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Abstract
Modern automatic speech recognition (ASR) systems are based on parametric statistical

models such as hidden Markov models (HMMs), exploiting 1) acoustic-phonetic models,

which need to be trained on large amount of acoustic data, 2) a language model, which needs

to be trained on large amount of text data and, finally, 3) a lexicon with phonetic transcription

which requires linguistic expertise. Developing multilingual ASR systems, or systems that are

robust to accents and dialects, is therefore a very challenging task for current state-of-the-art

ASR systems.

In this thesis, we focus on investigating acoustic-phonetic modeling and lexical diversity

across languages and databases, and assume that a language model is available. In our case,

this is done in the context of hybrid HMM/MLP ASR, where the HMM emission probabilities

are modeled as posterior probabilities of HMM states, conditioned on the acoustics, estimated

at the output of a multilayer perceptron (MLP). We build upon a recently proposed acoustic

modeling approach, referred to as KL-HMM, where posterior probabilities are directly used as

acoustic features, and where the HMM states are directly parametrized by trained posterior

probabilities. The set of HMM reference posteriors is then estimated by minimizing the

Kullback–Leibler divergence between posterior features extracted from the training data and

reference posteriors.

The proposed KL-HMM model is extensively developed and adapted to tackle several chal-

lenging problems related to multilingual ASR, including lexical diversity, stochastic phone

space transformations, accented speech recognition and using multilingual data resources

to boost monolingual systems. The efficiency of the proposed approach is demonstrated

through theoretical and experimental comparisons with similar approaches such as prob-

abilistic acoustic mapping, linear hidden networks and maximum a posteriori adaptation.

Furthermore, KL-HMM is also compared with other posterior feature based ASR techniques

such as Tandem and short-term spectral feature based approaches such as subspace Gaussian

mixture models. The comparison reveals that the KL-HMM framework is a suitable alternative

to conventional acoustic modeling techniques and seems to be preferable in low amount of

data as well as phoneme set mismatch scenarios.

Keywords Multilingual speech recognition, multilingual acoustic modeling, posterior fea-

tures, KL-HMM, non-native speech recognition, under-resourced languages
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Zusammenfassung
Moderne automatische Spracherkennungssysteme basieren auf parametrischen statisti-

schen Modellen, wie hidden Markov Models (HMM), und bestehen aus drei Komponenten:

1) akustisch-phonetische Modelle, deren Berechnung grosse Mengen an akustischen Da-

ten benötigt, 2) Sprachmodell, welches mit umfangreichen Textkorpora trainiert wird und,

3) Aussprachewörterbücher, die linguistisches Expertenwissen erfordern. Die Entwicklung

von Systemen, welche auch akzentuierte Sprache und Dialekte korrekt verarbeiten, sowie

multilinguale Spracherkennungssysteme, ist daher anspruchsvoll.

Diese Dissertation befasst sich mit der Erforschung akustisch-phonetischer Modelle sowie der

lexikalischen Vielfalt der Aussprachewörterbücher über mehrere Sprachen und Datenbanken

unter der Annahme, dass ein Sprachmodell verfügbar ist. Die präsentierte Forschung wird im

Kontext von hybriden HMM/KNN Spracherkennern betrieben. Die Emissionswahrscheinlich-

keiten des HMMs werden mit a-posteriori Wahrscheinlichkeiten der HMM Zustände, bedingt

durch das akustische Signal und geschätzt von einem künstlichen neuronalen Netz (KNN),

modelliert. Namentlich wird der vor kurzem eingeführte akustische Modellierungsansatz

KL-HMM erforscht. KL-HMM benützt a-posteriori Wahrscheinlichkeiten direkt als akusti-

sche Merkmale (Posterior-Merkmale) und modelliert die HMM Zustände mittels trainierten

a-posteriori Wahrscheinlichkeiten (Referenz-Posteriors). Diese Referenz-Posteriors können

mittels Minimierung der Kullback–Leibler Divergenz zwischen Posterior-Merkmalen aus den

Trainingsdaten und Referenz-Posteriors geschätzt werden.

Der KL-HMM Modellierungsansatz wird ausführlich entwickelt und angepasst um verschiede-

ne anspruchsvolle Probleme zu bewältigen mit Bezug auf multilinguale Spracherkennung, lexi-

kalische Vielfalt, stochastische Phonbereichstransformationen, akzentuierte Spracherkennung

und Nutzung multilingualer Datensätze zur Verbesserung monolingualer Spracherkenner.

Die Effizienz der eingebrachten Ansätze wird durch theoretische und experimentelle Verglei-

che mit ähnlichen Verfahren, wie probabilistische akustische Zuordnung, lineare verborgene

Netze und maximale a-posteriori Adaption, belegt. Des Weiteren wird KL-HMM mit anderen

akustischen Modellierungsansätzen verglichen: Tandem, das auf Posterior-Merkmalen basiert,

sowie Teilraum Gausssche Mischverteilungsmodelle (subspace Gaussian mixture models),

welche auf spektralen Merkmalen basieren. Der Vergleich macht deutlich, dass KL-HMM eine

geeignete Alternative zu konventionellen akustischen Modellierungsansätzen darstellt, und

bei Szenarien mit limitiertem Datenmaterial oder Phonemesetdiskrepanz vorzuziehen ist.
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1 Introduction

Figure 1.1: The Matterhorn, a “classical” Swiss
mountain landmark.

I grew up in Valais, a bilingual canton of

Switzerland. Valais is a valley, surrounded by

mountains and is better known internation-

ally for its ski resorts like Verbier and Zermatt

with the Matterhorn, shown here on the right.

For automatic speech recognition (ASR) re-

search, Valais is interesting, because there are

two different official languages, French and

German. Furthermore, even within Valais, a

region of about 5,000 square kilometers and

a population of 300,000, there are many local

accents and dialects, especially in the German

speaking part. Actually, the German that is

spoken in Valais is a group of dialects, also

known as Wallissertitsch [Grichting, 2011],

without standardized written form. The di-

alects differ a lot from the standard high Ger-

man (Hochdeutsch), spoken in Germany, and

are sometimes even difficult to understand

for other Swiss German speakers. Close to the

language border, Italy and French speaking

Valais, people also use foreign words (loan words) in their dialect. In contrast to the shape

of the Matterhorn, which is claimed to be one-of-a-kind, the language situation in Valais is

interesting, but far from being unique. There are many regions in the world, where multiple

languages are used in parallel and influence each other. This language mix leads to obvious

difficulties, with many people working and even living in a non-native language, and involves

numerous challenges for state-of-the-art ASR systems. One of the main goals of this thesis is

to tackle some of the issues related to acoustic-phonetic modeling of such recordings.
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Chapter 1. Introduction

1.1 Multilingual speech recognition

State-of-the-art ASR systems typically use hidden Markov models (HMMs) and usually build

on three components: acoustic-phonetic models, language model and a lexicon. If at least

one of these components is multilingual, we refer to the whole system as a multilingual ASR

system.

Multilingual language models are particularly useful when the speaker switches between

languages (code-switching) or when the spoken language is unknown prior to decoding.

Language models are normally trained on large amounts of text data. If text corpora from

multiple languages are merged to estimate a multilingual language model, a language switch

is in principle allowed at any time [Ward et al., 1998]. More restrictive approaches only allow

language switches at common pause models [Weng et al., 1997]. Even though ASR systems

with multilingual language models allow to implicitly identify the spoken language, if the

spoken language is known a priori, usually the speech recognition performance is lower

compared to ASR systems with monolingual language models [Fugen et al., 2003]. In this

thesis, we assume that the language model is given, and we focus on improving acoustic and

lexical models of monolingual systems, including crosslingual phone mapping and accented

speech recognition.

In a similar vein, acoustic models can be trained on speech data from multiple languages. The

main findings of multilingual acoustic modeling studies such as [Schultz and Waibel, 2001,

Köhler, 2001], can be generalized as follows [Van Compernolle, 2001]:

• If there is enough training data, multilingual acoustic models perform worse than

monolingual ones.

• The effect is more pronounced if the data from more diverse languages are merged

during training.

• Such systems have a high practical value, especially when little or no data exists in a

particular language.

In this thesis we expatiate upon the last point. More specifically, to model variability in the

speech recordings, the acoustic models need to be trained on large amounts of acoustic data.

Data collection involves large amounts of manual work, not only in time for the speakers to

be recorded, but also for annotation of the subsequent recordings. Therefore, developing

ASR systems form scratch for a given language is expensive and one of the main barriers in

porting current systems to many languages is the large amount of data usually needed to train

the models of current recognizers. On the other hand, large databases already exist for many

languages and acoustic model training may in principle benefit from data in languages other

than the target language, assuming that all sounds produced by speakers across languages,

share a common acoustic space.
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1.1. Multilingual speech recognition

Since we only deal with monolingual language models, the corresponding pronunciation

lexicons are monolingual as well. However, in the context of accented speech, dialects or

recordings from countries with multiple official languages such as Switzerland, foreign words

may appear. Furthermore, a pronunciation lexicon is usually distributed with the database.

Typically, acoustic-phonetic model training relies on the data transcription, which is derived

from the database-specific lexicon. Even in monolingual environments, lexical resources may

differ greatly across databases. This lexical diversity can be very challenging for state-of-the-art

ASR systems.

The focus of this thesis is the investigation of multilingual acoustic-phonetic modeling and

lexical diversity across languages and databases. Conventional acoustic modeling approaches

include HMM/GMM [Rabiner, 1989], where each state is parametrized with a generative

Gaussian mixture model (GMM) and hybrid HMM/MLP [Morgan and Bourlard, 1995], where

the emission probability of the HMM state is estimated with a discriminative multilayer

perceptron (MLP). Most multilingual acoustic modeling found in literature used HMM/GMM

based ASR systems [Schultz and Waibel, 2001, Köhler, 2001]. Vu et al. [2011], for example,

presented a framework to rapidly build an HMM/GMM system based on multilingual training.

We investigated the performance of speech recognition systems with different features and

acoustic modeling techniques for multilingual speech recognition [Imseng et al., 2010]. That

study on isolated word recognition revealed that multilingual MLP based features and discrim-

inative acoustic modeling techniques, such as MLPs, seem to be well suited for multilingual

ASR. Therefore, we study hybrid HMM/MLP based approaches, where the MLP is trained to

estimate posterior probabilities (posteriors) of the subword unit that is associated with the

HMM state, given the acoustics.

Indeed, posterior based hybrid HMM/MLP systems seem better suited than HMM/GMM

systems for such multilingual setups since the MLP can be trained on data from multiple

languages1. Usually, the MLP is trained to estimate emission probabilities of the HMM states.

However, the structure of the HMM used for decoding is monolingual. Hence, the posterior

estimates of the MLP may be diverging from the HMM state emission probabilities. Even

in monolingual setups, such a mismatch can be introduced, especially if a system is trained

across databases that use different lexical resources. Such mismatches can lead to performance

degradation and have been addressed in the past through adaptation techniques such as

probabilistic acoustic mapping (PAM) [Sim, 2009].

One alternative to avoid mismatch between HMM states and MLP outputs, is to use the

posterior estimates of the MLP as features (posterior features) as done for example in Tandem

systems [Hermansky et al., 2000]. More specifically, in a Tandem system, the HMM states are

modeled with GMMs. However, posteriors are not normally distributed as assumed by the

GMMs and, therefore, need to be post-processed. Usually, the logarithm is used to gaussianize

the posteriors, followed by a dimensionality reduction transformation. Indeed, posterior

1Of course, the GMMs could also be trained on multilingual data, but GMMs 1) are not discriminant and 2) may
require too many Gaussians and parameters.
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features have successfully been used in multilingual setups [Tòth et al., 2008, Stolcke et al.,

2006]. However, in contrast to the hybrid system which directly uses the posteriors as emission

probabilities and does not involve any HMM parameter training, the GMMs of the Tandem

system need to be trained. If the target language is lacking resources, this may be an intractable

problem due to data sparsity.

Recently, Kullback–Leibler divergence based hidden Markov models (KL-HMMs) were intro-

duced [Aradilla, 2008]. KL-HMM is an HMM based system that is able to use raw posterior

features and models the states with trained posterior distributions. These reference posteriors

are trained by minimizing the Kullback–Leibler (KL) divergence between posterior features

and reference posteriors. Such a systems allows the utilization of data from different languages

during MLP and HMM training because the relation between the languages can be learned

during the reference posterior training which only requires small amounts of data. However,

so far, KL-HMM was only investigated in monolingual setups and with context-independent

HMM states and MLP outputs, mainly due to the lack of a decision tree algorithm able to

handle KL-HMM acoustic models.

1.2 Objective

The goal of this thesis is to investigate posterior based approaches towards the development

of multilingual ASR systems and the exploration of language adaptive methods that provide

means to build systems for languages lacking resources while focusing on problems related to

multilingual acoustic-phonetic modeling and lexical diversity. In this context, we look for prin-

cipled approaches towards solving acoustic modeling issues related to phonetic mismatches

between languages, multilingual features and fast adaptation of systems.

By further exploring multilingual aspects in posterior based ASR, we aim at improving the

performance of current monolingual state-of-the-art systems, ideally on high variability

recordings of accented speech and dialects. By leveraging similarities across languages, we

expect the new system to be more flexible and easy to adapt. Such a system also performs well

when having access to a limited amount of data. In the longer term, the research should also

lead to ASR systems that are able to deal with unseen languages or languages without written

form.

1.3 Main contributions

• Extension of the KL-HMM acoustic modeling approach along two directions:

– Development of a decision tree clustering algorithm that allows us to build a

recognizer based on context-dependent subword units [Imseng et al., 2012d].

– Integration of high dimensional posterior features estimated by an MLP trained

on context-dependent targets [Imseng et al., 2013b].
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In such a setup, KL-HMM allows the HMM and the MLP to be trained on different

data. The MLP can be trained on large amounts of data in any language and optimally

utilize the data by adjusting the number of MLP outputs. A larger number of MLP

outputs projects the acoustics into a higher dimensional space, allowing a more subtle

distinction of acoustic samples. The HMM, on the other hand, can be trained on low

amounts of target language data and still exploit the multilingual information in the form

of posterior features. The decision tree clustering allows parameter sharing through

state tying and permits the adaptation of the number of HMM states to the amount of

available target language data.

• Development of a speaker adaptation method for the KL-HMM framework, referred

to as speaker adaptive KL-HMM. Speaker adaptive KL-HMMs express the reference

posteriors as a linear regression between reference vectors trained on generic posterior

features and reference vectors trained on speaker-specific posterior features [Imseng

and Bourlard, 2013].

• Investigation of stochastic phone space transformations across databases and languages

to address lexical diversity. The studied soft mapping strategies outperform other

mapping strategies including data-driven and knowledge based manual mapping on

non-native speech recognition [Imseng et al., 2013a].

• Theoretical and experimental comparisons of the KL-HMM framework with similar

approaches such as probabilistic acoustic mapping, supporting the efficiency of the

proposed ASR system when dealing with non-native data [Imseng et al., 2013a].

• Exploitation of multiple out-of-language databases to boost the performance of a mono-

lingual under-resourced ASR system. Indeed, in the case of Afrikaans, Dutch, the most

similar of the investigated languages yields the best performance [Imseng et al., 2012c].

• Comparison of the KL-HMM acoustic modeling technique to other approaches on an

under-resourced monolingual ASR task. In this case, the performance of KL-HMM was

compared to posterior feature based approaches such as Tandem, as well as to short-

term spectral feature based approaches such as subspace Gaussian mixture models

(SGMMs), showing that the KL-HMM framework seems to be preferable if only small

amounts of data are available [Imseng et al., 2013b].

As implied above, a large amount of work presented in this thesis has already been published.

The extensions applied to the KL-HMM framework were progressively published in [Imseng

et al., 2012b,d, Imseng and Bourlard, 2013]. Some of the non-native work appeared in [Imseng

et al., 2013a], albeit the contribution of this thesis is more in-depth. Most of the under-

resourced language ASR has been published in [Imseng et al., 2013b].
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1.4 Structure

This thesis is structured as follows:

• Chapter 2: Background, defines common terms used in this thesis such as phones

and phonemes and gives an overview over current state-of-the-art ASR systems. Two

different kind of features, namely cepstral features and posterior features estimated

with MLPs are reviewed. Furthermore, HMM based as well as template based acoustic

modeling techniques are discussed and the employed evaluation metric is presented.

Finally, the databases that will be used in this thesis are introduced. The database de-

scription convincingly illustrates that different databases have diverse lexical resources

using different phoneme sets, pointing at one of the main problems expatiated in this

thesis.

• Chapter 3: Stochastic phone space transformations, specifies a new type of stochas-

tic phone space transformation, able to tackle some of the issues related to acoustic

modeling, multilingual adaptation of phones and lexical diversity across databases.

More specifically, phone variability and phone set mismatch problems between source

phones and target phones are addressed. In that context, we propose a stochastic phone

space transformation technique that allows the conversion of source posteriors into

target posteriors of any language and phone format. The proposed transformation is

validated with non-native speech recognition experiments, also revealing limitations of

this approach.

• Chapter 4: KL-HMM, then revisits the recently proposed KL-HMM approach and ex-

tends the existing context-independent KL-HMM framework to context-dependent KL

divergence based acoustic modeling. Because only small amounts of non-native data

are available, we take Greek data as an example to show that the proposed framework is

able to reach the performance of a current state-of-the-art HMM/GMM system trained

on 10 hours of data and can outperform conventional acoustic modeling techniques if

less than one hour of data is available.

• Chapter 5: Non-native ASR, then reports how we apply the extended KL-HMM frame-

work to non-native speech recognition and how we perform extensive theoretical and

experimental comparison of KL-HMM to related approaches such as PAM or linear

hidden networks (LHNs) and conventional adaptation techniques such as maximum

likelihood linear regression (MLLR).

• Chapter 6: Under-resourced ASR, takes Afrikaans as a representative of an under-

resourced language and reports how to boost the performance of an under-resourced

Afrikaans ASR system by using already available Dutch data. We use three different

acoustic modeling techniques, namely KL-HMM, Tandem as well as SGMMs to success-

fully exploit available multilingual resources. In the case of Tandem and KL-HMM, this

is done through posterior features, estimated by an MLP, and in the case of SGMMs,
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through parameter sharing. Furthermore, we also compare the three acoustic modeling

techniques to conventional adaptation techniques.

• Chapter 7: Speaker adaptive KL-HMM, introduces a speaker adaptation method for

the KL-HMM framework. The speaker adaptive KL-HMM performs a simple, adaptive

regression between generic and speaker-specific KL-HMM models.
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2 Background

This chapter briefly reviews standard feature extraction and acoustic modeling techniques

followed by state-of-the-art system descriptions with focus on multilingual as well as accented

ASR. Furthermore, the evaluation metric is introduced and, at the end of the chapter, all the

databases used in this thesis are described.

2.1 Notation and definitions

Vectors and matrices are denoted by bold symbols and the superscript T stands for the trans-

pose operator. Subscripts are used to refer to vector indices or indices related to time and

superscripts are used to refer to indices related to different (discrete) classes or locations.

P (.) refers to the probability of a discrete random variable and p(.) to the probability density

function of a continuous random variable.

The terms regularly used in this thesis are defined hereafter:

• Phoneme: a phoneme is defined as the smallest sound unit of a language that discrimi-

nates between a minimal word pair [Gold and Morgan, 2000, p. 310].

• Phone: humans are able to produce a large variety of acoustic sounds which linguists

have categorized into segments called phones. Phones are not necessarily the smallest

units to describe sounds but they represent a base set that can be used to describe most

languages [Gold and Morgan, 2000, p. 310].

• IPA: the international phonetic alphabet (IPA) is a notational standard for the phonetic

representation of all languages [IPA, 2013].

• SAMPA: the speech assessment methods phonetic alphabet (SAMPA) is a machine-

readable phonetic alphabet for a large amount of languages [Wells, 2013].

• Arpabet: arpabet is a phonetic transcription code for general American English de-

veloped by the advanced research projects agency (ARPA) as a part of their speech
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Chapter 2. Background

understanding project (1971–1976) [ArpaBet, 2013].

2.2 Feature extraction

An acoustic signal contains many different forms of information. For the speech recognition

process, a lot of the information contained in the signal is redundant. State-of-the-art speech

recognizers therefore first extract relevant information (features) from the speech signal in

an efficient, robust manner [Rabiner and Juang, 1993]. The acoustic feature (observation)

X = {x1, · · · , xT } is a sequence of T feature vectors xt . This section briefly reviews two kinds of

features, cepstral and posterior features.

2.2.1 Cepstral features

Cepstral features are spectral based features that are derived from the cepstrum of a short

term signal. The cepstrum is the Fourier transformed log-spectral magnitude of a signal. The

two most common cepstral features are mel-frequency cepstrum coefficients (MFCC) [Davis

and Mermelstein, 1980] and perceptual linear prediction (PLP) coefficients [Hermansky, 1990].

MFCC and PLP features are very similar and a good comparison is given by Gold and Morgan

[2000, ch. 22]. Both methods derive the feature vector from a filter bank designed according

to models of the human auditory system. The main difference between the two lies in the

nature of spectral smoothing: for MFCCs, cepstral truncation is applied and for PLPs, an

autoregressive model is used [Gold and Morgan, 2000]. The autoregressive model often leads

to better noise robustness [Openshaw et al., 1993] and speaker independence [Psutka et al.,

2001] than the cepstral truncation. Therefore, the experiments described in this thesis make

use of mel-frequency PLP (MF-PLP) features [Young et al., 2006], extracted with the hidden

Markov model toolkit (HTK) [Young et al., 2006]. MF-PLP features are based on the mel-scale

filterbank instead of the Bark-scale as originally proposed by Hermansky [1990].

2.2.2 Posterior features

Posterior features are posterior probability vectors given the acoustics [Aradilla et al., 2009].

An MLP, as shown in Figure 2.1, can discriminatively be trained to estimate such posterior

probabilities of qd , with d = 1, · · · ,D, and D being the total number of MLP outputs1, given

cepstral features X , such as MF-PLPs as described in Section 2.2.1 [Richard and Lippmann,

1991]. An MLP can be trained to estimate P (qd |{xt−a , · · · , xt , · · · , xt+a}) where a stands for the

temporal context that is considered. For the ease of notation, the input of the MLP is written

as X t = [xT
t−a , · · · , xT

t , · · · , xT
t+a]T = [x1, · · · , xK ]T, where K = (2a +1)C , is the number of inputs,

with C being the dimensionality of the cepstral features.

1MLP outputs are uniquely assigned to HMM states in hybrid systems. We therefore use the same notation qd

for an HMM state and an MLP output.
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..

.

Acoustic
observation X t = {xt−a, · · · , xt , · · · , xt+a}

D - Number of

MLP outputs

. ..

MLP

1 2 D

P (q1|X t )

P (qD |X t )

Figure 2.1: A multilayer perceptron taking X t = {xt−a , · · · , xt , · · · , xt+a} as input and estimating
P (qd |X t ).

The MLP depicted in Figure 2.1 has three layers, the input layer, the output layer and a hidden

layer in between. The number of input units K is given by X t and the number of output units

D (phones) is determined by the language of the training data. Those phones can for example

be context-independent monophones [Morgan and Bourlard, 1990] or context-dependent

triphones [Bourlard et al., 1992]. The number of hidden units is a parameter.

The output of the neural network, g (X t ) = [g1(X t ), · · · , gd (X t ), · · · , gD (X t )]T, is a D-

dimensional vector, where gd (X t ) can be written as [Bishop, 2006]:

gd (X t ) = ho
( M∑

j=0
wo

d j hh
( K∑

i=0
wh

j i xi

))
, (2.1)

where the variable M stands for the number of hidden units and wh
j i and wo

d j for the weights of

the hidden and output layer of the MLP, respectively2. The functions ho and hh are non-linear

functions associated with the output and hidden layer, respectively. Usually, the sigmoid

function is used as the non-linearity in hidden layers:

hh(yi ) = 1

1+exp(−yi )
, (2.2)

with yi being the weighted sum of inputs. At the output however, it is common to use the

softmax function to guarantee that the outputs sum to one:

ho(y j ) = exp(y j )∑D
`=1 exp(y`)

. (2.3)

2The bias is absorbed by the weights in (2.1).
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MLP training

During training, the weights of the MLP, wh and wo , are adjusted using the error back propa-

gation algorithm [Bishop, 2006, ch. 5.3], which requires frame based target values, lt for every

input X t , where lt stands for the label at time t . The algorithm back-propagates the error,

measured in terms of a certain cost function such as mean square error or relative entropy, and

then adjusts the weights in the direction of the error gradient with respect to the weights. The

relative entropy criterion (sometimes also referred to as Kullback–Leibler distance [Kullback

and Leibler, 1951, Kullback, 1987]) can be written as:

E =
D∑

d=1
td (X t ) log

td (X t )

gd (X t )
, (2.4)

where t (X t ) = [t1(X t ), · · · , td (X t ), · · · , tD (X t )]T stands for the desired output vector (target),

determined from the label lt and g (X t ) for the observed output vector. The relative entropy

criterion is nowadays often referred to as cross-entropy. Relative entropy and cross-entropy

are equivalent if binary (hard) targets are used.

To avoid overfitting to the training data, several methods such as early stopping based on

cross-validation data have been proposed [Bishop, 2006, ch. 5.5].

In this thesis, we make use of the Quicknet software [Johnson, 2004] to train the employed

MLPs on a nine frame temporal context (four preceding and following frames). As we usually

do, the number of parameters in the MLPs is set to 10% of the number of available training

frames.

MLP forward pass

Once the MLP is trained, the probability P (qd |X t ) can be estimated with the observed output

gd (X t ). The vector g (X t ) = [g1(X t ), · · · , gD (X t )]T can be used as a feature with [Hermansky

et al., 2000] or without [Rigoll and Willett, 1998] processing. Such features are referred to as

posterior features.

