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T
he ability of metallic nanostructures
to confine and enhance incident ra-
diation offers unique possibilities for

manipulating light at the nanoscale. These
functionalities are enabled by the excitation
of collective electron oscillations known as
localized plasmon resonances.1 When two or
more nanostructures are placed next to each
other, their plasmons can couple through
near-field interactions and can give rise to a
new set of hybridized collective plasmonic
modes.2�12 Plasmonic nanoclusters compo-
sed of three,13 four,8,14,15 seven particles,9

and even larger aggregates11,16 can also
exhibit interference effects like Fano reso-
nances17�19 when the near-field coupling be-
tween each element is properly controlled.
Fano resonances arise from the interference
between superradiant and subradiant modes
and produce extinction features with charac-
teristic narrow and asymmetric line shapes.
Because of their narrower spectral width com-
pared to standard plasmon resonances and
large induced field enhancements, Fano reso-
nances havebeenused for a variety of applica-
tions including plasmonic rulers20�22 and
biosensors.23�25

Despite a large and recent research effort,
the design of plasmonic structures exhibiting
Fano resonances at specific wavelengths is a
challenging task because of their complex
nature. A central issue in this design is the
spectral engineering of the resonances via

controlled hybridization of the available
modes. However, this is difficult in systems
where higher order modes are excited in the
spectral range of interest12,26,27 or when the
modes are very complex and spatially extend
over a large part of the nanostructure.28,29 A
small variationof thegeometries, likewhat can
occur during the nanofabrication process, can
drastically change the resonance line shape
and wavelength. This difficulty is particularly
challenging when designing Fano resonant
structures using spherical or disk shaped
nanoparticles where the energies of the in-
dividual nanoparticle plasmons are similar
and all hybridization and tuning must be
accomplishedby controlling the interparticle
spacings.
A more robust approach for Fano reso-

nant systems is to engineer them from
metallic nanorods that support highly tun-
able and polarization sensitive longitudinal
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ABSTRACT Fano resonances in hybridized systems formed from

the interaction of bright modes only are reported. Despite precedent

works, we demonstrate theoretically and experimentally that Fano

resonances can be obtained by destructive interference between two

bright dipolar modes out of phase. A simple oscillator model is

provided to predict and fit the far-field scattering. The predictions

are verified with numerical calculations using a surface integral

equation method for a wide range of geometrical parameters. The

validity of the model is then further demonstrated with experi-

mental dark-field scattering measurements on actual nanostructures in the visible range. A remarkable set of properties like crossings, avoided crossings,

inversion of subradiant and superradiant modes and a plasmonic equivalent of a bound state in the continuum are presented. The nanostructure, that takes

advantage of the combination of Fano resonance and nanogap effects, also shows high tunability and strong near-field enhancement. Our study provides a

general understanding of Fano resonances as well as a simple tool for engineering their spectral features.
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bound state in the continuum
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plasmonmodes.30 Such nanorods are relatively easy to
fabricate in a repeatable and reliable manner and less
sensitive to fabrication tolerances.31 Furthermore, the
controlled interaction between nanorods forming dipole
nanoantennas32,33 produces a very high field enhance-
ment in the gap, making these structures well suited as
ultrasensitive biosensors,34,35 plasmonic traps36�38 and
substrates for surface-enhanced Raman spectroscopy
(SERS).39 The assembly of nanorods into more complex
plasmonic oligomer structures further improves these
functionalities and has been pursued by several research
groups who have demonstrated Fano interference be-
tween electric and magnetic multipolar modes.40�44

A second important difficulty in the design of tun-
able Fano resonant systems is the lack of a simple but
comprehensive model. Several recent attempts have
been made to address this, leading to very accurate
models derived from physical considerations but re-
quiring complex mathematical derivations.45�49 Other
models, like coupledmechanical oscillators, have been
shown to describe Fano interference well, but with the
limitation that the damping of the sub- and super-
radiant modes must be prescribed a priori instead of
being calculated explicitly from the radiative charac-
teristics of the individual unhybridized modes.48,50�53

