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Résumé

Dans la théorie de l’automatique, les équations différentielles ordinaires à temps continu
et de dimension finie forment une discipline importante. Lorsqu’on aborde un problème
de commande, l’étape initiale consiste à déterminer à quelle catégorie appartient un tel
système d’équations. En effet, ces systèmes peuvent souvent être transformés d’une forme
dans une autre, et prendre alors des apparences très différentes. Dès lors, un système de
commande n’est plus associé à un unique système d’équations, mais à un ensemble de sys-
tèmes d’équations, “équivalents” les uns aux autres par transformation. Dans ce contexte,
une propriété vérifiée par une représentation particulière d’un système peut être attribuée
aussi bien au système lui-même, qu’à toutes les équations qui le représentent de façon
équivalente. Vérifier une telle propriété peut être un problème ardu.

Dans cette thèse, et comme d’autres avant nous, nous étudions la question de savoir
si un système de contrôle multi-entrées donné est plat, c’est-à-dire s’il peut être trans-
formé en un système linéaire contrôlable par l’intermédiaire d’une extension dynamique
dite endogène, suivie d’un changement de coordonnées. Ce problème est difficile et il a
déjà été abondamment étudié. Ainsi, vouloir proposer une approche nouvelle ou une solu-
tion complètement originale serait, dans une certaine mesure, illusoire. Dès lors, une part
substantielle du texte est consacrée à la présentation de concepts et de résultats existants,
avec parfois une approche alternative ou un point de vue original. Une autre partie de la
thèse est dévolue à des questions liées à la platitude, une autre encore à une version très
simplifiée du problème.

Dans un premier temps, les systèmes de commande sont modélisés en tant que plonge-
ment d’une variété fibrée dans l’espace des jets de l’état. Le système extérieur, ou système
Pfaffien, correspondant aux équations différentielles se présente alors naturellement. La
prolongation des entrées est ensuite introduite en tant que relèvement du plongement men-
tionné ci-dessus. Diverses filtrations et leur application à la linéarisation par retour d’état
statique sont ensuite traitées.

Un chapitre entier est consacré à l’approche géométrique de dimension infinie et à
l’utilisation d’opérateurs différentiels matriciels. Un théorème désormais classique est
présenté. Il lie la platitude à l’intégrabilité de la base d’un certain module après application
d’un opérateur différentiel adéquat. La condition ainsi obtenue peut être décomposée en
un problème fermé par différentiation des équations. Le problème qui en résulte est connu,
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mais nous en présentons une alternative où une condition assimilable à une courbure est
trivialisée.

Un sous-problème de la platitude qui a attiré l’attention des chercheurs est le suivant.
On suppose donné un système de commande auquel on impose de satisfaire à certaines
contraintes d’état; ce système est-t-il plat? Dans ce contexte, un concept utile est celui de
couverture d’un système par un autre, ainsi que les résultats qui l’accompagnent. En effet,
il est connu qu’un système plat n’est susceptible que de couvrir un système plat. Ainsi,
pour un système linéaire sujet à des contraintes non-linéaires, si la version non-contrainte
du système couvre la version contrainte, la platitude du système sous contraintes s’ensuit.
Nous donnons une condition suffisante pour qu’un système quelconque donné couvre une
version sous contrainte de ce même système. A cet effet, nous définissons le concept
d’invariance commandée dynamiquement qui généralise la notion classique d’invariance
commandée. Un autre ingrédient nécessaire est l’algorithme d’extension dynamique, dont
nous présentons une version “infinitésimale”.

La modélisation de systèmes mécaniques par un ensemble de masses ponctuelles soumises
à certaines forces et soumises à des contraintes quadratiques, est une méthode souvent ef-
ficace. La version non-contrainte du système résultant est représentée par des équations
de type linéaire en l’état et les entrées, ainsi que bilinéaire en l’état et les multiplica-
teurs de Lagrange. Nous proposons un système de drapeau relatif qui possède certaines
propriétés d’intégrabilité génériques habituellement réservées aux systèmes linéaires. Ce
drapeau peut être calculé à l’aide d’un algorithme dédié particulièrement simple et efficace,
et fournit une condition suffisante pour la platitude des systèmes bilinéaires mentionnés.
Cette condition, combinée à celle de couverture, est utilisée pour prouver la platitude d’un
ensemble de systèmes. On montre encore que les systèmes bien connus que sont la voiture
non-holonôme et le pendule font partie de cet ensemble.

Mots-clés: Commande non-linéaire, systèmes non-linéaires, platitude, linéarisation par
bouclage dynamique, systèmes sous contraintes.



Abstract

In Control System Theory, the study of continuous-time, finite dimensional, underdeter-
mined systems of ordinary differential equations is an important topic. Classification of
systems in different categories is a natural initial step to the analysis of a given control
problem. Systems of equations can often be “transformed” into other “equivalent” ones.
Then, a control system is associated to a set of equivalent equations. In this setting, a
property of a control system can be defined as a property that has to be satisfied by some
arbitrary system of equations in the set representing the control system. Assessing such a
property can be a difficult task.

In this thesis, we review and study a number of ways to determine whether a multi-
input nonlinear system is flat, i.e. whether it is equivalent to a linear system after some
dynamical extension and change of coordinates. This is a difficult as well as a well studied
problem. Therefore, coming up with some altogether new approach or solution is to a
certain extent illusory. A substantial part of the text is devoted to describing existing
approaches and sometimes to propose either an original alternative or an original point of
view. Another part of the thesis is dedicated to the study of a drastically reduced version
of the problem, where more can be said in an algorithmic way.

Nonlinear control systems are first modeled as the embedding of some fibered bundle
to the first jet of the time-and-state-variables manifold. The exterior system, or Pfaffian
system, corresponding to the ODE then arises naturally. Input prolongations are then
introduced as lifts of the previously mentioned embedding. Various filtration techniques
and their applications to static feedback linearization are discussed next.

A full chapter is devoted to the infinite dimensional approach involving matrix differ-
ential operators. A now classical theorem, linking integrability of the basis of a differential
module after application of one such an operator, and the flatness property is discussed.
The relations obtained can be decomposed in an equivalent set of differentially closed
equations. We state a version of the resulting theorem where the “curvature equations”
are trivial.

A subproblem that has attracted the attention of researchers is the question whether a
given system — subject to some state constraints — is flat. In this setting, useful concepts
are that of a covering of a system by another one and the accompanying result stating

xi



xii

that a flat system can cover only a flat system. Hence, if a “large” linear system is given
together with a set of nonlinear constraints, flatness of the constrained system is assessed
if the unconstrained system can be shown to cover the constrained one. Starting with
the classical notion of controlled invariance and a generalized notion coined dynamic con-
trolled invariance, sufficient conditions are discussed which also involve the notion of right
invertibility and the dynamic extension algorithm.

Modeling of mechanical systems by free moving point masses subject to some control
forces and quadratic constraints is often effective. The resulting unconstrained equations
are linear and bilinear in the state and control/Lagrangianmultiplier variables. We propose
a relative derived flag that leads to a filtration with guaranteed integrability at each stage.
This leads to a very effective sufficient condition for the flatness of the unconstrained model.
The algorithm, together with the test described in the previous section, is used to show
flatness of some generalized pendulum-like equations. They are also shown to specialize
to the non-holonomic car equations and to the VTOL/pendulum equations when some
specific parameters are suitably chosen.

Keywords: Nonlinear control, nonlinear systems, flatness, dynamic feedback lineariza-
tion, constrained systems.
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Introduction

As an enthusiastic tyre manufacturer claims “power is nothing without control” a some-
what more cautious control engineer might reply with a worried frown,“and even then. . . ”.
Indeed, a higher performance car often requires a driver with better skills. In automation,
a similar pattern occurs. The more advanced a device is, the more control possibilities
and performance potential it offers, the more difficult the control task becomes.
Control and system theory has grown to become a vast and interdisciplinary field of re-
search. In one of its aspects, a model of a plant or device to be controlled is given as a set
of ordinary differential equations comprising a number of control variables. Manipulating
these variables, one wishes to steer the behavior of the system. This amounts to impose
something on the solutions of the equations by means of the application of appropriate
control profiles. One might for instance require stabilizing the system, or making its solu-
tions follow a predefined trajectory.
A common ground to all branches of control engineering is the theory of finite- (small-)
dimensional, deterministic, linear systems. From that perspective, a lot of problems have a
clear-cut solution and one is easily tempted to believe that mastering a dynamical system
amounts to just a few computations. However, seldom does such an idealization faith-
fully model the behavior of a real plant. Tackling larger systems, adding various kinds
of uncertainties, or considering nonlinear equations, quickly and tremendously complicate
matters.
Renouncing linearity is quickly followed by a kind of nostalgia and by the desire of retriev-
ing it without compromising the qualities of the model at hand. This concrete engineering
concern has first tickled mathematicians a long time ago so that the relevant mathematical
branches are manifold, ranging from algebra to geometry.
Retrieving linearity in a system without altering its behavior in an essential way calls
for some notion of equivalence between systems. A nonlinear system is then said to be
linearizable1 if it can be put into equivalence with a linear one in some way. Varying types
of systems and varying types of equivalence result in varying levels of difficulty in estab-
lishing such a property. When the equivalence consists of the existence of an invertible
change of coordinates and a state feedback parameterized by new inputs, the correspond-
ing linearizability property is referred to as static. In the single-input case, the problem is
solved by the Goursat normal form, see e.g. [13]. For systems with more than one input,
solutions were given in [72, 69] and as an extended version of the Goursat normal form

1This is not to be confused with a linear approximation of a nonlinear system.
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in [58]. When static feedback linearization fails, one may be able to couple the system
with another one, coined a dynamic extension or a dynamic feedback so as to obtain a
larger statically linearizable system. The corresponding equivalence notion is then of a
different more general type. A closely related property is the one of differential flatness,
[44, 47, 45]. Solutions of a flat system are parameterized by m arbitrary functions of time
and their derivatives up to a certain order, where m is the number of inputs. Checking
linearizability by dynamic feedback or flatness of a given control system in the general case
remains an open issue in a number of aspects. Necessary conditions are known, [129, 117],
as well as sufficient ones, e.g. [17, 104, 21]. Conditions equivalent to the definition of
flatness have also been found, see for instance [5, 21, 24, 8, 88]. Procedural approaches
have been proposed; besides the already cited references see e.g. [121, 2, 3].
The objective of this thesis is to contribute to the study of flatness and dynamic feedback
linearization.

Main Contributions

• A known characterization of differential flatness, [5, 21, 8, 88], involves an “exterior”
differential equation whose unknown is a matrix differential operator. The differ-
entially closed counterpart is a system of equations comprising a condition akin to
curvature. We propose, in the C∞ setting, an equivalent characterization that is free
of the latter condition.

• We generalize the classical condition of controlled invariance to what we coined
dynamic controlled invariance. We show that given a distribution satisfying the
condition, there corresponds a subsystem for which the original system is a dynamic
feedback. Singularity (regularity) of this feedback is then characterized using an
adapted version of the dynamic extension algorithm.

• Given a system and a subsystem, we use the previous characterization to check
whether the system covers ([21]) its subsystem. We give a sufficient condition to
decide when an unconstrained system covers the constrained system resulting from
the addition of state constraints. This also leads to a sufficient condition for flatness
of the constrained system, once flatness of the unconstrained system is assumed.

• A class of bilinear control system is presented along with an algorithm that efficiently
computes a specific relative derived flag. This flag possesses some guaranteed inte-
grability properties. This leads to the fact that the system is flat once the algorithm
saturates to an empty set.

• A subclass of the studied bilinear systems is proposed. When imposed a quadratic
state constraint, these systems transform to a set of“generalized pendulums”. Setting
parameters to some adequate values produces the well-known non-holonomic car and
the VTOL/pendulum equations.

• Known and well-known topics are presented. Along the way, we prove a number
of technical and intermediate results. We think that some of them are of interest
on their own. We also hope to have approached certain known concepts with some
degree of originality.
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Organization Chapter 1 defines the description of a control system as a fiber bundle
embedded in a jet bundle. Maps between two such bundles are discussed, followed by input
prolongations (finite and infinite). The second section treats static feedback linearization
by considering the conditions allowing successive input eliminations. The chapter closes
with an informal definition of flatness.

Chapter 2 deals with the characterization of flatness by the use of differential opera-
tors. These operators are defined along with their action on the differential 1-forms of the
infinitely prolonged bundle. They are then endowed with a graded structure, a product
rule and an exterior derivative. The algorithm for the construction of a Brunovsky-basis
of the differential module of forms associated to the system is presented. Finally, the
mentioned characterization of flatness is described. The contribution of this chapter con-
sists in a variant of that characterization. The obtained variant is used as a guide in the
construction of flat outputs on some simple examples.

Chapter 3 first discusses various types of dynamic feedback and reviews some related
results. The classical notion of controlled invariance is introduced. We show that if the
system is statically feedback linearizable, to any controlled invariant distribution corre-
sponds a statically feedback linearizable subsystem. This motivates the introduction of
dynamic controlled invariance. It is then shown that the dynamic feedback associated to
a dynamically controlled distribution potentially lacks an important property, it is not
necessarily non-singular (or regular). This regularity is assessed using the dynamic exten-
sion algorithm. A condition for deciding if a surjective map defined on the state space
manifold induces a covering is obtained. We then deal with the covering of constrained
systems. Does the unconstrained counterpart of such a system cover the constrained one?
A sufficient condition is obtained, also yielding a sufficient condition for the flatness of
the constrained system. These considerations show many parallelisms with the notion of
relative flatness, [108]. In the last section, we give an example of a system linearizable by
singular static feedback that is not flat.

Chapter 4 describes a class of bilinear systems and an associated integrable filtration.
A sufficient flatness condition is immediately deduced. The algorithm is then used on a
particular set of equations. When an additional state constraint is considered, the systems
remain flat, and for some specific parameter values, well known physical flat systems are
obtained. Some simulation results are presented.
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Chapter 1

Preliminaries

The geometric study of differential equations has a long history and has lead to a very rich
theory. Its manifold impact on engineering in general and in the study of nonlinear control
problems in particular has been tremendous, see e.g. [70, 6, 52] among many more. In this
preliminary chapter, we shall content ourselves with some concepts useful for representing
and analyzing a given control system. The framework will be that of jet bundles and
their prolongations [102, 119, 59, 133]. More concretely, the equations describing a control
system in explicit form are a system of ordinary differential equations with some input (or
control) variables that may be assigned freely. The “admissible” changes of coordinates on
the state and input variables lead to the definition of a bundle structure. Solutions of the
systems then relate to certain sections on the bundle. In turn, these sections and their
jets allow one to define the codistribution of contact forms, their dual vector fields and
the system of exterior equations related to the control problem. From these structures,
many properties of the problem at hand can be analyzed, such as feedback linearizability
[72, 69, 58, 57] or generalizations of the Goursat normal form of the associated Pfaffian
system [58, 143, 148]. When jets of infinite order are considered, the corresponding geom-
etry becomes infinite dimensional. This calls for the language of diffieties, [153, 1, 49, 23].
In Section 1.1, with the equations of a control system, we associate a bundle structure that
reflects the different natures of time-, state- and input-variables. Solutions are represented
by sections satisfying the initial ODE. The Cartan distribution (respectively codistribu-
tion) is defined. Input prolongations and infinite dimensional representations are discussed.
Section 1.2 deals with the problem of static feedback linearizability within the presented
framework. Lastly, Section 1.3 contains an informal and preliminary definition of the
notion of differential flatness.

1.1 Representations of Control Systems

In this section we describe what is meant by a control system and some of the ways one
may represent it mathematically. Roughly, one can distinguish two kinds of mathematical
representations, finite-dimensional, underdetermined on one side and infinite dimensional

21



22 CHAPTER 1. PRELIMINARIES

on the other. Our starting point will usually be an underdetermined system of ordinary
differential equations in the (state) variables x = (x1, . . . , xn) and independent (time)
variable t. These may assume two different forms, the implicit form

F k(t, x, ẋ) = 0 k = 1, . . . , n−m (1.1)

or the explicit form
ẋi = f i(t, x, u) i = 1, . . . , n (1.2)

where u = (u1, . . . , um) is the vector of control variables. In the above we assume that
rank ∂F

∂ẋ
= n−m, rank ∂f

∂u
= m and that F k(t, x, f(t, x, u)) = 0 for all u in some open set.

A solution will be a set of n functions of time xi(t) satisfying the equations (1.1) or such
that there exists m additional time functions ul(t) and (1.2) is satisfied.

1.1.1 Finite Dimensions

From now on, we consider the system’s “variables” as coordinates on manifolds. Since all
our considerations are local, the manifolds in question can always be taken as open subsets
of multiple Cartesian products of R. The “time manifold” B shall have the coordinate t.
The “time-and-state-space manifold”M = B ×X shall have the coordinates t, x1, . . . , xn.
We also have a natural projection map πMB : M → B given simply by πMB : (t, x) �→ (t).
In this setting, a function of time x(t) is a section on the fiber bundle πMB : M → B, i.e.
a map σ : B → M, reading σ : (t) �→ (t, x(t)) and σ ∈ ΓM.
Next, we consider the space of first jets of sections in ΓM. This is nothing but the manifold
M augmented with the data corresponding to the derivatives of curves x(t) with respect
to t. Hence, J1M ≡ M× R

n shall be equipped with coordinates t, x1, . . . , xn, p1, . . . , pn.
The lift of a section σ ∈ ΓM to j(σ) ∈ ΓJ1M is then given by a map j(σ) : B → J1M

and reads j(σ) : (t) �→ (t, x(t), p = ∂x(t)
∂t

).
The discussion above implies that the coordinates t, x and p are related in some way. These
relations can be encoded by a codistribution on T (J1M)∗ called the Cartan codistribution
and spanned by so called contact forms . A 1-form θ ∈ T (J1M)∗ is a contact form if
the pull-back j(σ)∗θ is the zero form on TB∗ for any section σ ∈ ΓM. The Cartan
codistribution on T (J1M)∗ is spanned by the forms

θi = dxi − pidt i = 1, . . . , n.

Indeed

j(σ)∗(dxi − pidt) = d(xi(t))−
∂xi(t)

∂t
dt = 0.

By duality, one can define the Cartan distribution on T (J1M) spanned by all vector fields
(sections of T (J1M)) annihilating the forms θi. The Cartan distribution is hence spanned
by

∂

∂t
+ pi

∂

∂xi
and

∂

∂p1
, . . . ,

∂

∂pn
.

Remark 1.1. The previous distribution does not qualify as a Cartan distribution as defined
in the context of diffieties, see [153, 1, 49, 23], as it is not involutive.
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In our geometric setting, a solution to the equations (1.1), is given by a section σ ∈ ΓM
satisfying

F k ◦ j(σ)(t) = 0 k = 1, . . . , n−m t ∈ B. (1.3)

In other words, the image of t through j(σ) must lie on the submanifold of J1M defined
by the equations

F k(t, x, p) = 0.

We shall denote this submanifold by E :

E = {(t, x, p) ∈ J1M | F k(t, x, p) = 0, k = 1, . . . , n−m}.

Now, the explicit system equations (1.2) provides us with a parameterization of E in J1M
in the form of an embedding from some manifold U to J1M

f : U → J1M f : (t, x, u) �→ (t, x, pi = f i(t, x, u)) (1.4)

with f(U) = E ⊂ J1M. The manifold U can also be considered as a fiber bundle, sharing
the same base manifold M as the jet manifold J1M. The projection map πUM : U → M
is given by πUM = π10 ◦ f , leading to the commutative diagram

U
f ��

πUM ���
��

��
��

� J1M

π10

��
M

πMB

��
B

(1.5)

and explicitely
πUM : (t, x, u) �→ (t, x).

A section σ ∈ ΓM, σ : (t) �→ (t, x(t)) can be lifted to a section σ̂ on πMB ◦ πUM : U → B
by additionally specifying time functions for the variables ul,

σ̂ : (t) �→ (t, x(t), u(t)).

Such a section is then a solution of the explicit system of equations (1.2) if

f ◦ σ̂(t) = j(σ)(t) t ∈ B. (1.6)

Clearly, (1.6) implies (1.3). The infinitesimal relations imposed on solutions can again be
encoded in a Cartan codistribution defined on TU∗. A 1-form ω ∈ TU∗ is a contact form
if for any section σ̂ lifted from σ ∈ ΓM and satisfying (1.6), the pullback σ̂∗ω is the zero
form on TB∗.
Note that since U is homeomorphic to its image E in J1M through f , any form on TU∗ is
the pullback of some form on T (J1M)∗. Now, assume σ ∈ ΓM satisfies (1.3) and assume
σ̂ ∈ ΓU is a lift of σ satisfying (1.6). Let ϑ be any 1-form on T (J1M)∗, then

σ̂∗(f∗ϑ) = (f ◦ σ̂)∗ϑ
(1.6)
= j(σ)∗ϑ.
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Therefore, a 1-form on TU∗ is a contact form if and only if it is the pullback of some
contact form on J1M through f . Hence, the n-dimensional Cartan codistribution on TU∗

is spanned by the forms

ωi = f∗θi = dxi − f i(t, x, u)dt i = 1, . . . , n (1.7)

and the (1 +m)-dimensional Cartan distribution by the vectors

∂

∂t
+ f i(t, x, u)

∂

∂xi
and

∂

∂u1
, . . . ,

∂

∂um
.

Note that Remark 1.1 also applies here.
We close this section by a last remark on the properties of the Cartan distribution on TU .
The tangent space TB is spanned by ∂

∂t
. Let again σ and σ̂ be a (solution) section in ΓM

and its lift to ΓU such that (1.6) is satisfied. Then the pushforward of ∂
∂t

by σ̂ reads

σ̂∗

∂

∂t
=

∂

∂t
+

∂xi(t)

∂t

∂

∂xi
+

∂ul(t)

∂t

∂

∂ul

(1.6)
=

∂

∂t
+ f i(t, x(t), u(t))

∂

∂xi
+

∂ul(t)

∂t

∂

∂ul

and is a vector of the Cartan distribution at the point σ̂(t) = (t, x(t), u(t)) ∈ U . Therefore,
with any solution σ̂, there is an associated vector field in the Cartan distribution on TU
that is σ̂-related to ∂

∂t
∈ TB. This vector field precisely represents time differentiation of

functions on U along the solution trajectory of (1.2) given by σ̂.

1.1.1.1 Bundle Maps and Static Feedback Transformations

We now describe the effect of changing the coordinates on a control system in a way that
preserves time. To this end, consider two fiber bundles πNB : N → B and πMB : M → B
over the same base B, with local coordinates (t, z) and (t, x) respectively. Assume that
φ : N → M is an invertible smooth bundle map of the form φ : (t, z) �→ (t, x = φ(t, z)).
Then, a section s ∈ ΓN defines a section σ ∈ ΓM by σ = φ ◦ s. This in turn induces an
(invertible) map between the two corresponding jet bundles J1φ : J1N → J1M which is
required to satisfy

J1φ (j(s)) = j(φ ◦ s)

where

j(s) : (t) �→ (t, z(t), q =
∂z(t)

∂t
)

j(φ ◦ s) : (t) �→ (t, φ(t, z(t)), p =
∂φ(t, z(t))

∂t
+

∂φ

∂z

∂z(t)

∂t
)

for any section s ∈ ΓN and therefore reads

J1φ : (t, z, q) �→ (t, x = φ(t, z), p =
∂φ(t, z)

∂t
+

∂φ(t, z)

∂z
q).
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Recall that the implicit equations (1.1) define a sub-manifold E ⊂ J1M. Through J1φ,
the real valued functions F k(t, x, p) pull back to real valued functions Gk(t, z, q) = F k ◦
J1φ(t, z, q) and define a sub-manifold H ⊂ J1N by setting Gk(t, z, q) = 0. The relations
Gk(t, z, ż) = 0 correspond to (1.1), rewritten in the new state variable z.
One may now consider any bundle πVN : V → N over N together with an (invertible)
map ϕ : V → U over φ of the form ϕ : (t, z, v) �→ (t, x = φ(t, z), u = ϕ(t, z, v)). Because ϕ
and J1φ are invertible, the embedding f : U → E ⊂ J1M uniquely induces an embedding
g : V → H ⊂ J1N by requiring

J1φ ◦ g = f ◦ ϕ.

The map g = (J1φ)−1 ◦ f ◦ ϕ corresponds to the explicit equations (1.2) transformed in
the new state and input variables z and v. The situation is summarized by the following
commutative diagram (the sections and their lifts have been omitted):

J1N

π10
���

��
��

��
��

J1φ

��
V

g�� ϕ ��

πVN

��

U
f ��

πUM

��

J1M

π10����
��
��
��
�

N
φ ��

πNB
���

��
��

��
� M

πMB

		��
��
��
��

B

The transformation on f , induced by ϕ and leading to the map g encodes the classic notion
of a static (state and input-) feedback transformation.
Finally, it should be clear that the contact forms on T (V)∗ can be pulled back from the
contact forms ωi on T (U)∗ and are hence given by ϕ∗ωi, i = 1, . . . , n.

1.1.1.2 Pfaffian System Associated to a Control System

A section σ and its lift σ̂ satisfying (1.6)

σ̂ : (t) �→ (t, x(t), u(t))

can also be seen as describing a 1-dimensional embedding of B in U . Since the contact
forms ωi of (1.7) are precisely such that σ̂∗ωi = 0, the solution submanifold is an integral
manifold of the Pfaffian system Ω = {ω1, . . . , ωn}. Moreover, since t is a local coordinate
on such a submanifold, solutions are 1-dimensional integral manifolds of (Ω, dt), the Pfaf-
fian system Ω with independence condition dt. Indeed, σ̂∗dt = dt �= 0.
Considering the ideal in ΛT (U)∗ generated by Ω (or its dual) is the starting point of a
number of algorithms used to analyze properties of control system such as static feedback
linearizability in the Gardner-Shadwick algorithm [58] or equivalence to partial prolonga-
tions of contact distributions through the (generalized or extended) Goursat normal form
[143, 148], to cite only a few.
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1.1.2 Infinite Dimensions

1.1.2.1 First Input Prolongation

In this section, we describe the first prolongation of a control system. Prolongation consists
in augmenting the set of equations describing the system by differentiating the relations
at hand with respect to time. The augmented set of equations involves the initial set of
variables and new variables representing the time derivatives of the initial ones. From the
new variables, n−m of these can be eliminated, and m cannot. When the set of variables
that is not discarded consist in the time derivatives u(1) of the (initial) input variables u,
one speaks of the first input prolongation.
We now describe how one may construct the first prolonged bundle U1, describing the
system with the inputs u added to the state and the inputs derivative u(1) taken as new
input variables.
The implicit equations F k(t, x, p1) = 0 on J1M are differentiated to obtain equations on
J2M

F k(t, x, p1) = 0 (1.8a)

∂F k

∂t
+

∂F k

∂xi
pi1 +

∂F k

∂pj1
pj2 = 0 k = 1, . . . , n−m (1.8b)

where (t, x, p1, p2) are coordinates on J2M. Denote by E1 ⊂ J2M the submanifold of
J2M consisting of the points satisfying (1.8). Remember that the embedding f is a
parameterization of the solution set E of F (t, x, p1) = 0 in J1M. Note that dim J2M =
dim J1M + n and there are n −m new equations in (1.8) involving the n new variables

p2. An initial assumption is that rank ∂F (t,x,p1)
∂p1

= rank ∂F (t,x,ẋ)
∂ẋ

= n−m. Therefore, any

solution of (1.8a), parameterized by f , can be lifted to a solution of (1.8) by solving for
a subset of p2 and keeping m of them free. Hence, E1 is an (1 + n + 2m)-dimensional
submanifold of J2M and projects through the canonical projection π21 : J2M → J1M
to the (1 + n+m)-dimensional submanifold E ⊂ J1M.
In the same manner as in Section 1.1.1, we proceed in describing an embedding f1 from
some manifold U1 to E1, i.e. f1 : U1 → E1 ⊂ J2M.
Consider a section σ ∈ ΓM and its two first prolongations j1(σ) = j(σ) ∈ ΓJ1M and
j2(σ) ∈ ΓJ2M

σ : (t) �→ (t, x(t)) j1(σ) : (t) �→ (t, x(t), p1 =
∂x(t)

∂t
)

j2(σ) : (t) �→ (t, x(t), p1 =
∂x(t)

∂t
, p2 =

∂2x(t)

∂t2
)

Next, consider J1U . J1U stands for the first jet of U considered as a bundle over the
basis B, i.e J1U = J1(πMB ◦ πUM : U → B) with coordinates (t, x, u, p1, u

(1)). Remember
that σ̂ is a lift of σ to a section in ΓU . In turn, σ̂ can be prolonged (lifted) to a section
j1(σ̂) ∈ ΓJ1U :

σ̂ : (t) �→ (t, x(t), u(t)) j1(σ̂) : (t) �→ (t, x(t), p1 =
∂x(t)

∂t
, u(1) =

∂u(t)

∂t
).
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We now define the prolonged bundle U1 over U . This definition depends on the initial
choice of input coordinates u on U . As a manifold, U1 shall have coordinates t, x, u, u(1)

and we have the following projection maps

π1,U1 : J1U → U1 π1,U1 : (t, x, u, p1, u
(1)) �→ (t, x, u, u(1))

πU ,10 : U1 → U πU ,10 : (t, x, u, u(1)) �→ (t, x, u)

and
πU ,10 ◦ π1,U1 = π10 : J1U → U .

The dimension of U1 is 1+n+2m, the same as E1 ∈ J2M. Let the section σ satisfy (1.6) so
that it represents a system solution. We can define the embedding f1 : U1 → E1 ⊂ J2M
as the unique map satisfying

π21 ◦ f
1 ◦ π1,U1 ◦ j1(σ̂)(t) = f ◦ σ̂(t) t ∈ B.

The situation is summarized in the following commutative diagram:

J1U
π1,U1

��

π10



�
��

��
��

��
U1 f1

��

πU,10

��

J2M

π21

��
U

f ��

πUM ���
��

��
��

��
J1M

π10

��
M

πMB

��
B

j1(σ̂)

��

σ̂

��

σ

��

The canonical projection π10 : J1U → U reads π10 : (t, x, u, p1, u
(1)) �→ (t, x, u).

It is easy to verify that f1 takes the form

f1(t, x, u, u(1)) �→ (t, x, u (1.9)

pi1 = f i(t, x, u)

pj2 =
∂f j(t, x, u)

∂t
+

∂f j(t, x, u)

∂xi
f i(t, x, u) +

∂f j(t, x, u)

∂ul
ul(1)).

To define the Cartan codistribution on U1, one first writes

σ̂1 ∈ ΓU1 σ̂1 := π1,U1 ◦ j1(σ̂)

and then, exactly as for the Cartan codistribution on U , ω ∈ T (U1)∗ shall be a contact
form if

σ̂1∗ω = 0, ∀σ satisfying (1.6).

Computation shows that the (n+m)-dimensional Cartan codistribution on U1 is spanned
by

dxi − f i(t, x, u)dt and dul − ul(1)dt i = 1, . . . , n l = 1, . . . ,m
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and the (1 +m)-dimensional Cartan distribution by the vector fields

∂

∂t
+ f i(t, x, u)

∂

∂xi
+ ul(1) ∂

∂ul
and

∂

∂ul(1)
l = 1, . . . ,m.

Note also that the contact forms are pulled back from contact forms on T (J2M)∗ through
f1∗. Indeed, from (1.9):

f1∗(dxi − pi1) = dxi − f i(t, x, u)dt = ωi

f1∗(dpj1 − pj2dt) = d(f j(t, x, u))

−

(
∂f j(t, x, u)

∂t
+

∂f j(t, x, u)

∂xi
f i(t, x, u) +

∂f j(t, x, u)

∂ul
ul(1)

)
dt

=
∂f j

∂xi
ωi +

∂f j

∂ul
(dul − ul(1)dt)

and an initial assumption is that ∂f
∂u

is full rank. Finally note that

σ̂1
∗

∂

∂t
=

∂

∂t
+

∂xi(t)

∂t

∂

∂xi
+

∂ul(t)

∂t

∂

∂ul
+

∂ul(1)(t)

∂t

∂

∂ul(1)

=
∂

∂t
+ f i(t, x(t), u(t))

∂

∂xi
+

∂ul(t)

∂t

∂

∂ul
+

∂2ul(t)

∂t2
∂

∂ul(1)

and as in the end of Section 1.1.1, ∂
∂t

∈ TB is both pushed forward to a vector annihilating
the contact forms and is such that it represents time differentiation of functions on U1 along
the trajectory σ̂1 of the system (1.2) lifted to U1.

1.1.2.2 Higher Order and Infinite Prolongations

It should be clear that the process of the previous section can be repeated any number of
times, leading to the following “prolonged” diagram

�� �� ��
J2U

π2,U2
��

π21

��

U2 f2

��

πU,21

��

J3M

π32

��
J1U

π1,U1
��

π10



�
��

��
��

��
U1 f1

��

πU,10

��

J2M

π21

��
U

f ��

πUM ���
��

��
��

��
J1M

π10

��
M

πMB

��
B
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At the k-th step, Uk is a (1 + n+ (k + 1)m)-dimensional manifold. The contact forms on
Uk are spanned by

dxi − f i(t, x, u)dt, dul − ul(1)dt, . . . , dul(k−1) − ul(k)dt i = 1, . . . , n l = 1, . . . ,m

and the annihilating vector fields by

∂

∂t
+ f i(t, x, u)

∂

∂xi
+ ul(1) ∂

∂ul
+ . . .+ ul(k) ∂

∂ul(k−1)
,

∂

∂u1(k)
l = 1, . . . ,m.

The projective (inverse) limit

U∞ = lim
←−
k

Uk

is an infinite dimensional manifold. A countable basis of contact forms for the Cartan
codistribution is given by

dxi − f i(t, x, u)dt, dul(r) − ul(r+1)dt i = 1, . . . , n l = 1, . . . ,m, r = 0, . . .

