-defined threshold τ . We obtain the converted query by dividing τ by ‖αq‖.
We call this the modified threshold τ ′ = τ

‖αq‖ . For computing the modified threshold

τ ′ the value of αq corresponding to covariance in Table 3.2 is used. Note that the this

conversion guarantees that the result set of the original and the converted query are the

same. Next, we scan all the B-trees associated with all the pivot nodes, using a binary

search algorithm and collect eqd, such that τ ′ > ξqd. Figure 3.7 shows an example of this

process. The collected set of eqd is the result set AT of the MET query.

Secondly, consider the measure range query requesting all the sequence pairs, such

that their covariance is in between thresholds τl and τu. Similar to the MET query, we

compute the modified thresholds: τ ′l = τl
‖αq‖ and τ ′u = τu

‖αq‖ . We, then, collect all the eqd

from all the B-trees using a binary search, such that τ ′l < ξqd < τ ′u. The collected set of

eqd is the result set AR of the measure range query.

3.5.3 Index-based Pruning for D-Measures

Processing the MET and MER queries over the D-measures is a challenging problem.

Recall that a D-measure is derived by normalizing a C-measure. The primary challenge is

62

3.5 Indexing Affine Relationships

that normalization destroys the ordering of the scalar projections ξqd, which is established

for processing queries for the L- and C-measures. Now, the idea here is to prune the

sequence pairs stored in a sorted container using the values max(ϕq) and min(ϕq), stored

in each pivot node. Our pruning technique quickly eliminates a large number of sequence

pairs that do not satisfy the query condition(s).

Suppose we have a SCAPE index and a MET query that is requesting all sequence

pairs such that the correlation coefficient, which is a D-measure, is greater than τ . We

start the processing by considering each pivot node at a time. For a given pivot node,

we compute the two modified thresholds: min(τ ′) =
τ ·min(ϕq)
‖αq‖ and max(τ ′) =

τ ·max(ϕq)
‖αq‖ .

Observe that the sequence nodes, associated to a pivot node, where ξpd > max(τ ′), are

definitely in the result set AT , and do not require further processing. This situation in

depicted in Fig. 3.8(a) and holds because of the following:

ξpd > max(τ ′)⇔
‖αq‖ · ξqd
max(ϕq)

> τ ⇔ ρeqd(S) > τ. (3.18)

Thus for all the sequence nodes where ξpd > max(τ ′) the correlation coefficient can only

be greater than τ .

-- processed

max() min()
l u
t t¢ ¢<

(a) correlation threshold query

(b) correlation range query

case I:

-- pruned qd
e

qd
x--

q
p

q
a min()

q
j case II:

qd
j

max() min()
l u
t t¢ ¢>

min()
u
t¢min()

l
t ¢ max()

l
t¢ max()

u
t¢

q
a max()

q
jq

p

max()
q

j

min()
q

j

min()
u
t¢min()

l
t ¢ max()

l
t¢ max()

u
t¢

min()t¢ max()t¢

Figure 3.8: Index-based pruning for processing MET and MER queries on D-measures.

Likewise, the correlation coefficient for all the sequence nodes where ξpd < min(τ ′)

can only be less than τ and can be excluded from the result set AT . The sequence nodes

where min(τ ′) < ξqd < max(τ ′) cannot be pruned. Thus, for these sequence nodes, we

compute the correlation coefficient and check whether it is greater than τ and update

the result set AT .

Similarly, consider a measure range query that is requesting all the sequence pairs

such that their correlation coefficient is between τl and τu. As before, we compute four

modified thresholds: min(τ ′l) =
τl·min(ϕq)
‖αq‖ , max(τ ′l) =

τl·max(ϕq)
‖αq‖ , min(τ ′u) =

τu·min(ϕq)
‖αq‖ ,

63

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

and max(τ ′u) =
τu·max(ϕq)
‖αq‖ . Again, following a similar reasoning as the MET query, the

sequence nodes where ξpd > max(τ ′u) and ξpd < min(τ ′l) cannot be in the result set AR.

Furthermore, for the sequence nodes where max(τ ′l) < ξqd < min(τ ′u) there could be

two cases: (1) case I : max(τ ′l) < min(τ ′u), and (2) case II : max(τ ′l) > min(τ ′u). These

cases are depicted in Fig. 3.8(b). For case I, the sequence nodes where max(τ ′l) < ξqd <

min(τ ′u) can be directly included in the result set AR without further processing. In case

II, pruning like case case I is not possible. In both the cases, for the unpruned sequence

nodes we compute the correlation coefficient and check whether it is in between τl and

τu and update the result set AR.

Note that the same index pruning techniques can be utilized for other D-measures.

In Section 3.6, we compare the query processing methods using the SCAPE index with:

(a) a method that uses affine relationships to compute the statistical measure and then

process the MET or MER, and (b) a method that first computes the statistical measure

from scratch and then processes the MET or MER query. Our experiments show that

by using the SCAPE index structure we obtain a dramatic improvement in performance

as compared to the other methods.

3.6 Experimental Evaluation

In this section we perform extensive experimental evaluation on real datasets to estab-

lish the efficacy of our approaches. In Section 3.6.1, we analyze the trade-off between

accuracy and efficiency for computing statistical measures using affine relationships. We

emphasize the performance improvements in query processing using synthetic – but real-

istic – workloads in Section 3.6.2. The scalability of the SYMEX algorithm is established

in Section 3.6.3, and the performance gains by using the SCAPE index are demonstrated

in Section 3.6.4. Since we have more than one method for computing and querying the

statistical measures, as a shorthand we use the following notations:

• WN : the naive method that computes a given statistical measure from scratch,

• WA: the affine relationships method that uses affine relationships for computing a

statistical measure (refer Section 3.4.1),

• WF : an approach that uses the five largest DFT (Discrete Fourier Transform)

coefficients for approximating the correlation coefficient, and has been introduced

in [81, 97, 137].

In this chapter we use two real datasets. The first dataset contains 670 daily time

series obtained from 134 sensors monitoring environmental parameters on a university

campus. We refer to this dataset as sensor-data. The second dataset consists of weekly,

intra-day stock quotes from 996 stocks from the S&P 500 index and ETFs (exchange

traded funds). We refer to this dataset as stock-data. The most important characteristics

of the datasets are summarized in Table 3.3.

64

3.6 Experimental Evaluation

Table 3.3: Summary of the datasets.

sensor-data stock-data
sampling interval 2 min. 1 min.
#time series (n) 670 996
#samples per time series (m) 720 1,950
max. affine relationships 224,115 495,510

3.6.1 Analyzing Trade-Off

For analyzing the tradeoff between efficiency and accuracy we consider a MEC query

that computes a statistical measure (L, C, or D) over all the time series present in a

dataset. Figure 3.9 and Figure 3.10 show the speedup and the percentage RMSE error

(refer Section 3.4.1) obtained for all the statistical measures as a function of the number

of affine clusters k. The speedup is computed as the ratio of time taken by the WN

method as compared to the WA method. To give a sense of the absolute times, in

Figure 3.11 we show the absolute time comparison for stock-data.

 0

 2

 4

 6

 8

6 10 14 18 22
 0

 4e-13

 8e-13

 1.2e-12

 1.6e-12

 2e-12

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(a) mean

 0

 3

 6

 9

 12

 15

 18

6 10 14 18 22
 0

 0.5

 1

 1.5

 2

 2.5

 3

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup RMSE

(b) median

100

101

102

103

104

6 10 14 18 22
 0

 2

 4

 6

 8

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup RMSE

(c) mode

 0

 3

 6

 9

 12

 15

 18

6 10 14 18 22
 0

 1e-12

 2e-12

 3e-12

 4e-12

 5e-12

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(d) covariance

 0

 0.5

 1

 1.5

 2

6 10 14 18 22
 0

 1e-12

 2e-12

 3e-12

 4e-12

 5e-12

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(e) dot product

Figure 3.9: Efficiency and accuracy tradeoff for sensor-data. Note the logarithmic scale
for the speedup in (c).

In particular, for computing statistical measures, the focus of our work, the errors

are negligible. The speedup obtained over all the statistical measures varies largely from

a factor 1.3 to 3500. The maximum speedup of approximately 3500 times is obtained

for mode and the minimum speedups of 1.3x and 4x are obtained for dot product and

mean respectively. The speedup obtained for mean and dot product is low due to the

65

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

 0

 3

 6

 9

 12

 15

6 10 14 18 22
 0

 4e-12

 8e-12

 1.2e-11

 1.6e-11

 2e-11
s

p
e

e
d

u
p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(a) mean

 0

 8

 16

 24

 32

 40

6 10 14 18 22
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(b) median

100

101

102

103

104

6 10 14 18 22
 0

 0.5

 1

 1.5

 2

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup RMSE

(c) mode

 0

 4

 8

 12

 16

 20

 24

6 10 14 18 22
 0

 4e-12

 8e-12

 1.2e-11

 1.6e-11

 2e-11

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(d) covariance

 0

 0.5

 1

 1.5

 2

 2.5

 3

6 10 14 18 22
 0

 2e-11

 4e-11

 6e-11

 8e-11

 1e-10

s
p

e
e

d
u

p

R
M

S
E

 (
%

)

clusters (k)

speedup

RMSE

(e) dot product

Figure 3.10: Efficiency and accuracy tradeoff for stock-data. Note the logarithmic scale
for the speedup in (c).

 0

 0.2

 0.4

 0.6

 0.8

 1

6 10 14 18 22

ti
m

e
 (

s
e

c
o

n
d

s
)

clusters (k)

W
N

 W
A

(a) mean

 0

 0.5

 1

 1.5

 2

 2.5

 3

6 10 14 18 22

ti
m

e
 (

s
e

c
o

n
d

s
)

clusters (k)

W
N

 W
A

(b) median

 0.01

 0.1

 1

 10

 100

6 10 14 18 22

ti
m

e
 (

s
e

c
o

n
d

s
)

clusters (k)

W
N

 W
A

(c) mode

 0

 10

 20

 30

 40

 50

6 10 14 18 22

ti
m

e
 (

s
e

c
o

n
d

s
)

clusters (k)

W
N

 W
A

(d) covariance

 0

 3

 6

 9

 12

 15

6 10 14 18 22

ti
m

e
 (

s
e

c
o

n
d

s
)

clusters (k)

W
N

 W
A

(e) dot product

Figure 3.11: Absolute time comparison for stock-data. Note the logarithmic scale for
the speedup in (c).

66

3.6 Experimental Evaluation

inherent simplicity of computing them using the WN method. Thus, in summary, the

WA method exhibits significant improvements in efficiency and accuracy.

Since the stock-data is larger than the sensor-data, the efficiency improvement for

stock-data is more prominent than sensor-data. This demonstrates that our approaches

are capable of effectively handling large datasets. Moreover, for all the statistical mea-

sures a small number of clusters (6) are sufficient to obtain high accuracy; thus resulting

in a nearly linear cost of processing the MEC query.

3.6.2 Impact of Online Environments

Our task here is to analyze how the Affinity framework handles MEC queries posed

in online environments. Typically, in online environments, users frequently request for

computation of a particular statistical measure for only few entities (stocks or sensors).

To simulate this behavior, we generate realistic query workloads as follows: each query

chooses uniformly at random a L-, C-, or D-measure and uses a powerlaw distribution for

choosing 10 different series identifiers to form the set ψ. The intuition behind the pow-

erlaw distribution is that since some entities (stocks or sensors) are popular as compared

to others, thus we model their popularity with a powerlaw distribution.

Figure 3.12 compares query processing performance as the number of queries increase

for the sensor-data and the stock-data. Here the parameters of the SYMEX+ algorithm

are chosen as: k = 6, max(γ) = 10, and min(δ) = 10. The gains obtained by using

the WA method are many-fold as compared to the WN method. For example, the WA

method is 10 to 23 times faster as compared to the WN method when 90k queries are

processed, and it is 2.5 to 9 times faster when 15k queries are processed. Note that the

time for the WA method shown in Figure 3.12 also includes the initial time taken by the

SYMEX+ algorithm for computing the affine relationships.

Thus, the proposed WA method is far superior than the WN method of query pro-

cessing and is suitable for deployment in online environments. Here we cannot compare

 0

 700

 1400

 2100

 2800

 3500

15k 30k 45k 60k 75k 90k

ti
m

e
 (

s
e
c
o

n
d

s
)

number of queries

W
N

 W
A

(a) sensor-data

 0

 440

 880

 1320

 1760

 2200

15k 30k 45k 60k 75k 90k

ti
m

e
 (

s
e
c
o

n
d

s
)

number of queries

W
N

 W
A

(b) stock-data

Figure 3.12: Comparing query processing efficiency.

67

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

with the WF method, since the WF method only computes the correlation coefficient

and does not work for all the other statistical measures.

3.6.3 Scalability of the SYMEX Algorithm

Now we compare scalability of the SYMEX and SYMEX+ algorithms when the number

of affine relationships generated by them increases. Figure 3.13 shows the scaling behav-

ior of the SYMEX and the SYMEX+ algorithms as the number of affine relationships

handled by these algorithms increase. For experiments in Figure 3.13, we set k = 6,

max(γ) = 10, and min(δ) = 10 as the parameters of the AFCLST algorithm. The

SYMEX and the SYMEX+ algorithms scale linearly as the number of affine relation-

ships increase. Particularly, the SYMEX+ algorithm is a factor 3.5 to 4 times faster

as compared to the simple SYMEX algorithm. Thus, the SYMEX+ algorithm exhibits

attractive improvements as compared to the SYMEX algorithm.

 0

 22

 44

 66

 88

 110

 5k 50k 95k 140k 185k 230k

ti
m

e
 (

s
e

c
o

n
d

s
)

number of affine relationships

SYMEX SYMEX+

(a)

 0

 90

 180

 270

 360

 450

 5k 105k 205k 305k 405k 505k

ti
m

e
 (

s
e

c
o

n
d

s
)

number of affine relationships

SYMEX SYMEX+

(b)

Figure 3.13: Scalability of the SYMEX algorithm. (a) sensor-data and (b) stock-data.

3.6.4 Impact of using the SCAPE Index

We discuss the performance improvements obtained by using the SCAPE index. Here,

all the experiments are performed on the sensor-data. Recall, the SCAPE index uses

the affine relationships returned by the SYMEX+ algorithm. For processing the MET

and MER queries on the correlation coefficient the index pruning methods discussed in

Section 3.5.3 are utilized.

We first analyze the scalability of constructing the SCAPE index as the number

of indexed affine relationships increase. Figure 3.14 shows the scaling behavior of the

SCAPE index when it indexes the affine relationships for a C-measure (covariance) and

a L-measure (mean). Clearly, the SCAPE index exhibits linear scaling, which makes it

a viable practical alternative for query processing.

Next, we compare the performance improvement obtained by using the SCAPE in-

dex for processing the MET and MER queries for the covariance and the correlation

68

3.6 Experimental Evaluation

 0

 3

 6

 9

 12

 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

no. of affine relationships

covariance mean

Figure 3.14: Scalability of the index construction on sensor-data.

 0.1

 1

 10

 100

 0k 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A

W
F SCAPE

(a) correlation coefficient (threshold)

 0.01

 0.1

 1

 10

 100

 0k 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(b) covariance (threshold)

 0.001

 0.01

 0.1

 0 132 264 396 528 660

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(c) median

 0.01

 0.1

 1

 10

 0k 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(d) dot product

Figure 3.15: Comparing efficiency of the SCAPE index for the MET query.

coefficient. Here, all the affine relationships that are returned by the SYMEX+ algo-

rithm are used for creating the SCAPE index. Figure 3.15 and Figure 3.16 compares the

results for query processing obtained using the SCAPE index with the other methods.

The other methods (WN , WA, and WF) first compute the required statistical measure

and then trivially evaluate the MET or MER query. Note that since WF only computes

the correlation coefficient, therefore it is only include in Fig. 3.15(a) and Fig. 3.16(a).

Figure 3.15 and Figure 3.16 depict the orders of magnitude improvement (shown

69

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

 0.1

 1

 10

 100

 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A

W
F SCAPE

(a) correlation coefficient

 0.01

 0.1

 1

 10

 100

 45k 90k 135k 180k 225k

ti
m

e
 (

s
e

c
o

n
d

s
)

result size

W
N

W
A SCAPE

(b) covariance

Figure 3.16: Comparing efficiency of the SCAPE index for the MER query.

using logarithmic scale) in efficiency while processing the MET and MER queries using

the SCAPE index. Table 3.4 shows a snapshot of the orders of magnitude performance

improvement for all the statistical measures, and also in particular when comparing to

the best known methods from the literature (WF) for the computation of the correlation

coefficient.

It is clearly evident from Table 3.4, that by using the SCAPE index we obtain orders

of magnitude performance improvement. There is, however, one exception – median.

Since median is a L-measure, the maximum possible number of affine relationships for

it are low (linear in n). These affine relationships are insufficient for demonstrating

the efficacy of the SCAPE index. In summary, the proposed indexing methods exhibit

tremendous improvement in the efficiency of processing MET and MER queries.

Table 3.4: Query processing speedup computed when the query returns the maximum
size of the result set AT or AR.

Query type Measure
Speedup

WN WA WF

MET

correlation coefficient 59x 13.4x 32x
covariance 160x 21x ×

dot product 41x 35x ×
median 5x 1.1x ×

MER
correlation coefficient 27x 6.4x 14x

covariance 155x 22x ×

3.7 Related Work

Many prior works transform data from time domain to frequency domain using the DFT

and then use the equivalence of norms (Parseval’s theorem) property of the DFT for

approximating the correlation coefficient using the largest DFT coefficients [81, 97, 137].

Computing the Pearson’s correlation coefficient using DFT-based techniques provides

70

3.8 Conclusion

inaccurate results when the time series contain white noise. Cole et al. [31] call such

time series uncooperative and propose methods for discovering correlation amongst such

signals. All these studies, however, typically only consider the correlation coefficient

and do not propose an unified approach for computing and querying a wide variety of

statistical measures, which includes the correlation coefficient.

In addition to computing the correlation coefficient, there has been a large body of

related prior research using the DFT for: (a) exact or approximate sequence matching

where the sequences could have undergone a similarity transformation [6, 7, 46], (b)

retrieving similar shapes [59, 108], (c) predicting future values and answering similarity

queries [83], and (d) reducing the dimensionality of the time-series data [69, 69]. Our

work, on the contrary, considers affine transformations, which are a more generalized

form of similarity transformations. Secondly, these techniques do not notice that affine

transformations can be used for efficiently computing statistical measures.

TAPER [132] defines an all-strong-pairs correlation query that returns pairs of highly

positively correlated items given a user-specified threshold. SPRIT [102], on the other

hand, uses PCA (Principal Component Analysis) for summarizing a large collections of

streams and discovering correlations. Our work differs from those mainly due to the

fact that those techniques are tightly coupled to a particular type of query or statistical

measure, most often the correlation coefficient. In that sense our work is unique.

Processing aggregate or related queries over time-series data is another area related

to our work. A method of computing correlated aggregates is proposed in [51]. The

Cypress framework [111] uses Fourier transform and random projection based multi-

scale analysis for segmenting the data into various form of trickles, which are then used

for query processing. Similarly, GAMPS [48] uses ratio signals for compressing time-

series data and proposes approaches for query processing over such compressed data.

More recently, there has been research conducted on indexing and querying correlated

uncertain information using probabilistic databases [67, 110]. Lastly, Ke et al. [68]

propose approaches for searching graphs correlated to a given query graph.

3.8 Conclusion

In this chapter, for the first time, we defined and proposed the notion of affine relation-

ships for computing and querying several statistical measures using an unified approach.

We proposed the affine clustering algorithm for clustering the time-series data, such that

high-quality affine relationships could be found. We showed that using affine relation-

ships results in dramatic performance improvement in computing statistical measures

with minimal loss in accuracy. We demonstrated that the SCAPE index structure can

easily index all the statistical measures and produce orders of magnitude improvement

in efficiency for processing measure threshold and range queries, as compared to naive

methods and methods proposed in the literature for this problem. In the next chapter,

we will consider the problem of characterizing uncertainty in time-series data. As a

71

3. Affinity: Efficiently Querying Statistical Measures on Time-Series Data

solution to this problem, we will provide methods for estimating evolving probability

distributions that effectively capture uncertainty in time-series data.

72

Chapter 4
Creating Probabilistic Databases from
Imprecise Time-Series Data

Les questions les plus
importantes de la vie ne sont en
effet, pour la plupart, que des
problèmes de probabilité.
(Life’s most important questions
are, for the most part, nothing
but probability problems.)

Pierre-Simon Laplace

4.1 Introduction

In this chapter, we propose methods for characterizing uncertainty in imprecise time-

series data. In recent years there have been a plethora of methods for managing and

querying uncertain data [24, 32, 34, 57, 100, 110, 124]. These methods are typically

based on the assumption that probabilistic data used for processing queries is available;

however, this is not always true. Creating probabilistic data is a challenging and still

unresolved problem. Prior work on this problem has only limited scope for domain-

specific applications, such as handling duplicated tuples [10, 56] and deriving structured

data from unstructured data [55]. Evidently, a wide range of applications still lack the

benefits of existing query processing techniques that require probabilistic data. Time-

series data is one important example where probabilistic data processing is currently

not widely applicable due to the lack of probability values. Although, the benefits

are evident given that time series, in particular generated from sensors (environmental

sensors, RFID, GPS, etc.), are often imprecise and uncertain in nature.