While this empirical approach provides significant in-
sight into the nature of the Fano interference, it does
not have the predictive power required for use as a
design tool.
In this article, we introduce a novel highly tunable

Fano resonant nanostructure consisting of four inter-
acting nanorods. In contrast to the “standard” oligomer
consisting of nanodisks or nanospheres, the Fano
resonance in this structure is caused by interference
of the highly tunable dipolar modes of the individual
nanorods with no significant involvement of higher
multipolar modes. Since the dipolar modes of the nano-
rods can be tuned by simply changing their aspect ratio,
the structure exhibit a remarkable and robust tunability.
We also introduce a new extended coupled oscillator
model (ECO) for describing Fano interference where the
radiative characteristics of the hybridized modes are
calculated rather than prescribed a priori. In contrast to
the conventional coupled oscillator (CCO) model,54 the
input parameters in the ECOare theplasmonic properties
of the original modes which interact and naturally result
in hybridized sub- and superradiant modes with narrow
and broad linewidths. We experimentally verify the tun-
ability of the Fano resonance in this structure and
demonstrate the applicability of the ECO as an accurate
model. First, we show how the geometry of the structure
determines the Fano resonance and then how the sign of
the coupling between the initial modes reverses the
relative energies of the subradiant and superradiant
modes, so that the Fano resonance can occur either on
the red or blue side of the superradiant mode. This
control, which is associatedwith the near-field properties

of the nanostructure,55 is very important for practical
applications since it provides high design flexibility. Our
approach provides new insights into the spectral features
of the Fano resonance line shape. In particular, we show
that the different spectral features associatedwith a Fano
resonance each correspond to distinct plasmonicmodes.
Quite remarkably we show that the spectral features on
the immediate red and blue sides of a Fano resonance
correspond to excitations of the unhybridized modes
while the actual Fano resonance corresponds to excita-
tion of the subradiant hybridized mode. This discovery
provides crucial insights into how to design Fano reso-
nant structures for use as efficient LSPR sensors and
substrates for surface enhanced spectroscopies. Finally,
thanks to the tunability of theplasmonic system,weshow
a plasmonic equivalent of a bound state in the
continuum.56,57 This effect, which can only be obtained
with close interacting modes, is a further proof of the
extremely fine control achieved with this system.

RESULTS AND DISCUSSION

The design we propose is shown in Figure 1a and is
made of a gold dipole nanoantenna (yellow) with a
fixed arm length of 70 nm and a variable gap width
surrounded by two gold nanorods (blue). The width of
all the components as well as their thickness are fixed
to 40 nmand the lateral distance between antenna and
rods has a constant value of 20 nm. The length L of
thenanorods is varied from50 to 150nm, always keeping
the central axes aligned with that of the antenna. A
surface integral equation (SIE) method58,59 is used for
the exact numerical modeling of the optical properties of
the different structures. For gold, a realistic dielectric
function was taken (Johnson and Christy)60 and the
surrounding refractive index was set to 1.33 to approxi-
mately model the dielectric screening effects of a sub-
strate. This value approximates well the small substrate-
induced frequency shift for nanoparticle plasmon
resonances polarized parallel to a substrate.33 The
illumination is taken to be normal to the nanostructure
plane, with polarization along the antenna axis.
To understand the origin of the Fano resonance in