The 1-dimensional Cartan distribution is spanned by the vector field

D =
∂

∂t
+ f i(t, x, u)

∂

∂xi
+ ul(r+1) ∂

∂ul(r)
(1.10)

where the sum on r ranges from 0 to infinity. If D is additionally chosen so as to satisfy
D� dt = D(t) = 1, then it is uniquely given by (1.10) . Compared to the case Uk with k
finite, the limit case U∞ has an important additional property. Indeed, if ω is a contact
form, Dω is also a contact form. Moreover, since the Cartan distribution is spanned by
one vector field, it is involutive. In this situation, the pair (U∞, D) is a diffiety and D
generates the Cartan distribution on U∞, [153, 1, 49, 23].

1.2 Static Feedback Linearization

In this section, we deal with the following question. Given a control system of the form
(1.2), is it possible to transform it into a linear controllable system using an invertible
state and input transformation of the type described in Section 1.1.1.1?

1.2.1 Eliminating Inputs

In Section 1.1.2.1, we have seen that one can always augment a system by adding its input
variables to the state and by devising new input variables corresponding to the old ones’
time derivatives. Can the opposite process also be carried on? That is, can one discard
the input variables and choose new inputs among the state variables so as to obtain a
smaller system, whose prolongation produces the original one?
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1.2.1.1 Linear Case

To illustrate the idea, consider the linear time-invariant system

ẋ = Ax+Bu A ∈ R
n×n B ∈ R

n×m rankB = m. (1.11)

Choosing any rank n−m matrix N ∈ R
(n−m)×n such that NB = 0, leads to the implicit

equations
Nẋ = NAx. (Step 1)

Next, picking any N̄ ∈ R
m×n with rows independent of the rows of N and further setting

M ∈ R
n×(n−m) and M̄ ∈ R

n×m such that
(
M M̄

)(N
N̄

)
= In, we may split the state

variables into two sets
y = Nx v = N̄x (Step 2)

that is x = My + M̄v and obtain the dynamics

ẏ = NAMy +NAM̄v cardy = n−m card v = m. (1.12)

Hence the reduced system has state dimension n − m. However, since rank M̄ = m, we
have that rankNAM̄ = m−ρ, ρ ≥ 0; from the new inputs v, ρ of them can be eliminated.
To do so, choose a G ∈ R

m×m−ρ such that rankNAM̄ = rankNAM̄G and obtain

ẏ = NAMy +NAM̄Gw card y = n−m cardw = m− ρ. (1.13)

Note that the input prolongation of (1.12) leads to a system equivalent to (1.11) under a
linear instance of the bundle mapping of Section 1.1.1.1. The input prolongation of (1.13)
leads to a “subsystem” of (1.11), with ρ less inputs. We will not define what we mean by
a subsystem precisely.

1.2.1.2 Elimination from the Contact Codistribution

In the reduction process illustrated in the previous section, Step 1 corresponds to trans-
forming the explicit system equations (1.2) into the implicit equations (1.1). This step
extends to the nonlinear case without condition. However, Step 2 is not always possible
in the nonlinear setting, there are integrability conditions. Before discussing reduction for
nonlinear systems, we will re-describe the linear case in a way that is consistent with the
description of control systems we have given so far. On the bundle πUM : U → M with co-
ordinates expressions πUM : (t, x, u) �→ (t, x), the contact forms encoding the infinitesimal
relations between coordinates are (in a vectorial notation that should be clear)

Ω = {dx− (Ax +Bu)dt}.

These contact forms (because the coefficient functions depend on u and although given by
combinations of the differentials dt, dx) are forms in TU∗ and not in TM∗. Elimination
Step 1 can then be reformulated as looking for all infinitesimal relations that can be
expressed using variables on M only. These are given by the codistribution Ω̂ ⊂ Ω

Ω̂ = {Ndx− (NAx)dt}. (1.14)
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Step 2, leading to the reduced state y is obtained using the relation

Ndx = d(Nx). (1.15)

Note that this relation is actually an integration step and is always possible and trivial
in this linear time-invariant setting. After (linear) algebraic transformations identical to
those of the previous section, we obtain the codistribution

Ω̂ = {dy − (NAMy +NAM̄Gw)dt}

where (t, y, w) are all coordinates on M. The forms of Ω̂ are contact forms on a bundle
πMY : M → Y with πMY : (t, y, w) �→ (t, y) representing the system (1.13).

1.2.1.3 Nonlinear Case

We now discuss the construction of Ω̂ (similarly to (1.14)) in the nonlinear case. Recall
the contact forms on U are given by

Ω = {ωi = dxi − f i(t, x, u)dt} ⊂ TU∗ i = 1, . . . , n. (1.16)

Redefine Ω̂ as the largest codistribution on M satisfying

Ω̂ ⊂ TM∗ and π∗
UMΩ̂ ⊂ Ω

where π∗
UMΩ̂ is the codistribution in TU∗ generated by the elements of Ω̂ pulled back

though π∗
UM.

Lemma 1.2. The codistribution π∗
UMΩ̂ ⊂ Ω satisfies

π∗
UMΩ̂ ⊂ Ω(1) := {ω ∈ Ω |

∂

∂ul
� dω ∈ Ω, l = 1, . . . ,m}.

moreover, assume Ω(1) + {dt} is integrable, then π∗
UMΩ̂ = Ω(1).

Proof. By Lemma A.12 and from πUM∗ = { ∂
∂ul }, π

∗
UMΩ̂ is obtained by computing the

sequence of nested codistributions

Ω(0) = Ω Ω(r+1) = {ω ∈ Ω(r) |
∂

∂ul
� dω ∈ Ω(r), l = 1, . . . ,m}. (1.17)

which for some r = r∗, saturates to Ω(r∗) = π∗
UMΩ̂. We must show that if Ω(1) + {dt} is

integrable, then r∗ = 1.
Assume Ω(1) + {dt} is integrable, then there are functions yj and gj on U such that

Ω(1) = {μj = dyj − gjdt}.

And by (1.17),

∂

∂ul
� dμj =

∂

∂ul
� dgj ∧ dt =

∂gj

∂ul
dt ∈ Ω, l = 1, . . . ,m.
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But dt /∈ Ω implies ∂gj

∂ul = 0, l = 1, . . . ,m so that ∂
∂ul � dμj = 0. Any μ ∈ Ω(1) is of the

form μ = αjμ
j for some functions αj on U . Therefore

∂

∂ul
� dμ =

∂αj

∂ul
μj ∈ Ω(1).

Hence Ω(2) = Ω(1), i.e. r∗ = 1.

A successful example for the previous lemma is given by any linear system. Before
going on, let us give a negative example.

Example 1.3. Consider the control system given by

ẋ1 = x2 + (u)2 ẋ2 = u.

The contact forms on U are spanned by

Ω = { ω1 = dx1 − (x2 + (u)2)dt, ω2 = dx2 − udt }

and kerπUM∗ = { ∂
∂u

}. The codistribution Ω(1) is spanned by

ω̄ = ω1 − 2uω2 = (dx1 − 2udx2)− (x2 − (u)2)dt.

Indeed
∂

∂u
� dω̄ = 2dx2 − 2udt = 2ω2.

However, ω2 is independent of ω̄, hence ∂
∂u

� dω̄ /∈ Ω(1) so that Ω(2) = {0} �= Ω(1). There
is no non-zero 1-form in TM∗ that pulls back to a form in Ω through kerπUM

∗. But we
also see that

Ω(1) + {dt} = {dx1 − 2u dx2, dt}

is not an integrable codistribution. Note that this example still admits a reduction/lin-
earization of some kind. See Example 4 in [143].

Lemma 1.4. The codistribution Ω(1) as computed in Lemma 1.2 has dimension n−m.

Proof. With the contact forms ω1, . . . , ωn spanning Ω given by (1.16), we have ∂
∂ul � dωi =

−∂fi

∂ul dt. It follows that Ω
(1) is spanned by

Ω̂ = {ηki ω
i} = {ηki dx

i − ηki f
idt} k = 1, . . . , n−m

s.t. ηki (t, x, u)
∂f i(t, x, u)

∂ul
= 0 rankηki = n−m

since rank ∂f
∂u

is assumed to be m.

Lemma 1.5. Let the codistribution Ω(1), as computed in Lemma 1.2, be such that Ω(1) +
{dt} is integrable. Then Ω(1) = π∗

UMΩ̂ for some Ω̂ ⊂ TM∗ and Ω̂ + {dt} ⊂ TM∗ is
integrable.
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Proof. The equality Ω(1) = π∗
UMΩ̂ follows from Lemma 1.2. Clearly dt = π∗

UMdt. Hence

Ω(1) + {dt} = π∗
UM(Ω̂ + {dt}) and the result follows from Corollary A.9.

Let Ω(1) ⊂ Ω be such that Ω(1) + {dt} is integrable, so that by Lemma 1.2, there
is a codistribution Ω̂ ⊂ TM satisfying Ω(1) = π∗

UMΩ̂. Then by Lemma 1.4 and since

kerπ∗
UM = 0, dim Ω̂ = n −m. Next, from Lemma 1.5, Ω̂ + {dt} ⊂ TM∗ is integrable so

that Ω̂ = {dyj − gjdt} where yj , gj are functions on M.

Recall from Section 1.1.1 that a section σ ∈ ΓM, σ : B → M and its lift σ̂ ∈ ΓU ,
σ̂ : B → U that satisfy the original system equations (1.2) are such that

σ̂∗Ω = {0}

and since σ = πUM ◦ σ̂ and π∗
UMΩ̂ ⊂ Ω, we have

σ∗Ω̂ = σ̂∗(π∗
UMΩ̂) = {0}.

Therefore, on any solution of the system (1.2), the functions yk and gk on M satisfy the
equations

ẏk = gk(t, x), k = 1, . . . , n−m.

As in the linear case, (and without loss of generality) we may use the relations yk = yk(t, x)
to eliminate x1, . . . , xn−m so as to obtain the equations

ẏk = gk(t, y, xn−m+1, . . . , xn), k = 1, . . . , n−m

analogous to (1.12). Clearly, rank ∂g
∂x

= m − ρ, ρ ≥ 0, so that we may further discard
xn−m+1, . . . , xn−m+ρ to obtain the equations analogue to (1.13)

ẏk = gk(t, y, w), k = 1, . . . , n−m w = (xn−m+ρ+1, . . . , xn).

Finally, consider the set of equations

ẏk = gk(t, y, w) k = 1, . . . , n−m (1.18a)

ẇs = w̄s s = 1, . . . ,m− ρ (1.18b)

ẋn−m+σ = w̄m−ρ+σ σ = 1, . . . , ρ. (1.18c)

It is easy to check that the system described by (1.18) is statically feedback equivalent to
the system described by (1.2), i.e. equivalent under a bundle map as presented in Section
1.1.1.1. Denote this map by ϕ, we also have

{dyk − gkdt, dws − w̄sdt, dxn−m+σ − w̄m−ρ+σdt} = {ϕ∗(dxi − f idt)} = ϕ∗Ω.

Importantly, the equations (1.18b)-(1.18c) are linear. Hence, if one is able to recursively
repeat the elimination procedure on (1.18a) until the nonlinear part is “empty”, then one
has established a complete equivalence between the nonlinear system (1.2) and a linear
system. Actually, it is possible to verify a priori whether the recursive procedure leads
to the desired result, i.e. before performing any integration, by applying a recursive test.
This is the object of static feedback linearization.
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1.2.2 Static Feedback Linearization

In this section, we state the conditions under which a control system (1.2) may be trans-
formed into a linear one using a transformation of the type described in Section 1.1.1.1.
These transformations are also called static feedback transformations.
Recall once more that the Cartan codistribution of contact forms on TU∗ is spanned by

Ω = { ωi = dxi − f i(t, x, u)dt } i = 1, . . . , n

and its annihilating distribution on TU , V =⊥TU∗ Ω by

V = {D,
∂

∂u1
, . . . ,

∂

∂um
} D =

∂

∂t
+ f i(t, x, u)

∂

∂xi
. (1.19)

It is useful to split V into two components. Indeed V is not involutive and contains an m
dimensional involutive subdistribution kerπUM∗ ⊂ V spanned by

kerπUM∗ = {
∂

∂u1
, . . . ,

∂

∂um
}.

Hence,

V = kerπUM∗ + {D}.

Note that the vector D is not unique. We may chose any representative of V/ kerπUM∗

and we scale it so as to have

D(t) = D� dt = 1.

1.2.2.1 Other Ways to Compute Ω(1)

Lemma 1.6. With D chosen as in (1.19), the computation of Ω(1) from Lemma 1.17
takes any of the following three equivalent forms

Ω(1) = {ω ∈ Ω |
∂

∂ul
� dω ∈ Ω, l = 1, . . . ,m} (1.20)

= {ω ∈ Ω | D� dω ∈ Ω} (1.21)

= {ω ∈ Ω | dω ∈ Ω} (1.22)

where in the last equality, Ω also represents the ideal it generates in ΛTU∗.
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Proof. With ωi = dxi − f idt the generators of Ω, expand dωi as

dωi = −df i ∧ dt

= −

(
∂f i

∂xk
dxk +

∂f i

∂ul
dul +

∂f i

∂t
dt

)
∧ dt

= −

(
∂f i

∂xk
(ωk + fkdt) +

∂f i

∂ul
dul

)
∧ dt

= −
∂f i

∂xk
ωk ∧ dt−

∂f i

∂ul
dul ∧ dt (1.23)

D� dωi =
∂f i

∂xk
ωk +

∂f i

∂ul
dul (1.24)

∂

∂ul
� dωi = −

∂f i

∂ul
dt. (1.25)

Since neither dul nor dt are in Ω, the result follows easily from (1.23), (1.24) and (1.25).

Remark 1.7. Lemma 1.6 still holds verbatim if D is replaced by any other representative
of V/ kerπUM∗.

1.2.2.2 Condition for Static Feedback Linearizability

Proposition 1.8. Consider the two filtrations defined on the codistributions of contact
forms Ω ⊂ TU∗

Ω(0)
a := Ω Ω(r+1)

a = {ω ∈ Ω(r)
a | D� dω ∈ Ω(r)

a } (1.26)

Ω
(0)
b := Ω Ω

(r+1)
b = {ω ∈ Ω

(r)
b | dω ∈ Ω

(r)
b } (1.27)

Assume either Ω
(r)
a + {dt} is integrable for all r ≥ 0 or Ω

(r)
b + {dt} is integrable for all

r ≥ 0. Then Ω
(r)
a = Ω

(r)
b =: Ω(r) for all r ≥ 0 and there is a r∗ such that Ω(r∗+k) = Ω(r∗)

for all k ≥ 0. Further assume that Ω(r∗) = {0}. Then, the control system described by
(1.2) is locally equivalent under a static feedback transformation to a linear controllable
system.
Conversely, if the system (1.2) is locally static feedback equivalent to a controllable linear
system, then the filtrations (1.26) and (1.27) agree and Ω(r) + {dt} is integrable for all r,
and Ω(r∗) = {0} for some r∗.

Remark 1.9. If the integrability condition of Proposition 1.8 is not satisfied, then in general,
the filtrations (1.26) and (1.27) do not agree for all r.

Sketch of proof. Use Lemma 1.6 to show that each step allows recursively to build a re-
duction of the form (1.18). Use Ω(r∗) = 0 to show that in the last reduction step, (1.18a)
is empty, leaving only linear equations. To show the converse, take a linear controllable
system, (1.15) implies that integrability modulo dt is alway satisfied. Use the rank of the
controllability matrix to show that Ω(r∗) = 0. Finally, verify that the codistributions Ω(r)

are invariant under invertible bundle maps of the type of section 1.1.1.1.
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The result of Proposition 1.8 is found with equivalent or similar formulations in [72,
69, 58, 57] to cite a few.

1.2.2.3 Remark on Regularity

In the preceeding paragraphs, we ignored some important aspects regarding regularity.
Indeed, in all computations, it was implicitly assumed that all distributions (respectively
codistributions) were well defined, at least locally. This might fail and lead to difficul-
ties even if the system equations satisfy the initial regularity assumptions. For instance,
consider the simple equations

ẋ1 = f1 = x1x2 ẋ2 = f2 = u.

The condition rank ∂f
∂u

= 1 = m is satisfied everywhere. The system is equivalent to
a double integrator except when x1 = 0, where x1 becomes uncontrolled. In the next
chapter, we shall avoid this kind of situations by restricting the study of the system to the
neighborhoods of so called Brunovsky-regular points.

1.3 Flatness

The relevance of the theory of differential algebra [116, 79] in the mathematical aspects
of automatic control was recognized in [40]. Shortly afterwards, in [42], the same au-
thor reformulated many structural properties of linear systems using differential fields and
module theory. The notion of differential flatness was then introduced in this differential
algebraic context in [44]. In [47, 48], the module theoretic aspects of flatness in nonlinear
systems reappeared by means of Kähler differentials and the introduction of the tangent
linear system.
Shortly after the differential algebra point of view, the differential geometric description
of flatness was introduced, [45, 46]. This approach describes control systems on diffieties
and equivalence between these by Lie-Bäcklund transformations.
The notion of differential flatness is central throughout our text, but the concepts of differ-
ential algebra are essentially absent. In this regard, we cannot give a definition of flatness
in strict accordance with the chronology of its development. However, the main idea can
be grasped quite easily and an informal definition requires no particularly sophisticated
apparatus. This is the object of the present section. We will then rely on the result from
[5], given by Proposition 2.17, as a more rigorous definition.

1.3.1 Informal Definition

Consider a control system in explicit form (1.2) and its infinite input prolongation as
described in Section 1.1.2. The system inputs variables u1, . . . , um are free, i.e. they are
not required to satisfy any differential equations. This means that within their domain
of definition and on some time interval, one may assign any (smooth) time functions
u1(t), . . . , um(t). All the variables ul(r) for r > 0 are then obtained by time differentiation
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and there therefore exists time functions (solutions) xi(t) such that the system equations
are satisfied. However, the variables xi are not completely specified by the choice of inputs.
For instance, the initial conditions are free.
At the same time, the basic assumption that rank ∂f

∂u
= m implies that given any trajectory

σ : (t) �→ (t, xi(t)) satisfying the implicit equations (1.1), the inputs ul may be solved for
and expressed as algebraic functions of t and x1, . . . , xn. By time differentiation, all the
variables ul(r) for r > 0 are specified too. Hence, all system variables t, x, u, u̇, . . . can be
computed from the variables t and x. However, these variables are not free, since they are
required to satisfy the system equations (1.2).
A control system is flat if there exists variables with both properties, i.e. free of any
differential relations and allowing the reconstruction of all the other system variables from
their values and their time derivatives.
More precisely, consider the control system (1.2) and its infinite input prolongation on
U∞. The system is flat if there exist m functions z1, . . . , zm on U∞

zs = zs(t, x, u, u̇, . . . , u(L−1)) s = 1, . . . ,m

for some finite L, called the flat outputs , together with a map Φ : R1+mR → R
n such that

xi = Φi(t, z, ż, . . . , z(R−1)) i = 1, . . . , n

for some finite R.

Remark 1.10. If the basic assumption rank ∂f
∂u

= m is dropped, one additionally requires
the existence of a map Ψ : R1+mRu → R

m, allowing the reconstruction of u, i.e. such that
ul = Ψl(t, z, ż, . . . , z(Ru−1)) for l = 1, . . . ,m. In the following, we shall always assume that
rank ∂f

∂u
= m.

Using notions that will be approached in Chapter 3, flatness can be defined precisely
as follows.

Definition 1.11. A control system with m inputs is said differentially flat or flat if it is
Lie-Bäcklund equivalent (equivalent under some Lie-Bäcklund isomorphism) to the system
described by the equations ẏ1 = u1, . . . , ẏm = um.

Any statically feedback linearizable system is flat, but the converse does not hold.
Deciding if a given control system is flat is a difficult problem that has received a lot of
attention over the years. We shall be concerned with related questions in the following
chapters.
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Chapter 2

Matrix Differential Operators

This chapter mainly reviews concepts borrowed from the literature on differential equa-
tions and differentially flat systems. Nevertheless, the last section presents an equivalent
form of a known characterization of flat systems that is original to the best of our knowl-
edge.
The point of view adopted here is the infinite dimensional geometric description of control
systems. This approach has been introduced in the study of flatness in [45, 46]. Another
important ingredient is the concept of the tangent linear system, the properties of which
are reflected by those of a differential module of 1-forms associated to the control system
under investigation, [47, 48]. Indeed, the problem of finding the flat outputs of a flat
system is difficult, but its infinitesimal counterpart is algorithmic and involves the con-
struction of a basis of the mentioned module [5]. An integrability problem then remains
to be solved. The obtained basis may be transformed in another one by a matrix differen-
tial operator, the action of which does not preserve intergrability in general. Differential
operators are of interest in the more general study of partial differential equations, see e.g.
[150, 19, 20] and regarding their relevance in the study of flat systems, see [5, 21, 8, 88].
Once a basis of the module is obtained, it is possible to set up a system of differential
equations, the unknown of which are differential operators, and for which the existence of
a solution coincides with the flatness of the studied control system.

The differential module of 1-forms encoding the properties of the tangent linear system
together with the differential operators acting on it are defined in Section 2.1. These
operators are given a graded structure and an exterior derivative is defined. Section
2.2 describes the algorithmic procedure that produces a basis of the differential module.
The decomposition of the module and some properties it shares with the original control
system are also discussed. In Section 2.3, matrices of operators together with their action
on module bases and their link to flatness is developed. The characterization of flatness
mentioned earlier is also presented. Lastly, Section 2.4 gives an equivalent version of
the flatness characterization result where curvature equations are absent. A worked out
example closes the chapter.

39
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2.1 Differential Operators

Consider the bundle U∞ given by the projective (inverse) limit of the composite bundle

· · ·
πU,32 �� U2

πU,21 �� U1
πU,10 �� U

ππUM �� M
ππMB �� B

and remember that coordinates on U∞ are given by

(t, x, u, u(1), u(2), . . .)

Let R denote the ring (also an R-algebra) of smooth real-valued functions on U∞. Func-
tions in R are required to depend on a finite number of variables, more precisely

r ∈ R ⇒ ∃k finite and ∃r̃ ∈ C∞(Uk,R) s.t. r = π∗
U ,∞k r̃.

In other words, r = r(t, x, u, u(1), . . . , u(k)) and is C∞ in all its arguments.
In the following, D represents the infinitely prolonged Cartan vector field on TU∞

D =
∂

∂t
+ f i(t, x, u)

∂

∂xi
+ ul(k+1) ∂

∂ul(k)

where we assume that f i ∈ R. For any r ∈ R, the Lie derivative Dr is in R. Note that
although D is given by an infinite sum, the computation of Dr can be performed with
finitely many partial derivative operations. One can now define the ring of polynomials in
D with coefficients in R denoted by R[D]. An element a ∈ R[D] is a finite sum

a = a0 + a1D + . . .+ aAD
A ai ∈ R.

The noncommutative products r ·D and D · r of D and r ∈ R ⊂ R[D] read

r ·D = rD

D · r = Dr + rD

The ring R[D] is a ring of operators, i.e. ∀a ∈ R[D], a : R → R. For a, b ∈ R[D] and
r ∈ R one verifies that

(a · b)(r) = a(b(r)).

From now on, let ΛpTUk∗ denote the R-module of p-forms on Uk. Differential p-forms
on U∞ are required to be finite in the following sense.

ω ∈ ΛpTU∞∗ ⇒ ∃k, ∃ω̃ ∈ ΛpTUk∗ s.t. ω = π∗
U ,∞k ω̃.

Explicitly, the p-form above takes the form

ω =

finite∑
I

αIdyI1 ∧ . . . ∧ dyIp αI ∈ R, yIi ∈ {x, u, . . . , u(k)}.

The wedge product is as usual

∧ : ΛpTU∞∗ × ΛqTU∞∗ → Λp+qTU∞∗
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and the algebra of forms of all degree on U∞ will be denoted by ΛTU∞∗. The Lie derivative
along D gives a map ΛpTU∞∗ → ΛpTU∞∗. Therefore, the action of elements in R[D] can
be extended naturally to ΛpTU∞∗ and ΛTU∞∗:

a ∈ R[D] a : ΛTU∞∗ → ΛTU∞∗

such that if a = a0 + a1D + . . .+ aAD
A and ω ∈ ΛTU∞∗ then

a(ω) = a0ω + a1Dω + . . .+ aAD
Aω

where Dlω is the l-fold Lie derivative along D. For a, b ∈ R[D] and ω ∈ ΛTU∞∗ we have

(a · b)(ω) = a(b(ω)).

We now consider ΛpTU∞∗ over the ring of operators R[D]. Doing so, we obtain a new
module. We shall denote this module by Ap, the R[D]-module of differential p-forms on
U∞.

Remark 2.1. For p = 1 and as a R-module, Λ1TU∞∗ is generated by an infinite number
of independent elements. But since Ddul(k) = dul(k+1), the R[D]-module A1 is generated
by

dt, dx1, . . . , dxn, du1, . . . , dum.

However, this is not a basis in the sense that A1 may possibly be generated by fewer
elements. See Section 2.2.

2.1.1 Graded Differential Operators

The ring of differential operators R[D] can be extended to a graded structure ΛR[D].
(See also [8]). We shall write ΛpR[D] for the set of polynomials in D with coefficients in
ΛpTU∞∗. As the set of 0-forms on U∞, R can be identified with Λ0TU∞∗. Therefore we
also identify R[D] with Λ0R[D]. An operator α ∈ ΛpR[D] is a finite sum

α = α0 ∧ 1 + α1 ∧D + . . .+ αA ∧DA αi ∈ ΛpTU∞∗

and is said of order A and degree p. For α as above and ω ∈ ΛqTU∞∗, we have

α : ΛqTU∞∗ → Λp+qTU∞∗

α(ω) = α0 ∧ ω + α1 ∧Dω + . . .+ αA ∧DAω.

Note that α immediately extends to a map of modules,

α : Ap → Ap+q.

The wedge product on ΛTU∞∗ can in turn be extended to

∧ : ΛpR[D] × ΛqR[D] → Λp+qR[D]. (2.1)

using the rule

(α ∧ β)(ω) = α(β(ω)).
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Remark 2.2. The wedge product ∧ is not anti-commutative on Λ1R[D] as it is on Λ1TU∞∗.

Example 2.3. Take α, β ∈ Λ1R[D] and ω ∈ Λ1TU∞∗ such that

α = dx1D β = dx2 ω = dx3.

Then

(α ∧ β)(ω) = α(β(ω)) = dx1D(dx2 ∧ dx3)

= dx1 ∧ dDx2 ∧ dx3 + dx1 ∧ dx2 ∧ dDx3

whereas

(β ∧ α)(ω) = β(α(ω))

= −dx1 ∧ dx2 ∧ dDx3.

Let us finally write

ΛR[D] =
⊕
p

ΛpR[D].

The wedge product on ΛR[D] is associative and distributive over the addition. Hence
ΛR[D] is a ring of differential operators and R[D] = Λ0R[D] is a subring of ΛR[D].

2.1.2 Exterior Derivative on Graded Differential Operators

In this section, and as in [8], we extend the exterior derivative d to ΛR[D] as a map

d : ΛpR[D] → Λp+1R[D]

In [88], this operator is directly defined on matrices with differential operators as entries
and is denoted by d. In [21], the same behavior is obtained using a notation involving
commutators and anticommutators of operators.
Given α ∈ ΛpR[D] and ω ∈ ΛqTU∞∗, the operator dα ∈ Λp+1R[D] is such that

d(α(ω)) = (dα)(ω) + (−1)pα(dω).

Explicitly, the α above is a finite sum of the form

α = αi ∧Di αi ∈ ΛpTU∞∗

and thus

d(α(ω)) = d(αi ∧Diω)

= dαi ∧Diω + (−1)pαi ∧ dDiω

= dαi ∧Diω + (−1)pαi ∧Didω

so that dα ∈ Λp+1R[D] is the operator given by

dα = dαiD
i.

Hence, to compute the exterior derivative of an operator in ΛpR[D], one simply applies
the exterior derivative to the form coefficients. Clearly, ddα = 0 for any α ∈ ΛpR[D].
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2.2 Basis for the Module A1

As will be shown in forthcomming sections, important properties of a control system are
reflected by properties of its associated module of differential 1-forms A1. A first task is
to obtain a basis of A1. By a basis, we mean a minimal set of elements in A1, generating
A1 as a R[D]-module. Because a basic assumption is that rank ∂f

∂u
= m in the explicit

system equations ẋ = f(t, x, u), the m variables u can be solved for as algebraic functions
of t, x and ẋ = Dx. This implies, as already noted, that a basis of A1 is contained (as a
R-submodule) in

H(0) = {dt, dx1, . . . , dxn}.

Next, define the following filtration of the R-module H(0) for k ≥ 0

H(0) = {dt, dx} H(k+1) = {ω ∈ H(k) | Dω ∈ H(k)} (2.2)

Remark 2.4. The above derived flag is defined using the infinitely prolonged vector field D,
nevertheless, it can be computed using finite objects only. Denoting C(TUk) the Cartan
distribution on Uk as defined in Chapter 1, the same filtration as (2.2) is obtained as

H(0) = {dt, dx}

H(k+1) = {ω ∈ H(k) | Dω ∈ H(k), D ∈ C(TUk) s.t. D� dt = 1}.

(Recall that the Cartan distribution C(TUk) on Uk is of dimension 1+m and that contrarily
to the case of U∞, the choice of D ∈ C(TUk) s.t. D� dt = 1 is not unique. However, the
obtained filtration is independent of this choice.) Therefore, despite the fact that H(k) is
contained in {dt, dx} as a R-submodule, elements of H(k) are not necessarily elements of
TM∗ but are at least in TUk−1∗. Indeed, the coefficients in the 1-forms may depend on
u, . . . , u(k−1).

Let E be a R-submodule of Λ1TU∞∗. The dimension of E at a point p ∈ U∞ is the
dimension on the R-vector space E|p. The following definition is equivalent to the one
given in [21].

Definition 2.5. A point p ∈ U∞ is said Brunovsky-regular, if the dimensions of the
modules H(k) and H(k) +DH(k) are constant in some neighborhood of p for all k ≥ 0.

In the above definition, one should be precise about what is meant by a neighborhood
of p ∈ U∞. A neighborhood of p ∈ U∞ is taken as the pre-image through πU ,∞q of an
open neighborhood of p̃ = πU ,∞q(p) in Uq for some q ≥ 0.

Remark 2.6. From Remark 2.4, H(k) corresponds to a C∞(Uk−1)-submodule of Λ1TUk−1∗.
Therefore, around a Brunovsky-regular point, we may identify H(k) and H(k) + DH(k)

with codistributions on Uk (and codistributions on U∞).

Example 2.7. Consider the system described by

ẋ1 = x1x2 ẋ2 = u.
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The system satisfies the basic regularity assumption ∂f
∂u

= m = 1 at every point. The
filtration defined above is easily computed as

H(0) = {dt, dx1, dx2}

H(1) = {dt, dx1}

H(2) =

{
{dt} if x1 �= 0
{dt, dx1} if x1 = 0

.

And H(2+k) = H(2) for all k ≥ 0. One also obtains

H(0) +DH(0) = {dt, dx1, dx2, du}

H(1) +DH(1) =

{
{dt, dx1, dx2} if x1 �= 0
{dt, dx1} if x1 = 0

H(2) +DH(2) =

{
{dt} if x1 �= 0
{dt, dx1} if x1 = 0

.

Hence, the Brunovsky-regular points are all points (t, x1, x2, u, u(1), u(2), . . .) ∈ U∞ such
that x1 �= 0.

Let us show

Lemma 2.8. With the filtration defined by (2.2) and around any Brunovsky-regular point,

i) There is a k∗ ≥ 0 s.t. ∀k < k∗ : dimH(k+1) < dimH(k) and ∀k > 0 : H(k∗+k) =
H(k∗). Also D(H(k∗)) ⊂ H(k∗).

ii) For all k ≥ 0

dim
(
(H(k) +DH(k))/H(k)

)
= dim

(
H(k)/H(k+1)

)
iii) For all k ≥ 0

dim
(
(H(k) +DH(k))/H(k)

)
=dim

(
H(k)/(H(k+1) +DH(k+1))

)
+dim

(
H(k+1)/(H(k+2) +DH(k+2))

)
+ . . .

+dim
(
H(k∗−2)/(H(k∗−1) +DH(k∗−1))

)
+dim

(
H(k∗−1)/(H(k∗))

)
iv) For all k ≥ 0, let {ωi,k} ⊂ H(0) be an independent set of representatives of

H(k)/(H(k+1) +DH(k+1))

in H(0) for all k ≥ 0. Then the 1-forms ωi,k are independent and generate an m-
dimensional R-submodule of H(0).
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Proof. The condition about Brunovsky-regularity implies that the codistributions defined
in i),ii),iii) and iv) are all locally well defined and spanned by some local sections of the
respective cotangent spaces.
i) Follows directly from the construction of H(k) and the fact that the dimension on H(0)

is finite.
ii) Since H(k+1) ⊂ H(k), one can build adapted bases H(k+1) = {μi} and H(k) = {μi, λj}.
By construction, Dμi ∈ H(k). Next assume that the Dλj are not independent modulo
H(k), then there are functions αj such that αjDλj ∈ H(k). But this implies that the
element αjλ

j is in H(k+1), indeed D(αjλ
j) = D(αj)λ

j+αjD(λj) is in H(k) by assumption.
But this contradicts the fact that {μi} and {μi, λj} are the claimed adapted bases. Hence
Dλj are independent modulo H(k).
From these adapted bases it is clear that

(
H(k)/H(k+1)

)
is represented by the independent

set {λj}. And since Dλj are independent modulo H(k) whereas Dμi ∈ H(k),
(
(H(k) +

DH(k))/H(k)
)
also has the independent set {λj} as representatives.

iii) For k ≥ k∗, H(k+1) = H(k) and DH(k) ⊂ H(k) so that the relation is trivially satisfied.
For 0 ≤ k < k∗, and on each side of the equation, we subtract the case k + 1 to the case
k obtaining

dim
(
(H(k) +DH(k))/H(k)

)
− dim

(
(H(k+1) +DH(k+1))/H(k+1)

)
= dim

(
H(k)/(H(k+1) +DH(k+1)) (2.3)

If one can verify (2.3), then the result follows by induction on k. Note that by construction

H(k+1) ⊂ H(k+1) +DH(k+1) ⊂ H(k) ⊂ H(k) +DH(k). (2.4)

Given three nested codistributions C ⊂ B ⊂ A, note the identity dim(A/B)+dim(B/C) =
dim(A/C). Hence, (2.3) reduces to

dim
(
(H(k) +DH(k))/H(k)

)
= dim

(
H(k)/H(k+1)

)
which is ii).
iv) Representatives of the spaces H(k)/(H(k+1) + DH(k+1)) are independent because of
(2.4) and because for two nested codistributions B ⊂ A, representatives of A/B in A are
independent of B. Hence the forms ωi,k are all independent. It follows that dim{ωi,k}
is given by setting k = 0 in iii). This gives dim{ωi,k} = dim

(
(H(0) + DH(0))/H(0)

)
=

dim({dt, dx, du}/{dt, dx}) = m.

