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Abstract: We investigate the general iterative controller tuning (ICT) problem, where the1

task is to find a set of controller parameters that optimize some user-defined performance2

metric when the same control task is to be carried out repeatedly. Following a repeatability3

assumption on the system, we show that the ICT problem may be formulated as a real-4

time optimization (RTO) problem, thus allowing for the ICT problem to be solved in the5

RTO framework, which is both very flexible and comes with strong theoretical guarantees.6

In particular, we propose the use of a recently released RTO solver and outline a simple7

procedure for how this solver may be configured to solve ICT problems. The effectiveness8

of the proposed method is illustrated by successfully applying it to four case studies – two9

experimental and two simulated – that cover the tuning of model-predictive, general fixed-10

order, and PID controllers, as well as a system of controllers working in parallel.11

Keywords: controller autotuning; real-time optimization; data-driven tuning methods12

1. Introduction13

The typical task of a controller consists in tracking a user-specified trajectory as closely as possible14

while observing certain additional specifications, such as stability, the satisfaction of safety limits, and15

the minimization of expensive control action when it is not needed. Mathematically, we may define such16

a controller by the mapping Gc(ρ), where ρ ∈ Rnρ denote the parameters that dictate the controller’s17

behavior and represent decision variables (the “tuning parameters”) for the engineer intending to18
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Figure 1. Qualitative schematic of a single-input-single-output system with the controller
Gc(ρ). Elements such as disturbances and sensor dynamics, as well as any controller-specific
requirements, are left out for simplicity. We use the notation y(t,ρ) to mark the (implicit)
dependence of the control output on the tuning parameters ρ (likewise for the input and the
error).
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implement the controller in practice. In the simplest scenario, this often leads to a closed-loop system19

that may be described by the schematic in Figure 1. No assumptions are made on the nature ofGc, which20

may represent such controllers as the classical PID, the general fixed-order controller, or even the more21

advanced MPC (model-predictive control). To be even more general, Gc may represent an entire system22

of such controllers – one would need, in this case, to simply replace yref (t), y(t,ρ), u(t,ρ), and e(t,ρ)23

by their vector equivalents.24

As with any set of decision variables, it should be clear that there are both good and bad choices of ρ,25

and in every application some sort of design phase preceeds the actual implementation and acts to choose26

a set of ρ that is expected to track the reference yref “well” while meeting any additional specifications.27

The classic example for PID controllers is the Ziegler-Nichols tuning method [1], with methods such28

as model-based direct synthesis [2] and virtual reference feedback tuning [3] acting as more advanced29

alternatives. Though not as developed, both theoretical and heuristic approaches exist for the design of30

MPC [4] and general fixed-order controllers [5,6] as well.31

In the majority of cases, the set of controller parameters obtained by these design methods will not be32

the best possible with respect to control performance. There are many reasons for this, with some of the33

common ones being:34

• assumptions on the plant, such as linearity or time invariance, that are made at the design stage,35

• modeling errors and simplifications,36

• conservatism in the case of a robust design,37

• time constraints and/or deadlines that give preference to a simpler design over an advanced one.38

To improve the closed-loop performance of the system, some sort of data-driven adaptation of the39

parameters from their initial designed values, denoted here by ρ0, may be done online following40

the acquisition of new data. These are generally classified as “indirect” and “direct” adaptations41

[7] depending on what is actually adapted – the model (followed by a model-based re-design of the42

controller) in the indirect variant, or the controller parameters directly in the direct one. This paper43
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Figure 2. The basic idea of iterative controller tuning. Here, a step change in the setpoint
represents the repetitive control task. We use ρ∗ to denote a sort of “anti-optimum” that
might be achieved with a bad adaptation algorithm.
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investigates direct methods that attempt to optimize control performance by establishing a direct link44

between the observed closed-loop performance and the controller parameters, with the justification45

that such methods may be forced to converge – at least, theoretically – to a locally optimal choice ρ∗46

regardless of the quality or the availability of the model, which cannot be said for indirect schemes [8].47

Many of these schemes attempt to minimize a certain user-defined performance metric (e.g., the48

tracking error) for a given run or batch by playing with the controller parameters as one would in an49

iterative optimization scheme – i.e., by changing the parameters between two consecutive runs, trying50

to discover the effect that this change has on the closed-loop performance (estimating the performance51

derivatives), and then using the derivative estimates to adapt the parameters further in some gradient-52

descent manner [9,10,11,12,13]. This is essentially the iterative controller tuning (ICT) problem, whose53

goal is to bring the initial suboptimal set ρ0 to the locally optimal ρ∗ via iterative experimentation on54

the closed-loop system, all the while avoiding that the system become dangerously unstable from the55

adaptation (a qualitative sketch of this idea is given in Figure 2). A notable limitation of such methods,56

though rarely stated explicitly, is that the control task for which the controller is being adapted must be57

identical (or very similar) from one run to the next – otherwise, the concept of optimality may simply58

not exist since what is optimal for one control task (e.g., the tracking of a step change) need not be so59

for another (e.g., the tracking of a ramp). A closely-related problem where the assumption of a repeated60

control task is made formally is that of iterative learning control [14], although what is adapted in that61

case is the open-loop input trajectory rather than the parameters of a controller dictating the closed-loop62

system.63
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We observe that, as the essence of these tuning methods consists in iteratively minimizing a64

performance function that is unknown due to the lack of knowledge of the plant, the ICT problem is65

actually a real-time optimization (RTO) problem as it must be solved by iterative experimentation1.66

Recent work by the authors [19,20,21] has attempted to unify different RTO approaches and to67

standardize the RTO problem as any problem having the following canonical form:68

minimize
v

φp(v)

subject to Gp(v) � 0

G(v) � 0

vL � v � vU

, (1)

where v ∈ Rnv denote the RTO variables2 (RTO inputs) forced to lie in the relevant RTO input space69

defined by the lower and upper limits vL and vU , φp denotes the cost function to be minimized, and Gp70

and G denote the sets of individual constraints gp, g : Rnv → R (i.e., safety limitations, performance71

specifications) to be respected. We use the symbol � to denote componentwise inequality.72

The subscript p (for “plant”) is used to indicate those functions that are unknown, or “uncertain”, and73

can only be evaluated by applying a particular vk and conducting a single experiment (with k denoting74

the experiment/iteration counter), from which the corresponding function values may then be measured75

or estimated:76

φ̂p(vk) = φp(vk) + wφ,k

ĝp(vk) = gp(vk) + wg,k
, (2)

with some additive stochastic error w. Conversely, the absence of p indicates that the function is easily77

evaluated by algebraic calculation without any error present.78

Owing to the generality of (1), casting the ICT problem in this form is fairly straightforward and,79

as will be shown in this work, has numerous advantages as it allows for a fairly systematic and flexible80

approach to controller tuning in a framework where strong theoretical guarantees are available. The main81

contribution of our work is thus to make this generalization formally and to argue for its advantages while82

cautioning the potential user of both its apparent and hypothetical pitfalls.83

Our second contribution lies in proposing a concrete method for solving the ICT problem in this84

manner. Namely, we advocate the use of the recently released open-source SCFO (“sufficient conditions85

for feasibility and optimality”) solver that has been designed for solving RTO problems with strong86

theoretical guarantees [21]. While this choice is undoubtedly biased, we put it forward as it is, to the87

best of our knowledge, the only solver released to date that solves the RTO problem (1) reliably, which88

is to say that it consistently converges to a local minimum without violating the safety constraints in89

theoretical settings and that it is fairly robust in doing the same in practical ones. Though quite simple90

1This is the definition of “real-time optimization” as it is used in the process systems engineering community (see, e.g.,
[15,16]) to indicate gradual improvement of an economic objective – the function φp in (1) – by iterative experimentation.
We warn the reader to not confuse this with the more recent use of “real-time optimization” in the fast, on-line computation
context (see, e.g., [17,18]), where an optimization problem is solved subject to real-time constraints for a purpose other than
the optimization of an economic objective (e.g., for control or estimation).