2.3 Acoustic modeling techniques

Given the acoustic feature vector X , the ASR system then aims at decoding X into the most

likely sequence of words, W ∗ = argmaxW P (W |X ). Using Bayes’ rule, P (W |X ) = p(X |W )P (W )
p(X )

and assuming that p(X ), the average (or prior) probability that X is observed, is constant

during decoding, we can formulate the decoding problem as follows:

W ∗ = argmax
W

p(X |W )P (W ). (2.5)
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q2

p(xt |q
1) p(xt |q

3)

q I
qE

a22 a33a11

a12 a23

q1

p(xt |q
2)

q3

Figure 2.2: A hidden Markov model with three states {q1, q2, q3}, transition probabilities ai j

and probability density distributions associated with the states.

A pronunciation dictionary expands the words into smaller sound units which are modeled

by the acoustic model. The acoustic model then estimates the probability that a sequence of

acoustic vectors X is observed when a word sequence W is uttered, p(X |W ), and the language

model estimates the probability of a word sequence P (W ). The decoder finally selects the

most likely word sequence by efficiently searching large amounts of possible word sequences.

The acoustic modeling techniques that are briefly reviewed in this chapter can broadly be

classified into two categories: HMM based and template based acoustic modeling techniques.

2.3.1 Hidden Markov model based acoustic modeling techniques

One possibility to model the probability p(X |W ) is to use an HMM [Rabiner, 1989]. A continu-

ous first order HMM as given in Figure 2.2, is defined by five elements [Rabiner, 1989, Schultz,

2006].

1. Set of emitting states {q1, · · · , qD } plus non-emitting initial and end state, q I and qE ,

respectively

2. Continuous observations X = {x1, · · · , xt , · · · , xT }

3. State transition probabilities ai j = P (qt = q j |qt−1 = q i ), where ai j denotes the probabil-

ity of a transition from state q i to state q j with i , j = 1, · · · ,D and qt being the state at

time t

4. Probability density functions to estimate the probability of emitting an observation

vector xt in state qd at time t , p(xt |qt = qd ) (emission probability)

5. Initial state distribution π= {π1, · · · ,πD } with πd = P (q1 = qd |q I )

An HMM comprises two stochastic processes. One stochastic process produces a state se-

quence Q = {q1, · · · , qt , · · · , qT } and the other a sequence of observations according to the

probability functions associated with each state. The stochastic process that produces Q is

not directly observable, therefrom hidden Markov model.
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Given the above HMM definitions, p(X |W ) can be rewritten as:

p(X |W ) = ∑
Q∈QW

p(X |Q)P (Q), (2.6)

where QW denotes the set of all possible state sequences allowed by the word sequence W .

Assuming a first order Markov model, i.e. P (qt |qt−1, · · · , q1) = P (qt |qt−1) and independent

acoustic observations given the state, (2.6) can be rewritten:

p(X |W ) ≈ ∑
Q∈QW

T∏
t=1

p(xt |qt ,Ω)P (qt |qt−1), (2.7)

where Ω stands for the parameters of the probability density function p(xt |qt ,Ω) and

P (qt |qt−1) are the transition probabilities aqt qt−1 with A = (ai j ) being the transition matrix.

HMM training

The transition matrix A, and the parameters of the emission probability density function,

Ω, form the HMM parameters ΘM = {Ω, A}, which can be trained using the expectation-

maximization (EM) algorithm, a general technique for finding maximum likelihood solutions

for probabilistic models having latent variables [Dempster et al., 1977, Gold and Morgan, 2000].

The full EM algorithm maximizes the full likelihood of the observed data [Gold and Morgan,

2000]:

L = p(X |W ,ΘM ) = ∑
Q∈QW

p(X ,Q|ΘM ) = ∑
Q∈QW

T∏
t=1

p(xt |qt ,Ω)aqt qt−1 , (2.8)

where QW represents the set of all possible paths in the model of the hypothesized word

sequence W . Using the forward procedure, and efficient algorithm to calculate the likelihood

p(X |W ,ΘM ), we can rewrite (2.8) as:

p(X |ΘM ) =
D∑
`=1

p(X , q`T |ΘM ), (2.9)

where X is the observed feature sequence of length T , q`T stands for the event of being in state

q` at time T , and D is the number of emitting states in the HMM. Further decomposing (2.9)

yields the following, also known as forward recurrence [Gold and Morgan, 2000]:

P (qd
t , X1···t |ΘM ) =

D∑
`=1

P (q`t−1, X1···t−1|ΘM )p(xt |qd
t ,Ω)aq`

t−1qd
t

, (2.10)

where X1···t stands for the feature sequence {x1, · · · , xt }.

The full likelihood of a model can also be approximated by the likelihood associated with the

most likely sequence of states (path). Hence the sum in (2.10) can be replaced with the max
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operator. This approximation is referred to as Viterbi approximation.

In practice, often the log-likelihood is maximized. This can be achieved through dynamic

programming using the following recursion [Gold and Morgan, 2000]:

logP (qd
t , X1···t |ΘM ) = max

`

(
logP (q`t−1, X1···t−1|ΘM )+ log aq`

t−1qd
t

)
+ log p(xt |qd

t ,Ω). (2.11)

HMM decoding

The goal of the decoding is to find the most likely word sequence W ∗ given a sequence of

acoustic features X :

W ∗ = argmax
W

P (W |X ). (2.12)

Using Bayes’ rule, and given that p(X ) is constant during decoding, we have:

W ∗ = argmax
W

p(X |W )P (W )

p(X )
= argmax

W

p(X |W )P (W ). (2.13)

Hence, the likelihoods of different word sequences p(X |W ) need to be estimated. Using the

Viterbi approximation:

p(X |W ) ≈ max
QW

T∏
t=1

p(xt |qt ,Ω)aqt−1qt , (2.14)

and in the log domain:

log p(X |W ) ≈ max
QW

T∑
t=1

log p(xt |qt ,Ω)+ log aqt−1qt . (2.15)

The probability of a word sequence P (W ) is usually estimated by a language model [Rabiner

and Juang, 1993, p. 435]. State-of-the-art ASR systems usually employ statistical language mod-

els that are trained on large text corpora. Statistical language models estimate the probability

of the nth word given the n −1 previous words. Most systems investigated in this thesis use

bi-gram language models (n = 2). The output of the recognizer is then the most likely word

sequence W ∗.

In practice, usually the probability of the language model, P (W ), is scaled before it is multiplied

with the probability of the acoustic model, p(X |W ), and word transitions are usually penalized

by adding a fixed value to each token when it transits from the end of one word to the start

of the next. The language model scaling factor and the word insertion penalty can have a

significant effect on recognition performance and hence, some tuning on development data is

well worthwhile [Young et al., 2006].
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HMM based systems using cepstral features

We review here the most common HMM systems using cepstral-like features, as introduced in

Section 2.2.1, in the context of multilingual ASR.

HMM/GMM An HMM based ASR system that uses a GMM to model the emission probability,

is referred to as HMM/GMM system [Rabiner, 1989]. A GMM is a probabilistic model

that consists of a mixture of Gaussian distributions:

p(xt |Ω, qd ) =
N∑

n=1
cd

n pd
n (xt |Ωd

n ), (2.16)

where p(xt |Ω, qd ) stands for the likelihood of an acoustic observation given the pa-

rameters Ω = {cd
n ,Ωd

n }. Hence, each state qd is parametrized with a mixture of N

Gaussians. The probability density function of the nth Gaussian distribution, pd
n ,

is parametrized with Ωd
n = {µd

n ,Σd
n }, where µd

n is the mean, Σd
n the variance, and

pd
n (xt |Ωd

n ) =N (xt |µd
n ,Σd

n ).

MLLR and MAP HMM/GMM systems are often used for ASR these days, but require a rela-

tively large amount of data to train all the parameters. Adaptation techniques such as

MLLR [Gales, 1998] and maximum a posteriori (MAP) adaptation [Gauvain and Lee,

1993] also exist for scenarios with less data available. These adaptation techniques

have broadly and successfully been applied to scenarios such as recognizing accented

(non-native) speech [Wang et al., 2003] or performing speaker adaptation [Leggetter

and Woodland, 1995]. However, MLLR and MAP seem to be confined to adaptations

within a language [Byrne et al., 2000].

SCHMM Instead of using N Gaussians per HMM state, Huang and Jack [1989] proposed to

use semi-continuous HMMs (SCHMMs) that use a total of S Gaussians. Each state can

then be parametrized as:

p(xt |Ω, qd ) =
S∑

s=1
cd

s ps(xt |Ωs), (2.17)

where the probability density function of the s th Gaussian distribution ps is

parametrized with Ωs = {µs ,Σs} (shared among all the states) and the weights cd
s are

estimated for each state individually. Since the Gaussian parameters (means and vari-

ances) are shared among the states, the required training data may be significantly less

for SCHMMs than for continuous HMMs. Therefore, acoustic modeling techniques

similar to SCHMMs are often used to share data among different languages [Köhler,

2001, Schultz and Waibel, 2001, Niesler, 2007].

ML-tag Schultz and Waibel [2001] for example, proposed to share parameters in multi-

lingual environments. The language-tagged acoustic modeling technique (ML-tag)
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parametrizes each state as follows:

p(xt |Ω, qd ) =
N∑

n=1
cd

n N (xt |Ωd
n ), (2.18)

where N is the number of Gaussians used to model state qd . HMM states across different

languages share the Gaussian componentsΩd
n if they are represented with the same IPA

symbol. The mixture weights cd
n however, are trained for each HMM state individually:

c i
n 6= c j

n , ∀i 6= j , (2.19)

Ωi
n =Ω j

n , ∀i , j : ipa(q i ) = ipa(q j ). (2.20)

The IPA-OVL approach of Köhler [2001] is similar in spirit. ML-tag as well as IPA-OVL

perform slightly worse than language dependent acoustic models [Köhler, 2001, Schultz

and Waibel, 2001]. On the other hand such systems can be used to rapidly develop

an ASR system for a new language [Schultz and Waibel, 2001] or to build a system for

languages for which only low amounts of training data is available [Niesler, 2007].

SGMM A subspace Gaussian mixture model (SGMM) can be described as follows [Povey et al.,

2010]:

p(xt |Ω, qd ) =
I∑

i=1
cd

i N (xt |Ωd
i ), (2.21)

where p(xt |Ω, qd ) stands for the likelihood of an acoustic observation given the pa-

rameters Ω = {cd
i ,Ωd

i }. All the states share the same I Gaussians, similar to SCHMM.

The model in each HMM state is then represented by a simple GMM with I Gaussians,

mixture weights cd
i , meansµd

i , and covariances Σi . The latter are shared across all states.

The state-specific mixture weights and means are estimated as follows:

µd
i = Mi v d , (2.22)

cd
i = exp(wi ·v d )∑I

`=1 exp(w` ·v d )
, (2.23)

where v d ∈ RU is a state-specific vector of dimensionality U . The dimensionality U is

a parameter of the system and often chosen to be similar to the dimensionality of the

input features.The globally shared parameters M = [M1, · · · , MI ]T and W = [w1, · · · , w I ]T

are used to derive the means and mixture weights representing the given HMM state,

where wi is a U dimensional vector and Mi a C ×U dimensional matrix with C being

the dimensionality of the (cepstral) features. The parameter sharing of SGMM can also

be exploited in a multilingual environment [Burget et al., 2010].

Note that the equations above assume (without loss of generality) one state-specific

vector v d to be assigned to each HMM state. However, each state can also be modeled
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with a mixture of sub-states [Povey et al., 2011].

HMM based systems using posterior features

In this section, HMM systems based on posterior features (see Section 2.2.2) are reviewed.

State-of-the-art posterior feature based systems often use deep MLPs [Dahl et al., 2012] with

many layers and trained in a complex way on huge amounts of data. This work employs

standard MLPs with one hidden layer, which could of course be replaced with more complex

MLPs, possibly yielding better posterior features. The theoretical aspects of the ASR systems,

which use the MLP as feature extractor, are the same for standard and deep MLPs.

Hybrid HMM/MLP Morgan and Bourlard [1995] proposed to use MLPs to estimate the emis-

sion probability of an HMM-based system. As described in Section 2.2.2, an MLP can

be trained to estimate the probability of an HMM state qd given the acoustic feature

vectors X t , P (qd |X t ). Applying Bayes’ rule and assuming that p(xt ) is constant during

recognition p(xt |qd ) can be estimated based on P (qd |xt ) and P (qd ):

p(xt |qd ) = P (qd |xt )p(xt )

P (qd )
∝ P (qd |xt )

P (qd )
≈ P (qd |X t )

P (qd )
, (2.24)

where P (qd ) is the prior probability of an HMM state and can be estimated on the

training data. Note that the MLP estimates the posterior features, P (qd |xt ), given the

temporal context X t = {xt−a , · · · , xt+a}, P (qd |X t ).

Several studies explored multilingually trained MLPs for hybrid systems [Dupont et al.,

2005, Scanzio et al., 2008]. Dupont et al. [2005] reported improvement on accented

and non-native speech using a multilingually trained MLP. Similar to the ML-tag

and IPA-OVL systems, Scanzio et al. [2008] found that the systems incorporating a

multilingual MLP perform slightly worse than the systems using language-dependent

MLPs. However, multilingual MLPs are always shown to be beneficial in the case of

non-native speech and/or in the case of insufficient training data.

Tandem HMM based systems typically use GMMs to model acoustic features. The hybrid

HMM/MLP system on the other hand, uses discriminatively trained posterior features.

Hermansky et al. [2000] introduced a Tandem system, which is an HMM/GMM system

that uses posterior features instead of cepstral features. However, the discriminatively

trained posterior features are not normally distributed. Usually, the logarithm is used

to gaussianize the posteriors. Often, the log-posteriors are also orthogonalized using

principal component analysis (PCA).

Posterior features have shown to be relatively easily portable across languages [Stolcke

et al., 2006, Tòth et al., 2008].
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2.3.2 Template based acoustic modeling techniques

Instead of using HMMs to model the probability p(X |W ), template matching (TM) can be

used. TM is a general classification technique that relies on the principle that a class Wi , such

as a word, can be characterized by a set of samples (templates) Y (Wi ) = {Y1, · · · ,YN } belonging

to that class, with Yn = {y1, · · · , yTn } and Tn the length of template Yn [Aradilla, 2008].

Template training

During training, a number of reference templates N are collected for each class Wi . Rabiner

and Juang [1993] list different methods how to collect those N templates:

Casual training is the simplest training procedure, where each token from the training ses-

sion is used as a reference pattern. However, that approach usually only works for

systems trained for a specific speaker and with a small number of different classes (small

vocabulary) [Rabiner and Juang, 1993].

Robust training is a sequential training approach in which a consistent pair of tokens is

needed for each class. Therefore, each class needs to be spoken until such a consistent

pair is obtained. To determine if a pair of tokens is consistent, usually dynamic time

warping (DTW) is used to calculate a distortion score between two tokens. If the distor-

tion score is smaller than a threshold, the pair is considered as consistent. The reference

template is then computed as a warped average of the two tokens. Usually only one

single robust template is stored per class. However such systems are not suitable for

speaker independent tasks [Rabiner and Juang, 1993].

Clustering is an alternative to casual and robust training that allows the implementation of a

speaker-independent system. During clustering, all the recorded utterances of a class

are clustered into N templates. Within each cluster, the utterances should be similar. To

determine how similar two utterances are, a similarity measure F (X 1, X 2) is computed

between two utterances X 1 and X 2. During decoding, the same similarity measure is

used (see next section). Many clustering algorithms have been proposed in literature:

supervised, semi-supervised and automatic ones. A good overview is given in [Rabiner

and Juang, 1993, Section 5.3.3].

The templates that are collected during training, Yn = {y1, · · · , yTn }, are then stored in memory.

Template decoding

To decode a test sample X , a similarity measure F (X ,Y ) is computed between X and each

template, Y , stored in memory during training. The test utterance X is then decided to belong
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to the same class as the template with the lowest similarity measure, Y j ,

W ∗ = argmin
Wi∈W

min
Y j∈Y (Wi )

F (X ,Y j ), (2.25)

where W is the set of all possible words. The similarity measure F (X ,Y ) can be calculated

using DTW [Aradilla, 2008]:

F (X ,Y ) = min
φ

T∑
t=1

d(xt , yφ(t )), (2.26)

where d(a,b) represents the local distance between two vectors a and b and T the duration

of the test utterance X . The function φ maps the vectors from the template to the vectors of

the test utterance. A distance in the mathematical sense needs to fulfill positive definiteness,

symmetry and triangle inequality. However, for template based ASR often a distortion measure,

a measure of difference that only meets the positive definiteness, is used [Rabiner and Juang,

1993].

Evidently, (2.26) resembles (2.15), page 15. An extensive comparison between template based

ASR and Viterbi approximated HMM based ASR can be found in [Aradilla, 2008, Section 3.3.3].

Template based systems using cepstral features

Many different local distortion measures have been investigated in literature [Rabiner and

Juang, 1993, Nocerino et al., 1985]. There are various cepstral based distortion measures such

as the weighted or the truncated cepstral distance that are based on the cepstral coefficients

of a signal (see Section 2.2.1). Likelihood based measures such as the Itakura-Saito or the

likelihood ratio distortion are based on linear predictive coding (LPC) coefficients. For ex-

ample Nocerino et al. [1985] compared different distortion measures. Rabiner and Juang

[1993] also give an extensive overview over many different variants of cepstral and likelihood

based distortion measures. Recently, given the large amount of available training data, tem-

plate based systems gained new attention [De Wachter et al., 2007]. The system presented

in [De Wachter et al., 2007] for instance, is based on cepstral-like features and employs the

Mahalanobis distance as local distortion measure.

Template based systems using posterior features

Aradilla [2008] used posterior features to perform template based ASR and utilized the KL di-

vergence as local distortion measure. For example Soldo et al. [2011] showed that the ASR

performance in template based systems is sensitive to the choice of features and local dis-

tances. If posterior features and a KL divergence based distance measure are used, template

based systems can perform better than HMM based hybrid HMM/MLP systems [Soldo et al.,

2011].
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2.4 Evaluation

It is common to measure the complexity of a recognition task with the perplexity of the

language model. Therefore, Section 2.4.1 shows how we estimate the perplexity of a bi-gram

language model. To evaluate the performance of different acoustic modeling approaches, the

word accuracy is calculated as described in Section 2.4.2. To determine if there is a significant

difference between the word accuracies measured for two different decoders, we then use the

significance test described in Section 2.4.3

2.4.1 Perplexity of a language model

To estimate the perplexity, a language model and a test word sequence are required. The

perplexity of a language model is derived from the entropy H(W ) of the test sequence. For

bi-gram language models, the entropy can be approximated as [Rabiner and Juang, 1993, p.

449]:

H(W ) =−∑
P (W ) logP (W ) ≈− 1

N

N∑
n=1

logP (Wn |Wn−1) = Ĥ(W ), (2.27)

where N is the total number of words in the test sequence W and Wn the nth word. The

perplexity is then obtained as 2Ĥ(W ). Lower perplexity language models are usually sought,

although it is known that the perplexity is only loosely correlated with the performance (word

accuracy) of an ASR system.

2.4.2 Word accuracy

To compute the word accuracy, first, the output of the decoders need to be compared with

the original reference transcriptions. In this work, this is done by using the HTK tool HRe-

sults [Young et al., 2006] that optimally matches the recognized and reference label sequences

by performing dynamic programming as described in detail in [Young et al., 2006]. After this

matching procedure, the number of substitution errors (ES), deletion errors (ED ) and insertion

errors (E I ) can be calculated. The percent accuracy is then defined as:

Percent Accuracy = N −ED −ES −E I

N
×100%, (2.28)

where N is the total number of labels in the reference transcription. Usually, the labels are

words, hence the word accuracy is measured. However, if there is no appropriate language

model for a database, the labels may also be phonemes. In the latter case, the phoneme

accuracy is measured.
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2.4.3 Significance test

All the significance tests in this thesis employ the bootstrap estimation method [Bisani and

Ney, 2004]. The core idea of the bootstrap estimation method is to create replications of

a statistic by random sampling from the data set with replacement. To compare two word

accuracies obtained on the same data set, it is crucial that the difference in the number of

errors of the two systems are calculated on identical bootstrap samples. For all the significance

tests in this thesis, a confidence interval of 95% is used.

2.5 Databases

This section gives an overview over the databases used for the experiments. The phoneme sets

employed by the different databases are also listed in Appendix A. Each phoneme set includes

one phoneme sil that is assigned to silence.

2.5.1 SpeechDat(II) – English, French, German, Greek, Italian and Spanish

SpeechDat is a series of speech data collection projects funded by the European Union. The

aim of the SpeechDat data collections is to establish speech databases for the development of

voice operated teleservices and speech interfaces. The data collections are standardized, high

quality resources to perform speech and language research.

SpeechDat(II) is one of the SpeechDat projects and currently consists of recordings from 14

different European countries. Three different types of SpeechDat(II) databases are available:

databases recorded over the fixed telephone network, databases recorded over the mobile

network and databases designed for speaker verification. This work only considers fixed

telephone network databases, recorded at 8 kHz and stored in uncompressed 8ḃit A-law

format. A complete list of available databases can be found on the SpeechDat(II) homepage3.

To be representative, the SpeechDat(II) databases in all languages are gender-balanced, dialect-

balanced according to the dialect distribution in a language region and age-balanced. The

recorded speakers (500 to 5,000 per database) called a toll free number, answered several

questions and read sentences. The databases are intended to be used for developing a number

of applications such as information services, transaction services and other call processing

services and are subdivided into different corpora. Corpus S, used in this work, contains

10 phonetically rich sentences per speaker, which are created artificially to be phonetically

balanced. More information, including phoneme frequency statistics, is available in the

documentations that come with the databases. To build comparable systems, test sets are

specified for every database (depending on the size of the database), and standardized test

routines are described by Chollet et al. [1998]. Every language has a dictionary that transcribes

the pronounced words in the SAMPA [Wells, 2013] phoneme vocabulary. The employed

3http://www.speechdat.org/SpeechDat.html
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Table 2.1: Overview over the SpeechDat(II) databases used in this thesis. The number of
phonemes and the amount of training, development and test data is given for each language.

ID Language # of phonemes Training data Development data Test data

EL Greek 31 13.5 h 1.5 h 6.9 h
EN British English 45 12.4 h 1.4 h 4.6 h
ES Spanish 32 11.5 h 1.3 h 4.3 h
IT Italian 52 11.5 h 1.3 h 4.3 h
SF Swiss French 42 13.5 h 1.5 h 4.9 h
SZ Swiss German 59 14.1 h 1.6 h 5.3 h

phoneme sets are also shown in Table A.1, page 102.

For this work, as shown in Table 2.1, the datasets of six languages are used, namely British

English, Greek, Italian, Spanish, Swiss French and Swiss German. In Swiss German, there are

2,000 recorded speakers which are split into a training, development and test set according to

the standardized procedure, which preserves the gender, dialect and age distributions of the

original set [Chollet et al., 1998]. As standardized by SpeechDat, for datasets with a minimum

of 2,000 speakers, the test set consists of 500 speakers. The remaining 1,500 speakers are

sub-divided into a development set (10%, 150 speakers) and a training set (1,350 speakers).

To avoid any bias in terms of available amount of data towards a particular language, the

same number of speakers is used in all languages, even if other databases provide data from

more than 2,000 different speakers. For this purpose, a subset of 2,000 speakers is chosen

from the whole dataset by using the same procedure as for the test set creation and then that

subset is further split into training, development and test set. Hence, rather than using the

pre-defined test sets, this work uses the publicly available scripts [Chollet et al., 1998] to ensure

that the splits can be reproduced. The amount of training, development and test data for

each language as well as the number of phonemes used in the dictionaries are summarized in

Table 2.1.

2.5.2 HIWIRE – non-native English

HIWIRE [Segura et al., 2007] is a non-native English speech corpus that contains English

utterances pronounced by natives of France (31 speakers), Greece (20 speakers), Italy (20

speakers) and Spain (10 speakers).

The utterances contain spoken pilot orders that are inputs for the controller pilot data link

communication (CPDLC) which is a mean of communication between the air traffic controller

and the flight crew. CPDLC uses a prompt based vocal input [Segura et al., 2007]. The prompts

are described by means of a deterministic grammar, and it contains numbers, spoken letters

and common names of instruments and orders. The number of different words is 133 and the

grammar perplexity is 14.9. The dictionary is in Carnegie Mellon University (CMU) format

and makes use of 38 Arpabet [ArpaBet, 2013] phonemes, also given in Table A.1, page 102.

23



Chapter 2. Background

Table 2.2: Overview over the HIWIRE database. The number of speakers, their mother tongue,
the number of utterances and the amount of adaptation and test data is given for each non-
native accent. Note that one Spanish accented speaker only recorded 99 utterances.

ID Mother tongue # of speakers # of utterances Adaptation data Test data

FR French 31 3,100 50 min 47 min
GR Greek 20 2,000 45 min 47 min
IT Italian 20 2,000 37 min 37 min
SP Spanish 10 999 18 min 17 min
Total - 81 8,099 149 min 148 min

The database contains two different kinds of speech material: an original set of utterances,

recorded in a quiet room using a close-talking microphone which is referred to as the clean

partition of the database, and a second set of utterances has been obtained by the addition of

noise recorded in a real plane cockpit to the clean data [Segura et al., 2007]. This work only

uses the clean partition.

A total of 8,099 English utterances have been recorded from the 81 non-native speakers using

a sampling frequency of 16 kHz and stored in 16 bits puls code modulation (PCM) Windows

waveform audio file format (WAVE). Hence, HIWIRE consists of 100 recordings per speaker,

of which the first 50 utterances are commonly defined to serve as adaptation data and the

second 50 utterances as test data. An overview over the different non-native accents and the

amount of adaptation and test data is given in Table 2.2.