this system, we first consider the antenna and the
nanorods as uncoupled objects supporting indepen-
dent dipolar resonances. In plasmon hybridization
theory, these uncoupled modes are referred to the
primitive plasmon modes but will here be referred to
the diabatic modes,61 i.e., modes that can interact and
exhibit a crossing-like characteristic: DA for the anten-
na and DN for the nanorods. Individually both modes
appear bright in the far-field scattering spectra with
Lerentzian line shapes. These two modes are graphi-
cally shown in Figure S1. DA is the standard antenna
mode with the dipoles of the two arms oriented in the
same direction. DN is formed by the sum of the dipoles
supported by the two external nanorods that oscillate
in-phase. Since the nanorods have always the same
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length, this is the only accessible mode with a plane
wave illumination and we can therefore consider the
twin nanorods as a single resonator. When the nano-
structured elements are combined, with a separation
smaller than the illumination wavelength, their plas-
mon modes interact and form two new hybridized
modes. In the terms of molecular orbital theory, these
hybridizedmodes are referred to as adiabatic modes: a
superradiant mode (adiabatic bright, AB) and a sub-
radiant mode (adiabatic dark, AD). The AB exhibits in-
phase oscillations of both dipolar modes (antenna and
nanorods), resulting in a large total dipole moment
which makes the mode highly radiative. On the con-
trary, the AD has only a small total dipole moment due
to the out-of-phase alignment of the dipoles and is a
subradiant mode. To better understand the origin of
such modes, we remind here that a dipolar resonance
is characterized by a phase that matches the phase of
the incident field on one side of the resonance and is
out-of-phase on the other side. In the coupled system
under study, when DA and DN have different reso-
nances, there are some regions of the spectrum where
their phases are matched, forming a stronger resonant
mode (AB) with higher radiance because of construc-
tive interference. On the other hand, in the spectral
region where they are out-of-phase, because of destruc-
tive interference, a low radiant or subradiant mode is
formed (AD, see Supporting Information Figure S2). The
Fano resonance results from the interference of these
adiabatic modes that overlap both spectrally and spa-
tially. In Figure 1b, we show the scattering spectrum for a
structure with nanorods length L = 120 nm and antenna

gap d = 25 nm that reveal a typical Fano resonance
line shape.
The validity of the hybridization model is supported

by the charge distribution analysis of the plasmon
modes that appear at specific frequencies. A simple
way of visualizing the charges is to compute the
normal component of the electric field in a plane
5 nm above the structure, since its orientation is directly
related to the sign of the charges. From Figure 1e we
see that the related mode profile is the one expected
from the hybridization diagram: antenna and nanorods
support electron oscillations that are dipolar and out-
of-phase, producing a very small total dipole moment
of subradiant nature. In this case, we observe as well a
maximum in the near-field intensity located in the
antenna gap, Figure 1j, that can be up to 40% stronger
than the field computed at the same point for an
isolated antenna at the resonance (see Supporting
Information Figure S3). The AD mode, whose position
is determined by a maximum in the absorption spec-
trum (computed using the ohmic losses method,62

Supporting Information Figure S4), is then mainly
supported by the antenna with a weak contribution
of the side nanorods. Away from the Fano resonance,
at the wavelengths corresponding to (c) and (g), the
charge distribution is associated with the tails of the
superradiant mode characterized by in-phase dipolar
excitation of the plasmonic structure constituents. As
expected from classical dipolar resonances, there is a π
phase difference between the charge distributions at
(c) and (g). The related near-field shows that the major
contribution to the mode is provided by the nanorods

Figure 1. (a) Schematic of the plasmonic structure; the different colors highlight the fact that the system is composed of two
independent resonators, one being the dipole antenna (yellow) and the other composed by the two nanorods (blue). The
entire structure is made out of gold. (b) SIE simulation (red solid line) and ECO model fit (black dashed line) of the scattering
spectrum for a structurewith a gapd=25nmandnanorods length L=120nm. Theparameters extracted from thefit are listed
in Table 2. (c�g) Real part of the normal component of the electric field calculated using SIE 5 nm above the structure at the
selected wavelengths shown in panel b. The sign of the field gives the charge distribution for the hybridized plasmonmodes
supportedby the structure and visible on the scattering cross section. (h�l) Near-field intensity in logarithmic scale plottedon
a plane cutting the structure for the cases shown in panels c�g.
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at long wavelength (l), where a field intensity max-
imum is recorded at their extremities. The peak of AB,
determined from the absorption spectrum, is at λ =
758.8 nm. Most interestingly, the charge distribu-
tion analysis reveals that at the peaks surround-
ing the Fano resonance, the charge distributions cor-
respond to the diabatic modes, DA (d) and DN (f) with
phases matching the external illumination. The related
near-field analysis further highlights this conclusion,
showing that the intensity enhancement is located
mainly around the antenna (i) and nanorods (k), re-
spectively. This shows that, even if the system is
strongly hybridized, the diabatic modes can be excited
with appropriate wavelengths. This finding, which has
been recently also shown for a different system,63 is
extremely important, since it enables a detailed spatial
tuning of the near-fieldwith frequency.Webelieve that
the finding that the diabatic modes can be excited
directly by driving the system at the frequencies of the
two spectral peaks surrounding the Fano resonances is
a general feature of plasmonic systems.
To provide better insights into the system, we now