2It is more common to denote RTO inputs by u in the literature, but we use v here so as not to create confusion with the
control input u(t).
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to apply, the SCFO framework and the solver itself need to be properly configured, and so we guide the91

potential user through how to configurate the solver for the ICT problem.92

Finally, as the theoretical discussion alone should not be sufficient to convince the reader that there93

is strong potential for solving the ICT problem as an RTO one, we finish the paper with a total of four94

case studies, which are intended to cover a diverse range of experimental and simulated problems and95

to demonstrate the general effectiveness of the proposed method, the difficulties that are likely to be96

encountered in application, and any weak points where the methodology still needs to be improved.97

Specifically, the four studies considered all solve the ICT problem for:98

• the tracking of a temperature profile in a laboratory-scale stirred tank by an MPC controller,99

• the tracking of a periodic setpoint for a laboratory-scale torsional system by a general fixed-order100

controller with a controller stability constraint,101

• the PID tracking of a setpoint change for various linear systems (previously examined in [13,22]),102

• the setpoint tracking and disturbance rejection for a five-input, five-output multi-loop PI system103

with imperfect decoupling and a hard output constraint.104

In each case, we do our best to concretize the theory discussed earlier by showing how the resulting ICT105

problem may be formulated in the RTO framework, followed by the application of the SCFO solver with106

the proposed configuration.107

2. The RTO Formulation of the Iterative Controller Tuning Problem108

In this section, we go through the different components of the RTO problem (1) and state their ICT109

analogues, together with any assumptions necessary to make the links between the two clean. We then110

finish by reviewing the benefits and limitations of this approach.111

2.1. The Cost Function φp→ The Control Performance Metric112

The intrinsic driving force behind iteratively tuning a controller so that it performs “better” is the113

somewhat natural belief that there is some sort of deterministic link between the parameters and the114

observed performance. We qualify this via the following assumption, which was originally stated in the115

MPC context in [23] and then extended to the general controller in [24].116

Assumption 1 (Repeatability). Let ρ ∈ Rnρ denote the tuning parameters of a controller and Jk the117

observed value of the user-defined performance metric at run k for a fixed control task that is identical118

from run to run. The closed-loop process is repeatable with respect to performance if119

Jk = J(ρk) + δk, (3)

where ρk are the parameters of the controller at run k, J : Rnρ → R is a purely deterministic relation120

between the performance metric and the parameters, and δk is the “non-repeatability noise”, a purely121

stochastic element that is independent of ρk.122
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In layman’s terms, the (unknown) function J is precisely the intrinsic link that we believe in, while123

δk is a representation of reality, which most often manifests itself by means of measurement noise and124

differs unpredictably from run to run. The discussion of the validity of such an assumption is deferred125

to the end of the section.126

Comparing (2) and (3), both of which involve a deterministic function that is sampled with additive127

noise, we establish our first RTO→ ICT connection:128

minimize
v

φp(v)→ minimize
ρ

J(ρ). (4)

A common general performance metric, given here in continuous form for the single-input-single-129

output (SISO) case, may be defined as:130

Jk := λ1

∫ tb

0

[yref (t)− y(t,ρk)]
2 dt+λ2

∫ tb

0

u2(t,ρk)dt+λ3

∫ tb

0

ẏ2(t,ρk)dt+λ4

∫ tb

0

u̇2(t,ρk)dt, (5)

where tb denotes the total length of a single run and where the weights λ � 0 may be set as needed to131

trade off between giving preference to tracking error, the control action, the smoothness of the output132

response, and the aggressiveness of the controller. Modifications that include other criteria, such as133

frequency weighting [10], or that modify the time interval for which the performance is analyzed by134

adding a “mask” [22], are of course possible as well.135

2.2. The Uncertain Inequality Constraints Gp→ Safety and Economic Constraints136

Many control applications may have strict safety specifications that require a given output y(t,ρ) to137

remain within a certain zone, defined by y and y, throughout the length of the run:138

y ≤ y(t,ρ) ≤ y, ∀t ∈ [0, tb]. (6)

While it is not difficult to propose methods to enforce such behavior for the general controller, many139

of which would likely try to incorporate the constraints as setpoint objectives, such approaches remain140

largely ad hoc. This drawback has shifted particular emphasis to MPC as being the advanced controller141

to be able to deal with output constraints systematically [25], but even here no rigorous conditions for142

satisfying (6) are available for the general case where any amount of plant-model mismatch is admissible.143

Since rigorous theoretical conditions are available for satisfying Gp(v) � 0 in the RTO framework144

[19], we may exploit this advantage by casting the hard output constraints for the ICT problem in RTO145

form. To do this, we start by replacing the two semi-infinite constraints of (6) by their equivalent finite146

versions:147

y ≤ min
t∈[0,tb]

y(t,ρ)

max
t∈[0,tb]

y(t,ρ) ≤ y
.

At this point, we need to apply a version of Assumption 1 for the constraints. For a particular run k,148

we assume that the closed-loop process is repeatable with respect to the control output range:149

min
t∈[0,tb]

y(t,ρk) = ymin(ρk) + δmin,k

max
t∈[0,tb]

y(t,ρk) = ymax(ρk) + δmax,k
, (7)



Version August 23, 2013 submitted to Processes 7 of 35

i.e., that the minimum and maximum values of the trajectory y(t,ρk) observed for a given run k are150

(unknown) deterministic functions (ymin, ymax) of the parameters plus a stochastic element (δmin,k,151

δmax,k).152

Making the link with (2), we may now restate the hard output constraints in RTO form as:153

Gp(v) � 0→ −ymin(ρ) + y ≤ 0

ymax(ρ)− y ≤ 0
, (8)

where the function values ymin and ymax can be measured for a given ρ with the additive errors δmin and154

δmax.155

Alternatively, it may occur that there are economic constraints with respect to the inputs. As an156

example, consider a reactor where one of the control inputs is the feed rate of a reagent. While effective157

for the purposes of control, the reagent may be expensive and so only a limited amount may be allotted158

per batch, with the constraint159 ∫ tb

0

u(t,ρ)dt ≤ uT

imposed, where uT is some user-defined limit. Following the same steps as above, we suppose that160 ∫ tb

0

u(t,ρk)dt = uT (ρk) + δu,k,

with uT the deterministic component and δu the non-repeatability noise, and make the connection:161

Gp(v) � 0→ uT (ρ)− uT ≤ 0.

It should be clear that extension to multiple-input-multiple-output (MIMO) cases is trivial, as this162

only adds more elements to Gp.163

2.3. The Certain Inequality Constraints G→ Controller Specifications and Stability Considerations164

In some controllers, analytically known inequality relations may need to be satisfied. One such165

example is the case of the MPC controller, where one may tune both the control and prediction horizons166

(m and n, respectively) with the built-in rule [25]:167

m ≤ n, (9)

which, if we define ρ1
∆
=m and ρ2

∆
=n, leads to the following link with (1):168

G(v) � 0→ ρ1 − ρ2 ≤ 0.

As another example, we may want to adapt the parameters of the discrete fixed-order controller:169

Gc(ρ) =
ρ1z

2 + ρ2z + ρ3

z2 + ρ4z + ρ5

, (10)

but would like to limit our search to stable controllers only. Employing the Jury stability criterion [26],170

we generate the first four rows of the Jury table for the denominator of Gc(ρ):171

row 1 : 1 ρ4 ρ5

row 2 : ρ5 ρ4 1

row 3 : 1− ρ2
5 ρ4 − ρ4ρ5 0

row 4 : ρ4 − ρ4ρ5 1− ρ2
5 0

,
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from which the sufficient conditions for controller stability are obtained as:172

|ρ5| < 1

|ρ4 − ρ4ρ5| < |1− ρ2
5|
→ |ρ5| ≤ 1− ε
|ρ4 − ρ4ρ5| ≤ |1− ρ2

5| − ε
, (11)

with the constraint set on the right representing an implementable nonstrict version with negligible173

conservatism for ε > 0 small. Controller stability may now be ensured in RTO form with the174

correspondance:175

G(v) � 0→ |ρ5| − 1 + ε ≤ 0

|ρ4 − ρ4ρ5| − |1− ρ2
5|+ ε ≤ 0

. (12)

Finally, we note that nominal closed-loop stability constraints may also be incorporated in this176

manner. As a simple example, consider the unstable plant that is modeled as177

G(s) =
1

s− 1
,

and that is to be controlled by a PD controller with ρ1 and ρ2 the proportional and derivative gains,178

respectively:179

Gc(ρ) = ρ1 + ρ2s.