Besides the algebraic properties of the filtration (2.2) given by the previous lemma, the
module H(k∗), to which the constructions saturates, also enjoys an important“differential”
property. See [91, 92, 140, 5] for original results and more details. We content ourselves
with the following lemma.

Lemma 2.9. Around a Brunovsky-regular point, the codistribution H(k∗) of Lemma 2.8
is involutive and H(k∗) ⊂ TM∗. Moreover dt ∈ H(k∗).

Proof. This proof is adapted from the proof of Proposition 3.3 point 2 in [5].
By Remark 2.4 and Lemma 2.8, we may work in finite dimensions by considering only Uk∗
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and use the vector

D =
∂

∂t
+ f i(t, x, u)

∂

∂xi
+ ul(1) ∂

∂ul(0)
+ . . .+ ul(k∗) ∂

∂ul(k∗−1)
(2.5)

Define V ⊂ TUk∗

as the annihilator of H(k∗), i.e. V =⊥TUk∗ H(k∗). Next, write V̂ ⊂ V
the space of Cauchy characteristic vector fields ofH(k∗) which, by Lemma A.3, is involutive
and given by

V̂ = {X ∈ V | [X,V ] ⊂ V }

= {X ∈ V | X� dω ∈ H(k∗), ∀ω ∈ H(k∗)}. (2.6)

Define also Ĥ =⊥TUk∗ V̂ , the retracting space of H(k∗). Clearly, H(k∗) ⊂ Ĥ and Ĥ is
integrable.
We now show that D(Ĥ) ⊂ Ĥ. Take any X ∈ V̂ and any ω ∈ H(k∗). From the Cartan
formula we have

[D,X ]� ω = D(X� ω)−X� Dω = 0 (2.7)

since X� ω = 0 and Dω ∈ H(k∗). Again from the Cartan formula

[D,X ]� dω = D(X� dω)−X� Ddω.

The first term in the r.h.s of the last relation is in H(k∗) since X� dω ∈ H(k∗) and for the
second term, we have that X� Ddω = X� dDω ∈ H(k∗) by (2.6). Hence

[D,X ]� dω ∈ H(k∗). (2.8)

But (2.7) and (2.8) imply that [D,X ] ∈ V̂ , so that [D, V̂ ] ⊂ V̂ . By Lemma A.17, this last
relation implies that D(Ĥ) ⊂ Ĥ .
Next, we verify that H(k∗) is not only the largest D-invariant sub-codistribution of H(0) =
{dt, dx}, but also the largest D-invariant sub-codistribution of

{dt, dx, du, . . . , du(k∗−1)}.

To this end, we extend the filtration of H in the other direction as

H(0) = {dt, dx}

H(−1) = {dt, dx, du}

...

H(−k) = {dt, dx, du, . . . , du(k−1)}

...

H(−k∗) = {dt, dx, du, . . . , du(k∗−1)}

We see that with this choice, the relations H(k+1) = {ω ∈ H(k) | Dω ∈ H(k)} are verified
for all k ≥ −k∗. Therefore, H(k∗) is the largest D-invariant codistribution inside H(−k∗).
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Now, we show Ĥ ⊂ H(−k∗). From the expressions of D, see (2.5), we deduce that for
k > 0, H(k) possess a basis of the form

H(k) = {α(t, x, u, . . . , u(k−1))dt, βr
i (t, x, u, . . . , u

(k−1))dxi} r = 1, . . . , dimH(k).

Therefore, the retracting space of H(k) for k > 0 is contained in

{dt, dx, du, . . . , du(k−1)} = H(−k)

and in particular, Ĥ ⊂ H(−k∗).
We hence have verified that Ĥ is D-invariant and that Ĥ ⊂ H(−k∗); but we also showed
that H(k∗) is the largest D-invariant in H(−k∗). It follows that Ĥ ⊂ H(k∗), so that
Ĥ = H(k∗) and H(k∗) is integrable. The codistribution generated by dt is D-invariant,
hence dt ∈ H(k∗). As an integrable codistribution contained in {dt, dx}, H(k∗) may also
be identified with a codistribution in TM∗.

Lemmas 2.8 and 2.9 provide a basis of the module A1 through the following proposition.
The result is found in [5] for the autonomous (time invariant) case. The non-autonomous
C∞ case is presented in [21] where a set of generators of A1/{dt} is constructed. In [88],
a basis of A1/{dt} for the case H(k∗) = {dt} is obtained by other means (more on this
later).

Proposition 2.10. Around a Brunovsky-regular point, let ρ = dimH(k∗) and χ1, . . . , χρ−1

functions on M such that H(k∗) = {dt, dχ1, . . . , dχρ−1}. Let also {ω1, . . . , ωm} = {ωi,k}
with ωi,k as in Lemma 2.8. Then

dt, dχ1, . . . , dχρ−1, ω1, . . . , ωm

generate the R[D]-module A1 and
ω1, . . . , ωm

are representatives in A1 of a basis of the R[D]-module A1/H(k∗) = A1/{dt, dχ1, . . . ,
dχρ−1}.

Proof. By Lemma 2.8, the ωj ∈ {ωi,k} are representatives of bases of the spaces

H(k)/(H(k+1) +DH(k+1))

for k ≥ 0. Therefore, for each k ≥ 0

H(k) ≡ {ωi,k}+H(k+1) +DH(k+1).

Hence, because H(k∗+l) = H(k∗), ∀l ≥ 0 and by induction, the elements of H(0) are
generated by the elements (together with their successive Lie-derivatives along D) of

{ω1, . . . , ωm}+H(k∗).

But H(0) generatesA1. The set {ω1, . . . , ωm} is minimal because in A1/H(k∗), it generates
the R[D]-submodule {du}/H(k∗) for which {du1, . . . , dum} is clearly an independent basis;
and a basis of a module cannot be smaller than a basis of one of its submodules.

Remark 2.11. We do not speak of a basis of A1 when referring to {dt, dχ1, . . . , dχρ−1,
ω1, . . . , ωm} because {dt, dχ1, . . . , dχρ−1} generate H(k∗) as a R-module, but as a R[D]-
module, H(k∗) may be generated by fewer elements contained in {dt, dχ1, . . . , dχρ−1}.
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2.2.1 Decomposition of A1

In the following, we observe that around a Brunovsky-regular point, the module A1 de-
composes as A1 = T ⊕ F where T is torsion and F is free. Moreover T is unique and
F ≡ A1/T . For similar facts in the case where the ring R is a field, see [42, 88, 28].
In our setting, an element τ in A1 is torsion (is an element of the torsion submodule of A1)
if and only if there exists a differential operator r ∈ R[D] such that r(τ) = 0. On the other
hand, the set μj ∈ A1, j = 1, . . . , s generates a free submodule S ⊂ A1 if and only if there
exist no set of (not all zero) operators rj ∈ R[D], j = 1, . . . , s such that

∑s
j=1 rj(μ

j) = 0.

Example 2.12. Consider the system with one independent input u and three states
x1, x2, x3

ẋ1 = x2 ẋ2 = x1 ẋ3 = u.

The system is linear, hence, all points of U∞ are Brunovsky-regular. Next, dx1 and dx2

are torsion, indeed, with r = D2 − 1, r(dx1) = r(dx2) = 0. A free module F such that
A1 = {dx1, dx2}⊕F is generated by dx3. Another choice could be dx3+dx1. The element
du = Ddx3 also generates a free submodule, but not such as to decompose A1 as desired.
Note also that the fact that the proposed generators of F are integrable is specific to the
example.

These observations, together with Lemmas 2.8 and 2.9 and Proposition 2.10 lead to

Corollary 2.13. Around a Brunovsky-regular point, the R[D]-module A1 decomposes as

A1 = T ⊕ F

where T is the torsion submodule generated by H(k∗), i.e. by

dt, dχ1, . . . , dχρ−1

and F ≡ A1/T has basis elements represented by

ω1, . . . , ωm.

Proof. We just need to show that H(k∗) contains only torsion elements. Take any h ∈
H(k∗). Since dimH(k∗) = ρ, the elements h,Dh, . . . , Dρh in H(k∗) must be R-linearly
dependent. Suppose α0h + α1Dh + . . . + αρD

ρh = 0, then r ∈ R[D] given by r =
α0 + α1D + . . .+ αρD

ρ is such that r(h) = 0.

The next lemma states that the ideal generated by torsion elements is stable under the
action of D.

Lemma 2.14. Around a Brunovsky-regular point, the ideal IT in ΛTU∞∗ generated by
H(k∗) is invariant under the action of any differential operator in ΛR[D].

Proof. It is enough to consider the action ofD. A homogeneous element τ ∈ IT
⋂
ΛqTU∞∗

has the form τ = ψk ∧ αk, k = 1, . . . , ρ with {ψk} a basis of H(k∗) and αk ∈ Λq−1TU∞∗.
Then D(τ) = D(ψk) ∧ αk + ψk ∧D(αk), but D(ψk) ∈ H(k∗).
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We close this section by insisting on the fact that the torsion submodule T of A1

corresponds to the state-space of the “largest uncontrolled subsystem” of (1.2), [42, 5].
Since D(H(k∗)) ⊂ H(k∗), there are (local) functions g1, . . . , gρ−1 ∈ C∞(O,R) for some
open set O ⊂ M such that

χ̇1 = g1(t, χ1, . . . , χρ−1)

...

χ̇ρ−1 = gρ−1(t, χ1, . . . , χρ−1).

and of course ṫ = 1.
In Example 2.12, we may take χ1 = x1 and χ2 = x2.

2.3 Matrix Differential Operators

The modules we are considering are all generated by finite sets of elements. For this reason,
it is convenient to gather these together in a vectorial notation. We will call these objects
vectors of forms and write for instance

ω =
(
ω1 · · · ωm

)T
.

See also e.g. [5]. A differential operator transforming a s-length vector of p-forms into
a v-length vector of (p + l)-forms may be represented by a v-by-s matrix of operators in
ΛlR[D]. Let P be such an operator whose matrix entries are pji ∈ ΛlR[D] and μ a s-length

vector of p-forms μ =
(
μ1 · · · μs

)T
. Then the v-length vector of (p + l)-forms P (μ),

simply noted Pμ, is

Pμ =

⎛
⎜⎝
∑

i p
1
i (μ

i)
...∑

i p
v
i (μ

i)

⎞
⎟⎠ .

We will denote by Ml
v,s[D] the set of such matrix operators. I.e.

Ml
v,s[D] :

(
ΛpTU∞∗

)s
→

(
Λp+lTU∞∗

)v
.

Two operators of compatible shapes can be composed together. Let P ∈ Ml
v,s[D] and

Q ∈ Me
s,k[D]. Then the composition of P and Q, noted P ∧ Q or simply PQ is the

operator in Ml+e
v,k [D] with entries

pji ∧ qir.

Summation is on i = 1, . . . , s and the binary operation ∧ is the one of (2.1). The wedge
operator (respectively the matrix product) is hence a map

∧ : Ml
v,s[D]×Me

s,k[D] → Ml+e
v,k [D].

Therefore, s-by-s operators of all degree in Ms,s[D] form a ring. Operators in M0
s,s[D]

form a subring of Ms,s[D].
Thanks to these two ring structures, vector of forms can be considered as elements of
modules. We will write
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• Ap,s for the M0
s,s[D]-module of s-length vectors of p-forms

• A∗,s for the Ms,s[D]-module of s-length vectors of forms of any degree.

2.3.1 Invertible Operators

In the set of square differential operators, those locally invertible by another operator are
of special interest. Note that such operators can only be of degree zero. Also, invertible
operators are two-sided:

Lemma 2.15. [21] Let Ū , U ∈ M0
s,s[D], then ŪU = Is implies UŪ = Is where Is is the

s-by-s identity matrix.

Proof. The proof in not trivial, see [21]. In the setting of [88], where R is a field, the
decomposition theorem (Smith normal form) shows that an invertible matrix is the product
of elementary matrices. It is easily verified that those elementary matrices satisfy the
lemma and the result for all invertible operators follows.

Note also that the (local) inverse to an invertible operator is (locally) unique. Following
[88], define the set of (locally) invertible or unimodular operators or unimodular matrices
Us[D] ⊂ M0

s,s[D] as

Us[D] := {U ∈ M0
s,s[D] | ∃Ū ∈ M0

s,s[D], ŪU = Is}.

2.3.2 Flatness and Integrable Module Bases

The following result from [5] provides an equivalent condition for a control system to be
flat. The condition is not essentially easier to verify than the definition of flatness itself,
but is appealing for the insight it gives on the problem. Firstly, the condition is formulated
in the differential algebraic framework described earlier in this chapter. Secondly, it shows
that assessing flatness of a system is also an integrability problem, as in static feedback
linearization but of a more difficult kind. Indeed in the latter case, one can build a certain
basis in a first step (which is an algorithmic task) and then perform an integrability test in
a second step (which is also algorithmic). If the integrability test fails, the system cannot
be static-feedback linearized.
The test for flatness also involves the construction of a basis, a basis of its associated
module A1. A preliminary necessary condition is that the torsion submodule of A1 must
be generated by dt alone. Next, one computes a basis ω ∈

(
Λ1TU∞∗

)m
of the free

module A1/dt. If the forms ω1, . . . , ωm, dt constitute an integrable codistribution, then
the system is flat. However, if this is not the case, the system is not necessarily non-flat.
The reason is that given a basis ω for A1/dt, and any invertible (unimodular) matrix
operator P ∈ Um[D], the length-m vector of forms μ ∈

(
Λ1TU∞∗

)m
given by μ = Pω is

also a basis of A1/dt. Unfortunately, the action of invertible operators does not preserve
integrability (as opposed to the case of non differential, i.e. order zero operators):
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Example 2.16. Assume that the four variables x, y, z, ẋ = Dx are algebraically indepen-
dent, then(

1 0
zD 1

)(
dx
dy

)
=

(
dx

zdẋ+ dy

) (
1 0
zD 1

)(
1 0

−zD 1

)
=

(
1 0
0 1

)
.

But {dx, dy} is integrable whereas {dx, zdẋ+ dy} is not.

Therefore, if the integrability test on ω fails, there might still exist an invertible P such
that Pω is integrable. We now state the mentioned result.

Proposition 2.17. [5] Consider the control system described by (1.2) or (1.1) and the
associated differential module A1. Compute H(k∗) and compute ω a basis representative
for A1/H(k∗) as in Lemma 2.8. The control system is flat around a Brunovsky-regular
point, if and only if the two following equivalent conditions are satisfied

– The codistribution H(k∗) = {dt} and there exists an operator P ∈ Um[D] such that

d(Pω) = 0 mod dt

– The codistribution H(k∗) = {dt} and there exists an operator P̂ ∈ Um+1[D] such that

d

(
P̂

(
ω
dt

))
= 0

Where for a 2-form π, π = 0 mod dt if π = α ∧ dt for some 1-form α.

Sketch of proof. Since dt is torsion and Ddt = 0, it is easy to check that one may always
choose

P̂ =

(
P h
0 1

)
where h is a column ofm functions inR. Therefore, P̂ is invertible if and only if P is. It also
follows that {μ = Pω, dt} is a set of m+1 integrable 1-forms. Remember that the entries
of ω are forms on Λ1TUk∗∗. Suppose the order of P is r, then μ ∈ Λ1TU (k∗+r)∗. Hence,
there exists m independent functions z1, . . . , zm (flat outputs) on Uk∗+r, all independent
of t such that {dz, dt} = {μ, dt}. By the invertibility of P , dz represents a basis of A1/dt.
Therefore, all state-variables x can be computed as functions xi = φi(t, z, . . . , z(A)) for
some finite A, and the system is flat. Conversely, if the system is flat, there exists such
functions z implying that dz is a basis ofA1/dt. Hence there must be an invertible operator
between dz, dt and ω, dt.

Remark 2.18. The order of the required operator P is not known a priori. For a fixed
chosen order, one may in principle set up a system of PDE and study existence of solutions.
However, if there is no solution, there might still be one for the same problem with the
order fixed higher. One may also fix the maximum number of input derivatives on which
the flat output z(t, x, u, u(1) . . .) may depend. See e.g. [50, 104, 3].
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2.3.3 A Closed System of Equations

The equations of Proposition 2.17 are concise but are not differentially closed. Expanding
the exterior derivative of the relations leads to new relations. Indeed

d(Pω) = 0 mod dt

⇒ dP ω + P dω = 0 mod dt.

Assuming H(k∗) = {dt} and P invertible, by Lemma 2.14, we may multiply the expression
above by P−1 and obtain

dω = −P−1 dP ω mod dt

= Π ω mod dt

with Π ∈ M1
m,m[D], Π = −P−1dP , which may also be rewritten as dP = −PΠ. Further

differentiation leads to

dΠ = −d(P−1) dP

and 0 = d(P−1 P ) = d(P−1) P + P d(P−1) so that d(P−1) = −P−1 dP P−1. Hence

dΠ = P−1 dP P−1 dP

= Π Π.

We can therefore state the following proposition. The result is found in [21, 8, 88] with
varying notations.

Proposition 2.19. Consider the control system described by (1.2) or (1.1) and the as-
sociated differential module A1. Compute H(k∗) and compute ω a basis representative for
A1/H(k∗) as in Lemma 2.8. The control system is flat, if and only if the codistribution
H(k∗) = {dt} and there exist two operators P ∈ Um[D] and Π ∈ M1

m,m[D] satisfying

dω = Π ω mod dt (2.9a)

dΠ = Π Π (2.9b)

dP = −P Π. (2.9c)

Remark 2.20. In contrast with the equations of Proposition 2.17, the system (2.9) is closed
under the exterior derivative d. Indeed, applying d to the left-hand side of (2.9a)-(2.9c)
gives zero since ddα = 0 for all α. The derivatives of the right-hand sides read

d(Π ω) = dΠ ω −Π dω = Π Π ω −Π Π ω = 0 mod dt

d(Π Π) = dΠ Π−Π dΠ = Π Π Π−Π Π Π = 0

d(−P Π) = −dP Π− P dΠ = P Π Π− P Π Π = 0.

This means that differentiating the relations (2.9) does not lead to new algebraically
independent relations. See also Corollary 2 in [88].
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2.4 A System without Curvature Equations

The goal of this section is to state an equivalent of Proposition 2.19 “without curvature
equations”, i.e. where (2.9b) is trivial. To this end we first go along the line of [88] by
introducing the notion of hyper-regularity and by defining an operator PF obtained from
the implicit system equations (1.1).

We will say that an operator H ∈ M0
p,q[D] is (locally) hyper-regular if

• There exists a U ∈ Up[D] s.t. UH =

(
Iq

0p−q,q

)
in the case p > q

• There exists a U ∈ Uq[D] s.t. HU =
(
Ip 0p,q−p

)
in the case p < q

and the set of p-by-q hyper-regular matrices will be denoted by Hp,q[D].

In [88], where R is a field, the set Hp,q[D] is defined as those operators whose diagonal

Smith reduction leads to

(
Ip

0p−q,p

)
respectively

(
Ip 0p,q−p

)
. We now state some simple

properties of unimodular and hyper-regular operators.

Lemma 2.21. The only elements of R[D] possessing a (local) inverse in R[D] are (locally)
the non-zero elements of R.

Proof. Suppose r = r0 + . . .+ rp
(

d
dt

)p
has an inverse s = s0 + . . .+ sq

(
d
dt

)q
with rp �= 0

and sq �= 0. The product rs has a highest degree term in
(

d
dt

)p+q
and coefficient rpsq �= 0.

But since rs = 1 = 1
(

d
dt

)0
+ 0

(
d
dt

)1
+ . . . + 0

(
d
dt

)p+q
, it follows that p + q = 0. Thus,

p = 0 and q = 0. We conclude that r = r0 �= 0 and s = s0 = 1/r �= 0.

The next lemma states that block triangular matrices are invertible if and only if the
diagonal blocks are invertible.

Lemma 2.22. Let M ∈ M0
p+q,p+q[D], A ∈ M0

p,p[D], B ∈ M0
q,q[D], R ∈ M0

p,q[D] and
S ∈ M0

q,p[D] such that

M =

(
A R
0 B

)
or M =

(
A 0
S B

)

then A ∈ Up[D] and B ∈ Uq[D] if and only if M ∈ Up+q[D].

Proof. We show the first case. Suppose M is unimodular, then there is an inverse M−1 ∈
Up+q[D]

M−1 =

(
Ā P
Q B̄

)
and

MM−1 =

(
AĀ+RQ AP +RB̄

BQ BB̄

)
=

(
Ip 0
0 Iq

)
.
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But then, using associativity and Lemma 2.15 (i.e. the two-sidedness of inverses)

BB̄ = Iq ⇒ B ∈ Uq[D]

BQ = 0 ⇒ B̄BQ = Q = 0

AĀ = Ip ⇒ A ∈ Up[D].

The proof of the other case is similar.

Lemma 2.23. A triangular matrix R ∈ M0
n,n[D] is (locally) unimodular if and only if

the diagonal elements are (locally) non-zero elements of R.

Proof. Suppose R is upper triangular and write R as

R =

⎛
⎜⎜⎜⎜⎜⎝

δ1 r1,1 · · · r1,n−1

δ2
...

. . . rn−1,n−1

δn

⎞
⎟⎟⎟⎟⎟⎠ =

(
R̂ r
0 δn

)

where R̂ ∈ M0
n−1,n−1[D] is again upper-triangular. By Lemma 2.22, R is unimodular if

and only if R̂ and δn are. By Lemma 2.21, δn is a 1× 1 unimoduar matrix if and only if it
is a non-zero element of R. Repeating n− 1 induction steps on R̂ finishes the proof. The
proof of the lower-triangular case is identical.

Lemma 2.24. Let M ∈ M0
n,n[D], M =

∑r
i=0 MiD

i such that Mr �= 0 and r > 0. Then,
if Mr is invertible, M is not unimodular.

Proof. For any matrix M̄ ∈ M0
n,n[D], M̄ =

∑r̄
j=0 M̄jD

j such that M̄r̄ �= 0, we have

that M̄M =
∑r̄+r

k=0 NkD
k with Nr̄+r = M̄r̄Mr. (The terms of lower degree are more

complicated). If M̄ is an inverse to M , then N1 = . . . = Nr̄+r = 0. The two statements
follow easily.

Now we state an equivalent condition for a rectangular matrix to be hyper-regular.

Lemma 2.25.

i) A matrix M ∈ M0
p,q[D], p > q, can be completed with a matrix N ∈ M0

p,p−q[D] to a
unimodular matrix Γ = (M N) ∈ Up[D] if and only if M is hyper-regular. Moreover,
N is also hyper-regular.

ii) A matrix M ∈ M0
p,q[D], p < q, can be completed with a matrix N ∈ M0

q−p,q[D] to a

unimodular matrix Γ =

(
M
N

)
∈ Uq[D] if and only if M is hyper-regular. Moreover,

N is also hyper-regular.

Proof. We show i). Assume M ∈ Hp,q[D], then there exists U ∈ Up[D] s.t. UM =(
Iq

0p−q,q

)
. Then set N = U−1

(
0q,p−q

Ip−q

)
.
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2.4.1 The Operator PF

Consider the implicit system equations (1.1) that reads

F k(t, x, ẋ) = 0 k = 1, . . . , n−m.

Build the following order-1 operator PF ∈ M0
n−m,n[D] with entries

(PF )
k
i :=

∂F k

∂ẋi

∣∣∣∣
ẋ=f(t,x,u)

D +
∂F k

∂xi

∣∣∣∣
ẋ=f(t,x,u)

. (2.10)

The column index is i and k is the row index. Clearly,

PF dx = dF (t, x, f(t, x, u)) mod dt = 0 mod dt (2.11)

with dF =
(
dF 1 · · · dFn−m

)T
. In [88], the following result is shown using the Smith

diagonal reduction of PF . Our lemma is identical, only dropping the assumption that R
is a field.

Lemma 2.26. Let p be a Brunovsky-regular point. Let ω =
(
ω1, . . . , ωm

)T
be a basis of

A1/H(k∗) around p, as constructed in Corollary 2.13, and set the matrix M ∈ Rm×n such
that

ω = Mdx mod dt.

There is a neighborhood of p where PF is hyper-regular and

(
M
PF

)
is unimodular if and

only if around p, the torsion submodule of A1 is generated solely by dt.

Before proving the lemma, a simple negative example is given.

Example 2.27. Consider the fully determined system (with no inputs, i.e. m = 0), given
by implicit equations

Gr(γ̇, γ) = γ̇r − gr(γ) = 0 r = 1, . . . , ρ.

Then, dG = PGdγ with

PG = IρD −
∂g

∂γ

and by Lemma 2.24, PG is not unimodular (hence not hyper-regular). Indeed, the torsion
submodule is generated by all variables dt, dγ .

Proof of Lemma 2.26. The following computations are all performed around a Brunovsky-
regular point. Remember that the implicit and explicit equations (1.1) and (1.2) are such
that F k(t, x, f(t, x, u)) = 0 are identically zero for all u in some open set. Therefore,
computing the exterior derivative dF k(t, x, f(t, x, u)) leads to

0 =

(
∂F k

∂t
+

∂F k

∂ẋi

∂f i

∂t

) ∣∣∣∣
ẋ=f(t,x,u)

dt

+

(
∂F k

∂xj
+

∂F k

∂ẋi

∂f i

∂xj

) ∣∣∣∣
ẋ=f(t,x,u)

dxj

+

(
∂F k

∂ẋi

∂f i

∂ul

)∣∣∣∣
ẋ=f(t,x,u)

dul.
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From now on, we drop the evaluations |ẋ=f(t,x,u) from the notation, but they are still

implicitly considered. By the independence of dt, dxj , dul, the previous computation imply
the relations

∂F k

∂ẋi

∂f i

∂ul
= 0 (2.12)

and since rank ∂Fk

∂ẋi = n−m and ∂fi

∂ul = m, ∂fi

∂ul is the kernel of ∂Fk

∂ẋi . Moreover,

∂F k

∂xj
= −

∂F k

∂ẋi

∂f i

∂xj

so that

PF =
∂F

∂ẋ

(
InD −

∂f

∂x

)
. (2.13)

By (2.12), the forms of relative degree 1, i.e. elements of H(1), are given by

H(1) = {dt,
∂F

∂ẋ
dx} = {dt,

∂F 1

∂ẋi
dxi, . . . ,

∂Fn−m

∂ẋi
dxi}. (2.14)

Now consider ω1, ω2 ∈ {dt, dx} such that Dω1 = ω2, i.e. ω1 ∈ H(1). There are two
n-length row vectors m1,m2 ∈ R1×n such that ω1 = m1dx mod dt and ω2 = m2dx
mod dt. Then

ω2 = Dω1 = D(m1dx) mod dt

=
(
D(m1) +m1D

)
dx mod dt

=
(
D(m1) +m1 ∂f

∂x

)
dx mod dt.

⇒ m2 = D(m1) +m1 ∂f

∂x

so that

Dω1 − ω2 = D(m1dx)−m2dx mod dt

=
(
D(m1) +m1D

)
dx−

(
D(m1) +m1 ∂f

∂x

)
dx mod dt

= m1
(
InD −

∂f

∂x

)
dx mod dt (2.15)

withm1 in the row span (with coefficients inR) of ∂F
∂ẋ

. By Lemmas 2.8, 2.9 and Proposition

2.10 there are n− ρ forms ωk,r spanning H(0)/H(k∗) and ρ forms γs spanning H(k∗) such
that around a Brunovsky-regular point, there are n− ρ−m relations

D(ωk,r) = ωk,r+1 (2.16)

and ρ relations

Dγs = Gs
vγ

v mod dt (2.17)
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where G ∈ Rρ×ρ. Define the row vectors mk,r ∈ R1×n such that ωk,r = mk,rdx mod dt
and gs ∈ R1×n such that γs = gsdx mod dt. Then consider the following construction

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1,0

...
ωm,0

D(ω1,r)− ω1,r+1

...
D(ωm,r)− ωm,r+1

D(γ1)−G1
vγ

v

...
D(γρ)−Gρ

vγ
v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.15)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,0

...
mm,0

m1,r(InD − ∂f
∂x

)
...

mm,r(InD − ∂f
∂x

)

g1(InD − ∂f
∂x

)
...

gρ(InD − ∂f
∂x

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dx
(2.13)
=

(
Im 0
0 N

)
⎛
⎜⎜⎜⎜⎜⎝

m1,0

...
mm,0

PF

⎞
⎟⎟⎟⎟⎟⎠ dx.

for some full-rank matrix N ∈ Rn−m,n−m and for k = 1, . . . ,m and the equality is modulo
dt. But the same vector also decomposes as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1,0

...
ωm,0

D(ω1,r)− ω1,r+1

...
D(ωm,r)− ωm,r+1

D(γ1)−G1
vγ

v

...
D(γρ)−Gρ

vγ
v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.16)

(2.17)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im 0m,n−ρ−m 0

ID −I 0
. . .

. . .

0 ID −I 0

0 0ρ,n−ρ−m IρD −G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
W

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1,0

...
ωm,0

ω1,r

...
ωm,r

γ1

...
γρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ω

.

By Lemmas 2.22 and 2.24, W cannot be invertible if ρ �= 0 since it is block triangular and
the lower right-block is IρD −G. It is also easy to see that in the case ρ = 0, the matrix
W is unimodular. Hence, W ∈ Un[D] if and only if H(k∗) = {dt}. On the other hand,
around Brunovsky-regular points, {dt, dx} = {dt,Ω}, so that there exists an invertible
matrix Q ∈ Rn×n satisfying Ω = QMdx mod dt. Therefore

(
Im 0
0 N

)
⎛
⎜⎜⎜⎜⎜⎝

m1,0

...
mm,0

PF

⎞
⎟⎟⎟⎟⎟⎠ dx = WΩ = WQdx mod dt
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and we conclude ⎛
⎜⎜⎜⎜⎜⎝

m1,0

...
mm,0

PF

⎞
⎟⎟⎟⎟⎟⎠ =

(
Im 0
0 N−1

)
WQ mod dt.

Hence the matrix on the l.h.s. is unimodular if and only if W is, and by Lemma 2.25,
PF is hyper-regular under the same condition. Any other basis of A1 is obtained from(
ω1,0 · · · ωm,0

)T
by left multiplication by an element of Um[D].

We can now state the claimed equivalent to Proposition 2.19.

Proposition 2.28. Consider the control system described by (1.2) or (1.1) and the asso-
ciated operator PF ∈ M0

n−m,n[D] defined by (2.10). The control system is flat around a

Brunovsky-regular point if and only if there exists an operator P̄ ∈ M0
m,n[D] such that

(
P̄
PF

)
∈ Un[D] (2.18)

and

dP̄ dx = 0 mod dt. (2.19)

Proof. By (2.18), both P̄ and PF are hyper-regular. Hence, by Lemma 2.26, the torsion
submodule of A1 is solely generated by dt. Let N ∈ Un[D] be the inverse of the matrix
(2.18) and decompose it as N = (N̄ Ñ) with N̄ ∈ Hn,m[D] and Ñ ∈ Hn,n−m[D]. Then

dx =
(
N̄ Ñ

)( P̄
PF

)
dx = N̄P̄ dx+ ÑPF dx

(2.11)
= N̄ P̄ dx mod dt.

This shows that the vector of 1-forms ω = (ω1 · · · ωm)T , given by ω = P̄ dx, is a basis of
the free summand A1/{dt} of A1. Next, by (2.19)

dω = d(P̄ dx) = dP̄ dx = 0 mod dt

so that ω is exact modulo dt and the system is flat by Proposition 2.17.

Remark 2.29. As in Remark 2.20, we note that (2.19) is closed under the exterior derivative
d. Indeed, expanding

d(dP̄ dx) = ddP̄ dx− dP̄ ddx = 0

yields no new algebraically independent relation. Hence, there is no equivalent of the
equation (2.9b) of Proposition 2.19.
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2.4.2 Example

We now illustrate the result of Proposition 2.28 on a simple flat, non static feedback
linearizable system.

Example 2.30. Consider the following explicit system equations from [50].

ẋ1 = u1 ẋ2 = u2 ẋ3 = u1u2

The corresponding implicit system reads F (t, x, ẋ) = ẋ1ẋ2 − ẋ3 = 0. Hence

PF =
(
u2D u1D −D

)
.

The filtration (2.2) leads to k∗ = 2 and

H(0) = {dt, dx1, dx2, dx3}

H(1) = {dt, u2dx1 + u1dx2 − dx3}

H(2) = {dt}

and

H(0) +DH(0) = {dt, dx1, dx2, dx3, du1, du2}

H(1) +DH(1) = {dt, u2dx1 + u1dx2 − dx3, u2(1)dx1 + u1(1)dx2}

H(2) +DH(2) = {dt}.

The Brunovsky-regular points are those where the 6 previous codistributions have constant
rank. Hence, all points are Brunovsky-regular, except for those where u2(1) = u1(1) = 0.
Now consider the operator P̄ ∈ M0

2,3[D] given by

P̄ =

(
1 0 0

−x2D −u1 1

)

and apply the following transformation to the composite matrix U =

(
P̄
PF

)
⎛
⎝ 1 0 0
−x2D −u1 1
u2D u1D −D

⎞
⎠
⎛
⎝1 0 0
0 0 1
0 1 u1

⎞
⎠ =

⎛
⎝ 1 0 0
−x2D 1 0

u2D −D −u1(1)

⎞
⎠ .