develop an extended coupled oscillator (ECO) model
for the plasmonic response of coupled plasmonic
structures, Figure 2a. The conventional coupled oscil-
lator (CCO) model consists of two damped oscillators
coupled with a spring of constant g. The two modes
refer to the hybridized broad superradiant and the
narrow subradiant mode. Fano interference results in
the scattering spectrum by driving only the super-
radiant mode with an external field. The damping of
the two oscillators is prescribed a priori. In contrast to
the CCO, the oscillators in our ECO model here repre-
sent the original diabatic modes of the system and are
characterized by resonant frequencies ω1, ω2 and
damping γ1, γ2 accounting for nonradiative losses.
Nonradiative damping in a nanoparticle is a local
quantity that only depends on the local plasmon
oscillation and is independent of any dissipation in
nearby systems. In contrast, radiative damping is a
collective effect exhibiting interference, i.e.. sub- or
superradiance. The radiative damping of two dipolar
oscillators is proportional to the total dynamical dipole
moment of the system. To describe the radiative
damping, we express the total dipole moment of the
system as Ptot = P1 þ P2 = R1x1 þ R2x2, where P1,2
are the dipole moments of oscillators 1 and 2, x1,2 are
their respective amplitudes and R1,2 are polarizabil-
ities relating the diabatic plasmon amplitudes to their
induced dipole moments. The magnitude of each
dipole moment can be positive or negative, depend-
ing on how the amplitudes x1,2 are defined relative to
the external field. The external excitation is repre-
sented by forces applied on both oscillators and is
here for simplicity assumed to be in phase, which can
be justified when the spatial extension of the system
is smaller than a quarter wavelength of the incident

light. The net force on each oscillator is proportional
to their polarizabilities F1,2 = R1,2Eext.
The equations of motion can then be written as

follows:

€x1 þ γ1 _x1 þω2
1x1 þ gx2 ¼ 0:5P

...
tot þR1Eext

€x2 þ γ2 _x2 þω2
2x2 þ gx1 ¼ 0:5P

...
tot þR2Eext

(
(1)

The radiative term Ptot introduces a coupling between
each oscillator. If the motion of the oscillator is out-of-
phase, radiative damping is suppressed, while for in-
phase motion, radiative damping is enhanced. This
effect is the classical analogue of sub- and superradi-
ance. This model has general validity, and in specific
limiting cases, we recover already established models.
IfR2,R1, we recover the CCO:

48,50,52 oscillator 1 is fully
forced and has both radiative and nonradiative con-
tributions to the losses; oscillator 2 has no radiative
losses and is not forced. If R2 , R1 and g = 0, we
recover the model proposed by Kats et al.64 that
describes the behavior of a single oscillator with
radiative damping.
For an incident harmonic field, Eext = E0e

iωt, the
displacements x1 and x2 of the oscillators are harmonic
with x1,2(ω) = C1,2(ω)e

iωt, where C1,2 are the oscillation
amplitudes. C1,2 can be computed analytically from
eq 1 and provide information on the frequency re-
sponse of the system. The squaredmodulus of the sum
of the amplitudes, |C1þ C2|