Before diving into the details of our approach let us consider a motivating example

shown in Figure 4.1. Here, Alice is tracked by indoor-positioning sensors and her loca-

tions are recorded in a database table called raw values in the form of a three-tuple

73

4. Creating Probabilistic Databases from Imprecise Time-Series Data

(ti, xi, yi). These raw values are generally imprecise and uncertain due to several noise

factors involved in position measurement, such as low-cost sensors, discharged batter-

ies, and network failures. On the other hand, consider a probabilistic query where an

application is interested in knowing, given a particular time, the probability that Alice

could be found in each of the four rooms. For answering this query we need the table

prob view (see Figure 4.1). This table gives us the probability of finding Alice in a

particular room at a given time. To derive the prob view table from the raw values

table, however, the system faces a fundamental problem—how to meaningfully associate

a probability distribution P(R) with each raw value tuple (ti, xi, yi), where R is the

random variable associated with Alice’s position.

room 1

room 3

room 2

room 4

Probability
distribution

showing Alice’s
position

3σ area
as a reasonable

boundary

room4 ∩ 3σ area

μ

0.2
0.4
0.1
0.3

1
2
3
4

room 1 room 2

room 4
2
2
2
2

probability
0.5
0.1
0.3
0.1

room
1
2
3
4

ti
1
1
1
1

ti = 1

ti = 2

yi
2.3
2.1

:
:

xi
1.1
1.3
:
:

ti
1
2
:
:

?

x

y

x

y

raw_values

prob_view

() R

()d R R

Figure 4.1: An example of creating a tuple-level probabilistic database from time-
dependent probability distributions.

Once the system associates a probability distribution P(R) with each tuple, it can be

used to derive probabilistic views, which forms a probabilistic database used for evaluat-

ing various types of probabilistic queries [24, 34]. Thus, this example clearly illustrates

the importance of having a means for creating probabilistic databases. Nevertheless,

there is a lack of effective tools that are capable of creating such probabilistic databases.

In an effort to rectify this situation, we focus on the problem of creating a probabilistic

database from given (imprecise) time series, thereupon, facilitating direct processing of

a variety of probabilistic queries.

Unfortunately, creating probabilistic databases from imprecise time-series data poses

several important challenges. In the following paragraphs we elaborate these challenges

and discuss the solutions that this chapter proposes.

Inferring Evolving Probability Distributions.

One of the most important challenges in creating a probabilistic database from time

series is to deal with evolving probability distributions, since time series often exhibit

74

4.1 Introduction

highly irregular dependencies on time [32, 126]. For example, temperature changes

dramatically around sunrise and sunset, but changes only slightly during the night.

This implies that the probability distributions that are used as the basis for deriving

probabilistic databases also change over time, and thus must be computed dynamically.

In order to capture the evolving probability distributions of time series we intro-

duce various dynamic density metrics, each of them dynamically infers time-dependent

probability distributions from a given time series. The distributions derived by these

dynamic density metrics are then used for creating probabilistic databases. After care-

fully analyzing several dynamical models for representing the dynamic density met-

rics (details are provided in Section 4.3 and Section 4.7), we identify and adopt a

novel class of dynamical models from the time-series literature, which is known as the

GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model [120]. We

show that the GARCH model can play an important role in efficiently and accurately

creating probabilistic databases, by effectively inferring dynamic probability distribu-

tions.

An important challenge in identifying appropriate dynamic density metrics is to find

a measure that precisely assess the quality of the probability distributions produced by

these metrics. This assessment is important since it quantifies the quality of probabilistic

databases derived using these probability distributions. A straightforward method is

to compare the ground truth (i.e., true probability distributions) with the inference

obtained from our dynamic density metrics, thus producing a tangible measure of quality.

This is, however, infeasible since we can neither observe the ground truth nor establish

it unequivocally by any other means. To circumvent this crucial limitation, we propose

an indirect method for measuring quality, termed density distance, which is based on

a solid mathematical framework. The density distance is a generic measure of quality,

which is independent of the models used for producing probabilistic databases.

Unfortunately, the GARCH model works inappropriately on time series that contain

erroneous values, i.e., significant outliers, which are often produced by sensors. This is

because the GARCH model is generally used over precise, certain, and clean data (e.g.,

stock market data). In contrast, the time series that this study considers are typically

imprecise and erroneous. Thus, we propose an improved version of the GARCH model,

termed C-GARCH, that performs appropriately in the presence of such erroneous values.

Efficiently Creating Probabilistic Databases.

Given probability distributions inferred by a dynamic density metric, the next step

of our solution is to generate views that contain probability values (e.g., prob view

in Figure 4.1). We introduce the Ω-View builder that efficiently creates probabilistic

views by processing a probability value generation query. The output of this query can

be directly consumed by a wide variety of existing probabilistic queries, thus enabling

higher level probabilistic reasoning.

Since the probabilistic value generation query accepts arbitrary time intervals (past

or current) as inputs, this could incur heavy computational overhead on the system when

75

4. Creating Probabilistic Databases from Imprecise Time-Series Data

the time interval spans over a large number of raw values. To address this, we present

an effective caching mechanism called σ-cache. The σ–cache caches and reuses probabil-

ity values computed at previous times for current time processing. We experimentally

demonstrate that the σ–cache boosts the efficiency of query processing by an order of

magnitude. Additionally, we provide theoretical guarantees that are used for setting the

cache parameters. These guarantees enable the choice of the cache parameters under

user-defined constraints of storage space and error tolerance. Moreover, such guarantees

make the σ–cache an attractive solution for large-scale data processing.

4.1.1 Chapter Organization

We begin by giving details of our framework for generating probabilistic databases in

Section 4.2. Section 4.3 introduces the naive dynamic density metrics while in Section 4.4

we propose the GARCH metric. An enhancement of the GARCH metric, C-GARCH,

is discussed in Section 4.5. In Section 4.6, we suggest effective methods for generating

probabilistic databases, this is followed by a discussion on σ–cache. Lastly, Section 4.7

presents comprehensive experimental evaluations followed by the review of related stud-

ies in Section 4.8.

4.2 Foundation

This section describes our framework, defines queries this study considers, and proposes

a measure for quantifying the effectiveness of the dynamic density metrics. Table 4.1

offers the notations used in this chapter.

4.2.1 Framework Overview

Figure 4.2 illustrates our framework for creating probabilistic databases, consisting of

two key components that are dynamic density metrics and the Ω–View builder. A

dynamic density metric is a system of measure that dynamically infers time-dependent

probability distributions of imprecise raw values. It takes as input a sliding window that

contains recent previous values in the time series. In the following sections, we introduce

various dynamic density metrics.

Unlike the setup that we considered in Chapter 2, a large part of this chapter only

considers the problem of creating probabilistic databases from time-series data obtained

from a single data source. Therefore, in the notation used in this chapter we drop the

subscript j that was used to identify the data source in Chapter 2. Moreover, we consider

the problem of creating probabilistic databases from multivariate time-series data in [65].

We start by denoting the time series as by a vector s = [s1, s2, · · · , sl]. Each element

of the time series is represented as si where 1 ≤ i ≤ l. si indicates a (imprecise) raw

value at time ti. Similar to the time-series database model in Section 1.1, we consider

the sampling interval to be uniform, that is, ti+1 − ti is same for all the values of i ≥ 1.

Therefore, for simplifying the notation we denote the time axis only with the index i.

76

4.2 Foundation

Ω―View
builder

si

4.2
5.9
7.1
7.9

sensor
ti
1
2
3
4

dynamic density metrics

σi

0.3
3.2
2.9
0.2

si

4.0
6.0
7.0
7.7

si =10.2

ti = 2
probability value

generation query user

Framework

raw_values prob_view

si Ω
s1

s2

s3

ω1 [2:4]
ω2 [6:8]
ω1 [0:2]
ω2 [6:8]
ω1 [3:5]
ω2 [7:9]

0.50
0.01
0.08
0.23
0.16
0.25

Λ

σ―cache

ˆ ˆ

()
i i
 R

Figure 4.2: Architecture of the framework.

Unlike Chapter 2, the time series s defined here does not have a fixed size n. As

new time-series data streams into the system, the size of s increases. Let sHl−1 =

[sl−H , sl−H+1, · · · , sl−1] be a (sliding) window that is a subsequence of s, where its

ending value is at the previous time of l. The dynamic density metrics correspond to

the following query:

Definition 4.1: Inference of dynamic probability distribution. Given a (slid-

ing) window sHt−1, the inference of a probability distribution at time l estimates a prob-

ability density function Pl(Rl), where Rl is a random variable associated with sl.

The system stores the inferred probability density functions Pl(Rl) associated with

the corresponding raw values. Next, our Ω–View builder uses these inferred probability

density functions to create a probabilistic database, as shown in the prob view table of

Figure 4.2.

Suppose that the data values of a probabilistic database are decomposed into a set

of ranges Ω = {ω1, ω2, · · · , ωU}, where ωu = [min(ωu),max(ωu)] is bounded by a lower

bound min(ωu) and an upper bound max(ωu) for 1 ≤ u ≤ U . Then, the Ω–View builder

corresponds to the following query in order to compute probability values for the given

ranges:

Definition 4.2: Probability value generation query. Given a probability den-

sity function Pl(Rl) and a set of ranges Ω = {ω1, ω2, · · · , ωU} for the probability values

in a probabilistic database, a probability value generation query returns a set of prob-

abilities Λl = {o1, o2, · · · , oU} at time l, where ou is the probability of occurrence of

ωu ∈ Ω and is equal to
∫ max(ωu)

min(ωu) Pl(Rl)dRl, and 1 ≤ u ≤ U .

Recall the example shown in Figure 4.1. Let us assume that ω1 corresponds to the

event of Alice being present in Room 1. At time l = 1, Alice is likely to be in Room 1

(i.e., ω1 occurs) with probability o1 = 0.5.

77

4. Creating Probabilistic Databases from Imprecise Time-Series Data

Note that the creation of probabilistic databases can be performed in either online or

offline fashion. In the online mode, the dynamic density metrics infer Pl(Rl) as soon as

a new value sl is streamed to the system. In the offline mode, users may give SQL-like

queries to the system (examples are provided in Section 4.6).

Table 4.1: Summary of Notations.

Symbol Description

s A time series.
sHl−1 Sliding window having H values in the range [l −H, l − 1].
sl Raw (imprecise) value at time l.
Rl Random variable associated with sl.

ŝl,E(Rl) Expected true value at time l.
Pl(Rl) Probability density function of Rl at time l.
Pl(Rl) Cumulative probability distribution function of Rl

at time l.
o Probability of occurrence of event ω.

E(X) Expected value of random variable X.
N (µ, σ2) Gaussian probability density function

with mean µ and variance σ2.
Ω A set of ranges for creating probability values

in a probabilistic database.
dxe A smallest integer value that is not smaller than x.

4.2.2 Evaluation of Dynamic Density Metrics

Quantifying the quality of a dynamic density metric is crucial, since it reflects the quality

of a probabilistic database created. Here, we introduce an effective measure, termed

density distance, that quantifies the quality of a probability density inferred by a dynamic

density metric.

Let Pl(Rl) be an inferred probability density at time l. A straightforward manner

in which we can evaluate the quality of this inference is to compare Pl(Rl) with its

corresponding true density P̂l(Rl). P̂l(Rl), however, cannot be given nor observed, ren-

dering this straightforward evaluation infeasible. To overcome this, we propose to use

an indirect method for evaluating the quality of a dynamic density metric known as the

probability integral transform [41]. A probability integral transform of a random vari-

able X, with probability density function P(X), transforms X to a uniformly distributed

random variable Y by evaluating Y =
∫ x
−∞ P(X = u)du where x ∈ X. Thus, the proba-

bility integral transform of si with respect to Pi(Ri) becomes, yi =
∫ si
−∞ Pi(Ri = u)du.,

where 1 ≤ i ≤ l. Let P1(R1), . . . ,Pl(Rl) be the sequence of probability distributions

inferred using a dynamic density metric. Also, let y1, . . . , yl be the probability integral

transforms of raw values s1, . . . , sl with respect to P1(R1), . . . ,Pl(Rl). Then, y1, . . . , yl

are uniformly distributed between (0, 1) if and only if the inferred probability density

Pi(Ri) is equal to the true density P̂i(Ri) for 1 ≤ i ≤ l [41].

78

4.3 Naive Dynamic Density Metrics

To find out whether y1, . . . , yl follow a uniform distribution we estimate the cumula-

tive distribution function of y1, . . . , yl using a histogram approximation method. Let us

denote this cumulative distribution function as QY (y). We define the quality measure of

a dynamic density metric as the Euclidean distance between QY (y) and the ideal uniform

cumulative distribution function between (0, 1) denoted as UY (y). Formally, the quality

measure is defined as:

‖UY (y)− QY (y)‖2 =

√√√√ 1∑
x=0

(UY (x)− QY (x))2. (4.1)

We refer to ‖UY (y)− QY (y)‖2 as density distance. The density distance quantifies the

difference between the observed distribution of y1, . . . , yl and their expected distribution.

Thus, it gives a measure of quality for the inferred densities P1(R1), . . . ,Pl(Rl). The

density distance will be used in Section 4.7 to compare the effectiveness of each dynamic

density metrics this chapter introduces.

4.3 Naive Dynamic Density Metrics

This section presents two relatively simple dynamic density metrics that capture evolving

probability densities in time series.

Uniform Thresholding Metric.

Cheng et al. [24, 27] have proposed a generic query evaluation framework over imprecise

data. The key idea in these studies is to model a raw value as a user-provided uncertainty

range in which the corresponding unobservable true value resides. Queries are then

evaluated over such uncertainty ranges, instead of the raw values.

Our uniform thresholding metric extends this idea for estimating probability distri-

butions by inferring a true value. We define such a true value as:

Definition 4.3: Expected true value. Given a probability density function

Pl(Rl), the expected true value ŝl is the expected value of Rl, denoted as E(Rl).

s3

(a) uniform thresholding

raw valueti

1

v

(b) variable thresholding
2 3

s1

s2s1

s2

s3 uncertainty
range

δ user-defined
threshold

ˆ

ˆ
ˆ

te
m

pe
ra

tu
re

expected
true value

ti

1

v

2 3

s1
s2

s3ˆ
ˆ

ˆ

3

2

1

ν

ν ν

Figure 4.3: Examples of naive dynamic density metrics.

79

4. Creating Probabilistic Databases from Imprecise Time-Series Data

Next, the uniform thresholding metric takes a user-defined threshold value δ to bound

uniform distributions, centered on the inferred true value. Figure 4.3 (a) illustrates an

example of this process where a user-defined threshold value δ is used for specifying the

uncertainty ranges. The difference between a true value ŝl and its corresponding raw

value sl is then assumed to be not greater than δ.

To infer expected true values, we adopt the AutoRegressive Moving Average (ARMA)

model [120] that is commonly used for predicting expected values in time series [127].

Specifically, given the time series s = [s1, s2, · · · , sl] and a sliding window sHl−1, the

ARMA model models si = ŝi + ei, where l −H ≤ i ≤ l − 1 and ei obeys a zero mean

normal distribution with variance σ2
e . Now, given an ARMA(α,β) model, we infer the

expected true value ŝl as:

ŝl = Φ0 +
α∑
j=1

Φjsl−j +

β∑
j=1

Θjel−j , (4.2)

where (α, β) are non-negative integers denoting the model order, Φ1, . . . ,Φp are autore-

gressive coefficients, Θ1, . . . ,Θq are moving average coefficients, Φ0 is a constant, and

l > max(α, β). More details regarding the estimation and choice of the model parame-

ters (α, β) are described in Chapter 3 in [120].

Variable Thresholding Metric.

We propose another dynamic density metric, termed variable thresholding metric, that

differs in two ways from the uniform thresholding metric. First, the variable thresholding

metric works on Gaussian distributions, while the uniform thresholding metric is appli-

cable only to uniform distributions. Second, unlike the uniform thresholding metric, the

variable thresholding metric does not require the user-defined threshold for specifying

uncertainty ranges. Instead, it computes a sample variance ν2
l for a window sHl−1, so

that ν2
l is used to model a Gaussian distribution. Given sHl−1, the variable thresholding

metric infers a normal distribution at time l as:

Pl(Rl = sl) =
1√

2πν2
l

e−(sl−ŝl)2/2ν2l , (4.3)

where ŝl is an expected true value inferred by the ARMA model.

Figure 4.3 (b) demonstrates an example of estimating normal distributions based on

the variable thresholding metric. First, the ARMA model infers the expected true values

ŝl that are used as the mean values for the normal distributions. It then computes the

variances that are used to derive the standard deviations νl.

4.4 GARCH Metric

As stated in the previous section, it is common to capture the uncertainty of an impre-

cise time series with a fixed-size uncertainty range as shown in Figure 4.3 (a) [24, 27].

This approach, however, may not be effective in practice, since in a wide variety of

80

4.4 GARCH Metric

real-world settings, the size of the uncertainty range typically varies over time. For ex-

ample, Figure 4.4 shows two time series obtained from a real sensor network deployment

monitoring ambient temperature and relative humidity. The regions marked as Region

A in Figure 4.4 (a) and Figure 4.4 (b) exhibit higher volatility1 than those marked as

Region B. This observation strongly suggests that the underlying model should support

time-varying variance and mean value when it infers a probability density function. We

experimentally verify this claim in Section 4.7.4.

Motivated by this, we introduce a new dynamic density metric, the GARCH metric.

The GARCH metric models Pl(Rl) as a Gaussian probability density function N (ŝl, σ̂
2
l).

This metric assumes that the underlying time series exhibits not only time-varying av-

erage behavior (ŝl) but also time-varying variance (σ̂2
l). For inferring σ̂2

l we propose

using the GARCH model. And, for inferring ŝl we can either use the ARMA model from

Section 4.3 or Kalman Filters.

(a) (b)

Figure 4.4: Regions of changing volatility in (a) ambient temperature and (b) relative
humidity.

4.4.1 The GARCH Model

The GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model [120]

efficiently captures time-varying volatility in a time series. Specifically, given a window

sHl−1, the ARMA model models si = ŝi + ei where l −H ≤ i ≤ l − 1.

We then define the conditional variance σ2
i as:

σ2
i = E((si − ŝi)2|Fi−1), σ2

i = E(e2
i |Fi−1), (4.4)

where E(e2
i |Fi−1) is the variance of ei given all the information Fi−1 available until time

i − 1. The GARCH(ζ,η) model models volatility in Eq. (4.4) as a linear function of e2
i

as:

ei = σiεi, σ2
i = Γ0 +

ζ∑
j=1

Γje
2
i−j +

η∑
j=1

Ψjσ
2
i−j , (4.5)

1We use variance and volatility interchangeably.

81

4. Creating Probabilistic Databases from Imprecise Time-Series Data

where εi is a sequence of independent and identically distributed (i.i.d) random variables,

(ζ, η) are parameters describing the model order, Γ0 > 0, Γj ≥ 0, Ψj ≥ 0,
∑max(ζ,η)

j=1 (Γj+

Ψj) < 1, and i takes values between l −H +max(ζ, η) and l − 1.

The underlying idea of the GARCH(ζ,η) model is to reflect the fact that large shocks

(ei) tend to be followed by other large shocks. Unlike the ν2
l in the variable thresholding

metric, σ2
i is a variance that is estimated after subtracting the local trend ŝi. In many

practical applications the GARCH model is typically used as the GARCH(1,1) model,

since for a higher order GARCH model specifying the model order is a difficult task

[120]. Thus, we restrict ourselves to these model order settings. More details regarding

the estimation of model parameters and the choice for the sliding window size H are

described in [120].

For inferring time-varying volatility, we use the GARCH(m,s) model and ei as follows:

σ̂2
l = Γ0 +

ζ∑
j=1

Γje
2
l−j +

η∑
j=1

Ψjσ
2
l−j . (4.6)

Recall that we use the ARMA model for inferring the value of ŝl given sHl−1. We also

consider the Kalman Filter [120] for inferring ŝl. We show the difference in performance

between the Kalman Filter and the ARMA model in Section 4.7.1. Basically, the Kalman

Filter models ŝl using the following two equations,

state equation: ŝi = c1 · ŝi−1 + z1
i−1 z1

i ∼ N (0, σ2
z1), (4.7)

observation equation: si = c2 · ŝi + z2
i z2

i ∼ N (0, σ2
z2), (4.8)

where ŝ1 is given a priori and c1 and c2 are constants. Since the GARCH model in Eq.

(4.5) takes errors ei as input, they are computed as ei = si − ŝi and are used by the

GARCH model.

Considering both approaches for inferring ŝl (ARMA model and Kalman Filter) we

propose two dynamic density metrics, namely, ARMA-GARCH and Kalman-GARCH.

Both of them use the GARCH model for inferring σ̂l. But for inferring ŝl they use

ARMA model and Kalman Filter respectively.

