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Abstract. Scanning Electron Microscopy (SEM) is an invaluable tool
for biologists and neuroscientists to study brain structure at the intra-
cellular level. While able to image tissue samples with up to 5nm isotropic
resolution, image acquisition is prohibitively slow and limits the size of
processed samples. In this work, we propose a novel approach to speeding
up imaging when looking for specific structures. Unlike earlier methods,
we explicitly balance the conflicting requirements of spending enough
time scanning potential regions of interest to ensure that all targets are
found while not wasting time on unpromising regions. This is achieved
by using a Markov Random Field to model target locations and optimiz-
ing scanning locations by using a Branch-and-Bound strategy. We show
that our approach significantly outperforms state-of-the-art methods to
locate mitochondria in brain tissue.

1 Introduction

Modern neuroscience has greatly benefited from Scanning Electron Microscope
(SEM) technology. With its ability to image with nm and isotropic resolu-
tion, SEMs allow detailed visualization of intra-cellular structures as depicted
in Fig. 1. This has already produced important advances in the study of neuro-
degenerative diseases [1,2] and is expected to play a critical role in further un-
derstanding of brain function [3,4].

However, the very slow scanning speed of SEMs stands in the way of that
promise because it severely limits the size of tissue samples that can be imaged.
To image a volume, the electron beam has to scan the tissue surface multiple
times, accumulate pixel information at each pass, and then average pixel sam-
ples to provide a clear and coherent image of the tissue surface. The top layer,
or slice, is then removed using a diamond cutter or Focused Ion Beam and the
process repeated for the newly visible layer. This process may take days for vol-
umes as small as 10µm3. This is particularly burdensome for hypothesis testing
procedures where the goal is to perform many different experimental manipu-
lations and verify their effects on specific properties of tissue samples, such as
counting the number of mitochondria or synapses per µm3.

In this paper, we therefore address the problem of speeding up SEM imag-
ing for the purpose of detecting and measuring specific intra-cellular structures.
While the majority of related research has focused on providing automatic seg-
mentation and labeling tools [5,6,7], very few have addressed this throughput



Fig. 1. (a) Volume generated
from slice by slice SEM scan-
ning. (b) Sample slice image
with a mitochondrion out-
line drawn in green. In red,
the scanned region qn =
(un, vn, wn, hn) at time step
n.
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issue. Among these, hypothesize-and-scan strategies [7,8] save time by first scan-
ning the image fewer times than typically required, using the resulting noisy
image to hypothesize regions very likely to contain target structures, and re-
scanning these regions. The procedure is repeated until only parts of the image
that contain target structures are imaged with maximum quality. In [7], this is
achieved by using a cascade of detectors to sequentially identify promising image
regions. This requires correctly setting numerous parameters in the cascade and,
as we will show in our experiments, is challenging to tune. By contrast, the scan-
ning strategy of [8] is optimal in theory, but only when there is a single target in
the field of view, an assumption that is systematically violated in practice and
leads to inefficiencies. Furthermore, only results on simulated data are reported
in these two papers [7,8].

Part of the problem with these earlier approaches is that they do not explicitly
optimize for scanning time. The speed-ups are only byproducts of performing
fewer scans at uninteresting locations. By contrast, in this work, we propose
a hypothesize-and-scan approach that avoids the aforementioned problems by
explicitly formulating the selection of regions to be scanned and re-scanned as
finding the optimal compromise between maximizing the probability of finding
target structures and minimizing the cost of scanning. In practice, this is done
by using a Markov Random Field (MRF) to model the likelihood of targets
being at different locations and performing mean-field approximate inference
to estimate Maximum Posterior Marginals (MPM). Finding the optimal region
to scan can then be solved exactly and yields regions to be re-scanned that are
both compact and likely to contain targets. This strategy is simple to implement
and we demonstrate significant accuracy and speed improvements on real brain
tissue.

2 Flash Scanning for Target Discovery

The goal of our Flash Scanning approach is to scan as many times as necessary
all the target structures and the rest as sparsely as possible. In essence, this
means simultaneously satisfying two conflicting goals–minimizing the size of the
scanned regions, while maximizing the number of targets within them–that is,
finding a Pareto-Optimum.