2, represents light scattering
efficiency of the system and is used to model the
scattering spectrum. A fit of the scattering spectrum
for the system in Figure 1 is shown with the black
dashed line in Figure 1b, demonstrating an excellent
agreement with the SIE results.
With this ECO, we can also reconstruct the charge

polarizationof the systempresented in Figure 1c�g. First,
we compute a near-field map of the z-component of the
electric field for a single frequency, far away from the
resonance, for each of the uncoupled antenna alone and
the nanorods alone (Supporting Information Figure S1).
We then multiply each map, after normalization, by the
corresponding oscillator amplitudes C1,2(ω) extracted
from the oscillator model. Figure 2b�f shows the calcu-
lated charge distributions, which are in almost perfect
agreementwith the results in Figure 1c�gobtained from
full electromagnetic calculations. Also here we see that,
by changing the frequency of the applied field, we can
selectively excite both the diabatic and adiabatic modes
of the system.SinceC1,2 are complexnumbers, theydonot
only provide amplitude but also phase information.When
their real parts have the same sign, the two oscillators
resonate in-phase, while out-of-phase oscillations are
produced for opposite signs (Supporting Information
Figure S5).
The geometry of the plasmonic structure plays a

major role in determining the energies of the diabatic
and adiabatic modes. In the following, we explore the
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tunability of the Fano resonance by varying the
geometry. Figure 3 shows the effect of tuning
the antenna gap on the scattering spectrum of the
system. The high resolution scanning electron
microscope (SEM-SFEG Sirion) pictures show exam-
ples of geometries with gap sizes between 5 and
50 nm. The structures are fabricated with e-beam
lithography followed by 2 nm Ti (adhesion layer) and
40 nm Au thermal evaporation on a glass substrate
and lift-off process.
The experimental dark-field scattering measure-

ments on single structures are shown in Figure 3a
which agree very well with the SIE calculations in
Figure 3b and the ECO results in Figure 3c. The experi-
mental spectra are a little broader and damped than
the simulated spectra which is most likely caused by
defects generated by the lithographic fabrication pro-
cess. The analysis of the scattering spectra reveals two
main features. The first one is a blue shift of the peak
associated with DA, which can be explained by the fact
that the gap influences the resonance position of the
antenna.33 The second and more important effect is
the spectral inversion of the superradiant and the
subradiant modes as the gap size is reduced. For large
gaps, the Fano resonance (AD) appears on the blue
side of the main scattering resonance (AB), but for
small gap sizes, the positions are reversed. This indi-
cates a direct relation between the gap width and the
coupling between the two resonators. In fact, in a
coupled system, the relative positions of the hybri-
dized modes depend on the sign and strength of the
coupling.61

The plasmon hybridization graph in Figure 3e pro-
vides a synthetic view of the results in Figure 3b. The
figure clearly shows that the hybridized modes exhibit
an anticrossing and an energy inversion for a gapwidth
in between 20 and 22.5 nm. The relative energies of the
hybridizedmodes are again extracted from the absorp-
tion cross section of the coupled systems. The inver-
sion is also confirmed by the flipping of the absorption
peaks corresponding to the two modes (Supporting

Information Figure S6). It should be noticed that the AD
mode (blue line) lies above the DA (gray dashed line)
which is contrary to what would be expected in
electrostatic hybridization theory. The reason for this is
retardation effects which induce a redshift (dynamical
depolarization) of the collective hybridizedmode. Such a
redshift of a hybridized antibonding mode with respect
to the parent unhybridized mode (DA) also occurs for
nanoshells.2

In Table 1, we report the fitting parameters for the
ECO model. These data together with Figure 3f clearly
show a dependence of the coupling coefficient g on the
gap width. Note also the change of sign in the coupling
coefficient, leading to a reversal of the Fano resonance
energy with respect to the superradiant mode. For zero
coupling, the adiabatic modes are not defined and there
is a discontinuous jump in Figure 3e. This is a fundamen-
tally different behavior from standard avoided crossings,
where the interaction remainsfinite and the twoadiabatic
states repel each other. The unusual phenomenon of a
sign change in the coupling between the antenna and
nanorodmodes canbeunderstood from the schematic in
Figure 3g: as the antenna gap increases, the Coulomb
interaction changes sign from repulsive to attractive.
Let us now consider the influence of the nanorods