Algorithm 4.1 gives a concise description of the ARMA-GARCH metric. This algo-

rithm uses the ARMA model for inferring ŝl and the GARCH model for inferring σ̂2
l

(Step 3). The algorithm for Kalman-GARCH metric is the same as Algorithm 4.1, ex-

cept that it uses the Kalman filter in Step 3 for inferring ŝl instead of using the ARMA

model. Here, κ ≥ 0 is a scaling factor that decides the upper bound max(sl) and the

lower bound min(sl). For example, when κ = 3, the probability that sl lies between

max(sl) and min(sl) is very high (approximately 0.9973).

The time complexities of the estimation step for the ARMA model and the GARCH

model (Step 1 and 2) are O(H · max(α, β)) and O(H · max(ζ, η)) respectively [93].

Nevertheless, as the model order parameters are small as compared to H these estimation

steps become significantly efficient.

82

4.5 Enhanced GARCH Metric

Algorithm 4.1 Inferring ŝl and σ̂2
l using ARMA-GARCH.

Input: ARMA model parameters (α, β), sliding window sHl−1, and scaling factor κ.
Output: Inferred ŝl, inferred volatility σ̂2

l , and κ-scaled bounds max(sl),min(sl).
1: Estimate an ARMA(α, β) model on sHl−1 and obtain ei where l−H +max(α, β) ≤ i ≤ l− 1
2: Estimate a GARCH(1, 1) model using ei’s
3: Infer ŝl using ARMA(α, β) and σ̂2

l using GARCH(1, 1)
4: max(sl)← ŝl + κσ̂l and min(sl)← ŝl − κσ̂l
5: return ŝl, σ̂

2
l , ub, and lb

4.5 Enhanced GARCH Metric

In practice, time series often contain values that are erroneous in nature. For example,

sensor networks, like weather monitoring stations, frequently produce erroneous values

due to various reasons; such as loss of communication, sensor failures, etc. Unfortunately,

the GARCH model is incapable of functioning appropriately when input streams contain

such erroneous values. This is because the GARCH model has been generally used over

precise, certain, and clean data (e.g., stock market data). To tackle this problem, we

propose an enhancement of the GARCH metric, which renders the GARCH metric robust

against erroneous time-series inputs.

Before proceeding further, we note the difference between erroneous values and im-

precise values. Imprecise values have an inherent element of uncertainty but still follow

a particular trend, while erroneous values are significant outliers which exhibit large

unnatural deviations from the trend.

To give an idea of the change in behavior exhibited by the GARCH model we run the

ARMA-GARCH algorithm on all sliding windows sHt−1 of a time series s = [s1, s2, . . . , sn]

where H + 1 ≤ i ≤ n and κ = 3. The result of executing this algorithm is shown in

Figure 4.5 (a) along with the upper and lower bounds. Notice that at time 127, when

the first erroneous value occurs in the training window, the GARCH model infers an

extremely high volatility for the following time steps. This mainly happens since the

GARCH equation Eq. (4.5) contains square terms, which significantly amplifies the effect

of the presence of erroneous values. To avoid this we introduce novel heuristics which

can be applied to input data in an online fashion and thus obtain a correct volatility

estimate even in the presence of erroneous values. We term our approach C-GARCH

(an acronym for Clean-GARCH).

4.5.1 C-GARCH Model

Let s = [s1, s2, . . . , sn] be a time series containing some erroneous values. We then start

executing the ARMA-GARCH procedure (see Algorithm 4.1) at time l > H. For this

we set κ = 3, thus making the probability of finding sl outside the interval defined by

max(sl) and min(sl) low. When we find that sl resides outside max(sl) and min(sl),

we mark it as erroneous value and replace it with the corresponding inferred value ŝl.

Simultaneously, we also keep the track of the number of consecutive values we have

83

4. Creating Probabilistic Databases from Imprecise Time-Series Data

marked as erroneous values most recently. If this number exceeds a predefined constant

ς then we assume that the observed raw values are exhibiting a changing trend. For

example, during sunrise the ambient temperature exhibits a rapid change of trend. This

idea inherently assumes that the probability of finding ς consecutive erroneous values is

low. And, if we find ς consecutive erroneous values we should re-adjust the model to the

new trend.

Although it rarely happens in practice that there are many consecutive erroneous

values may be present in raw data. To rule out the possibility of using these values

for inference, we introduce a novel heuristic that is applied to the values in the window

[sl−ς , . . . , sl] before they are used for the inference. This step ensures that we have not

included any erroneous values present in the raw data into our system. Thus we avoid

the problems that occur by using a simple ARMA-GARCH metric.

40 60 80 100 120 140 160

-100

-50

0

50

Time (mins.)

T
e

m
p

e
ra

tu
re

 (
d

e
g

.
C

) (A)

(A) –
high (1800 deg. c) showing
failure of GARCH model

Inferred bound extremely

Erroneous
Values

Erroneous
Values

(a)

90

95

100

105

110

115

120

125

130

135

-40

-20

0

20

T
e
m

p
e
ra

tu
re

 (
d

e
g

.
C

)

Raw values

Inferred Values (s)l

Inferred Bounds
max(s) , min(s)l l

Trend change
detected

Erroneous
Value

Trend change
starts

Time (mins.)

ˆ

(b)

Figure 4.5: (a) Behavior of the GARCH model when window sHl−1 contains erroneous
values. (b) Result of using the C-GARCH model.

4.5.2 Successive Variance Reduction Filter

The heuristic that we use for filtering out significant anomalies is shown in Algorithm 4.2.

This algorithm takes values v = [v1, v2, . . . , vK] containing erroneous values and a thresh-

olding parameter max(ν2(v)) as input. It first measures dispersion of v by computing

its sample variance denoted as ν2(v) (Step 3) . Then we delete a point, say vk, and

compute the sample variance of all the other points [v1, . . . , vk−1, vk+1, . . . , vK] denoted

as ν2(v\vk) (Step 9). We perform this procedure for all points and then finally find

a value vk̄, such that this value, if deleted, gives us the maximum variance reduction.

We delete this point and reconstruct a new value at k̄ using interpolation. We stop

this procedure when the total sample variance becomes less than the variance threshold

max(ν2(v)). In Steps 8 and 9, we use the intermediate values v̂′K and v̂K to compute

ν2(v\vK), thus reducing the computational complexity of the algorithm to quadratic.

84

4.5 Enhanced GARCH Metric

v k

kk1 k2

SVmax > SV ([v1,..,vK])

v k

kk1 k2

v k

kk1 k2

SVmax > SV([v1,..,vK])

v k

kk1 k2

Iteration 1 Iteration 1

Iteration 2 Iteration 2

Drop vk1

Drop vk2

SVmax > SV ([v1,..,vK])

SVmax < SV ([v1,..,vK])

Interpolate vk2

Interpolate vk1

LARGE EXAMPLE

v k

kk1 k2

v k

kk1 k2

Iteration 1 Iteration 2

Drop vk1

Interpolate vk1 Interpolate vk2

2 2() max(())n n>v v 2 2() max(())n n<v v

Figure 4.6: Showing sample run of the Successive Variance Reduction Filter (Algo-
rithm 4.2).

A graphical example of our approach is shown in Figure 4.6. From this figure we

can see that values at k1 and k2 are erroneous. In the first iteration our algorithm

deletes value vk1 and reconstructs it. Next, we delete vk2 and obtain a new value using

interpolation. At this point we stop since ν2(v) becomes less than max(ν2(v)). Moreover,

it is very important to know a fair value for max(ν2(v)), since if a higher value is chosen

we might include some erroneous values and if a lower value is chosen we might delete

some non-erroneous values. Also, the value of max(ν2(v)) depends on the underlying

parameter monitored. For example, ambient temperature in Figure 4.4 shows rapid

changes in trend as compared to relative humidity. Thus, using a sufficiently large sample

of clean data, we compute max(ν2(v)) as the maximum sample variance (dispersion) we

observe in all sliding windows of size ς. This gives a fair estimate of the threshold

between trend changes and erroneous values.

Figure 4.5 (b) shows the result of using C-GARCH model on the same data as shown

in Figure 4.5 (a) with ς = 7. We can observe that at l = 93 a trend change starts to

occur and is smoothly corrected by the C-GARCH model at l = 101. Most importantly,

the successive variance reduction filter effectively handles the erroneous values occurring

at times l = 127 and l = 132. Thus the C-GARCH model performs as expected and

overcomes the shortcomings of the plain ARMA-GARCH metric. In Section 4.7 we will

demonstrate the efficacy of the C-GARCH model on real data obtained from sensor

networks.

Guidelines for Parameter Setting: The C-GARCH model requires three parameters

κ, max(ν2(v)), and ς. In most cases we assign κ = 3. As seen before, max(ν2(v))

is learned from a sample of clean data. On the contrary, setting ς requires domain

knowledge about sensors used for data gathering. If there are unreliable sensors which

frequently emit erroneous values then setting a higher value for ς is advisable and vice

versa. Our experiments suggest that the C-GARCH model performs satisfactorily when

the value for ς is set to twice the length of the longest sequence of erroneous values. In

practice, ς is generally small, making the execution of Algorithm 4.2 efficient.

85

4. Creating Probabilistic Databases from Imprecise Time-Series Data

Algorithm 4.2 The Successive Variance Reduction Filter.

Input: A time series v containing erroneous values and variance threshold max(ν2(v)).
Output: Cleaned values v.
1: while true do
2: v̂′K ←

∑K
k=1 v

2
k and v̂K ← 1

K

∑K
k=1 vk

3: ν2(v)← 1
K−1 v̂

′
K − K

K−1 (v̂K)2

4: if ν2(v) > max(ν2(v)) then
5: break
6: cV ar ← −∞, k̄ ← 0, and k ← 1
7: repeat
8: v̂′K−1 ← v̂′K − v2

k and v̂K−1 ← v̂K − vk
K

9: ν2(v\vk)← 1
K−2 v̂K−1 − K−1

K−2 (v̂K−1)2

10: if ν2(v\vk) < cV ar then
11: cV ar ← ν2(v\vk)
12: k̄ ← k
13: k ← k + 1
14: until k ≤ K
15: Mark vk̄ as erroneous and delete
16: if k̄ 6= 1 and k̄ 6= K then
17: Use vk̄−1 and vk̄+1 to interpolate the value of vk̄
18: else
19: Extrapolate vk̄

4.6 Probabilistic View Generation

Recall Definition 4.2 that defines the query for generating probability values for a tuple-

independent probabilistic database (view). To precisely specify the user-defined range

Ω in the definition, we define Ω = {ŝl + u∆|u = −U
2 , . . . ,

U
2 }, where ∆ is a positive

real number and U is an even integer. We refer to ∆ and U as view parameters. These

parameters describe U ranges of size ∆ around the expected true value ŝl. In the online

mode of our system, the query is evaluated at each time when a new value is streamed

to the system. In the offline mode, all necessary parameters can be specified by users

using a SQL-like syntax. For example, the syntax in Query 4.1 creates the probabilistic

view in Figure 4.2.

CREATE VIEW prob view AS DENSITY s OVER l OMEGA delta=2, U=2

FROM raw values WHERE l >= 1 AND l <= 3

Query 4.1: Example of the probabilistic view generation query.

In the example shown in Query 4.1, AS DENSITY s OVER t illustrates the time-

varying density for time series s. The OMEGA clause specifies the ranges of the data

values of the probabilistic view, and the WHERE clause defines a time interval. Notice

that the query given in Definition 4.2 is evaluated at each time l to obtain Λl. Specifically,

at each l and for each u = {−U
2 , . . . , (

U
2 − 1)} we compute the following integral:

86

4.6 Probabilistic View Generation

ou =

∫ ŝl+(u+1)∆

ŝl+u∆
Pl(Rl)dRl,

= Pl(Rl = ŝl + (u+ 1)∆)− Pl(Rl = ŝl + u∆), (4.9)

where Pl(Rl) is the cumulative distribution function of sl.

In short, Eq. (4.9) involves computing Pl(Rl) for each value of u = {−U
2 , . . . ,

U
2 }.

Unfortunately, this computation may incur high cost when the time interval specified by

the query spans over many days comprising of a large number of raw values. Moreover,

this processing becomes significantly challenging when the query requests for a view with

finer granularity (low ∆) and large range U , since such values for the view parameters

considerably increase the computational cost.

To address this problem, we propose an approach that caches and reuses the compu-

tations of Pl(Rl), which were already performed at earlier times. The intuition behind

this approach is to observe that probability distributions for a time series do not gen-

erally exhibit dramatic changes in short terms. For example, temperature values often

exhibit only slight changes within short time intervals. In addition, similar probability

distributions may be found periodically (e.g., early morning hours every day). Thus,

the query processing can take advantage of the results from previous computation. In

the rest of this section, we introduce an effective caching mechanism, termed σ–cache,

that substantially boosts the performance of query evaluation by caching the values of

Pl(Rl).

4.6.1 σ–cache

As introduced before, let Pl(Rl) be a Gaussian cumulative distribution function of sl at

time l. If required for clarity, we denote it as Pl(Rl; θ̂l) where θ̂l = (ŝl, σ̂
2
l). Observe that

the shape of Pl(Rl; θ̂l) is completely determined by σ̂2
l , since ŝl only specifies the location

of the curve traced by Pl(Rl; θ̂l). This observation leads to an important property:

suppose we move from time l to l′, then the values of Pl(Rl = ŝl + u∆; θ̂l), Pl′(Rl′ =

ŝl′ + u∆; θ̂l′), and consequently ou are the same if σ̂l is equal to σ̂l′ . We illustrate

this property graphically in Figure 4.7. Moreover, since the shapes of Pl(Rl; θ̂l) and

Pl′(Rl′ ; θ̂l′) solely depend on σ̂l and σ̂l′ respectively, we can assume in the rest of the

analysis that the mean values of Pl(Rl) and Pl′(Rl′) are zero. This could be done using

a simple mean shift operation on Pl(Rl) and Pl′(Rl′).

Our aim is to approximate Pl′(Rl′) with Pl(Rl). This is possible only if we know

how the distance (similarity) between Pl(Rl; θ̂l) and Pl′(Rl′ ; θ̂l′) behaves as a function

of σ̂l and σ̂l′ . If we know this relation then we can, with a certain error, approximate

Pl′(Rl′ ; θ̂l′) with Pl(Rl; θ̂l) simply by looking up σ̂l and σ̂l′ . Thus, if we have already

computed Pl(Rl; θ̂l) at time l then we can reuse it at time l′ to approximate Pl′(Rl′ ; θ̂l′).

87

4. Creating Probabilistic Databases from Imprecise Time-Series Data

Δ

mean
shift

μ2

Δ

μ1

),;(2
11 xFG

),;(2
22 xFG

μ
1+Δ·i

μ
1+Δ·(i-1)

μ
2+Δ·i

μ
2 +Δ·(i-1)

mean shift

sl' sl

2ˆ ˆP(; ,)
l l l l
R s s2

' ' '
ˆ ˆP (; ,)

l l l l
R s s

μ
t +Δ(τ+

1)

μ
t +Δτ

μ
t' +Δ(τ+

1)

μ
t' +Δτ

ou remains
unchanged

OLD FIGURE

a'=μt'+Δ(τ+1)
b'=μt'+Δτ

a=μt+Δ(τ+1)
b=μt'+Δτ

b'a' ba

a'=sl'+uΔ b'=sl'+(u+1)Δ a=sl+uΔ b=sl+(u+1)Δ

ΔΔ

ˆ

),;(2
tttG rrF

),;(2
'' tttG rrF

ˆ ˆ ˆ
ˆ ˆ

Figure 4.7: An example illustrating that ou remains unchanged under mean shift oper-
ations when two Gaussian distributions have equal variance.

4.6.2 Constraint-Aware Caching

In practice, systems that use the σ–cache could have constraints of limited storage size

or of error tolerance. To reflect this, we guarantee certain user-defined constraints.

Specifically, we focus on the following:

• Distance constraint guarantees that the maximum approximation error is upper

bounded by the distance constraint when the cache is used.

• Memory constraint guarantees that the cache does not use more memory than that

specified by the memory constraint.

Before proceeding further, we first characterize the distance between two probabil-

ity distributions using a measure known as the Hellinger distance [106]. It is a dis-

tance measure similar to the popular Kullback-Leibler divergence. However, unlike the

Kullback-Leibler divergence, the Hellinger distance takes values between zero and one

which makes its choice simple and intuitive. Formally, the square of Hellinger distance

H between Pl(Rl) and Pl′(Rl′) is given as:

H2[Pl(Rl),Pl′(Rl′)] = 1−

√
2σ̂lσ̂l′

σ̂2
l + σ̂2

l′
. (4.10)

The Hellinger distance assigns minimum value of zero when Pl′(Rl′) and Pl(Rl) are the

same and vice versa.

Guaranteeing Distance Constraint.

We use the Hellinger distance to prove the following theorem that allows us to approxi-

mate Pl′(Rl′) with Pl(Rl).

Theorem 4.1: Given Pl′(Rl′), Pl(Rl), and a user-defined distance constraint H′, we

can approximate Pl′(Rl′) with Pl(Rl), such that H[Pl(Rl),Pl′(Rl′)] ≤ H′, where σ̂l′ =

πs · σ̂l and σ̂l′ > σ̂l. The parameter πr can be chosen as any value satisfying,

πr ≤
2 +

√
4− 4

(
1− H′2

)4
2
(
1− H′2

)2 . (4.11)

88

4.6 Probabilistic View Generation

Proof. Substituting σ̂l′ = πr · σ̂l in Eq. (4.10) we obtain,

(1− H′2)
√

1 + π2
r −
√

2 · πr = 0.

Solving for πr we obtain,

πr ≤
2 +

√
4− 4

(
1− H′2

)4
2
(
1− H′2

)2 .

Since πr is monotonically increasing in H′, choosing a value of πr as given by the above

inequality guarantees the distance constraint H′.

The above theorem states that if we have a user-defined distance constraint H′ then

we can approximate Pl′(Rl′) by Pl(Rl) only if σ̂l′ > σ̂l and πr is chosen using Eq. (4.11).

Moreover, since πr is defined as the ratio between σ̂l′ and σ̂l we call it the ratio threshold.

ˆmin()A
r l

U

cache

ˆ

- cached values

memory
2 ˆmin()r l

1 ˆmin()r l

Figure 4.8: Structure of the σ–cache.

Now, we describe how Theorem 4.1 allows us to efficiently store and reuse values of

Pl(Rl) while query processing. First, we compute the maximum and minimum values

amongst all σ̂l matching the WHERE clause of the probabilistic view generation query (see

Query 4.1). Let us denote these extremes as max(σ̂l) and min(σ̂l). We then define the

maximum ratio threshold max(πr) as,

max(πr) =
max(σ̂l)

min(σ̂l)
. (4.12)

Given the user-defined distance constraint H′ we use Eq. (4.11) to obtain a suitable

value for πr. Then we compute a A, such that,

max(σ̂l) = πAr ·min(σ̂l). (4.13)

Let dxe denote the smallest integer value that is not smaller than x. Then, dAe gives

us the maximum number of distributions that we should cache, such that the distance

constraint is satisfied. We populate the cache by pre-computing values for dAe distri-

butions having standard deviations πar ·min(σ̂l), where a = 1, 2, . . . , dAe. As shown in

Figure 4.8, these values are computed at points specified by the view parameters ∆ and

U .

89

4. Creating Probabilistic Databases from Imprecise Time-Series Data

We store each of these pre-computed distributions in a sorted container like a B-tree

along with key πar ·min(σ̂l). When we need to compute Pl′(Rl′ ; θ̂l′), we first look up the

container to find keys πar ·min(σ̂l) and πa+1
r ·min(σ̂l), such that σ̂l′ lies between them.

We then use the values associated with key πar ·min(σ̂l) for approximating Pl′(Rl′). By

following this procedure we always guarantee that the distance constraint is satisfied due

to Theorem 4.1.

Guaranteeing Memory Constraint.

Let us assume that we have a user-defined memory constraint M . We then consider an

integer Q′ which indicates the maximum number of distributions that can be stored in

the memory size M . Here we prove an important theorem that enables the guarantee

for memory constraint.

Theorem 4.2: Given the values of Q′, max(σ̂l), and min(σ̂l), the memory constraint

M is satisfied if and only if the value of the ratio threshold πr is chosen as,

πr ≥ max(πr)
1
Q′ . (4.14)

Proof. From Eq. (4.13) we obtain,

loge(max(σ̂l)) = Q′ · loge(πr) + loge(min(σ̂l)),

πr = max(σ̂l)
1
Q′ ·min(σ̂l)

− 1
Q′ .

From the above equation we can see that πr is monotonically decreasing in Q′. Since

max(πr) = max(σ̂l)
min(σ̂l)

, we obtain,

πr ≥ max(πr)
1
Q′ .

Choosing a value for πr as given in the above equation guarantees that at most Q′

distributions are stored, thus guaranteeing the memory constraint M .

The above theorem states that given user-defined memory constraint Q′ we set πr

according to Eq. (4.14) so as not to store more than Q′ distributions. Also, given a

distance constraint H′ the rate at which the memory requirement grows is O(log(πr)).