2.5.3 Lwazi – Afrikaans

Lwazi means knowledge. The Lwazi project aims to develop a telephone-based speech-driven

information system. The project should provide South Africans with an opportunity to access

government information and services in any of South Africa’s eleven official languages using

either landline telephones or mobile telephones, free of charge [Lwazi, 2013]. This work only

makes use of the Afrikaans part of the Lwazi corpus.

The Afrikaans data is available from the Lwazi corpus provided by the Meraka Institute, CSIR,

South Africa4 and described by Barnard et al. [2009]. The database consists of 200 speakers,

recorded over a telephone channel at 8 kHz and stored as 16 bit WAVE audio, Microsoft PCM

format. Each speaker produced approximately 30 utterances, where 16 were randomly selected

from a phonetically balanced corpus and the remainder consisted of short words and phrases.

The Afrikaans database comes with a dictionary [Davel and Martirosian, 2009] that defines

the phoneme set containing 38 phonemes, shown in Table A.1, page 102. The dictionary used

in this work contained 1,585 different words. The HLT group at Meraka provided us with the

training and test sets. In total, about three hours of training data and 50 minutes of test data is

4http://www.meraka.org.za/hlt
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Table 2.3: Overview over the MediaParl database. The number of phonemes and the amount
of training, development and test data is given for both languages.

Language # of Phonemes Training data Development data Test data

French 38 16.1 h 2.2 h 3.2 h
German 57 14.5 h 2.1 h 4.6 h

available (after voice activity detection). Unfortunately, the Lwazi corpus does not come with

an Afrikaans language model.

2.5.4 CGN – Dutch

The spoken Dutch corpus, corpus gesproken nederlands (CGN), [Oostdijk, 2000] contains

standard Dutch pronounced by more than 4,000 speakers from the Netherlands and Flanders.

The database is divided into several subsets and this work only uses Corpus o that contains

phonetically aligned read speech data pronounced by 324 speakers from the Netherlands and

150 speakers from Flanders. Corpus o uses 47 phonemes, given in Table A.1, page 102, and

contains 81 h of data after the deletion of silence segments that are longer than one second. It

was recorded at 16 kHz and stored as 16 bit WAVE audio, Microsoft PCM format.

2.5.5 MediaParl – French and German

MediaParl is a Swiss accented bilingual database containing recordings in both French and

German as they are spoken in Switzerland [Imseng et al., 2012a]. The data were recorded at

the Valais Parliament. Valais is a bilingual Swiss state with many local accents and dialects.

Therefore, the database contains data with high variability and is suitable to study multilingual,

accented and non-native speech recognition as well as language identification and language

switch detection. The database is publicly available for download.

The database consists of recordings of Swiss Valaisan parliament debates of the years 2006

and 2009. The parliament debates always take place in the same closed room. Each speaker

intervention can last from about 10 seconds up to 15 minutes. Speakers are sitting or standing

when talking and their voice is recorded through a distant microphone. The recordings from

2009 are also available as video streams online5. All the audio data (2006 and 2009) is available

as WAVE audio, Microsoft PCM, 16 bit, mono 16 kHz. The database contains 7,042 annotated

sentences (about 20 hours of speech) for the French language and 8,526 sentences (also about

20 hours of speech) for the German language.

The database is partitioned into training, development and test sets as shown in Table 2.3.

The test set contains all the speakers, seven in total, which speak in both languages. Hence, it

contains all the non-native utterances. 90% of the remaining speakers, 180 randomly chosen

5http://www.canal9.ch/television-valaisanne/emissions/grand-conseil.html

25

http://www.canal9.ch/television-valaisanne/emissions/grand-conseil.html
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ones, form the training set and the other 10%, 17 speakers, the development set. Note that the

different sets are slightly unbalanced between the languages because there are considerable

differences in the amount of speech per speaker.

The phonemes in the dictionaries, also shown in Table A.1, page 102, are represented using

the SAMPA alphabet. Manual creation of a dictionary can be quite time consuming because it

requires a language expert to expand each word into its pronunciation. Therefore, Phoneti-

saurus [Novak et al., 2012], a grapheme-to-phoneme tool that uses existing dictionaries to

derive a finite state transducer based mapping of sequences of letters (graphemes) to their

acoustic representation (phonemes), was used to bootstrap the dictionaries with publicly

available sources.

To bootstrap the German dictionary, Phonolex [Schiel, 2013] was used. 82% of the German

MediaParl words were found in Phonolex. All automatically generated dictionary entries were

manually verified in accordance to the German SAMPA rules [Caesar, 2012]. The French dic-

tionary was bootstrapped with BDLEX [Perennou, 1986]. 83% of the French MediaParl words

were found in BDLEX. Similar to German, Phonetisaurus was trained on BDLEX to generate

the missing pronunciations. Again, all dictionary entries generated with Phonetisaurus were

manually verified in accordance to the French SAMPA rules.

2.6 Summary

This chapter gave an overview over two different feature extraction methods: cepstral features

and posterior features. Furthermore HMM based as well as template based acoustic modeling

techniques were reviewed and the evaluation metric was presented. Then, at the end of the

chapter, the databases that will be used in this thesis were described. The database description

revealed that different databases have diverse lexical resources using different phoneme sets.

In the next chapter, phone space transformations are introduced that are able to handle

acoustic modeling problems related to different phoneme sets within a language as well as

across languages.
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3 Stochastic phone space transforma-
tions

This chapter describes a new type of stochastic phone space transformation, able to tackle

some of the issues related to acoustic modeling and multilingual adaptation of phones, specif-

ically crafted for HMM/MLP ASR systems, and working directly with posterior distributions.

More specifically, phone variability and phone set mismatch problems between source phones

and target phones are addressed. In that context, we propose a stochastic phone space trans-

formation technique that automatically and optimally converts conditional source phone

posterior probabilities, conditioned on the acoustics, into target phone posterior probabilities.

The source and target phones can be in any language, including the same language, and phone

format.

The proposed technique estimates a stochastic transformation matrix with the help of a DTW

procedure that makes use of a KL divergence based local distance measure and can be applied

to non-native and accented speech recognition or used to adapt systems to under-resourced

languages.

Taking the non-native English HIWIRE data as an example, and in the context of hybrid

HMM/MLP recognizers, we report how to successfully perform mono- and multilingual

posterior based stochastic phone space transformations. The resulting soft mapping will be

shown to be significantly superior to other types of mapping including manual mapping.

3.1 Introduction

First, we define the terms phoneme and phone, followed by a discussion about the concept

of a common acoustic space and the diversity of lexical resources that are distributed with

databases. Then, phone mapping and phone space transformations are introduced.
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3.1.1 Phoneme

State-of-the-art HMM based ASR systems such as the ones presented in Chapter 2 typically

use phonemes as subword units. A phoneme is defined as the smallest sound unit of a

language that discriminates between a minimal word pair [Gold and Morgan, 2000, p. 310].

The set of all phonemes that are used to model speech in a given language is referred to

as a phoneme set. The creation of a phoneme set and a lexicon that transcribes the words

of a language into phonemes needs linguistic expertise and resources. The phoneme set is

specific to a language in the sense that two languages could share some, but usually not all,

phonemes. The phonemes that are shared across multiple languages (language independent)

are sometimes referred to as polyphonemes and the phonemes that are language dependent

as monophonemes [Anderson et al., 1994, Schultz, 2006].

3.1.2 Phone and phone set mismatch

Humans are able to produce a large variety of acoustic sounds which linguists have catego-

rized into segments called phones. Phones are not necessarily the smallest units to describe

sounds but they represent a base set that can be used to describe most languages [Gold and

Morgan, 2000, p. 310]. Hence, statistical ASR systems usually focus on particular acoustic

realizations of phonemes, with specific stationarity properties, which we then refer to as

phones. As a consequence of this, it is often difficult to define a phone set that is unique to a

specific language, and universally used across different ASR systems. Whilst most phonetic

representations such as SAMPA [Wells, 2013] and Arpabet [ArpaBet, 2013] can be represented

using the international phonetic alphabet (IPA) [IPA, 2013], the underlying phonetic lexicons

do not necessarily use the same subset of IPA symbols.

Even in the context of well defined phone sets, training phone models for ASR remains a

challenging task given the high pronunciation variability of words within the same language

as well as the variability of the acoustic realization of polyphonemes across languages. Fur-

thermore, in the case of accented speech, phone realizations are often borrowed from two

different languages. In that sense, we can define a phone set, as a language- or accent-specific

set that contains the acoustic realizations of a particular language or accent.

3.1.3 Common acoustic space and diversity of lexical resources

By definition, we assume that all phones across speakers, accents and languages, share a

common acoustic space X, the acoustic space that could be covered by the human articulatory

system, also shown in Figure 3.1. The assumption of a common acoustic space X is reasonable

and usually underpins the approaches based on shared training or adaptation of acoustic

models from multiple languages or accents [Köhler, 2001, Schultz, 2006, Burget et al., 2010].

However, lexical resources that are distributed along with the databases across multiple

languages can differ greatly, depending upon the definition and number of phonemes, as
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Figure 3.1: Two different sets of phones cover the same acoustic space differently. Xs(k) and
Xd (`) are acoustic subspaces associated with phones sk and d` respectively.

well as the notation adopted. Furthermore, usually, pronunciation lexicons are created by

only taking into account how native speakers pronounce the words. Even then, it is known

that acoustic realizations of the same phoneme exhibit high variability, thus, a considerable

amount of data is necessary to properly train the models. Modeling variability of the acoustic

realizations becomes even more challenging if we have to deal with non-native and accented

speech. The main reason is the influence of the native language on the target language sound

pronunciation [Van Compernolle, 2001].

3.1.4 Lexical adaptation

One way to handle such problems is to select one notation and have a large lexicon that covers

all the possible words. Since spoken language continuously evolves, new words need to be

added regularly. Furthermore, to take pronunciation variation into account in the lexicon,

often more than one pronunciation per word is needed. However, a general problem of such

lexical adaptation approaches is that adding variants to the dictionary can increase confus-

ability between words which can potentially lead to an increase in word error rate [Goronzy

et al., 2004].

3.1.5 Phone mapping

An alternate solution is to perform a one-to-one mapping between the phone symbols to

adapt the models [e.g Byrne et al., 2000] or share data [e.g. Schultz, 2006]. Such mappings are

not limited to context-independent phones, but can also be applied to context-dependent

phones such as triphones [e.g Imperl et al., 2000]. Usually, these mappings are manually

defined (knowledge based), derived in a data-driven way, or a combination of both. A nice

overview over different approaches is given by Schultz [2006, Section 4.4.1].

A phone mapping involves two different phone sets such as the ones given in Figure 3.1.
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• A source set consisting of S phones sk ,k = 1, · · · ,S.

• A target (destination) set consisting of D phones d`,`= 1, · · · ,D .

Sim and Li [2008] for example proposed explicit one-to-one probabilistic phone mapping

(PPM) that makes use of explicit phonetic reference transcriptions in the form of target phones

and outputs of a phone recognizer that uses source phones. As a result, PPM maps each target

phone to the most similar source phone. However, a one-to-one mapping between different

phone sets may not always exist and even if such a mapping exists, it could be detrimental to

the system [Sim, 2009]. The reason for this is partly related to acoustic modeling.

As shown in Figure 3.1, we suppose that there exists an acoustic space that contains all acoustic

observations that are involved in the human speech production process. During acoustic

modeling, a specific set of phones implicitly partitions this acoustic space into subspaces, each

associated with a particular phone. It is possible that two different phone sets can partition

the same acoustic space differently, which will not be taken into account during one-to-one

mappings.

3.1.6 Phone space transformation

An alternative to one-to-one mappings is phone space transformations. Conceptually, a phone

space transformation transforms the subspace that is associated to a source phone during

acoustic modeling into a subspace associated to a target phone. Therefore, depending on

the acoustic modeling technique, we can distinguish between posterior based phone space

transformations and likelihood based phone space transformations.

Posterior based phone space transformations can be applied in the framework of hybrid

HMM/MLP systems as follows:

P (d`
t |xt ) =

S∑
k=1

P (d`
t |sk

t , xt )P (sk
t |xt ), (3.1)

where
∑
`P (d`

t |sk
t , xt ) = 1. Rottland and Rigoll [2000] presented the tied posteriors

approach, which considers the special case where the S source phones are context-

independent monophones and the target phones are context-dependent triphones,

both from the same language. In the present work, we focus on stochastic transforma-

tions in general, especially across languages. Furthermore, as we will describe later, we

estimate the stochastic transformation matrix differently by directly using phone poste-

riors instead of converting them to likelihoods and applying the maximum likelihood

adaptation as it was done by Rottland and Rigoll [2000].

Sim [2009] extended PPM to probabilistic acoustic mapping (PAM) for hybrid HM-

M/MLP systems that allows implicit transformation of source posteriors into target
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3.2. Posterior based stochastic phone space transformation

posteriors. PAM significantly outperforms PPM. Indeed our work is similar in spirit to

PAM and a detailed comparison between our work and PAM is given later in Chapter 5.

Likelihood based phone space transformation is the corresponding approach for phone

space transformations in HMM/GMM systems, where:

p(xt |d`
t ) =

S∑
k=1

c`k p(xt |sk
t ), (3.2)

with
∑

k c`k = 1. Note that P (d`
t |sk

t , xt ) are probabilities, hence the sum to one con-

straint is theoretically founded, whereas c`k are weights and the sum to one constraint

is arbitrary. Obviously, one-to-one mappings are a particular case of phone space

transformations with P (d`
t |sk

t , xt ) = {0,1} or c`k = {0,1}, respectively.

SCHMM, as described in Chapter 2, page 16, is a particular kind of likelihood based

phone space transformation. Schultz and Waibel [2001] proposed the HMM-based ML-

tag method, also summarized in Chapter 2, page 16, to estimate language-independent

acoustic models. The approach involves a transformation in the sense that each (mul-

tilingual) IPA based universal phone has a pool of S Gaussians. The universal phone

model is then transformed to a language specific model by estimating language depen-

dent weights. Our work focuses on hybrid HMM/MLP systems, and not on HMM/GMM

systems, but we will show later in Chapter 5 how our work is related to conventional

Gaussian mixture based SCHMM systems.

3.2 Posterior based stochastic phone space transformation

In the context of hybrid HMM/MLP recognizers, a stochastic phone space transformation can

be formulated as follows. Given an MLP of parametersΘS , trained to estimate source phone

posterior probabilities, conditioned on acoustic observations, to perform hybrid decoding, we

aim to use the already trained MLP to perform ASR on a different database that makes use of a

target phone set. Therefore, the source phone posterior estimates need to be transformed to

target phone posteriors. Of course, the source MLP ΘS can also be trained on a mixture of

languages to make it more amenable to cross-language adaptation/training.

3.2.1 Model

Transforming source phone posteriors into target phone posteriors then requires the training

of a stochastic matrix of parameters:

ΘM =


P (d 1|s1) · · ·P (d D |s1)

...
. . .

...

P (d 1|sS) · · ·P (d D |sS)

 , (3.3)
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where P (d`|sk ) is the probability of a target phone d`, given a source phone sk . The matrix

ΘM has dimensionality S ×D , where S and D are the number of source and target phones, re-

spectively. The matrixΘM will together with the fixedΘS parameterize target phone posterior

distributions used as emission probabilities in the HMM/MLP recognizer as follows:

P (d`
t |X t ,Θ) =

S∑
k=1

P (d`
t |sk

t , X t ,Θ)P (sk
t |X t ,Θ), (3.4)

whereΘ= {ΘS ,ΘM }. The source MLP posteriors, P (sk
t |X t ,Θ), are simply estimated by present-

ing xt , together with some temporal context, at the input of the MLP ΘS . The conditional

target posterior, P (d`
t |sk

t , X t ,Θ), is conditioned on the current input X t and the source phone

sk pronounced at time t .

We assume the following:

• The conditional probability, P (d`
t |sk

t , X t ,Θ), can be seen as a similarity measure between

a source phone sk and a target phone d`. It can thus be assumed time invariant and

independent of the acoustic observation X t .

• The source phone posteriors, P (sk
t |X t ,Θ), are obtained with the MLP that was previously

trained on an independent, frame-level labeled, database that may contain speech of

the same language, a different language, or from multiple languages. Since frame-level

labeling is available for the source database, the source phone posterior probability

estimates are considered independent ofΘM .

Hence, we can rewrite (3.4) as:

P (d`
t |X t ,Θ) =

S∑
k=1

P (d`|sk ,ΘM )P (sk
t |X t ,ΘS ). (3.5)

During the training ofΘM , we assume to have access to a limited amount of target language

training data X = {x1, · · · , xT } only, which is not labeled in terms of source phones but only

in terms of target phones. Furthermore, we assume that no target phone segmentation is

available. More specifically, we can associate a target phone class sequence {d i
1, · · · ,d j

N } with

X , where i , j ∈ {1, · · · ,D} and N is the number of phones needed to transcribe X . The proposed

approach will exploit DTW during training (Section 3.2.2), where reference posteriors are

associated with target phones. During recognition (Section 3.2.3), the target phone class

posterior estimates, P (d`
t |X t ,Θ), can then be used to perform ASR with a standard hybrid

HMM/MLP system on the target database.
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Figure 3.2: Illustration of the DTW based training of the reference posteriors Q`
φ(t ).

3.2.2 Training

Since the training data X is only transcribed in terms of target phones, we can only estimate

P (sk |d`,ΘM ) from the source posteriors P (sk
t |X t ,ΘS ). Applying Bayes’ rule to P (d`|sk ,ΘM )

in (3.5) yields:

P (d`
t |X t ,Θ) =

S∑
k=1

P (sk |d`,ΘM )P (d`|ΘM )∑D
j=1 P (sk |d j ,ΘM )P (d j |ΘM )

P (sk
t |X t ,ΘS ). (3.6)

Given P (sk
t |X t ,ΘS ), the estimation of P (d`

t |X t ,Θ) thus requires us to estimate the conditional

probability P (sk |d`,ΘM ) and the prior probability P (d`|ΘM ).

Estimation of the conditional probability P (sk |d`,ΘM )

The estimation of P (sk |d`,ΘM ) is performed through an iterative Viterbi-like based

segmentation–optimization training procedure. As illustrated in Figure 3.2, this requires

that we first forward pass all the training data X through the source MLP ΘS to obtain
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P = {P1, · · · ,Pt , · · · ,PT }, with Pt :

Pt = P (s|X t ,ΘS ) =


P (s1

t |X t ,ΘS )
...

P (sS
t |X t ,ΘS )

=


Pt ,1

...

Pt ,S

 . (3.7)

We then use Pt , with t = 1, · · · ,T , as observed feature vectors alongside with the target phone

transcriptions, to train reference posteriors. As shown in Figure 3.2, given the phone transcrip-

tion of X (i.e. /p/ /r/ /iy/ /v/ /iy/ /ah/ /s/), we can build a sequence of reference posteriors

Q = {Q i
1, · · · ,Q`

n , · · · ,Q j
N }, where Q` is the reference posterior associated with target phone d`,

with i , j ,` ∈ {1, · · · ,D}, D being the number of target phones and N the number of phones

needed to transcribe X in terms of target phones.

The reference posteriors Q`:

Q` = P (s|d`,ΘM ) =


P (s1|d`,ΘM )

...

P (sS |d`,ΘM )

=


Q`

1
...

Q`
S

 , (3.8)

are trained based on source posteriors Pt . Hence, the dimensionality of Q` is S, the total

number of source classes. The global distortion between the observed posterior sequence P

and the reference posterior sequence Q can then be written as:

F (P ,Q) = min
{φ}W

T∑
t=1

d(Pt ,Q`
φ(t )), (3.9)

where {φ}W stands for all the possible paths allowed by the hypothesized word sequence, such

as previous in the case of Figure 3.2. A path φ through the distance matrix, maps the observed

posteriors to the reference posteriors with

φ(t ) = n ∈ {1, · · · , N }, (3.10)

φ(1) = 1, (3.11)

φ(T ) = N , (3.12)

φ(t +1) =
φ(t )

φ(t )+1,
(3.13)

and d(Pt ,Q`
φ(t )) is the local distance measure.

From template based ASR experiments [Soldo et al., 2011], we know that a local distance

measure based on the KL divergence [Kullback and Leibler, 1951], sometimes also referred to

as relative entropy, between the observed feature vectors Pt and the reference vectors Q` is
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appropriate because Pt and Q` are both posterior probability distributions1:

d(Pt ,Q`
φ(t )) =

S∑
k=1

P (sk
t |xt ,ΘS ) log

(
P (sk

t |xt ,ΘS )

P (sk |d`
n ,ΘM )

)
=

S∑
k=1

Pt ,k log

 Pt ,k

Q`
φ(t ),k

 . (3.14)

As illustrated in Algorithm 1, the training of the reference posteriors consists of iteratively

minimizing the global distortion F (P ,Q) in (3.9) in the Q` space (optimization step) and

φ space (segmentation step) respectively. The Kullback–Leibler divergence is convex [Cover

and Thomas, 1991, Theorem 2.7.2, p. 30]. Therefore, convergence can easily be proved

since at every segmentation and re-estimation step the same global distortion is minimized,

respectively in the Q` and φ space. We run the algorithm until convergence.

Algorithm 1 Training of reference posteriors

Step 0: Initialization of Q`
k

for all ` ∈ {1, · · · ,D} and k ∈ {1, · · · ,S} do

Q`
k =


1
S , if d` ∉ source setΦ

1− (S −1)ε, if d` ∈Φ and sk = d`

ε, if d` ∈Φ but sk 6= d`

ε being small, but positive.
end for
Step 1: Segmentation:
Given Pt ∀ t and Q` ∀ `, minimize the global distortion F (P ,Q) in (3.9) to find the best
mapping φ of observed posteriors Pt to reference posteriors Q`, i.e. the best path.
Step 2: Optimization:
for all ` ∈ {1, · · · ,D} do

for all n such that Q`
n exists in Q do

Find all Pt such that φ(t ) = n and use (3.21) to re-estimate Q`.
end for

end for
Iterate step 1 and 2 until convergence.

To minimize F (P ,Q) subject to the constraint that
∑S

k=1 Q`
k = 1, we introduce the Lagrange

multiplier λ, take the partial derivative with respect to each variable Q`
k and set it to zero:

∂

∂Q`
k

(
F (P ,Q)+λ

( S∑
k=1

Q`
k −1

))
= ∂

∂Q`
k

(
min
φ

T∑
t=1

d(Pt ,Q`
φ(t ))+λ

( S∑
k=1

Q`
k −1

))
= 0. (3.15)

1Note that the Kullback–Leibler divergence has no upper bound, which, during decoding, may theoretically
result in different dynamic ranges for the local scores of different HMM state distributions. Similar measures that
have an upper bound, such as the Jensen–Shannon divergence, exist. However, in the case of the Jensen–Shannon
divergence, the derivation of the update function, presented in this section, does not have a closed form solution.
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Solving (3.15) while keeping φ fixed yields:

∂

∂Q`
k

∑
n:Q`

n in Q

∑
t :φ(t )=n

S∑
k=1

Pt ,k log

 Pt ,k

Q`
φ(t ),k

+λ = 0, (3.16)

−∑
n:Q`

n in Q

∑
t :φ(t )=n

Pt ,k

Q`
φ(t ),k

+λ = 0, (3.17)

1

λ

∑
n:Q`

n in Q

∑
t :φ(t )=n Pt ,k = Q`

k . (3.18)

The sum to one constraint
∑S

k=1 Q`
k = 1 guarantees:

S∑
k=1

Q`
k =

S∑
k=1

1

λ

∑
n:Q`

n in Q

∑
t :φ(t )=n Pt ,k = 1. (3.19)

Solving (3.19) for λ yields:

λ=∑
n:Q`

n in Q

∑
t :φ(t )=n

S∑
k=1

Pt ,k =∑
n:Q`

n in Q

∑
t :φ(t )=n 1 = T `, (3.20)

where T ` is the number of observed posteriors that are associated with a reference posterior

Q`. Hence, combining (3.18) and (3.20), Q`
k can be estimated as:

Q`
k = 1

T `

∑
n:Q`

n in Q

∑
t :φ(t )=n Pt ,k , (3.21)

which is nothing else but the arithmetic mean of all the observed posteriors associated with

the reference posterior Q`.

For initialization, we may make use of prior knowledge as described in Algorithm 1. If the

IPA symbol of the target phone d` is not present in the source phone set, Q` is initialized

uniformly. If the IPA symbol of d` and sk are same however, all the components of Q` are set to

a small positive value ε except for the corresponding component Q`
k which is set to 1− (S−1)ε.

Since the local distance measure involves the computation of the KL divergence between

Pt and Q`, given in (3.14), we need to ensure that Q` does not contain zeros. Experiments

have shown that uniform initialization will usually yield similar results, although with slower

convergence.

Estimation of the prior probability P (d`|ΘM )

Prior probabilities P (d`|ΘM ) can be estimated as the relative count of number of observed

posteriors associated with a reference posterior, i.e.:

P (d`|ΘM ) = T `

T
, (3.22)
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where T ` is the number of observed posteriors that are associated with a reference posterior

Q` and T is the total number of observed posteriors.

3.2.3 Recognition

Given an acoustic test sequence X = {x1, · · · , xT }, we first use the source MLPΘS to estimate

the source phone posteriors Pt . To perform standard hybrid HMM/MLP decoding (see Chap-

ter 2, page 18), the emission probabilities P (d`
t |xt ,Θ), are then estimated according to (3.6),

page 33, by performing a phone space transformation with P (sk |d`,ΘM ) =Q`
k . After division

by the priors P (d`|ΘM ), we obtain scaled likelihoods p(xt |d`,Θ):

p(xt |d`,Θ) =
S∑

k=1

Q`
k∑D

j=1 Q j
k P (d j |ΘM )

Pt ,k , (3.23)

which are used as local scores during Viterbi decoding, as presented in (2.15), page 15

and (2.24), page 18.

3.3 Validation experiments on non-native ASR

We study the proposed approach by applying it to non-native speech recognition. We start with

the hypothesis that the stochastic phone space transformation is beneficial for non-native and

accented speech because we can train the source MLP,ΘS , with large amounts of multilingual

data and then handle the variability in pronunciations with relatively small amounts of data

by learning the transformation parametersΘM .