From the analysis of the characteristic equation 1 + GGc = 0, we have the stability condition, together180

with its implementable version:181

1− ρ1

1 + ρ2

< 0→ 1− ρ1

1 + ρ2

≤ −ε,

which, again, allows the correspondance:182

G(v) � 0→ 1− ρ1

1 + ρ2

+ ε ≤ 0. (13)

Extensions to robust nominal stability follow easily, and would simply involve a greater number of183

constraints.184

2.4. The Box Constraints vL � v � vU → Controller Parameter Limits185

Given the RTO-ICT correspondence of v → ρ, the box constraints of the RTO problem are simply186

the lower and upper limits, ρL and ρU , on the adapted controller parameters. We note that certain limits187

will be obvious for certain controllers – e.g., the integral time should be superior to 0 in a PI controller,188

while the prediction and control horizons of an MPC controller should be equal to or greater than 1. In189

other cases, one may have to think a little before deciding on appropriate limits. In Section 3, an easy190

way to set parameter bounds for the general controller will be provided.191

2.5. The ICT Problem in RTO Form: Summary192

Having now gone through all the components of Problem (1) and having provided their ICT193

analogues, we may make certain remarks and observations.194

To start with the positive, almost all of the possible desired specifications in a standard ICT problem195

are easily stated in RTO terms, although this is not surprising given the generality of (1). Of particular196

interest with regard to this point are the constraint terms, as the flexibility of the RTO formulation has197
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allowed for us to include limits on the control outputs and inputs, as well as any controller specifications,198

very easily. To the best of the authors’ knowledge, constraints are generally avoided in the majority199

(though not all [27]) of direct tuning formulations. This is likely because the most commonly used200

method – the gradient descent – is not well-equipped to deal with them (apart from certain simple kinds,201

such as the box constraints [23]). Casting the ICT problem in the RTO framework therefore allows us to202

ignore this limitation.203

The other big advantage is that no assumptions are needed on the nature of the controller (or204

their number, if a system of controllers is considered) – it simply has to be something that can be205

parametrically tuned, and so one could adapt just about anything. Likewise, the standard restricting206

assumption of linearity is also not needed, even formally, as the black-box nature of the RTO formulation207

does not make use of such assumptions since it ignores the actual dynamic behavior of the closed loop208

and only considers the RTO inputs (the tuning parameters) and RTO outputs (performance, proximity209

to constraints), both of which are static quantities with a static map between them. As such, the210

methodology applies just as readily to nonlinear systems as it does to linear ones.211

There are, however, points to be contested. The key linking element between RTO and ICT is212

Assumption 1, which is, at best, only an approximation and merits justification. The driving force behind213

this assumption is the fact that any deterministic3 controller with fixed tuning parameters, when applied214

repeatedly to a closed-loop process to perform the same control task, should always yield the exact same215

performance (and the exact same input/output trajectories) in the absence of non-repeatable effects such216

as input/measurement noise, process degradation, and disturbances. Indeed, the absence of such effects217

implies that the δk term in (3) is equal to 0, and that the repeatability assumption holds exactly. For218

cases when these effects are minor and do not influence controller behavior significantly, we expect that219

a given controller will yield the same performance “more or less”, with variations being lumped into δk220

and the major deterministic trends being described by J . This neat way of decoupling the deterministic221

and stochastic components may not be valid when the non-repeatable effects become large and exert a222

significant influence on the controller behavior, however. As such, we may view this assumption as an223

approximation of reality that tends to perfection as the magnitude of the noise/degradation/disturbances224

in the closed-loop system tends to 0.225

There is, as well, the issue of stability. Even with the direct incorporation of constraints in the RTO226

problem formulation (e.g., via (12) or (13)), there is no true way to incorporate a real constraint on227

closed-loop stability, as stability is not a real-numbered value that can be measured following a closed-228

loop experiment (if it were, it would be trivial to include it as an uncertain constraint in the set Gp).229

Unfortunately, this is a much bigger problem that is not limited to just ICT – one cannot, for the general230

unknown plant, ever guarantee stability via any means without making additional assumptions on the231

nature of the plant. The bright side is that any of the standard stability-guaranteeing methods are easily232

incorporated into the RTO formulation as certain constraints G, and may be used to limit the adaptations233

to those controllers that are at least nominally stable. Other workarounds could also be proposed – if234

the fear of having an unstable closed-loop system stems from having some control output leave its safe235

3While almost all applied controllers are deterministic, we acknowledge the possibility of stochastic controllers (e.g.,
those employing Monte Carlo techniques [28]), for which the methods discussed in this work may not be applicable.
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operating range, then one could simply introduce an output constraint on that quantity, which, as already236

shown, is easily integrated into the RTO formulation as Gp.237

3. The SCFO Solver and Its Configuration238

Having now presented the formulation of the ICT problem as an RTO one, we go on to describe how239

Problem (1) may be solved. Although (1) is posed like a standard optimization problem, the reader is240

warned that it is experimental in nature and must be solved by iterative closed-loop experiments on the241

system – i.e., one cannot simply solve (1) by numerical methods since evaluations of functions φp and242

Gp require experiments. A variety of RTO (or “RTO-like”) methodologies, all of which are appropriate243

for solving (1), have been proposed over the years and may be characterized as being model-based (see,244

e.g., [29,30,31,32]), model-free [33,34], or as hybrids of the two [35,36]. In this work, we opt to use the245

SCFO solver recently proposed and released by the authors [19,20,21], as it is the only tool available to246

theoretically guarantee that:247

• the RTO scheme converges arbitrarily close to a Karush-Kuhn-Tucker (KKT) point that is, in the248

vast majority of practical cases, a local minimum,249

• the constraints Gp(v) � 0 and G(v) � 0 are never violated,250

• the objective value is consistently improved, with φp(vk+1) < φp(vk) always,251

with these properties enforced approximately in practice.252

The basic structure of the solver may be visualized as follows:253

Solver

Configurationy
SCFO Solver ←− Measurementsy

vk+1

where the majority of the configuration is fixed once and for all while the measurements act as the true254

iterative components, with the full set of measured data being fed to the solver at each iteration, after255

which it does all of the necessary computations and outputs the next RTO input to be applied. This is256

illustrated for the ICT context in Figure 3 (as an extension of Figure 1).257

The natural price to pay for such simplicity of implementation is, not surprisingly, the complexity of258

configuration. Table 1 provides a summary of all of the configuration components, how they are set, and259

the justifications for these settings. Noting that most of these settings are relatively simple and do not260

merit further discussion, we now turn our focus to those that do.261

3.1. Solver Initialization262

Prior to attempting to solve Problem (1), it is strongly recommended that the problem be well-scaled263

with respect to both the RTO inputs and outputs. For the former, this means that:264
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Figure 3. The iterative tuning scheme, where the results obtained after each closed-loop
experiment on the plant (denoted by the dashed lines) are sent to the RTO loop (denoted by
the dotted box), which then appends these data to previous data and uses the full data set to
prompt the SCFO solver, as well as to update any data-driven adaptive settings (we refer the
reader to Table 1 for which settings are fixed and which are adaptive).
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: 1k k= +

ρ
k

vU1 − vL1 ≈ vU2 − vL2 ≈ ... ≈ vUnv − v
L
nv ≈ 1,

where “≈” may be read as “on the same order of magnitude as”. For the RTO outputs, it is advised that265

both the cost and constraint functions are such that their values vary on the magnitude of 100. Once this266

is done, one may proceed to initialize the data set.267

As the solver needs to compute gradient estimates directly from measured data, it is usually needed268

to generate the nv + 1 measurements (whose corresponding RTO input values should be well-poised for269

linear regression) necessary for a rudimentary (linear) gradient estimate (see, e.g., [30,37]). In the case270

that previous measurements are already available (e.g., from experimental studies carried out prior to271

optimization), then one may be able to avoid this step partially or entirely.272

We will, for generality, assume the case where no previous data are available. We will also assume that273

the initial point, v0 := ρ0, has been obtained by some sort of controller design technique. In addition,274

we require that the initial design satisfy Gp(v0) ≺ 0, G(v0) ≺ 0, and vL ≺ v0 ≺ vU – this is expected275

to hold intrinsically since one would not start optimizing performance prior to having at least one design276

that is known to meet the required constraints with at least some safety margin. The next step is then to277

generate nv additional measurements, i.e., to run nv (nρ) closed-loop experiments on the plant.278
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Table 1. Summary of SCFO configuration settings for the ICT problem.