Thus the cache size does not depend on the number of tuples that match the WHERE

clause of the query in Query 4.1. Instead, it only grows logarithmically with the ratio

between max(σ̂l) and min(σ̂l). Observe that the number of distributions stored by the

σ–cache is independent from the view parameters ∆ and U . This is a desirable property

since it implies that, queries with finer granularity are answered by storing the same

number of distributions.

There is an interesting trade-off between the distance constraint and the memory

constraint (see Eq. (4.11) and Eq. (4.14)). When the distance constraint increases, the

amount of memory required by the σ–cache decreases in order to guarantee the distance

constraint and vice versa. Thus, as expected, there exists a give-and-take relationship

between available memory size and prescribed error tolerance.

In the following section, we will demonstrate significant improvement with respect

to query processing by using the σ–cache.

90

4.7 Experimental Evaluation

4.7 Experimental Evaluation

The main goals of our experimental study are fourfold. First, we show that the perfor-

mance of the proposed dynamic density metrics, namely, ARMA-GARCH and Kalman-

GARCH are efficient and accurate over real-world data. Second, we compare the per-

formance of the ARMA-GARCH metric with that of the C-GARCH enhancement, in

order to show that C-GARCH is efficient as well as accurate in handling erroneous values

in time series. We then demonstrate that the use of the σ–cache significantly increases

query processing performance. Lastly, we perform experiments validating that real world

datasets exhibit regimes of changing volatility.

In our experiments, we use two real datasets, details of these datasets are as follows:

Campus Dataset: This dataset comprises of ambient temperature values recorded over

twenty five days. It consists of approximately eighteen thousand samples. These values

are obtained from a real sensor network deployment on the EPFL university campus in

Lausanne, Switzerland. We refer to this dataset as campus-data.

Moving Object Dataset: This dataset consists of GPS logs recorded from on-board

navigation systems in 192 cars in Copenhagen, Denmark. Each log entry consists of

time and x-y coordinate values. In our evaluation we use only x-coordinate values. This

dataset contains approximately ten thousand samples recorded over five and half hours.

We refer to this dataset as car-data.

Table 4.2 provides a summary of important properties of both datasets. We have

implemented all our methods using MATLAB Ver. 7.9 and Java Ver. 6.0. We use a Intel

Dual Core 2 GHz machine having 3GB of main memory for performing the experiments.

Table 4.2: Summary of Datasets

campus-data car-data
Monitored parameter Temperature GPS Position

Number of data values 18031 10473
Sensor accuracy ± 0.3 deg. C ± 10 meters

Sampling interval 2 minutes 1-2 seconds

4.7.1 Comparison of Dynamic Density Metrics

We compare our main proposals (ARMA-GARCH and Kalman-GARCH) with uniform

thresholding (UT) and variable thresholding (VT). These evaluations are performed on

both datasets. As described in Section 4.2, we used the density distance for comparing

the quality of distributions obtained using the dynamic density metrics.

Figure 4.9 shows a comparison of density distance for the various dynamic density

metrics for both datasets along with increasing window size (H). Clearly, both the

ARMA-GARCH metric and the Kalman-GARCH metric outperform the naive density

metrics. Specifically, those advanced dynamic density metrics outperform the naive

91

4. Creating Probabilistic Databases from Imprecise Time-Series Data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 30 60 90 120 150 180

d
e
n

s
it

y
 d

is
ta

n
c
e

window size (H)

(a) campus-data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 30 60 90 120 150 180

d
e
n

s
it

y
 d

is
ta

n
c
e

window size (H)

(b) car-data

UT VT ARMA-GARCH Kalman-GARCH

Figure 4.9: Comparing quality of the dynamic density metrics.

density metrics by giving upto 20 times and 12.3 times lower density distances for

campus-data and car-data respectively.

Among the advanced dynamic density metrics, the ARMA-GARCH metric performs

better than all the other metrics. For car-data we can observe that the Kalman-GARCH

metric gives low accuracy as the window size increases. This behavior is expected since

when larger window sizes are used for the Kalman Filter, there is a greater chance of error

in inferring ŝl. In our observation, the use of smaller window sizes (e.g., H = 10) for the

Kalman-GARCH metric performs twice better, compared to the ARMA-GARCH metric.

Next, we compare the efficiency of the dynamic density metrics. Figure 4.10 shows

the average times required to perform one iteration of density inference. Because of the

large performance gain of the ARMA-GARCH metric, the execution times are shown on

logarithmic scale. The ARMA-GARCH metric achieves a factor of 5.1 to 18.6 speedup

over the Kalman-GARCH metric. This is due to slow convergence of the iterative EM

10-1

100

101

 30 60 90 120 150 180

a
v
e
ra

g
e
 t

im
e
 (

s
e
c
.)

window size (H)

(a) campus-data

10-1

100

101

 30 60 90 120 150 180

a
v
e
ra

g
e
 t

im
e
 (

s
e
c
.)

window size (H)

(b) car-data

UT VT ARMA-GARCH Kalman-GARCH

Figure 4.10: Comparing efficiency of the dynamic density metrics. Note the logarithmic
scale on the y-axis.

92

4.7 Experimental Evaluation

(Expectation-Maximization) algorithm used for estimating parameters of the Kalman

Filter. Thus, unlike the ARMA model, computing parameters for the Kalman Filter

takes longer for large window sizes. The naive dynamic density metrics are much more

efficient than the Kalman-GARCH metric. But they are only marginally better than

the ARMA-GARCH metric. Overall the ARMA-GARCH metric shows excellent char-

acteristics in terms of both efficiency and accuracy.

In the next set of experiments, we discuss the effect of model order of an ARMA(α,0)

model on density distance. Figure 4.11 shows the density distance obtained by using

several metrics when the model order α increases. Observe that for the ARMA-GARCH

metric the density distance increases with model order. This justifies our choice of a low

model order for the ARMA-GARCH metric.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8

d
e

n
s

it
y

 d
is

ta
n

c
e

model order

UT

VT

ARMA-GARCH

Figure 4.11: Effect of model order on campus-data.

4.7.2 Impact of C-GARCH

In the following, we demonstrate the improved performance of the C-GARCH model

by comparing it with the plain ARMA-GARCH metric using campus-data (we omit the

results from car-data because they are similar). We start by inserting erroneous values

synthetically, since for comparing accuracy we should know beforehand the number of

erroneous values present in the data. The insertion procedure inserts a pre-specified

number of very high (or very low) values uniformly at random in the data.

For evaluating the C-GARCH approach we first compute max(ν2(v)) using a given

set of clean values and then execute the C-GARCH model while setting ς = 8. Fig-

ure 4.12 (a) compares the percentage of total erroneous values detected for C-GARCH

and ARMA-GARCH. Admittedly, the C-GARCH approach is more than twice effective

in detecting and cleaning erroneous values. Additionally, from Figure 4.12 (b) it can be

observed that the C-GARCH approach does not require excessive computational cost

as compared to ARMA-GARCH. The reason is that the ARMA model estimation takes

more time if there are erroneous values in the window sHl−1. This additional time offsets

the time spent by the C-GARCH model in cleaning erroneous values before they are

given to the ARMA-GARCH metric.

93

4. Creating Probabilistic Databases from Imprecise Time-Series Data

 0

 20

 40

 60

 80

 100

5 25 125 625

p
e

rc
e

n
t

c
a

p
tu

re
d

erroneous values

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 25 125 625

a
v

e
ra

g
e

 t
im

e
 (

s
e

c
.)

erroneous values

(b)

C-GARCH GARCH

Figure 4.12: Comparing C-GARCH and GARCH. (a) Percentage of erroneous values
successfully detected and (b) average time for processing a single value.

4.7.3 Impact of using σ–cache

Next, we show the impact of using the σ–cache while creating a probabilistic database.

Particularly, we are interested in knowing the increase in efficiency obtained from using

a σ–cache. Moreover, we are also interested in verifying the rate at which the size of the

σ–cache grows as the maximum ratio threshold max(πr) increases. Here, we expect the

cache size to grow logarithmically in max(πr).

We use campus-data for demonstrating the space and time efficiency of the σ–cache.

We choose ∆ = 0.05, U = 300, Hellinger distance H = 0.01, and compute πr using Eq.

(4.11). Figure 4.13 (a) shows the improvement in efficiency obtained for the probabilistic

view generation query with increasing number of tuples. Here, the naive approach

signifies that the σ–cache is not used for storing and reusing previous computation. In

Figure 4.13 all values are computed by taking an ensemble average over ten independent

 0

 400

 800

 1200

 1600

 2000

 2400

6000 10000 14000 18000

ti
m

e
 (

m
il
li
s
e
c
o

n
d

s
)

database size (tuples)

naive σ-cache

(a)

 850

 900

 950

 1000

 1050

 1100

 1150

 2000 4000 8000 16000

c
a

c
h

e
 s

iz
e

 (
k

il
o

b
y

te
s

)

max. ratio threshold (max(π
r
))

(b)

Figure 4.13: (a) Impact of using the σ–cache on efficiency. (b) Scaling behavior of the
σ–cache. Note the exponential scale on the x-axis.

94

4.7 Experimental Evaluation

executions. Clearly, using the σ–cache exhibits manyfold improvements in efficiency.

For example, when there are 18K raw value tuples we observe a factor of 9.6 speedup

over the naive approach. Figure 4.13 (b) shows the memory consumed by the σ–cache

as max(πr) is increased. As expected, the cache size grows only logarithmically as the

maximum ratio threshold max(πr) increases. This proves that the σ-cache is a space-

and time-efficient method for seamlessly caching and reusing computation.

4.7.4 Verifying Time-Varying Volatility

Before we infer time-varying volatility using the ARMA-GARCH metric or the Kalman-

GARCH metric it is important to verify whether a given time series exhibits changes

in volatility over time. For testing this we use a null hypothesis test proposed in [120].

The null hypothesis tests whether the errors obtained from using a ARMA model (e2
i)

are independent and identically distributed (i.i.d). This is equivalent to testing whether

Φ1 = · · · = Φζ = 0 in the linear regression,

e2
i = Φ0 + Φ1e

2
i−1 + · · ·+ Φζe

2
i−ζ + εi, (4.15)

where i ∈ {ζ + 1, . . . ,H}, εi denotes the error term, ζ ≥ 1, and H is the window size.

If we reject the null hypothesis (i.e., Φj 6= 0) then we can say that the errors are not

i.i.d, thus establishing that the given time series exhibits time-varying volatility. First,

we start by computing the sample variance of e2
i and εi denoted as ν2(e2

i) and ν2(εi)

respectively. Then,

Ξ(ζ) =
(ν2(e2

i)− ν2(εi))/ζ

ν2(εi)/(H − 2ζ − 1)
, (4.16)

is asymptotically distributed as a chi-square distribution χ2
ζ with ζ degrees of freedom.

Thus we reject the null hypothesis if Ξ(ζ) > χ2
ζ(0.05), where χ2

ζ(0.05) is in the upper

100(1− 0.05)th or 95th percentile of χ2
ζ or the p-value of Ξ(ζ) < 0.05 [120].

To show that our datasets exhibit regimes of changing volatility we compute the

value of Ξ(ζ) where ζ = {1, 2, . . . , 8} on 1800 windows containing 180 samples each

(i.e., H = 180) for campus-data and car-data. Then we reject the null hypothesis if the

average value of Ξ(ζ) over all windows is greater than χ2
ζ(0.05).

Figure 4.14 shows the results from this evaluation. Clearly, we can reject the null

hypothesis for both datasets because for all values of ζ, χ2
ζ(0.05) is much lower than Ξ(ζ).

This means that e2
i are not i.i.d and thus we can find regimes of changing volatility.

Interestingly, for car-data (see Figure 4.14 (b)) we can see that χ2
ζ(0.05) and Ξ(ζ) are

close to each other. Thus the car-data contains less time-varying volatility as compared

to the campus-data.

The above results support the claim that real datasets show change of volatility with

time, thus justifying the use of the GARCH model.

95

4. Creating Probabilistic Databases from Imprecise Time-Series Data

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

S
ta
ti
s
ti
c

ζ

(a) campus-data

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

S
ta
ti
s
ti
c

ζ

(b) car-data

Ξ(ζ) χ
2

ζ(0.05)

Figure 4.14: Verifying time-varying volatility.

4.8 Related Work

In order to effectively deal with uncertain data, a vast body of research on proba-

bilistic databases has been conducted in the literature, including concepts and founda-

tions [20, 35, 77], query processing [34, 72, 91, 100], and indexing schemes [67, 80, 124].

All these studies, however, share the common condition that probability values associ-

ated with data must be given a priori. As a result, a large variety of applications are

still incapable of receiving benefits from such well-established tools for processing prob-

abilistic databases, due to the lack of methods for establishing the required probability

values.

Some previous work highlights the fact that creating probabilistic databases is a

non-trivial problem. They then propose effective solutions for the problem; however,

the studies have only limited scope for domain-specific applications, such as handling

duplicated data records [10, 56] and building structured data from unstructured data [55].

series are still unable to benefit from the research on processing probabilistic databases.

More recently, the concept of probabilistic databases has been extended into stream

data processing, so-called probabilistic streams [32, 80, 110]. associated with a probability

that would mean as “Alice is at room A with a 30 % chance”. Ré et al. [110] propose a

framework for query processing over probabilistic (Markovian) streams. Later, an access

method for such Markovian streams is introduced in [80] for efficient query processing.

Cormode and Garofalakis [32] also propose efficient algorithms based on hash-based

sketch synopsis structure for processing aggregate queries over probabilistic streams.

While all these studies assume probabilistic streams are given beforehand, Tran et al.

[126] introduce a complete solution to create probabilistic streams. Unfortunately, this

proposal is focused on RFID data, whereas our solution accepts arbitrary time-series

data including such RFID data.

Processing probabilistic queries is another related area to our work. Cheng et al.

[24] introduce several important types of probabilistic queries, as well as a generic query

96

4.9 Conclusion

evaluation framework over inherently imprecise data. Although they assume that an

uncertainty bound for data can be easily given by users, the assumption may not hold in

many real-world applications. Deshpande and Madden [40] introduce the abstraction of

model-based views that are database views created from the underlying data by applying

numerical models. These views are then used for query processing instead of using the

actual data. This idea is then extended by Kanagal and Deshpande [66], in which various

particle filters are used for generating model-based views. This proposal requires a suf-

ficient number of generated particles to obtain reliable probabilistic inferences, however,

this substantially decreases the efficiency of the system.

Some prior research focuses on system perspectives associated with uncertain data.

Wang et al. [128] introduce Bayesstore which stores joint probability distribution func-

tions encoded in a Bayesian network. Jampani et al. [61] propose a novel concept, by

which the system does not store probabilities but parameters for generating the proba-

bilities. Our work inherits this idea. Antova et al. [11] introduce the abstractions of

world-sets and world-tables for capturing attribute-level uncertainty and possible world

semantics of a probabilistic database. Cheng et al. [26] propose U-DBMS for manag-

ing uncertain data where the probability density function for the uncertain attributes is

pre-specified.

4.9 Conclusion

In this chapter, we proposed a novel and generic solution for creating probabilistic

databases from imprecise time-series data. Our solution includes two novel components:

the dynamic density metrics that effectively infer time-dependent probability distribu-

tions for time series and the Ω–View builder that uses the inferred distributions for

creating probabilistic databases. We also introduced the σ–cache that enables efficient

creation of probabilistic databases while obeying user-defined constraints. We demon-

strated that by using the σ–cache the efficiency of creating probabilistic databases can

be enhanced by upto an order of magnitude. Many other comprehensive experiments

highlight the effectiveness of our approaches. In the next chapter, we shall consider the

problems arising while managing and querying community-sensed data.

Appendix 4.A Probabilistic Query Evaluation

Cheng et al. [24] defined queries for processing uncertain data. One of the assumptions

in their work was that the area of uncertainty of a particular raw value is finite. Thus,

the probability distributions for raw values were defined over a finite interval. On the

contrary, in our proposal raw values follow a Gaussian distribution. This makes query

evaluation more challenging since the Gaussian distribution is not defined over a finite

interval. As we shall see, it is possible to evaluate most of the queries by using closed

form expressions and, more importantly, without imposing a finite area of uncertainty.

97

4. Creating Probabilistic Databases from Imprecise Time-Series Data

Probabilistic queries on uncertain data are classified as: (a) value-based queries that

return a single number or aggregate, (b) entity-based queries, that return a set of objects.

These broad query types are further classified as:

• Aggregate Value-Based Queries: VAvgQ, VSumQ, VMinQ, and VMaxQ

• Aggregate Entity-Based Queries : EMinQ and EMaxQ.

All the queries listed above take as input a set of probability distributions. This set is

defined as K = {P1(R1),P2(R2), . . . ,Pn(Rn)}. In our case, we have Pj(Rj) ∼ N (µj , σ
2
j)

for all 1 ≤ j ≤ n.

Definition 4.4: VSumQ (VAvgQ) query. Given probability distributions K the

VSumQ (VAvgQ) query returns a probability distribution Ps(Rs) (Pa(Ra)) where Rs

(Ra) is a random variable for the sum (average) of (R1, R2, . . . , Rn).

This query could be easily answered since Pj(Rj) follows a Gaussian distribution.

One nice property of Gaussian distributions is that the sum and average of Gaus-

sian random variables also follows a Gaussian distribution. Thus, sum and average

of (R1, R2, . . . , Rl) also obeys a Gaussian distribution. Moreover, Ps(Rs) ∼ N (µs, σ
2
s)

where σ2
s =

∑n
j=1 σ

2
j and µs =

∑n
j=1 µj . Similarly, Pa(Ra) ∼ N (µa, σ

2
a) where σ2

a =
1
n2

∑n
j=1 σ

2
j and µa = 1

n

∑n
j=1 µj . Note that this assumes that R1, . . . , Rn are indepen-

dent.

Definition 4.5: VMinQ (VMaxQ) query. Given probability distributions K the

VMinQ (VMaxQ) query returns a probability distribution Pmin(Rmin) (Pmax(Rmax))

whereRmin(Rmax) is a random variable for the minimum (maximum) of (R1, R2, . . . , Rn).

The VMinQ (VMaxQ) could be answered using extreme value distributions. Par-

ticularly, we use the Gumbel distribution to model the maximum of a set of Gaussian

random variables,

Pmax(Rmax = r) =
1

θ1

(
e
− r−θ2

θ1

)(
e−e

− r−θ2
θ1

)
, (4.17)

here parameters θ1 and θ2 could be estimated from data. The distribution for Rmin can

be obtained by replacing r with −r in Eq. (4.17).

The next type of queries we discuss are the aggregate-based entity queries (EMinQ

and EMaxQ). These queries typically assume that each probability distribution from

K is associated with a time-series data source (for example, sensor, transmitter, GPS

device, etc.). Thus, let use assume that we have W = {w1, w2, . . . , wn} data sources

where each wj is associated with a probability distribution Pj(Rj) from K.

Definition 4.6: EMinQ (EMaxQ) query. Given the data sources W and their

corresponding probability distributions K the EMinQ (EMaxQ) query returns a set of

tuples O = {(w1, o1), (w2, o2), . . . , (wn, on)} where oj is the probability that Rj is the

minimum (maximum) amongst all entities W, where 1 ≤ j ≤ n.

98

4.A Probabilistic Query Evaluation

Now, oj can be derived as,

oj =

∫ +∞

−∞
Pj(Rj = u)

n∏
k=1∧k 6=j

(1− Pk(Rk = u))du, (4.18)

where
∏n
k=1∧k 6=j(1 − Pk(Rk = u)) is the probability that the values of all data sources

except wj is greater than u. Thus Eq. (4.18) gives us the probability that wj has the

minimum value. The expression for wj in Eq. (4.18) is a complicated integral which is

difficult to simplify. Therefore, we propose using a Monte Carlo method for evaluating

the integral in Eq. (4.18). Observe that Eq. (4.18) can be interpreted as,

oj = Ej

 n∏
k=1∧k 6=j

(1− Pk(Rk = x))

 , (4.19)

where Ej is the expectation w.r.t. Pj(Rj). Thus, if we draw L random variates according

to Pj(Rj) as (u1, . . . , uL), then Eq. (4.19) can be evaluated as,

oj =
1

L

L∑
i=1

n∏
k=1∧k 6=j

(1− Pk(Rk = ui)). (4.20)

This completes our discussion on evaluating probabilistic queries. We have shown that

aggregate value-based queries (VMinQ, VMaxQ, VSumQ, VAvgQ) could be evaluated

using closed form expressions and aggregate entity-based queries (EMinQ and EMaxQ)

can be evaluated using Monte Carlo integration. Particularly, we have demonstrated

that probabilistic queries can be evaluated when the region of uncertainty is not finite.

99

4. Creating Probabilistic Databases from Imprecise Time-Series Data

100

Chapter 5
ConDense: Managing Data in
Community-Driven Mobile Geosensor
Networks

It is better to be vaguely right
than exactly wrong.