To this end, for each slice, we first scan each pixel once and use a mean-
field approximation to estimate the probability of a pixel belonging to a target
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Fig. 2. (a) Visual representation of P (Y n
i |Xn, Y n−1), with high values in red and low

values in blue. Two rectangular regions, q1 and q2, are shown and their corresponding
f scores. (b) Branch-and-Bound: depiction of regions Q∪ and Q∩ when optimizing
the bounding function f̂(Q). (c) MRF depiction with 4-connected neighbourhood and
dependencies on previous slices.

structure, based both on learned texture measures and the strong correlation
between slices. We then find a rectangle that maximizes the integral of the
probability density within it, minus its area multiplied by a fixed coefficient. In
essence, the multiplicative coefficient selects one among many possible Pareto-
Optima because the scanning time is proportional to the rectangle area. We then
solve our optimization problem exactly using a branch-and-bound approach, re-
scan the optimal rectangle, update our probabilities and iterate. This process is
visually depicted in the supplementary video associated with this paper.

2.1 Notation

For a single slice, S, let n = 0, ..., N be discrete time steps of our iterative
process. Let In be the reconstructed image of the slice at step n, with I0 = 0 at
each pixel location. Our goal is to scan the slice such that we reconstruct clearly
all targets by time step N .

At each step n, we must hence direct the electron beam to scan a rectangular
region of the slice once and denote this region qn = (un, vn, hn, wn), as depicted
by Fig. 1(b). Let Cp be the number of times pixel p has been scanned and let Cmax

be the maximum number of times a pixel can be scanned. For each scanned region

qn, we acquire the corresponding new pixel intensities {snp}|q
n|

p=1, and incorporate

them into In by weighted averaging for all p ∈ qn, Inp = In−1p (1 − αp) + snpαp,
where αp = 1/Cp. Furthermore, let In be decomposed into r × r image patches
and let Y n

i ∈ {−1, 1} be a random variable denoting the presence of a target
in image patch i at iteration n. Also, let Xn

i ∈ {−1, 1} be a random image
observation at location i and computed from the image In.



2.2 Objective and Optimization

Our goal at each time step n is to compute the next region qn+1 to scan in
order to image as fast as possible all the targets with the highest accuracy. In
particular, we want regions with high target probability to be scanned many
times, while avoiding scanning large regions that are irrelevant. For this reason,
we take qn+1 to be

qn+1 = arg max
q∈Q

f(q) = arg max
q∈Q

∑
i∈q

P (Y n
i = 1|Xn, Y n−1)1{Ci≤Cmax}−λ|q|, (1)

where P (Y n
i = 1|Xn, Y n−1) is the conditional probability that a target is at

patch Y n
i , |q| is the area of region q,Q is the space of all rectangular patch regions

and λ > 0 is a user parameter that balances accuracy and speed. In addition,
1{Ci≤Cmax} is 1 as long as Ci ≤ Cmax and 0 there after, hence penalizing regions
that have been over-scanned.

To give some intuition for the meaning of Eq. (1), Fig. 2(a) depicts the
conditional probability at each location i, two candidate regions (q1, q2) and
their respective f scores. Observe that the objective favors regions very likely to
contain targets, while penalizing large ones that are slow to scan, which results
in densely packed target regions.

Given Eq. (1) is additive in P (Y n
i = 1|Xn, Y n−1), we may use a Branch-

and-Bound optimization strategy [9] to solve the global optimum exactly. The
idea is to evaluate bounds on subsets of regions Q ⊂ Q in a divide-and-conquer
approach. This is achieved by defining a bounding function f̂ : Q → R for subsets
of regions. We write

f̂(Q) =
∑
i∈Q∪

P (Y n
i = 1|Xn, Y n−1)1{Cs≤Cmax} − λ|Q∩|, (2)

where Q∪ is the union of all rectangles in Q and Q∩ is the intersection of all
rectangles in Q, as depicted in Fig. 2(b). Clearly, f̂ is a proper bounding function

as f(q) = f̂(Q) when Q = q, and f̂(Q) ≥ maxq∈Q f(q).