Solver Setting Chosen As Justification Type
Initialization nρ + 1 closed-loop experiments See Section 3.1 –

Optimization target Scaled gradient descent See Section 3.2 Adaptive

Noise statistics Initial experiments at ρ0 See Section 3.3 Fixed

Constraint concavity None assumed No reason for assuming this
property in ICT context

Fixed

Constraint relaxations None assumed For simplicity (should be added
if some constraints are soft)

Fixed

Cost certainty Cost function is uncertain The performance metric is an
unknown function of ρ

Fixed

Structural assumptions Locally quadratic structure Recommended choice for gen-
eral RTO problem [21]

Fixed

Minimal-excitation radius 0.01
(
ρU1 − ρL1

)
Recommended choice for gen-
eral RTO problem [21]

Fixed

Lower and upper limits, vL

and vU
Controller-dependent or set
adaptively

See Section 3.4 Fixed/
Adaptive

Lipschitz and quadratic
bound constants

Initial data-driven guess fol-
lowed by adaptive setting

See Section 3.5 Fixed/
Adaptive

Scaling bounds Problem-dependent; easily cho-
sen

See [21] Fixed

Maximal allowable adapta-
tion step, ∆vmax

0.1
(
ρU − ρL

)T Recommended choice for gen-
eral RTO problem [21]

Fixed

A simple initialization method would be to perturb each controller parameter one at a time, as this279

would produce a well-poised data set with sufficient excitation in all input directions, thereby making the280

task of estimating the plant gradient possible. However, such a scheme could be wasteful, especially for281

ICT problems with many parameters to be tuned. One alternative would be to use smart, model-based282

initializations [30], but this would require having a plant model. In the case of no model, we propose to283

use a “smart” perturbation scheme that attempts to begin optimizing performance during the initialization284

phase, and refer the reader to the appendix for the detailed algorithm.285

3.2. The Optimization Target286

The target v∗k+1 represents a nominal optimum provided by any standard RTO algorithm that is287

coupled with the SCFO solver, and as such actually represents the choice of algorithm. This choice288

is important as it affects performance, with some of the results in [20] suggesting that coupling the289

SCFO with a “strong” RTO algorithm (e.g., a model-based one) can lead to faster convergence to the290

optimum. However, the choice is not crucial with respect to the reliability of the overall scheme, and so291

one does not need to be overly particular about what RTO algorithm to use, but should prefer one that292

generally guides the adaptations in the right direction.293
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For the sake of simplicity, the algorithm adopted in this work is the (scaled) gradient descent with a294

unit step size:295

v∗k+1 = vk −H†k∇φ̂p(vk), (14)

where both Hk and∇φ̂p(vk) are data-driven estimates. We refer the reader to the appendix for how these296

estimates are obtained.297

3.3. The Noise Statistics298

Obtaining the statistics (i.e., the probability distribution function, or PDF) for the stochastic error299

terms δ in (3) and (7) is particularly challenging in the ICT context. One reason for this is that300

these terms do not have an obvious physical meaning, as both (3) and (7), which model the observed301

performance/constraint values as a sum of a deterministic and stochastic component, are approximations.302

Furthermore, even if this model were correct, the actual computation of an accurate PDF would likely303

require a number of closed-loop experiments on the plant that would be judged as excessive in practice.304

As will be shown in the first two case studies of Section 4, some level of engineering approximation305

becomes inevitable in obtaining the PDF for an experimental system. The basic procedure advocated306

here is to carry out a certain (economically allowable) number of repeated experiments for v0 := ρ0307

prior to the initialization step. In the case where each experiment is expensive (or time consuming) and308

the total acceptable number is low, one may approximate the δ term by modeling the observed values by309

a zero-mean normal distribution with a standard deviation equal to that of the data. If the experiments310

are cheap and a fairly large number (e.g., a hundred or more) is allowed, then the observed data may be311

offset by its mean and then fed directly into the solver (as the solver builds an approximate PDF directly312

from the fed noise data).313

3.4. Lower and Upper Input Limits314

Providing proper lower and upper limits vL and vU can be crucial to solver performance. As already315

stated, for the ICT problem these are simply vL := ρL and vU := ρU , but, as these values may not be316

obvious for certain controller designs, the user may use adaptive limits that are redefined at each iteration317

k:318

ρLk := ρk − 0.5

ρUk := ρk + 0.5
. (15)

As the solver can never actually converge to an optimum that touches these limits, the resulting problem319

is essentially unconstrained with respect to them, thereby allowing us to configure the solver without320

affecting the optimality properties of the problem. We note that, while one could use very conservative321

choices and not adapt them (e.g., ρL := −1000 and ρU := 1000), this is not recommended as it would322

introduce scaling issues into the solver’s subroutines.323
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3.5. Lipschitz and Quadratic Bound Constants324

The solver requires the user to provide the Lipschitz constants (denoted by κ) for all of the functions325

φp, Gp, and G. These are implicitly defined as:326

κφ,i <
∂φp
∂vi

∣∣∣
v
< κφ,i, κp,i <

∂gp
∂vi

∣∣∣
v
< κp,i, κi <

∂g

∂vi

∣∣∣
v
< κi,

for all v ∈ {v : vL � v � vU}. Quadratic bound constants (denoted by M ) on the cost function are327

also required, and are implicitly defined as:328

M ij <
∂2φp
∂vi∂vj

∣∣∣
v
< M ij, ∀v ∈ {v : vL � v � vU}.

For G, which is easily evaluated numerically, we note that the choice is simple since one can, in many329

cases, compute these values prior to any implementation.330

For κφ,i, κp,i, and Mij , the choice is a very difficult one. This is especially true for the ICT problem331

where such constants have no physical meaning, a trait that may make them easier to estimate for some332

RTO problems [20]. When a model of the plant is available, one may proceed to compute these values333

numerically for the modeled closed-loop behavior, and then make the estimates more conservative (e.g.,334

by applying a safety-factor scaling) to account for plant-model mismatch.335

For the pure model-free case, we have no choice but to resort to heuristic approaches. As a choice of336

κφ,i, we thus propose the following (very conservative) estimate based on the gradient estimate for the337

initial nv + 1 points (23):338

κφ,i, κφ,i := ±10‖∇φ̂p‖∞, i = 1, ..., nv,

as we expect these bounds to be valid unless ‖∇φ̂p‖∞ is small, which, however, would indicate that we339

are probably close to a zero-gradient stationary point already, and would have little to gain by trying to340

optimize performance further if this point were a minimum.341

A similar rule is applied to estimate κp,i, with:342

κp,i, κp,i := ±2‖∇ĝp‖∞, i = 1, ..., nv,

where the estimate ∇ĝp is obtained in the same manner as (23). The choice of 2, as opposed to 10,343

is made for performance reasons, as making κp,i too conservative can lead to very slow progress in344

improving performance – this is expected to scale linearly, i.e., if the choice of ±2‖∇ĝp‖∞ leads to a345

realization that converges in 20 runs, the choice of ±10‖∇ĝp‖∞ may lead to one that converges in 100.346

Note, however, that this way of defining the Lipschitz constants does not have the same natural safeguard347

as it does for the cost, and it may happen that ‖∇ĝp‖∞ ≈ 0 at the initial point even though the gradient348

may be quite large in the neighborhood of the optimum. When this is so, an alternate heuristic choice is349

to set:350

κp,i, κp,i := ±2
−g

p

vUi − vLi
, i = 1, ..., nv,

where g
p

denotes the smallest value that the constraint can take in practice, with g
p
≤ gp(v), ∀v ∈ {v :351

vL � v � vU}. Combining the two, one may then use the heuristic rule:352

κp,i, κp,i := ±2 max

(
‖∇ĝp‖∞,

−g
p

vUi − vLi

)
, i = 1, ..., nv.
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However, it may still occur that this choice is not conservative enough. This lack of conservatism may353

be proven if a given constraint gp(v) ≤ 0 is violated for one of the runs, since sufficiently conservative354

Lipschitz estimates will usually guarantee that this is not the case (provided that the noise statistics are355

sufficiently accurate). As such, the following adaptive refinement of the Lipschitz constants is proposed356

to be done online when/if the constraint is violated with sufficient confidence:357

gp(vk) ≥ 3σg → κp,i := 2κp,i, κp,i := 2κp,i,

where σg represents the estimated standard deviation of the non-repeatability noise term δ for gp.358

For the quadratic bound constants M , which represent lower and upper bounds on the second359

derivatives of φp, we propose to use the estimate of the Hessian Hk as obtained in Section 3.2 (see360

Appendix), together with a safety factor, η, to define the bounds at each iteration k as:361

M ij,M ij := Hk,ij ± η|Hk,ij|, (16)

with η initialized as 1. Since such a choice may also suffer from a lack of conservatism, an adaptive362

algorithm for η is put into place. Since a common indicator of choosing M values that are not363

conservative enough is the failure to decrease the cost between consecutive iterations, the following364

law is proposed for any iterations where the solver applied the SCFO conditions but increased (with365

sufficient confidence) the value of the cost [21]:366

• If φ̂p(vk)− 4σφ ≥ min
i=0,...,k−1

φ̂p(vi), then set η := η + 1,367

• otherwise, set η := η − 0.5, with η < 0→ η := 0,368

where σφ is the estimated standard deviation for the non-repeatability noise term in the measurement369

of Jk. The essence of this update law is to make M more conservative (by increasing η) whenever the370

performance is statistically likely to have increased in the recent adaptation, and to relax the conservatism371

otherwise, though at only twice the rate that it would be increased. Such a scheme essentially ensures372

that the M constants become conservative enough to continually guarantee improved performance with373

an increasing number of iterations.374

4. Case Studies375

The proposed method was applied to four different problems, of which the first two are of376

particular interest as they were carried out on experimental systems and demonstrate the reliability377

and effectiveness of the proposed approach when applied in settings where neither the plant nor the378

non-repeatability noise terms are known. Of these two, the first represents a typical batch scenario379

with fairly slow dynamics and time-consuming, expensive experiments for which an MPC controller380

is employed (Section 4.1), while the latter represents a much faster mechanical system where the381

optimization of the controller parameters for a general fixed-order controller must be carried out quickly382

due to real-time constraints, but where a single run is inexpensive (Section 4.2).383