Carveth Read, 1914

5.1 Introduction

In this chapter, we propose methods for concisely modeling and managing data from

community-driven sensor networks. Research in mobile geosensor networks is rapidly

evolving to investigate the novel paradigm of community-driven sensing. In community-

driven sensing, sensors of various sorts (e.g., multi-sensor units monitoring air quality, cell

phones, thermal watches, thermometers in vehicles, etc.) are carried by the community

(public vehicles, private vehicles, or individuals) during their daily activities, collecting

data about the environment.

At its core, community sensing is a new form of mobile geosensor network [5]. Unique

characteristics of this sensing paradigm lie in its organic and unstructured mobile sensing.

This is analogous to the Web 2.0 model, where the community participates in generating

data. This differs from traditional mobile geosensor networks, where the primary objec-

tive is to monitor the environment through a controlled specification of desired sampling,

mobility characteristics, or through appropriate sensor placement [85, 98].

This chapter investigates different approaches of condensing1 the data generated by

large-scale Community-driven Mobile GeoSensor Networks (CGSN). We present Con-

Dense (Community-driven Sensing of the Environment), a framework for efficiently

managing data generated about the environment. The ConDense framework takes into

1con·dens·ing (v.intr.): To make more concise; abridge or shorten.

101

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

account the unique properties of CGNSs and treats the underlying sensor network as a

disconnected component, which is collecting data using local policies and principles. Al-

though there is significant literature on model-based query processing on mobile sensor

networks, there is a lack of understanding of approaches to determine high quality and

concise models of the phenomenon from CGSNs. The models built using the raw data

are necessary, since raw data generated from sensors is often, “imprecise and erroneous,

hence rarely usable as it is” [40]. The raw data generated needs to be synthesized and

managed for consumption by scientists, applications, and the community.

Regression-based modeling approaches have been proposed in the literature to pro-

vide mathematically meaningful descriptions of the sensed phenomenon. For example,

[40] presents such a model-based view of sensory readings (temperature in rooms). Here,

the applications query only the models, and the models, in turn, get updated as time

progresses and new data arrives. However, most prior work implicitly assumes that the

sensors are relatively homogeneously distributed and/or their sensing behavior can be

tuned, considering the phenomenon being sensed. Typically, trials have used small-scale

deployments (e.g., covering a room or a small field).

Unfortunately, CGSNs cannot be tightly controlled and deployments cover large

areas (e.g., part of a city or state). Hence, it is difficult to produce a homogeneous,

good quality view of the phenomenon. The community-sensing pattern leads to spatio-

temporal irregularities in the sensing; while some areas might be adequately sampled,

some other areas would not be. A challenging question is: how do we efficiently create

quality-controlled models that cover the sensed data, spatially and temporally?

Traditional geo-statistical techniques, like Kriging, [28] can be used for modeling

such phenomenon. Kriging interpolates the best linear unbiased estimate of a value at

an unobserved point in space, based on the weighted linear combination of surrounding

observations, minimizing the approximation error. We found, however, such approaches

incur high computational complexity, and hence suffer from scaling issues with dynamic

temporal variations. On the other extreme, a näıve strategy would be to grid the area

under consideration into equal size grid cells and compute a model per grid cell. This

approach is simple, however, might lead to lower quality models.

5.1.1 Chapter Organization

We begin by describing the sensor deployments in Section 5.2. In Section 5.3 we survey

the related work. We define the problem of concisely modeling community-sensed data

in Section 5.4. We propose non-adaptive and adaptive solutions for this problem in

Section 5.5 and Section 5.6 respectively. Our main proposal, the adaptive k-means algo-

rithm, is described in Section 5.6.2. In Section 5.7, we perform an extensive experimental

evaluation of our approaches on two real-world community-sensed datasets.

102

5.2 Sensors, Deployment, and Data Collection

5.2 Sensors, Deployment, and Data Collection

For experiments and evaluation, we consider two sensor network deployments, namely

OpenSense and Safecast. In this section, we discuss the details of the sensors, which

are a part of these deployments, and the datasets that are collected for experimental

evaluation.

Opensense: The OpenSense [5] project (the main source of funding for this work) cur-

rently has two deployments, in the cities of Lausanne and Zurich in Switzerland. In both

deployments, the sensors are placed on public transport vehicles, like buses or trams,

and additionally include stationary monitoring stations at strategic locations. Figure 5.1

shows the infrastructural overview of the OpenSense deployments. The sensors moni-

tor the concentration of various environmental pollutants like, Carbon Monoxide (CO),

Carbon Dioxide (CO2), Nitrogen Dioxide (NO2), and Ozone (O3). Table 5.1 shows the

important characteristics of the sensors used for monitoring these pollutants.

interpretation and
presentation of data

wireless
fixed nodes

mobile nodes

Internet

GPRS
GPS

Figure 5.1: Community-driven mobile geosensor network infrastructure.

The normal urban concentration shown in Table 5.1 is the permissible concentration

of a pollutant in an urban environment. These concentrations are given by the National

Ambient Air Quality Standards (NAAQS) [1] based in the United States. As will be dis-

cussed in Section 5.4, these normal urban concentration ranges will be used for weighting

the approximation errors made while approximating the pollutant concentration using

a model.

Table 5.1: Characteristics of sensors and pollutants.

Pollutant Type Normal Urban Average
Concentration Power

NO2 electrochemical 0.008 to 0.04 ppm 45 mW
CO electrochemical 0.5 to 5 ppm 0.85 mW
CO2 electrochemical 500 to 1500 ppm 0.5 W
O3 semi-conductor 0.05 to 0.15 ppm -

Radiation event counter 0 to 0.23 µSv/h -

103

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

We use the dataset collected from a mobile station mounted on a tram in Zurich,

Switzerland. This dataset was collected over seven weeks. For our experimental evalu-

ation, we use the Ozone (O3) values. The sensors mounted on the tram follow a local

sampling policy. An important property of this data is that it was collected from a rela-

tively clean environment of Zurich, therefore this dataset does not contain large amount

of variation in the values of O3, NO2, CO2, etc. We denote this dataset as opensense.

Table 5.2: Summary of the Datasets.

opensense safecast
Monitored parameter Ozone Radiation Exposure
Number of data values 110,500 970,000
Sensor accuracy ±2 ppb -∗

Sampling interval 40 sec. 5 sec.

∗Radiation counters have variable accuracy.

Safecast: The Safecast[2] project is a community-driven global sensor network deploy-

ment that was kick-started one week after the Fukushima Daiichi nuclear disaster2 to

monitor the radiation level in eastern Japan. The project enables people to both con-

tribute and freely use the collected data. The project is a community-driven project

with over one hundred volunteers contributing to the project.

The radiation data is collected by using: (a) 35 mobile stations that are attached

to the cars of the volunteers, (b) 50 handheld stations, and (c) 50 static stations. The

measurement unit of radiation is micro Sievert per hour (µSv/h). This unit evaluates

the biological effects of radiation as opposed to other radiation units, which just measure

the absorbed dose of radiation energy.

Since there are a variety of sensors being used for radiation measurements, the col-

lected data is less accurate as compared to the OpenSense deployment. This dataset

was collected over a period of twenty five weeks. We denote this dataset as safecast .

Table 5.2 gives a summary of both the datasets.

5.3 Related Work

In environmental science, rich models are developed to model environmental phenomenon.

For example, air quality models [4] consider three core aspects: pollution sources, trans-

port (wind), and chemical processes. Models are built to predict expected pollution

readings considering terrain characteristics, like, elevation, built-up areas, etc. Appro-

priate geo-statistical interpolation techniques like Kriging [28] or Gaussian plumes [92]

are used to infer spatio-temporal models of the phenomenon. Validation is carried out

using carefully designed sensor layouts, using few high-precision sensors.

While appropriate for visualization or creating rich models from the data, unfortu-

nately, these geo-statistical techniques are unsuitable for modeling the CGSN data in

2http://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster

104

http://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster

5.4 Problem Characterization

a database environment. This is because they take enormous computation time (e.g.,

of the order of hours [4]), and hence cannot be applied repeatedly to model error-prone

and incomplete data streams from a geographical area. Database environments need

to accept incoming sensory data and build models for consumption by queries. To do

so, we need solutions that consider performance parameters like model quality, but also

account for computational efficiency, query response time, down-time, etc.

In database environments, model-based approaches on distributed sensor data [14,

40, 53, 125] decouple the sensory updates from the query infrastructure by creating

models of the underlying data and allowing the queries to view and operate on top

of the models. There are different works that build temporal (per sensor) or spatial

models on well-defined regions (for e.g., using grids [40]). Prior work has also suggested

in-network modeling [14, 53] to reduce communication overhead.

Such approaches have not considered the ramifications of developing models on top of

the CGSN data. Firstly, unlike prior deployments, sensors in a CGSN have autonomous

(buses) or uncontrolled (private cars) mobility. Hence per-sensor models are inappro-

priate, since the phenomenon changes behavior as the sensors move over larger areas

like cities. Secondly, such approaches have problems with the quality of data. Prior

approaches implicitly assume a quasi-uniform distribution of readings for learning the

models (e.g., basis function selection or weight optimization). Community sensed data

is unevenly distributed (skewed), spatially and temporally. Hence, it is challenging to

design methods for quality-controlled model covers that have reasonable performance

overhead.

As such, there are many projects today [3, 17, 33, 86, 130] exploring community-

driven sensing of environmental phenomena. Most of these projects primarily focus on

systems issues like developing inexpensive sensors, calibration, how to provide incentives

to the users, reduce sampling overhead [76]. None of these projects investigate the re-

search question of exploring efficient strategies to create a model-based data abstraction

layer, suitable for database environments.

5.4 Problem Characterization

Before diving into the details, we present foundational definitions and establish the no-

tation used in the rest of the chapter. We start by introducing the ConDense framework,

which is shown as a schematic in Figure 5.2. For simplicity, we decompose this framework

into the following three components:

Sensors: This component is responsible for sensing the environment. We assume that

there are sensors that are moving over a geographical region R (refer Figure 5.2). For

example, R could be a suburb, city, state, or even a larger geographical area. In addition,

we consider sensors that are currently moving in the region R and are sensing the

parameters of interest. In this chapter, we are interested in parameters like pollution

and/or radiation.

105

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

multiple model

M1
M2
M3
M4
M5
M6

R1
R2
R3
R4
R5
R6

cmoving continuous queries

M2 M3

M4
models

M1R1

R2

R4

R3

W1

W2

R1
R2
R3
R4
R5
R6
R7

M1
M2
M3
M4
M5
M6
M7

raw_tuples

model_cover

siyixiwjtii

database

Figure 5.2: Architecture of the ConDense framework.

We assume that the values transmitted by these sensors are continuously updated in

a database table called raw tuples. Each tuple i in the table of raw tuples consists of

the sensor identifier wj , the time ti at which the value was sensed, the GPS co-ordinates

of the sensed value (xi, yi) and the sensor value si. Additionally, we denote a single

raw tuple in the database as bi = (ti, xi, yi, si) , its position as gi = (xi, yi) , and its

positioned value as vi = (xi, yi, si) .

Models: The modeling component provides a multi-model abstraction (i.e., model

cover) over the raw tuples. On the one hand, it is responsible for answering contin-

uous queries registered by the vehicles; and on the other hand, it is responsible for

continuously maintaining the models that are obtained using raw tuples.

Our main objective in this chapter is to build and continuously maintain a model

cover over the region R. Before proceeding further, let us rigorously define a model

cover.

Definition 5.1: Model Cover. A model cover is defined as a set of models M =

{Mo|1 ≤ o ≤ O}, where model Mo models the region Ro ⊆ R respectively, for all

1 ≤ o ≤ O, and ∪Oo=1Ro = R.

In this chapter, additionally, our objective is also to maintain the model cover as

raw tuples are streamed into the system. This task involves adapting the model cover to

the changes of the phenomenon that are observed over the region R. To perform these

tasks, we define a temporal dimension of the model cover. In our framework, a model

cover is computed using the raw tuples in a time window of length H. Using H, we

define a window of raw tuples as Bc = 〈bi|cH ≤ ti ≤ (c + 1)H〉, where c is a positive

integer. Thus, Bc is a set of all the raw tuples bi falling in the interval cH to (c+1)H. In

106

5.4 Problem Characterization

addition, we write gi @ Bc and vi @ Bc to respectively denote the position gi = (xi, yi)

and positioned value vi = (xi, yi, ri) found in the raw tuple bi ∈ Bc.
Our focus is on estimating a model cover over the region R for the values in a time

window Bc. For clarity, let us concretely define the problem of model cover estimation:

Problem 5.1: Model Cover Estimation. Given the region R and the window of

raw tuples Bc, compute the model cover M, such that:

• It partitions/segments R into O regions R1, R2, . . . , RO covering the region R,

• It estimates models M1,M2, . . . ,MO, such that each model corresponds to the

region R1, R2, . . . , RO respectively.

We propose various solutions for solving Problem 5.1. Broadly, the proposed solu-

tions are of two types: (a) non-adaptive solutions that perform the partitioning and

estimation using static policies, without iteratively improving the partitioning; and (b)

adaptive solutions that perform the partitioning and estimation steps of Problem 5.1,

using data characteristics and user-defined quality criteria (e.g., approximation error).

In this chapter, we investigate two non-adaptive techniques, then, based on our obser-

vations, we propose two time- and space-efficient adaptive techniques that are able to

accurately estimate the model cover M over a large geographical area.

Queries: To make our framework schematic complete, we show the query processing

component in Figure 5.2. The queries consists of vehicles that register moving continuous

queries. An example of such a query registered by a vehicle could be:

Query 5.1: Moving Continuous Query. Given the position g = (x, y) of a

vehicle, continuously return the concentration of NO2 around it at an interval of 10

seconds.

These queries can be answered directly using the model coverM [24, 40, 110]. Note

that although queries like Query 5.1 can be directly answered using the table raw tuples,

it is neither efficient nor accurate, since: (a) the number of raw tuples could be consider-

ably large as compared to the number of models, and (b) the models minimize the errors

caused during communication or due to the inherent imprecision of the sensors [24, 116].

Note that query processing is not the primary focus of this chapter; nonetheless, this

component is shown in Figure 5.2 for presenting a complete picture of the ConDense

framework.

Error Metric: The last foundational aspect is the error metric that we use in this

chapter. Consider a model cover estimation method that partitions the window Bc into

regions Ro where 1 ≤ o ≤ O, such that Boc denotes the set of raw tuples bi that are

in region Ro. Suppose the model Mo approximates the value si with s̄i then the error

metric is defined as:

uo =
100

|Boc |
∑
vi@Boc

uo(vi), uo(vi) =
|si − s̄i|

max(conc)−min(conc)
, (5.1)

107

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

where max(conc) and min(conc) are the upper and lower bounds of the normal con-

centration of the measured pollutant found in the urban environment. For example, if

we are measuring Ozone, then the normal concentration of Ozone in urban environment

is max(conc) = 0.15 ppm and min(conc) = 0.05 ppm (refer Table 5.1). We call the

error metric in Eq. (5.1) the normal percentage error3. The normal percentage error

compares the absolute approximation error with the normal value of a pollutant in the

environment. Thus, the normal percentage error, intuitively, captures the impact of

erroneous model approximations s̄i on the quality of a model cover.

5.5 Non-Adaptive Methods for Model Cover Estimation

In this section we present the non-adaptive model cover estimation methods. Specifically,

we investigate two strategies: first, a naive strategy in which the partitioning of R is

performed by a rectangular division, second, we discuss a largely popular technique from

the geo-statistics literature called Kriging. We observe that the non-adaptive methods

are either computational expensive or inaccurate. In addition, as will be seen later,

storing the model cover generated by these methods is also considerably expensive.

5.5.1 Grid-Based Model Cover

The Grid-based (GRIB) model cover estimation method is the most näıve strategy for

estimating a model cover. This approach involves overlaying a grid over the region R
and then estimating a linear regression model for individual grid elements. It simply

divides the region R into a grid of a fixed size
√
O ×

√
O. Then each grid element

forms the region Ro from Definition 5.1. Now the set of regions R1, R2, . . . , RO induce a

partition on the raw tuples in the window Bc. Let us denote the set of raw tuples of the

window Bc contained in the region Ro by Boc . Now we can estimate a linear regression

model Mo over the values Boc as:

si = s̄i + ei, s̄i = α0 + α1xi + α2yi. (5.2)

Here, we estimate the parameters (α0, α1, α2) by performing a least-squares fitting that

minimizes the sum of e2
i . The interpolation of the value at a position g′ = (x′, y′) is

performed as:

ŝ(g′) = α0 + α1x
′ + α2y

′. (5.3)

The main advantage of the GRIB model cover estimation method is that it is simple

to implement. This simplicity comes from the static nature of the partitioning scheme;

the partitioning scheme does not consider the characteristics of the underlying data.

In the GRIB method, the granularity of the partitioning does not evolve temporally.

Especially, for large geographical areas there could be a need to dynamically change

3We use normal percentage error and approximation error interchangeably.

108

5.6 Adaptive Methods for Model Cover Estimation

the granularity and size of the partitioning based on the nature of the underlying phe-

nomenon. For example, during peak hours of traffic, pollution is higher in downtown

areas as compared to residential areas, and therefore we need a partitioning scheme that

adapts to such change in behavior.

5.5.2 Kriging-Based Model Cover

The Kriging-based (KRIB) model cover estimation method is an approach that involves

the use of Kriging [28]. Kriging is a well-known geo-statistical method for producing

highly accurate models of data. In comparison to other interpolation approaches, Kriging

has the advantage that it can also assign a confidence value to the interpolated values.

These advantages (high accuracy and confidence values) naturally invite additional cost

for creating and querying a Kriging-based model cover.

Kriging interpolates the value at position g′ = (x′, y′) by summing the weighted

known values si as follows:

ŝ(g′) =

|Bc|∑
i=1

λisi, Υ(gi, g
′) =

|Bc|∑
j=1

λiΥ(gi, gj), (5.4)

where λi are the weights, such that
∑|Bc|

i=1 λi = 1 and Υ(gi, gj) is the semi-variogram of

the points gi and gj . λi are evaluated by solving the set of equations for Υ(gi, g
′) where

1 ≤ (i, j) ≤ |Bc|. Additional details regarding Kriging can be found in [28].

Query processing time can be reduced by pre-computing the inverse matrix formed

by Υ(gi, gj). Since Υ(gi, gj) is of size |Bc|×|Bc|, storing the inverse of Υ(gi, gj) requires a

large amount of memory. In Section 5.7, we find that even with pre-computation of the

inverse of Υ(gi, gj), the KRIB model cover estimation method is not comparable with

other model cover estimation approaches in answering point (interpolation) queries.

The Kriging method was introduced to efficiently approximate values when the sen-

sors are stationary. But this method is not well suited for moving sensors, since in a

mobile sensing environment the values along hotspots are excessively dense and should

be condensed to reduce redundant sampling. Secondly, Kriging tries to fit a function

to all the sensed values without eliminating redundant information, and, therefore has

large overhead in terms of storage and computational complexity.

5.6 Adaptive Methods for Model Cover Estimation

In contrast to the non-adaptive techniques discussed in Section 5.5, the methods pro-

posed in this section exploit the characteristics of the underlying data for obtaining a

better partitioning of R. In Section 5.7, we thoroughly compare the adaptive and non-

adaptive methods, and experimentally establish the superiority of the adaptive tech-

niques. Our adaptive techniques are based on unsupervised clustering algorithms. They

intelligently partition R into regions, such that the models are always able to approxi-

mate the data with a certain error guarantee.

109

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

5.6.1 Adaptive DBSCAN

The adaptive DBSCAN method is a bottom-up clustering method, based on the well-

known DBSCAN algorithm proposed in [45]. We first understand the reasons for the

unsuitability of the DBSCAN algorithm for our problem; followed by the description of

the adaptive DBSCAN method.

DBSCAN: Given a window of raw tuples Bc, DBSCAN defines the density of gi @ Bc,
denoted as NEps(gi), as the number of points that are present in a radius Eps around

gi. gi @ Bc is called a core point if NEps(gi) is greater than MinPts, where MinPts

is a user-defined constant. All the points around gi present in a radius Eps are called

directly density-reachable from gi.

A position gj is density-reachable from gi if there is a chain (g∗)1, . . . , (g∗)l, where

(g∗)1 = gi and (g∗)l = gj , such that (g∗)2 is directly density-reachable from (g∗)1, (g∗)3

from (g∗)2, so on until (g∗)l. Two positions gi and gj are density-connected if they are

both density-reachable from a core point gc. Now, we define Boc as a set of raw tuples,

where gi @ Boc is density-connected with gj @ Boc for all i 6= j.

If a position gi is not density-connected with any other points in Bc, it is considered

as noise and we set c(i) = NOISE, where c(i) : i 7→ o represents the cluster membership

of a raw tuple bi. By randomly selecting unclustered points (i.e., points where c(i) =

UNCLASSIFIED) and clustering all density-reachable tuples into the same region Boc
we can divide the set Bc into O regions, where 0 ≤ O ≤ (|Bc|/MinPts).

DBSCAN clusters the raw tuples only based on gi and does not consider the sensor

values si. Thus, it is possible that DBSCAN produces regions that cannot be modeled

using polynomials having lower number of coefficients. To rectify this situation, we

modify the DBSCAN algorithm, such that it produces regions that can be modeled

using lower number of coefficients. We call this modified algorithm Adaptive DBSCAN.