The second matrix of the l.h.s. has determinant −1. The matrix on the r.h.s. is a diagonal
operator and is therefore seen to be unimodular whenever u1(1) �= 0. If u1(1) happens to
be zero, by the symmetry of the equations in u1, u2, one may swap their role and obtain a
similar U . Hence, such a U exists whenever u1(1) and u2(1) are not both zero. Therefore,
there is a unimodular U at all Brunovsky-regular points. Finally, in the above case, i.e.
u1(1) �= 0:

dP̄ dx =

(
0 0 0

−dx2D −du1 1

)⎛⎝dx1

dx2

dx3

⎞
⎠ =

(
0

−dx2 ∧Ddx1 − du1 ∧ dx2

)
=

(
0
0

)
.
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The forms ω = P̄ dx integrate to (x1, x3−x2u1). Finally, by Proposition 2.28, we conclude
that the system is

• flat with flat output (x1, x3 − x2u1) whenever u1(1) �= 0

• flat with flat output (x2, x3 − x1u2) whenever u2(1) �= 0

• not Brunovsky-regular whenever u1(1) = u2(1) = 0.

2.4.3 Applications

2.4.3.1 A Closer Look at the Condition dP̄ dx = 0

In the proof of Proposition 2.28, it was shown that the column of 1-forms ω given by
ω = P̄ dx represents a basis of the free module A1/{dt} and that the condition (2.19)
then implies that

ω = P̄ dx = dh mod dt

for some functions h = (h1 · · · hm), the flat outputs. Moreover, there is a finite k such
that h = h(t, x, u, . . . , u(k)). Hence, for l = 1, . . . ,m

dhl =
∂hl

∂t
dt+

∂hl

∂xi
dxi +

∂hl

∂ul
dul + . . .+

∂hl

∂ul(k)
dul(k).

Next, under the basic regularity assumption rank ∂f
∂u

= m, the system equations can always
be brought in the form

ẋ1 = u1

...
ẋm = um

ẋm+1 = f̃1(t, x, u)
...

ẋn = f̃n−m(t, x, u)

so that for r ≥ 0 and l = 1, . . . ,m

ul(r) = Dr+1xl and dul(r) = Dr+1dxl.

Therefore we may be assumed P̄ to take the form

P̄ =

⎛
⎜⎝

h1
x1+h1

u1D + . . .+ h1
u1(k)D

k+1 · · ·
...

hm
x1+hm

u1D + . . .+ hm
u1(k)D

k+1 · · ·

· · · h1
xm+h1

umD + . . .+ h1
um(k)D

k+1 h1
xm+1 · · · h1

xn

...
...

...
· · · hm

xm+hm
umD + . . .+ hm

um(k)D
k+1 hm

xm+1 · · · hm
xn

⎞
⎟⎠ (2.20)
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where the lower index indicates partial derivative. In the following, we use these remarks
as a guide for the construction of flat outputs on some simple examples.

2.4.3.2 Nonholonomic Car

Consider the explicit equations of the nonholonomic car

ẋ = u1 cos θ ẏ = u1 sin θ θ̇ = u2

and their implicit form
F = ẋ sin θ − ẏ cos θ = 0.

The operator PF then reads

PF =
(
sin θD − cos θD u1

)
.

By Lemma 2.22, the following ansatz

(
P̄
PF

)
=

⎛
⎝ s11 s12 0

s21 s22 0

sin θD − cos θD u1

⎞
⎠ ∈ U3[D]

is unimodular if and only if the upper 2-by-2 block S ∈ U2[D] and u1 �= 0. The condition
dP̄ ∧ dq = 0 is easily satisfied by choosing S = I2, i.e.

(
P̄
PF

)
=

⎛
⎝ 1 0 0

0 1 0

sin θD − cos θD u1

⎞
⎠

Hence, the differential of the flat outputs are given by

(
dh1

dh2

)
= P̄ dq =

(
1 0 0
0 1 0

)⎛⎝dx
dy
dθ

⎞
⎠ =

(
dx
dy

)

which integrates to the flat outputs

h1 = x h2 = y.

Other flat outputs We now attempt to transform the matrix PF by left-multiplication
by a (unimodular) rotation matrix V

(
sin θD − cos θD u1

)︸ ︷︷ ︸
PF

⎛
⎝ − cos θ sin θ 0

− sin θ − cos θ 0
0 0 1

⎞
⎠

︸ ︷︷ ︸
V

=
(
1 D u1

)
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which has the effect of lowering the order of the leftmost element of PF . Hence, by Lemma
2.22, we may now choose between two different ansätze ensuring unimodularity:

(
P̄
PF

)
V =

⎛
⎝ s11 s12 0

s21 s22 0
1 D u1

⎞
⎠ or

⎛
⎝ 0 s11 s12

0 s21 s22
1 D u1

⎞
⎠ .

Assume 0-flatness. This implies h1,2 = h1,2(x, y, θ), i.e. from (2.20)

P̄ =

(
h1
x h1

y h1
θ

h2
x h2

y h2
θ

)

The two columns of zeros in

P̄V
!
=

(
s11 s12 0
s21 s22 0

)
and P̄ V

!
=

(
0 s11 s12
0 s21 s22

)

lead to two set of PDE which read

h1
θ = 0

h2
θ = 0

and
− sin θ h1

y − cos θ h1
x = 0

− sin θ h2
y − cos θ h2

x = 0.

These have solutions (both satisfying detS = 1 �= 0)

h1 = x
h2 = y

and
h1 = θ
h2 = y cos θ − x sin θ.

The first solution is identical to the one obtained above, whereas the second represent
another, algebraically independent set of flat outputs for the nonholonomic car.

2.4.3.3 Planar Pendulum

The explicit second order equations for the planar pendulum read

ẍ = u1 ÿ = u2 aθ̈ = −u1 cos θ + (u2 + 1) sin θ.

The second order implicit equation is obtained as

F = aθ̈ + ẍ cos θ − (ÿ + 1) sin θ = 0.

The associated order 2 operator PF is then given by

PF =
(
cos θD2 − sin θD2 aD2 − b

)
where a ∈ R and b = u1 sin θ + (u2 + 1) cos θ ∈ R. As in the non-holonomic car example,
we first apply a rotation matrix V1
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(
cos θD2 − sin θD2 aD2 − b

)︸ ︷︷ ︸
PF

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

︸ ︷︷ ︸
V1

=
(
D2 − θ̇2 2θ̇D + θ̈ aD2 − b

)
which results in two elements of order two with constant coefficients on the left and the
right. Hence, a second (constant) transformation matrix V2 allows us to obtain an order
zero element, i.e. an element in R

(
D2 − θ̇2 2θ̇D + θ̈ aD2 − b

)⎛⎝ 1 0 −a
0 1 0
0 0 1

⎞
⎠

︸ ︷︷ ︸
V2

=
(
D2 − θ̇2 2θ̇D + θ̈ aθ2 − b

)︸ ︷︷ ︸
∈R

V = V1V2 V ∈ R3×3 detV = 1.

We may now again try the following form of ansatz

(
P̄
PF

)
V =

⎛
⎝ s11 s12 0

s21 s22 0

D2 − θ̇2 2θ̇D + θ̈ aθ2 − b

⎞
⎠

which, by Lemma 2.22, ensures that

(
P̄
PF

)
is unimodular whenever S is and aθ2 − b �= 0.

Next, assuming h1,2 = h1,2(x, y, θ) implies

P̄ =

(
h1
x h1

y h1
θ

h2
x h2

y h2
θ

)

and leads to the equations

detS = h1
xh

2
y − h1

yh
2
x �= 0 (2.21)

h1
θ − a cos θ h1

x + a sin θ h1
y = 0

h2
θ − a cos θ h2

x + a sin θ h2
y = 0.

(2.22)

The PDE (2.22) has solution

h1 = x+ a sin θ h2 = y + a cos θ (2.23)

for which the unimodularity condition (2.21)

detS = h1
xh

2
y − h1

yh
2
x = 1 �= 0

is satisfied. The solution (2.23) represents the well known flat outputs.
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2.4.3.4 A 1-Flat Example

Consider again the system from Example 2.30 given by

ẋ1 = u1 ẋ2 = u2 ẋ3 = u1u2

We will try to reconstruct a (local) set of flat outputs. The order of the rightmost element
of PF may be lowered by the following transformation

(
u2D u1D −D

)︸ ︷︷ ︸
PF

⎛
⎝ 1 0 0

0 1 1
0 0 u1

⎞
⎠

︸ ︷︷ ︸
V

=
(
u2D u1D −u̇1

)
Next we try the ansatz

P̄ V =

(
· · 0
· · 0

)
.

We suspect the system is 1-flat, i.e.

h1,2 = h1,2(x1, x2, x3, u1, u2).

Hence, from (2.20), the form

P̄ =

⎛
⎝ h1

x1 + h1
u1D h1

x2 + h1
u2D h1

x3

h2
x1 + h2

u1D h2
x2 + h2

u2D h2
x3

⎞
⎠ .

From the chosen ansatz for P̄ and the chosen V

P̄V =

(
· · h1

u2D + h1
x2 + u1h1

x3

· · h2
u2D + h2

x2 + u1h2
x3

)
!
=

(
· · 0

· · 0

)
. (2.24)

This leads to the linear homgeneous PDE in 5 variables x1,2,3, u1,2

h1
u2 = 0

h2
u2 = 0

h1
x2 + u1h1

x3 = 0

h2
x2 + u1h2

x3 = 0

⇔
dh1, dh2 ∈ {dx1, du1, dx3 − u1dx2}

= {dx1, du1, d(x3 − u1x2)}

which for h1,2, implies the form

h1 = H1(x1, u1, x3 − u1x2) h2 = H2(x1, u1, x3 − u1x2).

The left 2-by-2 block in (2.24) must be invertible and reads(
(H1

2 − x2H1
3 )D +H1

1 −u1H1
3

(H2
2 − x2H2

3 )D +H2
1 −u1H2

3

)
=

(
1 0

−x2D −u1

)

for
H1

2 = H1
3 = 0 H1

1 = 1
H2

1 = H2
2 = 0 H2

3 = 1
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making the block invertible (unimodular) if u1 �= 0. This integrates to the flat outputs

h1 = x1 h2 = x3 − u1x2.

Note that lowering the order of the leftmost element of PF then leads to a PDE without
solution.

2.4.3.5 Remark

The approach sketched in the three previous example is very conservative. Indeed, the
transformation matrix V , chosen so that PFV contains an (n − m) × (n − m) invertible
sub-matrix (which by Lemma 2.26 is always possible for a flat system) is not necessarily
such that the corresponding sub-matrix of P̄V is zero for some suitable P̄ . Nevertheless,
it is noteworthy that the pendulum equations can be dealt with so easily.

2.5 Conclusion

This chapter gave a review of the use of matrix differential operators in the context of
the flatness problem. These operators, among which certain are invertible, were shown
to act on bases of the differential module associated with a given control system. A now
classical result was presented stating that given a basis, the flatness of the underlying
system is equivalent to the two following conditions being satisfied: i) The torsion part of
the module must be generated by the differential of the time variable dt alone and ii) there
must exist an invertible matrix operator transforming the basis in a new basis composed of
exact differential 1-forms. The conditions of the theorem were then further decomposed so
as to obtain a closed system of equations characterizing the existence of flat outputs. The
contribution of this chapter consists in a reformulation of the obtained characterization.
This reformulation does not “solve” the problem either, but the absence of “curvature
equations” may be seen as an appealing feature, as illustrated in the construction of flat
outputs of some simple examples.
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Chapter 3

Dynamic Controlled Invariance

In the preceding chapter and considering the characterization of flatness, the emphasis was
put on establishing the existence of flat outputs. Another approach consists in attempting
to verify the equivalence of the given control system with some controllable linear one. In
general, doing so involves the usage of a dynamic feedback [16, 17, 51, 24]. The equivalence
between two systems also means the existence of a specific type of reversible mapping,
namely a Lie-Bäcklund isomorphism [48, 49, 108, 1]. In turn, these mappings are related
to a specific type of dynamic feedback called endogenous [44, 47]. In [24], the introduction
of the notion of covering of a system by another one allows to somewhat relax the conditions
on the sought-after map. A covering is a map between infinite dimensional manifolds. It is
then of interest to devise a test that decides whether a surjective map from the state-space
of a given system to another manifold induces a covering between corresponding infinite
input prolongations. A first step in that direction is made by generalizing the condition
of controlled invariance [100, 62, 15] to something that will be called dynamic controlled
invariance. This condition is however too loose on its own account and an additional
condition is provided by an infinitesimal version of the dynamic extension algorithm [127,
128, 99, 97, 37, 105]. The developed theory then provides a convenient setting for the
following problem: Given a control system and a set of feasible constraints, does the
unconstrained system cover the constrained one? This problem is closely related to the
notion of relative flatness [108]. Finally, the first aspect of our condition for a covering,
i.e. dynamic controlled invariance, actually corresponds to a degenerate type of dynamic
feedback. A simple example shows that linearization via that type of feedback introduces
many additional difficulties.
In Section 3.1, after a brief discussion of dynamic feedback and endogenous dynamic
feedback, we describe the kind of mappings relevant to the theory of flatness, namely
Lie-Bäcklund mappings. We go on by reviewing the notion of a covering and the related
results regarding flatness. Section 3.2 first reviews the condition of control invariance
and then generalizes it to the one of dynamic controlled invariance. Next, the dynamic
extension algorithm for a set of 1-forms is described. Brought together, dynamic controlled
invariance and the DEA provide the condition for a (finite dimensional) map to induce a
covering. In Section 3.3, we present a sufficient condition for a constrained system to be

67
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covered by its unconstrained counterpart. We next show how this may be used to infer
flatness of the constrained system. Finally, Section 3.4 gives the example of a system
linearizable by singular static feedback that is not flat and discusses some implications.

3.1 Dynamic Feedback

Recall the general expression for the equations of a control system in explicit form

ẋi = f i(t, x, u) cardx = n cardu = m. (3.1)

In Section 1.1, we considered changes of coordinates on systems described by (3.1) involving
a map x = φ(t, z) and a change of inputs ϕ over φ of the form u = ϕ(t, z, v). The
maps where required to represent an invertible, time preserving bundle map, therefore
rank ∂φ

∂x
= n and ∂ϕ

∂v
= m. If ϕ is over the identity, i.e. φ = id, then the transformation

represents a static feedback for system (3.1)

ẋi = f i(t, x, u) u = ϕ(t, x, v) cardx = n cardu, v = m (3.2)

with new inputs v. Let us insist on the fact that this definition of static feedback implies
that card v = cardu and that the transformation is reversible.
A dynamic feedback for system (3.1) consists in assigning to the input u of system (3.1)
the output of some other system. As inputs, this “added” system receives the state x of
(3.1) and some new variables v.

ẋi = f i(t, x, u) (3.3a)

ξ̇j = aj(t, ξ, x, v) us = bs(t, ξ, x, v) (3.3b)

card ξ = nξ cardv = mv

(3.3c)

At this point we make no assumption on card v but we require that

rank

(
∂f◦b
∂v
∂a
∂v

)
= mv. (3.4)

In the static case of (3.2), the condition rank ∂ϕ
∂v

= m guarantees that for any solution
σ̂ : (t) �→ (t, x(t), u(t)) of equations (3.1), there is a solution ϕ−1 ◦ σ̂ : (t) �→ (t, x(t), v(t))
of system (3.2). The analog in the case of a dynamic feedback is a bit more subtle.

3.1.1 Non-Singular Dynamic Feedback

Assume that for any (smooth) section σ̂ ∈ ΓU , σ̂ : (t) �→ (t, x(t), u(t)), solution of
system (3.3a) there exists a solution σ̃ : (t) �→ (t, ξ(t), x(t), v(t)) of (3.3) satisfying
σ̂(t) = (t, σ̃x(t), b ◦ σ̃(t)). In other words, assume that any (smooth) solution of (3.3a)
can be extended to a solution of (3.3). In this case, and following [16], we will call (3.3b)
a non-singular dynamic feedback for system (3.3a). In [17], such a dynamic feedback is
said regular.
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Remark 3.1. The (non-)singularity of a dynamic feedback clearly depends on the system
to which it is applied. In the literature, by dynamic feedback it is frequently meant a
non-singular dynamic feedback with mv = m as for instance in [16, 51, 24] or non-singular
with mv ≥ m in [17] when it comes to linearizing the system (3.3a).

Lemma 3.2. Consider the s independent 1-forms α1, . . . , αs ∈ Λ1TU∞∗ and the sequences
of R-modules

A0 = {α1, . . . , αs} Ak =
k

+
i=0

DiA0 = A0 +DA0 + . . .+DkA0.

Then for Q ≥ 0

dimAQ+1 − dimAQ ≤ σ ⇒ dimAQ+q+1 − dimAQ+q ≤ σ ∀q ≥ 0.

Proof. There exists a multi-index I = (I1, . . . , Iσ) such that

AQ+1 = AQ + {αI1(Q+1), . . . , αIσ(Q+1)}.

Hence

AQ+q = AQ + {αI1(Q+q), . . . , αIσ(Q+q)}

AQ+q+1 = AQ + {αI1(Q+q+1), . . . , αIσ(Q+q+1)}

and the result follows.

Condider the sequence of R-modules generated by

Ek = {dt, dx, dξ, db, . . . , db(k)} k ≥ 0.

In the language of Chapter 2, the non-singularity of a dynamic feedback can be charac-
terized as follows.

Lemma 3.3. Let V∞ be the infinitely prolonged bundle and A1 the differential module as-
sociated to the system described by (3.3) so that A1 is generated by the 1-forms dt, dxi, dξj.
Then, around a point p ∈ V∞ where {dt, dx, dξ} and Enξ−1 have constant dimension,
(3.3b) is a non-singular dynamic feedback for the system (3.3a) if and only if the 1-forms
db1, . . . , dbm are a basis of a free submodule of A1.

Proof. Write db = (db1 · · · dbm)T and assume that db1, . . . , dbm is not the basis of a
free submodule of A1. Then there exists a non-zero operator H ∈ M0

m,m[D] such that
H db = 0 and where D is the infinitely prolonged Cartan vector field of system (3.3),
i.e. D = ∂

∂t
+ f i|u=b

∂
∂xi + aj ∂

∂ξj
+ vs(k+1) ∂

∂vs(k) . Let hp
qrD

r, r = 0, . . . , R be the entries

of H , then hp
qrD

rdbq = hp
qrd(D

rbq) = 0. This implies the existence of m not all trivial

relations ηp(b,Db . . . , DRb) = 0 and p = 1, . . . ,m. Along solutions of 3.3, the implicit
equations ηp(b, ḃ, . . . , b(R)) = 0 are hence satisfied. Choose any smooth trajectory t �→ b̄(t)

not satisfying all relations ηp(b̄, ˙̄b, . . . , b̄(R)) = 0, there clearly exists a solution section σ̂
for (3.3a) such that σ̂ : (t) �→ (t, x(t), u(t) = b̄(t)); but there is no solution σ̃ to (3.3) such



70 CHAPTER 3. DYNAMIC CONTROLLED INVARIANCE

that σ̂(t) = (t, σ̃x(t), b ◦ σ̃(t)) holds.
The converse needs a bit more work. From an arbitrary solution of (3.3a), we need to
construct a solution of (3.3). Assume that db1, . . . , dbm is the basis of a free submodule
around p. Define

X0 = {dt, dx} Xk =
k

+
i=0

DiX0 k ≥ 0

Bk = {db, . . . , db(k)} k ≥ 0

Ck = {dt, dx, db, . . . , db(k)} = X0 +Bk k ≥ 0.

Clearly dimBk = (k + 1)m. We now show that dimCk = 1 + n + (k + 1)m. By the
assumption rank ∂f

∂u
= m and by the equation u = b(t, ξ, x, v), we have {dt, dx, dx(1)} =

{dt, dx, db}. Hence, X1 = C0. Differentiating k times, we obtain that Xk+1 = Ck for
k ≥ 0. Since Ck = X0 + Bk, X0 as finite dimension and dimBk = (k + 1)m, there must
exist a finite P ≥ 0 such that

dimCP+p+1 − dimCP+p = m ∀p ≥ 0.

On the other hand, assume there is a Q ≥ 0 such that dimXQ+1 − dimXQ < m, then by
Lemma 3.2

dimXQ+q+1 − dimXQ+q < m ∀q ≥ 0.

But since Xk+1 = Ck, we have a contradiction. Therefore, using dimX0 = 1 + n, we
indeed have that

dimCk = dimXk+1 = 1 + n+ (k + 1)m. (3.5)

Next, consider

Ek = {dt, dx, dξ, db, . . . , db(k)} = Ck + {dξ} k ≥ 0.

we verify that any subset ξ̄ ⊂ ξ such that Enξ−1 = Cnξ−1 + {dξ̄} (which exists, since
Enξ−1 has constant dimension) is such that

dt, dx, dξ̄, db, . . . , db(k) are independent ∀k ≥ 0. (3.6)

Choose a multi-index I = (I1, . . . , Im), Ii ∈ {1, . . . , n} such that

{dt, dx, dx(1)} = {dt, dx, dxI(1)} = {dt, dx, db}. (3.7)

Define Ci,k = {dt, dx, dxIi(1), . . . , dxIi(k+1)} such that by (3.7), Ck = +m

i=1 Ci,k. From
(3.5), note that

dimCi,k = 1 + n+ (k + 1). (3.8)

Since x, ξ are state variables for the system (3.3), by (3.8), and dim dξ = nξ we see that

{dt, dx, dξ} ∩ Ci,nξ−1 = {dt, dx, dξ} ∩ Ci,nξ+l ∀l ≥ 0.
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Intersection distributes over union, therefore

{dt, dx, dξ} ∩ Cnξ−1 = {dt, dx, dξ} ∩
m

+
i=1

Ci,nξ−1 =
m

+
i=1

{dt, dx, dξ} ∩ Ci,nξ−1

=
m

+
i=1

{dt, dx, dξ} ∩ Ci,nξ+l = {dt, dx, dξ} ∩
m

+
i=1

Ci,nξ+l

= {dt, dx, dξ} ∩Cnξ+l ∀l ≥ 0.

Hence ξ̄ is as claimed. Choose a minimal subset ξ̃ ⊂ ξ, complement of ξ̄ in ξ. Clearly,
{dξ̃} ⊂ Cnξ−1 + {dξ̄} so that there exist some function χ such that

ξ̃ = χ(t, x, ξ̄, b, . . . , b(nξ−1)).

From (3.7), we also see that x, b, . . . , b(nξ−1) are local state coordinates for the nξ-th pro-
longation of system (3.3a). From (3.3b), dξ̄(1) ⊂ {dt, dx, dξ, dv}. And by the assumption
(3.4), we may choose a minimal subset v̄ ⊂ v such that

Enξ−1 +DEnξ−1 = {dt, dx, dξ̄, db, . . . , db(nξ), dv} = {dt, dx, dξ̄, db, . . . , db(nξ), dv̄}

and ṽ a complement of v̄ in v. There exists a function ν satisfying

ṽ = ν(t, x, ξ̄, b, . . . , b(nξ), v̄).

Hence, t, x, ξ̄, b, . . . , b(nξ−1) are local coordinates for a system with inputs b(nξ), v̄. The
equations of this system are

ẋ = f(t, x, b) (3.9a)

ḃ = b(1) . . . ḃ(nξ−1) = b(nξ) (3.9b)

˙̄ξ = ā(t, x, ξ̄, χ(t, x, ξ̄, b, . . . , b(nξ−1)), v̄, ν(t, x, ξ̄, b, . . . , b(nξ), v̄)). (3.9c)

Clearly, the map
π : (t, x, ξ̄, b, . . . , b(nξ), v̄) �→ (t, x, u = b)

transforms solutions of (3.9) to solutions of (3.3a) and the map

θ : (t, x, ξ̄, b, . . . , b(nξ), v̄) �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
x
u = b

ξ = (ξ̄, ξ̃ = χ(t, x, ξ̄, b, . . . , b(nξ−1)))
v = (v̄, ṽ = ν(t, x, ξ̄, b, . . . , b(nξ), v̄))

transforms solutions of (3.9) to solutions of (3.3). Now consider any (smooth) solution of
system (3.3a) given by the section σ̂ : (t) �→ (t, x(t), u(t)). This section always lifts to a
solution σ̂nξ of system (3.9a)-(3.9b) as

σ̂nξ : (t) �→ (t, x(t), b = u(t), . . . , b(nξ) =
∂nξu(t)

∂tnξ
).
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One may now choose any suitable initial condition for ξ̄ and input v̄(t) (around p) and
together with σ̂nξ (t), (3.9c) is an ODE whose solution completes σ̂nξ (t) to a solution of
the system (3.9). This solution is mapped to a solution of (3.3) by the map θ. See also
[24, 109]

Lemma 3.3 has the following obvious consequence.

Corollary 3.4.

i) A static feedback (3.2) with rank ∂ϕ
∂v

= m is a non-singular (dynamic) feedback.

ii) A dynamic feedback (3.3) with mv < m is singular.

3.1.2 Endogenous Dynamic Feedback

One may further restrict the class of dynamic feedbacks (3.3b) with the notion of en-
dogenous dynamic feedback. This notion was introduced in the framework of differential
algebra not discussed here, see [44, 47]. In our setting, an endogenous dynamic feedback
is a non-singular dynamic feedback (3.3b) for (3.3a), such that mv = m and satisfying
the additional property that the state variables ξ1, . . . , ξnξ of the compensator can all be
expressed as functions of the variables t, x, u, u̇, . . . , u(k) for some finite k, see e.g. [5].
Equivalently, a dynamic feedback (3.3b) for (3.3a) is endogenous if the systems described
by (3.3a) and (3.3) are Lie-Bäcklund equivalent, see for instance [87], p. 128.

Example 3.5. The two following instances of (3.3) are non-singular dynamic feedbacks
for the integrator ẋ = u, both with m = mv = 1.

a)
ẋ = u

u = ξ1
ξ̇1 = ξ2 ξ̇2 = v

b)
ẋ = u

u = ξ1
ξ̇1 = v ξ̇2 = v

In a), the feedback is endogenous, indeed, ξ1 = u̇ and ξ2 = ü. In b), the variable ξ2 cannot
be obtained as a function of x, u, u̇, . . . In particular, the initial condition ξ2|t=0 can be
assigned independently from x|t=0, u|t=0, u̇|t=0, . . .

An endogenous feedback can also be characterized as follows.

Lemma 3.6. Let A1 be the differential module associated to the system described by (3.3)
so that A1 is generated by the 1-forms dt, dxi, dξj and let A1

x be the submodule of A1

generated by the 1-forms dt, dxi. Then, at a point p ∈ V∞, (3.3b) is an endogenous
dynamic feedback for the system (3.3a) if and only if it is non-singular, mv = m and
A1

x = A1 around p.

3.1.3 Mappings

Consider two control systems sharing the same independent time variable t described by
the equations

ẋi = f i(t, x, u) cardx = nx, cardu = mu (3.10)
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and
ẏj = gj(t, y, v) card y = ny, card v = mv (3.11)

respectively. Following the discussion of Section 1.1, one can define bundles πUM : U → M
and πVN : V → N where πUM : (t, x, u) �→ (t, x) and πVN : (t, y, v) �→ (t, y). On these
bundles, the system equations induce corresponding Cartan distributions and codistri-
butions. The infinite-input prolongations then yield two diffieties (U∞, D) and (V∞, E)
where

D =
∂

∂t
+ f i ∂

∂xi
+ ul(k+1) ∂

∂ul(k)
and E =

∂

∂t
+ gj

∂

∂yj
+ vq(r+1) ∂

∂vq(r)

with k, q = 0, 1, . . . span the respective one-dimensional Cartan distributions.
Between the infinite bundles U∞ and V∞, considered as bundles over the same base (time
manifold) B, a smooth bundle map is a map Φ : U∞ �→ V∞ such Φ∗t = t and such that
for any function h ∈ R(V∞), Φ∗h ∈ R(U∞). See Chapter 2, p. 40, for the definition of
the smooth functions in R. A mapping Φ additionally satisfying

Φ∗(D|p) = E|Φ(p) ∀p ∈ U∞ (3.12)

is called a Lie-Bäcklund mapping. The condition (3.12) says that the two Cartan vector
fields D and E representing (total) time differentiation along system solutions are Φ-
related. If there are local coordinates on U∞ and V∞ such that Φ(t, x, . . . , y, . . .) =
(t, x, . . .) then Φ is a Lie-Bäcklund submersion. Lie-Bäcklund submersions are connected
to subsystems in [108]. If there are local coordinates on U∞ and V∞ such that Φ(t, x, . . .) =
(t, x, . . . , 0, . . .) then Φ is a Lie-Bäcklund immersion. If Φ is one-to-one and has a smooth
inverse, it is called a Lie-Bäcklund isomorphism. [48, 49, 108, 1].

3.1.3.1 Coverings

The next definition and the related results are borrowed from [24]. A Lie-Bäcklund map-
ping Φ : U∞ �→ V∞ is called a covering if the tangent map Φ∗|p is a R-vector space
epimorphism (a surjective map) and dimkerΦ∗|p, if finite, is constant for all p in U∞.
The dimension of a covering is the dimension of kerΦ∗|p. The dimension may be finite or
infinite. If (U∞, D) and (V∞, E) are the diffieties associated to systems (3.10) and (3.11)
respectively and if Φ : U∞ �→ V∞ is a covering, then the system (3.10) is said to cover the
system (3.11).

Proposition 3.7 ([24]).

i) A non-singular dynamic feedback (3.3b) for system (3.3a) with mv = m defines a
finite-dimensional covering of (3.3a) by (3.3). The dimension of the covering is
smaller or equal to nξ.

ii) Under some regularity assumptions (see [24]), if a system is covered by a flat system,
then it is flat. The dimension of the covering can be finite or infinite. 1

1It has been suggested that the proof of Theorem 6 in [24] contains an arguable step. In a private
communication, the author of [24] sent a correction for his proof.
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Proof. i) see Theorem 4 and ii) Theorem 6, both in [24].

Note that if the covered system has less inputs than the system covering it, then the
dimension of the covering is infinite.
An interesting consequence of the previous Proposition is that given a flat system system
(3.3), the flatness of (3.3a) can be guaranteed by verifying the non-singularity of the
dynamic feedback (3.3b), i.e., without checking that the feedback is endogenous.
Another consequence, which is actually the point of [24], is that a system linearizeable by
a non-singular dynamic feedback is necessarily flat. In Section 3.4, we give an example of
a system linearizable by a singular (static) feedback that is not flat. To the best of our
knowledge, the conditions under which a system linearizable by singular dynamic feedback
is flat are not known.

3.2 Finite Dimensional Tests

In this section, we go back to finite dimensional descriptions of control systems, as pre-
sented in Chapter 1. In particular, we are interested in the behavior of surjective bundle
maps from the state space of some given system to another manifold, fibered over the
same base B, i.e sharing the same time variable t. We will see that there always exists a
control system defined on the codomain of the surjective map such that all trajectories of
the original system map to solutions of the codomain system. However, some cases are
more interesting than others, in particular we will be interested in knowing whether the
considered map induces a covering between the corresponding prolonged systems. Indeed,
in this case, and in this case only, not only do trajectories from the first system map to
trajectories of the second one, but any solution of the second system can be “lifted” to
trajectories of the first one.
The desired information can be gathered from the properties of the kernel of the induced
tangent map. If the distribution defined by the kernel satisfies the classical control invari-
ance property [100, 62, 15], then Corollary 3.11 shows that the map induces a covering
and the test requires no system prolongation. However, regarding flatness of the covered
system, Proposition 3.12 shows that this simple situation is not“interesting”in some sense.
If the covering system is static feedback linearizable, then the covered system is static feed-
back linearizable too. The more appealing situation of a statically feedback linearizable
system covering a flat but not static feedback linearizable system cannot happen when the
kernel of the tangent map is controlled invariant.
Besides controlled invariance, more general situations have been studied in many differ-
ent ways. In [141], the system defined on the codomain of the studied surjective map is
said to describe a quotient system. In [81, 114], the related question of decomposition of
a system in so called cascades is investigated. Various other structures are proposed in
[151]. In [75], vector fields of the tangent of the state-space manifold that may be lifted to
symmetries of the control system are characterized; these symmetries and their properties
are then used to decompose the system.
We propose a characterization of the surjective bundle map that we coin dynamic controlled
invariance because of the similarity it bears with the criterion for controlled invariance,
which it generalizes, and its natural link with (singular) dynamic feedback. The criterion
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can be applied on the unprolonged system. However, verifying that the corresponding sys-
tem decomposition induces a covering necessitates a finite number of input prolongations
and the application of the dynamic extension algorithm [128].

We first state a technical result useful in proving both Propositions 3.9 on controlled
invariance and 3.13 on dynamic controlled invariance.

Lemma 3.8. Let M be an m-dimensional manifold, y = {y1, . . . , ym} a local system
of coordinates on M and D ∈ TM∗ a vector field on M . Let also {v1, . . . , vmv} ⊂ y,
{w1, . . . , wmw} ⊂ y and {z1, . . . , zmz} ⊂ y be three subsets of the coordinate set y. Assume
that

i) the vector fields
[

∂
∂w1 , D

]
, . . . ,

[
∂

∂wmw
, D
]
, ∂
∂z1 , . . . ,

∂
∂zmz

are all indenpendant

ii) there are functions αj
i and βk

i in C∞(M) such that

[
∂

∂vi
, D

]
= αj

i

[
∂

∂wj
, D

]
+ βk

i

∂

∂zk
(3.13)

Then the mv independent vector fields

Xi =
∂

∂vi
− αj

i

∂

∂wj

commute, i.e. [Xi, Xk] = 0.