For the initial experiments, we first estimate English phone posteriors on SpeechDat(II) data.

The non-native target database (HIWIRE) uses a different phonetic lexicon, thus the estimated

English phone posteriors need to be transformed. Subsequently, we also estimate universal

phone posteriors that are trained on the data of five European languages. We expect the

multilingually trained source MLP to yield improvement compared to the monolingually

trained MLP.

Furthermore, we also compare the proposed posterior transformations to manual as well as

data-driven phone mappings and to a system directly trained on the target database.

3.3.1 Monolingual posterior transformation

To study monolingual posterior based stochastic phone space transformations, we use the

HIWIRE and the British English SpeechDat(II) databases (see also Section 2.5, page 22).

HIWIRE is a non-native English speech corpus that contains English utterances pronounced

by natives of France (31 speakers), Greece (20 speakers), Italy (20 speakers) and Spain (10
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Chapter 3. Stochastic phone space transformations

Table 3.1: Summary of the MLP training on SpeechDat(II) British English and multilingual
data. The total amount of training data, the frame accuracy on the development data, as well
as the source set including the number of phones (S) is given.

System Source Phone set # phones TRN data DEV frame accuracy

MLP-EN SAMPA English 45 12.4 h 58.8%
MLP-sUNI SAMPA universal phone set 117 12.7 h 52.0%
MLP-UNI SAMPA universal phone set 117 63.0 h 57.5%

speakers). The utterances contain spoken pilot orders made up of 133 words and the database

also provides a grammar with a perplexity of 14.9 [Segura et al., 2007]. The dictionary is in

CMU format and makes use of 38 Arpabet phonemes (see Table A.1, page 102). HIWIRE

consists of 100 recordings per speaker, of which the first 50 utterances are commonly defined

to serve as adaptation data and the second 50 utterances as testing data. A detailed overview

with the amount of adaptation and test data for each non-native accent is given in Table 2.2,

page 24.

The British English SpeechDat(II) database contains native speech and is gender-balanced,

dialect-balanced according to the dialect distribution in United Kingdom and age-balanced.

The database was recorded over the telephone at 8 kHz and is subdivided into different corpora.

We only use Corpus S, that contains ten read sentences per speaker. The dictionary that comes

with the databases uses 45 phonemes in SAMPA format (see Table A.1, page 102).

The two databases come with different dictionaries using diverse phoneme sets. In this section,

we will therefore use the adaptation data of the HIWIRE corpus to transform source posteriors

estimated with an MLP, trained on British English SpeechDat(II) data, to target posteriors

used to decode HIWIRE data.

Observed Posteriors

To estimate the source phone posteriors P (sk
t |xt ,ΘS ), we train an MLP, MLP-EN on the

SpeechDat(II) data. For the MLP training, we split the databases into training (1500 speakers),

development (150 speakers) and testing (350 speakers) sets, according to the procedure

described in Section 2.5, page 23. The MLP is then trained from 39 mel-frequency PLP (MF-

PLP) features (C0–C12 +∆+∆∆) in a nine frame temporal context as input. As usual, the

number of parameters in the MLP is set to 10% of the number of available training frames. A

summary of the MLP training is given in Table 3.1.

Since HIWIRE was recorded at 16 kHz, the recordings are downsampled to 8 kHz to match

the recording conditions of the SpeechDat(II) British English data. Then, the same MF-PLP

feature analysis is applied and the data is passed through MLP-EN to estimate the sequence of

observed posteriors, P .
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System MLP WACC

Posteriors trained on native English (no adaptation) - 90.5 %
Monolingual posterior transformation MLP-EN (12.4 h) 93.3 %
Multilingual posterior transformation MLP-sUNI (12.7 h) 94.3 %
Multilingual posterior transformation MLP-UNI (63.0 h) 96.0 %

Table 3.2: Comparison of monolingual and multilingual posterior transformations on English
non-native data. As an additional reference point, but coming from a different implementa-
tion [Gemello et al., 2007], the word accuracy (WACC) obtained using posteriors trained on
native English is also shown.

Reference Posteriors

To perform ASR on the HIWIRE test set, we estimate P (sk |d`,ΘM ) on the adaptation data with

the iterative segmentation–optimization procedure, presented in Section 3.2.

Recognition

We use the restrictive grammar rules provided by the HIWIRE database as word level lattices

and tune the word insertion penalty on the adaptation data. Standard hybrid decoding is

performed using the estimated target phone posteriors P (d`
t |xt ,Θ). Results of the monolingual

posterior based stochastic phone space transformation are given in Table 3.2. As a reference

point, Table 3.2 also shows the performance of a hybrid system that uses unadapted posteri-

ors estimated by an MLP trained on native English data (TIMIT, WSJ0-1 and vehic1us-ch0),

but coming from a different implementation [Gemello et al., 2007]. Result suggest that the

monolingual posterior transformation successfully exploits the adaptation data.

3.3.2 Multilingual posterior transformation

To study multilingual posterior based stochastic phone space transformations, we use the

HIWIRE [Segura et al., 2007] database and five SpeechDat(II) databases, namely British English,

Italian, Spanish, Swiss French and Swiss German (see also Section 2.5, page 22). Since all the

SpeechDat(II) dictionaries use SAMPA symbols, we merge phones that share the same SAMPA

symbol across languages to build a universal phone set. This knowledge-based approach is

often used in literature and usually outperforms data-driven mappings [Grézl et al., 2011].

Similar to the monolingual posterior based stochastic phone space transformation presented

in Section 3.3.1, we train an MLP to estimate the observed posteriors. In contrast to the

monolingually trained MLP-EN in Section 3.3.1, a universal MLP (MLP-UNI) is trained on

all the data from the five SpeechDat(II) databases. Additionally, we also train a small uni-

versal MLP (MLP-sUNI) that only uses one fifth of the data, randomly chosen, to match the

amount of training data available to MLP-EN. A summary of the MLP training is also given in
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Chapter 3. Stochastic phone space transformations

Table 3.1. Then, observed and reference posteriors are obtained as discussed in Section 3.3.1

and recognition is performed through target phone posterior based hybrid decoding.

MLP-EN and MLP-sUNI are trained on similar amounts of data. However, we expect MLP-

sUNI to perform better than MLP-EN because it is trained on data from multiple languages.

Furthermore, we hypothesize that MLP-UNI performs better than MLP-sUNI and MLP-EN

because it is trained on larger amounts of multilingual data. Indeed, Table 3.2 confirms

both hypotheses and shows that the proposed approach can be used to transform robust

universal phone posteriors to monolingual phone posteriors and improve ASR performance

on non-native speech.

3.3.3 Transformation versus mapping

As already reported by for example Sim [2009], we hypothesize that phone mappings between

phone sets adopted by different databases do not exist and expect the stochastic phone space

transformation to outperform manual phone mappings as well as automatically, data-driven

determined mappings.

We assume that the optimal phone mapping is a knowledge-driven manual mapping, i.e.

mapping each target phone to the source phone that shares the same IPA symbol. For each

target phone without a matching source phone, we manually select the most similar one

according to the IPA chart, also given in Figure A.1, page 104. For information, the manual

knowledge based mapping is given in Table A.2, page 103.

The estimation of P (d l
t |x ,Θ), as given in (3.6), page 33, is a weighted sum of all posterior

estimates P (sk
t |xt ,ΘS) (soft decision). Alternatively, a phone mapping takes a hard decision.

i.e. just considers the most similar source phone. Similarly to PPM [Sim and Li, 2008], we also

apply a data-driven phone mapping:

P (d l
t |xt ,Θ) = P (sk∗

t |xt ,ΘS), (3.24)

where the sum in (3.5), page 32, has been replaced by a max operator and where k∗ =
argmaxk P (d l |sk ,ΘM ). Consequently, if the number of source phones (S) and the number of

target phones (D) are different, we can distinguish between two cases:

• D < S: some source posteriors are discarded,

• D > S: multiple target phones are mapped to the same source class.

Both scenarios are suboptimal for decoding.
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System WACC Accuracy of the utterance previous

Monolingual posterior transformation 93.3 % 84%
Data driven phone mapping 82.1 % 18%
Manual phone mapping 83.2 % 26%

Table 3.3: Comparison of monolingual phone space transformation and data driven as well as
knowledge based phone mapping from SpechDat(II) English to HIWIRE non-native English
(see Table A.2, page 103 for more the mapping details). WACC stands for word accuracy. The
last column shows the accuracy of the one-word-utterance previous.

Monolingual transformation versus monolingual mapping

Table 3.3 shows that the monolingual stochastic transformation performs substantially better

than the data-driven and knowledge based phone mapping on the HIWIRE test set. Earlier

studies, performed on different datasets, also compared hard mapping (PPM) to soft mapping

(PAM) and reported similar degradation (20% absolute increase in phone error rate) [Sim,

2009].

The HIWIRE database contains one-word commands as well as whole sentence utterances. An

error analysis revealed that there is a considerable difference in the performance of decoding

the one-word utterance previous, also given in Table 3.3. It appears 38 times in the HIWIRE

test set. The stochastic mapping wrongly decodes it six times (84% accuracy) whereas the

data-driven and knowledge based mapping yield 18% and 26% accuracy, respectively.
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Figure 3.3: Native and non-native posteriogram of the word previous. The transcriptions are
given in SpeechDat(II) SAMPA format (native) and HIWIRE Arpabet format (non-native). The
y-axis represents the British English source phone posteriors and is labeled on both sides for
better readability. The chosen colormap represents 1.0 in black and 0.0 in white.

Figure 3.3 shows a typical British English source phone posteriogram of the word previous

pronounced by a native (from the SpeechDat(II) data) and by a non-native (from the HIWIRE

data). Note that the dictionaries of SpeechDat(II) and HIWIRE transcribe the word previous
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Chapter 3. Stochastic phone space transformations

differently. For the native speaker and the non-native speaker, the SpeechDat(II) and the

HIWIRE variant are given, respectively, in Figure 3.3. Hence, the circled region in the non-

native posteriogram is therefore modeled with the phoneme /iy/. It is obvious from the

figure, that a transformation outperforms a mapping in that region. Indeed the probabilities

P (d` = /i y/|sk ) of the stochastic transformation are displayed in Figure 3.4 and it can be seen

that many source phone posteriors contribute to the target posterior of /iy/. If phone mapping

is applied on the other hand, only the source phone with the maximum probability, /i:/ in this

case, is considered.
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Figure 3.4: Stochastic parameters for the Arpabet phoneme /iy/. Multiple SAMPA phonemes
of the English SpeechDat(II) phoneme set are considered during the target phone posterior
estimation.

Multilingual transformation versus multilingual mapping

Similar to the monolingual transformation and mapping experiments, we can also perform

multilingual transformation and mapping experiments. The data driven mapping and the

posterior transformation are obtained based on the multilingually trained MLPs, MLP-UNI

and MLP-sUNI. For the manual phone mapping, we map each target phone from the HIWIRE

phone set to the universal phone that shares the same IPA symbol (adaptation data is not

used). For each target phone without a matching source phone, we manually select the most

similar one according to the IPA chart. The manual mapping is given in Table A.2, page 103.

Table 3.4 shows the results. Interestingly, we note that the performance of MLP-UNI is worse

than the performance of MLP-sUNI if we apply data-driven phone mapping. This may result

from the fact that larger MLPs (like MLP-UNI) will be more discriminant, yielding much lower

probabilities to rare phone classes such as /nn/, /pp/, /bb/, /tt/, /dd/ (see Table A.2, page 103). In

those cases, the denominator of (3.6), page 33, P (sk |ΘM ), tends to dominate the numerator.
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Table 3.4: Comparison of multilingual phone space transformation and data driven as well
as knowledge based phone mapping on English non-native data (see Table A.2, page 103 for
more the mapping details). MLP-UNI is trained on 63 h of data and MLP-sUNI on 12.7 h.

System MLP Word accuracy

Multilingual posterior transformation MLP-UNI 96.0 %
Multilingual posterior transformation MLP-sUNI 94.3 %
Data driven phone mapping MLP-UNI 61.7 %
Data driven phone mapping MLP-sUNI 69.4 %
Manual phone mapping MLP-UNI 87.2 %
Manual phone mapping MLP-sUNI 81.2 %

As a result, those rare phones will be more often used for the data-driven phone mapping.

A comparison of the data-driven phone mappings of MLP-UNI and MLP-sUNI, shown in

Table A.2, page 103, confirms that the mappings mostly differ for consonants like /n/, /p/, /b/, /t/,

/d/. Additionally, Figure 3.5 displays the estimates of P (sk |d`) and P (d`|sk ) for the destination

phone /t/. It can be seen that P (d` = /t/|sk = /t t/) is higher than P (d` = /t/|sk = /t/) for

system MLP-UNI, but not for system MLP-sUNI.
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Figure 3.5: Comparison of the estimates of P (sk |d`) and P (d`|sk ) for the systems MLP-UNI and
MLP-sUNI. The conditional probability P (d` = /t/|sk = /t t/) is higher than P (d` = /t/|sk =
/t/) in the case of system MLP-UNI because of the low prior P (sk = /t t/).

3.3.4 Transformation versus full system training

Instead of training the stochastic transformation matrixΘM on the HIWIRE adaptation data,

we can also train a full hybrid system on the adaptation data. Firstly, this implies to train

an MLP on the accented English adaptation set (MLP-AE) to estimate target phone class

posteriors P (d`
t |xt ) directly. During MLP training, 90% of the adaptation data is used for

training and the remaining 10% for validation. The training of an MLP requires frame-based

alignments. However, no alignments are available for HIWIRE. Therefore, we perform forced
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Table 3.5: Summary of the hybrid system trained on HIWIRE data. The total amount of training
data, the frame accuracy on the development data, the source set including the number of
phones (S) is given as well as the WACC on the test set is given.

System Source set S Training data DEV frame accuracy WACC

MLP-AE Arpabet English 38 2.4 h 58.2% 92.8%

alignment with the best performing transformed models (MLP-UNI). Forced alignment is also

used to estimate prior probabilities as needed in the hybrid system.

A summary of the hybrid system that is directly trained on the HIWIRE data is given in Table 3.5.

It seems that the 149 min of adaptation data, provided by HIWIRE, is enough data to train

a complete hybrid system. Therefore, we investigate smaller amounts of data to train the

parameters of the stochastic transformation matrixΘM in the next section.

3.3.5 Dealing with small amount of training data

The number of parameters that need to be estimated for the stochastic transformation is

relatively small. In our case, the size of the stochastic mapping matrix is S ×D, S being the

number of source phones and D the number of target phones, i.e. 117 x 38 for MLP-UNI.

Hence, we expect the proposed approach to perform well even for very small amounts of

data. To confirm that hypothesis, we continuously decrease the amount of available data,

by considering fewer utterances per speaker as seen in Table 3.6. For these experiments, we

always use system MLP-UNI because it performed best in previous experiments.

To have at least one acoustic sample for each target phone, we can not consider all speakers

anymore for datasets of less than ten minutes duration. The 3-minutes dataset is obtained

by the following heuristic: beginning with the list of files from the 32-minutes dataset and

including an utterance if it contains any phone not yet covered, otherwise discarding it. This

procedure selects more utterances than necessary because frequent phones appear in many

utterances. Therefore, for the 2-minutes dataset, we first sort the phones according to their

frequency with the most rare phone first. For each unseen phone in the sorted phone list, we

then include the first utterance of the 32-minutes dataset that contains it.

Table 3.6: Utterance choice on the HIWIRE data to simulate low amount of data. Word accuracy
performance of the multilingual phone space transformation (MLP-UNI) is also given.

Amount of data [min] Considered Utterances Word accuracy

149 Utterances 1-50 96.0%
32 Utterances 1-10 96.2%
10 Utterances 3,5,7 96.0%

3 Manually selected 95.1%
2 Manually selected 93.8%
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3.4. Conclusion

Table 3.6 demonstrates the efficiency of the proposed approach through outstanding perfor-

mance in the case of limited amounts of training data. However, it also shows that we are not

able to take full advantage of the model in case of larger (typically more than 30 min) amounts

of training data. Indeed, as already discussed at the beginning of this section, the investigated

approach has a number of parameters equal to the size of the stochastic transformation

matrix.

3.4 Conclusion

In this chapter, we have shown that different phone sets, associated with different databases,

partition the same acoustic space differently and that manually derived phone mappings are

detrimental to ASR systems. However, only ten minutes of adaptation data, along with phone

transcriptions, are sufficient to transform multilingual source phone posterior probabilities to

monolingual English phone posterior probabilities. The multilingual phone space transfor-

mation yields improvement on non-native ASR compared to the monolingual phone space

transformation.

The parsimonious use of parameters makes the proposed system extremely efficient in terms

of data requirement. On the other hand, the approach is not able to take full advantage of more

than 30 min of adaptation data. The number of parameters in the stochastic transformation

matrix could be increased if more reference posteriors are allowed.

Indeed, the current explicit transformation not only limits the approach in terms of parameters,

but it also employs a different local score, as well as a different cost function, during the training

of the reference posteriors, see (3.14), page 35 and Viterbi decoding, see (3.23), page 37. In the

next chapter, we therefore introduce KL-HMM, an approach that uses the same KL divergence

based local score during training and decoding and allows more flexibility in terms of modeling

than the template-like approach presented in this chapter.
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4 KL-HMM

The phone space transformation presented in the last chapter is limited in the number of

parameters and utilizes different cost functions during training and decoding. Therefore, we

replace the DTW based template-like training of the phone space transformation by a Viterbi-

like HMM training that minimizes the same Kullback–Leibler (KL) divergence based cost

function, and where the states of the HMM are parametrized with reference posteriors. Such

an HMM, referred to as KL-HMM, can also be used for decoding and allows more flexibility in

terms of modeling than the template-like approach presented in the last chapter.

Setting out from the point of view that ASR ought to benefit from data in languages other than

the target language we revisit the recently proposed KL-HMM approach that is able to exploit

multilingual information in the form of universal phone posterior probabilities conditioned

on the acoustics. KL-HMM was first introduced by Aradilla [2008] and exploits an HMM where

the states (hidden variables) are associated with the target phone sequence and an MLP that

can be trained on source languages for which larger amounts of training data are available. To

highlight these dependencies, the HMM is referred to as target HMM and the MLP is referred

to as source MLP, respectively.

We extend the existing KL-HMM framework and formulate a means to train a context-

dependent recognizer. Taking the Greek SpeechDat(II) data as an example, we show that

the proposed formulation is sound. Furthermore, we show that it is able to outperform a

current state-of-the-art HMM/GMM system in small amount of training data conditions.

We also use a standalone Tandem system, as an additional reference point, and to further

understand the properties of our system.

4.1 Model

In the simplest case, the target HMM uses one state per target phone d` in a left-to-right

structure, which is obtained from the destination phone transcriptions. In Figure 4.1, for

example, we consider the one-word utterance previous, as already done in Figure 3.2, page 33,
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Figure 4.1: Illustration of the Kullback–Leibler divergence based HMM with categorical distri-
butions Q`, target HMMΘM derived from the phonetical transcription and posterior features
Pt obtained from the source MLPΘS .

resulting in the sequence of HMM states D = {d 1
1 ,d 2

2 ,d 3
3 ,d 4

4 ,d 3
5 ,d 5

6 ,d 6
7 }1. In this illustrative

case, the associated HMM has seven states plus non-emitting start and end states. However,

the presented algorithm is not limited to such simple HMM structures, but allows more

complex ones such as using three states per phone. For the ease of notation, and without loss

of generality, we limit ourselves to the simplest case (one state per phone) in the following

derivations.

As seen in Figure 4.1, KL-HMM makes use of posterior features. In Section 2.3.1, we presented

two different approaches based on posterior features, namely Tandem and hybrid systems.

In a Tandem system, the emission probabilities associated with the states are modeled with

a mixture of Gaussians. However, since the posterior features are not normally distributed,

further processing in the form of logarithm and PCA is necessary. Hybrid systems on the other

hand model the likelihood p(xt |d`) by converting posterior features using Bayes’ rule. Even

though posterior features are directly used, a hybrid system associates each HMM state with

a particular output ` of the MLP and only makes use of the posterior probability p(d`|xt )

instead of the whole probability vector.

1Note that an HMM sequence is written as Q in Chapter 2 because a state is usually denoted by qt . In this
section, we use D to highlight its relation with the destination phones and to avoid confusion with the categorical
distributions Q`. Furthermore, the index n in dn refers to the count of HMM states rather than time.
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Indeed, KL-HMM is different from Tandem and hybrid systems, because it directly utilizes

raw posterior features without further processing and each HMM state considers the whole

probability vector rather than being bound to a single MLP output. More specifically, each

target HMM state d`
n , with ` ∈ {1, · · · ,D} (D being the number of target phones) and n =

1, · · · , N (N being the total number of states of an HMM associated with an utterance), is thus

parametrized by a categorical distribution Q`:

Q` = P (s|d`,ΘM ) =


P (s1|d`,ΘM )

...

P (sS |d`,ΘM )

=


Q`

1
...

Q`
S

 .

A categorical distribution is a multinomial distribution where only one sample is drawn

and can also be seen as a generalization of the Bernoulli distribution to more than two

outcomes [Bishop, 2006, p.75]. Note that Bishop [2006] does not explicitly name such a

distribution a categorical distribution. The categorical distributions of the HMM are essentially

the same than the reference posteriors discussed in the Chapter 3. Therefore, we denote the

parameter of the HMM byΘM and the dimensionality of Q` is S, the total number of source

phones. States d 3
3 and d 3

5 are parametrized with the same categorical Q3 because they are

associated with the same target phone.

Of course, transition probabilities ai j , to go from state i to state j , should also be parameters

of the target HMM,ΘM = {Q`, ai j }. However, we fix them to constant values of 0.5 (except for

a01 = 1), as usually done in hybrid HMM/MLP systems.

4.2 Training

DTW as used in the previous chapter and the Viterbi algorithm used for HMM training are two

instances of dynamic programming in which a global score is found as a sum of local distances

along the optimal alignment between the input and reference [Aradilla, 2008]. Therefore, the

KL divergence based local distance measure, used in the previous chapter, can be used as local

score in a Viterbi-like segmentation optimization algorithm resulting in the following cost

function:

F (P ,Q) =
T∑

t=1
d(Pt ,Q`(φ(t ))) (4.1)

where `(φ(t)) stands for the fact that ` is determined by φ, the path obtained from the seg-

mentation step. During the segmentation step, also shown in Figure 4.2, the HMM aligns

the observed posteriors (posterior features) with the states by minimizing the cost function,

F (P ,Q), between the posterior feature sequence P , and the categorical distributions Q,

associated with the HMM state sequence D. Note that we omit the transition probabilities

in (4.1) because we assume that they are constant. The optimization step is identical to the

one presented in the last chapter, the arithmetic mean of all the posterior features associated

49



Chapter 4. KL-HMM

���
���
���
���
���
���

���
���
���
���
���
���

/r/

/s/

/iy/

/iy/

/v/

/p/

/ah/

. . .. . .P1 PTPt

φd(Pt ,Qℓ(φ(t ))) =
∑

S

k=1
Pt ,k log

(

Pt ,k

Q
ℓ(φ(t ))

k

)Target

HMM

Posterior feature sequence P

ΘM

Figure 4.2: Segmentation step in the iterative Viterbi-like segmentation optimization algorithm.
The segmentation φ can be optimized by aligning the posterior features with the target HMM
ΘM . During alignment, the cost function F (P ,Q) is minimized.

with an HMM state parameterized with Q`:

Q`
k = 1

T `

∑
n:d`

n in D

∑
t :φ(t )=n Pt ,k , (4.2)

where D stands for the sequence of HMM states associated with the training utterance and T `

refers to the number of feature vectors associated with Q`.

4.3 Recognition

During HMM decoding (see also Chapter 2, page 15), we search for the optimal word sequence

W ∗ that maximizes P (W |X ) ∝ p(X |W )P (W ). The probability of a word sequence P (W ) is

estimated by the language model, and p(X |W ) can be written as:

p(X |W ) = ∑
{φD }W

p(X |φD)P (φD), (4.3)

where {φD}W denotes the set of all possible paths allowed by the HMM state sequence D that

is dictated by the word sequence W .

Using the Viterbi approximation, the sum in (4.3) can be replaced by the max operator:

p(X |W ) ≈ max
{φD }W

p(X |φD)P (φD). (4.4)

and in the log domain:

p(X |W ) ≈ max
{φD }W

(
log p(X |φD)+ logP (φD)

)
. (4.5)
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Table 4.1: Comparison of the multilingual phone space transformation to KL-HMM with
different amounts of adaptation data (in minutes). Both systems use MLP-UNI to estimate
phone posteriors. All the numbers stand for word accuracies on the HIWIRE test data.

Data (in minutes) 149 32 10 3 2

Multilingual posterior transformation 96.0% 96.2% 96.0% 95.1% 93.8%
KL-HMM 96.9% 96.7% 95.8% 94.7% 92.0%

As defined by Aradilla [2008, p. 94], the log-likelihood, p(X |φD), can in the KL-HMM framework

directly be replaced with the negative cost function, −F (P ,Q):

p(X |W ) ≈ max
{φD }W

(−F (P ,Q)+ logP (φD)
)= min

{φD }W

(
T∑

t=1
d(Pt ,Q`(φD (t )))− log ai j

)
. (4.6)

where the association of categorical distributions, Q`, to posterior feature, Pt , is specified

by the segmentation φD(t ), i =φD(t −1) and j =φD(t ), respectively. Probabilistic grammars

and word insertion penalties can be used in a similar way as in HMM/GMM based ASR

systems [Aradilla, 2008].

4.4 Monophone KL-HMM

Similar to standard HMM/GMM systems, the most basic KL-HMM system makes use of

monophones. As usually done, we model each monophone with three states. First, we

compare such a monophone KL-HMM system to the posterior based stochastic phone space

transformation evaluated in the last chapter. Since the HIWIRE database is limited in the

amount of data, we then switch to a database with more than 10 h of training data to further

investigate KL-HMM acoustic modeling.