3 Implementation

Given the optimization problem of Eq. (1), we now discuss how we compute the
image observations Xn

i and the posterior distributions P (Y n
i = 1|Xn, Y n−1), as

well as our Flash Scanning algorithm.
Target Detectors and Observation Model The observation Xn

i , de-
scribing the evidence of a target at location i, is computed directly from the
reconstructed image In. As in [5], we use simple feature extraction with SVM
classification to describe this evidence. Specifically, for node i, we compute 1) a
feature dedicated to node i and 2) a feature from the 8-connected neighbours of
node i. For 1) we compute for image patch i, the histogram of intensity (10 bins),
the co-occurrence matrix (64 bins) and concatenate the two. For 2), we extract



the same features as in 1) from each neighbour of i, adding intensity histograms
together and co-occurrences together. These are then normalized by the number
of neighbours and concatenated, yielding a second 10+64 bin feature. Both 74-
bin feature vectors are then concatenated and the estimator, Xn

i is the output of
a trained RBF-kernel binary SVM (target=1 or background=-1) evaluated with
the extracted 148 bin feature vector. Given that image noise varies as a function
of how many scans have been performed at a location, a dedicated c-scan SVM
is used when estimating regions observed with c scans. Note that other features
may improve performances and in effect shift the pareto-optimum higher.

Target Model and Posterior Update Given we are interested in inferring
each of the variables Y n, we use a Markov Random Field (MRF) to describe the
joint probability distribution of all the target locations Y n and observations Xn.
We write

P (Xn, Y n|Y n−1) =
1

Z

∏
i

P (Y n
i |Y n−1

i )
∏
j∈Ni

P (Y n
i Y

n
j )

∏
i

P (Xn
i |Y n

i ), (3)

where Ni is a 4-connected neighbourhood of node i (depicted in Fig. 2(c)) and
Z is a normalizing constant. This model allows us to describe the likelihood of a
given patch of being a target, while taking into account it’s local neighbourhood.
Here, we have assumed that Xn

i is conditionally independent of Y n−1
i given

Y n
i , and P (Y n|Y n−1) =

∏
i P (Y n

i |Y n−1
i )

∏
j∈Ni

P (Y n
i Y

n
j ). This MRF model is

convenient as it allows us to represent where all the targets lie on a current slice,
as a function of occupancy in previous slices.

Within this MRF model, P (Y n
i |Xn, Y n−1) is known as the Maximum Poste-

rior Marginal (MPM). To compute these for all Y n
i , we use the Mean-Field [10]

approximation method, which involves setting P (Y n
i |Xn, Y n−1) = µi, where µi

is initially 0 and then iteratively updating

µi = µiβ + (1− β) tanh(
∑
j∈Ni

µj + P (Y n
i |Xn

i ) + P (Y n
i |Xn

i , Y
n−1
i )), (4)

where β is a damping rate and P (Xn
i |Y n

i ) ∝ (1 + exp(g(Xn
i )))−1 with g(Xn

i )
being the output of the SVM. In our experiments, we set β = 0.5, iterate 10
times for each node and set P (Y n

i |Y n−1
i ) = exp(Y n

i Y
n−1
i /T ) and P (Y n

i , Y
n
j ) =

exp(Y n
i Y

n
j /T ), where T = 5 is a temperature.

Algorithm: The proposed algorithm is summarized in Alg. 1. For each slice,
the user provides an initial probability distribution for each node P (Y 0

i ), λ and
the total number of iterations permitted N . Both the final MPM and the scanned
image IN are returned by our procedure. For a given slice, we first scan each pixel
location once (line 1), then iterate lines 3-6 N times. For subsequent slices, we
first apply temporal smoothing of the form P (Yi) = P (Yi)α+ 1/2(1−α), where
α = 0.75 in our experiments, and then use the smoothed probability as the prior
for the next slice. As in [7], this is to account for the 3D nature of the targets
and promote regions that have been heavily scanned in previous locations, as
they are likely to be in nearby locations. For the first slice, we set P (Y 0

i ) = 1/2.