The last two studies, though lacking the experimental element, are nevertheless of interest as they384

make a link with similar work carried out by other researchers (Section 4.3) and generalize the method385

to systems of controllers with an additional challenge in the form of an output constraint (Section 4.4).386
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Figure 4. Schematic of the jacketed stirred tank and the cascade control system used to
control the water temperature inside the tank. The reference (Fj,ref ) for the water flow to the
jacket (Fj) was fixed at 2 L/min.
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In both of these cases, we have chosen to simplify things by assuming to know the noise statistics of the387

relevant δ terms and to let the repeatability assumption hold exactly.388

In each of the four studies, we have used the configuration proposed in Section 3 and so will not389

repeat these details here. However, we will highlight those components of the configuration that are390

problem-dependent and will explain how we obtained them for each case.391

4.1. Batch-to-Batch Temperature Tracking in a Stirred Tank392

The plant in question is a jacketed stirred water tank, where a cascade system is used to control the393

temperature inside the tank by having an MPC controller manipulate the setpoint temperature of the394

jacket inlet, which is in turn tracked by a decoupled system of two PI controllers that manipulate the395

flow rates of the hot and cold water streams that mix to form the jacket inlet (Figure 4). As this system is396

essentially identical to what has been previously reported [38], we refer the reader to the previous work397

for all of the implementation details.398

As the task of tracking an “optimal” temperature profile is fairly common in batch processes and the399

failure to do so well can lead to losses in product quality, a natural ICT problem arises in these contexts as400

it is desired that the temperature stay as close to the prescribed optimal setpoint trajectory as possible. In401

this particular case study, the controller that is tasked with this job is the MPC controller whose tunable402

parameters include:403

• the output weight that controls the trade-off between controller aggressiveness and output tracking,404

• the bias update filter gain, which acts to ensure offset-free tracking,405
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• the control and prediction horizons that dictate how far ahead the MPC attempts to look and406

control,407

all of which act to change the objective function at the heart of the MPC controller [38]. For this problem,408

we decided to vary the output weight between 0.1 and 10 (i.e., covering three orders of magnitude) and409

defined its logarithm as the first tunable variable ρ1. Our reason for choosing the logarithm, instead of410

the actual value, was due to the sensitivity of the performance being more uniform with respect to the411

magnitude difference between the priorities given to controller aggressiveness and output tracking (e.g.,412

changing the output weight from 0.1 to 1.0 was expected to have a similar effect as changing it from413

1.0 to 10). The bias update filter gain, defined as the second variable ρ2, was forced to vary between 0414

and 1 by definition. The control and prediction horizons, m and n, were both allowed to vary anywhere415

between 2 and 50 and, as this variance was on the magnitude of 102, were divided by 100 so as to have416

comparable scaling with the other parameters, with ρ3
∆
=m/100 and ρ4

∆
=n/100. We note as well that the417

horizons were constrained to be integers, whereas the solver provided real numbers, and so any answer418

provided by the solver had to be rounded to the nearest integer to accommodate these constraints.419

As this system was fairly slow/stable and controller aggressiveness was not really an issue, and as420

there was no strong preference between using hot or cold water, the performance metric simply consisted421

of minimizing the tracking error (i.e., the general metric in (5) with λ1 := 1 and λ2 := λ3 := λ4 := 0)422

over a batch time of tb = 40 minutes. The setpoint trajectory to be tracked consisted of maintaining423

the temperature at 52◦C for 10 minutes, cooling by 4◦C over 10 minutes, and then applying a quadratic424

cooling profile for the remainder of the batch. Each batch was initialized by setting the jacket inlet to425

55◦C and starting the batch once the tank temperature rose to 52◦C.426

The certain inequality constraint ρ3 ≤ ρ4 was enforced as this was needed by definition – see (9) –427

thereby contributing to yield the following ICT problem in RTO form:428

minimize
ρ

1

J0

∫ 40

0

[Tref (t)− T (t,ρ)]2 dt

subject to ρ3 − ρ4 ≤ 0

−1 ≤ ρ1 ≤ 1

0 ≤ ρ2 ≤ 1

0.02 ≤ ρ3 ≤ 0.50

0.02 ≤ ρ4 ≤ 0.50

}
φp(v)}
G(v) � 0vL � v � vU

, (17)

where we scaled the performance metric by dividing by its initial value (thereby giving us a base429

performance metric value of 1, which was then to be lowered). We also note that in practice430

measurements were collected every 3 seconds, and so the integral of the squared error was evaluated431

discretely. The initial parameter set was chosen, somewhat arbitrarily, as ρ0 := [−0.7 0.5 0.3 0.3]T .432

Prior to solving (17), we first solved an easier problem where ρ3 and ρ4 were fixed at their initial433

values and only ρ1 and ρ2 were optimized over (these two parameters being expected to be the more434

influential of the four):435

minimize
ρ1,ρ2

1

J0

∫ 40

0

[Tref (t)− T (t, ρ1, ρ2)]2 dt

subject to −1 ≤ ρ1 ≤ 1

0 ≤ ρ2 ≤ 1

}
φp(v)}
vL � v � vU

. (18)
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Figure 5. The parameter adaptation plot (left) and the measured performance metric (right)
for the solution of Problem (18). Hollow circles on the left indicate batches that were carried
out as part of the initialization (prior to applying the solver). Likewise, the dotted vertical
line on the right shows the iteration past which the parameter adaptations were dictated by
the SCFO solver.
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In order to approximate the non-repeatability noise term for the performance, a total of 8 batches436

were run with the initial parameter set ρ0, with the (unscaled) performance metric values obtained for437

those experiments being: 13.45, 13.31, 13.46, 14.25, 13.80, 13.44, 13.72, 13.98 (their mean then being438

taken as the scaling term J0). Rather than attempt to run more experiments, which, though it could439

have improved the accuracy of our approximation, would have required even more time (each batch440

already requiring 40 minutes, with an additional 20-30 minutes of inter-batch preparation), we chose to441

approximate the statistics of the non-repeatability noise term by a zero-mean normal distribution with442

the standard deviation of the data, i.e., 0.32.443

The map of the parameter adaptations and the values of the measured performance metric are given444

in Figure 5, with a visual comparison of the tracking before and after optimization given in Figure 6.445

It is seen that the majority of the improvement is obtained by about the tenth batch, with only minor446

improvements afterwards, and that monotonic improvement of the control performance is more or less447

observed.448

We also note that the solution obtained by the solver is very much in line with what an engineer449

would expect for a system with slow dynamics such as this one, in that one should increase both the450

output weight so as to have better tracking and set the bias update filter gain close to its maximal value451

(both of these actions could have potentially negative effects for faster, less stable systems, however).452

As such, the solution is not really surprising, but it is still encouraging that a method with absolutely no453

knowledge embedded into it has been able to find the same in a relatively low number of experiments. It454

is also interesting to note that the non-repeatability noise in the measured performance metric originally455

puts us on the wrong track, as increasing the bias update filter gain does not improve the observed456

performance for Batch 1, though it probably should, and so the solver then spends the first 6 adaptations457

decreasing the bias filter gain in the belief that doing so should improve performance. However, it is458

able to recover by Batch 7 and to go in the right direction afterwards – this is likely due to the internal459
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Figure 6. The visual improvement in the temperature profile tracking from Batch 1 to Batch
20. The dotted (red) lines denote the setpoint, while the solid (black) lines denote the actual
measured temperature.