Proof. First note that for any two functions a1, a2, part of a local coordinate system on
M , the Jacobi identity implies that the double bracket

[
∂

∂a1
,

[
∂

∂a2
, D

]]
= −

[
D,

[
∂

∂a1
,

∂

∂a2

]]
−

[
∂

∂a2
,

[
D,

∂

∂a1

]]

=

[
∂

∂a2
,

[
∂

∂a1
, D

]]
(3.14)

is symmetric in a1 and a2. Next use ≡Z for the equality modulo Z, i.e. A1 ≡Z A2 iff there
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exists a z ∈ Z such that A1 = A2 + z and expand the following double bracket[
∂

∂vi
,

[
∂

∂vk
, D

]]
(3.13)
=

[
∂

∂vi
, αj

k

[
∂

∂wj
, D

]
+ βl

k

∂

∂zl

]

≡Z

[
∂

∂vi
, αj

k

[
∂

∂wj
, D

]]

= αj
k

[
∂

∂vi
,

[
∂

∂wj
, D

]]
+

∂αj
k

∂vi

[
∂

∂wj
, D

]
(3.14)
= αj

k

[
∂

∂wj
,

[
∂

∂vi
, D

]]
+

∂αj
k

∂vi

[
∂

∂wj
, D

]
(3.13)
= αj

k

[
∂

∂wj
, αr

i

[
∂

∂wr
, D

]
+ βs

i

∂

∂zs

]
+

∂αj
k

∂vi

[
∂

∂wj
, D

]

≡Z αj
k

[
∂

∂wj
, αr

i

[
∂

∂wr
, D

]]
+

∂αj
k

∂vi

[
∂

∂wj
, D

]

= αj
kα

r
i

[
∂

∂wj
,

[
∂

∂wr
, D

]]
+ αj

k

∂αr
i

∂wj

[
∂

∂wr
, D

]
+

∂αj
k

∂vi

[
∂

∂wj
, D

]

= αj
kα

r
i

[
∂

∂wj
,

[
∂

∂wr
, D

]]
+

(
αj
k

∂αr
i

∂wj
+

∂αr
k

∂vi

)[
∂

∂wr
, D

]
(3.15)

The first term in the last line of (3.15) is symmetric in i, k:

αj
kα

r
i

[
∂

∂wj
,

[
∂

∂wr
, D

]]
(3.14)
= αj

kα
r
i

[
∂

∂wr
,

[
∂

∂wj
, D

]]
j↔r
= αr

kα
j
i

[
∂

∂wj
,

[
∂

∂wr
, D

]]
= αj

iα
r
k

[
∂

∂wj
,

[
∂

∂wr
, D

]]
Again by the Jacobi identity (3.14), the whole expression (3.15) is symmetric in the indices
i, k. Therefore, one obtains the relation (3.15)i,k − (3.15)k,i ≡Z 0 which reads(

αj
k

∂αr
i

∂wj
− αj

i

∂αr
k

∂wj
+

∂αr
k

∂vi
−

∂αr
i

∂vk

)[
∂

∂wr
, D

]
≡Z 0.

and by assumption i), this implies

αj
k

∂αr
i

∂wj
− αj

i

∂αr
k

∂wj
+

∂αr
k

∂vi
−

∂αr
i

∂vk
= 0. (3.16)

Finally, compute the bracket

[Xk, Xi] =

[
∂

∂vk
− αr

k

∂

∂wr
,
∂

∂vi
− αj

i

∂

∂wj

]

−

[
∂

∂vk
, αj

i

∂

∂wj

]
+

[
∂

∂vi
, αr

k

∂

∂wr

]
+

[
αr
k

∂

∂wr
, αj

i

∂

∂wj

]

=

(
αj
k

∂αr
i

∂wj
− αj

i

∂αr
k

∂wj
+

∂αr
k

∂vi
−

∂αr
i

∂vk

)
∂

∂wr

(3.16)
= 0.
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3.2.1 Controlled Invariance

Throughout this section, we consider the bundle πUM : U → M with adapted coordinates
πUM : (t, x, u) �→ (t, x) and the system described by equation (3.1). The manifold M
itself has a bundle structure πMB : M → B with adapted coordinates (t, x) and B is
the time manifold with coordinate t. To simplify notations, we denote by U ⊂ TU the
involutive input distribution defined as U = kerπUM∗. In the specified coordinates, U =
{ ∂
∂u1 , . . . ,

∂
∂um }. We shall also consider the vector field D ∈ TU

D =
∂

∂t
+ f i(t, x, u)

∂

∂xi
. (3.17)

With the above choices, the Cartan distribution C on U is spanned by

C = {D}+ U.

A controlled invariant distribution Z is a (locally) constant dimensional involutive
distribution in TM satisfying Z� dt = 0 and such that there exist a lift Ẑ ⊂ TU and a
vector field D̄ ∈ C with

πUM∗Ẑ = Z dim Ẑ = dimZ D̄� dt = 1 (3.18a)[
D̄, Ẑ

]
⊂ Ẑ. (3.18b)

The next proposition is adapted from and generalizes Theorems 7.5 and 13.7 in [100].
See also e.g. [62].

Proposition 3.9. Let Z ⊂ TM be an involutive ρ-dimensional distribution satisfying
Z� dt = 0 and let U ∈ TU be the input distribution. Then (locally), the following conditions
are equivalent

i) The distribution Z is controlled invariant.

ii) There are functions yi, zk ∈ C∞(M) and vq, wp ∈ C∞(U) such that Z = { ∂
∂zk } ⊂ TM,

(t, y, z) are coordinates on M and (t, y, z, v, w) are coordinates on U . The Cartan
distribution on TU is spanned by

D̄ =
∂

∂t
+ gk(t, z, y, v, w)

∂

∂zk
+ hi(t, y, w)

∂

∂yi
and

∂

∂vq
,

∂

∂wp
.

iii) The control system described by (3.1) is static feedback equivalent to the one described
by

żk = gk(t, z, y, v, w) (3.19a)

ẏi = hi(t, y, w) (3.19b)

iv) Let Zi = ζji
∂

∂xj with ζji ∈ C∞(M) be a basis of the involutive distribution Z ⊂ TM.
With the coordinates (t, x, u) on U , consider Z ⊂ TU the lift of Z ⊂ TM spanned by
the (same) vectors Zi = (π∗

UMζji )
∂

∂xj = ζji
∂

∂xj . The distribution Z ⊂ TU satisfies

[Zi, D] ∈ [U,D] + U + Z i = 1, . . . , ρ. (3.20)
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Remark 3.10. In iv), the criterion can be checked equivalently, replacing the proposed lift
of Z ⊂ TM by any lift Z̃ ⊂ TU satisfying dim Z̃ = dimZ and πUM∗Z̃ = Z ⊂ TM. To
see this, replace Zi in (3.20) by Zi + ρli

∂
∂ul for any ρli ∈ C∞(U).

Proof. We first show i) ⇒ iv). The assumption that Z ⊂ TM is controlled invariant
implies that there are coordinates (t, z, y) on M and (t, z, y, u) on U such that Z = { ∂

∂z
}

and

D̄ = D + γl ∂

∂ul
Ẑ =

{
∂

∂zi
+ εli

∂

∂ul

}
γl, εli ∈ C∞(U).

The condition [Ẑ, D̄] ⊂ Ẑ then implies that there exist csi ∈ C∞(U) such that[
∂

∂zi
+ εli

∂

∂ul
, D + γl ∂

∂ul

]
= csi

(
∂

∂zs
+ εls

∂

∂ul

)
[

∂

∂zi
, D

]
= −εli

[
∂

∂ul
, D

]
+

(
csi ε

l
s −

∂γl

∂zi
+D(εli)− εpi

∂γl

∂up
+ γp ∂εli

∂up

)
∂

∂ul
+ csi

∂

∂zs

which implies iv).
Next we show iv) ⇒ iii). By assumption, there are independent functions z1, . . . , zρ,
y1, . . . , yn−ρ on M such that (t, z, y) are coordinates on M, (t, z, y, u) are coordinates on
U and Z = { ∂

∂zi } ⊂ TM. With this choice of coordinates, the vectors ∂
∂zi ∈ TU are

vectors lifted from the vectors ∂
∂zi ∈ TM, indeed, πUM∗

∂
∂zi = ∂

∂zi . We shall let Z ⊂ TU

denote the involutive distribution spanned by those lifted vectors ∂
∂zi . Set m̄ ≤ m such

that dim ([U,D] + U + Z) = m̄+m+ρ. One can split the set of input variables (previously
rearranging them if necessary) as ū1 = u1, . . . , ūm̄ = um̄ and ũ1 = um̄+1, . . . , ũm−m̄ = um

such that[
∂

∂u
,D

]
+ U + Z =

[
∂

∂ū
,D

]
+ U + Z

[
∂

∂ū
,D

]
∩ (U + Z) = 0. (3.21)

Now, conditions (3.20) and (3.21) imply that there are functions αl
i, β

s
i ∈ C∞(U), i ∈ 1 . . . ρ,

l ∈ 1 . . . m̄ such that [
∂

∂zi
, D

]
= αl

i

[
∂

∂ūl
, D

]
+ βp

i

∂

∂up
+ βm+k

i

∂

∂zk
(3.22)

i, k = 1 . . . ρ l = 1 . . . m̄ p = 1 . . .m.

Set the three bases of Lemma 3.8 as { ∂
∂zk }, {

∂
∂ūl } and { ∂

∂up ,
∂

∂zk } respectively. Condition
i) of the lemma is satisfied because of (3.21). Relation (3.22) satisfies the condition ii).
Hence we conclude that the vector fields

Xi :=
∂

∂zi
− αl

i

∂

∂ūl
(3.23)

commute, i.e.

[Xi, Xk] = 0. (3.24)
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Note that the vectors Xi ∈ TU are (other) lifts of ∂
∂zi ∈ TM to TU , indeed πUM∗Xi =

πUM∗
∂

∂zi = ∂
∂zi . Now, recall that y1, . . . yn−ρ are coordinates on U such that {dt, dy,

dū, dũ} =⊥TU Z. Compute[
∂

∂zi
, D

]
yj =

∂(Dyj)

∂zi
−D

∂yj

∂zi
=

∂(Dyj)

∂zi
(3.25)

(3.22)
= αl

i

[
∂

∂ūl
, D

]
yj

= αl
i

(
∂(Dyj)

∂ūl
−D

∂yj

∂ūl

)

= αl
i

∂(Dyj)

∂ūl
(3.26)

so as to obtain from (3.25), (3.26) and (3.23) that

0 =

(
∂

∂zi
− αl

i

∂

∂ūl

)
Dyj = Xi� dDyj (3.27)

Set X ⊂ TU , X = {Xi} and note that dimX = dimZ = ρ. Define the m̄ independent
1-forms ν̄q := αq

rdz
r + dūq, q = 1 . . . m̄ and let the codistribution J ⊂ TU∗ be given by

J = {dt, dyj , ν̄q, dũp}. Clearly, Xi� dt = 0, Xi� dyj = 0, Xi� νq = 0, and Xi� dũp = 0.
Hence

dimTU = n+m+ 1 dim J = n+ 1− ρ+m dimX = ρ.

⊥TU J = X (3.28)

It now follows from (3.24) and (3.28) that the codistribution J is completely integrable,
i.e. there are v̄q ∈ C∞(U) such that

J = {dt, dyj, dv̄q, dũp} rank
∂v̄

∂ū
= m̄

with the rank property following from the form of ν̄q. From (3.27) we also see that

dDyk = dẏk ∈ J.

Hence, we have obtained adapted coordinates (t, z, y, v̄, ũ) on U with (t, z, y) coordinates
on M in which ẏj can be expressed as functions independent of zi. It follows that we can
rearrange the new input variables v̄, ũ in two sets v, w and that in these coordinates, the
vector field D̄ can be taken of the form

∂

∂t
+ gk(t, z, y, v, w)

∂

∂zk
+ hi(t, y, w)

∂

∂yi

That iii) ⇒ ii) should be clear from the discussion of Chapter 1.
We now show ii) ⇒ i). Let φ be the invertible bundle map φ : U → U such that

xi = φi
x(t, z, y) ul = φl

u(t, z, y, v, w).
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Note that

φ∗D̄ =
∂

∂t
+

∂φi
x

∂t

∂

∂xi
+

∂φl
u

∂t

∂

∂ul

+ gk
∂φi

x

∂zk
∂

∂xi
+ gk

∂φl
u

∂zk
∂

∂ul

+ hj ∂φ
i
x

∂yj
∂

∂xi
+ hj ∂φ

l
u

∂yj
∂

∂ul

= D + γl ∂

∂ul

with

γl =
∂φl

u

∂t
+ gk

∂φl
u

∂zk
+ hj ∂φ

l
u

∂yj
.

The expression of D̄ from ii) shows that[
∂

∂zi
, D̄

]
=

∂gk

∂zi
∂

∂zk
⊂

{
∂

∂z

}
.

Hence

φ∗

[
∂

∂zi
, D̄

]
=

[
φ∗

∂

∂zi
, φ∗D̄

]

=

[
φ∗

∂

∂zi
, D + γl ∂

∂ul

]
⊂

{
φ∗

∂

∂z

}
.

But

φ∗

∂

∂zi
=

∂φs
x

∂zi
∂

∂xs
+

∂φl
u

∂zi
∂

∂ul

so that we clearly have

πUM∗

{
φ∗

∂

∂zi

}
=

{
∂φs

x

∂zi
∂

∂xs

}
=

{
φx∗

∂

∂zi

}
= Z ⊂ TM.

Hence Ẑ = φ∗{
∂
∂z
} ⊂ TU is the sought after lift of Z ⊂ TM and φ∗D̄ the sought after

element of C.

An easy consequence of Proposition 3.9 is that controlled invariance implies that there
is a subsystem described by the equations (3.19b) that is covered by the complete system
(3.19), and therefore also covered by the static feedback equivalent system (3.1):

Corollary 3.11. Let everything be as in Proposition 3.9. Then the system (3.19) covers
the system (3.19b).

Proof. Consider the infinite prolongation ˆ̄D = D̄ + vl(s+1) ∂
∂us(l) + wr(p+1) ∂

∂wr(p) and the

vector field ˆ̄Dy = ∂
∂t

+hi(t, y, w) ∂
∂yi +wr(p+1) ∂

∂wr(p) . The map φ : (t, z, y, v, w, v̇, ẇ, . . .) �→

(t, y, w, ẇ, . . .) is such that φ∗
ˆ̄D = ˆ̄Dy.
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Corollary 3.11 together with Proposition 3.7 say that if one wants to construct a flat
system, one may simply consider a controllable linear system and an arbitrary controlled
invariant distribution Z. Then, any surjective map π such that kerπ∗ = Z will “project”
the linear system to a smaller flat system. However, as the next proposition shows, nothing
very interesting can happen because the obtained flat system is necessarily static feedback
linearizable.

Proposition 3.12. Let the conditions of Proposition 3.9 be satisfied and additionally
assume that the control system described by (3.1) is static feedback linearizable. Then the
system described by (3.19b) is statically feedback linearizable as well.

Proof. By Proposition 3.9, there are coordinates (t, z, y, v, w) on U such that the Cartan
distribution C is spanned by

C = {
∂

∂t
+ gk(t, z, y, v, w)

∂

∂zk
+ hi(t, y, w)

∂

∂yi
,

∂

∂vq
,

∂

∂wp
}

and the Cartan codistribution Ω by

Ω = {dzk − gk(t, z, y, v, w)dt, dyi − hi(t, y, w)dt}.

From the same result, we may define a surjective map π : U → V given in coordinates by
π : (t, z, y, v, w) �→ (t, y, w) where (t, y, w) are coordinates on V . The equations (3.19b)
describe a system on V → N with Cartan distribution

Cw = {
∂

∂t
+ hi(t, y, w)

∂

∂yi
,

∂

∂wp
}

and Cartan codistribution
Ωw = {dyi − hi(t, y, w)dt}.

We also see that kerπ∗ = { ∂
∂zk ,

∂
∂vq } and that π∗C = Cw in the sense of Section A.2.2.

Hence, by Lemma A.9ii), the two sequences defined by

C(0) = C C(r+1) = C(r) + [C(r),C(r)]

C(0)
w = Cw C(r+1)

w = C(r)
w + [C(r)

w ,C(r)
w ]

are such that π∗C
(r) = C

(r)
w for all r ≥ 0. And by Lemma A.13 the two sequences

Ω(1) = Ω Ω(r+1) := {ω ∈ Ω(r) | dω ∈ Ω(r)}

Ω(1)
w = Ωw Ω(r+1)

w := {ω ∈ Ω(r)
w | dω ∈ Ω(r)

w }

are such that Ω(r) =⊥TU C(r) and Ω
(r)
w =⊥TV C

(r)
w for all r ≥ 0. Define the two distri-

butions K ⊂ TU and Kw ⊂ TV such that K =⊥TU∗ dt =⊥TU∗ π∗dt and Kw =⊥TV∗ dt.
Clearly π∗K = Kw. Since the system on U is static feedback linearizable, Ω(r) + {dt} is
integrable for all r ≥ 0 by Proposition 1.8 and it follows that C(r)∩K =⊥TU∗ (Ω(r)+{dt})
is involutive.
One may next verify that kerπ∗ ⊂ K implies that π∗(C

(r)∩K) = (π∗C
(r))∩(π∗K). There-

fore, again by Lemma A.9ii), π∗(C
(r)∩K) = C

(r)
w ∩Kw is involutive. But C

(r)
w ∩Kw =⊥TV∗

(Ω
(r)
w + {dt}) so that Ω

(r)
w + {dt} is integrable for all r ≥ 0. The result follows by invoking

Proposition 1.8 once more.
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3.2.2 Dynamic Controlled Invariance

Assume an involutive distribution Z ⊂ TM of constant dimension ρ is given but that
the conditions of Proposition 3.9 are not satisfied. That is, Z is not controlled invariant.
Then, one may still consider the surjective maps π with domain M and kerπ∗ = Z. It
is also still possible to lift such a map to a map π̂ : U → V with πVN : V → N and
N ≡ π(M). Moreover, there are adapted coordinates such that

πUM : (t, y, z, u) �→ (t, y, z) πVN : (t, y, κ) �→ (t, y)

π : (t, y, z) �→ (t, y) π̂ : (t, y, z, u) �→ (t, y, κ(t, y, z, u))

and Z = { ∂
∂z
}. The situation is summarized in the following commutative diagram.

U
π̂ ��

πUM

��

V

πVN

��
M

π ��

πMB

���
��

��
��

� N

πNB

		��
��
��
��

B

On the bundle V , one may also define a control system such that any solution t �→ σ̂(t)
of the system on U leads to a solution t �→ π̂(σ̂(t)) of the system on V . However, in
general, the converse is lost, i.e. a given solution of the system on V is not necessarily the
projection of a solution on U . Indeed, in the map π̂, the functions κ are only such that

rank
∂κ

∂u
≤ cardκ.

In [141], the system obtained on V has been coined a quotient system of the original
one. We use the term dynamic controlled invariance for the similarity the criterion of
the next proposition bears with the test for controlled invariance and its natural link to
(singular) dynamic feedback. One should also stress the fact that in the following, the
obtained system is not necessarily covered by the original one. To decide this, additional
tests need to be performed. Indeed, one has to verify that the corresponding dynamic
feedback is non-singular.
Let us reconsider the set of coordinates such that

πUM : (t, x, u) �→ (t, x).

The following is a weaker form of the controlled invariance criterium of Proposition 3.9.

Proposition 3.13. Let Z = {ζij
∂

∂xi } ⊂ TM be an involutive ρ-dimensional distribution

satisfying Z� dt ≡ 0. Let also Z ⊂ TU denote the distribution spanned by {π∗
UM(ζij)

∂
∂xi } =

{ζij
∂

∂xi }. Consider D ∈ TU , the vector field given by (3.17) and U ∈ TU , the input

distribution spanned by { ∂
∂ul | l = 1 . . .m}. Assume the distributions

[U,D] + U + [Z,D] + Z, U + Z and Z
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have constant dimensions around some point of U . Then, around that point, the following
conditions are equivalent

i) The integrable codistribution Y =⊥TM Z, satisfies dim(Y +DY ) = dimY + s

ii) There are n− ρ functions yi such that (t, y, z) are coordinates on M and independent
functions κ1, . . . , κs ∈ C∞(U); in these coordinates, Z = { ∂

∂zk } and the vector field
D ∈ TU can be rewritten as

D =
∂

∂t
+ gk(t, z, y, u)

∂

∂zk
+ hi(t, y, κ(t, y, z, u))

∂

∂yi

rank
∂κ

∂u
= su rank

∂κ

∂z
= sz rank

∂h

∂κ
= s = su + sz.

iii) The distribution Z satisfies

dim
(
([U,D] + U + [Z,D] + Z) mod (U + Z)

)
= s. (3.29)

Moreover, the largest choice for the number su is given by

su = dim
(
([U,D] + U + Z) mod (U + Z)

)
.

Remark 3.14. There is no (static) feedback involved, only a change of coordinates (t, x) �→
(t, z, y) on M, i.e. the system inputs u are kept unchanged.

Proof. The equivalence i) ⇔ ii) should be clear. We now concentrate on iii) ⇒ ii). Define

su := dim
(
([U,D] + U + Z) mod (U + Z)

)
sz := dim

(
([U,D] + U + [Z,D] + Z) mod ([U,D] + U + Z)

)
For any two R-linear vector space A and B such that B ⊂ A, note that dim(A mod B) =
dimA− dimB. Hence

su + sz = s.

By assumption, there are functions z1, . . . , zρ (part of a coordinate system on M) and
input variables u1, . . . , um (part of a coordinate system on U) such that U = { ∂

∂ul } and

Z = { ∂
∂zi }. The numbers su and sz are such that (possibly rearranging the lists of

variables), splitting the u and z variables each in two sets (ū, ũ) and (z̄, z̃) as

ū1 = u1, . . . , ūsu = usu ũ1 = usu+1, . . . , ũm−su = um

z̄1 = z1, . . . , z̄sz = zsz z̃1 = zsz+1, . . . , z̃ρ−sz = zρ

leads to a basis of the distribution [U,D]+[Z,D]+U+Z given by the independent elements

{

[
∂

∂ū1
, D

]
, . . . ,

[
∂

∂ūsu
, D

]
,

[
∂

∂z̄1
, D

]
, . . . ,

[
∂

∂z̄sz
, D

]
,

∂

∂u1
, . . . ,

∂

∂um
,

∂

∂z1
, . . . ,

∂

∂zρ
} (3.30)
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For the brackets involving the remaining variables ũ, z̃, there must exists relations of the
form [

∂

∂ũw
, D

]
= akw

[
∂

∂ūk
, D

]
+ bhw

[
∂

∂z̄h
, D

]
+ cpw

∂

∂up
+ eiw

∂

∂zi
(3.31)[

∂

∂z̃v
, D

]
= αk

v

[
∂

∂ūk
, D

]
+ βh

v

[
∂

∂z̄h
, D

]
+ γp

v

∂

∂up
+ εiv

∂

∂zi
. (3.32)

Considering the three sets of variables {ũw, z̃v}, {ūk, z̄h} and {up, zi}, and using Lemma
3.8, we may conclude that the vector fields defined by

Vl :=
∂

∂ũl
− akl

∂

∂ūk
− bhl

∂

∂z̄h

Xi :=
∂

∂z̃i
− αk

i

∂

∂ūk
− βh

i

∂

∂z̄h

commute, that is
[Xi, Xj] = 0 [Xi, Vl] = 0 [Vl, Vp] = 0. (3.33)

Next, define the independent 1-forms

μk := dūk + akl dũ
l + αk

i dz̃
i

νh := dz̄h + bhl dũ
l + βh

i dz̃
i

Clearly,
Vl� μk = 0 Vl� νh = 0 Xi� μk = 0 Xi� νh = 0. (3.34)

Now, choose y1, . . . yn−ρ independent coordinates on M such that {dt, dyj} =⊥TM Z.
One has

Vl� dt = 0 Vl� dyj = 0 Xi� dt = 0 Xi� dyj = 0. (3.35)

Define the codistribution J := {dt, dyj , μk, νh}. Relations (3.34), (3.35) and a count of
dimensions shows that

J =⊥TU {Vl, Xi}

and (3.33) imply that J is completely integrable. Therefore, there are independent func-
tions υk, ζh ∈ C∞(U) such that

J = {dt, dyj , dυk, dζh} rank
∂υ

∂ū
= su rank

∂ζ

∂z̄
= sz (3.36)

where the rank properties follow from the form of μk, νh.
Now on one hand we have[

∂

∂ũw
, D

]
yj =

∂Dyj

∂ũw
=

∂

∂ũw
� dDyj (3.37)[

∂

∂z̃v
, D

]
yj =

∂Dyj

∂z̃v
=

∂

∂z̃v
� dDyj (3.38)
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and on the other hand[
∂

∂ũw
, D

]
yj

(3.31)
=

(
akw

[
∂

∂ūk
, D

]
+ bhw

[
∂

∂z̄h
, D

])
yj

= akw
∂Dyj

∂ūk
+ bhw

∂Dyj

∂z̄h

=

(
akw

∂

∂ūk
+ bhw

∂

∂z̄h

)
� dDyj (3.39)

[
∂

∂z̃v
, D

]
yj

(3.32)
=

(
αk
v

[
∂

∂ūk
, D

]
+ βh

v

[
∂

∂z̄h
, D

])
yj

= αk
v

∂Dyj

∂ūk
+ βh

v

∂Dyj

∂z̄h

=

(
αk
v

∂

∂ūk
+ βh

v

∂

∂z̄h

)
� dDyj . (3.40)

Computing the differences between the r.h.s. of (3.37) and (3.39) and between the r.h.s.
of (3.38) and (3.40) shows that

Vl� dDyj = 0 Xi� dDyj = 0

which in turn implies

dDyj = dẏj ∈ J. (3.41)

We now show that rank ∂ẏ
∂ū

= su and rank ∂ẏ
∂z̄

= sz. Assume rank ∂ẏ
∂ū

+rank ∂ẏ
∂z̄

< su+sz =
s. This implies that there exist functions φk, ϕh ∈ C∞(U), not all zero, such that

φk ∂ẏ
j

∂ūk
+ ϕh ∂ẏ

j

∂z̄h
= 0.

This can be rewritten as

0 = φk ∂Dyj

∂ūk
+ ϕh ∂Dyj

∂z̄h

= φk

(
∂Dyj

∂ūk
−D

∂yj

∂ūk

)
+

(
ϕh ∂Dyj

∂z̄h
−D

∂yj

∂z̄h

)

=

(
φk

[
∂

∂ūk
, D

]
+ ϕh

[
∂

∂z̄h
, D

]
︸ ︷︷ ︸

S

)
� dyj (3.42)

Clearly, we also have that S� dt = 0. But {dt, dyj} =⊥TU { ∂
∂ul ,

∂
∂zi }, so that S ∈

{ ∂
∂ul ,

∂
∂zi }. Therefore, there are functions θl, ϑi ∈ C∞(U) satisfying the nontrivial relation

φk

[
∂

∂ūk
, D

]
+ ϕh

[
∂

∂z̄h
, D

]
+ θl

∂

∂ul
+ ϑi ∂

∂zi
= 0
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which contradicts the fact that (3.30) is a basis of independent elements. Hence indeed

rank
∂ẏ

∂ū
+ rank

∂ẏ

∂z̄
= su + sz = s

and because card ū = su and card z̄ = sz

rank
∂ẏ

∂ū
= su rank

∂ẏ

∂z̄
= sz.

Lastly, from (3.36) and (3.41) and setting κ1 = υ1, . . . , κsu = υsu , κsu+1 = ζ1, . . . , κs =
ζsz , we conclude that there are functions hj such that

ẏj = hj(t, y, κ) κp = κp(t, y, z, u)

rank
∂h

∂κ
= s rank

∂κ

∂u
= su rank

∂κ

∂z
= sz.

The converse statement ii) ⇒ iii) is easily verified.

3.2.3 Differentially Independent Codistributions

Proposition 3.13 states the conditions that need to be satisfied for the existence of coor-
dinates on M such that the dynamics (3.1) take the form

żk = gk(t, z, y, u) (3.43a)

ẏi = hi(t, y, κ(t, z, y, u)) rank
∂h

∂κ
= s. (3.43b)

However, in contrast to the case of controlled invariance, the conditions of Proposition 3.13
are not sufficient to conclude that the system described by (3.43) covers the system (3.43b)
described by ẏi = hi(t, y, κ) with κ as input. Indeed, any solution z(t), y(t), u(t) satisfying
(3.43) leads to a solution of (3.43b). But given a solution y(t), κ̃(t) of the equations

ẏi = hi(t, y, κ̃) (3.44)

there does not necessarily exist z(t), u(t) such that z(t), y(t), u(t) is a solution of (3.43) and
κ̃ = κ(t, z, y, u). Notice that the equations (3.43) can be seen as a dynamic feedback on the
system with equations ẏi = hi(t, y, κ). By Proposition 3.7i), if this dynamic feedback is
non-singular, (3.43) covers (3.43b). In turn, by Lemma 3.3, if A1 is the differential module
associated to (3.43), the dynamic feedback is non-singular if and only if dκ1, . . . , dκs

(locally) generate a free sub-module of A1.
These additional conditions can be checked by verifying the right invertibility of system
(3.43) with κ(t, z, y, u) as output, also characterized by the differential independence (to
be defined next) of the codistribution {dκ}.

Form Chapter 1, recall that for system (3.1) and for all k ≥ 0, we may defined the
manifold Uk with (local) coordinates (t, x, u, . . . , u(k)) on which the kth input prolonga-
tion of the system is defined. This set of manifolds has a composite bundle structure,
for q > k we have the projection map πU ,qk : Uk → Uq with coordinate expression
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πU ,qk : (t, x, u, . . . , u(k), . . . , u(q)) �→ (t, x, u, . . . , u(k)).

We will say a set of 1-forms μ = (μ1, . . . , μs), μi ∈ Uk, or the codistribution it spans,
is differentially independent around a point p ∈ Uk if there is a point p̂ ∈ U∞ such that
πU ,∞k(p̂) = p and {π∗

U ,∞kμ
1, . . . , π∗

U ,∞kμ
s} is a basis of a free module around p̂.

Clearly, identifying π∗
U ,∞kμ

i with μi and working on U∞, the set μ is differentially

independent if and only if dim{μ|p̂, μ̇|p̂, . . . , μ(r)|p̂} = s(r + 1) as a R-linear space for all
r ≥ 0.

We begin with an easy but useful fact.

Lemma 3.15. Let μ = (μ1, . . . , μp) be a set of independent 1-forms and μ̂ = (μ̂1, . . . , μ̂p) =
(μ1(r1), . . . , μp(rp)) for some numbers rl ≥ 0. Then μ is differentially independent if and
only if μ̂ is.

Proof. From the definition, it is obvious that if μ is differentially independent, so is μ̂. Next
suppose r1 = 1, r2 = 0, . . . , rp = 0, i.e. μ̂ = (μ̇1, μ2, . . . , μp) and assume μ̂ is differentially
independent but μ is not. Therefore μ1 = γl,rμ

l(r) with l = 1, . . . , p, r = 0, . . . , R and
γ1,0 = 0. Differentiating the relation once gives μ1 = γ̇l,rμ

l(r) + γl,rμ
l(r+1). In the last

relation, γ̇1,0 = γ1,0 = 0, it is hence a relation on μ̂, a contradiction. The result follows by
induction.

The next Lemma is an extension to (not necessarily integrable) codistributions of the
notion of static state feedback.

Lemma 3.16. Assume ν = (ν1, . . . , νm) is a set of differentially independent 1-forms and
set U = {ν}. Let X be a (finite dimensional) codistribution satisfying

X ∩ U = 0 X + Ẋ ⊂ X + U.

Then, any set ν̄1, . . . , ν̄m of m representatives of a basis for

(U +X)/X

is differentially independent.

Proof. Differentiating k times shows that

X + Ẋ ⊂ X + U ⇒ X + . . .+X(k) ⊂ X + U + . . .+ U (k−1) (3.45)

Let χ1, . . . , χn form a basis of X . By assumption, there exist two matrices α, β such that

ν̄l = αl
sν

s + βl
iχ

i rankα = m.

Hence

ν̄l(k) = αl
sν

s(k) +

k∑
r=1

(
k
r

)
αl(r)
s νs(k−r) +

k∑
q=0

(
k
q

)
β
l(q)
i χi(k−q)



88 CHAPTER 3. DYNAMIC CONTROLLED INVARIANCE

such that by (3.45) that

ν̄l(k) = αl
sν

s(k) mod X + U + . . .+ U (k−1) ∀k ≥ 1.

Hence, by the full rank of α and after setting Ū = {ν̄} we have

V k := X + Ū + . . .+ Ū (k) = X + U + . . .+ U (k) ∀k ≥ 0.

Since X is finite dimensional, there must be a k̂ ≥ 0 such that for all p ≥ 0 dimV k̂+p+1 −

dimV k̂+p = m. This in turn implies that ν̄1(k̂), . . . , ν̄m(k̂) are differentially independent.
Hence, ν̄1, . . . , ν̄m are differentially independent by Lemma 3.15.

3.2.3.1 Dynamic Extension Algorithm

Verifying differential independence of a set of forms μ from the definition requires testing
the (non differential) independence of an infinite set of 1-forms. If time differentiation is
defined by the equations of a control system in classical form ẋ = f(t, x, u), and if we
restrict the definition of μ to μi ∈ TM∗, i.e. to μi ∈ {dt, dx}, then we can devise a finite
test for the differential independence of μ, requiring at most n = cardx prolongations on
the system inputs u.
The test consists in an “infinitesimal” version of the dynamic extension algorithm (DEA)
[127, 128, 99, 97, 37, 105] which tests the right-invertibility of a control system with spec-
ified outputs [118, 68, 67]. If a system with (classical) outputs y1(t, x), . . . , ys(t, x) is
right-invertible, the dynamic extension algorithm produces a non-singular dynamic exten-
sion with the property that the extended system has y1(l1), . . . , ys(ls) as a subset of its
inputs for some lj > 0. Note that the transformation from the system to its extended
form also happens to be a quasi-static feedback, see [34]. By “infinitesimal”, we shall
mean that instead of verifying the right-invertibility of a system with (classical) output
y1(t, x), . . . , ys(t, x), we verify differential independence of the 1-forms dy1, . . . , dys, which
is the same. To do so, we describe a version of the DEA that is applied to the 1-forms
dyj instead of the functions yj. This modified algorithm works without regard to the
integrability of the set of 1-forms to which it is applied.