Adaptive DBSCAN: In the Adaptive DBSCAN (Ad-DBS) method we continuously

maintain a linear regression model Mo (refer Eq. (5.2)) for each region Ro. In addition,

we provide the following modified definition for density-reachable and density-connected:

Definition 5.2: Model Density-Reachable. A positioned value vi is model

density-reachable from vj @ Boc , if position gi is density-reachable from gj and uo(vj) <

τr, where τr is a user-defined quality threshold, uo is the error metric and cH ≤ ti, tj ≤
(c+ 1)H.

Definition 5.3: Model Density-Connected. Positioned value vi and vj are

model density-connected if vi and vj are model density-reachable from vl @ Boc .

Algorithm 5.1 performs the partitioning of Bc, such that each positioned value vi @ Boc
is model density-connected to vj @ Boc for all i 6= j. The function checkErrorAndAdd

temporarily adds vj to Boc and re-computes the model Mo. If uo(vj) > τr, then vj is not

model density-connected to the other tuples in Boc , therefore it is not permanently added

110

5.6 Adaptive Methods for Model Cover Estimation

Algorithm 5.1 The adaptive DBSCAN algorithm.
Input: Window Bc, error threshold τr, Eps, MinPts.
Output: Number of regions O, regions Ro and a linear regression model Mo for each region

respectively where o = 1, . . . , O.
1: o← 1
2: for all vi @ Bc do
3: if ci = UNCLASSIFIED then
4: if expandCluster(vi,o) then
5: o← o+ 1

6: procedure ExpandCluster(vi,o) : boolean
7: seeds← regionSearch(vi, Eps) \ vi
8: if |seeds| < MinPts then
9: ci ← NOISE

10: return false
11: else
12: Add(Mo,vi)
13: for all vj ∈ seeds do
14: if checkErrorAndAdd(Mo,vj) 6= success then
15: seeds← seeds \ vj
16: while |seeds| 6= 0 do
17: vj ← removeOneV alue(seeds)
18: results← regionSearch(vj , Eps) \ vj
19: if |results| > MinPts then
20: for all vf ∈ results do
21: if cf = UNCLASSIFIED then
22: seeds← seeds ∪ cf
23: if cf ∈ {NOISE,UNCLASSIFIED} then checkErrorAn-

dAdd(Mo,vf)

24: return true

to Boc . In Step 7, regionSearch returns the points in a radius Eps around vi, and in

Step 12, Add unconditionally adds vi to Mo.

Interpolation using Ad-DBS: Because of the new definitions of model density-reachable

and density-connected it may happen that the regions Ro produced by the Ad-DBS

method overlap with each other. Therefore, for interpolating the value ŝ(g′) at position

(x′, y′) it is unclear whether one or more regions Ro should be used. To solve this prob-

lem, we introduce a weighting scheme (refer Figure 5.3) that produces the interpolated

value ŝ(g′) by assigning weighting functions Ko(g
′) to the regions Ro, such that:

ŝ(g′) =
O∑
o=1

κo(g
′)ŝo(g

′), (5.5)

where κo(g
′) = Ko(g′)∑O

h=1Kh(g′)
and ŝo(g

′) is the interpolated value using model Mo.

Since the normal percentage error metric introduced in Eq. (5.1) does not consider

overlapping regions, we introduce the following modified version of the normal percentage

error for analyzing this weighting scheme of the Ad-DBS method:

ûo =
100

|Boc |
∑
vi@Boc

ûo(vi), ûo(vi) =
|si − ŝi(gi)|

max(conc)−min(conc)
. (5.6)

111

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

x

s(b) R2
R1

x

Ko(c)

x

κo(d)

x

y(a) ∈ R1

∈ R2

R2

R1

Figure 5.3: Weighting scheme for Ad-DBS. (a) shaded area shows an example of two
overlapping regions, (b) shows the regions with the corresponding sensor values s, (c)
and (d) present the weighting functions Ko and κo used for interpolation.

Notably, the difference between uo and ûo characterizes the error introduced by the

weighting scheme used in the Ad-DBS method.

5.6.2 Adaptive K-Means

In this section we start by discussing the k-means clustering method (a top-down clus-

tering approach), then briefly discuss the reasons why the vanilla k-means clustering

method cannot be used for obtaining a model cover with a user-defined approximation

error threshold. Then we propose the adaptive k-means model cover estimation method

that overcomes the shortcomings of the the k-means clustering method and efficiently

produces an highly accurate model cover.

K-means Clustering: Given the raw tuples in a window Bc and the number of clus-

ters O, the objective of the k-means clustering method is to divide the raw tuples in

the window Bc into k sets B1
c ,B2

c , . . . ,BOc such that the following objective function is

minimized:

arg min
µ̂o

O∑
o=1

∑
vj@Boc

||vj − µ̂o||, (5.7)

where µ̂o = (xo, yo, ro) is known as the centroid of the partition Boc . Then the region

Ro is the region that surrounds points in Boc , and the model cover can be obtained by

computing a regression model Mo for each Boc .
The k-means clustering method does not achieve our objective of partitioning the

raw values Bc, since the euclidean distance used by the k-means method may compensate

a large difference in the sensor value s with a small difference in the position (x, y). On

the contrary, our objective is that values in a particular region Ro should be close in the

position and in the sensor value. Moreover, another requirement is that the raw tuples

Bc should be approximated within a user-defined normal percentage error threshold τn.

For achieving these objectives we propose an adaptive variant of the k-means clustering

method.

Adaptive K-means: The algorithm used by adaptive k-means (Ad-KMN) method is

shown in Algorithm 5.2. Figure 5.4 shows an example of the Ad-KMN method on toy

data.

112

5.6 Adaptive Methods for Model Cover Estimation

Algorithm 5.2 The adaptive k-means model cover method.
Input: Window Bc, error threshold τn.
Output: Number of regions O, regions Ro and a linear regression model Mo for each region

respectively where o = 1, . . . , O.
1: newCluster ← true
2: clusterChanged← true
3: µ1 ← rand(Bc) . Choose a random position as the initial cluster center
4: while newCluster do
5: newCluster ← false
6: while clusterChanged do
7: clusterChanged← false
8: for o in 1 to O do
9: µ∗o ← recenter(Boc) . Re-compute the cluster center of region Ro

10: if Boc 6= Bo∗c then . Re-compute Boc by considering µ∗o. Lets denote it as Bo∗c
11: clusterChanged← true

12: µo ← µ∗o
13: O∗ ← O
14: for o in 1 to O do
15: Mo, uo, µ

•
o ← estimateModel(Boc) . Find the point µ•o producing worst error

16: if uo > τn then
17: O∗ ← O∗ + 1, µO∗ ← µ•o
18: newCluster ← true
19: O ← O∗

Assume that before executing the Ad-KMN method, we compute two k-means centers

µ1 and µ2 over all the positions gi @ Bc. A snapshot after this step is shown in Fig. 5.4(a).

Next, we check whether the errors u1 and u2 are within a user-defined threshold τn. The

principle here is to introduce an additional cluster centroid µ•o for each region Ri where

uo > τn, by choosing the gi that produced the worst error for Ri. Suppose, both R1 and

R2 of Fig. 5.4(a) violate the error condition (i.e., u1 > τn and u2 > τn), then we initialize

two new centroids µ•1 and µ•2 and we re-adjust the four centroids (µ1, µ2, µ3 = µ•1 and

µ4 = µ•2), by executing the standard k-means algorithm on the four centroids. The result

of this step is shown in Fig. 5.4(b).

As will be shown in Section 5.7, the Ad-KMN method exhibits fast convergence

R1

R2
R2R3

R4R1

- centroids from previous iteration- positions with worst error

road

centroid

vi

(b)(a)

Figure 5.4: Ad-KMN iterations on toy data. (a) the centroids of regions R1 and R2 are
computed, after which models M1 and M2 are estimated. (b) since error u1 > τn and
u2 > τn, we add two new clusters R3 and R4 using k-means clustering algorithm.

113

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

characteristics. In addition, the Ad-KMN method also requires lower storage space and

can produce accurate model covers.

5.6.3 Efficiently Maintaining the Model Cover

Furthermore, we are interested in maintaining the model cover as new windows Bc are

streamed into ConDense. Specifically, given several windows of raw values Bc where

c = (1, 2, . . . , C), we are interested in continuously maintaining the model cover while

minimizing the number of additional computations required for model cover mainte-

nance.

We start by estimating the cluster centroids µo over a training window BD of size

D � H using the adaptive method. The adaptive method returns the regions Ro and

models Mo where o = (1, . . . , O). Now, assume that the first window of new raw values

Bc is available. Bc is first partitioned according to the cluster centers µo, such that Bo1
contains the raw tuples where ||gi − µo|| is minimal.

Next, we compute the error metric uo for Boc . If uo is greater than a user-defined

threshold τr, then we invalidate the model Mo and re-estimate its coefficients. We

perform a similar test for all the other Boc . We use flops4 to measure the cost of updating

the model Mo. Suppose the cost of updating the window Bc be denoted as C(Bc), then

it can be computed as follows [52]:

C(Bc) =
∑

∀o s.t. uo>τr

2 · |Mo|2
(
|Boc | −

|Mo|
3

)
, (5.8)

where |Mo| is the number of coefficients to estimate for the model Mo. In our case,

|Mo| = 3 since Mo has three coefficients (α0, α1, α2). The better the adaptive method

partitions the region R, the less would be the cost of maintaining the model cover,

since the adaptive method would have found areas having similar data distributions.

Therefore, the raw tuples that are newly streamed into the system in a reasonably

short interval do not require a model update, resulting in potentially dramatic saving of

computation required for model cover maintenance.

As we will show in Section 5.7, such a strategy of adaptively maintaining the model

cover is effective and can yield up to approximately 3x less number of flops (for Ad-KMN)

as compared to using the same strategy over a GRIB model cover, thereby establishing

the advantages of using an adaptive method for model cover estimation.

5.7 Experimental Evaluation

In this section we perform extensive experimental evaluation of the various model cover

estimation approaches. In Section 5.7.1 we compare the model cover estimation ap-

proaches with respect to the normal percentage error. In Section 5.7.2, we compare

the efficiency of the adaptive and non-adaptive techniques for model cover estimation in

4A flop represents either the addition or the multiplication of two floating point numbers.

114

5.7 Experimental Evaluation

terms of the storage space and estimation time. Lastly, Section 5.7.3 compares adaptive

and non-adaptive methods with respect to their temporal model cover validity character-

istics. For all the experiments we use the opensense and the safecast datasets described

in Section 5.2.

5.7.1 Error Analysis

We start by analyzing the different model cover estimation approaches using the normal

percentage error defined in Eq. (5.1). Figure 5.5 shows the error as the number of

regions are increased for the GRIB, Ad-KMN, and Ad-DBS methods. The process

of adding more regions terminates when the error is less than the user-defined error

threshold τn = 1% or adding new regions does not significantly reduce the error. For

this experiment the size of the window Bc is set to 6 hours. Clearly, for all the three

approaches the percentage normal error decreases with increase in the number of regions.

Specifically, for safecast the Ad-KMN method delivers an improvement of 12.5 times

less error as compared to the GRIB method for O = 1000. In contrast, for opensense,

the Ad-KMN method does not show significant improvements (2.1 times less error for

O = 120) over the GRIB method. This is because, as described earlier, opensense data

does not exhibit high spatial-temporal variation. Therefore all the methods are able to

achieve lower error. In general, the adaptive methods have lower number of regions as

compared to the non-adaptive methods. For example, for safecast , the GRIB method

has 1296 regions as compared to the 981 regions of the Ad-KMN method at convergence

(refer Figure 5.5).

Additionally, to substantiate the results in Figure 5.5, we plot the error for 15 ran-

domly chosen windows Bc for the Ad-KMN and GRIB methods where the maximum

number of regions is O = 50 and is constant. Similar observations to Figure 5.5 could

be made in Figure 5.6. For safecast the improvement obtained by using the Ad-KMN

 0

 5

 10

 15

 20

 50 100 150 200 250 300

e
rr

o
r

(%
)

number of regions (O)

GRIB
Ad-DBS
unweighted Ad-DBS
Ad-KMN

(a) opensense

 0

 20

 40

 60

 80

 0 350 700 1050 1400

e
rr

o
r

(%
)

number of regions (O)

GRIB
Ad-DBS
unweighted Ad-DBS
Ad-KMN

(b) safecast

Figure 5.5: Comparing the decrease in percentage error as the number of regions increase.
Unweighted Ad-DBS denotes Ad-DBS without the weighting scheme of Eq. (5.5). Note
the different ranges on the y-axis.

115

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

method as compared to the GRIB method is significantly higher than opensense. In Fig-

ure 5.6, we do not show the result for the Ad-DBS method, since for the Ad-DBS method,

it is impossible to control the number of regions that will be created, thus leading to

an unfair comparison. These experiments clearly establish that adaptive methods, like

Ad-KMN, can dramatically reduce the error as compared to the non-adaptive methods.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

e
rr

o
r

(%
)

window ID (c)

GRIB

Ad-KMN

(a) opensense

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

e
rr

o
r

(%
)

window ID (c)

GRIB

Ad-KMN

(b) safecast

Figure 5.6: Comparing the percentage normal error for Ad-KMN and GRIB over ran-
domly chosen windows Bc. Note the different ranges on the y-axis.

Note that Figure 5.5 does not show the KRIB method, since the KRIB method

always produces zero error due to the fact that Kriging always finds a function that passes

perfectly through the given points. The zero error of Kriging comes at a cost: estimating

and storing a Kriging model is substantially inefficient (refer Section 5.7.2) as compared

to the adaptive methods, and therefore is not suitable for a database environment.

In Figure 5.5 the Ad-DBS method produces higher error as compared to the Ad-

KMN method. The reason for such behavior is that, the increase in error due to the

over-simplified weighting scheme of the Ad-DBS method (see Eq. (5.5)), is more as

compared to the decrease in error obtained by adding more regions; thus leading to an

overall error increase. To experimentally establish this observation, in Figure 5.5 we

also show the normal percentage error obtained by the Ad-DBS method without the

weighting scheme of Eq. (5.5). This shows that an appropriate choice of the weighting

scheme is important for the Ad-DBS method.

5.7.2 Comparing Efficiency of Model Cover Estimation Methods

Next, we compare the time- and space-efficiency of the model cover estimation methods.

Fig. 5.7(a) compares the average time required for model cover estimation using different

methods. Fig. 5.7(b) compares the average time required for processing a point query.

Here a point query is defined as a query that requests for the interpolated value at a

particular position g = (x, y). The average point query processing time is computed

over 4000 point queries in the region R.

116

5.7 Experimental Evaluation

 1

 100

 10000

 1e+06

 900 1800 2700 3600 4500

ti
m

e
 (

m
il

li
s

e
c

o
n

d
s

)

no. of raw values

KRIB

GRIB

Ad-DBS

Ad-KMN

(a) model cover estimation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 900 1800 2700 3600 4500

ti
m

e
 (

m
il

li
s

e
c

o
n

d
s

)

no. of raw values

KRIB

GRIB

Ad-DBS

Ad-KMN

(b) query processing

Figure 5.7: Comparing efficiency of (a) model cover estimation and (b) processing a
point query (interpolation) on opensense.

On the one hand, the most time-efficient method for model cover estimation is the

GRIB method, on the other hand it is significantly inefficient in terms of space (refer

Figure 5.8). Moreover, the Ad-KMN method requires 1160 times less memory as com-

pared to the GRIB method, and can be estimated by spending on an average 1.5 seconds

or 80 times more time than the GRIB method.

Obviously, the KRIB method is significantly time- and space-inefficient as compared

to the other model cover estimation methods, demonstrating that the KRIB method is

clearly not usable in a database environment. Lastly, the Ad-DBS method can be stored

using slightly less memory, but exhibits less efficiency in processing a point query as

compared to the Ad-KMN method, and as seen in Section 5.7.1 it produces high normal

percentage error.

 0.1

 1

 10

 100

 1000

 10000

KRIB GRIB Ad-DBS Ad-KMN

s
to

ra
g

e
 (

k
il
o

b
y
te

s
)

(a) opensense

 1

 10

 100

 1000

 10000

 100000

KRIB GRIB Ad-DBS Ad-KMN

s
to

ra
g

e
 (

k
il

o
b

y
te

s
)

(b) safecast

Figure 5.8: Comparing the memory requirement of all the model cover estimation meth-
ods.

117

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

5.7.3 Analyzing Temporal Validity of Model Cover

We perform the last set of experiments on opensense. These experiments are performed

to compare the temporal validity characteristics between adaptive and non-adaptive

model cover estimation methods. Particularly, we zone into comparing temporal behav-

ior of the GRIB and the Ad-KMN methods.

We start by choosing a region R′ ⊂ R. From the raw tuples in R′, we choose a

training window BD of size 6 hours and 88 testing windows Bc of size 30 minutes. Note

that BD and Bc are consecutive in time. Then we choose the model retain threshold (τr)

as 1% and apply the algorithm for maintaining the model cover from Section 5.6.3 and

compute the cost C(Bc) for each window Bc. To substantiate our experiment, we choose

three different values of O for the Ad-KMN method and adjust the GRIB method so

that the number of used grid cells by the GRIB method are always equal to that of the

Ad-KMN method.

Figure 5.9 shows the cumulative number of flops required to maintain the model

cover. Admittedly, the Ad-KMN method requires a factor 2.7 less number of flops as

compared to the GRIB method. In conclusion, the regions Ro that are produced by

the Ad-KMN method are valid for a longer time, thus require less number of flops. For

example, the Ad-KMN method requires zero flops for the first 34 windows as opposed

to the 1874 flops required by the GRIB method.

 0

 700

 1400

 2100

 2800

 3500

 0 18 36 54 72 90

n
o

.
o

f
fl

o
p

s
 (

c
u

m
u

la
ti

v
e

)

window ID (c)

O=20 O=32 O=50

(a) Ad-KMN

 0

 700

 1400

 2100

 2800

 3500

 0 18 36 54 72 90

n
o

.
o

f
fl

o
p

s
 (

c
u

m
u

la
ti

v
e

)

window ID (c)

O=20 O=32 O=50

(b) GRIB

Figure 5.9: Comparing temporal validity of the model cover produced by (a) Ad-KMN
and (b) GRIB on opensense.

5.8 Conclusion

In this chapter, we presented non-adaptive and adaptive techniques for managing data

produced by a CGSN. Our experiments showed that the adaptive model cover estimation

methods perform significantly better that the non-adaptive methods. The non-adaptive

methods are either inaccurate or are memory inefficient. Overall, the adaptive k-means

method exhibits acceptable tradeoffs between the proposed approaches. Computing the

118

5.8 Conclusion

model cover using the adaptive k-means (Ad-KMN) algorithm takes slightly more time

as compared to the GRIB method, but it dramatically reduces the number of models

and, therefore, the memory required to store these models.

119

5. ConDense: Managing Data in Community-Driven Mobile Geosensor Networks

120

Chapter 6
Conclusion and Future Directions

In everything... uniformity is
undesirable. Leaving something
unfinished makes it interesting,
and gives one the feeling that
there is room for growth... Even
when building the imperial
palace, they always leave one
place unfinished.

Japanese Essays in Idleness,
14th Century

6.1 Conclusion

In this thesis we proposed several methods for querying and managing time-series data.

We proposed in-depth solutions for several problems regarding time-series data. Par-

ticularly, we focused on computing statistical measures, generating useful attributes for

uncertain data, and managing and querying participatory sensing data.

For the first time, we defined and proposed the notion of affine relationships for com-

puting and querying several statistical measures using an unified approach. We proposed

the affine clustering algorithm for clustering the time-series data, such that high-quality

affine relationships could be found. We proposed the SYMEX and SYMEX+ algorithms

that are capable of computing affine relationships in linear time. We demonstrated that

the SCAPE index structure can easily index all the statistical measures and produce or-

ders of magnitude improvement in efficiency for processing measure threshold and range

queries, as compared to the naive methods and methods proposed in the literature for

this problem.

We recognized that there is a lack of methods for generating probabilistic databases.

Moreover, a large variety of applications that are built on (imprecise) time series are

still incapable of enjoying the benefits from well-established tools for processing prob-

abilistic databases. As a solution to this problem, we proposed a novel and generic

121

6. Conclusion and Future Directions

solution for creating probabilistic databases from imprecise time-series data. Our pro-

posal included two novel components: the dynamic density metrics that effectively infer

time-dependent probability distributions for time series and the Ω–View builder that uses

the inferred distributions for creating probabilistic databases. We also introduced the σ–

cache that enables efficient creation of probabilistic databases while obeying user-defined

constraints. Comprehensive experiments highlight the effectiveness of our approach.

Lastly, we proposed methods for managing and querying community-sensed data.

We proposed non-adaptive and adaptive techniques for managing data produced by a

CGSN. Our experiments established that the adaptive model cover estimation methods,

which use dynamic partitioning approaches, demonstrate promising performance gains

as compared to the non-adaptive methods. Particularly promising was the adaptive k-

means (Ad-KMN) model cover estimation method, since it showed the best model cover

quality, considering other parameters, like storage, computational cost, and temporal

validity.