0 10 20 30 40
40

42

44

46

48

50

52

54

Time (minutes)

T
e

m
p

e
ra

tu
re

 (
°
C

)

0 10 20 30 40
40

42

44

46

48

50

52

54

Time (minutes)

T
e

m
p

e
ra

tu
re

 (
°
C

)

Batch 1 Batch 20

gradient estimation algorithm of the solver having considered all of the batches and thereby decoupled460

the effects of the two parameters.461

Problem (17) was then solved by similar means, though we used all of the data obtained previously462

to help “warm start” the solver. As the results were similar to what was obtained for the two-parameter463

case, we only give the measured performance metric values and the temperature profile at the final batch464

in Figure 7. We also note that the parameter values at the final batch were ρ30 = [0.89 0.95 0.07 0.12]T ,465

from which we see that, while all four variables were clearly adapted and the solver chose to lower466

both the control and prediction horizons, any extra performance gains from doing this (if any) appear to467

have been marginal when compared to the simpler two-parameter problem. This is also in line with our468

intuition (i.e., that the output weight and bias filter gain are more important) and reminds us of a very469

important RTO concept: just because one has many variables that one can optimize over does not mean470

that one should, as RTO problems with more optimization variables are generally expected to converge471

slower and, as seen here, may not be worth the effort.472

4.2. Periodic Setpoint Tracking in a Torsional System473

In this study, we consider the three-disk torsional system shown in Figure 8 (the technical details of474

which may be found in [39]). Here, the control input is defined as the voltage of the motor located near475

the bottom of the system, with the control output taken as the angular position of the top disk.476

To define an ICT problem, we generalize the idea of a “run” or a “batch” as seen in the previous477

example and consider instead a “window” of a periodic sinusoidal trajectory defined by:478

yref (t) = −2 cos
πt

6
,

with t given in seconds. As the same trajectory is repeated every 12 seconds, we can essentially consider479

each 12-second window as a “run” (or a “batch”) as shown in Figure 9 and adapt the relevant controller480

parameters in the sampling time period between two consecutive windows.481
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Figure 7. The measured performance metric for the solution of Problem (17), together with
the tracking obtained for the final batch.
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Figure 8. The ECP 205 torsional system.

output

input

Not surprisingly, this presents a computational challenge, as the sampling time for this system is only482

60 milliseconds, which is, with the current version of the solver, insufficient – the solver needing at least483

a few seconds to provide a new choice of parameters. While a much simpler implementation that satisfies484

this real-time constraint has already been successfully carried out on the same system [24], we choose485

to apply the methodology presented in this paper by using a wait-and-synchronize approach. Here, the486

solver takes all of the available data and starts its computations, with no adaptation of the parameters487

being done until the solver’s computations are finished. Afterwards, the solver waits until these new488

parameters are applied and the results for the corresponding run obtained, after which the new data is489

fed into the solver and the cycle restarts. The noted drawback of this approach is that we have to wait,490

on average, 2-3 runs (24-36 seconds) for an adaptation to take place, although the positive side of this is491

that the resulting data is generally less noisy due to the repeated experiments.492
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Figure 9. The generalization of “run-to-run” tuning to a system with a periodic setpoint
trajectory. Only the setpoint is given here.
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The controller employed is the discrete fixed-order controller given in (10), with the numerator and493

denominator coefficients being the (five) tuned parameters. The performance metric used is again a case494

of the general metric (5), but this time equal priority is given to tracking, controller aggressiveness, and495

the smoothness of the output trajectory, with λ1 := λ3 := λ4 := 1 and λ2 := 0.496

As the poles of the controller are also being adapted (due to the adaptation of the denominator497

coefficients), controller stability constraints, as already derived in (11) and (12), are added to the ICT498

problem (with a tolerance of ε := 0.01):499

|ρ5| − 0.99 ≤ 0

|ρ4 − ρ4ρ5| − |1− ρ2
5|+ 0.01 ≤ 0

,

and are recast into differentiable form (as the solver requires G to be differentiable):500

ρ5 − 0.99 ≤ 0

−ρ5 − 0.99 ≤ 0

ρ4 − ρ4ρ5 − (1− ρ2
5) + 0.01 ≤ 0

−ρ4 + ρ4ρ5 − (1− ρ2
5) + 0.01 ≤ 0

,

where we have used |ρ5| ≤ 0.99⇒ |1− ρ2
5| = 1− ρ2

5 in the reformulation of the second set.501

The adaptive limits of (15) are used to constrain the individual parameters, thereby leading to the502

(adaptive) ICT-RTO problem:503
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Figure 10. A twenty-bin histogram representation of the observed scaled performance metric
values for a hundred runs with the initial parameter set (Problem (19)).
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minimize
ρ

1

100

∫ 12

0

(
[yref (t)− y(t,ρ)]2 + u̇2(t,ρ) + ẏ2(t,ρ)

)
dt

subject to ρ5 − 0.99 ≤ 0

−ρ5 − 0.99 ≤ 0

ρ4 − ρ4ρ5 − (1− ρ2
5) + 0.01 ≤ 0

−ρ4 + ρ4ρ5 − (1− ρ2
5) + 0.01 ≤ 0

ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

ρk,2 − 0.5 ≤ ρ2 ≤ ρk,2 + 0.5

ρk,3 − 0.5 ≤ ρ3 ≤ ρk,3 + 0.5

ρk,4 − 0.5 ≤ ρ4 ≤ ρk,4 + 0.5

ρk,5 − 0.5 ≤ ρ5 ≤ ρk,5 + 0.5

}
φp(v)G(v) � 0


vL � v � vU

, (19)

where we scale the performance metric by 102 so as to make it vary on the magnitude of 100.504

An initial parameter set of ρ0 := [1.00 2.77 − 2.60 1.00 0.50]T was chosen and corresponds to an ad505

hoc initial design found by a mix of both simulation and hand tuning. To estimate the noise statistics of506

the non-repeatability noise term in the performance metric, the system was operated at ρ0 for 20 minutes,507

which produced a total of 100 performance metric measurements (see Figure 10). These were then offset508

by their mean to generate the estimated noise samples, with the latter being fed directly into the solver,509

which would then build an approximate distribution function for them.510

Problem (19) was solved a total of three times for 20 minutes of operation (100 runs), with the511

performance improvements for the three trials given in Figure 11 and the visual improvement for the512

middle case (“middle” with regard to the final performance metric value) given in Figure 12. We note513

the variability in convergence behavior for the three cases (both in terms of speed and the performance514

achieved after 100 runs), which was largely caused by the solver converging to different minima, but515
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Figure 11. Performance improvement over 100 runs of operation for three different trials
(dashed lines) of Problem (19).
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note as well that all three follow the same “reliable” trend, in that performance is always improved with516

a fairly consistent decrease in the metric value over the course of operation.517

4.3. PID Tuning for a Step Setpoint Change518

We consider the problem previously examined in [13,22], where the parameters of a PID controller519

are to be tuned for the closed-loop system given by:520

Y (s) =
Gref (s)Gp(s)

1 +Gy(s)Gp(s)
Yref (s),

with the PID parameters Kp, τI , and τD being used to define Gref (s) and Gy(s) as:521

Gref (s) = Kp

(
1 +

1

τIs

)
Gy(s) = Kp

(
1 +

1

τIs
+ τDs

) ,

and Gp(s) being the plant, whose definition will be varied for study purposes. The case of a setpoint522

step change (Yref (s) = 1/s) is considered, with only the tracking error to be minimized over a “masked”523

operating length, where a mask of tm is applied so as not to penalize for errors on the interval t ∈ [0, tm],524

as proposed in [22].525

Since the controller gain, Kp, is expected to vary on a magnitude of about 100, it does not need526

scaling and so we define ρ1
∆
=Kp. For both τI and τD we assume the possibility of greater variations, on527

the magnitude of 101 (as has been suggested in both [22] and [13]), and thus define the scaled second528

and third parameters as ρ2
∆
= τI/10 and ρ3

∆
= τD/10. Since we do not know a priori what ρL and ρU for529

a PID controller should be, but do realize that both τI and τD should be positive, the adaptive definition530

of the lower and upper limits with the positivity constraints respected is chosen to yield the ICT problem531

in RTO form:532



Version August 23, 2013 submitted to Processes 24 of 35

Figure 12. Difference in control input and output profiles between the first and final runs of
Problem (19), with the dashed green line used to denote the input (motor voltage) values.
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minimize
ρ

1

J0

∫ tb

tm

[yref (t)− y(t,ρ)]2 dt

subject to ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

max(ρk,2 − 0.5, 0.01) ≤ ρ2 ≤ ρk,2 + 0.5

max(ρk,3 − 0.5, 0.01) ≤ ρ3 ≤ ρk,3 + 0.5

}
φp(v)vL � v � vU

, (20)

where we scale the cost function by dividing by the performance metric value for the original parameter533

set.534

As done in [13], the original parameter set is chosen as the set found by Ziegler-Nichols tuning. The535

following three studies are considered here:536

Study 1 : Gp(s) =
1

1 + 20s
e−5s, tm := 10, tb = 100, ρ0 := [4.06 0.93 0.23]T

Study 2 : Gp(s) =
1

1 + 20s
e−20s, tm := 50, tb = 300, ρ0 := [1.33 3.10 0.65]T

Study 3 : Gp(s) =
1

(1 + 10s)8
, tm := 140, tb = 500, ρ0 := [1.10 7.59 1.90]T

.