Algorithm 1 Flash Scanning (P (Y 0), λ,N)

1: Scan the entire slice one.
2: for n = 1, . . . , N do
3: Select region to scan: qn = arg maxq∈Q f(q)
4: Scan region qn and update In

5: Compute target estimators: {Xn
i }i∈qn from In

6: Compute MPMs using Eq. (4)
7: end for
8: return P (Y N ) and IN

4 Experiments and Results

To test our approach we imaged 120, 5nm thick slices using a Zeiss NVision40
FIBSEM microscope, such that each slice consisted of a 1280× 1280 image with
5nm pixel resolution. Each slice was scanned a total of 10 times to produce 10
noisy 1280× 1280 images, i.e. Cmax = 10, and we collected the individual pixel
values from each scan using a Fibics scanning head [11].

As in [7,8], we use mitochondria as our target structures. Mitochondria pix-
els were hand labeled in the entire 120-image stack by an expert. The first 20
images were used to train the different c = {1, ..., Cmax} scan SVM classifiers
as described in Sec. 3 and the rest for testing purposes. Each Yi node of the
MRF consisted of an image patch of size 12 × 12 pixels. Computations were
performed offline using a 2.3GHz PC. In practice, steps 3 and 6 of Alg. 1 take
approximately 0.2 seconds, which is negligible considering the days of scanning
performed during typical experiments.

Evaluation: In Fig. 3, we show a sequence of iterations of the Flash Scanning
algorithm for a given slice with parameters N = 500 and λ = {0.3, 0.5}. We show
the evolution of the MPMs and the number of scans dedicated to each region
of the space as n approaches 500 (large values in red, small values in blue). We
also show the ground truth locations of mitochondria for the evaluated slice, as
well as the log pixel error between the reconstructed images and the maximally
scanned images at mitochondria locations.

From the figure, we see that our objective Eq. (1) concentrates scanning
on target locations and generally avoids scanning irrelevant regions. We also
see that when λ = 0.5, scanned regions are smaller and more compact than
when λ = 0.3. This is consistent with Eq. (1) that imposes heavier costs for
scanning large windows for large values of λ. In other words, larger values of λ
means faster scanning at the risk of missing some target structures. This effect
is clearly visible at n = 500 where some mitochondria have not been scanned
when λ = 0.5 but have been when λ = 0.3. The full sequence of iterations can
be viewed in our supplementary video.

Comparison: We evaluated our method against the SRC [7] and the En-
tropy Scanning (ES) [8] algorithms. For each tested method, including ours, we
evaluated the scanning time relative to scanning the entire block with 10 scans,
the Peak Signal-To-Noise Ratio (higher values being better) at mitochondria
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Fig. 3. Flash Scanning iterations for a slice when λ = 0.5 and 0.3. In each case, we
show the evolution of the posterior distribution and the scanned locations for different
values of n. At n = 500, we show the log-pixel errors for mitochondria locations (yellow
are high errors and blue are low errors).

locations and the True Positive Rate (TPR) for regions scanned maximally. To
show the effect of using different parameters, we ran our algorithm with different
parameter values, {N ∈ (300, 1000), λ ∈ (0.3, 0.6)}. We did the same for both
SRC and ES, while using the same SVM classifiers for all three methods. The
results are shown in Fig. 4.

Flash scanning outperforms SRC, which itself does much better than ES.
More specifically, for the tested set of parameters, Flash scanning significantly
improves the speed and accuracy compared to SRC. For example, at roughly
half traditional scanning times, our method has an average PSNR of over 37,
while SRC is of under 34. Similarly, for a PSNR of 37, SRC is 8% slower than
our method. Note, that these differences are statistically significant, and similar
observations can be made with respect to the reported TPR results. Note that
similar results were also attained by performing experiments on synthetic data
generated as described in [7].

5 Conclusion

We have presented a new method for efficiently scanning tissue samples using
SEMs when imaging predefined targets. Our method uses an intuitive objective
function that selects scanning regions that are likely to contain targets, but which
are small in order to avoid taking too long to scan. In addition, our optimiza-
tion is solved exactly and use a MRF to allow localization of multiple targets
simultaneously. Our method requires far fewer parameters to tune compared to
earlier approaches and out-performs them in terms of speed and accuracy. In
the future, we plan to investigate how to integrate the cost of beam reposition
when selecting regions to scan.
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Fig. 4. Scanning time, PSNR and TPR performances of Flash Scanning and earlier
methods. For each method, a data point corresponds to a set of parameters used. In
general, Flash scanning consistently outperforms earlier approaches by being faster and
more accurate at scanning mitochondria.
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