length on the response of the system. Normalized
experimental scattering spectra as well as SIE simula-
tions with corresponding oscillator model fitting and
SEM pictures for four different nanorods lengths are
presented in Figure 4. The calculated spectra agree
very well with the measured spectra as well as with the
ECOmodel. Several effects causedby the tuning can be
immediately observed: a clear red shift of the super-
radiant peak, awidth tuning of the Fano resonance and
the disappearance of the Fano resonance for a specific
nanorods length. The first effect is simply due to the
fact that increasing the nanorods length causes a red
shift of the DN mode and a resulting red shift of the
hybridized modes. Since the width of the dip is deter-
mined by the energy difference between the two
diabatic states, red-shifting DN with respect to DA

Figure 2. (a) Schematics of the ECOmodel proposed for the fitting. The oscillators correspond to the diabatic modes DA and
DN. (b�f) Reconstruction of the near-field map using ECO model. This shows excellent agreement compared with the maps
obtained with the SIE method and presented in Figure 1c�g. Each plot is obtained by sampling the electric field at a single
wavelength far from the resonance on a plane 5 nmabove the structures for isolated antenna andnanorodsmultiplied by C1,2
extracted from the model.
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increases thewidth of the Fanodip and allows a precise
control of the transparency window.
In Figure 4e, we present a plasmon hybridization

diagram that clearly illustrates the effects of tuning the
energy of DN. As the uncoupled nanorod resonance
(DN, black dashed line) wavelength approaches that of
the uncoupled antenna (DA, gray dashed line), the
hybridized modes exhibit a clear avoided crossing
behavior. Again, the positions of AB and AD are
extracted from the absorption peaks. For the same
reason as in Figure 3e, the hybridized modes do not
converge asymptotically to DA and DN for long nano-
rods. The anticrossing behavior implies that the mag-
nitude and sign of the coupling remains unchanged.
This is confirmed by the values extracted from ECO
fitting in Table 2.

Surprisingly, when the diabatic modes cross, which
occurs for L ∼ 87.5 nm, the width of the Fano reso-
nance goes to a minimum and the Fano line shape is
completely damped, Figure 4, leading to a single
Lorentzian peak for the scattering cross section that
corresponds then to a pure bright mode. This effect,
which is exclusively associatedwith the positions of DA
and DN and not with any other parameter like the
coupling, is the plasmonic equivalent of a quantum
mechanical effect known in literature as bound state in
the continuum (BIC).56,57 This system is in fact equiva-
lent to two states that are in interaction with radiation.
The tunability of plasmonic systems enables position-
ing the diabatic states very close to each other while
maintaining appreciable coupling. Under these condi-
tions, a narrow bound state with infinite radiative
lifetime but a total finite lifetime because of Ohmic
losses is formed in the continuum. Figure 4f shows this
effect clearly: the width associated with the AD mode
goes toward the minimum for nanorod lengths ap-
proaching 87.5 nm while the width of the AB mode
reaches a maximum. Because of the overlap of the
absorption peaks around the anticrossing point, the
modal widths cannot be extracted from the absorption
spectra but are instead determined using the Gallinet
formula65 that provide position and mode width of
the hybridized modes by fitting the scattering cross

Figure 3. (a) Dark-fieldmeasurements, (b) SIE scattering simulations, (c)fitwith the ECOmodel, and (d) SEMpictures (scale bar
100 nm) of structureswith constant nanorods length L=120 nmand increasing antennagap size from5 to 50 nm. (e) Plasmon
hybridization diagramwith the spectral position of the diabatic (dashed lines) and adiabatic modes (solid red and blue lines)
versus the gap width. (f) Resonance wavelengths of the diabatic modes extracted from the fitting with ECO (black) and
coupling constant g (blue). (g) Schematics of Coulomb interaction for different gap widths. For small gaps, the AB mode is at
higher energy than AD because of repulsive forces between antenna and nanorods, while for large gaps, we have attractive
forces and the opposite effect.