4.4.1 KL-HMM versus posterior transformation on non-native ASR

To compare KL-HMM to the posterior transformations proposed in the Chapter 3, we build

a monophone KL-HMM system with three states per phone. We used the multilingual MLP

presented in Section 3.3.2, page 39, to extract posteriors features of dimension 117 and rec-

ognize non-native English speech from the HIWIRE dataset. As done for the phone space

transformation, we also tune the word insertion penalty on the adaptation data. Table 4.1

compares the posterior based stochastic phone space transformation with KL-HMM.

KL-HMM performs better than the phone space transformation when there is more than

10 min of data (significant difference for 32 min and 149 min). If there is less, the transforma-

tion performs better. This can partially be explained by the fact that KL-HMM has three times

more parameters because we model each phone with three states. However, the consistent

usage of the KL divergence as a cost function during HMM training and decoding, and the
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Table 4.2: KL-HMM monophone system performance on SpeechDat(II) Greek. All the numbers
stand for word accuracies on the test set.

Data (in minutes) 5 9 18 37 75 152 308 808

KL-HMM mono 79.7% 79.9% 80.1% 80.2% 80.2% 80.4% 80.4% 80.5%

flexible HMM structure favors KL-HMM over the stochastic transformation. An extensive

evaluation of KL-HMM on the HIWIRE data including mono-, cross- and multilingual setups

and comparisons with related approaches is given in Chapter 5.

4.4.2 Boosting monolingual Greek ASR with multilingual resources

Although KL-HMM performs worse than a stochastic transformation if less than 10 min of

data is available, results on HIWIRE suggest that KL-HMM has potential for under-resourced

language ASR. In that context, we evaluate KL-HMM using SpeechDat(II) data from five

European languages as available multilingual data (as already done for HIWIRE) and the Greek

SpeechDat(II) database as representative of an unseen language with little available data.

The Greek SpeechDat(II) database contains a relatively large amount of data that we split into

training (1,500 speakers), development (150 speakers) and testing (350 speakers) sets as done

for the other SpeechDat(II) databases as well. To simulate limited resources, we continuously

reduce the amount of available data by randomly picking a subset of utterances from the

training set. The amount of training data varies from 13.5 hours to 5 minutes. There is only

one global test set and all the systems, trained on different amounts of data, are evaluated on

the same set. The test sentences use 10k different words and the dictionary makes use of 31

phonemes in SAMPA format, shown in Table A.1, page 102.

Since we have no access to an appropriate language model, we simply build two different

language models: one with all the sentences from the development set, and one with all the

sentences from the test set. Those language models have perplexities of 43 and 44, respectively.

The development language model is used during the parameter tuning (language model

scaling factor and word insertion penalty) on the development set and the test language model

is used during the evaluation. In that sense, results should be considered as optimistic, but

these experiments are anyway for the purpose of illustration only.

For the monophone KL-HMM experiments, we use the development set, to tune language

model scaling factor and word insertion penalty for the system that uses 13.5 h of training

data. We then fix these parameters to the same values during the subsequent decoding using

smaller amounts of training data.

Results are given in Table 4.2. It can be observed that the systems yield similar results for

5 min and 808 min of training data. This can be attributed to the low number of parameters,

3×31×117, three states per Greek phone multiplied with the dimension of the categorical
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Table 4.3: KL-HMM triphone system performance on SpeechDat(II) Greek. The word accura-
cies on the test set, the relative performance change compared with the monophone KL-HMM
system as well as the number of states is given. For unseen triphones in the test set, we back
off to the monophone model of the corresponding center phone.

Data (in minutes) 5 9 18 37 75 152 308 808

KL-HMM tri 74.1% 76.3% 78.2% 80.0% 81.2% 82.4% 83.0% 83.4%
rel. +/- mono -7.0% -4.5% -2.4% -0.2% 1.2% 2.5% 3.2% 3.6%
Number of states 4,053 5,454 7,038 8,880 10,368 11,841 13,101 14,421

distributions. Therefore, in the next section, we investigate triphone based KL-HMMs.

4.5 Triphone KL-HMM

Similarly to standard HMM/GMM systems, triphone KL-HMM systems are built by extending

the context of a monophone on the left and on the right by one, resulting in a triphone. In

this section, we first limit ourselves to word-internal context-dependent triphone models. For

unseen triphones in the test set, we back off to the monophone model of the corresponding

center phone.

As done for the monophone KL-HMM system, we tune language model scaling factor and

word insertion penalty only once on the development set for the system trained on all the

training data.

Table 4.3 shows the performance of a triphone KL-HMM system and compares it to the

monophone KL-HMM performance. Word accuracies, relative performance change of the

triphone KL-HMM compared to the monophone KL-HMM system, as well as number of states

of the corresponding acoustic models, are reported. The KL-HMM triphone system uses

relatively large amounts of states, i.e. three states per triphone seen in the training set. Indeed,

the triphone system yields improvement when at least 75 min of data are available for training.

For small amounts of data, however, the monophone KL-HMM system still yields the best

performance.

In creating triphone context models, we immediately run into the problem of sparsity of

the training data, since many triphone contexts will occur infrequently or not at all. In

standard HMM/GMM ASR systems, decision tree clustering approach [Young et al., 1994]

was introduced in which states of context-dependent models are tied, thereby sharing data,

according to shared properties. The state tying is performed by greedy optimization of a given

criterion, usually maximum likelihood. An additional property of this approach is that it also

permits the modeling of contexts that were unseen in the training data.

However, no such decision tree clustering algorithms have been available to date for the KL-

HMM framework, i.e., in the context of posterior distributions. Therefore, in the next section,
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we present an algorithm that allows us to perform decision tree clustering for KL-HMM based

ASR systems.

4.6 Tied states KL-HMM

In this section, we first briefly present the standard likelihood based decision tree clustering

before we introduce the novel algorithm for KL-HMMs. Then, we evaluate the proposed

algorithm on the Greek SpeechDat(II) data and compare it to monophone and triphone

KL-HMMs.

4.6.1 Likelihood based decision tree criterion

Suppose that we have a set of HMM states D = {d 1, · · · ,d D }, which we wish to tie using the

standard decision tree method [Young et al., 1994] such that at the parent node we have a set

of questions {m}. Each question can then split D into two non-overlapping subsets Dy (m) and

Dn(m), where subscripts y and n indicate the binary split that separates the set into yes and

no responses to question m. The questions and the tree topology are chosen to maximize the

log-likelihood of the training data given the tied states (terminal nodes).

Assuming that 1) the assignments of observations to states are not altered during the clustering

procedure, 2) the contribution of the transition probabilities to the total likelihood can be

ignored, and 3) the total likelihood of the data can be approximated by a simple average of

the log-likelihoods weighted by the probability of state occupancy, the log-likelihood of the

training data can be approximated as [Young et al., 1994] :

L (D) ≈−1

2
(log[(2π)C |Σ(D)|]+C )

∑
d`∈D

T∑
t=1

γ`(xt ), (4.7)

where, for training data pooled in set of states d` ∈D, L (D) is the log-likelihood, Σ(D) is the

variance of data in the set of states D, T is the number of frames in the training data and

γ`(xt ) is the posterior probability of state d` for acoustic observation vector xt of dimension

C . Assuming hard occupation decision for states, i.e. ˜̀= argmax` γ`(xt ) : γ ˜̀ = 1,γ 6̀= ˜̀ = 0, we

can further simplify (4.7):

L (D) ≈−1

2
(log[(2π)C |Σ(D)|]+C )

∑
d`∈D

T `, (4.8)

where T ` is the number of times that state d` is observed in the training data.

Since each question splitsD into two non-overlapping subsets Dy (m) andDn(m) at each node,

we can choose the question m that maximizes the likelihood difference ∆L (m|D):

∆L (m|D) =L (Dy (m))+L (Dn(m))−L (D). (4.9)
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4.6. Tied states KL-HMM

To avoid overfitting, the stopping criterion is usually based on a combination of minimum

cluster occupancy and minimum increase in log-likelihood threshold. The latter can auto-

matically be determined with the minimum description length (MDL) criterion [Shinoda and

Watanabe, 1997, Zen et al., 2007].

It is evident from these equations that the likelihood does not depend on the training observa-

tions themselves but merely on the variance over training data corresponding to the states

(which can be calculated from the state probability density functions) and the state occupancy

statistics. Next, we show that a similar derivation exists for systems that use a KL divergence

based cost function to perform ASR.

4.6.2 Kullback–Leibler divergence based decision tree criterion

The goal of this section is to derive a decision tree clustering algorithm that is based on the

KL divergence and independent of the posterior features Pt . The proposed approach is sim-

ilar in spirit to the decision tree clustering approach that uses the entropy based distance

measure [e.g. Rogina, 1997]. The KL divergence is not symmetric and Aradilla [2008] derived

training algorithms for both asymmetric KL divergence based local scores. The state distribu-

tion estimates resulting from d(Pt ,Q`) as defined in (3.14), page 35, is given in (4.10). Since

d(.), as defined in (3.14), is not symmetric, the state distribution estimates for d(Q`,Pt ) are

different and given in (4.11).

Q`
k = 1

T `

T `∑
t=1

Pt ,k , (4.10)

Q`
k = Q̃`

k

||Q̃`||1
, (4.11)

with

Q̃`
k =

(
T `∏
t=1

Pt ,k

) 1
T`

, (4.12)

and ||.||1 being the L1 norm:

||Q̃`||1 =
S∑

k=1
Q̃`

k . (4.13)

Note that the sum and the product in (4.10) and (4.12) are over the T ` feature vectors that are

associated with state d`. Hence, as we have already seen, d(Pt ,Q`) leads to the arithmetic

mean. The local score d(Q`,Pt ) on the other hand, leads to the normalized geometric mean.

The choice to use d(Pt ,Q`) for HMM training and decoding instead of d(Q`,Pt ) is discussed

later in Chapter 5. One of the main properties of the standard likelihood based decision

tree clustering algorithm is that the likelihood does not depend on the training observations
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themselves. For the KL divergence based decision tree clustering algorithm we therefore

use d(Q`,Pt ) because there is no closed form solution that is independent of the observed

posteriors Pt for the proposed algorithm if d(Pt ,Q`) is used.

The local score d(Q`,Pt ) is always positive, and zero if and only if the posterior feature vector

and the state posterior vector are the same, i.e.:

d(Q`,Pt ) ≥ 0 and d(Q`,Pt ) = 0 iff Pt =Q`. (4.14)

Hence, instead of maximizing the log-likelihood, we propose to minimize:

K (D) = ∑
d`∈D

T `∑
t=1

S∑
k=1

QD
k log

(
QD

k

Pt ,k

)
, (4.15)

where D is a set of states d` and QD the categorical distribution associated with a set of states.

In the reminder of this section we show that QD can be obtained based on the individual state

distributions Q` independently of Pt and subsequently formulate K (D) only dependent on

Q`, ||Q̃`||1 and T `.

Categorical distribution associated with a set of states QD

Given (4.11), QD
k , can be written as:

QD
k = Q̃D

k

||Q̃D||1
, (4.16)

with

Q̃D
k =

( ∏
d`∈D

T `∏
t=1

Pt

) 1∑
d`∈D T`

=
( ∏

d`∈D

(
Q̃`

k

)T `
) 1∑

d`∈D T`

=
( ∏

d`∈D

(
Q`

k ||Q̃`||1
)T `

) 1∑
d`∈D T`

. (4.17)

Hence, we can express QD based on Q`, ||Q̃`||1 and T `, thus without having access to the

posterior features Pt .

KL divergence based decision tree cost function K (D)

The KL divergence based decision tree cost function given in (4.15) can be expanded as:

K (D) = ∑
d`∈D

T `∑
t=1

S∑
k=1

QD
k logQD

k − ∑
d`∈D

T `∑
t=1

S∑
k=1

QD
k logPt ,k , (4.18)

= ∑
d`∈D

T `
S∑

k=1
QD

k logQD
k −

S∑
k=1

QD
k

∑
d`∈D

T `∑
t=1

logPt ,k , (4.19)
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where (4.19) exploits the fact that QD
k does not depend on t . Furthermore, the second term

of (4.19) can be simplified as follows:

S∑
k=1

QD
k

∑
d`∈D

T `∑
t=1

logPt ,k =
S∑

k=1
QD

k log

( ∏
d`∈D

T `∏
t=1

Pt ,k

)
, (4.20)

=
S∑

k=1
QD

k

∑
d`∈D

T ` log
(
Q̃D

k

)
, (4.21)

=
S∑

k=1
QD

k

∑
d`∈D

T ` log
(
QD

k ||Q̃D||1
)

, (4.22)

=
S∑

k=1
QD

k

∑
d`∈D

T `
(
log

(
QD

k

)+ log
(||Q̃D||1

))
. (4.23)

Substituting (4.23) into (4.19) yields:

K (D) = ∑
d`∈D

T `
S∑

k=1
QD

k logQD
k − ∑

d`∈D
T `

S∑
k=1

QD
k

(
log

(
QD

k

)+ log
(||Q̃D||1

))
, (4.24)

=− ∑
d`∈D

T ` log
(||Q̃D||1

) S∑
k=1

QD
k , (4.25)

=− ∑
d`∈D

T ` log
(||Q̃D||1

)
, (4.26)

since by definition:
∑S

k=1 QD
k = 1.

Combining (4.13), (4.17) and (4.26) leads to:

K (D) =−
( ∑

d`∈D
T `

)
log

 S∑
k=1

( ∏
d`∈D

(
Q`

k ||Q̃`||1
)T `

) 1∑
d`∈D T`

 . (4.27)

Thus, the KL divergence based decision tree cost function, K (D), can be calculated based on

the statistics Q`, ||Q̃`||1, and T ` of the individual states.

For the splitting of a set of states D, we propose to choose the question m that maximizes the

KL divergence based cost function difference ∆K (m|D):

∆K (m|D) =K (D)− (
K (Dy (m))+K (Dn(m))

)
, (4.28)

in order to minimize K . Similarly to the likelihood based decision tree, the stopping criteria

can be based on a combination of minimum cluster occupancy and minimum decrease in

the cost function threshold. For the likelihood based tree, the MDL criterion can be used to

determine the minimum increase in log-likelihood threshold automatically. However, it is not

evident how to determine the minimum description length for a posterior based model such

as KL-HMM. Therefore, in this thesis, we tune the minimum decrease in the cost function
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threshold on a development set rather than determining it automatically.

In a multilingual setup, there can be a mismatch between presented context in the multilingual

decision tree and the context in the new target language. To address this issue, a polyphone

decision tree specialization algorithm was proposed [Schultz and Waibel, 2000]. In our case

however, the multilingual data is used to train the MLP and we use only Greek data to build

the decision tree. Hence, this alleviates the need of such an algorithm.

4.6.3 Comparison of monophone, triphone and tied states KL-HMM

We evaluate the proposed decision tree clustering algorithm on Greek SpeechDat(II) data. As

usually done in HMM/GMM ASR systems, for KL-HMM, we also build one decision tree for

each phone [Young et al., 2006]. The root node of the tree contains all the triphone models

where the corresponding phone is the center phone. Then, the tree is built according to the

procedure described in Section 4.6.2. We fix the the minimum occupancy threshold to 20.

Similar to the other systems presented in this chapter, the language model scaling factor, the

word insertion penalty and the minimum decrease in the cost function threshold (decision

tree) are tuned only once on the development set for the system trained on all the training

data. For the successive experiments on subsets of the training data, the same values are used.

Word accuracies and the number of tied states of the corresponding acoustic model are given

in Table 4.4.

Figure 4.3 shows the performance of the monophone KL-HMM (KL-HMM mono), the triphone

KL-HMM with backoff strategy (KL-HMM tri) as well as the KL-HMM with tied states (KL-

HMM tied). The tied states KL-HMM system is always the best performing system. For only

5 min of data it performs marginally better than KL-HMM mono, but for 9 min of data it already

performs significantly better. The tied states KL-HMM system performs significantly better

than KL-HMM tri for all investigated amounts of training data.

4.7 Comparison of KL-HMM, MLLR, MAP and Tandem

As additional reference points, the results of a standard HMM/GMM system, a maximum

likelihood linear regression (MLLR) system, a maximum a posteriori (MAP) adaptation sys-

tem, and a multilingual standalone Tandem system are compared to tied states KL-HMM in

Figure 4.4. Note that the scale of the y-axis is not the same for Figures 4.3 and 4.4. For each

Table 4.4: KL-HMM tied states system performance on SpeechDat(II) Greek. The word accura-
cies on the test set as well as the number of tied states is given.

Data (in minutes) 5 9 18 37 75 152 308 808

KL-HMM tied 80.3% 81.1% 82.2% 83.0% 83.6% 84.0% 84.4% 84.8%
Number of states 110 133 180 270 440 734 1,213 2,278
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Figure 4.3: Comparison of the monophone, triphone and tied states KL-HMM systems on
Greek ASR, using different amounts of training data. The x-axis is in logarithmic scale.

acoustic modeling technique, language model scaling factor and word insertion penalty are

tuned for the system that uses all the training data.

The HMM/GMM system uses MF-PLP features and the MDL based decision tree cluster-

ing [Shinoda and Watanabe, 1997]. The tied triphone models are then modeled with 2, 4,

8 and 16 mixtures of Gaussians with diagonal covariance. Rather than using sophisticated

algorithms such as split and merge [Ueda et al., 1998], we limit ourselves to using the same

number of Gaussians for all states, but tune that number on development data. The MDL

based decision tree clustering leads to 2,817 states each modeled with a mixture of 16 Gaus-

sians for the system that uses all the training data and 107 states each modeled with a mixture

of 4 Gaussians for the system that uses 5 min of data. Hence, the standard likelihood based

decision tree clustering algorithm and the KL divergence based novel decision tree clustering

algorithm yield similar number of states. However, the total number of parameters differ

substantially because of the parsimonious use of parameters of the KL-HMM system (117 per

state) compared to a GMM system with for example 4 Gaussians (4×39+4×39+3 = 315 per

state).

If all the training data is used, there is only a marginal, insignificant, difference between the

performance of the standard HMM/GMM ASR system and the tied states KL-HMM system.

For the systems that are trained on less than 1 h of training data, the tied states KL-HMM

system performs significantly better than the HMM/GMM system. However, the HMM/GMM

system does not use the multilingual data that the KL-HMM indirectly uses through the MLP

trained on the five European languages British English, Italian, Spanish, Swiss French and

Swiss German.
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Figure 4.4: Comparison of tied states KL-HMM, HMM/GMM, MLLR, MAP adaptation and
multilingual standalone Tandem on Greek ASR, using different amounts of training data. The
x-axis is in logarithmic scale.

Therefore, we also evaluate the multilingual Tandem system that uses conventional HM-

M/GMM structures to model the universal posterior features. Besides the choice of the

features, the training is same as for the monolingual standard HMM/GMM system. To model

universal posteriors with Gaussians, as usually done, we apply logarithm and PCA to decor-

relate. To directly compare the impact of the different modeling techniques (GMMs versus

KL-HMM), we evaluate a standalone Tandem system and do not concatenate the MF-PLP

features as often done. For systems trained form less than 2 h of training data, the tied states

KL-HMM system yields significantly better results than the multilingual Tandem system. The

results, shown in Figure 4.4, suggest that the multilingual Tandem system is suitable to only

a limited extent for exploiting the multilingual information. However, for the experiments

reported here, we keep all the dimensions after PCA, hence the number of parameters that

need to be trained on small amounts of data are considerably higher than for the KL-HMM

system. We will see later in Chapter 6 how to use Tandem systems more efficiently.

Furthermore, to evaluate whether the new language can be accommodated by linear trans-

forms, we first train a triphone HMM/GMM system on the multilingual data (using the uni-

versal phone set). Each triphone state is modeled with a mixture of 16 Gaussians. Then, we

apply the standard MLLR and use a regression tree that allows up to 32 regression classes to

adapt the universal phone models to the target language. Since not all the Greek phones are

present in the universal phone set, we map the palatal plosives c and é to the velar plosives k

and g respectively. However, as seen in Figure 4.4, the MLLR performance on this language

adaptation task is rather low.

60



4.8. Conclusion

From earlier studies, we know that MAP adaptation performs better than MLLR if there is more

than about 10 min of data [Wang et al., 2003]. Therefore, we also investigate MAP adaptation.

We use the same multilingual seed models that we already used for the MLLR experiments

and apply standard MAP adaptation. Hence, the mean µ`m of mixture component m and state

` is adapted as follows:

µ̂`m = N`
m

N`
m +τµ

G ,`
m + τ

N`
m +τµ

M ,`
m , (4.29)

where N`
m is the occupation likelihood of the Greek data, τ a parameter to tune, µG the mean

of the Greek data and µM the mean of the multilingual data. We tune τ for each system and

apply the same manual phone mapping as done for MLLR. As expected, Figure 4.4 shows that

MAP adaptation performs better than MLLR for larger datasets (more than 30 min of data). For

smaller datasets, the performance of MLLR and MAP adaptation is not statistically different.

Altogether, the tied states KL-HMM system yields the best performance. Note that similar

figures can be found in [Imseng et al., 2012b] and [Imseng et al., 2012d]. For those experiments,

we used a symmetric KL divergence based measure. However, more recently we found that

the asymmetric KL divergence is in fact more robust. This is also intuitively reasonable in that

the underlying acoustic modeling problem is not symmetric since we observe the posterior

features and train the categorical distributions. This effect is more pronounced for tasks,

where the source and target phone sets essentially differ. We will further discuss the choice of

the local score measure later in Section 5.4.

4.8 Conclusion

In this chapter, we extended the existing KL-HMM framework and presented a decision tree

state clustering algorithm for KL-HMM systems. For the evaluation, we used multilingual

data from five source languages to boost the performance of a Greek speech recognizer and

simulated low-resource scenarios by restricting the amount of Greek training data.

The tree-based KL-HMM system successfully exploits multilingual information in the form of

universal phone posterior features and outperforms all other systems for very small amounts

of data (less than one hour). If there are 10 h of training data available, there is no statistically

significant difference between the performance of the tied states KL-HMM system and a

standard HMM/GMM system.

In the next two chapters, we will further apply the tied states KL-HMM system to non-native

and under-resourced language ASR, and extensively compare it to related approaches.
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5 Non-native ASR

In this chapter, we apply KL-HMM to non-native speech recognition. We start with the

hypothesis that KL-MM is beneficial for non-native and accented speech because we can train

the source MLP (ΘS ) with large amounts of multilingual data and then handle the variability

in pronunciations with small amounts of data by learning the KL-HMM parametersΘM .

After a review of related work, we first explore multilingual KL-HMM systems and apply

them to the non-native HIWIRE dataset. Therefore, we use MLP-UNI, the MLP trained on

multilingual data as explained in Section 4.4.1, page 51, where we reported stochastic phone

space transformation and monophone KL-HMM performance on the HIWIRE dataset. In this

section, we extend the study to a tied states KL-HMM system.

Then, instead of using multilingual MLPs, we also investigate MLPs trained on a language

different from the target language (crosslingual KL-HMM). We train four different MLPs on

Italian, Spanish, Swiss French and Swiss German and subsequently use them as posterior fea-

ture estimators. We then compare the performance of the crosslingual systems on recordings

of speakers with a non-native accent. We show that an MLP trained on out-of-language data is

beneficial for the ASR performance on non-native data. This effect gets more pronounced if

the MLP is trained on data from the mother tongue of a non-native speaker.

Furthermore, we conclude the studies on non-native speech with an extensive theoretical and

experimental comparison of KL-HMM to related approaches.

5.1 Related work

We discussed earlier, in Chapter 3, that humans are able to produce a large variety of acoustic

sounds which linguists have categorized into segments called phones, and that all those

phones, across speakers and languages, share a common acoustic space. It is also known

that acoustic realizations of the same phone exhibit high variability. Modeling variability of

the acoustic realizations becomes even more challenging if we have to deal with non-native

speech, because often phone realizations from two different languages are borrowed [Van Com-
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Chapter 5. Non-native ASR

pernolle, 2001]. Therefore, we hypothesize that KL-HMM, which is able to model the relation

between different phones through implicit stochastic phone transformations, is beneficial for

non-native ASR. Hereafter, we review related approaches that also model the relation between

different phones.

Similarly to semi-continuous HMMs (SCHMMs), and also presented in Chapter 2, page 16,

Schultz and Waibel [2001] proposed ML-tag, an HMM-based method to estimate language-

independent acoustic models. In a conventional HMM/GMM framework, each state is mod-

eled with a mixture of Gaussian distributions. If the IPA symbol set of two context-dependent

states from different languages is the same, the training data of all involved languages is then

used for the estimation of the Gaussian components (means and variances). The mixture

weights, however, are trained for each language individually. The universal phone model is

then transformed to a language specific model by estimating language dependent weights. In

contrast to ML-tag, our work focuses on hybrid HMM/MLP systems and not on HMM/GMM

systems, but we will show in Section 5.4.1 that KL-HMM is closely related to conventional

Gaussian mixture based SCHMM systems.

Sim and Li [2008] proposed explicit one-to-one probabilistic phone mapping (PPM) that

makes use of explicit phonetic reference transcriptions (in the form of target phones) and

outputs of a phone recognizer that uses source phones. As a result, PPM maps each target

phone to the most similar source phone. Then, Sim [2009] extended PPM to probabilistic

acoustic mapping (PAM) for hybrid HMM/MLP ASR systems, which allows implicit posterior

transformations. KL-HMM is similar in spirit to PAM. Both approaches are based on posterior

space transformations, and we compare them in detail in Section 5.4.2.