We now define the recursive procedure of the Dynamic Extension Algorithm for a set
of not necessarily integrable 1-forms

μ = (μ1, . . . , μs) ⊂ TM∗. (3.46)

For every k ≥ 0 define

Xk = {dt, dx, μ, . . . , μ(k)} (3.47)

where {dt, dx} = TM∗ and

U0 = {du1, . . . , dum}

such that X0 + U0 = TU∗. Note that from (3.46) we have X0 = {dt, dx, μ} = {dt, dx}.
Also, U0 may be taken as spanned by any set of m 1-forms such that X0 + U0 = TU∗.
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The algorithm successively produces Uk ⊂ TU + U̇ + . . . + U (k), for k = 1, . . . such that
the following three conditions are satisfied for all k:

Uk is differentially independent (3.48a)

Xk ∩ (Uk + . . .+ U
(p)
k ) = 0 ∀p ≥ 0 (3.48b)

Ẋk ⊂ Xk + Uk. (3.48c)

Lemma 3.17. Dynamic Extension Algorithm

Assume Xk and Uk satisfy the conditions (3.48). Suppose Uk is spanned by {ν} =
{ν1, . . . , νm}. Choose any subset μ̄ ⊂ μ with card μ̄ minimal such that

Xk+1 = {dt, dx, μ, . . . , μ(k), μ(k+1)} = {dt, dx, μ, . . . , μ(k), μ̄(k+1)}.

Set ν̄ = μ̄(k+1) and take a minimal subset ν̃ ⊂ ν such that Xk + {ν̄, ν̃} = Xk + Uk. Build
Uk+1 as Uk+1 = { ˙̄ν, ν̃}. Then, Xk+1 and Uk+1 satisfy the conditions (3.48) where k is
replaced by k + 1.

Remark 3.18. If one additionally assumes that {μ} is integrable, then in each step of the
Dynamic Extension Algorithm, one may choose μ̄ such that {μ̄} is integrable too. This
then produces integrable codistributions Xk and Uk for all k.

Proof. The choice of ν̄ is such that

(μ̄(k+1))r = ᾱr
l ν

l mod Xk r = 1, . . . , card μ̄ rank ᾱ = card μ̄

Define Ûk = {ν̄, ν̃}. By Lemma 3.16, the pair Xk, Ûk also satisfy condition (3.48a) and
by Lemma 3.15, so does Uk+1. By construction, the pair Xk+1, Uk+1 also satisfies (3.48b)
and (3.48c).

Proposition 3.19. Consider a set (or codistribution) μ as in (3.46) and the sequence Xk

as in (3.47). Define the sequence of codistributions

Yk = {μ, μ̇, . . . , μ(k)}.

Then the following conditions are equivalent

i) μ is differentially independent

ii) dimYk+1 − dim Yk = s ∀k = 1, . . . , n− 1

iii) dimYn = s(n+ 1)

iv) dimXn − dimXn−1 = s

Proof. The main idea for this proof is adapted from [105]. Apply k steps of the algorithm
of Lemma 3.17. Since

Xk+1 = Xk + {ν̄}

we have that
Xk+1 + { ˙̄ν} ⊂ Xk+2



90 CHAPTER 3. DYNAMIC CONTROLLED INVARIANCE

and by the assumption (3.48b), ˙̄ν is independent of Xk+1, hence dim(Xk+1 + { ˙̄ν}) =
dimXk+1 + card μ̄. Therefore dimXk+2 − dimXk+1 ≥ card μ̄, so that

dimXk+1 − dimXk ≤ dimXk+2 − dimXk+1. (3.49)

We now turn our attention to the sequence Yk. Assume dimYk+1 − dimYk = r for some
k ≥ 0. Then, there is a subset μ̄ ⊂ μ with card μ̄ = r satisfying

Yk+1 = Yk + {μ̄(k+1)}.

Set μ̃ ⊂ μ such that {μ̄, μ̃} = {μ}. We have

μ̃(k+1) = 0 mod Yk + {μ̄(k+1)}

and this implies, differentiating, that

μ̃(k+2) = 0 mod Yk+1 + {μ̄(k+1), μ̄(k+2)}

which implies that dimYk+2 − dimYk+1 ≤ r (i.e. there are at least s − r more rela-
tions between the elements μ, . . . , μ(k+2) as relations between the elements μ, . . . , μ(k+1))
. Hence

dimYk+1 − dimYk ≥ dimYk+2 − dimYk+1. (3.50)

For k ≥ 0, define the two sequences of numbers

pk = dimXk+1 − dimXk qk = dimYk+1 − dim Yk

From cardμ = s and from (3.49) and (3.50) we see that

0 ≤ pk ≤ pk+1 ≤ s s ≥ qk ≥ qk+1 ≥ 0

hence both sequences must stabilize for k ≤ k∗ for some finite k∗. Since Xk = {dt, dx}+Yk

dim Yk − dimXk = − dim{dt, dx}+ dim({dt, dx} ∩ Yk)

leading to

(dimYk+1− dimYk)− (dimXk+1 − dimXk)

= qk − pk

= dim({dt, dx} ∩ Yk+1)− dim({dt, dx} ∩ Yk) ≥ 0 (3.51)

so that qk ≥ pk. For any ω ∈ {dt, dx}, remember that either ω is torsion and then
ω(k) ∈ {dt, dx} ∀k ≥ 0 and ω(n) ∈ {dt, ω, . . . , ω(n−1)}, or there is a kω ≤ n such that
ω(k) /∈ {dt, dx} ∀k ≥ kω. Therefore

{dt, dx} ∩ {ω, . . . , ω(n−1)} = {dt, dx} ∩ {ω, . . . , ω(n+r)}

∀ω ∈ {dt, dx} and ∀r ≥ 0.
(3.52)
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Define Yi,k = {μi, . . . , μi(k)} such that

Yk =
s

+
i=1

Yi,k.

Since μi ∈ {dt, dx} and by (3.52), we have

Yi,n−1 ∩ {dt, dx} = Yi,n+r ∩ {dt, dx} i = 1, . . . , s, r ≥ 0.

We now use the fact that intersection distributes over union, i.e. that A ∩
⋃

iBi =⋃
i(A ∩Bi) to show that for r ≥ 0

{dt, dx} ∩ Yn+r = {dt, dx} ∩
s

+
i=1

Yi,n+r

=
s

+
i=1

({dt, dx} ∩ Yi,n+r)

=
s

+
i=1

({dt, dx} ∩ Yi,n−1)

= {dt, dx} ∩
s

+
i=1

Yi,n−1

= {dt, dx} ∩ Yn−1.

Hence, from (3.51), we deduce that qn−1 = pn−1. Finally, we see that k∗ ≤ n− 1 and the
result follows.

We may now state an equivalent to Proposition 3.7i) the conditions of which are
checkable using the DEA, i.e. in a finite number of steps.

Corollary 3.20. The system described by (3.43) covers the system described by (3.44) if
and only if the codistribution {dκ} is differentially independent.

Remark 3.21. The differential independence of {dκ} ⊂ TU∗ can be checked by first pro-
longing the inputs once and then using Proposition 3.19.

Proof. Applying the Dynamic Extension Algorithm n+m times (see above remark), one
can construct successive prolongations of (3.43). At step k, the state space is made
of y, z̃, κ, . . . , κ(k), where z̃ is any minimal subset of the variables z satisfying Xk =
{dt, dy, dz, dκ, . . . , dκ(k)} = {dt, dy, dz̃, dκ, . . . , dκ(k)}. By the differential independence
of κ, after n + m steps, Un+m can be chosen so that dκ(n+m+1) ⊂ Un+m. Hence, by
Corollary 3.11, the obtained system covers the system

κ(n+m+1) = w

ẏi = hi(t, y, κ)

which in turn clearly covers the system (3.44).
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3.2.4 Bundle Maps and Coverings

We now turn our attention to the following situation. We are given a bundle πUM : U → M
and a control system is defined on U by the equations (3.1). A surjective bundle map φ
from the bundle πMB : M → B to a bundle πNB : N → B of the form φ : (t, x) �→ (t, y =
φx(t, x)) is also specified. We want to verify whether or not, the map φ induces a covering
by (3.1) of a control system on some bundle πVN : V → N .
The following proposition is an adaptation of Propositions 3.13 and 3.19 and answers the
question using only the data of φ in its domain.

Proposition 3.22. Set Z ⊂ TM as Z = kerφ∗ and let U ⊂ TU be the input distribution
U = { ∂

∂ul }. Pick D ∈ TU given by

D =
∂

∂t
+ f i(t, x, u)

∂

∂xi
.

On TUn+m define

Ẑ = Z +
{ ∂

∂ul(0)
, . . . ,

∂

∂ul(n+m+1)

}
D̂ = D + ul(r+1) ∂

∂ul(r)
, r = 0, . . . , n+m

Construct the following filtration of Ẑ

Ẑ(0) = Ẑ Ẑ(k+1) = {ζ ∈ Ẑ(k) | [D̂, ζ] ∈ Ẑ(k)}

for k = 0, . . . , n+m. Define s as the number

s = dim
(
([U,D] + U + [Z,D] + Z) mod (U + Z)

)
.

Then, the map φ induces a covering if and only if

dim Ẑ(n+m−1) − dim Ẑ(n+m) = s.

Proof. Define Y ⊂ TUn+m∗ as Y =⊥TUn+m∗ Ẑ. Compute the sequence

Y (0) = Y Y (k+1) = Y (k) +DY (k).

By Lemma A.15, we have that Y (k) =⊥TUn+m∗ Ẑ(k). Hence dim Ẑ(n+m−1)−dim Ẑ(n+m) =
dimY (n+m)−dimY (n+m−1). The result then follows from Proposition 3.13, (Lemma 3.16)
and Corollary 3.20.

Example 3.23. Consider πUM : U → M with

πUM : (t, x1, x2, x3, x4, u1, u2) �→ (t, x1, x2, x3, x4)

the equations (3.1) given by

ẋ1 = x2 ẋ2 = u1 ẋ3 = x4 ẋ4 = u2 (3.53)
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and the surjective map

φ : (t, x1, x2, x3, x4) �→ (t, y1, y2, y3) = (t, x1, x3,
x4

x2
).

The distribution Z ∈ TM, Z = kerφ∗ is then given by Z = {x2 ∂
∂x2 +x4 ∂

∂x4 } and U ∈ TU

by U = { ∂
∂u1 ,

∂
∂u2 }. Computation leads to

[U,D] + U =
{ ∂

∂u1
,

∂

∂u2
,

∂

∂x2
,

∂

∂x4

}
[Z,D] + Z =

{
x2 ∂

∂x2
+ x4 ∂

∂x4
, x2 ∂

∂x1
+ x4 ∂

∂x3
− u1 ∂

∂x1
− u2 ∂

∂x4

}
From which we obtain that s = dim

(
([U,D] +U + [Z,D] +Z) mod (U +Z)

)
= 2. Next

Ẑ = {x2 ∂

∂x2
+ x4 ∂

∂x4
,

∂

∂ul(0)
, . . . ,

∂

∂ul(7)
} l = 1, 2

D̂ = x2 ∂

∂x1
+ u1 ∂

∂x2
+ x4 ∂

∂x3
+ u2 ∂

∂x4
+ ul(r+1) ∂

∂ul(r)
l = 1, 2 r = 0, . . . , 6

From [D̂, ∂
∂ul(r) ] = − ∂

∂ul(r−1) , r ≥ 0, [D̂, ∂
∂u1(0) ] = − ∂

∂x2 , [D̂, ∂
∂u2(0) ] = − ∂

∂x4 and from

−[D̂, x2 ∂

∂u1(r)
+ x4 ∂

∂u2(r)
] = x2 ∂

∂u1(r−1)
+ x4 ∂

∂u2(r−1)

= −u1(0) ∂

∂u1(r)
− u2(0) ∂

∂u2(r)

we get, for 0 < k ≤ 6

Ẑ(k) =
{
x2 ∂

∂u1(k−1)
+ x4 ∂

∂u2(k−1)
,

∂

∂ul(k)
, . . . ,

∂

∂ul(7)

}
l = 1, 2.

Therefore, dim Ẑ(6) − dim Ẑ(5) = 2 = s. Hence, by Proposition 3.22, the map φ induces
a covering. Since the system (3.53) is linear and controllable, by Proposition 3.7ii) the
covered system is (locally) flat. Equations for the covered system are for instance given by

ẏ1 = v1 ẏ2 = y3v1 ẏ3 = v2.

Note that these equations are locally static-feedback equivalent to the nonholonomic car
equations.

3.3 Coverings of Constrained Systems

We now approach the following question. Given a control system and a set of state
constraints, does there exists a covering of the constrained system by the unconstrained
one? More precisely, consider the system described by (3.1), and a set of functions
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c1(t, x), . . . , cr(t, x) of the system state, i.e. cj ∈ C∞(M). The constrained system is
then described by the equations

ẋi = f i(t, x, u) (3.54a)

cj(t, x) = 0 j = 1, . . . , r < m. (3.54b)

Our aim is to give a sufficient condition for the system described by (3.54a) to cover the
system described by (3.54). Loosely speaking, if the constraints (3.54b) are feasible, i.e.
if there are solutions to the constrained system, then there locally exists a Lie-Bäcklund
immersion from the constrained system (3.54) to the unconstrained system (3.54a), see
[108]. However, this does not imply the existence of a covering, i.e. a map in the other
direction. The discussion of this section bears many similarities with the notion of relative
flatness and related results from [108].
We make the following simplifying assumption, let U∞ be the infinite composite bundle on
which the prolongation of equations (3.54) are defined and A1 the associated differential
module. Then, around a point p ∈ U∞ of interest, we assume that the 1-forms dc1, . . . , dcr

generate a free submodule of A1, i.e. that dc1, . . . , dcr are differentially independent.
The next result provides a sufficient test to verify if a given surjective map π with domain
M, induces a control system, as in Section 3.2.2 respectively 3.2.4, that is covered not
only by (3.54a) but also by (3.54).

Proposition 3.24. Let πUM : U → M be the bundle on which the unconstrained system
(3.54a) is defined, let D ∈ TU be given by

D =
∂

∂t
+ f i(t, x, u)

∂

∂xi

and c1, . . . , cr ∈ C∞(M). Let also Z ⊂ TM be an involutive ρ-dimensional distribution
satisfying Z� dt = 0 and Y ⊂ TM∗ the integrable codistribution annihilating Z, i.e.
Y =⊥TM Z. Choose μ1, . . . , μs ∈ TM∗, any independent representatives of the space
(Y +DY )/Y . Moreover, assume that the r + s ≤ m 1-forms

μ1, . . . , μs, dc1, . . . , dcr

are differentially independent around some point p ∈ U∞.
Then, Y ∩{dc1, . . . , dcr} = {0}. Also, there (locally) exist functions y1, . . . , yn−ρ ∈ C∞(M)
such that {dt, dyj} = Y , functions v1, . . . , vs ∈ C∞(U) and smooth real-valued functions
g1(t, y, v), . . . , gn−ρ(t, y, v) such that the system described by

ẏj = hj(t, y, v) j = 1, . . . , n− ρ rank
∂g

∂v
= s

is covered by the unconstrained system (3.54a). Moreover, the same system is also covered
by the constrained system (3.54).

Proof. By assumption, {dt, dy1, . . . , dyn−ρ, dv1, . . . , dvs} = Y +DY , therefore by Lemma
3.16, dv1, . . . , dvs are differentially independent if and only if μ1, . . . , μs are. This also im-
plies that dv1, . . . , dvs, dc1, . . . , dcr are differentially independent if and only if μ1, . . . , μs,
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dc1, . . . , dcr are. By Proposition 3.13, choosing z1, . . . , zρ in such a way that (t, y, z) is a
coordinate system on M, the unconstrained system equations (3.54a) may be rewritten in
the form

żk = gk(t, z, y, u)

ẏj = hj(t, v) vq = vq(t, z, y, u).

We now show that Y ∩ {dc1, . . . , dcr} = {0}. Assume ∃ω ∈ Y ∩ {dc1, . . . , dcr} and ω �= 0.
Since {dc} is free, dim{ω, ω̇, . . . , ω(K)} = K + 1 for all K ≥ 0. Therefore, since Y has
finite dimension and ω ∈ Y , there must be a P ≥ 1 such that ω(P ) ∈ Y +DY and ω(P ) /∈
Y . Hence ω(P ) is a representative of (Y +DY )/Y that is not differentially independent
from {dc}, a contradiction. The above implies that there is a subset z̃1, . . . , z̃ρ−r of the
variables z1, . . . , zρ such that (t, y, z̃, c) is a local coordinate system on M and such that
the unconstrained system equations (3.54a) take the new form

ċi = ei(t, y, z̃, c, u)

˙̃zk = g̃k(t, y, z̃, c, u)

ẏj = hj(t, v) vq = vq(t, y, z̃, c).

We already know that dv1, . . . , dvs, dc1, . . . , dcr is a differentially independent set of 1-
forms. Hence, we may apply the DEA a number of times and get the system

ċi(Lc) = ūi
c

v̇ι(Lv) = ūι
v

˙̃zk = g̃k(t, y, z̃, c, . . . , c(Lc), v, . . . , v(Lv), ũ)

ẏj = hj(t, v)

(3.55)

with ũ some subset of the original input variables u. The system (3.55) is equivalent to
(3.54a) by endogenous feedback. Now the map

πy : (t, y, z̃, c, . . . , c(Lc), v, . . . , v(Lv), ũ, ˙̃u, . . . , ūc, ˙̄uc, . . . , ūv, ˙̄uv, . . .)

�→ (t, y, v, . . . , v(Lv), ūv, ˙̄uv, . . .)

is clearly a covering of the system
ẏj = hj(t, v) (3.56)

by the system (3.55), so that the same equations are covered by (3.54a).
Next, the constrained system (3.54) is equivalent by endogenous feedback to the system

v̇ι(Lv) = ūι
v

˙̃zk = g̃k(t, y, z̃, 0, . . . , 0, v, . . . , v(Lv), ũ)

ẏj = hj(t, v)

(3.57)

and the map

π̄y : (t, y, z̃, v, . . . , v(Lv), ũ, ˙̃u, . . . , . . . , ūv, ˙̄uv, . . .)

�→ (t, y, v, . . . , v(Lv), ūv, ˙̄uv, . . .)
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is a covering of the system (3.56) by the system (3.57). Hence, the constrained system
(3.54) covers (3.56).

The previous proposition allows one to verify if a given “subsystem” is simultaneously
covered by the unconstrained and constrained systems (3.54a) and (3.54) respectively.
However, it does not say if the unconstrained system covers the constrained one. Be-
fore stating a sufficient criterion for this problem, we use the assumption made on the
state constraints. Indeed, since {dc1, . . . , dcr} are assumed differentially independent, we
may apply the Dynamic Extension Algorithm and transform the system (3.54a) into the
equivalent adapted problem

˙̃xi = F i(t, x̃, c . . . , c(Lc), ũ) (3.58a)

ċj(Lc) = ūj
c (3.58b)

ũ ⊂ u card ũ+ card c = m

x̃ ⊂ x card x̃+ card c = n

for some Lc ≥ 0. (Note that we may assume an extension of the same length Lc on each
constraint ci without loss of generality). The set of variables x̃ is any subset of x (or
functions of x) such that {dt, dx̃, dc} = {dt, dx}, i.e. (t, x̃, c) are local coordinates on M.
The constrained system (3.54) is then equivalent to

˙̃xi = F i(t, x̃, 0 . . . , 0, ũ). (3.59)

Before stating the result, let us redefine the bundle U according to the extended system
(3.58). The bundle πUM : U → M shall have the local coordinate expressions

πUM : (t, x̃, c . . . , c(Lc), ũ, ūj
c) �→ (t, x̃, c . . . , c(Lc))

and out of the Cartan distribution defined on U by equations (3.58), we pick

D =
∂

∂t
+ F i(t, x̃, c . . . , c(Lc), ũ)

∂

∂x̃i
+ cj(1)

∂

∂cj(0)
+ . . .+ cj(Lc)

∂

∂cj(Lc−1)
+ ūj

c

∂

∂cj(Lc)
.

Corollary 3.25. Let πUM : U → M be the bundle on which the unconstrained system
(3.58) is defined, and let D ∈ TU be as above. Suppose that there exists an involutive
distribution Z ⊂ TM satisfying Z� dt = 0 and that

dimZ = (Lc + 1)r r = card c.

Let Y ⊂ TM∗ be the integrable codistribution annihilating Z, i.e. Y =⊥TM Z and assume
that

dim
(
(Y +DY )/Y

)
= card ũ = m− r.

Choose μ1, . . . , μm−r ∈ TM∗, any independent representatives of the space (Y +DY )/Y .
Moreover, assume that the m 1-forms

μ1, . . . , μm−r, dc1, . . . , dcr

are differentially independent around some point p ∈ U∞. Then, there exists a covering of
the constrained system (3.59) by the unconstrained system (3.58) and a covering of (3.54)
by (3.54a).
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Proof. By Proposition 3.24, there are functions y1, . . . , yn−r ∈ C∞(M), v1, . . . , vm−r ∈
C∞(U) and smooth functions h1, . . . , hn−r such that

Y = {dt, dy} Y +DY = {dt, dy, dv}

ẏq = hq(t, y, v) q = 1, . . . n− r.

Also, Y ∩ {dc} = {0}. Assume there is a ω ∈ {dc, . . . , dc(P )} for some P ≥ 0 such
that ω ∈ Y . Then, either ω(Q) ∈ Y ∀Q ≥ 0, which implies a differential relation on
dc (since Y is finite dimensional) and contradicts the differential independence of dc, or
∃Q ≥ 1 such that ω(Q) is a non-zero representant of (Y +DY )/Y , which contradicts the
differential independence of μ, dc. Therefore, we conclude that Y ∩ {dc, . . . , dc(Lc)} = {0}
which in turn, counting dimensions, implies that {t, y, c, . . . , c(Lc)} form a local coordinate
system on M and {t, y, c, . . . , c(Lc), v, ūc} form a local coordinate system on U . In these
coordinates, the equations (3.58) take the (decoupled) form

ẏq = hq(t, y, v) q = 1, . . . n− r

cj(Lc+1) = ūj
c

(3.60)

and the constrained system (3.59) is therefore equivalent to

ẏq = hq(t, y, v) q = 1, . . . n− r

cj = 0, . . . , cj(Lc) = 0

which is clearly equivalent to ẏq = hq(t, y, v), since these relations are independent of c
and its derivatives. But the system ẏq = hq(t, y, v) is covered by the unconstrained system
(3.58) by Proposition 3.24.

Remark 3.26. Assume that the unconstrained system (3.58) is linear (or static feedback
linearizable, or flat) and that the conditions of Corollary 3.25 hold. Then the constrained
system is flat. Also, in this case, the decoupled form (3.60) in the proof above shows
that if y1(t, y, v, . . . , v(L)), . . . , ym−r(t, y, v, . . . , v(L)) are the flat outputs of the constrained
system, then y1, . . . , ym−r, dc1, . . . , dcr are flat outputs for the unconstrained system. This
shows the link of our result with Theorem 7.2 and Corollary 7.3 in [108] where it is shown
for example, that given a flat system, if c is a subset of the flat outputs, then the constrained
system satisfying c = 0 is flat.

Example 3.27. Consider the system described on the bundle πUM : U → M with coordi-
nates πUM : (t, x1, x2, x3, x4, u1, u2, u3) �→ (t, x1, x2, x3, x4) and satisfying the equations

ẋ1 = u1 + 2u3x1

ẋ2 = u2 + 2u3x2

ẋ3 = −u3x1

ẋ4 = −u3x2.

(3.61)

It is easily verified that the system is flat with flat outputs x3, x4, u3. Consider also the
constraint

c = (x1)2 + (x2)2 − 1 = 0. (3.62)
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For the involutive distribution Z of Corollary 3.25, choose Z = {x1 ∂
∂x1 + x2 ∂

∂x2 }. Then

Y =⊥TM Z = {dt, dx3, dx4, x1dx2 − x2dx2}.

Computations show that dim
(
(Y +DY )/Y

)
= 2 and two representatives are given e.g. by

μ1 = u3dx1 + x1du3 μ2 = (x2u1 − x1u2)dx1 − x1x2du1 + (x1)2du2.

Further computations show that the matrix⎛
⎝ ∂

∂u1

∂
∂u2

∂
∂u3

⎞
⎠
�

(
μ1 μ2 dċ

)

has determinant −2(x1)2(c+1) which is non-zero if x1 �= 0. This shows that μ1, μ2, dc are
(locally) differentially independent since the input differentials du1, du2, du3 are supposed
so. Hence, by Corollary 3.25, the system (3.61) under the constraint (3.62) is flat.

We shall close this section by stressing the fact that the difficulty in the application of
Corollary 3.25 is to actually find an appropriate involutive distribution Z (or an appro-
priate integrable codistribution Y ).

3.4 A Non-Flat System Linearizable by Singular Static

Feedback

By Proposition 3.7, any system linearizable by a non-singular dynamic feedback is flat.
The same does no hold true for singular feedbacks. We close this chapter by giving an
example of a system that is linearizable by singular static feedback but that is not flat.
The example also shows that in general, this property is not invariant under endogenous
feedback. The system in the example is linearizable, but the system obtained by prolonging
one of the inputs once is not.

Example 3.28. Consider the following system with three states and two inputs

ẋ1 = u1 ẋ2 = x1 + u2 ẋ3 = x2 + cos(u1) sin(u2). (3.63)

Using the singular static feedback u1 = u and u2 = 0, the system transforms to a chain of
three integrators

ẋ1 = u1 ẋ2 = x1 ẋ3 = x2. (3.64)

However, the system (3.63) is not flat. Indeed, it is known that if a system ẋ = f(x, u)
is flat, then the submanifold of the first jet space given by the equations p = f(x, u),
parameterized by u and with x considered as fixed parameters is a ruled manifold, see
[129, 117]. It is easily checked that the corresponding manifold is not ruled in the case of
equations (3.63). The manifold is illustrated in the following figure, black and meshed for
(3.63) and red for (3.64).
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Finally, adding u2 to the state and adding the equation u̇2 = ū2 to (3.63) leads to a non-
linearizable system. Indeed, the new state variable u2 may be assigned an initial condition
different from zero, making the reduction to (3.64) impossible.

Remark 3.29. The construction of the example can be viewed as follows. In the proof
of Theorem 2 in [117], it is shown that the equations of a given dynamically linearizable
system may always be “perturbed” so as to destroy the linearizability property. In this
view, one can consider that (3.63) is a perturbed version of the single-input linearizable
system (3.64) and that u2 is the perturbation parameter (η in the notations of [117]).

Regarding the previous example, one should note that the singular feedback is such
that the input variables u1 and u2 are not only made differentially dependent, but also
algebraically dependent; and it is exactly for this reason that the ruled manifold condition
can be satisfied for the new, smaller set of inputs.
However, consider the situation of a linear controllable system (3.1) and a dynamic con-
trolled invariant distribution Z defined on the system’s state-space manifold. If Z =
{ ∂
∂z1 , . . . ,

∂
∂zρ }, we may rewrite the (linear controllable system) in the form of (3.43). Fur-

ther assume that the differentials of the functions κ1, . . . , κs are not differentially indepen-
dent. Then the system (3.44) is linearizable by a singular dynamic feedback. However, by
construction, the functions κ1, . . . , κs are algebraically independent. Hence, one may not
use the same trick as in Example 3.28 to devise an instance of a system (3.44), linearizable
by singular dynamic feedback but non-flat.

3.5 Conclusion

In this chapter, we dealt with the question whether a given system covers another one
which is specified or “induced” by some surjective map defined on the state space. We
obtained both a necessary condition and a necessary and sufficient condition introducing
a generalization of controlled invariance, coined dynamic controlled invariance and apply-
ing a variant of the dynamic extension algorithm. We then went on to give a sufficient
condition for a constrained system to be covered by its unconstraint counterpart, thereby
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also providing a sufficient test for the flatness of the constrained system, given the fact that
the unconstrained one is flat as well. Finally, we gave an example of a system linearizable
by singular static feedback that is not flat and discussed some implications.



Chapter 4

Bilinear Systems

In our previous discussions, we encountered two different kinds of filtrations of (co-)distri-
butions or modules, related to the data of a given control problem. In the case of static
feedback linearizability, the emphasis was put on the Pfaffian system given by the system’s
contact forms. This approach can be understood as rearranging infinitesimal versions of
the equations. The procedure originates in the Goursat normal form for systems of codi-
mension two [61, 13] and is known as the GS-algorithm [55, 58]. Since then, it has been
generalized further in various ways, e.g. [143, 142, 147, 146, 148]. The other approach
consists in finding 1-forms of highest relative degree which can be seen as sorting out the
system variables differentials in an appropriate way. This procedure potentially requires
some input prolongations. We presented it in Section 2.2 as the computation of a basis
of the differential module associated with the system. In [5, 4], it is called the infinites-
imal Brunovsky normal form. See also [69, 72] for earlier results. In the case of static
feedback linearizability, both types of filtrations enjoy some respective integrability prop-
erties. In this situation, both computations also happen to result in equivalent objects.
Concurrently, in the flatness problem, the integrability issue is the most difficult one, c.f.
Chapter 2. The first object of the present chapter is to devise a class of control systems
given by equations of a more general type than linear ones, but simple enough so as to
make a general assertion regarding integrability of their filtration. Indeed, using a specific
relative derived flag [108], we show that one can compute a filtration with guaranteed
integrability. However, as we will see, this comes at a cost. In a second step, we apply
the algorithm to a specific class of equations. These equations, when imposed to satisfy a
quadratic constraint, are shown to be flat. Moreover, we observe that when some parame-
ters are set in an appropriate way, two well known physical flat systems are obtained, the
non-holonomic car and the pendulum.
In Section 4.1, the two types of filtrations are compared in the integrable case. In Section
4.2 we define the studied class of bilinear systems and show that upon adequate prolonga-
tion, the associated filtration always satisfies the integrability conditions. We then deduce
a sufficient condition for the flatness of that class of systems. Section 4.3 defines a set
of “generalized pendulum” equations and shows their flatness. Some trajectory planning
simulations are also presented.

101
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4.1 Two Filtrations in the Integrable Case

Let us briefly recall the two different filtrations defined in Chapters 1 and 2. A control
system with n states and m inputs is defined on the bundle πUM : U → M given by
πUM : (t, x, u) �→ (t, x) in local coordinates. The system satisfies the equation

ẋi = f i(t, x, u) cardx = n cardu = m.

The associated Cartan distribution and codistribution on U are generated by

Ω = {dx1 − f1(t, x, u)dt, . . . , dxn − fn(t, x, u)dt}

V = {D,
∂

∂u1
. . . ,

∂

∂um
} D =

∂

∂t
+ f i(t, x, u)

∂

∂xi
.

Next, the infinite input prolongation is defined on U∞ which has the local coordinates
(t, x, u, u(1), u(2), . . .). On U∞, the Cartan distribution is spanned by the unique vector
field

D∞ =
∂

∂t
+ f i(t, x, u)

∂

∂xi
+ ul(p+1) ∂

∂ul(P )
i = 1, . . . , n

l = 1, . . . ,m p = 0, . . .

In Chapter 2, we defined the set of smooth functions on U∞ and denoted it by R. The
R-module of 1-forms in TU∞∗ generated by {dt, dx1, . . . , dxn} was denoted by H . In
Sections 1.2.2 and 2.2 respectively, the two following filtrations were defined

H(0) = H H(k+1) = {ω ∈ H(k) | D∞(ω) ∈ H(k)} (4.1)

Ω(0) = Ω Ω(k+1) = {ω ∈ Ω(k) | dω ∈ Ω(k)} (4.2)

where dω ∈ Ω(k) means that dω lies inside the ideal generated by Ω(k) in ΛTU∗. The next
result states that in the case where the codistributions Ω(k) + {dt} are integrable for all k,
these coincide with H(k). Recall that the integrability of Ω(k) + {dt} is what characterizes
static-feedback linearizable systems.

Lemma 4.1. Let πU ,∞0 : U∞ → U be the projection given in coordinates by πU ,∞0 :
(t, x, u, u(1), u(2), . . .) �→ (t, x, u). Assume Ω(k) + {dt} is integrable for k ≥ 0. Then

H(k) = π∗
U ,∞0

(
Ω(k) + {dt}

)
. (4.3)

Proof. From the definition, one clearly has H(0) = π∗
U ,∞0

(
Ω(0)+{dt}

)
. Assume Ω(k)+{dt}

is integrable for k ≥ 0. Then, for some particular value of k, assume (4.3) holds. There
exists functions ζi, zi, γj , gj ∈ C∞(U) such that

Ω(k) = {dζi − zidt, dγj − gjdt} Ω(k+1) = {dζi − zidt}.

From (4.2) we deduce dzi ∧ dt ∈ Ω(k), which implies dzi ∈ {dζ, dγ, dt} = Ω(k) + {dt}.
Observe that Ω(0) + {dt} = {dx, dt} = π∗

UMTM∗. It follows that the zi, ζi, γj are not
only functions on U but are pulled-back from some functions on M, i.e. zi = zi(t, x),
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ζi = ζi(t, x) and γj = γj(t, x).
Since D annihilates the elements of Ω(k), it follows that D(ζi) = zi and D(γj) = gj .
And since ζi and γj depend only on (t, x), we have that π∗

U ,∞0D(ζi) = D∞(π∗
U ,∞0ζ

i) =

π∗
U ,∞0(z

i) and π∗
U ,∞0D(γj) = D∞(π∗

U ,∞0γ
j) = π∗

U ,∞0(g
j) .

From dzi ∈ {dζ, dγ, dt} it follows that D∞(π∗
U ,∞0ζ

i) = π∗
U ,∞0z

i are functions of (π∗
U ,∞0ζ

i,

π∗
U ,∞0γ

j , t). We have shown that π∗
U ,∞0

(
Ω(k+1) + {dt}

)
⊂ H(k+1). The result follows by

comparing the dimensions of H(k+1) and Ω(k+1) + {dt}.