TABLE 1. Extracted Parameters from ECOModel for Varying

Gap Widths (Figure 3)

gap width ω1 [eV] ω2 [eV] g [eV2] E0 γ1 [eV] γ2 [eV] R1 [eV
�1] R2 [eV

�1]

5 nm 1.516 1.623 0.361 2.863 0.096 0.074 0.110 0.140
7.5 nm 1.523 1.667 0.311 2.891 0.050 0.066 0.110 0.140
12.5 nm 1.536 1.732 0.200 3.025 0.064 0.064 0.109 0.139
20 nm 1.550 1.780 0.084 2.773 0.083 0.051 0.128 0.131
40 nm 1.566 1.831 �0.143 3.626 0.155 0.070 0.101 0.064
50 nm 1.585 1.838 �0.297 3.196 0.155 0.048 0.105 0.079
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section. A near-field analysis of the structure also
reveals a minimum in the electric field enhancement
of the AD compared to the field enhancement of
structures with different nanorod lengths (Supporting
Information Figure S3) further highlighting the disap-
pearance of the AD mode. This behavior can also be
well reproduced with the oscillator model. In this case,
we must impose the same resonance frequency for
both oscillators (ω1 = ω2). For simplicity, we assume
that γ1 = γ2 and R1 = R2. For an in-phase excitation, we
can solve eq 1 and find the total oscillation amplitude:

jC1þC2j2 ¼
����� 2E0R1

g �ω2 þω2
1 þ iω(ω2R1 þ γ1)

�����
2

(2)

Equation 2 describes a single resonance with Lorentzian
line shape centered at ωb

2 = ω1
2 þ g with a line width

Γb = R1ω
2 þ γ1. The fact that the width contains both

the radiative and nonradiative coefficients confirms the

hypothesis that we are exciting the superradiant mode.
We can also use the ECO model to probe the subradiant
mode, whose amplitude is determined by the difference
of C1 and C2 when imposing F1 =�F2, corresponding to
an out-of-phase excitation.66,67 With this excitation con-
dition, the solution of eq 1 becomes

jC1 � C2j2 ¼
����� 2E0R1

�g �ω2 þω2
1 þ iωγ1

�����
2

(3)

We obtain again a resonance with a Lorentzian
profile, but now centered at ωd

2 = ω1
2 � g and with

Γd = γ1. The resonance width is now determined only
by nonradiative losses and is therefore much narrower
than the superradiant mode. The radiative losses cancel
out, in perfect agreement with experimental work on
Fano resonances.68 Equation 3, together with Figure 4f
also explains the increase of the width of the Fano
resonance, from theminimum value given by nonradia-
tive losses, to the maximal asymptotic value given by
both contributions γ and R. Comparing the hybridized
modepositions, we see that their respective frequencies
are ωb,d = ω1 ( g. This result that is in line with classical
strong coupling theory61 is significant and also confirms
the anticrossing nature of the hybridized modes.
Finally, as seen in Figures 3 and 4, this system pro-

vides a very simple way of tuning the Fano line shape
in hybridized systems. Both the position and modula-
tion depth can be precisely controlled by using
only two geometrical parameters and a condition for

Figure 4. (a) Dark-field measurements, (b) SIE simulations, (c) fit with ECO model, and (d) SEM pictures (scale bar 100 nm) of
systems with different nanorods lengths ranging from 70 to 150 nm and antenna gap fixed at 25 nm. (e) Plasmon
hybridization diagram with the spectral position of diabatic and adiabatic modes versus nanorods length. (f) AB and AD
mode resonance widths versus nanorods length extracted with a fitting using Gallinet formula.