Similarly to PAM, hidden feature transformation [Gemello et al., 2007] can be used to improve

non-native ASR. More specifically, in a hybrid HMM/MLP framework, a linear transformation

is applied to the activation of an internal layer of the MLP. The transformation is performed

with a linear hidden network (LHN), which is trained with the standard MLP error back-

propagation algorithm. However, since a hidden layer is adapted, LHN is bound to a fixed

phoneme set and therefore less flexible than PAM and KL-HMM. We compare KL-HMM to

LHN in Section 5.4.3.

Various studies applied acoustic model transformations to non-native ASR in the form of con-

ventional adaptation techniques such as MLLR [Gales, 1998, Segura et al., 2007] or MAP [Gau-

vain and Lee, 1993, Wang et al., 2003].

More recently, combining acoustic model transformation and pronunciation modeling for

non-native ASR was also investigated [Bouselmi et al., 2012]. For acoustic model transfor-

mation, MAP and model re-estimation were evaluated and combined with pronunciation

modeling that was based on phonetic rule extraction. The phonetic rules were extracted by

comparing the canonical transcription to the transcription given by a phonetic recognizer.

However, if the mother tongue of the (non-native) speaker was unknown, MAP and model

re-estimation alone performed better than in combination with pronunciation modeling.

64



5.2. Multilingual KL-HMM

5.2 Multilingual KL-HMM

The multilingual KL-HMM system uses the posterior features, estimated by MLP-UNI, the

universal MLP, introduced in Section 3.3.2, page 39, and briefly recalled hereafter in the experi-

mental setup section. Section 5.2.2 then presents the results. Note that we already presented

results of the multilingual posterior transformation and the multilingual monophone KL-

HMM in Table 4.1, page 51. In this section, we also investigate a tied states KL-HMM system,

that exploits multilingual posteriors, on the non-native English database, HIWIRE.

5.2.1 Experimental setup

MLP-UNI is trained on 63 h of data from five European languages, namely British English,

Italian, Spanish, Swiss French and Swiss German (see also Section 2.5, page 22). Since all

the SpeechDat(II) dictionaries use SAMPA symbols, we merge phones that share the same

SAMPA symbol across languages to build the universal phone set that contains 117 phones. A

summary of the universal MLP training is shown in Table 3.1, page 38.

For the non-native ASR experiments, we use the HIWIRE dataset. Usually, the first 50 utter-

ances of each speaker serve as adaptation data. As shown in Table 5.1, we further reduce the

amount of adaptation data by using fewer utterances per speaker. The 3-minutes and the

2-minutes datasets are obtained by the same heuristic as already described in Section 3.3.5,

page 44.

The tied states KL-HMM system, as described in Chapter 4, uses the KL divergence based

decision tree algorithm, which requires to tune the minimum occupancy threshold and the

minimum decrease in the cost function threshold. As already done for the study on Greek

data in Chapter 4, we fix the the minimum occupancy threshold to 20. Since the HIWIRE

dataset does not provide a development set to tune thresholds, we take the first 30 utterances

of each speaker as training data (90 min). We then use utterances 31-50 of each speaker

as development set to tune the word insertion penalty, and the minimum decrease in the

cost function threshold. For all our subsequent experiments, we then use the same tuned

parameters.

Table 5.1: Utterance choice on the HIWIRE dataset to simulate low amount of data.

Amount of data [min] Considered Utterances

149 Utterances 1-50
90 Utterances 1-30
32 Utterances 1-10
16 Utterances 5-9
10 Utterances 3,5,7

3 Manually selected
2 Manually selected
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Figure 5.1: Word accuracies on the spoken pilot order recognition task of the HIWIRE database,
with 133 different words and a grammar perplexity of 14.9, for different amounts of training
data. Multilingual KL-HMM using state tying and multilingual monophone KL-HMM are
applied to non-native ASR. The performance of the multilingual posterior transformation as
reported in Table 3.6, page 44, is also shown. Furthermore, as an additional reference point,
speaker-dependent MLLR results, as reported by Segura et al. [2007], are also given. It is how-
ever important to keep in mind that the MLLR results come from a different implementation.

5.2.2 Results

Figure 5.1 shows the resulting performance in terms of word accuracy as a function of amount

of training data on the spoken pilot order task of the non-native English database, HIWIRE.

There are 133 different words and the grammar perplexity is 14.9 [Segura et al., 2007].

As expected, the tied states KL-MM outperforms the monophone KL-HMM (presented in

Section 4.4) due to the increased number of states in the target HMM. For comparison, Fig-

ure 5.1 also shows the performance of the multilingual posterior transformation as reported

in Table 3.6, page 44. As an additional reference point, speaker-dependent MLLR results, as

reported by Segura et al. [2007], are also given in the figure. It is however important to keep

in mind that they come from a different implementation. A detailed comparison of the tied

states KL-HMM system to related approaches is given later in Section 5.4.

5.3 Crosslingual KL-HMM

We have already seen that a multilingual MLP can significantly improve the ASR performance

of non-native ASR. In this section, we investigate crosslingual KL-HMMs, i.e. the MLP is

trained on a different language than the categorical distributions. Section 5.3.1 presents the

experimental setup and Section 5.3.2 the results.
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5.3. Crosslingual KL-HMM

Table 5.2: Overview over four MLPs used to estimate posterior features. The total amount of
training data, the frame accuracy on the development data (DEV acc.), as well as the phoneme
set including the number of phonemes (S) are given.

System Phoneme set Number of phonemes (S) TRN data DEV acc.

MLP-ES SAMPA Spanish 32 11.5 h 73.2%
MLP-IT SAMPA Italian 52 11.5 h 68.6%
MLP-SF SAMPA French 42 13.5 h 65.5%
MLP-SZ SAMPA German 59 14.1 h 60.4%

5.3.1 Experimental setup

We estimate the posteriors features with four different MLPs trained on data from Speech-

Dat(II). We train one MLP for each of the following European languages: Spanish (MLP ES),

Italian (MLP IT), Swiss French (MLP SF) and Swiss German (MLP SZ), respectively. Similarly to

the earlier experiments performed with SpeechDat(II) data, we only use Corpus S, which con-

tains ten read sentences per speaker and we split the databases into training (1,500 speakers),

development (150 speakers) and test (350 speakers) sets as described in Section 2.5, page 23.

For the MLP training, we only use the training and development sets.

All the MLPs are trained from 39 MF-PLP features in a nine frame temporal context as input. As

we usually do, we fix the number of parameters in each MLP to 10% of the number of available

training frames. Table 5.2 gives an overview over the four MLPs including the number of

outputs (number of phonemes S), the amount of training data and the frame accuracies on

the development data.

For the crosslingual studies, we explore monophone and tied states KL-HMM systems that use

three states per phone. We always use all the adaptation data for the training of the categorical

distributions. For the tuning of the word insertion penalty, we also use the adaptation data.

For state tying, we use the same thresholds as in Section 5.2. Evaluation is performed on the

test set.

5.3.2 Results

Recall that HIWIRE is a non-native English speech corpus that contains English utterances

pronounced by natives of France (31 speakers), Greece (20 speakers), Italy (20 speakers) and

Spain (10 speakers). Intuitively, we hypothesize MLP-SF to perform better on French accented

data, MLP-ES to perform better on Spanish accents and so on. Additionally, for comparison,

we do not train a system on Greek data (to keep one unseen non-native accent data set for

testing). However, we train a system on Swiss German (MLP-SZ), a non-native accent that is

not present in the HIWIRE data.

We evaluate monophone as well as tied states KL-HMM systems in a crosslingual setup. Results

for monophone KL-HMM systems are presented in Table 5.3. The last column (TST) shows
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Table 5.3: Word accuracies on the spoken pilot order task of the HIWIRE database with133
different words and a grammar perplexity of 14.9. Comparison of monophone KL-HMM sys-
tems where the MLP is trained on SpeechDat(II) data from different languages (see Table 5.2).
FR stands for French-, GR for Greek-, IT for Italian- and SP for Spanish-accented English,
respectively. Best results of each column are marked bold; italic numbers point to results that
are not significantly worse.

System FR GR IT SP TST

MLP-ES 92.6% 95.1% 92.4% 93.6% 93.3%
MLP-IT 93.6% 96.1% 93.9% 93.4% 94.2%
MLP-SF 93.8% 92.7% 91.7% 92.1% 92.8%
MLP-SZ 93.6% 95.2% 92.4% 92.9% 93.6%

the performance on the whole test set. The other columns report the performance on the

data of speakers with a particular accent (note that the acronyms for Spanish differ because

SpeechDat(II) officially uses ES and HIWIRE SP). The best result of each column is marked

bold. Italic numbers point to results that are not significantly worse than the best result. Recall

that we use the bootstrap estimation method [Bisani and Ney, 2004] and a confidence interval

of 95%, as described in Section 2.4, for all the significance tests.

As expected, MLP-SF performs best on French non-native speech, MLP-IT performs best on

Italian non-native speech and MLP-ES performs best on Spanish non-native speech. The

Swiss German models do not perform best on any of the accents.

System MLP-IT has the best average performance but, as hypothesized, the performance is

significantly worse compared to system MLP-EN (95.0%). Interestingly, Raab et al. [2008]

also evaluated native German, Italian, Spanish and French models on HIWIRE data. The

performance they reported is lower than what we report here, but Italian still outperformed all

other models.

The results of the tied states KL-HMM experiments are shown in Table 5.4. There is no signifi-

Table 5.4: Word accuracies on the spoken pilot order recognition task of the HIWIRE database
with133 different words and a grammar perplexity of 14.9. Comparison of tied states KL-
HMM systems where the MLP is trained on SpeechDat(II) data from different languages (see
Table 5.2). FR stands for French-, GR for Greek-, IT for Italian- and SP for Spanish-accented
English, respectively. Best results of each column are marked bold; italic numbers point to
results that are not significantly worse.

System FR GR IT SP TST

MLP-ES 96.3% 97.4% 95.9% 96.4% 96.5%
MLP-IT 96.3% 97.5% 96.1% 95.9% 96.5%
MLP-SF 96.7% 96.8% 95.5% 95.2% 96.2%
MLP-SZ 97.0% 97.4% 95.2% 96.2% 96.5%
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cant difference between the results on the complete test set for all four different languages

(column TST). However, they all perform significantly worse than the English system (97.2%).

If the individual accents are analyzed separately, there are significant differences between

the systems. For the Spanish- and the Italian-accented speech, the system that uses the MLP

trained on the corresponding language performs best as expected. For the French-accented

speech, the system based on the Swiss German MLP performs marginally (not statistically

significant) better than the system based on the Swiss French MLP.

5.4 Comparison with related work

In this section, we discuss the relationship between KL-HMM and PAM, LHN, MLLR, SCHMM,

and ML-tag systems. We start the section with a discussion of the KL-HMM local score given

in (3.14), page 35, and recalled here:

d(Pt ,Q`) =
S∑

k=1
Pt ,k log

(
Pt ,k

Q`
k

)
, (5.1)

where Pt is the observed feature vector at time t , and Q` the reference vector associated with

HMM state `.

5.4.1 Semi-continuous HMM (SCHMM)

As already seen earlier, in Chapter 4, the KL divergence is not symmetric and Aradilla [2008]

studied different variants of KL divergence based local scores for the KL-HMM framework.

Given the posterior feature at time t , Pt , and the HMM state distribution of state `, Q`, the

following local scores have been introduced:

dK L = d(Q`,Pt ) =
S∑

k=1
Q`

k log

(
Q`

k

Pt ,k

)
, (5.2)

dRK L = d(Pt ,Q`) =
S∑

k=1
Pt ,k log

(
Pt ,k

Q`
k

)
, (5.3)

dSK L = 1

2
dK L + 1

2
dRK L . (5.4)

In this thesis, we always use dRK L for KL-HMM training and decoding and dK L for the decision

tree clustering algorithm. Different local scores result in different estimates for Q`
k [Aradilla,

2008]:

Q`
k = 1

Z

(∏T `

t=1 Pt ,k

) 1
T` for dK L (normalized geometric mean), (5.5)

Q`
k = 1

T `

∑T `

t=1 Pt ,k for dRK L (arithmetic mean), (5.6)
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where Z acts as a normalization constant. For dSK L , there is no closed form solution.

The standard Viterbi algorithm maximizes the likelihood p(xt |Ω). In SCHMM [Huang and

Jack, 1989], recalling (2.17), page 16, each state d` is parametrized as:

p(xt |Ω,d`) =
S∑

k=1
c`k pk (xt |Ωk ), (5.7)

where the probability density function pk of sk , the k th Gaussian distribution, is parametrized

withΩk = {µk ,Σk }, shared among all the states, and the weights c`k are estimated for each state

individually.

In SCHMM, we assume thatΩk is fixed ∀k and only c`k needs to be estimated. The well-known

maximum likelihood solution for c`k (see, e.g., Bilmes [1998]) is given by:

c`k = 1

T `

T `∑
t=1

p(sk |xt ,Ωk ), (5.8)

where the sum extends over all t associated to a state d`. In that particular context, it follows

from the close resemblance of (5.6) and (5.8) that estimating c`k along a maximum likelihood

criterion is equivalent to estimating Q`
k if dRK L is used.

5.4.2 Probabilistic acoustic mapping (PAM)

PAM, introduced by Sim [2009, Section IV.C], estimates the target phone probability P (d`
t |xt )

as follows:

P (d`
t |xt ) = 1

Z
exp

( S∑
k=1

W`,k logP (sk
t |xt )+b`

)
, (5.9)

where Z acts as a normalization factor. W and b are the weight matrix and the bias vector of

an MLP, respectively. Recall, the relative entropy between two discrete random variables of

dimensionality S:

H(P ,Q) =−
S∑

k=1
Pk logQk . (5.10)

We can rewrite (5.9) as:

P (d`
t |xt ) =

exp
(
−H(W `,Pt )+b`

)
∑D

j=1 exp
(
−H(W j ,Pt )+b j

) , (5.11)

where W ` are the weights associated with the `th MLP output. If the MLP is trained with the

cross-entropy criterion (see (2.4), page 12, for the cross-entropy based MLP training) the local
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Table 5.5: Word accuracies on the test data of the HIWIRE data set. For all the experiments
all the adaptation data was used for training. Linear PAM consists of a two-layer MLP and
non-linear PAM of a three-layer MLP as described in [Sim, 2009]. RKL-tied corresponds to
the multilingual KL-HMM system using state tying, presented in Section 5.2, and performs
significantly better than all other systems.

System Score Re-align Linear Context Word accuracy

KL-mono dK L embedded yes no 96.7%
KL-tied dK L embedded yes yes 97.6%
PAM dPAM no yes no 96.2%
PAM dPAM yes yes no 96.9%
PAM dPAM no no no 97.1%
PAM dPAM yes no no 97.4%
RKL-tied dRK L embedded yes yes 98.1%

score dPAM that is minimized can be written as:

dPAM =− logP (d`
t |xt ) ∝

(
H(W `,Pt )−b`

)
. (5.12)

Using (5.10), Equations (5.3) and (5.2) can be rewritten in terms of the entropy as:

dRK L = H(Pt ,Q`)−H(Pt ,Pt ), (5.13)

dK L = H(Q`,Pt )−H(Q`,Q`). (5.14)

Hence, dK L and dPAM are closely related and H (Q`,Q`) in dK L acts as a target dependent bias.

For dRK L however, the bias is source dependent: H(Pt ,Pt ).

In the following, we summarize the differences between KL-HMM, with dRK L as local score,

and PAM. Table 5.5 shows how these differences affect the WACC.

• Cost function: dRK L performs better than dK L , which performs similar to dPAM .

• Embedded re-alignment: both, PAM and the proposed approach allow to benefit from

re-alignment. In the case of PAM, a re-alignment requires the MLP to be retrained. As

seen in Table 5.5, PAM with re-alignment yields a better performance than PAM without

re-alignment.

• Context-dependent models: in theory, both approaches can benefit from context-

dependent models. In practice however, due to data sparsity, usually state tying is

required. We developed an algorithm to perform state tying at the KL-HMM state level.

In the case of PAM, it is not obvious how to tie MLP outputs to train a context-dependent

recognizer on limited amounts of data.

Note that the optimal number of hidden units for the non-linear PAM approach was 800-900

in [Sim, 2009]. To evaluate wether more hidden units yield a better performance, we doubled
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Table 5.6: Comparison of word accuracies on the test data of the HIWIRE data set. As an addi-
tional reference point, we show the LHN results reported in [Gemello et al., 2007]. However,
the results are only conditionally comparable since the KL-HMM systems (RKL-mono and
RKL-tied) are trained on 8kHz multilingual data, and the LHN systems on 16 kHz English data.

System Adaptation MLP trained on Word accuracy

LHN Speaker-based English 16 kHz 95.4 %
LHN Data-based English 16 kHz 98.2 %
RKL-mono Speaker-based Multilingual 8 kHz 96.1 %
RKL-tied Data-based Multilingual 8 kHz 98.1 %

the amount of hidden units and found a marginal improvement. Therefore, we report the

performance of the latter configuration in Table 5.5. We also investigated more than one

re-alignment iteration for PAM, but did not observe further improvement.

5.4.3 Linear hidden network (LHN)

The linear hidden network (LHN) is another MLP-based adaptation approach to perform a

hidden feature transformation [Gemello et al., 2007]. The LHN is applied to the activations of

the internal layer and can be trained using the standard back-propagation algorithm while

keeping frozen the weights of the original network. Once the LHN is trained, it is combined

with the original (unadapted) weights:

Wa =WLH N ×WORIG

ba = bLH N ×WORIG +bORIG

where Wa and ba are the weights and the bias of the adapted layer, WORIG and bORIG are the

weight and bias of the layer following the LHN in the original unadapted network, and WLH N

and bLH N are the weight and the biases of the LHN.

KL-HMM differs from LHN in many aspects, including the ones already listed at the end of

Section 5.4.2. Additionally, LHN is bound to a given and fixed phoneme set and is therefore

closely related to MLLR. Based on hidden layer adaptation, it is not obvious how to apply

phone space transformations. To use an already trained original MLP, it needs to be trained

from aligned data that makes use of the same phoneme set (targets) than the adaptation data.

Gemello et al. [2007] used LHN to adapt an MLP, previously trained on native English, to the

HIWIRE data. They investigated speaker-based adaptation (one LHN per speaker) and data-

based adaptation (one LHN for all data). As shown in Table 5.6, the data-based LHN results in

similar performance than the tied states KL-HMM system presented in Section 5.2, system

RKL-tied. For the speaker-based LHN adaptation, they adapted and tested for each speaker

separately. Not every speaker pronounced each phone in the first 50 utterances (adaptation

set). Therefore, we investigate a monophone KL-HMM (RKL-mono) instead of a tied states
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Table 5.7: Word accuracies on the test data of the HIWIRE data set. For all the experiments all
the adaptation data was used for training. Results on TIMIT were reported in [Segura et al.,
2007].

System Seed trained on kHz Word accuracy

MLLR TIMIT 16 97.3%
MLLR SpeechDat(II) English 8 95.7%
MLLR SpeechDat(II) multilingual 8 95.7%
RKL-tied SpeechDat(II) English 8 97.2%
RKL-tied SpeechDat(II) multilingual 8 98.1%

KL-HMM on a per-speaker basis. For the phones without adaptation data, the categorical

distributions are never updated and keep the initial values. RKL-mono outperforms the

speaker-based LHN. Note that the results in Table 5.6 are only given as a reference point since

the proposed approach was trained on 8 kHz multilingual data, and LHN on 16 kHz English

data. Gemello et al. [2007] also performed decoding with unadapted acoustic models and

reported significantly lower recognition accuracies if 8 kHz data was used during training.

Therefore, they only adapted models trained on 16 kHz data.

5.4.4 Maximum likelihood linear regression (MLLR)

MLLR has been widely used to perform acoustic model adaptation for HMM/GMM based

recognizers. Segura et al. [2007] also applied conventional MLLR speaker adaptation with

HTK to adapt models trained on TIMIT, a well-known acoustic-phonetic continuous speech

corpus, to the HIWIRE database. To give another reference point, we apply the manual

mappings, given in Table A.2, page 103, and perform speaker-based MLLR with HTK to adapt

the SpeechDat(II) English and multilingual seed models to HIWIRE.

It can be seen in Table 5.7 that the multilingual data does not improve the word accuracy on

HIWIRE if MLLR is used. We attribute the performance difference between MLLR on TIMIT

and SpeechDat(II) English to the different nature of the data such as sampling frequency,

microphone, and background noise.

5.4.5 Language-independent acoustic models (ML-tag)

Furthermore, we can compare our work to the estimation of language-independent acoustic

models using the ML-tag method [Schultz and Waibel, 2001], also introduced in Chapter 2.

Recalling (2.18), page 17:

p(xt |Ω,d`) =
N∑

n=1
c`nN (xt |Ω`

n), (5.15)
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where N are the number of Gaussians used to model state d`. HMM states across different

languages share the Gaussian components Ω`
n if they are represented with the same IPA

symbol. The mixture weights c`n however, are trained for each HMM state individually.

Hence, ML-tag uses a pool of N Gaussians for each universal phone. In that case, language

specific phone models are then obtained by estimating language dependent weights, acting as

similarity measure between universal and monolingual phones.

The proposed KL-HMM system can convert universal phone posteriors to any language. Thus,

it can be seen as a discriminative approach of estimating language-independent acoustic

models with the ML-tag method.

5.5 Conclusion

In this chapter, we have evaluated KL-HMM systems in the specific context of accented speech

recognition, involving high phone acoustic variability and phone set mismatches between

(multilingual) phone sets. KL-HMM training iteratively optimizes a principled KL divergence

based function, which was shown to be amenable to posterior distributions.

The resulting system has been shown to be able to efficiently exploit multi- and crosslingual

adaptation data, using a parsimonious number of parameters while also being particularly well

suited in the case of phone set mismatch. This conclusion is further supported by additional

evidence and theoretical and experimental comparisons with similar approaches such as PAM,

LHN and MLLR.

In the next chapter, we investigate how KL-HMM can improve ASR for under-resourced

languages.
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We have shown earlier, in Chapter 4, that ASR may benefit from data in languages other than

the target language, especially in the case when there is less than one hour of training data for

the language to be recognized. However, in Chapter 4, we only simulated an under-resourced

language by artificially reducing the amount of available training data.

In this chapter, taking Afrikaans as a representative of a real under-resourced language, we

report how to boost the performance of an under-resourced Afrikaans ASR system by using

already available Dutch data.

We use three different acoustic modeling techniques, namely KL-HMM, Tandem as well

as subspace Gaussian mixture models (SGMMs) to optimally exploit available multilingual

resources. In the case of KL-HMM and Tandem, this is done through posterior features

estimated by an MLP, and in the case of SGMMs, this is done through parameter sharing.

We show that all three resulting multilingual systems yield improvement compared to a

conventional monolingual HMM/GMM system only trained on Afrikaans. Furthermore, we

show that KL-HMMs are extremely powerful for under-resourced languages: using only six

minutes of Afrikaans data (in combination with out-of-language data), KL-HMM yields about

30% relative improvement compared to conventional MLLR and maximum a posteriori (MAP)

based acoustic model adaptation.

6.1 Related work

Developing a state-of-the-art speech recognizer from scratch for a given language is expensive.

The main reason for this is the large amount of data that is usually needed to train current

recognizers. Data collection involves large amounts of manual work, not only in time for the

speakers to be recorded, but also for annotation of the subsequent recordings. Therefore, the

need for training data is one of the main barriers in porting current systems to many languages.

On the other hand, large databases already exist for many languages.
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Chapter 6. Under-resourced ASR

Engelbrecht and Schultz [2005] used multilingual seed models to bootstrap an Afrikaans

speech recognizer. To adapt the multilingual models to the Afrikaans language, they simply

retrained the models with 1,000 Afrikaans utterances. The adapted models performed more

than 50 % relative better than the unadapted models. On the other hand, Niesler [2007] studied

the sharing of resources on under-resourced languages, including Afrikaans, inspired by

multilingual acoustic modeling techniques proposed by Schultz and Waibel [2001]. However,

only marginal ASR performance gains were reported. We found in the previous chapters

that the relation between phonemes of different languages can be learned and exploited for

crosslingual acoustic model training or adaptation. Furthermore, we found that posterior

features, estimated by multilayer perceptrons (MLPs), are particularly well suited for such

tasks. Previous posterior feature studies that used more than one hour of target language data

reported rather small or no improvements (up to 5% relative) [Stolcke et al., 2006, Tòth et al.,

2008, Grézl et al., 2011]. However, those studies sometimes focused on languages that are very

different such as English and Mandarin [Stolcke et al., 2006] or English and Hungarian [Tòth

et al., 2008].

Vu et al. [2010] also studied scenarios where no transcriptions are available for the under-

resourced target language data. In this study, we assume to have transcriptions for the under-

resourced language data. However, we will show that we can limit the amount of needed,

transcribed data to a minimum.

In one of our initial studies [Imseng et al., 2012c], we focused on an Afrikaans ASR system

and used posterior features estimated by MLPs that were trained on similar languages such

as English, Dutch and Swiss German. We compared Tandem and KL-HMM, which are both

able to exploit multilingual information in the form of posterior features and investigated the

following aspects:

• Crosslinguality: We studied how out-of-language data can be used to improve ASR per-

formance of an under-resourced language. Due to the lack of an appropriate Afrikaans

language model, we reported phoneme accuracies. More specifically, in the KL-HMM

and Tandem setup, we explored systems, where the MLP is trained on data from a lan-

guage different from the target language. We also briefly discussed if there is a relation

between similarity of the other language and performance gain on the target language.

Germanic

Istveonic ErminonicIngveonic

English Afrikaans Swiss GermanDutch

Figure 6.1: Afrikaans in the context of the other considered Germanic languages: Dutch,
English and Swiss German.
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Table 6.1: Summary of the initial study on boosting Afrikaans ASR with out-of-language data.
Relative increase in phoneme accuracy compared to a monolingual system only trained on
Afrikaans is shown. KL-HMM gains more from multilinguality and Tandem from context-
dependency. In both cases, the gains are additive. The baseline results are phoneme accura-
cies.