So as to study the effect of non-repeatability noise, each observed performance metric value is537

corrupted with an additive error fromN (0, (0.05J0)2), i.e., by an additive error with a standard deviation538

that is chosen as 5% of the original performance metric value (assumed known for solver configuration).539

Noiseless scenarios were simulated as well.540

The results for the three studies are provided in Figures 13-15. On the whole, we see that the solver541

reliably optimizes control performance in both the noiseless and noisy scenarios, even though we note542

that the rate of improvement can vary from problem to problem. For the noisy cases, we generally543

see more “bumps” in the convergence trajectory, which should not be surprising given (a) the added544

difficulty for the solver in estimating local derivatives and (b) the reduced conservatism in the estimation545

of the quadratic bound constants M , for which the safety factor η in (16) is generally augmented less546

frequently when noise is present. However, for the latter point, we see that there is an upside with regard547
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Figure 13. Performance obtained by iterative tuning for both the noiseless (left) and noisy
(right) cases of Study 1 of Problem (20), with the solid blue line used to denote the “true”
performance of the closed-loop system and the green dashed line used to denote what is
actually observed (and provided to the solver). In both cases, the SCFO solver brings the
closed-loop performance metric value close to its global minimum of 0 (marked by the black
dashed line in the lower plots).
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to convergence speed. Because the values of M tend to be less conservative in the presence of noise, the548

algorithm tends to take larger steps and progresses quicker towards the optimum, as is witnessed in both549

Figures 13 and 15. We do note the occasional danger of performance worsening due to tuning, but this550

is almost always restricted to the earlier runs when the solver is relatively “data-starved”.551

4.4. Tuning a System of PI Controllers for Setpoint Tracking and Disturbance Rejection552

Here, we consider the following 5-input, 5-output dynamical system:553

ÿ1(t) + ẏ1(t) + y1(t) = u1(t)− 0.033u3(t)− 0.067u4(t)− 0.1u5(t)

ÿ2(t) + 0.1ẏ2(t) + y2(t) = 0.1u1(t) + 2u2(t) + 0.033u3(t)− 0.033u5(t)

ÿ3(t) + 5ẏ3(t) + y3(t) = 0.167u1(t) + 0.133u2(t) + 3u3(t) + 0.067u4(t) + 0.033u5(t)

ÿ4(t) + 2ẏ4(t) + y4(t) = 0.233u1(t) + 0.2u2(t) + 0.167u3(t) + 4u4(t) + 0.1u5(t)

ÿ5(t) + 3ẏ5(t) + y5(t) = 0.3u1(t) + 0.267u2(t) + 0.233u3(t) + 0.2u4(t) + 5u5(t)

. (21)

While the user cannot be assumed to know the plant (21), we will assume that they have been able to554

properly decouple the system with the input-output pairings of ui → yi, i = 1, ..., 5 (as this is evidently555

the superior choice if one considers the relative gains). A system of five PI controllers is used for the556

pairings:557

ui(t) = Kp,i

(
ei(t) +

1

τI,i

∫ t

0

ei(t)dt

)
, i = 1, ..., 5,
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Figure 14. Performance obtained by iterative tuning for Study 2 of Problem (20).
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which, of course, is not perfect since the decoupling is not either, and so what one controller does will558

inevitably affect the others.559

The ICT problem that we define for this system consists of starting with all yi(0) = 0 and defining560

the setpoints of y1, y3, and y5 as 1 (which makes this a tracking problem with respect to these outputs)561

and the setpoints of y2 and y4 as 0 (which makes it a disturbance rejection problem with respect to these562

two outputs). The total sum of squared tracking errors for all of the outputs is used as the performance563

metric, with the interval of t ∈ [2, 15] being considered in the metric computation (a “mask” of 2 time564

units being employed).565

The first five tuning parameters are simply defined as the controller gains, with ρi
∆
=Kp,i, i = 1, ..., 5.566

As in the previous example, we use a scaled version of the integral times to define the rest, with567

ρi+5
∆
= τI,i/10, i = 1, ..., 5. Once again, as we do not know a priori what lower and upper limits should568

be set on these parameters (save the positivity of the τI,i), adaptive inputs with the positivity limitation569

(as shown in the previous case study) are used.570

Furthermore, we suppose the existence of a safety limitation in the form of a maximal value that y1 is571

allowed to take, with the constraint y1(t) ≤ 1.2 to be met at all times. Using the reformulation shown in572

Section 2.2, we may proceed to state this problem in RTO form as:573
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Figure 15. Performance obtained by iterative tuning for Study 3 of Problem (20).
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minimize
ρ

1

J0

5∑
i=1

∫ 15

2

[yi,ref (t)− yi(t,ρ)]2 dt

subject to y1,max(ρ)− 1.2 ≤ 0

ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

ρk,2 − 0.5 ≤ ρ2 ≤ ρk,2 + 0.5

ρk,3 − 0.5 ≤ ρ3 ≤ ρk,3 + 0.5

ρk,4 − 0.5 ≤ ρ4 ≤ ρk,4 + 0.5

ρk,5 − 0.5 ≤ ρ5 ≤ ρk,5 + 0.5

max(ρk,6 − 0.5, 0.01) ≤ ρ6 ≤ ρk,6 + 0.5

max(ρk,7 − 0.5, 0.01) ≤ ρ7 ≤ ρk,7 + 0.5

max(ρk,8 − 0.5, 0.01) ≤ ρ8 ≤ ρk,8 + 0.5

max(ρk,9 − 0.5, 0.01) ≤ ρ9 ≤ ρk,9 + 0.5

max(ρk,10 − 0.5, 0.01) ≤ ρ10 ≤ ρk,10 + 0.5

}
φp(v)}
Gp(v) � 0

vL � v � vU

. (22)

We note that this problem is a bit more challenging than the ones considered in the previous three574

studies due to the increased number of tuning parameters, and point out that, were the problem perfectly575

decoupled, we would be able to solve it as five 2-parameter RTO problems in parallel. However, seeing576

as all of the parameters are intertwined, we have no choice but to optimize over all ten simultaneously577

– the expected price to pay being a slower rate of performance improvement obtained by the solver.578

Alternate strategies that are based on any additional engineering knowledge, such as optimizing only the579

parameters of specific controllers or optimizing only the controller gains, could of course be proposed580

and are highly recommended.581

As a somewhat arbitrary design, the initial set is chosen as ρ0 := [2 2 2 2 2 1 1 1 1 1]T . Like with the582

previous example, an additive measurement noise ofN (0, (0.05J0)2) is added to corrupt the performance583

metric value that is observed for a given choice of tuning parameters. An additive measurement noise584
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Figure 16. Performance obtained by iterative tuning for the system of PI controllers in
Problem (22) – the noiseless case is given on the left and the noisy case on the right. For
the output profiles, we note that the initial profiles are given as dashed lines, with the final
profiles given by solid lines of the same color.
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of N (0, 10−4) is added to corrupt the observed values of y1,max. Both sets of statistics are assumed to585

be known for the purposes of SCFO solver configuration. As before, the noiseless scenarios are also586

considered.587

We present the results in Figure 16, which show that the solver is able to obtain significant588

performance improvements within 50 iterations for both the noiseless and noisy cases without once589

violating the output constraint on y1. In this case, we see that the noise has the effect of slowing down590

convergence, which may be explained by the fact that the solver must take even more cautious steps so as591

not to violate the output constraint. Additionally, the performance that is observed after 200 iterations is592

a bit worse for the noisy case, which may be seen as being due to the back-off from the output constraint593

being larger (to account for the noise).594

To test the effect of this constraint and to see if it is even necessary, we also run a simulation where the595

constraint is lifted from the problem statement. The results for this study are given in Figure 17, and show596

that not having the constraint in place certainly leads to runs where it is violated. This is not surprising,597

given that a lot of the performance improvement is obtained by tracking the setpoint of y1 faster, which598
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Figure 17. Performance obtained by iterative tuning for the system of PI controllers in
Problem (22) (without an output constraint).
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is easier to do once there is no constraint on its overshoot. It is also seen that the performance obtained599

after 200 iterations is generally better than what would be obtained with the constraint – this is, again,600

not surprising, as removing a limiting constraint should allow for greater performance gains. We do601

note that the noisy case is more bumpy without the constraint, which is expected as there is less to limit602

the adaptation steps and more “daring” adaptations become possible. While some of the bumps may be603

quite undesired (particularly, the one noted just after the 150th run), the algorithm remains, on the whole,604

reliable as it keeps the performance metric at low values for the majority of the runs despite significant605

noise corruption.606

5. Concluding Remarks607

The goal of this paper has been to propose the idea of posing the iterative controller tuning (ICT)608

problem in the real-time optimization (RTO) framework, and it has been shown how one can easily609

formulate most ICT problems as RTO ones with the use of a repeatability assumption that, though it is610

only an approximation of reality in the presence of noise/degradation, appears to suffice for application611

purposes (at least, in the two experimental case studies considered here). A major advantage of this612

reformulation is that a number of previously unaddressed challenges in ICT, the majority of which613
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take the form of constraints in the performance metric minimization problem, may be addressed in a614

fairly straightforward manner. To make the message more concrete, we have also shown how the ICT615

problem may be solved by the SCFO real-time optimization solver, and have provided the reader with616

the necessary solver settings to do so. Four case studies have shown the method to work very well for a617

diverse range of problems.618

Though we hope to have convinced the reader that the method proposed makes for a strong candidate619

for solving general ICT problems in practice, its potential drawbacks should be clear:620