6.2 Future Directions

We recognize that the work described in this thesis can be strengthened in a number of

ways and we suggest the following as future work.

6.2.1 AFFINITY

We are planning to extend the Affinity framework (Chapter 3) in the following direc-

tions:

• Pruning affine relationships: It is not mandatory that we process and store

all the affine relationships. We can, if required, prune the unnecessary affine re-

lationships on the basis of domain knowledge, query requirements, low correlation

between a sequence pair, etc. Such pruning techniques will be considered in subse-

quent works. On the contrary, here we consider all the affine relationships returned

by the SYMEX algorithm, for clearly demonstrating performance and scalability

results.

• Dynamic affine relationships: Affine relationships can change dynamically,

especially as new data is streamed into the system. Handling dynamic affine rela-

tionships requires: (i) a sequentially updating version of the AFCLST algorithm

[15], and (ii) updating the changed affine relationships in the SCAPE index. Task

(ii) is similar to a standard index update operation in a DBMS. Supporting dy-

namic affine relationships is an interesting direction that we plan to explore in our

subsequent works.

• Distributed query processing: Many datasets are large and cannot be stored

on a single computing device. Therefore, researching techniques for distributing

122

6.2 Future Directions

the SCAPE index, and for performing affine clustering in a distributed setting

becomes important. Thus, extending the proposed techniques to a distributed

environment is an open problem.

6.2.2 Creating Probabilistic Databases

In Chapter 4 we proposed a framework for efficiently creating probabilistic databases.

There are many issues that remain to be researched, below we briefly discuss some future

directions:

• Creating multivariate probabilistic databases: In Chapter 4, we assumed

that the data obtained from the time-series data sources is univariate. Thus, in the

current framework, multivariate time-series data would be treated as a collection

of univariate time-series data. This assumption ignores the correlation that exists

in many real-world multivariate time-series datasets.

The problem of representing and modeling correlation is important and has numer-

ous practical applications. But, this problem is extremely challenging especially

for high-dimensional data. In many cases, however, the data that is encountered is

not high-dimensional, for example, GPS trajectories are only 2-dimensional. Tak-

ing this into consideration, we have proposed solutions for creating probabilistic

databases over low-dimensional data in [65]. Our future works will focus on the

general problem, along with efficient caching mechanisms (like, the σ-cache) for

multi-dimensional data.

• Processing probabilistic queries: A standard method proposed in existing

literature for processing probabilistic queries does not assume a particular form

of distribution for the data generated by the imprecise time-series data sources.

However, as briefly discussed in Appendix 4.A, in certain cases making such a

distributional assumption may dramatically increase the efficiency of processing

probabilistic queries. We plan to further investigate this direction for proposing

efficient query processing methods.

• Caching multivariate Gaussian distributions: In Section 4.6.1 we introduced

the σ–cache for caching Gaussian distributions. We also derived its parameters

given user-defined accuracy and memory constraints. The current version of the

σ–cache is designed for univariate Gaussian distributions. We plan to extend these

ideas to a multivariate version of the cache, at the same time, deriving useful and

provable guarantees.

123

6. Conclusion and Future Directions

6.2.3 ConDense

In relation to the ConDense framework (Chapter 5), we propose the following as future

work:

• Complete re-learn of model cover: In our approach for handling temporal

evolution of the model cover (refer Section 5.6.3), we have not considered a com-

plete re-learn of the model cover if the cost C(Bc) increases dramatically. On the

one hand, re-learning could reduce the cost C(Bc) for future windows Bc, but on

the other hand, could incur down-time for the system. Another alternative to

complete re-learn is to develop techniques that merge/split the models, such that

a reasonable model cover is always maintained. We plan to explore the trade-off

between complete re-learn and merge/split in our future works.

• Continuous query processing: The ConDense framework describes the con-

tinuous query processing component, and evaluates query costs with respect to

model cover techniques. As a next natural step, we plan to investigate efficient

and accurate query processing solutions. This, we believe, will open-up interesting

research issues like, query optimization, response caching, model cover indexing,

etc.

• Utility-driven sampling: If we relax the autonomous sensing assumption in the

community sensing paradigm, then there is an issue of utility-driven sampling.

Here, the underlying phenomenon is sampled only as much as required by a given

set of continuous queries. The utility is defined by the queries based on the accuracy

guarantee requirements provided by the user.

• Online adaptive k-means: Finally, the current adaptive k-means algorithm, as

described in Section 5.6.2, operates on a batch of tuples Bc and produces a model

cover. The model cover estimate can only be updated after processing the entire

window Bc. Changing the adaptive k-means algorithm, such that it can update the

model cover even after a single tuple is streamed into the system is an interesting

direction. We plan to explore this direction in our subsequent works.

124

List of Symbols

s̄i Approximation of the time-series data value si, page 107

Pl(Rl) Cumulative probability distribution function of Rl at time l, page 78

Pl(Rl; θ̂l) Cumulative probability distribution of Rl with parameters θ̂l, page 87

δ User-defined threshold δ ∈ R, page 18

D(S) Derived measure of the matrix S, page 48

ε Approximation error bound, page 32

ŝl,E(Rl) Expected true value at time l, page 78

C(S) Dispersion measure of the matrix S, page 48

κ Scaling factor of the ARMA-GARCH and Kalman-GARCH dynamic density

metrics, page 82

Λl A set of probabilities {o1, . . . , oU}, page 78

dxe A smallest integer value that is not smaller than x, page 78

L(S) Location measure of the matrix S, page 48

Op Pivot pair matrix corresponding to pivot pair p, page 55

S Data matrix S = [s1, s2, . . . , sn] ∈ Rm×n, page 6

Se Sequence pair matrix corresponding to sequence pair e, page 48

N (ŝl, σ̂
2
l) Gaussian density function at time l with mean ŝ1 and variance σ̂2

1, page 81

N (µ, σ2) Gaussian density function with mean µ and variance σ2, page 78

max(sj) Upper bound of an uncertainty range, page 31

max(sl) Upper bound computed by the ARMA-GARCH and Kalman-GARCH algo-

rithms, page 82

125

List of Symbols

C(Bc) Cost of updating the model Mo for window Bc, page 114

Bj(W) Confidence in the time-series data source wj , page 17

c(v) Cluster assignment function that returns the cluster identifier for the entity

v, page 54

F(X,Y) Least significant Frobenius distance between matrices X and Y, page 52

min(sj) Lower bound of an uncertainty range, page 31

min(sl) Lower bound computed by the ARMA-GARCH and Kalman-GARCH algo-

rithms, page 82

µo, µ
•
o Current and newly added cluster centroids of the region Ro, page 113

ν2(v) Sample variance of the vector v, page 84

ν2
l Sample variance in the sliding window sHl−1, page 80

Ω A set of ranges {ω1, . . . , ωU} for creating probabilistic database, page 78

Pl(Rl) Probability density function of Rl at time l, page 78

ψ Queried series identifiers of a measure computation query, page 49

ρ(S) Correlation coefficient matrix of the matrix S, page 48

AR Response of a measure range query, page 49

AT Response of a measure threshold query, page 49

Bc cth window of size H consisting of raw tuples 〈bi|cH ≤ ti ≤ (c+1)H〉, page 107

Boc The set of raw tuples bi that are in region Ro, page 107

E Time stamps in feasible regions, page 29

Fi−1 Information available until time i− 1., page 81

Gk kth segment in a data stream containing tuples ((tik−1+1, sik−1+1), . . . , (tik , sik)),

page 32

I,P Series identifier and sequence pair sets, page 48

M Model cover for region R consisting of models M1, . . . ,MO, page 106

R Geographical region composed of sub-regions R1, . . . , RO, page 105

W Time-series database consisting of sources wj , where j = (1, . . . , n), page 6

Υ(gi, gj) The semi-variogram of the positions gi and gj , page 109

126

List of Symbols

ϕe Normalizer of for sequence pair e, page 50

Π(S) Dot product matrix of the matrix S, page 49

ς Maximum consecutive erroneous values, page 84

Σ(S) Covariance matrix of the matrix S, page 49

ri Row vector of all the data values observed at time ti, such that ri ∈ Rn, page 6

sHt−1 Sliding window having H values in the range [l −H, l − 1], page 78

sj Column vector of all the data values observed by the data source wj , such

that sj ∈ Rm, page 6

ξqd Scale projection of βqd on αq, page 61

bi Raw tuple (ti, xi, yi, si) from a moving sensor, page 106

D Degree of polynomial regression, page 22

ei Prediction errors or least-squares fitting error, page 18

fdec Decoding function, page 20

fenc Encoding function, page 20

gi @ Bc Position gi = (xi, yi) found in the raw tuple bi, page 107

gi Position (xi, yi) of a moving sensor at time ti, page 106

gij Transmission message generated after encoding, page 20

L Seasonal period of the SARIMA model, page 18

ou The probability that ωu ∈ Ω, page 78

o1
i1, s

1
i1 Weight o1

i1 of the value v1
i1 used in particle filtering, page 29

p Number of particles in a particle filter, page 29

Rij Random variable associated with the data value sij , page 6

Ri Random variable associated with the row vector ri, page 6

sij Data value observed by the source wj at time ti, such that sij ∈ R, page 6

uo Normal percentage error computed for region Ro, page 108

vi @ Bc Positioned value vi = (xi, yi, ri) found in the raw tuple bi, page 107

vi Positioned value (xi, yi, si) from a moving sensor, page 106

127

List of Symbols

wj Time-series data source in the database W, page 6

yi Probability integral transform of si w.r.t. Pi(Ri), page 78

zi White noise drawn from a zero mean multi-variate Gaussian distribution,

page 25

ARMA(α,β) ARMA model of order (α, β), page 80

GARCH(ζ,η) GARCH model of order (ζ, η), page 82

128

Bibliography

[1] National Ambient Air Quality Standards (NAAQS). http://www.epa.gov/air/

criteria.html. 103

[2] The Safecast project. http://blog.safecast.org/. ii, 104

[3] Urban Atmosphere Project. http://www.urban-atmospheres.net/, 2006. 105

[4] AERMOD (EPA). http://www.epa.gov/scram001/dispersion prefrec.htm, 2009.

104, 105

[5] K. Aberer, S. Sathe, D. Chakraborty, A. Martinoli, G. Barrenetxea, B. Faltings,

and L. Theile. OpenSense: Open community driven sensing of environment. In

IWGS (along with ACM GIS), 2010. ii, 101, 103

[6] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence

databases. In Foundations of Data Organization and Algorithms, pages 69–84,

1993. 2, 13, 39, 41, 71

[7] R. Agrawal, K. Lin, H. Sawhney, and K. Shim. Fast similarity search in the

presence of noise, scaling and translation in time-series databases. In VLDB, 1995.

71

[8] Y. Ahmad and S. Nath. COLR-Tree: Communication-efficient spatio-temporal

indexing for a sensor data web portal. In ICDE, pages 784–793, 2008. 2

[9] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy conservation

in wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537–568, 2009. 12,

14

[10] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A

probabilistic approach. In ICDE, page 30, 2006. 4, 73, 96

[11] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-

cessing of uncertain data. In ICDE, 2008. 97

129

http://www.epa.gov/air/criteria.html
http://www.epa.gov/air/criteria.html
http://blog.safecast.org/
http://www.urban-atmospheres.net/

Bibliography

[12] A. Arion, H. Jeung, and K. Aberer. Efficiently maintaining distributed model-

based views on real-time data streams. In GLOBECOM, pages 1–6, 2011. 13,

33

[13] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on

Signal Processing, 50(2):174–188, 2002. 29, 30

[14] A. Bhattacharya, A. Meka, and A. Singh. MIST: Distributed indexing and query-

ing in sensor networks using statistical models. In VLDB, pages 854–865, 2007. 3,

12, 31, 40, 105

[15] C. Bishop. Pattern recognition and machine learning. Springer, 2006. 122

[16] M. J. Bommarito II. Intraday Correlation Patterns between the S&P 500 and

Sector Indices. SSRN, 2010. 44

[17] E. Brewer et al. . N-Smarts: Networked suite of mobile atmospheric real-time

sensors. http://www.cs.berkeley.edu/~honicky/nsmarts/, 2007. 105

[18] J. Campbell, S. Grossman, and J. Wang. Trading volume and serial correlation in

stock returns. The Quarterly Journal of Economics, 108(4):905, 1993. 44

[19] S. Cartier, S. Sathe, D. Chakraborty, and K. Aberer. ConDense: Managing data

in community-driven mobile geosensor networks. In IEEE SECON, 2012. ii

[20] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In VLDB,

pages 71–81, 1987. 96

[21] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive dimen-

sionality reduction for indexing large time series databases. ACM Transactions on

Database Systems (TODS), 27(2):188–228, 2002. 2, 36

[22] K. Chan and W. Fu. Efficient time series matching by wavelets. In ICDE, pages

126–133, 1999. 13, 40, 41

[23] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM

Computing Surveys, 41(3):1–58, 2009. 25

[24] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over

imprecise data. In SIGMOD, pages 551–562, 2003. 2, 3, 30, 31, 73, 74, 79, 80, 96,

97, 107

[25] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluation of probabilistic queries

over imprecise data in constantly-evolving environments. Information Systems,

32(1):104–130, 2007. 2, 30

130

http://www.cs.berkeley.edu/~honicky/nsmarts/

Bibliography

[26] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system for managing

constantly-evolving data. In VLDB, pages 1271–1274, 2005. 30, 97

[27] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing

methods for probabilistic threshold queries over uncertain data. In VLDB, pages

876–887, 2004. 79, 80

[28] J. Chiles and P. Delfiner. Geostatistics: modeling spatial uncertainty. Wiley-

Interscience, 1999. 102, 104, 109

[29] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data collection

in sensor networks using probabilistic models. In ICDE, pages 48–48, 2006. 2, 12,

14, 19, 40

[30] F. Chu, Y. Wang, S. Parker, and C. Zaniolo. Data cleaning using belief propaga-

tion. In IQIS, pages 99–104, 2005. 25

[31] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncooperative

time series. In SIGKDD, pages 743–749, 2005. i, 3, 71

[32] G. Cormode and M. Garofalakis. Sketching probabilistic data streams. In SIG-

MOD, pages 281–292, 2007. 3, 4, 73, 75, 96

[33] B. Costa et al. . Air Project. http://www.pm-air.net/, 2006. 105

[34] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. The

VLDB Journal, 16(4):523–544, 2007. 3, 73, 74, 96

[35] N. Dalvi and D. Suciu. Management of probabilistic data: foundations and chal-

lenges. In PODS, pages 1–12, 2007. 96

[36] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing historical infor-

mation in sensor networks. In SIGMOD, pages 527–538, 2004. 37, 38

[37] A. Deligiannakis, V. Stoumpos, Y. Kotidis, V. Vassalos, and A. Delis. Outlier-

aware data aggregation in sensor networks. In ICDE, pages 1448–1450, 2008. 25

[38] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting correlated

attributes in acquisitional query processing. In ICDE, pages 143–154, 2005. 2, 12,

14, 16

[39] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven

data acquisition in sensor networks. In VLDB, pages 588–599, 2004. 2, 12, 14, 16,

17

[40] A. Deshpande and S. Madden. MauveDB: Supporting model-based user views in

database systems. In SIGMOD, pages 73–84, 2006. 2, 3, 12, 14, 27, 40, 97, 102,

105, 107

131

http://www.pm-air.net/

Bibliography

[41] F. Diebold, T. Gunther, and A. Tay. Evaluating density forecasts with applica-

tions to financial risk management. International Economic Review, 39(4):863–883,

1998. 78

[42] R. Elmasri and S. Navathe. Fundamentals of database systems. Addison Wesley,

6th edition, 2010. 27, 28

[43] H. Elmeleegy, A. Elmagarmid, E. Cecchet, W. Aref, and W. Zwaenepoel. Online

piece-wise linear approximation of numerical streams with precision guarantees.

In VLDB, pages 145–156, 2009. 32, 33, 35

[44] E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors. In WSNA, pages

78–87, 2003. 12, 25, 40

[45] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In SIGKDD, pages 226–231,

1996. 110

[46] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching

in time-series databases. In SIGMOD, pages 419–429, 1994. 13, 39, 41, 71

[47] C. Franke and M. Gertz. ORDEN: Outlier region detection and exploration in

sensor networks. In SIGMOD, pages 1075–1077, 2009. 12, 21, 25

[48] S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS: Compressing multi sensor data

by grouping and amplitude scaling. In SIGMOD, pages 771–784, 2009. 2, 13, 37,

71

[49] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need a new

data handling architecture for sensor networks? In SIGCOMM, pages 143–148,

2003. 40

[50] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and H. J. An evaluation

of multi-resolution storage for sensor networks. In SenSys, pages 89–102, 2003. 40

[51] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over

continual data streams. In SIGMOD, pages 13–24, 2001. 71

[52] G. Golub and C. Van Loan. Matrix computations. The Johns Hopkins University

Press, 1996. 53, 114

[53] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed re-

gression: An efficient framework for modeling sensor network data. In IPSN, pages

1–10, 2004. 3, 12, 14, 105

[54] H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficient gathering of correlated

data in sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(1):4,

2008. 12, 14

132

Bibliography

[55] R. Gupta and S. Sarawagi. Creating probabilistic databases from information

extraction models. In VLDB, pages 965–976, 2006. 4, 73, 96

[56] O. Hassanzadeh and R. J. Miller. Creating probabilistic databases from duplicated

data. The VLDB Journal, 18(5):1141–1166, 2009. 4, 73, 96

[57] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain data: a

probabilistic threshold approach. In SIGMOD, pages 673–686, 2008. 3, 73

[58] J. Hull. Options, futures and other derivatives. Prentice Hall, 2009. 44

[59] H. Jagadish, A. Mendelzon, and T. Milo. Similarity-based queries. In PODS, pages

36–45, 1995. 71

[60] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource management using

Kalman Filters. In SIGMOD, pages 11–22, 2004. 13, 25, 29

[61] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. MCDB: A

monte carlo approach to managing uncertain data. In SIGMOD, pages 687–700,

2008. 97

[62] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A pipelined framework

for online cleaning of sensor data streams. In ICDE, page 140, 2006. 21

[63] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. Declarative support

for sensor data cleaning. In Pervasive, pages 83–100, 2006. 12, 21, 26, 40

[64] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive cleaning for RFID data

streams. In VLDB, pages 163–174, 2006. 2, 12, 25, 26

[65] H. Jeung, H. Lu, S. Sathe, and M. L. Yiu. Managing Evolving Uncertainty in

Trajectory Databases. TKDE (under review). 76, 123

[66] B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic mod-

eling of streaming data. In ICDE, pages 1160–1169, 2008. 2, 12, 13, 29, 40, 97

[67] B. Kanagal and A. Deshpande. Indexing correlated probabilistic databases. In

SIGMOD, pages 455–468, 2009. 71, 96

[68] Y. Ke, J. Cheng, and W. Ng. Correlation search in graph databases. In SIGKDD,

pages 390–399, 2007. 71

[69] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction

for fast similarity search in large time series databases. KAIS, 3(3):263–286, 2001.

2, 71

[70] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting

time series. In ICDM, pages 289–296, 2001. 34, 35, 41

133

Bibliography

[71] E. Keogh and M. Pazzani. An enhanced representation of time series which allows

fast and accurate classification, clustering and relevance feedback. In SIGKDD,

pages 239–241, 1998. 32

[72] N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting input data

errors probabilistically using integrity constraints. In MobiDE, pages 43–50, 2006.

96

[73] A. Klein. Incorporating quality aspects in sensor data streams. In PIKM, pages

77–84, 2007. 25

[74] A. Klein and W. Lehner. Representing data quality in sensor data streaming

environments. Journal of Data and Information Quality, 1(2):1–28, 2009. 25

[75] Y. Kotidis. Snapshot queries: Towards data-centric sensor networks. In ICDE,

pages 131–142, 2005. 20

[76] A. Krause et al. . Towards community sensing. In IPSN, 2008. 105

[77] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. ProbView: A

flexible probabilistic database system. ACM TODS, 22(3):419–469, 1997. 96

[78] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with quality

guarantees. In ICDE, pages 429–440, March 2003. 34, 38, 40, 41

[79] Y. Le Borgne, S. Santini, and G. Bontempi. Adaptive model selection for time

series prediction in wireless sensor networks. Signal Processing, 87(12):3010–3020,

2007. 38, 41

[80] J. Letchner, C. Re, M. Balazinska, and M. Philipose. Access methods for Marko-

vian streams. In ICDE, pages 246–257, 2009. 96

[81] C.-S. Li, P. S. Yu, and V. Castelli. Hierarchyscan: A hierarchical similarity search

algorithm for databases of long sequences. In ICDE, pages 546–553, 1996. i, 3, 64,

70

[82] M. Li, D. Ganesan, and P. Shenoy. PRESTO: Feedback-driven data management

in sensor networks. IEEE/ACM Transactions on Networking (TON), 17(4):1256–

1269, 2009. 2, 12, 14, 17, 18, 40

[83] X. Lian and L. Chen. Efficient similarity search over future stream time series.