Relative gain with KL-HMM Tandem

monolingual (baseline) 58.7 % 61.2 %
+(Dutch) context +2.6 % +8.7 %
+bilingual (Afrikaans-Dutch) context +10.6 % +10.3 %
+multilingual context +11.4 % +10.8 %

According to the tree in [Blažek, 2005], and also shown in Figure 6.1, Afrikaans and

Dutch are Istveonic Germanic languages whereas British English and Swiss German

are also Germanic languages, but located on different branches, namely Ingveonic and

Erminonic Germanic, respectively. Intuitively, we would expect that Dutch data should

provide most benefit. A similarity analysis of Heeringa and de Wet [2008] underpins this

assumption and our studies confirmed it. Indeed, the crosslingual setup with the Dutch

MLP outperformed the systems that used the MLPs trained on Swiss German or English

data.

• Context-dependency: Since there is a relatively large amount of Dutch data available,

we enriched the exploited out-of-language information by adding context dependency,

i.e. we trained the MLPs on context-dependent targets. As shown in Table 6.1, where

we report relative increase in phoneme accuracy compared to a monolingual KL-

HMM/Tandem system only trained on Afrikaans data, there is more improvement

for the Tandem systems.

• Multilingual context-dependency: We combined the resources of multiple languages in

the form of posterior features by concatenating MLP outputs. The MLPs were all trained

on context-dependent targets. In Table 6.1, we distinguish between +bilingual context

and +multilingual context. In the first case, we only combined the MLP outputs of an

Afrikaans and a Dutch MLP whereas in the latter case, we combined the MLP outputs of

all four involved languages. Table 6.1 reveals that given the output of an MLP trained

on Dutch, there is only marginal improvement if the output of MLPs trained on English

and Swiss German data are used as well.

Hence, for the subsequent experiments reported in this chapter, we will only use Dutch data to

boost the performance of an Afrikaans ASR system. Furthermore, in [Imseng et al., 2012c], we

limited ourselves to MLPs with relatively small numbers of context-dependent targets (about

200). Here, we investigate MLPs trained on context-dependent targets with ten times more

output units and compare the aforementioned acoustic modeling techniques to SGMM and

conventional adaptation techniques such as MLLR and MAP adaptation. Note that we used

the symmetric version of the KL divergence, dSK L , for the experiments in [Imseng et al., 2012c].
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Based on the findings of the last chapter, here, we always employ dRK L for the HMM training

and decoding.

6.2 Data

We use data from Afrikaans and Dutch as summarized in Table 6.2. The two databases are

described in Section 2.5, page 24. Here, we only give a brief overview.

6.2.1 Afrikaans

The Afrikaans data is available from the Lwazi corpus [Barnard et al., 2009] that consists of

utterances pronounced by 200 speakers, recorded over a telephone channel at 8 kHz. Each

speaker produced approximately 30 utterances, where 16 were randomly selected from a

phonetically balanced corpus and the remainder consisted of short words and phrases.

The dictionary [Davel and Martirosian, 2009] that we use contains 1,585 different words and

makes use of a phoneme set containing 38 phonemes, also shown in Table A.1, page 102. The

training and test sets are provided by the HLT group at Meraka. In total, about three hours of

training data and 50 minutes of test data is available (after voice activity detection).

Since we do not have access to an appropriate language model, we train a bi-gram phoneme

model on the training set and only report phoneme accuracies. The bi-gram phoneme model

can learn the phonotactic constraints of the Afrikaans language and has a phoneme perplexity

of 14.5 on the training set and 14.7 on the test set.

6.2.2 Dutch

We use data of the Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN) [Oostdijk,

2000] that contains standard Dutch pronounced by more than 4,000 speakers from the Nether-

lands and Flanders. We only use Corpus o because it contains phonetically aligned read speech

data pronounced by 324 speakers from the Netherlands and 150 speakers from Flanders.

Corpus o uses 47 phonemes, also shown in Table A.1, page 102, and contains 81 h of data after

the deletion of silence segments that are longer than one second. It was recorded at 16 kHz,

but since we use the data to perform ASR on Afrikaans, we downsample it to 8 kHz prior to

feature extraction.

6.3 Multilingual boosting strategies

The investigated approaches are well suited to exploit out-of-language data. Two of the pre-

sented approaches exploit out-of-language data on the feature level using posteriors, namely

Tandem and KL-HMM. The posterior feature based approaches exploit out-of-language infor-

78
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Table 6.2: Overview over MLPs trained on Dutch and Afrikaans data. The number of output
units, the amount of training data and the frame accuracy on the cross-validation set is given.

ID Language Number of Number of Amount of Frame accuracy
phonemes tied states training data on validation set

AF Afrikaans 38 187 3 h 43.8%
CGN Dutch 47 1,789 81 h 56.5%

mation in the form of an MLP which is trained on out-of-language data. SGMMs on the other

hand exploit out-of-language data on the acoustic model level and use a universal background

model (UBM) and shared projection matrices trained on out-of-language data.

6.3.1 Feature level approach

For each language (Afrikaans and Dutch), as usual, we use 39 MF-PLP features as input to the

MLP. In our earlier study [Imseng et al., 2012c], we found that systems that use MLPs which

are trained on context-dependent targets (triphones) outperform MLPs trained on context-

independent monophones. Therefore, we train both MLPs on triphone targets. To obtain

triphone targets, we develop a standard HMM/GMM system with all the training data for both

languages independently and use the standard likelihood based decision tree approach to tie

rare triphones. More specifically, we use the MDL criterion to automatically determine the

number of tied triphones for each language independently [Shinoda and Watanabe, 1997].

As described by Shinoda and Watanabe [1997], the MDL criterion has a hyper-parameter, c,

which controls the weight of the term that penalizes models with large amounts of triphones.

We tune c on the Afrikaans database and fix it to 16 (for both databases). The HMM/GMM

systems are then used to align the training data in terms of tied states.

During MLP training, the tied states alignment is used to obtain labels and we use 90% of

the training set for training and 10% for cross-validation to stop training. Table 6.2 shows

the number of output units (tied states) per MLP and also the frame accuracy on the cross-

validation set.

The HMM states d`, with ` ∈ {1, · · · ,D}, are associated with the target language. Each triphone

of the target language is modeled with three states and D is the total number of tied states. For

both KL-HMM and Tandem, we fix the transition probabilities to 0.5, as already discussed at

the end of Section 4.1, page 49. The emission probabilities are trained from within-language

data only. Here, we assume that we have access to a limited amount of within-language data

and vary the amount of Afrikaans data from six minutes to three hours.

As described in Chapter 4, and also shown in Figure 6.2, KL-HMM uses a categorical dis-

tribution to model the posteriors features. As shown in Figure 6.2, Tandem uses GMMs.

Therefore, the posterior features Pt need to be post-processed. More specifically, the log-

phone posteriors are decorrelated with a principal component analysis (PCA). The transfor-
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Figure 6.2: Illustrative comparison of the two feature-level based approaches, KL-HMM
and Tandem. KL-HMM directly models the raw posteriors using categorical distributions.
Tandem uses GMMs and therefore models decorrelated log-phone posteriors. GMMs and
categorical distributions are trained on target language data and the MLP can be trained on
out-of-language data.

mation matrix can be estimated on within-language data. Usually, the resulting feature vector

Rt = [Rt ,1, · · · ,Rt ,L]T, has a reduced dimensionality L.

6.3.2 Acoustic model level approach

To exploit out-of-language data, the SGMM model parameters can be divided into HMM-state

specific and shared parameters, as visualized in Figure 6.3 and also given hereafter:

p(xt |Ω,d`) =
I∑

i=1
c`i N (xt ;µ`i ,Σi ), (6.1)

µ`i = Mi v`, (6.2)

c`i = exp(wi ·v`)∑I
j=1 exp(w j ·v`)

, (6.3)

where all the states share the same I Gaussians. The model in each HMM state is then repre-

sented by a simple GMM with I Gaussians, mixture weights c`i , means µ`i , and covariances

Σi . The latter are shared across all states. The state-specific vectors v` ∈RU together with the

globally shared parameters M = [M1, · · · , MI ]T, where each Mi is a C ×U matrix with C being

the dimensionality of the cepstral features, and W = [w1, · · · , w I ]T with wi = [w1
i , · · · , wU

i ] are
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Figure 6.3: Out-of-language data exploitation with SGMMs. HMM-state specific parame-
ters are trained on the target language and the shared parameters can be trained on out-of-
language data.

used to derive the means and mixture weights representing the given HMM state. For the

initialization of the SGMM, a generic GMM with I Gaussians, denoted as UBM, modeling all

the speech is used.

As proposed by Burget et al. [2010], the projection matrices M and W together with the UBM

can be perceived as shared (language-independent) and can therefore be trained using large

amounts of data from different languages.

Equations (6.1), (6.2) and (6.3) assume (without loss of generality) one state-specific vector

v` to be assigned to each HMM state. However, we model each state with a mixture of sub-

states [Povey et al., 2011], each having its own sub-state specific vector v`j , where j = 1, · · · , Jd

with Jd being the number of sub-states of state d . In that case, we also need to estimate the

mixture weights c j for each sub-state. The sub-state-specific vectors v`j as well as the weights

c j are trained on within-language data.

6.4 Systems

In this section, we describe the systems that we investigate to study the exploitation of out-

of-language data in the framework of under-resourced ASR. Scaling factor and phoneme

insertion penalty are for each system individually tuned on the cross-validation set.
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Table 6.3: The Afrikaans phonemes without a matching Dutch seed model (same IPA symbol
not present in the Dutch phoneme set) are given in the left column. The corresponding
manually chosen Dutch seed models are listed in the right column.

Afrikaans Dutch

A: A
ae E
oe Y
ø: ø
H h

6.4.1 HMM/GMM

Each context-dependent triphone is modeled with three states. As usually done, we first

train context-independent monophone models, which serve as seed models for the context-

dependent triphone models. We use a mixture of eight Gaussians per state to model the

emission probabilities. To balance the number of parameters with the amount of available

training data, we apply conventional state tying with a decision tree that is based on the MDL

principle [Shinoda and Watanabe, 1997].

6.4.2 Maximum likelihood linear regression (MLLR)

To evaluate whether an under-resourced language can be accommodated by linear transforms,

we first train a triphone HMM/GMM system on the Dutch data. Each triphone state is modeled

with a mixture of 16 Gaussians. We then investigate the standard MLLR and use a regression

tree that allows up to 32 regression classes.

For most Afrikaans phonemes, we use the corresponding Dutch phoneme, represented with

the same IPA symbol, as a seed model for MLLR. However, not all the Afrikaans phonemes are

present in the Dutch phoneme set. The Afrikaans phonemes without matching Dutch seed

model are given in Table 6.3 together with the respective manually chosen Dutch seed model.

Furthermore, since the diphthongs i@, u@, @u, @i are not present in the Dutch phoneme set, we

split them into individual phonemes (monophthongs) as it was also done by Engelbrecht and

Schultz [2005].

6.4.3 Maximum a posteriori (MAP) adaptation

Since Köhler [1998] has shown that MAP adaptation is suitable for cross-lingual acoustic model

adaptation, we also evaluate MAP adaptation. More specifically, the mean µ`m of mixture

component m and state ` is adapted as follows:

µ̂`m = N`
m

N`
m +τµ

A,`
m + τ

N`
m +τµ

D,`
m , (6.4)
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where N`
m is the occupation likelihood of the Afrikaans data, τ a parameter to tune, µA the

mean of the Afrikaans data and µD the mean of the Dutch data.

As seed models, we use the same Dutch context-dependent HMM/GMM models as in Sec-

tion 6.4.2. For Afrikaans phonemes without a matching Dutch seed model, we again map

phonemes as explained in Section 6.4.2 and Table 6.3.

6.4.4 Tandem

For the Tandem system, as done with the HMM/GMM system, we train context-independent

monophone models that serve as seed models for the three-state context-dependent triphone

models. We use a mixture of eight Gaussians per state to model the emission probabilities.

Usually PCA reduces the dimensionality of the feature vectors to about 30 [Qian et al., 2011,

Grézl et al., 2011]. Our initial study on Afrikaans revealed that the dimensionality of the

feature vectors greatly affects the performance of the Tandem system [Imseng et al., 2012c].

Furthermore, we observed that preserving 99% of the variance yielded similar results to using

all the dimensions. Therefore, we fix the dimensionality of the feature vectors such that 99%

of the variance is preserved. Note that the feature dimensionality of different systems varies

and is given in Tables 6.4, 6.5 and 6.6.

To balance the number of parameters with the amount of available training data, we also use

the MDL-based decision tree [Shinoda and Watanabe, 1997].

6.4.5 KL-HMM

For the KL-HMM system, as also done for HMM/GMM and Tandem, we train context-

independent monophone models that serve as seed models for the three-state context-

dependent triphone models.

For KL-HMM, we apply the decision tree clustering reformulated as dictated by the KL-

divergence criterion, presented in Section 4.6.2, page 55. Since it is not obvious how to

apply the MDL principle to the modified clustering approach, we tune the threshold that

determines the number of tied states on the cross-validation set.

6.4.6 Subspace Gaussian mixture models (SGMM)

The training of SGMMs is also done from context-independent monophone models that serve

as seed models for the three-state context-dependent triphone models.

Decision tree clustering is done automatically, after having specified the number of leaves to

be similar to the Tandem system. The UBM has I = 500 Gaussians and the dimensionality of

the substate phone-specific vectors, U , is fixed to 50.
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Table 6.4: Using 3 h of Afrikaans data to build a monolingual ASR system. The bi-gram
phoneme model has a phoneme perplexity of 14.7 on the test set. Acoustic modeling tech-
niques are described in Section 6.4. The best result is marked bold; italic numbers point to
results that are not significantly worse.

System Feature Number of Phoneme
dimension tied states accuracy

HMM/GMM 39 1,447 61.2 %
KL-HMM 187 15,207 60.6 %
Tandem 48 1,846 64.7 %
SGMM 39 2,000 65.5 %

6.5 Evaluation

In this section, we analyze the performance of the different systems. We always apply the

same bi-gram phoneme model as described in Section 6.2.1 and report Afrikaans phoneme

accuracies on the test set (about 50 min of data). The bi-gram phoneme model scaling factor

is determined for each system independently on the cross-validation set (see Section 6.3.1).

In general, we expect that the exploitation of Dutch data will improve the Afrikaans ASR

performance.

6.5.1 Afrikaans data only

For the first set of experiments, we only use the Afrikaans training set (3 h of data) for the

training of the global and local parameters. More specifically, the MLP for the posterior feature

extraction as well as the globally shared SGMM parameters are trained on three hours of

Afrikaans (see Table 6.2 for MLP details). In previous studies [Povey et al., 2010], SGMM

outperformed HMM/GMM when 15 h of training data was used. We hypothesize that SGMM

also outperforms conventional HMM/GMM if only three hours of data is available for training.

Furthermore, we hypothesize that Tandem outperforms conventional HMM/GMM and KL-

HMM systems if three hours of Afrikaans data is available for training.

Results achieved by the different systems are summarized in Table 6.4. At the start of our

work, the only baseline results available were from van Heerden et al. [2009], reporting 63.1%

phoneme accuracy. However, the official train and test set were compiled after the official

database release. Personal communication with the HLT group at Meraka confirmed that the

lower performance of our baseline can be attributed to the different data partitioning. The

HLT group now also uses the partitioning that we use for these experiments, and also report a

lower performance.

The results in Table 6.4 confirm our hypotheses. On Afrikaans data only, SGMM performs

best, followed by Tandem. Bold numbers in tables mark the best result and italic numbers

point to results that are not significantly different from the best performance (see Section
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2.4 for details about the significance test). KL-HMM and the HMM/GMM baseline perform

significantly worse than SGMM and Tandem.

Table 6.4 also shows the feature dimensionality of the employed acoustic modeling techniques.

HMM/GMM and SGMM are both based on MF-PLP features (39 dimensions). KL-HMM

uses the raw output of the Afrikaans MLP. For the Tandem system however, recall that the

posterior features need to be post-processed. Keeping 99% of the variance after PCA results in

a 48-dimensional feature vector.

The number of tied states, also shown in Table 6.4, for HMM/GMM and for Tandem are

automatically determined with the MDL criterion. We fix the number of tied states for the

SGMM system similar to the number of tied states for the Tandem system. The number of tied

states for the KL-HMM is tuned on the cross-validation set. Since the categorical distributions

of the KL-HMM can be trained with very few data, modeling each triphone state separately

performs best on the cross-validation set. Hence, the decision tree is only used to model

unseen triphone contexts during testing.

Due to the extremely high number of states of the KL-HMM system, compared to the other

systems, the KL-HMM system has the most parameters of the four systems given in Table 6.4.

To explore whether an increased number of parameters improves the performance of the

other systems, we increased the number of Gaussians per state for the HMM/GMM as well

as for the Tandem system to 16 and doubled the number of sub-states of the SGMM system.

However, this did not yield any improvement for any of the systems.

6.5.2 Auxiliary Dutch data

Since three hours seems to be a reasonable amount of training data, we also simulate very

low-resourced languages and evaluate three different scenarios: six minutes of data, one hour

of data and three hours of data. For comparison, we also evaluate a conventional HMM/GMM

system for each scenario. We hypothesize, that KL-HMM performs best for very low amounts

of data because we have seen this behavior in previous similar evaluations of KL-HMM [Imseng

et al., 2012d]. If three hours of data is available, we expect that KL-HMM, Tandem and SGMM

are successfully exploiting the out-of-language data and performing similarly well.

Table 6.5 confirms our hypotheses. The HMM/GMM (only trained on Afrikaans) is clearly

outperformed by KL-HMM, Tandem and SGMM, hence all three systems successfully exploit

out-of-language information. MLLR and MAP, however, only perform better than HMM/GMM

if six minutes of Afrikaans data are available. Similar to the study on Greek data (see Figure 4.4,

page 60), MAP outperforms MLLR if there is 1 h or more data available. Note that both

approaches are bound to phoneme sets. Köhler [1998], for example, used a multilingual seed

model that was trained from data associated with a matching IPA symbol for each phoneme. In

our case however, we need to manually map several Afrikaans phoneme models as discussed

in Table 6.3. Furthermore, MAP and MLLR may both suffer from the fact that the Dutch
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Table 6.5: Exploiting Dutch data to improve an Afrikaans ASR system. The acoustic modeling
techniques are described in Section 6.4. TS stands for the number of tied states, PA for
phoneme accuracy in percent and τ is the parameter of the MAP adaptation. Best results of
each PA column are marked bold; italic numbers point to results that are not significantly
worse.

System Feat. 6 min 1 h 3 h
dim. TS τ PA TS τ PA TS τ PA

HMM/GMM 39 116 — 38.6 594 — 55.3 1,447 — 61.2

MLLR 39 — — 41.3 — — 44.4 — — 44.7
MAP 39 11,357 15 39.4 11,357 5 46.9 11,357 1 50.6
KL-HMM 1,789 635 — 53.1 13,308 — 61.5 15,207 — 67.3
Tandem 286 114 — 41.0 537 — 61.3 1,846 — 68.2
SGMM 39 150 — 40.2 600 — 60.4 2,000 — 68.5

decision tree does not represent the context of Afrikaans very accurately. That problem could

be further addressed with the polyphone decision tree specialization algorithm [Schultz and

Waibel, 2000]. Wang et al. [2003] for example, successfully combined MAP adaptation and the

polyphone decision tree algorithm on a non-native ASR task.

For the three hours, as well as the one hour scenario, SGMM, KL-HMM and Tandem all perform

statistically the same. While SGMM is the most suitable acoustic modeling technique if we

train only on within-language data, KL-HMM (which was performing significantly worse in

Table 6.4) benefits most from out-of-language data, and seems to be particularly well suited

to exploit out-of-language information on this database. Furthermore, KL-HMM using six

minutes of data performs almost as well as a conventional monolingual HMM/GMM system

using one hour of data. In the case of SGMMs, results are slightly worse than expected. We

suppose that the dimensionality of the sub-state-specific vectors is probably too high for only

six minutes of data.

6.5.3 Within- and out-of-language data

We have already shown that properly combining acoustic information from multiple similar

languages can boost the performance. Therefore, we hypothesize that the performance can

be improved if we concatenate the output of both MLPs or train the shared SGMM parameters

on both languages. The concatenated MLP outputs are renormalized to guarantee that the

feature vectors can be interpreted as posterior distributions, as assumed by the KL-HMM.

For the Tandem systems, we post-process the normalized vectors as already described in

Section 6.4.4. For SGMM, we train the shared parameters with the data of both languages.

However, Table 6.6 shows that the results only marginally improve for Tandem and SGMM.

For KL-HMM, they improve by 1.5% absolute. KL-HMM yields the best performance, but it is

not statistically different from the performance of the other systems.

86



6.6. Discussion

Table 6.6: Using the Dutch and Afrikaans MLP (KL-HMM and Tandem) and use Dutch and
Afrikaans data to train the shared parameters (SGMM). The best result is marked bold; italic
numbers point to results that are not significantly worse.

System Feature Phoneme
dimension accuracy

KL-HMM 1,976 68.8 %
Tandem 308 68.4 %
SGMM 39 68.6 %

6.6 Discussion

The results in Section 6.5 have shown that (a) out-of-language data improved an existing

Afrikaans speech recognizer and (b) KL-HMM outperforms all other approaches if only 6 min

of Afrikaans data are available. In this section, we discuss the two conclusions.

6.6.1 Improvement through out-of-language data

All systems in Table 6.6 perform significantly better than the HMM/GMM baseline that does

not use Dutch data (see Table 6.4). We hypothesize that Dutch data mostly improves recogni-

tion accuracy of phonemes for which the Afrikaans dataset does not contain much training

data. Figure 6.4 shows the relative phoneme accuracy change (relative gain) per phoneme of

the systems given in Table 6.6 with respect to the HMM/GMM baseline that does not use Dutch

data. The phonemes on the x-axis are sorted according to their frequency in the Afrikaans

training data with the most frequent phonemes on the left. Figure 6.4 appears to confirm our

hypothesis, since rare phonemes like 2 (ø in IPA) benefit more from the out-of-language data

than frequent phonemes such as @ (@ in IPA).

6.6.2 Advantage of KL-HMM

Even though we performed an extensive error analysis, there is no clear evidence for which

phonemes KL-HMM yields most improvement compared to the other modeling techniques.

Rather, KL-HMM consistently improves the recognition accuracy across all phonemes. We

attribute the improvement to the sophisticated acoustic modeling and the constrained opti-

mization space that are particularly well suited for small amount of data scenarios.

6.7 Conclusion

We successfully exploited Dutch data and boosted a monolingual speech recognizer that was

trained on three hours of Afrikaans data. We compared KL-HMM, Tandem, SGMM, MLLR as

well as MAP adaptation and found that KL-HMM, Tandem and SGMM successfully exploit

out-of-language data if at least one hour of within-language data are available. If only six
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Figure 6.4: Relative phoneme accuracy change (relative gain) per phoneme of the systems
shown in Table 6.6 with respect to the monolingual HMM/GMM baseline system. The
phonemes on the x-axis are sorted according to their frequency in the Afrikaans training
data (most frequent phoneme on the left). For better readability, the x-axis is labeled on the
top and at the bottom of the figure.

minutes of data are available, KL-HMM outperforms all other acoustic modeling techniques

including MLLR and MAP adaptation.

More specifically, we found that if three hours of within-language data and 80 hours of out-of-

language data are available, the proposed systems yield 12% relative improvement compared

to a conventional HMM/GMM system only using within-language data. If only six minutes of

within-language data and 80 hours of out-of-language data are available, KL-HMM performs

relatively about 30% better than MLLR and MAP adaptation.
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7 Speaker adaptive KL-HMM

In the previous chapters, KL-HMM was successfully applied to accented and under-resourced

speech recognition tasks in multilingual setups through efficient feature level adaptation and

parsimonious use of parameters. This previous work suggests that we may also get improve-

ment in monolingual scenarios using conventional techniques such as speaker adaptation,

especially in the case of non-native speech. Therefore, in this chapter, inspired from MAP

adaptation, we further boost KL-HMM performance by applying Bayesian speaker adaptation,

directly applied to posterior features.

The speaker adaptive KL-HMM exploits the parsimonious use of parameters of KL-HMM that

efficiently uses very limited amounts of training data. More specifically, speaker adaptive

KL-HMM performs a simple, adaptive regression between phone posteriors estimated with

an MLP on large amounts of speaker-independent training data, and speaker-specific phone

posteriors generated by the speaker-independent MLP on very limited amount of speaker-

specific adaptation data. Using Swiss French data from the MediaParl database (see Section 2.5,

page 25), we show that such speaker adaptive KL-HMM significantly outperform conventional

adaptation approaches such as MLLR and MAP on non-native speech.

7.1 Motivation

Several speaker adaptation techniques such as MLLR [Gales, 1998] or MAP adaptation [Gau-

vain and Lee, 1993] have been proposed to improve ASR performance. As we have already

seen in Chapter 5, speaker adaptation is also particularly relevant in the case of non-native

ASR, given the high variability of accented speech and the usually small amount of non-native

speech data available for training [Wang et al., 2003, Bouselmi et al., 2008, Segura et al., 2007,

Gemello et al., 2007]. In the context of HMM/GMM, conventional solutions include MLLR

and MAP [Wang et al., 2003, Segura et al., 2007]. In the case of hybrid HMM/MLP systems, an

LHN was typically used to adapt the MLP to a speaker [Gemello et al., 2007].

We have seen in Chapter 5, that KL-HMM in a multilingual setup can outperform MLLR and
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Figure 7.1: Illustration of speaker adaptive KL-HMM. The generic data X and the speaker-
specific adaptation data X A are both passed through the speaker-independent MLP and
used to train a speaker-independent and a speaker-dependent KL-HMM. The categorical
distributions are then combined at the state-level.