TABLE 2. Parameters for the ECO Model for Varying

Nanorods Lengths (Figure 4)

nanorods

length ω1 [eV] ω2 [eV] g [eV2] E0 γ1 [eV] γ2 [eV] R1 [eV
�1] R2 [eV

�1]

70 nm 1.938 1.799 �0.140 4.607 0.081 0.111 0.065 0.067
87.5 nm 1.799 1.799 �0.020 3.122 0.045 0.045 0.110 0.110
120 nm 1.554 1.798 �0.025 3.070 0.100 0.068 0.100 0.112
150 nm 1.380 1.767 �0.130 2.830 0.148 0.088 0.095 0.115
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the best near-field enhancement can be obtained22

also thanks to the combination of antenna nano-
gap and efficient energy storage of a Fano system
(Supporting Information Figure S3).

CONCLUSIONS

A novel gold plasmonic nanostructure that com-
bines dipolar resonances into a hybrid system support-
ing a Fano resonance in the visible range of the
spectrum has been studied both numerically and
experimentally. The nanostructure exhibits high tun-
ability and robust control of its spectral features with
only a few structural parameters. The analysis of the
charge distribution revealed that the uncoupled
modes forming the hybridized modes can be excited
for specific frequencies close to the peaks surrounding

the Fano resonance in the scattering spectra. This
finding implies that the location of the hot spots in
the nanostructure is dependent on the illumination
wavelength. An extended oscillator model that in-
cludes radiation damping has been introduced to fit
experimental and numerical data. This simple model
predicts the behavior of the plasmonic system extre-
mely well. Experimental data have shown both cross-
ing and avoided crossing behavior as a consequence
changing the gap or the length of the nanorods. In
particular, this structure allows for an inversion of
the relative positions of the subradiant and super-
radiant modes with the antenna gap modulation. By
tuning the length of the nanorods, we have demon-
strated a plasmonic equivalent of a bound state in the
continuum.

METHODS
In the experiments, we have used an inverted dark field

optical microscope equipped with an oil immersion 60� objec-
tive with a numerical aperture of 1.45 (PLAPON 60xO TIRFM,
Olympus). The sample was placed on top of the objective on a
piezoelectric stage (ND-MTD, Ntegra). The illumination source was
a halogen lamp and a polarizer (LPVIS050-MP, Thorlabs) was used
to set the polarization of the beam parallel to the main dimension
of the antennas. To maintain the light polarized at the sample
plane, the beampositionwas adjusted so that the reflection on an
annular gold mirror was only on one side. The scattered light was
collected by a spectrometer (Shamrock SR-303i, Andor) equipped
with an electronic cooled CCD camera (iDus 401BRDD, Andor).
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Figure S1. Near-field maps of isolated (a) antenna with d=25nm and (b) nanorods with L=120nm and center to 

center distance of 100nm computed at ω = 1.18eV. Width and thickness for both geometries are fixed to 40nm. The 

field is sampled 5nm above the structures and the real part of the normal component is plotted. This provides a 

simple way of analyzing the charge distribution inside the plasmonic structures. 

 

 

Figure S2. (a) Schematics of the instantaneous dipole orientation on the two sides of a dipole resonance as response 

of an external field. (b) Schematics of the interaction of two dipole resonances along with their instantaneous field 

(black and green arrows). In the region where the dipole oscillate out-of-phase we observe destructive interference 

and higher modulation depth (dashed line).  

 



 

Figure S3.  Electric field simulations at AD frequency in the center of the antenna gap (blue) and 5nm far from one 

nanorod end (red), compared with the field computed in the center of the gap for a single antenna without nanorods 

around. 

 

Figure S4. Absorption cross-section for uncoupled (a) nanoantenna with d = 25nm and (b) nanorods with L = 

120nm and center-center distance of 100nm. Width and thickness for both geometries are fixed to 40nm. (c) 

Absorption for the structure composed by the coupled structure. 

 

Figure S5. (a) Reconstruction from the oscillator model of the scattering cross-section. (b) Real part of C1 and (c) 

real part of C2. 



 

Figure S6. Absorption cross-section for a structure with L = 120nm and antenna d = (a) 5nm and (b) 30nm. The 

narrow and wide resonances are inverted in wavelength when comparing both cases. 

 