4.2 Bilinear Systems

We now consider systems with n states xi, m inputs uk and L mutiplicators λl considered
as inputs, of the form

�̇x = �k +A�x+B�u+

L∑
l=1

λl(Ql�x+ �cl) (4.4)

where �k ∈ R
n, A ∈ R

n×n, B ∈ R
n×m, Ql ∈ R

n×n, �cl ∈ R
n. To describe the same set of

equations, we shall also use the following notation

ẋi = f i = ki + aijx
j + biku

k + λl(Qi
lrx

r + cil) (4.5)

where ki, aij , b
i
k, Q

i
lr, c

i
l ∈ R are the entries of the corresponding matrices and vectors in

(4.4). The variables uk are inputs to the system and the λl = λl(0) are also seen as inputs
on which one admits an arbitrary prolongation of length P . The system is therefore defined
on a bundle U with coordinates (t, xi, uk, λ(0)l, . . . , λ(P )l). The Cartan distribution on U
reads

V = {D,
∂

∂λ1(P )
, . . . ,

∂

∂λL(P )
} D =

∂

∂t
+ f i ∂

∂xi
+ λ(p+1)l ∂

∂λ(p)l

p = 0, . . . , P − 1.

and the Cartan codistribution

Ω = { dxi − f idt, dλ(p)l − λ(p+1)ldt } i = 1, . . . , n p = 0, . . . , P − 1.

One may complete Ω and V so as to build two dual bases of TU∗ and TU respectively:

Ω

{
dxi − f idt = ωi

dλ(p)l − λ(p+1)ldt

duj

dλ(P )l

dt︸ ︷︷ ︸
TU∗

∂
∂xi

∂
∂λ(p)l p = 0, . . . , P − 1

V

⎧⎨
⎩

∂
∂uj

∂
∂λ(P )l

D︸ ︷︷ ︸
TU

(4.6)

One easily checks that applying any form to any vector gives 1 if these are on the same
row and if the indices agree and leads to 0 otherwise. Hence the two bases are indeed dual
to each other. Concerning the derived flag (4.2) of Ω, we have the following result



104 CHAPTER 4. BILINEAR SYSTEMS

Proposition 4.2. If P ≥ max(2K − 1,K + 1), then for k = 1, . . . ,K, the kth derived
system Ω(k) takes the form

Ω(k) = { nj
i (dx

i − f idt), dλl(p) − λl(p+1)dt | p = 0, . . . , P − k − 1 }

where the matrix Nk with entries nj
i depends only on λl(0), . . . , λl(k−2). The codistribution

Ω(k) + {dt}

is completely integrable. Moreover, to compute Nk, choose N1 as any (constant) matrix of
maximal rank satisfying

N1B = 0.

The other elements are obtained by applying the following recursive computation for all k,
1 ≤ k ≤ K − 1:

• find an M of max. rank s.t. NkM = 0

• find an H of max. rank s.t. H(Ṅk +Nk(A+
∑L

l=1 λ
lQl))M = 0

• Nk+1 = HNk

In the second step, Ṅk =
∑k−2

p=0
∂Nk

∂λl(p) λ
l(p+1). The matrices Nk can be chosen with entries

polynomial in λl(p).

Remark 4.3. Applying the algorithm of Proposition 4.2 and increasing P at each step if
necessary, so as to guarantee that P ≥ max(2k − 1, k + 1), does not necessarily lead to
a zero matrix N , even if the system is strongly accessible. See the forthcoming Example
4.8.

Remark 4.4. In the statement of Proposition 4.2, we made no mention of the regularity of
the obtained Ω(k). For simplicity and throughout this chapter, we shall implicitly consider
only neighborhoods of points p ∈ U within which the ranks of N1, . . . , NK are constant
and equal to their generic ranks. These generic ranks are well defined since the matrices
Nk may all be chosen polynomial in their arguments.

Proof. It is easy to verify that N1 can be chosen as stated. Hence, N1 can be chosen
constant. The formula in the proposition implies that if Nκ depends on λl(0), . . . , λl(κ−2),
then Nκ+1 depends at most on λ(0)l, . . . , λ(κ−1)l. It follows by induction that Nk depends
at most on λ(0)l, . . . , λ(k−2)l.
We now show the correctness of the algorithm. Assume P ≥ max(2K − 1,K + 1) and
1 ≤ k ≤ K − 1. Moreover assume that Ω(k) and V (k) =⊥TU∗ Ω(k) fit in the following two
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dual bases

Ω(k)

{
nj
i (dx

i − f idt) = nj
iω

i

dλl(p) − λl(p+1)dt

n̄j
i (dx

i − f idt) = n̄j
iω

i

dλl(p) − λl(p+1)dt
duj

dλl(P )

dt︸ ︷︷ ︸
TU∗

m̃i
j

∂
∂xi j = 1, . . . , n− nk

∂
∂λl(p) p = 0, . . . , P − k − 1

V (k)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mi
j

∂
∂xi j = 1, . . . , nk

∂
∂λl(p) p = P − k, . . . , P − 1
∂

∂uj

∂
∂λl(P )

D︸ ︷︷ ︸
TU

These bases are dual of each other if and only if the following relations are satisfied (owing
to the form of the dual bases (4.6)).(

m̃i
j

∂

∂xi

)
�

(
nk
l ω

l
)
= m̃i

jn
k
l δ

l
i= nk

i m̃
i
j = δkj (4.7)(

mi
j

∂

∂xi

)
�

(
nk
l ω

l
)
= mi

jn
k
l δ

l
i= nk

im
i
j = 0 (4.8)(

m̃i
j

∂

∂xi

)
�

(
n̄k
l ω

l
)
= m̃i

j n̄
k
l δ

l
i= n̄k

i m̃
i
j = 0 (4.9)(

mi
j

∂

∂xi

)
�

(
n̄k
l ω

l
)
= mi

j n̄
k
l δ

l
i= n̄k

im
i
j = δkj (4.10)

We shall use the following shorthands for the relevant elements.

Ω(k) = { μj = nj
iω

i, ηlp = dλl(p) − λl(p+1)dt } p = 0, . . . , P − k − 1

V (k) = { vs = mr
s

∂

∂xr
, whq =

∂

∂λh(q)
, D } q = P − k, . . . , P. (4.11)

Assuming Ω(k) + {dt} is integrable, by Lemma 1.6 and Proposition 1.8, we may compute
Ω(k+1) as

Ω(k+1) = {ω ∈ Ω(k) | D� dω ∈ Ω(k)}

(4.11)
= {ω ∈ Ω(k) | vs� D� dω = 0, whq� D� dω = 0, q = P − k, . . . , P} (4.12)

The exterior derivative of the generators of Ω(k) are given by

dμj = dnj
i ∧ ωi + nj

idω
i dηlp = −dλl(p+1) ∧ dt

so that the elements D� dμj and D� dηlp read

D� dμj = (D� dnj
i )ω

i − (D� ωi︸ ︷︷ ︸
0

)dnj
i + nj

iD� dωj

= ṅj
iω

i − nj
iD� (df i ∧ dt) for P ≥ k − 1

= ṅj
iω

i + nj
i

(
df i −D(f i) dt

)
D� dηlp = dλl(p+1) − λl(p+2)dt.
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Hence, the elements of the right-hand side of (4.12) are

vs� (D� dμj) = mr
sṅ

j
i

∂

∂xr
� ωi +mr

sn
j
i

( ∂f i

∂xr
−D(f i)

∂

∂xr
� dt

)
= mr

sṅ
j
r +mr

sn
j
i

∂f i

∂xr
= mr

s(ṅ
j
r + nj

i

∂f i

∂xr
)

whq� (D� dμj) = ṅj
i

∂

∂λh(q)
� ωi + nj

i

( ∂f i

∂λh(q)
−D(f i)(

∂

∂λh(q)
� dt)

)
q = P − k, . . . , P

= 0 for P ≥ k + 1, since f i dependes on λh(0)

vs� (D� dηlp) = mr
s

∂

∂xr
� (dλl(p+1) − λl(p+2)dt) = 0

whq� (D� dηlp) =
∂

∂λh(q)
� (dλl(p+1) − λl(p+2)dt)

= δlh δp+1
q p = 0, . . . , P − k − 1 q = P − k, . . . , P

=

{
δlh if p = P − k − 1 and q = P − k

0 otherwise.

Hence, if P ≥ k + 1, the only two terms that are not identically zero are

vs� (D� dμj) = mr
s(ṅ

j
r + nj

i

∂f i

∂xr
) (4.13)

whq� (D� dηlp) =

{
δlh if p = P − k − 1 and q = P − k

0 otherwise.
(4.14)

Since Ω(k+1) ⊂ Ω(k), there must exist functions hα
j , zαlp such that

Ω(k+1) = {hα
j μ

j + zαlpη
lp}

By (4.12), these functions satisfy

vs� D� d(hα
j μ

j + zαlpη
lp) =

vs� D� (dhα
j ∧ μj + dzαlp ∧ ηlp) + hα

j vs� D� dμj + zαlpvs� D� dηlp

= hα
j vs� D� dμj + zαlpvs� D� dηlp = 0

whq� D� d(hα
j μ

j + zαlpη
lp) =

whq� D� (dhα
j ∧ μj + dzαlp ∧ ηlp) + hα

j whq� D� dμj + zαlpwhq� D� dηlp

= hα
j whq� D� dμj + zαlpwhq� D� dηlp = 0
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where we used the fact that vs, whq and D all annihilate the forms μj and ηlp. These
equations may be rewritten in matrix notation as

(
hα
j zαlp

)(vs� D� dμj whq� D� dμj

vs� D� dηlp whq� D� dηlp

)
=

(
hα
j zαlp

)(vs� D� dμj 0
0 whq� D� dηlp

)
=
(
0 0

)
where the second row follows in case P ≥ K+1. The null-space of a block diagonal matrix
may always be chosen block diagonal. Therefore, we split the index α into two and rewrite
the equation as (

hγ
j 0

0 zξlp

)(
vs� D� dμj 0

0 whq� D� dηlp

)
=

(
0 0
0 0

)
.

Thus, Ω(k+1) is generated by {hγ
jμ

j , zξlpη
lp}. Using (4.13) and (4.14), the relations become

hξ
j(ṅ

j
r + nj

i

∂f i

∂xr
)mr

s = hξ
j(ṅ

j
r + nj

i (a
i
r + λlQi

lr))m
r
s = 0 (4.15)

and

zξl,P−k−1 = 0. (4.16)

In matrix form, (4.8) and (4.15) lead to the equations

NkM = 0 M of max. rank (4.17)

H(Ṅ +Nk(A+

L∑
l=1

λlQl))M = 0 H of max. rank. (4.18)

Setting Nk+1 = HNk, �ω = (ω1 · · · ωn)T and additionally using (4.16), we obtain that

Ω(k) = {Nk�ω, dλl(p) − λl(p+1)dt | p = 0, . . . , P − k − 1}

⇒ Ω(k+1) = {Nk+1�ω, dλl(p) − λl(p+1)dt | p = 0, . . . , P − k − 2}

which proves the correctness of the algorithm for k = 1, . . . ,K (under the condition that
Ω(k) + {dt} is integrable). Clearly

Ω(k) + {dt} = {Nk�ω, dλl(p), dt | p = 0, . . . , P − k − 1}

= {Nkd�x, dλl(p), dt | p = 0, . . . , P − k − 1} (4.19)

And since Nk depends at most on λl(0), . . . , λl(k−2), (4.19) is integrable if P ≥ 2k − 1.
Together with the requirement P ≥ k + 1 used throughout the proof one obtains the
condition P ≥ max(2K − 1,K + 1).
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4.2.1 Flatness of Bilinear Systems

Proposition 4.2 together with Lemma 4.1 provide a simple sufficient condition for flatness
of bilinear control systems of the form (4.4). Indeed, assume that there is a pair of numbers
P and K satisfying P ≥ max(2K−1,K+1) and such that the algorithm of Proposition 4.2
yields a sequence of matrices N1, . . . , NK with NK = 0. It then follows that the filtration
(4.2) of the Cartan codistribution of (4.4) with P prolongations on λl is of the form

Ω(0) = { �ω, dλl(p) − λl(p+1)dt | p = 0, . . . , P − 1 }

Ω(1) = { N1�ω, dλl(p) − λl(p+1)dt | p = 0, . . . , P − 2 }

...

Ω(K−1) = { NK−1�ω, dλl(p) − λl(p+1)dt | p = 0, . . . , P −K }

Ω(K) = { dλl(p) − λl(p+1)dt | p = 0, . . . , P −K − 1 }

...

Ω(P−1) = { dλl(0) − λl(1)dt }

Ω(P ) = { }

Moreover the elements Ω(k) + {dt} are all integrable and coincide with H(k) for k ≥ 0 by
Lemma 4.1. Therefore, the R-modules H(k) are generated by

H(0) = { d�x, dλl(p), dt | p = 0, . . . , P − 1 }

H(1) = { N1d�x, dλl(p), dt | p = 0, . . . , P − 2 }

...

H(K−1) = { NK−1d�x, dλl(p), dt | p = 0, . . . , P −K }

H(K) = { dλl(p), dt | p = 0, . . . , P −K − 1 }

...

H(P−1) = { dλl(0), dt }

H(P ) = { dt }

Using Lemma 2.8, we deduce that

λ1(0), . . . , λL(0)

are part of the flat outputs. The other flat outputs, m in number, are obtained as fol-
lows. One seeks integrable representatives of H(0)/(H(1) +D∞H(1)) to H(K−1)/(H(K) +
D∞H(K)). Since NK = 0, H(K−1)/(H(K) +D∞H(K)) is represented by NK−1d�x, which
is integrable modulo dλl(0), . . . , λl(P−K). For k = 0, . . . ,K − 2, define the matrix

Qk
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as the matrix whose rows are the rows of

Nk

independent of the rows of the matrix

Nk+1 + Ṅk+1 +Nk+1(A+ λlQl).

The remaining flat outputs are then obtained as

Q0�x, . . . , QK−2�x, NK−1�x.

Note that these flat outputs are polynomial in λl(s) and linear in x1, . . . , xn.

Remark 4.5. It is not necessary to guess the values of P and K beforehand. The recursive
algorithm of Proposition 4.2 can be applied without a priori knowledge of P and K, simply
by adding appropriate derivatives of λl in each computation of Ṅk from Nk. As soon as
the algorithm saturates, i.e. whenever some k such that rankNk+1 = rankNk is reached,
then we set K = k. Next we may choose P = max(2K − 1,K + 1) so as to guarantee the
integrability of Ω(0) + {dt}, . . . ,Ω(K) + {dt}

Remark 4.6. Consider the extended equations of system (4.5) given by

ẋi = f i = ki + aijx
j + biku

k + λl(Qi
lrx

r + cil) (4.20a)

λ̇l(p) = λl(p+1) p = 0, . . . , P − 1. (4.20b)

Since (4.20b) is independent of (4.20a), it can be considered as describing a subsystem of
(4.20). Choosing P sufficiently large, the codistributions {d�x}, {N1d�x}, . . . , {NKd�x} are
in one-to-one correspondence with the result of the computation of the relative derived
flag [108] of (4.20) with respect to (4.20b) given by

I(0) = {dx1 − f1dt, . . . , dxn − fndt}

I(k+1) = {ω ∈ I(k) | dω ∈ I(k) + J}

with J = {dλl(p) − λl(p+1)dt | p ≥ 0}.

In the case where NK = 0 for some K and P large enough, the integrability of Ω(k)+ {dt}
previously discussed is then equivalent to the integrability of I(k)+J+ {dt} and I(K) = 0.
Hence, by Theorem 8.2 in [108], the system (4.20) is relatively flat with respect to the
subsystem (4.20b) (and therefore relatively flat w.r.t. the output subsystem with λl as
system outputs). Since the subsystem (4.20b) is clearly flat with flat outputs λ1, . . . , λL,
we may use Proposition 5.2 in [108] to deduce once again that the system (4.5) is flat.

Let us give a simple example for the application of Proposition 4.2.

Example 4.7. Consider the dimension 4 system with inputs u, λ

ẋ1 = u ẋ2 = x1 + λx3 ẋ3 = λx2 ẋ4 = x3 + λx1
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i.e.
�̇x = A�x+Bu+ λQ�x

A =

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎟⎠ B =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ Q =

⎛
⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

The algorithm produces:

N1 =

⎛
⎝0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎠ N2 =

(
0 λ 0 −1
0 0 1 0

)

N3 =
(
0 −λ2 λ̇ λ

)
N4 = 0.

leading to the flat outputs:

y1 = λ and y2 = N3�x = −λ2x2 + λ̇x3 + λx4

The following example shows that Proposition 4.2 is only a sufficient condition for the
flatness of bilinear control systems (4.4).

Example 4.8. The system with state variables x1, x2 and inputs u, λ

ẋ1 = u ẋ2 = x2λ

is flat with flat outputs x1, x2 whenever x2 �= 0. However, setting

A =

(
0 0
0 0

)
B =

(
1
0

)
Q =

(
0 0
0 1

)

the algorithm yields
N1 = N2 = . . . =

(
0 1

)
.

There is no K > 0 such that NK = 0.

4.3 Application: Pendulum-like Equations

This section introduces a very simple class of bilinear systems of the form (4.4) that are
additionally required to satisfy a quadratic constraint. We verify flatness of all systems
in this class and then show that the class contains the well known bi- and tri-dimensional
pendulums (or VTOL) as well as the non-holonomic car.
Let x, y ∈ R

n, u ∈ R
n and let gx, gy be constant vectors in R

n. For any integer k > 0
define the “generalized pendulum” equations of order k and dimension 2kn as

x(k) = gx + u+ λ(x − y)

y(k) = gy + λ(y − x)
s.t. C = (x − y)T (x− y)− 1 = 0 (4.21)
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Corollary 4.9. The system described by (4.21) is flat with flat output y = y(0).

Proof. Define the vector of (first order) state variables as

z = (x(k−1) y(k−1) · · · x y)T

The unconstrained system equations (l.h.s. of (4.21)) are given in the form of (4.4) by the
matrices

A =

(
0
2(k−1)n
2n 02n2n
I2(k−1)n 02n2(k−1)n

)
B =

(
In

0n2(k−1)n

)
Q =

(
0
2(k−1)n
2n ∂2C

0
2(k−1)n
2(k−1)n 0

2(k−1)n
2n

)

the constant vector k = (gTx gTy 0 · · · 0)T and using the notation

∂2C =

(
∂xxC ∂xyC
∂xyC ∂yyC

)
.

Applying the algorithm of Proposition 4.2 leads to

N2k−1 =
(
0
2(k−1)n
n In

)
N2k = 0.

It should also be noted that the N1 . . . N2k−1 are all constant and independent of λ.
This implies that (N2k−1z, λ) = (y, λ) is a set of linearizing outputs for the unconstrained
system. Next, from (4.21)

y(k) − gy = λ(y − x) ⇒ (y(k) − gy)
T (y(k) − gy) = λ2(y − x)T (y − x)

or

(y(k) − gy)
T (y(k) − gy) = λ2(C + 1). (4.22)

This last relation shows that λ can be computed (on a suitable open set) from y(k) and
C so that (y, C) is another set of flat outputs for the unconstrained system. This in turn
implies that the constrained system with C = 0 is flat with flat output y by application of
Corollary 3.25 or, more directly, by invoking Corollary 7.3 in [108]. Indeed, the mentioned
result from [108] states that given a flat system with flat outputs (y, y), the system obtained
by adding the constraints yj = 0 is flat with flat outputs y.

4.3.1 Special Cases

Second order, planar or 3D This is the case k = 2, n = 2, 3. If gx and gy are chosen
so as to represent the effect of gravity, one obtains the physical planar respectively three-
dimensional pendulum composed of two linked masses with forces acting on one of the
two.
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First order, planar, gravity-free This situation is given by k = 1, n = 2, gx = gy =
(0 0)T and reads

ẋ1 = u1 + λ(x1 − y1)
ẋ2 = u2 + λ(x2 − y2)
ẏ1 = λ(y1 − x1)
ẏ2 = λ(y2 − x2)

C = (x1 − y1)2 + (x2 − y2)2 − 1 = 0

These equations can be seen as describing the motion of two vertical pencils on a sheet of
paper and linked by a thread of fixed length. The motion of one of the pencils is controlled.
Using the constraint C, the system can be reparameterized by setting x1 − y1 = sin θ and
x2 − y2 = cos θ. In the coordinates y1, y2, θ, the system reads

ẏ1 = λ sin θ
ẏ2 = λ cos θ

θ̇ = μ

λ = − 1
2 (u

1 sin θ + u2 cos θ)
μ = u1 cos θ − u2 sin θ

i.e. the non-holonomic car equations.

4.3.2 Trajectory Planning

To illustrate the behavior of system (4.21) as the order k and the “gravity”vectors gx and
gy change, we present some simple trajectory planning simulations in the planar (n = 2)
case. The flat outputs (y1, y2) are required to follow the path

y1(t) = sin(2τ(t)) y2(t) = cos(τ(t)).

The parameterization τ(t) ∈ C2k(R,R) is chosen piecewise polynomial and such that
τ(0) = 0, τ(tend) = 2π and such that the derivatives dsτ

dts
at t = 0 and t = tend are

zero for s = 1, . . . , 2k + 1. Hence, the system is at rest at t = 0 and t = tend. For some δ,
0 < δ < tend

2 , the parameterization τ(t) is an affine function on the interval t ∈ [δ, tend−δ].
The following is a sketch of the parameterization τ(t).

t

τ

2π

tend

Figures 4.1 through 4.3 are qualitative representations of the obtained trajectories for
order k = 1, 2, 3, 4 and different values of gx and gy. The red curve represents the path
of the flat outputs y1, y2, which also happens to be the planar coordinates of one of the
two “masses”. The red and blue dots represent the position of both “masses” at regular
time intervals. The blue “mass” is the actuated one with coordinates x1, x2, i.e the one on
which the “forces” u1, u2 are applied and its trajectory is represented by the blue curve.
Notice the symmetry in the trajectories for even orders k. Also, as k increases, the “speed”
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range of the actuated “mass” increases. This is due to the fact that the coordinates x1, x2

depend on higher time-derivatives of the reference trajectory y1(t), y2(t) as k grows.
Finally, note that equation (4.22) has two solutions for λ in general. In the simulation, a
simple heuristic was used to choose the right sign for λ(t), so as to ensure a continuous
solutions for x1(t), x2(t).

4.4 Conclusion

The approach in this chapter was to seek a class of systems simple enough to overcome
the integrability issues one encounters when trying to assess flatness of a control system.
Systems affine in the states and some inputs, bilinear in the state and some other inputs
were shown to be of that kind. Indeed, an algorithm can be applied, and from its output,
given it has saturated to an empty set, flatness can be deduce. The procedure was then
applied to a set of equations. These equations, when imposed to satisfy a quadratic
constraint were shown to describe a collection of flat systems. We observed that this
collection contains the non-holonomic car and the planar respectively three-dimensional
pendulums. Finally, some qualitative trajectory planning examples where presented with
varying parameters; perhaps more for their relatively appealing esthetic qualities than
their relevance.
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Order k = 1 Order k = 2
Planar pendulum.

Order k = 3 Order k = 4

Figure 4.1: Trajectory planning with “strong gravity”, gx = gy = (0 − 10)T .
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Order k = 1 Order k = 2
Planar pendulum.

Order k = 3 Order k = 4

Figure 4.2: Trajectory planning with “weak gravity”, gx = gy = (0 − 1)T .
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Order k = 1 Order k = 2
Nonholonomic car.

Order k = 3 Order k = 4

Figure 4.3: Trajectory planning with zero gravity, gx = gy = (0 0)T .



Conclusion

Synthesis The topics and contributions presented in the thesis may be summarized by
the following three points.

• We gave a variant of a known characterization of flatness. First a basis ω of the free
summand of the differential module associated with a control system is computed.
Given that the torsion part of the module is generated solely by dt, the time variable
differential, the only obstacle in concluding flatness is the potential non-integrability
of the codistribution spanned by the basis ω. To retrieve integrability, if possible,
one is required to find an invertible matrix differential operator P transforming the
set ω in a set of exact 1-forms Pω. An alternative approach from [88] consists in
defining a rectangular operator PF based on the implicit system equations. The
condition on the torsion part of the module then translates to hyper-regularity of
PF . A basis ω may then be obtained from PF . Common to both approaches, one
expands the exactness condition d(Pω) = 0 and uses further differentiations so as
to obtain a closed set of equations. We proposed an equivalent set of equations
where one is asked to find a rectangular operator P̄ such that the composite matrix(
P̄
PF

)
is unimodular, i.e. square and invertible, and such that dP̄ dx = 0. These

new conditions have a different structure than the one proposed so far. A part of
the equations, akin to curvature is trivialized. It should however be stressed that
our characterization does not formulate an easier problem. Indeed, the equations
that have been trivialized always admit a solution and the set of solutions can be
described in closed form, [21, 88].

• Given a control system and an involutive distribution Z defined on the state-space
manifold, we considered the following problem: Does the integral manifold of Z lo-
cally corresponds to the state space of a control system related in some way to the
original system? In the case where Z satisfies the classical controlled invariance, the
answer is positive; there is a subsystem with codimension equal to dimZ. The inputs
to the subsystem can be made to coincide with a subset of the original inputs by an
appropriate bundle preserving change of coordinates. In this situation, we showed
that if the initial system is static feedback linearizable, so is the subsystem.
We were led to the following observation. If one wishes to start with a linear con-
trollable system and then devise some submanifold of its state space so as to obtain
a flat “subsystem” that is not statically feedback linearizable, then the notion of
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controlled invariance is of no interest. This motivated the definition of the notion
of dynamic controlled invariance. To achieve the mentioned situation, the inputs
of the “subsystem” are made to depend on the initial system state. Moreover, the
dependency of the subsystem inputs in the full system inputs must be of defective
rank. Unfortunately, this last requirement has important consequences. Indeed, the
flatness of the subsystem is not anymore immediately implied by the linearity or
flatness of the initial one.
A sufficient condition was obtained through the notion of a covering and related
results from [21]. If the initial system is flat and if it can be shown to cover the sub-
system “induced” by the distribution Z, then the subsystem is flat. A system covers
another one if the map between the two corresponding diffieties satisfies certain con-
ditions. This infinite dimensional criterion was translated to a finite dimensional one
by means of a version of the dynamic extension algorithm.
The following more difficult problem was then considered. Given a system and a set
of state constraints, is the constrained system covered by the unconstrained one? We
approached the problem by first finding a sufficient condition to a related problem:
Given a system, a set of state constraints and an involutive distribution Z on the
state-space manifold, is there a system whose state-space is an integral manifold of
Z and such that it is covered by the unconstrained system and by the constrained
one as well? We showed that the answer is positive if the inputs of the subsystem
vj and the constraints ck are such that dvj , dck are a set of differentially indepen-
dent 1-forms. This differential independence can be checked thanks to the dynamic
extension algorithm. We then used this result to devise a sufficient condition to the
initial problem.
In the same spirit, we went on by giving an instance of a system linearizable by
singular static feedback that is not flat.

• In the characterization of flatness discussed in the second chapter, the general proce-
dure can be decomposed in two steps. One starts by computing a certain filtration,
thereby obtaining the basis of a module. An integrability problem then remains.
In the case of statically linearizable systems, the mentioned filtration enjoys some
important integrability properties at each stage of the computation. It is therefore
tempting to seek a situation where the flag structure can be adapted at each step
in a way that enforces the integrability condition to remain satisfied. We devised
a simple class of bilinear systems for which this can be achieved. Concurrently, we
proposed a efficient recursive algorithm form the computation of the adequate rela-
tive derived flag. The algorithm is such that flatness of the system may be concluded
if it saturates to an empty set.
We proposed a set of quadratically constrained bilinear equations and proved their
generic flatness. The equations were shown to specialize to known physical flat
systems when appropriate parameters are chosen.

Perspectives As a perspective, we would like to mention two aspects of the approached
problems. These questions could not be answered in the course of our study and we believe
they are of interest. To the best of our knowledge, these problems have received relatively
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little attention in the literature, [16].

• Consider the situation of a linear controllable system and an involutive distribution
Z = { ∂

∂zk } defined on the system state-space manifold. Assume that the condi-

tions of Proposition 3.13 lead to coordinates (t, yi, zk) such that the system may be
rewritten in the form of equations (3.43), i.e.

żk = gk(t, z, y, u)

ẏi = hi(t, y, κ(t, z, y, u)) rank
∂h

∂κ
= s.

Further assume that the conditions for the map (t, y, z) �→ (t, y) to induce a covering
are not satisfied. As we have seen, this means that the equations above define a
singular dynamic feedback of the system

ẏi = hi(t, y, κ̄).

By assumption, the system is hence linearizable by singular dynamic feedback. What
additional conditions should be satisfied to conclude that the system ẏi = hi(t, y, κ̄)
is flat, i.e. linearizable by a non-singular (regular) dynamic feedback? Our discussion
of the dynamic extension algorithm leads us to propose that answering the following
question would be a useful first step. Assume that the system ẋ = f(t, x, u) with
cardx = n and cardu = m is flat and that h ∈ R

n is a constant vector. What are
the conditions (if any) for the system with m+ 1 inputs given by

ẋ = f(t, x, u) + hv

with v a new additional input to be flat? Note that since the new input enters the
equations in an affine way, the ruled manifold condition cannot be broken, which is
precisely the trick used in Example 3.28.

• In the proposed sufficient condition for the flatness of a class of bilinear systems,
we have seen with Example 4.8 that even if a system is locally strongly accessible
(only dt is torsion), the algorithm may saturate to a non-zero matrix corresponding
to a codistribution larger than {dt}. This is in contrast with the filtration of the
second chapter where H(k∗) is precisely spanned by the set of torsion elements of A1.
Hence, one may say that we have traded termination for integrability and that the
resulting conservatism leads to effective and easy computations. Can such a tradeoff
be made for a larger, perhaps more interesting class of systems?
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Appendix A

Tools

The aim of this appendix is to clarify the notations used throughout the text, to recall some
basic notions and to derive a few technical results. Section A.1 very briefly reviews concepts
from differential geometry. Some useful identities from exterior differential calculus are
gathered for convenience. Section A.2 deals with some consequences of the Frobenius
theorem, pullback of codistributions and projectability of distributions. In Section A.3,
we discuss the computations of derived systems and filtrations.

A.1 Notations and Basic Notions

For convenience, some useful notions and identities are also discussed. One may refer
to [98, 86, 132, 59] for more details on the subject of differential geometry. We use the
Einstein summation convention whenever the notation is unambiguous.

Manifolds All discussions are local in nature, even when not explicitly stated. An n-
dimensional manifold M may therefore always be identified with some open subset of Rn.
As open subsets of Rn, all our manifolds will automatically be smooth (i.e. C∞) manifolds.
A manifold may be equipped with a set of (local) independent coordinates xi : M → R

where cardx = dimM in the finite dimensional case and x is a countable set in the infinite
dimensional case.

Maps A map between two manifolds φ : M → N is an application sending any point
p ∈ M to a point φ(p) ∈ N . All considered maps shall be smooth, that is, given two sets
of coordinates xi on M and yj on N , the functions yj = φj(x) are smooth functions in
C∞(M). See Chapter 2 for the notion of a smooth function on an infinite dimensional
manifold.
If the map φ is a surjection, there exists coordinates xi, x̄ι on M and yj on N such that
φ takes the form φ : (x, x̄) �→ (y = x). We will usually use the symbol π and call it a
projection. The map describes a submersion of M to N . If φ is an injective map, i.e. there
are coordinate xi on M and yj , ȳk on N such that φ : (x) �→ (y = x, ȳ = 0), then φ is an
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immersion from M to N . Since we work only locally, this also implies that φ(M) ≡ N
and the map also describes an embedding.

Fiber Bundle and Bundle Maps By a fiber bundle or simply a bundle we shall mean
a pair of manifolds M and B together with a projection map π : M → B. The manifold B
is called the base and for each point b ∈ B, the pre-image π−1(b) is the fiber over b. The
whole bundle will be referred to as π : M → B or simply as M . Since we work locally, we
may identify M with π−1(b)×B for any fixed b ∈ B. In other words, we may find adapted
coordinates xi, yj on M such that π : (x, y) �→ (y). Let us insist on the fact that we rely
on the local triviality of fibre bundles. The global properties are subtler. See [78, 131] for
a general discussion and [59] for the local picture.
Let πMB : M → B and πNC : N → C be two bundles. A bundle preserving map or simply
a bundle map from M to N is a map φ : M → N such that there exists another map
ϕ : B → C and such that the diagram

M
φ ��

πMB

��

N

πNC

��
B

ϕ �� C

commutes. In any two systems of adapted coordinates such that πMB : (x, y) �→ (y) and
πNC : (ν, γ) �→ (γ), a bundle map takes the form (x, y) �→ (ν = φ(x, y), γ = ϕ(y)).

Tangent and Cotangent Bundles Let M be a manifold and p ∈ M any point on M .
We shall denote by TpM the R-linear space of tangent vectors to M at the point p and by
TpM

∗ the dual space of TpM . The union of all tangent and cotangent space at all points
in M , TM = ∪p∈MTpM and TM∗ = ∪p∈MTpM

∗ are the tangent and cotangent bundles.
A smooth section v ∈ ΓTM , i.e. a map v : M → TM assigning a vector in TpM to each
point p ∈ M is called a vector field and we use the shorter notation v ∈ TM . Similarly, a
smooth map V : M → Gr(TM, s) assigning an s-dimensional sub-vectorspace of TpM to
each point p ∈ M is called an s-dimensional distribution and we use the shorter notation
V ⊂ TM .
A smooth section ω ∈ ΓTM∗, i.e. a map ω : M → TM∗ assigning a covector in TpM

∗ to
each point p ∈ M is called a 1-form and we use the shorter notation ω ∈ TM∗. Similarly,
a smooth map Ω : M → Gr(TM∗, s) assigning an s-dimensional sub-vectorspace of TpM

∗

to each point p ∈ M is called an s-dimensional codistribution and we use the shorter
notation Ω ⊂ TM∗.
At least locally, the constructions TM and TM∗ are also C∞(M)-modules. An s-dimen-
sional distribution (respectively codistribution) is a C∞(M)-submodule of TM (respec-
tively TM∗) and may locally always be generated by s independent vector fields v1, . . . , vs ∈
TM (respectively s independent 1-forms ω1, . . . , ωs ∈ TM∗). We shall use the notation
{v1, . . . , vs} (resp. {ω1, . . . , ωs}) to denote the (co-) distribution generated by such a basis.
Assume dimM = n and let V be an s-dimensional distribution V ⊂ TM . We shall denote
by Ω =⊥TM V , Ω ⊂ TM∗, the (n−s)-dimensional codistribution of all forms annihilating
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the vector fields belonging to V . Reciprocally, the meaning of ⊥TM∗ Θ for Θ ⊂ TM∗

should be clear.