LHN for non-native speaker adaptation. In those experiments, it was also observed that

KL-HMM was quickly yielding state-of-the-art performance with limited amount of training

data. More specifically, on the HIWIRE database, that contains spoken pilot orders, we also

trained and evaluated speaker dependent KL-HMM systems, i.e. a KL-HMM trained on the

data of a single speaker only (see Table 5.6, page 72).

In this chapter, we go one step further and investigate speaker adaptive KL-HMM on data

from the bilingual MediaParl database [Imseng et al., 2012a]. MediaParl is a Swiss accented

bilingual database containing recordings in both accented French and German, as they are

spoken at the Parliament in Valais, a state of Switzerland (see also Section 2.5, page 25). The

advantage of MediaParl is that it is a pretty large multilingual database and the test set consists

of bilingual speakers, hence non-native and native speech recorded at same conditions.

Similar to MAP adaptation in HMM/GMM based ASR systems, that adapts the means of the

GMMs, the proposed speaker adaptive KL-HMM adapts the generic reference posteriors of

the KL-HMM. Just using a couple of minutes of speech data, and using the same speaker-

independent MLP to generate features, we train a speaker-specific KL-HMM. The generic

KL-HMM reference posteriors are then adapted by performing a linear combination with the

speaker-specific reference posteriors.

In the following section, we will first introduce the speaker adaptive KL-HMM concept. Then,

experimental setup and results are given in Sections 7.3 and 7.4, respectively.
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7.2 Speaker adaptive KL-HMM

The results in Table 5.6, page 72 suggest that KL-HMM performs extremely well when only a

small amount of training data is available. Even though it is not an adaptation technique, the

categorical distributions are trained and not adapted, it can outperform current state-of-the-

art adaptation techniques such as MLLR and LHN based speaker adaptation. However, if the

amount of data to train/adapt gets below a certain threshold, KL-HMM may overfit. Therefore,

we introduce the concept of speaker adaptive KL-HMM, also illustrated in Figure 7.1.

We assume to have a generic KL-HMM system with a set of already trained categorical distri-

butions,Q= {Q1, · · · ,Q`, · · · ,QD }, where each categorical Q` is associated with a tied state and

D is the total number of tied states. The categorical distributionsQ have been trained from

speaker-independent generic data X = {x1, · · · , xT }.

Furthermore, we suppose to have a small amount of transcribed speaker-specific adaptation

data X A = {x A
1 , · · · , x A

TA
}, where TA ¿ T . Given the speaker-specific data X A , we can generate

the posterior features sequence P A = {P A
1 , · · · ,P A

TA
} by using the same speaker-independent

MLP as used to generate P . The posterior features sequence P A together with transcrip-

tions can then be used to train a speaker specific KL-HMM with categorical distributions

QA = {Q A,1, · · · ,Q A,`, · · · ,Q A,D } along the same procedure asQwas obtained. For the speaker-

specific KL-HMM training, we use the generic categorical distributionsQ as seed models (i.e.

initialization: QA =Q).

However, due to the small amount of adaptation data, we expect the speaker-specific KL-

HMM parametersQA to overfit. To overcome that problem, we combine the genericQ and the

speaker specificQA at the state-level:

Qadaptive,` =αQ`+ (1−α)Q A,`, (7.1)

where Qadaptive,` stands for the categorical distribution of the speaker adaptive KL-HMM and

α ∈ [0,1] is a parameter of the combination.

7.3 Experimental setup

We evaluate the speaker adaptive KL-HMM on French MediaParl data and compare it to

standard KL-HMM, a conventional HMM/GMM system and MAP and MLLR adaptation.

7.3.1 Data

For our studies, we use the French part of the MediaParl database [Imseng et al., 2012a].

MediaParl is a Swiss accented bilingual database containing recordings in both French and

German as they are spoken in Switzerland. The data were recorded at the Valais Parliament.
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The MediaParl database contains a dictionary with all the words (no out of vocabulary words)

and standardized training, development and test sets as described in Section 2.5, page 25. The

bigram language model that we use for this study (see Table 7.1) is trained on two sources: the

transcriptions of the training set and texts from the corpus Europarl, a multilingual corpus

of European Parliament proceedings [Koehn, 2005]. Europarl is made up of about 50 million

words for each language and is used to overcome data sparsity of the MediaParl texts. However,

the vocabulary is limited to the sole words from MediaParl.

The test set, shown in Table 7.2, contains all the seven speakers that speak in both languages.

In this chapter, we study fast speaker adaptation (minutes of data for each speaker) on the

French part of the data. Speaker 059 is discarded because a couple of French phonemes are not

pronounced at all. For all the other speakers, we randomly select five minutes of adaptation

data (and exclude that data from the test set). Only for speaker 079 (2 minutes of French data

in total) we use about half the data for adaptation and the other half for testing.

7.3.2 Systems

We investigate five systems: conventional HMM/GMM, MLLR, MAP adaptation, KL-HMM

and speaker adaptive KL-HMM.

HMM/GMM

The standard HMM/GMM system does not use the adaptation data. We use the training

data from the French MediaParl corpus to train a conventional crossword context-dependent

speech recognizer. Each triphone is modeled with three states from which each one is modeled

with 16 Gaussians. To tie rare states, we apply a decision tree clustering. The MDL criterion is

used to determine the number of tied states [Shinoda and Watanabe, 1997]. For decoding, we

use the bigram language model as described in Section 7.3.1 and tune the language model

scaling factor as well as the word insertion penalty on the development data.

MLLR

In one of our studies, we investigated MLLR as well as a constrained version of it (CMLLR)

to evaluate whether a new language could be accommodated by linear transforms [Imseng

et al., 2012b]. CMLLR has fewer parameters and we assumed that this could be advantageous

if we only have access to a limited amount of data. However, even if we only used 5 minutes of

Table 7.1: Properties of the French language model: number of words, number of bigrams and
perplexity on the development and test set.

Vocabulary size Number of bigrams Perplexity on DEV Perplexity on TST

12,035 1.5 M 147 152
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Table 7.2: MediaParl-TST: speakers using both languages form the test set. For each speaker
the number of French and German sentences is given.

Speaker Sentences in Adapt Test Sentences in Mother
French data [min] German tongue

059 31 - - 195 German
079 22 1 1 698 German
094 313 5 60 72 French
096 89 5 15 8 French
102 72 5 7 7 French
109 233 5 46 402 German
191 165 5 28 310 German

Total 925 26 157 1,692

adaptation data, MLLR outperformed CMLLR. Therefore, in this study, we only investigate

standard MLLR . For this, we use the adaptation data described in Table 7.2 to perform speaker

adaptation and employ a regression tree that allows up to 16 regression classes.

MAP

Since speaker adaptive KL-HMM is very similar in spirit to MAP adaptation, we also investigate

MAP based speaker adaptation on the French MediaParl data. Recall that the mean µ`m of

mixture component m and state ` is adapted as follows:

µ̂
ad apted ,`
m = N`

m

N`
m +τµ

A,`
m + τ

N`
m +τµ

`
m , (7.2)

where N`
m is the occupation likelihood of the speaker-specific adaptation data, τ a parameter

to tune,µA the mean estimated on the adaptation data andµ the generic speaker-independent

mean. The tuning of τ is discussed in the next section.

KL-HMM

For the standard KL-HMM system, we first train the generic speaker-independent MLP from

the same 39 MF-PLP features that we used for the HMM/GMM system training.

Similar to the experiments presented in Chapter 6, the MLP is trained on triphone targets. To

obtain triphone targets, we use the standard HMM/GMM system with a different decision tree.

As described by [Shinoda and Watanabe, 1997], the MDL criterion has a hyper-parameter, c,

which controls the weight of the term that penalizes models with large amounts of tied states.

For the triphone target creation, we use c = 16, as also done in Chapter 6, page 79, to obtain

659 tied states, used as MLP targets.

We use all the French MediaParl training data to train a crossword context-dependent (tied
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states) KL-HMM based speech recognizer. Similar to the HMM/GMM system, the standard

KL-HMM system does not use the adaptation data. During state tying, we fix the minimum

occupancy threshold to 20 and tune the minimum decrease in the cost function threshold

on the development data. For decoding, we use the same bigram language model as for the

HMM/GMM system and tune language model scaling factor and word insertion penalty on

the development data.

Speaker adaptive KL-HMM

The speaker adaptive KL-HMM is trained as described in Section 7.2. As seed models, we use

the KL-HMM system presented above. The tuning of the parameter α is discussed in the next

section.

7.4 Results

In this section, we first discuss the tuning of the parameters α and τ for the speaker adaptive

KL-HMM and MAP adaptation, respectively. Then we show that MLLR outperforms MAP

adaptation on the investigated task and therefore subsequently compare the HMM/GMM,

MLLR, KL-HMM and speaker adaptive KL-HMM against each other.

7.4.1 Tuning of the parameter α

As we discussed in (7.1), page 91, speaker adaptive KL-HMM involves the parameter α. Fig-

ure 7.2 shows the influence of α. If α is set to one, the speaker adaptive KL-HMM is equivalent

to the standard KL-HMM. For each speaker, there is at least one α value for which the per-

formance of the speaker adaptive KL-HMM is better than the performance of the standard

KL-HMM. However, we also see that, for some values of α, the performance decreases. It can

clearly be seen that α-values close to zero perform bad in general, i.e. the adapted KL-HMM

system overfits. The highest performance gains can be seen for two non-native speakers (079

and 191). The French HMM/GMM baseline system reported in [Imseng et al., 2012a] per-

formed particularly bad on these two speakers, hence they seem to have a strong accent. This

hypothesis was verified by native speakers who listened to the utterances of these speakers.

During the system comparison, we will use the best performing α value that we found for

each speaker (on the test set). The parameter tuning on the test set is suboptimal, but the low

amount of data per speaker does not allow a separate development set. For the MAP based

adaptation, we will also tune τ on the test set.

94



7.4. Results

 

 

191
109
102
096
094
079

C
o
m

p
a
ri

so
n

w
it

h
K

L
-H

M
M

α
0 0.2 0.4 0.6 0.8 1.0

-5%

0

+5%

+10%

+15%

+20%

Figure 7.2: Relative improvement of speaker adaptive KL-HMM with respect to speaker inde-
pendent KL-HMM (y-axis shows relative performance change). Each curve represents one
speaker. Red curves represent native speakers and blue curves stand for non-native speakers.
This figure also shows the impact of parameter α.

 

 

191
109
102
096
094
079

C
o
m

p
a
ri

so
n

w
it

h
H

M
M

/
G

M
M

τ

1 3 5 7 9 11 13 15
-25%

-20%

-15%

-10%

-5%

0%

5%

Figure 7.3: Relative performance change of MAP adaptation with respect to the standard
HMM/GMM performance. Each curve represents one speaker. Red curves represent native
speakers and blue curves stand for non-native speakers. This figure also shows the impact of
parameter τ.

95



Chapter 7. Speaker adaptive KL-HMM

Table 7.3: Comparison of HMM/GMM, MAP adaptation and MLLR on French MediaParl
data. The optimal parameter τ is used for MAP adaptation and MLLR results are based on a
regression tree that allows up to 16 classes.

Speaker 079 094 096 102 109 191 Total

HMM/GMM 46.6% 79.7% 81.3% 79.1% 70.0% 59.0% 73.1%
MAP 45.3% 80.3% 79.4% 79.7% 70.8% 58.6% 73.3%
MLLR 47.5% 80.1% 80.4% 79.8% 70.5% 60.6% 73.6%

7.4.2 Tuning of the parameter τ

Recall from (7.2), page 93, that MAP adaptation makes use of the parameter τ. Figure 7.3

shows the influence of τ. During the under-resourced ASR study in the last chapter, we

observed that the optimal τ for MAP adaptation on the Afrikaans task varied between 1 and

15 for 3 h and 6 min of data, respectively (see Table 6.5, page 86). Therefore, for this study,

we tune τ in the interval [1,15] for each speaker separately (on the test) set and compare the

performance of MAP adaptation with standard HMM/GMM systems. Since we only have

1 min of adaptation data for speaker 079, that curve is the lowest and reaches the maximum at

about 3% degradation compared to the unadapted HMM/GMM system.

In Table 7.3, we compare the HMM/GMM system to MAP adaptation with manually tuned

τ, i.e. optimal value in [1,15] is determined for each speaker, and MLLR. Overall, MAP only

improves marginally over unadapted HMM/GMM and MLLR performs best. These findings

are consistent with the study on Afrikaans in the previous chapter and an earlier study on non-

native ASR [Wang et al., 2003], where MLLR also performed better than MAP for low amounts

of data (less than 10 min). For the system comparison in the next section, we therefore only use

the MLLR results as a representative of conventional adaptation approaches for HMM/GMM

based systems.

7.4.3 System comparison

In Figure 7.4, the performance of a standard HMM/GMM system, MLLR, KL-HMM and

speaker adaptive KL-HMM are compared. In the plot on the left and in the center plot, the

performance on native and non-native speech, respectively, is shown. White bars represent

HMM based systems (No Adapt=HMM/GMM, Adapt=MLLR) and colored bars represent KL-

HMM based systems (No Adapt=KL-HMM, Adapt=speaker adaptive KL-HMM). At first glance,

we observe that for native speech, the HMM/GMM based systems perform better and for

non-native speech, the KL-HMM based systems perform better. If we have a closer look, we

can distinguish four different cases:

• No adapt on native speech: the HMM/GMM system performs significantly better than

the KL-HMM system
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Figure 7.4: Comparison of HMM/GMM, MLLR, KL-HMM and speaker adaptive KL-HMM
on French MediaParl data. The left and center plot shows word accuracies on native and
non-native speech, respectively. The right plot shows word accuracies on all the test data
(native and non-native speech). No Adapt stands for HMM/GMM and KL-HMM (not used
the adaptation data) and adapt stands for MLLR and speaker adaptive KL-HMM (used the
adaptation data).

• Adapt on native speech: MLLR performs significantly better than the speaker adaptive

KL-HMM system, but the gap between HMM/GMM and KL-HMM is smaller than for

the standard systems

• No adapt on non-native speech: there is no significant difference between the HM-

M/GMM and the KL-HMM system

• Adapt on non-native speech: the speaker adaptive KL-HMM performs significantly

better than MLLR

As seen in the right plot of Figure 7.4, the speaker adaptive KL-HMM system yields the best

overall performance.

7.5 Conclusion

In this chapter, we introduced a speaker adaptation approach for KL-HMM. Fast speaker

adaptation is achieved by exploiting the parsimonious use of KL-HMM parameters, which effi-

ciently use very limited amounts of training data. Reference KL-HMM categorical distributions

are then expressed as a linear combination of phone posteriors estimated on large amounts of

speaker-independent training data, and speaker-specific phone posteriors obtained on very

limited amount of speaker-specific adaptation data. On non-native Swiss French data, the

speaker adaptive KL-HMM has been shown to significantly outperform MLLR.
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8 Conclusion and future directions

8.1 Conclusion

In this thesis, we tackled acoustic modeling issues related to multilingual adaptation and

lexical diversity across databases. In the context of hybrid HMM/MLP, we elaborated on

KL-HMM acoustic modeling, a parsimonious modeling technique that parametrizes the HMM

states with reference posteriors estimated along a principled algorithm using a Kullback–

Leibler divergence based cost function that is suitable for posterior distributions. In that

context, we showed how to train the HMM and the MLP parameters on different databases.

We extended the recently proposed KL-HMM approach by a decision tree clustering algorithm

allowing us to build a recognizer based on triphones and integrated high dimensional posterior

features, estimated by an MLP trained on context-dependent targets. In this vein, the MLP can

be trained on large amounts of data in any language and optimally utilize the data by adjusting

the number of MLP outputs. More MLP outputs allow a more subtle distinction of acoustic

samples. The HMM, on the other hand, can be trained on low amounts of target language

data thanks to the decision tree clustering that allows parameter sharing through state tying.

In the context of accented and under-resourced speech recognition, involving high acoustic

phone variability, mismatches between phone sets of multiple languages and small amounts

of data, the resulting speech recognition system has been shown to be able to efficiently

exploit multilingual training data. In the case of accented speech recognition, this conclusion

is further supported by additional evidence and theoretical and experimental comparisons

with similar approaches such as probabilistic acoustic mapping, linear hidden networks and

MLLR. Furthermore, for under-resourced ASR tasks, we successfully exploited Dutch data

and boosted a monolingual Afrikaans speech recognizer. We also compared KL-HMM with

Tandem and SGMM and found that all three acoustic modeling techniques successfully exploit

out-of-language data if at least one hour of within-language data are available. However, if

less training data is available, KL-HMM outperforms the other acoustic modeling techniques,

including cross-language MLLR and MAP based adaptation.

Finally, the KL-HMM framework was further extended by a speaker adaptation method,

99



Chapter 8. Conclusion and future directions

referred to as speaker adaptive KL-HMM. Speaker adaptive KL-HMM allows the expression of

the reference posteriors as a linear regression between reference vectors trained on posterior

features estimated on large amounts of speaker-independent training data, and reference

vectors trained on speaker-specific posterior features obtained from very limited amount of

speaker-specific adaptation data. Validation experiments on non-native Swiss French data

showed that the speaker adaptive KL-HMM is able to significantly outperform conventional

MLLR and MAP based speaker adaptation.

In conclusion, the KL-HMM framework has been shown to be a suitable alternative to con-

ventional acoustic modeling techniques and seems to be preferable in low amount of data as

well as phoneme set mismatch scenarios. However, for well resourced languages, KL-HMM

seems to be outperformed by current acoustic modeling techniques such as SGMMs. Potential

drawbacks of the KL-HMM framework may be the rather small number of parameters and

the absence of an upper bound for the Kullback–Leibler divergence. The latter may, during

decoding, theoretically result in different dynamic ranges for the local scores of different HMM

state distributions.

8.2 Potential future research directions

Multilingual environments, such as the bilingual parliament of the Swiss state Valais, involve

numerous challenges for state-of-the-art ASR systems. We mainly addressed multilingual

acoustic modeling issues and showed how to exploit multilingual acoustic training data to

improve the performance of ASR systems in the case of non-native speech and speech from

under-resourced languages. How to efficiently handle code-switches remains a very challeng-

ing research problem. Hence, to fully integrate ASR systems in multilingual environments,

multilingual language modeling issues should be further investigated. Furthermore, multilin-

gual language models also allow the exploitation of multilingual pronunciation dictionaries.

The presented KL-HMM framework also seems to have potential for the creation of a dictionary

from scratch, or for the integration of pronunciation variants [Rasipuram and Magimai.-Doss,

2012]. It may therefore be useful to tackle multilingual pronunciation dictionary issues.

The simple acoustic model structure and the possibility to directly model posterior features

are valuable properties that suggest the further development of the KL-HMM framework.

Potential future research directions include the study of longer contexts, enabling to increase

the number of parameters, the extension of the current Viterbi training algorithm into a full

expectation-maximization algorithm and the reconsideration of the Kullback-Leibler diver-

gence, which potentially may be replaced by similar measures that have an upper bound

such as the Jensen–Shannon divergence. Furthermore, the combination of discriminative

and generative techniques, as done for example in Tandem systems, seems to be beneficial.

Although the KL-HMM framework is principled, it is not a generative model. Initial inves-

tigations along that research direction [Garner and Imseng, 2013] led to different acoustic

modeling techniques and revealed issues that need to be further addressed.

100



A Phoneme sets and manual mappings

Table A.1 shows all the phoneme sets used in this thesis. Each database that we used, comes

with its dictionary that is build upon a particular phoneme set. To simplify the comparison,

we converted SAMPA and Arpabet symbols into IPA format.

We present the phonemes in three categories, consonants (cons), vowels (vow) and diphthongs

(diph). The consonants are sorted according to the following list: nasals, plosives, fricatives,

approximants, lateral approximants, coarticulated consonants and then affricates. Within

the same consonant category, phonemes are listed according to the place of articulation:

labial, coronal, dorsal, radical and glottal. For the listing of the vowels, we follow the vowel

quadrilateral from front to back (left to right) and from close to open (top to bottom).

There are two peculiarities:

• SAMPA Italian: the obstruents in Italian are classified along two dimensions, voiced

versus voiceless and single versus geminate. The SAMPA based dictionary that comes

with the Italian SpeechDat(II) database considers single and geminate consonants as

different phonetic symbols. The geminate variants (GV) are listed separately in Table A.1.

• SAMPA French: when they are not functional there is a strong tendency in unstressed

syllables towards indetermination. Indeterminacy symbols (IS) are listed separately in

Table A.1.

Table A.2 then compares knowledge driven manual mapping and data-driven (hard decision

mapping) of the target phonemes employed by the HIWIRE database to the English (EN) and

universal (UNI) source phonemes used by the SpeechDat(II) database. Gray cells point to

symbols that are different from the target phoneme symbol.

Figure A.1 shows the full international phonetic alphabet (IPA) as an additional reference.
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Appendix A. Phoneme sets and manual mappings

Table A.1: Phoneme sets of all the databases used in this thesis. For the ease of comparison, all
the phonemes are shown in IPA format. Each database also uses sil for silence (not shown in
the table). The last column shows the total number of phonemes (S).

Phoneme set Phonemes S

Lwazi Cons m, n, N, p, b, t, d, k, g, f, v, s, z, S, Z, x, H, r, j, l, w
38Afrikaans Vow i, y, u, ø:, @, E, œ, O, æ, a, A:

Diph i@, u@, @u, @i, œy
CGN Cons m, n, ñ, N, p, b, t, d, k, g, f, v, s, z, S, Z, x, G, h, r, j, l, w

47Dutch Vow i, y, u, I, Y, Ỹ, Y:, e:, ø:, o:, @, E, Ẽ, E:, O, Õ, O:, a:, A, Ã
Diph Ei, œy, Au

HIWIRE Cons m, n, N, p, b, t, d, k, g, f, v, T, D, s, z, S , h, r, j, l, w, tS, dZ
38non-native Vow i, u, I, E, 3~, 2, O, æ, A

English Diph eI, oU, OI, aU, aI
MediaParl Cons m, n, ñ, p, b, t, d, k, g, f, v, s, z, S, Z, K, 4, j, l, w

37
French Vow i, y, u, e, ẽ, ø, o, õ, @, E, œ, O, a, ã, œ̃, 5
MediaParl Cons m, n, N, p, b, t, d, k, g, P, f, v, s, z, S, Z, ç, x, K, h, r, j, l

57German Vow i, i:, y, y:, u, u:, I, Y, U, e, e:, ẽ, ø, ø:, o, o:, õ, õ:, @, E, Ẽ, Ẽ:,E:, œ,
O, a, a:, ã, ã:, 5

Diph OY, aU, aI
SpeechDat(II) Cons m, n, p, b, t, d, c, é, k, g, f, v, T, D, s, z, ç, x, G, r, j, J, l, ts, dz

31
Greek Vow i, u, e, o, a
SpeechDat(II) Cons m, n, N, p, b, t, d, k, g, f, v, T, D, s, z, S, Z, h, r, j, l, w, tS, dZ

45English Vow i:, u:, I, U, e, @, 3:, 2, O:, æ, A:., 6
Diph I@, U@, e@, eI, @U, OI, aU, aI

SpeechDat(II) Cons m, n, ñ, N, p, b, t, d, k, g, B, f, T, D, s, z, x, G, r, j, J, R, l, L, w, tS
32

Spanish Vow i, u, e, o, a
SpeechDat(II) Cons m, n, ñ, p, b, t, d, k, g, f, v, s, z, S, r, j, l, L, w, ts, dz, tS,dZ

52Italian GV mm, nn, ññ, pp, bb, tt, dd, kk, gg, ff, vv, ss, SS, rr, ll, LL, tts,
ddz, ttS, ddZ

Vow i, u, e, o, @, E, O, a
SpeechDat(II) Cons m, n, ñ, N, p, b, t, d, k, g, f, v, s, z, S, Z, K, 4, r, j, l, w

42Swiss French Vow i, y, u, e, ẽ, ø, o, õ, @, E, œ, O, a, ã, œ̃, A
IS Œ/= ø or œ, E/ = e or E, O/= o or O

SpeechDat(II) Cons m, n, N, p, b, t, d, k, g, P, f, v, s, z, S, Z, ç, x, K, h, j, l, ts, tS, pf
59Swiss German Vow i:, y:, u:, I, Y, U, e:, ø:, o:, @, E, œ, O, a, a:

Diph i:5, y:5, u:5, I5, U5, e:5, ø:5, o:5, E5, E:5, œ5, O5, OY, aU, a5,
a:5, aI
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Table A.2: Knowledge driven, manual mapping and data-driven (hard decision mapping) of
the target phonemes (HIWIRE) to the English (EN) and universal (UNI) source phonemes
(SpeechDat(II)). Gray cells point to symbols that are different from the target phoneme symbol.

HIWIRE UNI EN
man hard (UNI) hard (sUNI) man hard (EN)

m m m m m m
n n nn n n n
N N N N N N
p p pp p p p
b b bb b b b
t t tt t t t
d d dd d d d
k k k k k k
g g g g g g
f f f f f f
v v v v v v
T T pf pf T T
D D D D D D
s s ss ss s s
z z dz Z z z
S S SS SS S S
h h h h h h
r r r r r r
j j jj L j j
l l ll ll l l
w w w w w w
tS tS tS tS tS tS
dZ dZ dZ dZ dZ dZ
i i i: i: i: i:
u u u: u: u: u:
I I I I I i:
E E e@ e@ e e@
3~ 3: œ œ 3: 3:
2 2 ẽ a:5 2 A:
O O o:5 O5 O: O:
æ æ æ æ æ æ
A A a: a: A: A:
eI eI e: e: eI eI
oU @U o: o: @U O:
OI OI OI OI OI OI
aU aU aU aU aU aU
aI aI aI aI aI aI
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Appendix A. Phoneme sets and manual mappings

Figure A.1: The full international phonetic alphabet (IPA) as of 2005, including the labiodental
flap and (in grey) some ad hoc symbols found in the literature (from wikipedia: http://en.
wikipedia.org/wiki/File:IPA_chart_2005.png).
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