• No solution has been proposed for how to treat the case where the repeatability assumption is not621

a good approximation of reality. Instead of hoping that the approximation suffice in practice, it622

would be beneficial to propose alternatives that would still allow one to use the RTO framework to623

deal with the problem. In particular, one could attempt to make the repeatability assumption on the624

input and output trajectories rather than making it directly on the performance metric. This could625

allow one to establish a closer link between the lack of repeatability and the input/output noise in626

the control system.627

• Although the proposed configuration has been shown to be largely successful here, many of the628

elements involved still remain heuristic in nature. Either improving on these heuristics or finding629

ways to avoid them are desired.630

• The method is currently limited to solving ICT problems where the control task remains the631

same, which may significantly limit its domain of applicability. It would be interesting to632

attempt to extend it to cases where the control tasks were similar, rather than identical, and then633

somehow penalize the method based on the degree of similarity (e.g., one could attempt to lump634

non-similarity into the noise element δ of the repeatability assumption).635

We finish by noting that an abstract advantage of the RTO-ICT formulation is that we are now able636

to attack the ICT problem from two directions – that of control and that of RTO. For the former, we637

note that the proposed method applies very few control principles (unlike other direct tuning methods638

[9,10], which make heavy use of control theory). While this is, in some sense, an advantage – as it639

allows us to use the proposed method to tune almost any controller for almost any system – there640

is undoubtedly something lost due to the “black-box veil” that the RTO formulation places on the641

problem, and incorporating additional knowledge for specific controllers would very likely allow for642

further improvements to the techniques discussed here. At the same time, the RTO methods themselves643

are in a fairly nascent stage theoretically. Many improvements to both RTO theory and solution methods644

are expected to appear in the coming years, which could only improve on the results presented here and645

to make the solution of the ICT problem both faster and more reliable.646
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[12] Karimi, A.; Mišković, L.; Bonvin, D. Iterative correlation-based controller tuning. Int. J. Adapt.679

Control Signal Process. 2004, 18, 645–664.680
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Appendix739

Description of the Initialization Scheme740

The algorithm used to initialize the SCFO solver is as follows:741

1. Initialize P ∈ Rnv×nv as a diagonal matrix with P11 := 1 and all other elements set to 0. Set742

k := 1. Define by ∆vpert ∈ Rnv
++ the perturbation vector and set ∆vpert := ∆vmax.743

2. Define vk := v0 + P∆vpert and compute the following matrix:744

∆V :=


(v0 − v1)T

(v1 − v2)T

...
(vk−1 − vk)

T

 .
If the condition number of ∆V is greater than 50, re-define vk as vk := vk−1 + Rk∆vpert, where745

Rk is a diagonal matrix of zeros with the sole kth diagonal element equal to 1.746

3. Obtain the corresponding φ̂p(vk) := Jk by running a closed-loop experiment with the controller747

parameters ρk := vk. Define:748

∆Φ :=


φ̂p(v0)− φ̂p(v1)

φ̂p(v1)− φ̂p(v2)
...

φ̂p(vk−1)− φ̂p(vk)

 ,
and compute:749

∇φ̂p := (∆V)†∆Φ, (23)

with † denoting the Moore-Penrose pseudoinverse.750

4. Re-define P as a diagonal matrix with the diagonal elements set as:751

Pii :=


1, ∇φ̂p,i ≤ 0 and i ≤ k

−1, ∇φ̂p,i > 0 and i ≤ k

1, i = k + 1

0, i > k + 1

,

where∇φ̂p,i denotes the ith element of∇φ̂p.752
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5. Set k := k + 1. If k > nv, terminate. Otherwise, return to Step 2.753

We make the following remarks:754

• This scheme starts like the simple perturbation scheme where only one parameter is perturbed755

at a time (only ρ1 is perturbed for the first experiment), but adapts based on the results of the756

perturbation. For example, if we see that setting ρ1,1 := ρ0,1+∆vpert,1 improves performance, then757

we will maintain this perturbation while additionally perturbing ρ2 in the following experiment. On758

the other hand, if we see that this perturbation leads to worse control performance, then we simply759

negate it for the following experiment, with this experiment being defined by the perturbations760

ρ2,1 := ρ0,1−∆vpert,1 and ρ2,2 := ρ0,2 + ∆vpert,2. The (partial) linear estimate (23) of the gradient761

acts as a guide for which directions to perturb in.762

• Due to the pseudo-inversion of ∆V, it follows that we also require an additional safeguard to763

ensure that the matrix remains well-conditioned, as not doing this could lead to a poor estimate764

of the gradient (assuming the inputs v to be well-scaled, which we do). Since the perturbation765

scheme alone does not ensure this, an override is introduced where only a single input is perturbed766

once the condition number goes over a certain threshold (chosen here as 50). This essentially767

ensures that the conditioning does not get any worse as it forces ∆V to be block diagonal.768

• The choice of ∆vpert := ∆vmax is only a recommendation, as the recommended definition for769

∆vmax as given in Table 1 (i.e., 0.1(ρU − ρL)) tends to provide sufficient excitation without770

perturbing “too far”. However, if there is a fear that applying perturbations of this size will771

violate some of the problem constraints or destabilize the system, then ∆vpert should be reduced772

accordingly.773

Data-Driven Estimations of the Performance Gradient and Hessian774

Estimates of the gradient and Hessian are obtained via response-surface modeling as follows:775

• If k < 2nv + 1, fit a linear model to all of the available data:776

φp(v) ≈ a0 +
nv∑
i=1

aivi,

and define:777

∂φ̂p
∂vi

∣∣∣
vk

:= ai, Hk,ij :=

{
0.5κφ,i, i = j

0, i 6= j
,

i.e., the gradient is estimated as the coefficients of the linear model and the Hessian, in the absence778

of more measurements, is defined as a diagonal matrix whose diagonals are equal to half of the779

Lipschitz constants of the cost (we note that κφ,i = κφ,i = −κφ,i here – see Section 3.5 for how780

these are chosen). The latter choice is justified as it (a) does not affect the relative scaling of the781

different RTO input directions (the Lipschitz constants being equal for all inputs in this case –782

see Section 3.5), and (b) yields a fairly small step size due to the expected conservatism of κφ,i783
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(which may be desired since ∇φ̂p(vk) is unlikely to be small for earlier runs). In the case where784

the data are not well-poised for linear regression and the coefficients of the linear model are poorly785

estimated, the following control step is applied to trim potentially bad estimates:786

∂φ̂p
∂vi

∣∣∣
vk
> κφ,i →

∂φ̂p
∂vi

∣∣∣
vk

:= κφ,i

∂φ̂p
∂vi

∣∣∣
vk
< −κφ,i →

∂φ̂p
∂vi

∣∣∣
vk

:= −κφ,i
. (24)

• If 2nv + 1 ≤ k < 2nv + 1 +
∑nv−1

i=1 i, fit a diagonal quadratic model to the data (quadratic without787

interaction terms):788

φp(v) ≈ a0 +
nv∑
i=1

aivi +
nv∑
i=1

aiiv
2
i ,

and define:789

∂φ̂p
∂vi

∣∣∣
vk

:= ai + 2aiivk,i, Hk,ij :=

{
2aii, i = j

0, i 6= j
,

where the trimming (24) is applied, as well as:790

Hk,ij > 0.5κφ,i → Hk,ij := 0.5κφ,i

Hk,ij < −0.5κφ,i → Hk,ij := −0.5κφ,i
, (25)

where the latter supposes a certain degree of “flatness” in φp by supposing that no second derivative791

should ever be greater in magnitude than half of the maximal first derivative.792

• If k ≥ 2nv + 1 +
∑nv−1

i=1 i, fit a full quadratic model to the data:793

φp(v) ≈ a0 +
nv∑
i=1

aivi +
nv∑
i=1

nv∑
j=1

aijvivj,

where aij = aji. Define:794

∂φ̂p
∂vi

∣∣∣
vk

:= ai +
nv∑
j=1

aijvk,j, Hk,ij := 2aij,

and apply the trimmings (24) and (25) if necessary.795

We note that while this scheme is not guaranteed to generate a positive-definite Hessian, the796

consequences of failing to do so are not expected to be very detrimental in our context, since the797

optimization target is, again, only a guide and does not affect the general reliability of the solver.798
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