Operations on Vector Fields and Forms The set of q-forms on a manifold M shall
be denoted by ΛqTM∗. A q-form ω is also a map

ω : TM × . . .× TM︸ ︷︷ ︸
q-fold

→ C∞(M).

The interior product of a vector field v ∈ TM and a q-form ω ∈ ΛqTM∗, denoted by v� ω
is the (q − 1)-form satisfying

(v� ω)(v1, . . . , vq−1) = qω(v, v1, . . . , vq−1) ∀v1, . . . , vq−1 ∈ TM.

For v ∈ TM and ω ∈ TM∗ we simply have v� ω = ω(v).
We shall write v(ω) or sometimes simply vω for the Lie derivative of ω along v; v(ω) is a
form of the same degree than ω. Note the following very useful identities where d is the
exterior derivative and [., .] is the Lie bracket:

Lemma A.1. Let v, w ∈ TM , ω ∈ ΛqTM∗ and η ∈ ΛrTM∗ then

v(ω) = v� dω + d(v� ω)

v(w� ω) = [v, w]� ω + w� v(ω) (Cartan formula)

d(ω ∧ η) = dω ∧ η + (−1)qω ∧ dη

v� (ω ∧ η) = (v� ω) ∧ η + (−1)qω ∧ (v� η)

v(ω ∧ η) = v(ω) ∧ η + ω ∧ v(η)

v(dω) = d(v(ω))

[v, w](ω) = v(w(ω)) − w(v(ω))

Note that since the Lie derivative along v of w is [v, w], the Cartan formula can be
seen as a Leibnitz (product) rule of the Lie derivative over the interior product.

Proof. All detailed proofs are found in Chapter 2 of [98].

Induced Tangent and Cotangent Maps Let M and N be two manifolds and φ a
map φ : M → N . The map φ induces a tangent and a cotangent map

φ∗ : TpM → Tφ(p)N φ∗ : TM → TN

φ∗ : ΛqTφ(p)N
∗ → ΛqTpM

∗ φ∗ : ΛqTN∗ → ΛqTM∗.

Assume that xi and yj are local coordinates on M and N and that φ : (x) �→ (yj = φj(x)).
The tangent map then acts as

φ∗

∂

∂xi
=

∂φj

∂xi

∂

∂yj
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and the cotangent map as

φ∗dyj =
∂φj

∂xi
dxi.

Given a vector field v, φ∗v is called the pushforward of v by φ and given a form ω, φ∗ω is
called the pullback of ω by φ.

Lemma A.2. Let φ, M and N be as above. Let also ω ∈ ΛqTN∗, η ∈ ΛrTN∗ and
v, vi ∈ TM . Then

φ∗(ω ∧ η) = (φ∗ω) ∧ (φ∗η)

d(φ∗ω) = φ∗dω

(φ∗ω)(v1, . . . , vq) = ω(φ∗v1, . . . , φ∗vq)

Proof. Again, see Chapter 2 of [98].

A.2 Frobenius and Friends

A.2.1 Cauchy Characteristic and Retracting Spaces

On a finite dimensional manifold M , consider a (locally constant dimensional) codistribu-
tion Ω ⊂ TM∗ and the distribution V ⊂ TM of vectors annihilating ω, i.e. V =⊥TM∗ Ω.
The distribution of vector fields in TM given by

CharΩ = {v ∈ TM | v� ω = 0, v� dω ∈ Ω, ∀ω ∈ Ω}

= {v ∈ V | v� dω ∈ Ω, ∀ω ∈ Ω}

is called the set of Cauchy characteristic vector fields of Ω. Note that CharΩ is a subset
of V . The dual of CharΩ

Retr Ω =⊥TM CharΩ

defines the retracting space of Ω.

Lemma A.3.

CharΩ = {v ∈ V | [v, V ] ⊂ V }

Proof. For all v̄ ∈ V and ω ∈ Ω, and v such that [v, v̄] ∈ V . The Cartan formula yields

0 = [v, v̄]� ω = v(v̄� ω)− v̄� v(ω) = −v̄� v(ω)

= −v̄� (v� dω + d(v� ω)) = −v̄� (v� dω).

The characteristic and retracting spaces have an important property.
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Proposition A.4. With the notations as above, assume that CharΩ has a constant dimen-
sion. Then CharΩ is involutive and Retr Ω is integrable. Moreover, setting n = dimM ,
s = dimRetr Ω and r = dimΩ, there are local coordinates (y1, . . . , ys, z1, . . . , zn−s) on M
such that Ω has a set of generators involving {y1, . . . , ys} only, i.e. there locally exists
functions αj

i (y) such that

Ω = {α1
i (y) dy

i, . . . , αr
i (y) dy

i}.

The number s is minimal.

Proof. See [13], Theorem 2.2, p. 31.

A.2.2 Pulled-back Codistributions and Projectable Distributions

Given a map between two manifolds φ : M → N and a codistribution J ⊂ TN∗, we
shall write I = φ∗J ⊂ TM∗ for the codistribution on M generated by all forms φ∗μ,
μ ∈ J . In other words, if {μ1, . . . , μp} is a basis of J ⊂ TN , then φ∗J is the well-defined
codistribution

I = φ∗J ⊂ TM∗ with basis {φ∗μ1, . . . , φ∗μp}. (A.1)

With these notations, Proposition A.4 admits the following interpretation.

Corollary A.5. Let Ω ⊂ M be an r-dimensional codistribution on an n-dimensional
manifold M . Let s = dimRetrΩ. There exists an s-dimensional manifold N , a (local)
surjective map π : M → N and an r-dimensional codistribution Ω̂ ⊂ TN∗ such that

Ω = π∗Ω̂.

Moreover

kerπ∗ = CharΩ.

Proof. Use Proposition A.4 and set π : (y1, . . . , ys, z1, . . . , zn−s) �→ (y1, . . . , ys).

Similarly, given a distribution F ⊂ TM , a surjective map π : M → N and a distribution
H ⊂ TN , we will write

π∗F = H if ∀x ∈ M π∗(F |x) = H |π(x) (A.2)

where F |x is the R-vector space spanned by the vectors of F at the point x ∈ M . Note
that π∗F is not always well-defined. Moreover, even if π∗F is well-defined, π∗f for f ∈ F
is not necessarily a well-defined vector field on TN , as the next example shows.

Example A.6. Consider M and N with two local sets of coordinates (x, y, z) and (z)
respectively. Let the map π be given by π : (x, y, z) �→ (z). Then with F = { ∂

∂x
, ∂
∂z
} and

H = { ∂
∂z
} we have π∗F = H. But the vector field f = x ∂

∂z
∈ F is such that π∗f is not a

well-defined vector field in TN .

One can link the two notions of (A.1) and (A.2) with the following lemma.
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Lemma A.7. Consider two manifolds M , N and a surjective projection π : M → N .
Let J ⊂ TN∗ be a codistribution on N and I ⊂ TM∗ such that I = π∗J , as in (A.1).
Consider H ⊂ TN and F ⊂ TM such that H =⊥TN∗ J and F =⊥TM∗ I. Then π∗F = H
as in (A.2).

Proof. Since π is surjective, kerπ∗ = 0 so that dim I = dim J , and dimM = dimN +
dimkerπ∗. By construction, dimH = dimN − dim J and dimF = dimM − dim I. Also,
for any X ∈ kerπ∗ and any μ ∈ J , X� π∗μ = π∗X� μ = 0 so that kerπ∗ ⊂ F . Using the
above relations, we deduce that

dimπ∗F |x = dimN − dim J = dimH |π(x).

Hence, if we can show that π∗F |x ⊂ H |π(x), we are done. Indeed, ∀f ∈ F and ∀μ ∈ J ,
π∗f� μ = f� π∗μ = 0 since π∗μ ∈ I =⊥TM F , implying π∗F |x ⊂ H |π(x).

Although (A.2) is a pointwise relation, there is a relation between vector fields in H
and vector fields in F .

Lemma A.8. Let M , N and π be as in (A.2) and let (A.2) be satisfied. Then, for any
vector field h ∈ H, there exists a vector filed f ∈ F such that h = π∗f . The two vector
fields f and h are π-related.

Proof. A vector field h ∈ H ⊂ TN may always be lifted to a vector field ĥ ∈ TM in
such a way that π∗ĥ = h. This can be done by choosing a connection on the fibered
manifold π : M → N , see e.g. [59] p. 58 or [98]. Next define the codistribution J ∈ TN∗,

J =⊥TN H . For any μ ∈ J we have π∗ĥ� μ = ĥ� π∗μ = 0, therefore ĥ ∈ F . Set f = ĥ.

The previous lemma has an immediate useful consequence regarding integrability.

Corollary A.9. Let M , N be two manifolds and π : M → N a surjective projection map.

i) Let Ω̂ ⊂ TN∗ and Ω ∈ TM∗ be such that Ω = π∗Ω̂. Then Ω is integrable if and only
if Ω̂ is.

ii) Let F ⊂ TM and H ⊂ TN be such that π∗F = H. Then π∗(F+[F, F ]) = H+[H,H ].

Proof. To prove i), define F ⊂ TM andH ⊂ TN such that F =⊥TM∗ Ω andH =⊥TN∗ Ω̂.
If Ω is integrable, then F is involutive. Take any two vector fields h1, h2 ∈ H ; by Lemma
A.8, there are two vector fields f1, f2 ∈ F such that π∗fi = hi. We have π∗ [f1, f2] = [h1, h2]
and [f1, f2] ∈ F , hence [h1, h2] ∈ H and H is involutive so that Ω̂ is integrable. The
converse is clear.
To show ii), choose a basis {h1, . . . , hρ} of H . By Lemma A.8, there are f1, . . . , fρ ∈ F
such that π∗fi = hi. Since π∗F = H and π is surjective, there exists a basis of F of
the form F = {f1, . . . , fρ, k1, . . . , kr} with kj ∈ kerπ∗. Then, F + [F, F ] is spanned by
{fi, kj , [fi1 , fi2 ], [fi, kj ], [kj1 , kj2 ]}. But by Lemma A.11, [fi, kj ] ∈ F + kerπ∗ and clearly,
[kj1 , kj2 ] ∈ kerπ∗.
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We now consider the following question. One is given (finite dimensional) manifolds M ,
N and a (local) surjective projection map π : M → N . Next, a codistribution Ω ⊂ TM∗

is specified. Under what condition, does there exist a codistribution Ω̂ ⊂ TN∗, such that

Ω = π∗Ω̂

and dim Ω̂ = dimΩ? Similarly, given a distribution V ⊂ TM , is there a well defined
distribution V̂ ∈ TN such that

π∗V = V̂

i.e. do the vectors π∗v, ∀v ∈ V (locally) span a well defined distribution on N?
When the answer is negative, we will see that one can construct a largest codistribution
contained in Ω satisfying the requirement, respectively a smallest distribution containing
V + kerπ∗. The answer to the first question is clearly related to Corollary A.5.

Lemma A.10. Given the surjective map π : M → N and a codistribution Ω ⊂ TM∗ as
above, there exists a codistribution Ω̂ ⊂ TN∗ such that Ω = π∗Ω̂ if and only if

∀ω ∈ Ω, ∀X ∈ kerπ∗ : X� ω = 0, X� dω ∈ Ω.

Proof. The condition shows that kerπ∗ ⊂ CharΩ. By Corollary A.5, there exists a mani-
fold Ñ and a surjective map π̃ : M → Ñ , ker π̃∗ = CharΩ and a codistribution Ω̃ ∈ T Ñ
such that Ω = π̃∗Ω̃. Hence, locally, we may find coordinates (yi, zj, wk) on M such that

π : (yi, zj, wk) �→ (yi, zj)

π̃ : (yi, zj, wk) �→ (yi)

From the coordinate expressions above, we see that there locally exists a map π̂ : N → Ñ
given by

π̂ : (yi, zj) �→ (yi)

and such that π̃ = π̂ ◦ π. Define Ω̂ ∈ TN∗, Ω̂ = π̂∗Ω̃. Clearly, Ω = π∗Ω̂.
Conversely, Assume there is a codistribution Ω̂ ⊂ TN∗ such that Ω = π∗Ω̂. Take {ω̂i} a
basis of Ω̂. Then any ω ∈ Ω is of the form

ω = αi π
∗ω̂i

for some functions αi on M . It follows that for any X ∈ kerπ∗

X� ω = X� (αi π
∗ω̂i) = αi X� π∗ω̂i

= αi(π∗X)� ω̂i = 0

X� dω = X� d(αi π
∗ω̂i) = X� (dαi ∧ π∗ω̂i + αi d(π

∗ω̂i))

= X(αi) π
∗ω̂i + αiX� π∗dω̂i = X(αi) π

∗ω̂i + αi(π∗X)� dω̂i

= X(αi) π
∗ω̂i ∈ Ω.
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Let us now answer the second question.

Lemma A.11. Given the surjective map π : M → N and a distribution V ⊂ TM , the set
of vectors π∗(v|x) ∈ TN |π(x) for all v ∈ V generates a well defined distribution on TN ,
denoted by π∗V if and only if

[V, kerπ∗] ⊂ V + kerπ∗.

Proof. The augmented distribution V +kerπ∗ clearly projects to the same set than V under
π∗. Hence we may assume that kerπ∗ ⊂ V and replace the condition by [V, kerπ∗] ⊂ V .
Next, ∀ω ∈ Ω =⊥TM V , ∀v ∈ V and ∀X ∈ kerπ∗ we have v� ω = X� ω = 0 and from the
(modified) assumption it follows that

0 = [v,X ]� ω = v(X� ω)−X� v(ω) = −X� v(ω)

= −X� (v� dω + d(v� dω)) = v� X� dω

⇒ X� dω ∈ Ω.

Hence, by Lemma A.10, Ω = π∗Ω̂ for some Ω̂ ⊂ TN∗. The distribution π∗V is then given
by ⊥TN∗ Ω̂.

Assume the conditions of Lemma A.10 are not satisfied. The following result produces
the largest codistribution Ω(r∗) ⊂ Ω for which Lemma A.10 applies.

Lemma A.12. Consider the surjective map π : M → N and a codistribution Ω ⊂ TM∗.
Compute the following sequence of nested codistributions

Ω(0) = Ω∩ ⊥TM kerπ∗ Ω(r+1) = {ω ∈ Ω(r) | X� dω ∈ Ω(r), ∀X ∈ kerπ∗}.

There is an integer r∗, 0 ≤ r∗ ≤ dimΩ such that dimΩ(r) is a strictly decreasing sequence
for r = 0, . . . , r∗ and dimΩ(r) is constant for r ≥ r∗. Moreover, Ω(r∗) ⊂ Ω is the largest
codistribution in Ω satisfying Lemma A.10.

Proof. Since Ω(r) ⊂ Ω(r+1), if dimΩ(r+1) = dimΩ(r) for some r, then Ω(r+1) = Ω(r) and
Ω(r+k) = Ω(r) for all k ≥ 0. Let r∗ be the smallest such number, then we see that Ω(r∗)

satisfies Lemma A.10.
Take Ω̄ ⊂ Ω an arbitrary codistribution in Ω satisfying Lemma A.10. Assume that Ω̄ ⊂
Ω(r) also holds for some r. Then, ∀X ∈ kerπ∗ and ∀ω ∈ Ω̄, X� dω ∈ Ω̄ ⊂ Ω(r). Therefore
Ω̄ ⊂ Ω(r+1) and by induction Ω̄ ⊂ Ω(r∗). Hence, Ω(r∗) is the largest codistribution in
Ω = Ω(0) satisfying Lemma A.10.

A.3 Derived Systems and Filtrations

Given a distribution (or codistribution) E on some manifold M , a derived system E(1)

computed from E is an other distribution (or codistribution) contained in or containing
E. By duality, to the derived system of some distribution always corresponds a derived
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system of the codistribution annihilating it and vice versa.
Suppose that the rule for computing a derived system E(1) of E has been specified. One
may define a recursion

E(0) = E E(k+1) = (E(k))(1) ∀k ≥ 0

thereby producing an ascending or descending sequence of nested vector spaces or modules

E = E(0) ⊃ E(1) ⊃ E(2) ⊃ . . .

or

. . . ⊂ E(2) ⊂ E(1) ⊂ E = E(0).

Such a sequence is called a filtration of E. Note that in the finite dimensional case, a
filtration always saturates after a finite number of steps.

A.3.1 Dual Derived Systems

In this section, we give instances of useful derived systems of distributions and codistribu-
tions on finite dimensional manifolds. In each case, we state a duality result that allows
one to perform the computation either on the distribution or on its annihilating codistri-
bution.
Consider the distributions V,W and a codistribution Ω on some manifold M , we shall use
the following notations where {vk}, {wr} and {ωj} are given bases of V , W and Ω :

[V, V ] = {[vk1 , vk2 ]} [V,W ] = {[vk, wr]}

V Ω = {vk(ω
j)}.

Importantly, note that [V, V ], [V,W ] and VΩ are not independent of the chosen bases,
however V + [V, V ], V +W + [V,W ] and Ω + V Ω are. By

Ω ∧ Ω

we shall either mean the ideal in ΛTM∗ generated by the elements ωj1 ∧ ωj2 or the sub-
module of Λ2TM∗ generated by the same elements.

Lemma A.13. Let M be a finite dimensional manifold and V ⊂ TM a distribution. Let
I ⊂ ΛTM∗ be the ideal such that I ∩ Λ1TM∗ ≡⊥TM V . That is, I is the ideal generated
by the 1-forms annihilating V . Then

I(1) := {ω ∈ I | dω ∈ I} and V (1) := V + [V, V ]

are such that

I(1) ∩ Λ1TM∗ ≡ ⊥TM V (1)
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Proof. Let ω be any 1-form of I, i.e. ω ∈ I(1) ∩Λ1TM∗ and v1, v2 any two elements of V .
Hence v1� ω = v2� ω = 0. The Cartan formula then shows that

[v1, v2]� ω = v1(v2� ω)− v1� v2(ω) = −v1� v2(ω)

= −v1� (v2� dω + d(v2� ω)) = −v1� (v2� dω).

But for the 2-form dω, −v1� (v2� dω) = dω(v2, v1) = 0 if and only dω ∈ I.

Lemma A.14. Let M be a finite dimensional manifold and V,W ⊂ TM distributions.
Let also Ω,Θ ⊂ TM∗ be codistributions Ω =⊥TM V and Θ =⊥TM W . Then

Φ : = {μ ∈ Ω ∩Θ | v� w� dμ = 0, ∀v ∈ V, ∀w ∈ W} Z = V +W + [V,W ]

= {μ ∈ Ω ∩Θ | w� dμ ∈ Ω, ∀w ∈ W}

= {μ ∈ Ω ∩Θ | v� dμ ∈ Θ, ∀v ∈ V }

are such that Φ =⊥TM Z.

Proof. Use the Cartan formula to show that

[v, w]� μ = v(w� μ)− w� v(μ) = −w� v(μ)

= −w� (v� dμ+ d(v� μ)) = v� w� dμ

whenever v� μ = w� μ = 0.

Lemma A.15. Let M be a finite dimensional manifold, V ⊂ TM a distribution and Ω ⊂
TM∗ the codistribution satisfying Ω =⊥TM V . Let also W ⊂ V be another distribution.
Then

Ω(1) := Ω +WΩ and V (1) := {v ∈ V | [w, v] ∈ V, ∀w ∈ W}

are such that
Ω(1) =⊥TM V (1).

Proof. The inclusion W ⊂ V ensures that the definition of V (1) is independent of the
choices of bases for W and V . Let ω, v and w be any three elements such that ω ∈ Ω,
v ∈ V and w ∈ W . Hence v� ω = 0. The Cartan formula then implies

v� w(ω) = w(v� ω)− [v, w]� ω = [w, v]� ω.

Under these conditions, [w, v]� ω = 0 if and only if v� w(ω) = 0.

Lemma A.16. Let M be a finite dimensional manifold and V ⊂ TM a distribution.
Let Ω ⊂ TM∗ be the codistribution such that Ω =⊥TM V . Let also W ⊂ V be another
distribution. Then

i)
Ω(1) := {ω ∈ Ω | w(ω) ∈ Ω, ∀w ∈ W} and V (1) := V + [W,V ]

are such that
Ω(1) =⊥TM V (1).
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ii) Moreover, set Φ ⊂ TM∗, Φ =⊥TM W such that Ω ⊂ Φ and denote by {Ω,Φ ∧ Φ}
the ideal in ΛTM∗ generated by the 1-forms ω ∈ Ω and the 2-forms φ1 ∧ φ2, with
φ1, φ2 ∈ Φ. Then Ω(1) may also be computed as

Ω(1) = {ω ∈ Ω | dω ∈ {Ω,Φ ∧ Φ}}

iii) Additionally assuming that W is involutive, i.e. [W,W ] ⊂ W and choosing any V̄ ⊂ V
such that V = V̄ +W , we also obtain the same systems as in i) by computing

Ω(1) := {ω ∈ Ω | v̄(ω) ∈ Ω, ∀v̄ ∈ V̄ } and V (1) := V +
[
V̄ ,W

]
Proof. i) Since W ⊂ V , V + [W,V ] is independent of the choice of bases. The equivalence
follows from the same formula as in the proof of Lemma A.15.
ii) Again as in Lemma A.15, for all w ∈ W, v ∈ V, ω ∈ Ω, [w, v]� ω = 0 if and only if
v� w(ω) = 0. Moreover,

0 = v� w(ω) = v� (w� dω + d(w� ω)) = v� w� dω.

In particular and since W ⊂ V ,

w1� w2� dω = 0 ∀w1, w2 ∈ W ω ∈ Ω(1)

so that dω ∈ Φ, with Φ taken as an ideal. Therefore, assuming that Ω = {ωj} and
Φ = {ωj, φs}, there must exist αj , βs ∈ TM∗ such that

dω = αj ∧ ωj + βs ∧ φs.

Hence, for all w ∈ W , v ∈ V , ω ∈ Ω(1)

0 = v� w� dω

= v� ((w� αj)ω
j + (w� βs)φ

s)

= (w� βs)(v� φs).

A rank argument shows that this implies that w� βs = 0, therefore βs ∈ Φ which in turn
implies dω ∈ {Ω,Φ∧Φ}. Conversely, assume ω ∈ Ω and dω ∈ {Ω,Φ∧Φ}. Then there are
1-forms αj and functions γkr s.t.

dω = αj ∧ ωj + γkrφ
k ∧ φr

Hence, ∀v ∈ V

v� dω = (v� αj)ω
j + γkr((v� φk)φr − (v� φr)φk) ∈ Φ

so that ∀w ∈ W

0 = w� v� dω = w� (v(ω)− d(v� ω)) = w� v(ω)
Cartan
= v(w� ω)− [v, w]� ω

= − [v, w]� ω
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which shows that ω ∈ ⊥TM (V + [W,V ]) = Ω(1).
To show iii) notice that V +

[
V̄ ,W

]
is indeed independent of the choice of generators for

V̄ and

V + [W,V ] = V +
[
W, V̄ +W

]
= V +

[
W, V̄

]
+ [W,W ] = V +

[
W, V̄

]
.

On the other hand, if ω ∈ Ω and w1, w2 ∈ W , then [w1, w2]� ω = 0, so that it suffices to
satisfy the relations [v̄, v]� ω = 0 for all v ∈ V and v̄ ∈ V, v̄ /∈ W .

In Lemma A.15 and A.16 i) above, the requirement that W is a subset of V may be
relaxed. The cost is that the result of the computed derived system is no more independent
of the choice of basis of W (but remains independent of the choice of basis of V ). Hence,
the distribution W must be replaced by a fixed set of elements. Therefore, in the following
we replace W by a single vector field D ∈ TM . Note that the result generalizes without
effort to the case of a set of vectors (D1, . . . , Dδ).

Lemma A.17. Let M be a finite dimensional manifold and V ⊂ TM a distribution. Let
Ω ⊂ TM∗ be the codistribution such that Ω =⊥TM V . Let also D ∈ TM be any vector
field in TM . Define

i)
Ω(1) := {ω ∈ Ω | D(ω) ∈ Ω} and V (1) := V + [D,V ]

ii)
Ω(1) := Ω +DΩ and V (1) := {v ∈ V | [D, v] ∈ V }

Then, in both cases i) and ii) the derived systems verify

Ω(1) =⊥TM V (1).

Proof. From the Cartan formula, we have that for v ∈ V and ω ∈ Ω, [D, v]� ω = 0 if and
only if v� Dω = 0.
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[17] B. Charlet, J. Lévine, and R. Marino. Sufficient conditions for dynamic state feed-
back linearization. SIAM J. Control Optimization, 29(1):38–57, 1991.

[18] C.-T. Chen. Linear System Theory and Design. Oxford University Press, 3rd edition,
1999.

[19] V. N. Chetverikov. On the structure of integrable C-fields on infinitely extended
equations. Soviet. Math. Dokl., 33(1):45–48, 1986.

[20] V .N. Chetverikov. On the structure of integrable C-fields. Differential Geometry
and its Applications, 1:309–325, 1991.

[21] V .N. Chetverikov. Flatness conditions for control systems. DIPS-01
http://diffiety.ac.ru, 2002.

[22] V .N. Chetverikov. Higher symmetries and the brunovskii infinitesimal form of
controlled systems. Differential Equations, 38(11):1619–1627, 2002.

[23] V. N. Chetverikov. Flat control systems and deformations of structures on diffieties.
Forum Math., 16:903–923, 2004.

[24] V .N. Chetverikov. Flatness of dynamic feedback linearizable systems. Differential
Equations, 40(12):1665–1674, 2004.

[25] V. N. Chetverikov. A nonlinear spencer complex for the group of invertible dif-
ferential operators and its applications. Acta Applicandae Mathematicae, 83:1–23,
2004.

[26] V .N. Chetverikov. Linearization method for the flatness problem and for finding
the compatibility operator. Differential Equations, 42(10):1479–1489, 2006.

[27] V.N. Chetverikov, A.N. Kanatnikov, and A.P. Krishchenko. Classical and higher
symmetries of control systems. In Preprints of the 15th World Congress IFAC 2002,
Barcelona, Spain, 2002.



BIBLIOGRAPHY 135

[28] P. M. Cohn. Free Rings and their Relations. Academic Press, London, 1985.

[29] G. Conte, A. M. Perdon, and C. H. Moog. The differential field associated to a general
analytic nonlinear dynamical system. IEEE Transactions on Automatic Control,
38(7):1120–1124, 1993.

[30] J.-M. Coron. Linearized control systems and applications to smooth stabilization.
SIAM J. Control And Optimization, 32(2):358–386, 1994.

[31] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag,
1992.

[32] D. A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer, 2nd
edition, 2005.

[33] E. Delaleau and P. S. Pereira da Silva. Filtrations in feedback synthesis: Part I –
Systems and feedbacks. Forum Math., 10:147–174, 1998.

[34] E. Delaleau and P. S. Pereira da Silva. Filtrations in feedback synthesis: Part II
– Input-output decoupling and disturbance decoupling. Forum Math., 10:259–275,
1998.

[35] E. Delaleau and W. Respondek. Lowering the orders of derivatives of controls in
generalized state space systems. Journal of Mathematical Systems, Estimation, and
Control, 5(3):1–27, 1995.

[36] E. Delaleau and J. Rudolph. Control of flat systems by quasi-static feedback of
generalized states. International Journal of Control, 71(5):745–765, 1998.

[37] M. D. Di Benedetto, Grizzle J. W., and C. H. Moog. Rank invariants of nonlinear
systems. SIAM J. Control And Optimization, 27(3):658–672, 1989.

[38] P. T. Eendebak. Contact Structures of Partial Differential Equations. PhD thesis,
Universiteit Utrecht, 2007.

[39] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.
Springer, 1995.

[40] M. Fliess. Automatique et corps différentiels. Forum Mathematicum, 1:227–238,
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[77] B. Kiss, J. Lévine, and Ph. Mullhaupt. Modelling, flatness and simulation of a class
of cranes. Periodica Polytechnica Ser. El. Eng., 43(3):215–225, 1999.

[78] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, Volume I.
Wiley, 1996.

[79] E.R. Kolchin. Differential algebra and algebraic groups. Pure and Applied Mathe-
matics, 54. New York-London: Academic Press. XVII, 446 p. $ 24.50 , 1973.

[80] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover, 1975.

[81] A. J. Krener. A decomposition theory for differentiable systems. SIAM J. Control
And Optimization, 15(5):813–829, 1977.

[82] A. J. Krener. Approximate linearization by state feedback and coordinate change.
Systems & Control Letters, 5:181–185, 1984.

[83] A. Kushner, V. Lychagin, and V. Rubtsov. Contact Geometry and Nonlinear Dif-
ferential Equations. Cambridge University Press, 2007.

[84] P. Lancaster. The Theory of Matrices, Second Edition, With Applications. Academic
Press, San Diego, CA, 1985.

[85] S. Lang. Algebra. Springer-Verlag, 3rd edition, 2002.

[86] J. M. Lee. Introduction to Smooth Manifolds. Springer, 2006.
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[89] J. Lévine and Ph. Mullhaupt, editors. Advances in the Theory of Control, Signal
and Systems with Physical Modeling. Springer, 2010.
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Glossary of Symbols

[., .] Lie bracket, commutator
� interior product
⊥ for B ⊂ A, ⊥A B are the elements in the dual of A, annihilating B
∧ wedge product

Ap R[D]-module of p-forms on U∞

Ap,s M0
s,s[D]-module of s-length columns of p-forms

A∗,s Ms,s[D]-module of s-length columns of forms of any degree

B time manifold with coordinate (t)

C Cartan distribution
card cardinality
C∞(M) smooth real valued functions on the finite dimensional manifold M

D vector field of the Cartan distribution satisfying D� dt = 1
d exterior derivative

E submanifold of J1M defined by the equations F (t, x, p) = 0

Γ ΓM , sections of the fibered manifold M

Hp,q[D] hyper-regular p× q matrix differential operators

j, jk j(σ), jk(σ); first, respectively kth jet of σ

ker kernel

ΛpR[D] graded (scalar) differential operators with p-form coefficients
ΛpTU∞∗ R-module of p-forms on U∞

M, N time and state manifold with coordinates (t, x)
Ml

v,s[D] v × s matrices of differential operators with l-form coefficients
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144 Glossary of Symbols

ωi elements of the Cartan codistribution on U (Chapters 1 and 4) or represen-
tatives of a basis of A1/T (Chapter 2)

PF (n−m)×n matrix operator constructed from the system implicit equations
φ∗ push-forward; for φ : M → N , denotes the induced map φ∗ : TM → TN
φ∗ pull-back; for φ : M → N , denotes the induced map φ∗ : TN∗ → TM∗

π surjective smooth map
π10 projection on jet manifolds π10 : J1M → M
πkl projection on jet manifolds πkl : J

kM → J lM for k > l
πMB projection πMB : M → B, πMB : (t, x) �→ (t)
πUM projection πUM : U → M, πUM : (t, x, u) �→ (t, x)
πU ,kl projection between input prologantions πU ,kl : Uk → U l for k > l

R field of real numbers
R ring (R-algebra) of smooth real-valued functions on U∞

R[D] ring of (scalar) differential operators with coefficients in R

σ section on the bundle πMB : M → B, σ : (t) �→ (t, x(t))
σ̂ lift of a section σ on πMB : M → B to a section on πMB ◦ πUM : U → B,

σ̂ : (t) �→ (t, x(t), u(t))

TM tangent bundle of the manifold M
TM∗ cotangent bundle of the manifold M

U , V time, state and input manifold with coordinates (t, x, u)
Uk kth input prolongation manifold with coordinates (t, x, u, . . . , u(k))
Us[D] unimodular (invertible) s× s matrix differential operators
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Bilinear Systems, 103
Brunovsky-regular point, 43

neighborhood, 43
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Cartan
(co-)distribution, 22, 24, 27, 29
formula, 123

Cauchy characteristics, 124
Codistribution

pullback, 125
Constrained systems, 93
Contact form, 22, 23
Controlled invariance, 74, 77

dynamic, 82
Covering, 73

dimension, 73

Derived system, 128
Differential independence, 87
Differential operators, 40

degree, 41
exterior derivative, 42
grading, 41
hyper-regular, 53
invertible, 50
matrix-, 49
order, 41
unimodular, 50

Diffiety, 29
Distribution

projection, 125
Dynamic extension algorithm (DEA), 75, 88
Dynamic feedback, 68

endogenous, 72

linearization, 74
non-singular, 68

Elimination
input, 29

Embedding, 122

Filtration, 129
integrable case, 102

Flat output, 37

Immersion, 122
Input

distribution, 77
Elimination, 29

Jet space, 22

Lie-Bäcklund
immersion, 73
isomorphism, 73
mapping, 73
submersion, 73

Manifold, 121
Module of 1-forms, 43

Pfaffian system, 25
Projection, 121
Prolongation, 26

infinite input-, 28

Relative derived flag, 109
Relative flatness, 94, 97
Retracting space, 124
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Section, 22
lift, 22
solution-, 23

Static feedback linearization, 29
Static feedback transformation, 25, 68
Submersion, 121
System equations

explicit form, 22
implicit form, 22

Vector of forms, 49
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Philippe Müllhaupt and Basile Graf. 2010 IEEE International Conference on Con-
trol, Yokohama, Japan, 2010.

LANGUAGES

• French

• English

• German and Swiss-German