TKDE, 20(1):40–54, 2008. 2, 71

[84] S. Lin, V. Kalogeraki, D. Gunopulos, and S. Lonardi. Online information compres-

sion in sensor networks. In IEEE International Conference on Communications,

2006. 37, 38

134

Bibliography

[85] C. Liu, K. Wu, and P. J. An energy-efficient data collection framework for wireless

sensor networks by exploiting spatio-temporal correlation. TPDS, 18(7), 2007. 101

[86] L. Luo et al. . Sharing and exploring sensor streams over geocentric interfaces. In

GIS, 2008. 105

[87] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A tiny aggregation

service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review,

36(SI):131–146, 2002. 2, 14

[88] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an acquisi-

tional query processor for sensor networks. In SIGMOD, pages 491–502, 2003. 2,

14, 40

[89] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acquisitional

query processing system for sensor networks. TODS, 30(1):122–173, 2005. 2, 14,

31, 40

[90] R. Maronna, R. Martin, and V. Yohai. Robust statistics. Wiley Series in Probability

and Statistics, 2006. 45, 50

[91] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: A database approach for

statistical inference and data cleaning. In SIGMOD, pages 75–86, 2010. 2, 12, 25,

26, 40, 96

[92] C. Miller and L. Hively. A review of validation studies for the Gaussian plume

atmospheric dispersion model. In Journal of Nuclear Safety Vol, volume 28, 2009.

104

[93] T. Minka. A comparison of numerical optimizers for logistic regression. 2007. 82

[94] M. Mokbel, X. Xiong, and W. Aref. SINA: Scalable incremental processing of

continuous queries in spatio-temporal databases. In SIGMOD, page 634, 2004. 2

[95] M. Mokbel, X. Xiong, S. Hambrusch, S. Prabhakar, and M. Hammad. PLACE: A

Query Processor for Handling Real-time Spatio-temporal Data Streams. In VLDB,

2004. 2

[96] M. Mokbel, X. Xiong, M. Hammad, and W. Aref. Continuous Query Processing

of Spatio-Temporal Data Streams in PLACE. Geoinformatica, 9(4), 2005. 2

[97] A. Mueen, S. Nath, and J. Liu. Fast approximate correlation for massive time-

series data. In SIGMOD, pages 171–182, 2010. i, 2, 3, 7, 64, 70

[98] S. Nittel. A survey of geosensor networks: advances in dynamic environmental

monitoring. In Sensors, 2009. 101

135

Bibliography

[99] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over

distributed data streams. In SIGMOD, pages 563–574, 2003. 34

[100] D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs. eager query plans for

tuple-independent probabilistic databases. In ICDE, pages 640–651, 2009. 2, 3,

73, 96

[101] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel. Online

amnesic approximation of streaming time series. In ICDE, pages 339–349, 2004.

36, 41

[102] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in mul-

tiple time-series. In VLDB, pages 697–708, 2005. 13, 71

[103] T. Papaioannou, M. Riahi, and K. Aberer. Towards online multi-model approxi-

mation of time series. In IEEE MDM, pages 33–38, 2011. 33, 38, 41

[104] A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing

solutions and latest technological trends. Computer Networks, 51(12):3448–3470,

2007. 25

[105] A. Petrosino and A. Staiano. A neuro-fuzzy approach for sensor network data

cleaning. In KES, pages 140–147, 2007. 12, 25, 40

[106] D. Pollard. A user’s guide to measure theoretic probability. Cambridge University

Press, 2002. 88

[107] I. Popivanov. Similarity search over time series data using wavelets. In ICDE,

pages 212–221, 2002. 2, 13, 40, 41

[108] D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In

SIGMOD, pages 13–25, 1997. 2, 71

[109] J. Rao, S. Doraiswamy, H. Thakkar, and L. Colby. A deferred cleansing method

for RFID data analytics. In VLDB, pages 175–186, 2006. 2, 12, 25, 26

[110] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on correlated

probabilistic streams. In SIGMOD, pages 715–728, 2008. 2, 3, 31, 71, 73, 96, 107

[111] G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive time series streams

with multi-scale compressed trickles. In VLDB, pages 97–108, 2009. i, 2, 3, 71

[112] H. Samet. Foundations of multidimensional and metric data structures. Morgan

Kaufmann, 2006. 39

[113] S. Sathe and K. Aberer. AFFINITY: Efficiently querying statistical measures on

time-series data. Technical report, EPFL, 2012. http://infoscience.epfl.ch/

record/180121. i

136

http://infoscience.epfl.ch/record/180121
http://infoscience.epfl.ch/record/180121

Bibliography

[114] S. Sathe and K. Aberer. AFFINITY: Efficiently querying statistical measures on

time-series data. In ICDE (to appear), 2013. i, 7

[115] S. Sathe, S. Cartier, D. Chakraborty, and K. Aberer. Effectively modeling data

from large-area community sensor networks. In IPSN, pages 95–96, 2012. ii

[116] S. Sathe, H. Jeung, and K. Aberer. Creating probabilistic databases from imprecise

time-series data. In ICDE, pages 327–338, 2011. ii, 2, 4, 24, 107

[117] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. TiNA: A scheme for

temporal coherency-aware in-network aggregation. In MobiDE, pages 69–76, 2003.

2, 14

[118] W. Sharpe. Capital asset prices: A theory of market equilibrium under conditions

of risk. Journal of Finance, 19(3):425–442, 1964. 44

[119] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor networks. In

MobiHoc, pages 219–228, 2007. 25

[120] R. Shumway and D. Stoffer. Time series analysis and its applications. Springer-

Verlag, New York, 2005. 18, 75, 80, 81, 82, 95

[121] A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A. Gelfand, K. Munagala,

and J. Yang. Data-driven processing in sensor networks. In CIDR, 2007. 2, 20

[122] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunop-

ulos. Online outlier detection in sensor data using non-parametric models. In

VLDB, pages 187–198, 2006. 2, 25

[123] Y. Tan, V. Sehgal, and H. Shahri. SensoClean: Handling noisy and incomplete

data in sensor networks using modeling. Technical report, University of Maryland,

2005. 25, 40

[124] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar. Indexing

multi-dimensional uncertain data with arbitrary probability density functions. In

VLDB, pages 922–933, 2005. 3, 73, 96

[125] A. Thiagarajan and S. Madden. Querying continuous functions in a database

system. In SIGMOD, pages 791–804, 2008. 2, 12, 28, 33, 40, 105

[126] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic

inference over RFID streams in mobile environments. In ICDE, pages 1096–1107,

2009. 2, 4, 12, 25, 31, 40, 75, 96

[127] D. Tulone and S. Madden. PAQ: Time series forecasting for approximate query

answering in sensor networks. In EWSN, pages 21–37, 2006. 12, 14, 80

137

Bibliography

[128] D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein. Bayesstore: Managing

large, uncertain data repositories with probabilistic graphical models. PVLDB,

1(1):340–351, 2008. 97

[129] L. Wang and A. Deshpande. Predictive modeling-based data collection in wireless

sensor networks. In EWSN, pages 34–51, 2008. 13

[130] W. Willett et al. . Common sense community: scaffolding mobile sensing and

analysis for novice users. In Pervasive Computing, 2010. 105

[131] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over

streams. In SIGMOD, pages 407–418, 2006. 31

[132] H. Xiong, S. Shekhar, P. Tan, and V. Kumar. TAPER: A two-step approach for

all-strong-pairs correlation query in large databases. TKDE, pages 493–508, 2006.

i, 3, 71

[133] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer. Energy-efficient

continuous activity recognition on mobile phones: an activity-adaptive approach.

In ISWC, pages 17–24. IEEE, 2012. 3

[134] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR, 2003. 2, 14

[135] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences

under time warping. In ICDE, pages 201–208, 1998. 36

[136] Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for wireless

sensor networks: A survey. IEEE Communications Survey & Tutorials, 12(2),

2010. 21, 25

[137] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of data

streams in real time. In VLDB, pages 358–369, 2002. i, 3, 7, 13, 39, 64, 70

[138] Y. Zhuang, L. Chen, X. Wang, and X. Lian. A weighted moving average-based

approach for cleaning sensor data. In ICDCS, page 38, 2007. 12, 21, 23, 40

138

Saket Sathe
Ph.D., EPFL, Switzerland

Rue du Villars 15
1024 Ecublens, Switzerland

H +41 78 898 8759
T +41 21 693 1240

B saket.sathe@epfl.ch
Í saketsathe.net

Expertise
Time-Series Data Mining, Mobile/Sensor Data Management, Time Series Analysis,
Statistical Modeling, Probabilistic Databases, Distributed Computing.

Highlights
– 6+ years of experience in academic research and innovation.
– 1 year industrial experience as a software engineer.
– 10 papers in top conferences, like, ICDE, IPSN, IEEE SECON, etc.
– 1 US patent application filed.
– Supervised 5 masters students.

Education
2007–Present Ph.D., School of Computer and Communication Sciences, EPFL, Switzerland.

– Thesis Title : Statistical Models for Querying and Managing Time-Series Data.
– Associated with the Distributed Information Systems Laboratory
– Advisor : Prof. Karl Aberer

2003–2006 M.Tech., Electrical Engineering, Indian Institute of Technology Bombay.
– Thesis : Methods in Quantitative Risk Management
– Advisor : Prof. Uday Desai and Dr. Rajendra Lagu
– GPA : 9.11/10

Work & Project Experience
Summer-

2008
Research Intern, Computational Research Laboratories, Pune.
– Investigated use of GPUs for computational finance.

2007-2008 Research Collaborator, OKKAM, European Union Project.
– Architecture design and development of a distributed entity store (www.okkam.org).

2006-2007 Software Engineer, GS Lab, Pune.
– Worked on a Linux-based XML Security module and designing blog ranking algorithms.

2003-2006 System Administrator, IIT Bombay, Mumbai.
– Assisted in setting-up and managing the institute-wide LDAP database and campus DMZ.

Publications
Conferences, Workshops, Book Chapters

[1] A. Oviedo, S. Sathe, D. Chakraborty, and K. Aberer, “ENVIROMETER : A Platform for
Querying Community-Sensed Data,” in VLDB (demo, submitted), 2013.

[2] S. Sathe and K. Aberer, “AFFINITY : Efficiently Querying Statistical Measures on Time-
Series Data,” in ICDE (to appear), 2013.

[3] S. Sathe, T. Papaioannou, H. Jeung, and K. Aberer, Managing and Mining Sensor Data.
Springer, 2012, ch. A Survey of Model-based Sensor Data Acquisition and Management, ed.
Charu Aggarwal.

[4] S. Cartier, S. Sathe, D. Chakraborty, and K. Aberer, “ConDense : Managing Data in
Community-driven Mobile Geosensor Networks,” in IEEE SECON, 2012.

[5] S. Sathe, S. Cartier, D. Chakraborty, and K. Aberer, “Effectively Modeling Data from
Large-area Community Sensor Networks,” in IPSN, 2012, pp. 95–96.

[6] S. Sathe, H. Jeung, and K. Aberer, “Creating Probabilistic Databases from Imprecise
Time-Series Data,” in ICDE, 2011, pp. 327–338.

[7] K. Aberer, S. Sathe, D. Chakraborty, A. Martinoli, G. Barrenetxea, B. Faltings, and L. Thiele,
“OpenSense : Open Community Driven Sensing of Environment,” in ACM SIGSPATIAL
IWGS, 2010, pp. 39–42.

[8] H. Jeung, S. Sarni, I. Paparrizos, S. Sathe, K. Aberer, N. Dawes, T. Papaioannou, and
M. Lehning, “Effective Metadata Management in Federated Sensor Networks,” in IEEE
SUTC, 2010, pp. 107–114, (invited paper).

[9] E. Ioannou, S. Sathe, N. Bonvin, A. Jain, S. Bondalapati, G. Skobeltsyn, C. Niederée, and
Z. Miklos, “Entity Search with NECESSITY,” in SIGMOD WebDB, 2009, (demo).

[10] S. Sathe and U. Desai, “Cell Phone Based Microcredit Risk Assessment using Fuzzy
Clustering,” in IEEE ICTD, 2006, pp. 233–242.

[11] S. Sathe, “A Novel Bayesian Classifier using Copula Functions,” 2006, arXiv :cs/0611150v3.
Journals

[12] H. Jeung, H. Lu, S. Sathe, and M. L. Yiu, “Managing Evolving Uncertainty in Trajectory
Databases,” TKDE (submitted).

[13] I. Paparrizos, H. Jeung, S. Sarni, S. Sathe, and K. Aberer, “An Interactive System for
Sensor Data Outlier Detection : End-to-End Solution with Model-based Approaches.” ACM
Transactions on Interactive Intelligent Systems (submitted).

[14] S. Sathe, R. Lagu, and U. Desai, “Investigating Efficiency of the Indian Equities Market
with Application to Risk Management.” Journal of Applied Finance, vol. 12, no. 5, pp.
48–68, May 2006.
Technical Reports

[15] S. Sathe and K. Aberer, “AFFINITY : Efficiently Querying Statistical Measures on Time-
Series Data,” Tech. Rep., 2012, http://infoscience.epfl.ch/record/180121.

[16] S. Cartier, S. Sathe, D. Chakraborty, and K. Aberer, “ConDense : Managing Data in
Community-driven Mobile Geosensor Networks,” Tech. Rep., 2012, http://infoscience.epfl.
ch/record/174752.

[17] A. Arion and S. Sathe, “Efficient Model-Driven Query Processing Based on Data Regener-
ation,” Tech. Rep., 2009, https://infoscience.epfl.ch/record/178330.

[18] S. Sathe, “Rumor Spreading in LiveJournal,” Tech. Rep., 2008, http://infoscience.epfl.ch/
record/176326.

Patents
S. Sathe and G. Skobeltsyn : Method of Data Retrieval, and Search Engine using
such a Method. EPFL. January 2011 : US 2011/0022600A1

Teaching Experience
2008-2010 Teaching Assistant, Distributed Information Systems, (in English).

Spring 2009 Teaching Assistant, Programmation en Java (Java Programming), (in French).
2007-2012 Project Supervisor, Supervised four semester projects and one masters thesis.

Projects
2011-2013 OpenSense, Open sensor network for air quality monitoring.

Community-based wireless sensor network for monitoring air pollution.
– Proposed model-based techniques for query processing over community-sensed mobile

geo-sensor data,
– Co-developed an application for obtaining on-the-fly pollution updates using smart phones,
– Full paper published in IEEE SECON 2012 and poster paper published in IPSN 2012,
– Funded by the SNSF Nano-tera initiative,
– Project URL : http ://www.nano-tera.ch/projects/401.php

2011-2013 Swiss Experiment, Large-scale environmental monitoring using wireless sensor
networks.
A platform to enable real-time environmental experiments through wireless sensor networks.
– Researched methods for quantifying the uncertainty in sensor network data,
– Developed highly-efficient caching techniques for creating probabilistic databases from

uncertain data,
– Full paper published in ICDE 2011,
– Project URL : http ://www.swiss-experiment.ch/

2007-2009 OKKAM, Enabling the Web of Entities.
A web-scale open service called Entity Name System (ENS) for supporting the systematic
reuse of identifiers for “things”.
– Designed an entity (key-value) store and search engine using Apache Lucene and Hadoop,
– Project demo presented at WebDB 2009 (co-located with SIGMOD),
– Funded by the European Union FP7 Programme,
– Project URL : http ://www.okkam.org/

2007 Pywebgraph, Power law graph generator.
A threaded Power law random graph generator written in Python.
– Open-source project with 3000+ downloads
– Sole contributor to the project,
– Independently used by researchers from Microsoft Research and UCSB,
– Implements a threaded variant of the R-MAT algorithm for generating power law graphs,
– Computes strongly connected components,
– Project URL : http ://pywebgraph.sourceforge.net/

2011 Conftrotter, Conference tracker and search engine.
– Sole contributor to the project,
– Designed a web crawler for crawling conference CFPs posted on websites,
– Developed a fully-functional website for searching conferences using jQuery, Django and

MySQL.

	Title page
	Dedication
	Acknowledgment
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 The Time-Series Database Model
	1.2 Contributions
	1.3 Thesis Organization
	1.4 Selected Publications

	2 State of the Art
	2.1 Introduction
	2.1.1 Chapter Organization

	2.2 Model-Based Data Acquisition
	2.2.1 The Sensor Data Acquisition Query
	2.2.2 Pull-Based Data Acquisition
	2.2.2.1 In-Network Data Acquisition
	2.2.2.2 Multi-Dimensional Gaussian Distributions

	2.2.3 Push-Based Data Acquisition
	2.2.3.1 PRESTO
	2.2.3.2 Ken
	2.2.3.3 A Generic Push-Based Approach

	2.3 Model-Based Data Cleaning
	2.3.1 Overview of the Data Cleaning System
	2.3.2 Models for Data Cleaning
	2.3.2.1 Regression Models
	2.3.2.2 Probabilistic Models
	2.3.2.3 Outlier Detection Models

	2.3.3 Declarative Data Cleaning Approaches

	2.4 Model-Based Query Processing
	2.4.1 In-Network Query Processing
	2.4.2 Model-Based Views
	2.4.3 Symbolic Query Evaluation
	2.4.4 Processing Queries over Uncertain Data
	2.4.4.1 Dynamic Probabilistic Models
	2.4.4.2 Static Probabilistic Models

	2.4.5 Query Processing over Semantic States
	2.4.6 Processing Event Queries

	2.5 Model-Based Data Compression
	2.5.1 Overview of Data Compression System
	2.5.2 Methods for Data Segmentation
	2.5.3 Piecewise Approximation
	2.5.3.1 Swing and Slide Filters
	2.5.3.2 Piecewise Linear Approximation

	2.5.4 Compressing Correlated Data Streams
	2.5.5 Multi-Model Data Compression
	2.5.6 Orthogonal Transformations
	2.5.6.1 Discrete Fourier Transform (DFT)

	2.5.7 Lossless vs. Lossy Compression

	2.6 Summary

	3 Affinity: Efficiently Querying Statistical Measures on Time-Series Data
	3.1 Introduction
	3.1.1 Chapter Organization

	3.2 Foundation
	3.2.1 Statistical Measures
	3.2.2 Query Types
	3.2.3 Affine Transformations

	3.3 Affine Clustering
	3.3.1 Computing the Dot Product
	3.3.2 Computing Other Measures
	3.3.3 The AFCLST Clustering Algorithm

	3.4 Computing Affine Relationships
	3.4.1 Measure Computation Query

	3.5 Indexing Affine Relationships
	3.5.1 Scalar Projection (SCAPE) Index
	3.5.2 Processing Threshold and Range Queries
	3.5.3 Index-based Pruning for D-Measures

	3.6 Experimental Evaluation
	3.6.1 Analyzing Trade-Off
	3.6.2 Impact of Online Environments
	3.6.3 Scalability of the SYMEX Algorithm
	3.6.4 Impact of using the SCAPE Index

	3.7 Related Work
	3.8 Conclusion

	4 Creating Probabilistic Databases from Imprecise Time-Series Data
	4.1 Introduction
	4.1.1 Chapter Organization

	4.2 Foundation
	4.2.1 Framework Overview
	4.2.2 Evaluation of Dynamic Density Metrics

	4.3 Naive Dynamic Density Metrics
	4.4 GARCH Metric
	4.4.1 The GARCH Model

	4.5 Enhanced GARCH Metric
	4.5.1 C-GARCH Model
	4.5.2 Successive Variance Reduction Filter

	4.6 Probabilistic View Generation
	4.6.1 –cache
	4.6.2 Constraint-Aware Caching

	4.7 Experimental Evaluation
	4.7.1 Comparison of Dynamic Density Metrics
	4.7.2 Impact of C-GARCH
	4.7.3 Impact of using –cache
	4.7.4 Verifying Time-Varying Volatility

	4.8 Related Work
	4.9 Conclusion
	Appendix 4.A Probabilistic Query Evaluation

	5 ConDense: Managing Data in Community-Driven Mobile Geosensor Networks
	5.1 Introduction
	5.1.1 Chapter Organization

	5.2 Sensors, Deployment, and Data Collection
	5.3 Related Work
	5.4 Problem Characterization
	5.5 Non-Adaptive Methods for Model Cover Estimation
	5.5.1 Grid-Based Model Cover
	5.5.2 Kriging-Based Model Cover

	5.6 Adaptive Methods for Model Cover Estimation
	5.6.1 Adaptive DBSCAN
	5.6.2 Adaptive K-Means
	5.6.3 Efficiently Maintaining the Model Cover

	5.7 Experimental Evaluation
	5.7.1 Error Analysis
	5.7.2 Comparing Efficiency of Model Cover Estimation Methods
	5.7.3 Analyzing Temporal Validity of Model Cover

	5.8 Conclusion

	6 Conclusion and Future Directions
	6.1 Conclusion
	6.2 Future Directions
	6.2.1 AFFINITY
	6.2.2 Creating Probabilistic Databases
	6.2.3 ConDense

	List of Symbols
	Bibliography
	Curriculum Vitae

