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Abstract:  An earlier infiltration equation relied on curve fitting of infiltration data for the 9 
determination of one of the parameters, which limits its usefulness in practice.  This handicap is 10 
removed here and the parameter is now evaluated by linking it directly to soil-water properties.  11 
The new predictions of infiltration using this evaluation are quite accurate. Positions and shapes 12 
of soil-water profiles are also examined in detail and found to be predicted analytically with 13 
great precision.  14 

Keywords:  Infiltration in soils, water profiles, constant surface water, Richards equation. 15 
 16 
Running title: Infiltration and water profiles.  17 
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Introduction and Theoretical Background 18 

 The infiltration process of soil enters into most hydrological problems, e.g., irrigation, 19 

erosion, and weather forecasting, among many.  Physically based infiltration equations go back 20 

at least to Green and Ampt (1911) with greater understanding being obtained with Richards 21 

equation (1931). Two very thorough reviews of most of the existing infiltration equations based 22 

on Richards equation can be found in Basha (2011) and in Triadis and Broadbridge (2010). 23 

Those discussions will not be repeated here except when they impact this paper directly. 24 

 The present paper continues an approach which is based on Green and Ampt (1911) and 25 

Richards equation (1931). Parlange, et al. (1982) introduced a three parameter infiltration 26 

equation valid for a saturated soil surface.  Those parameters are sorptivity, saturated 27 

conductivity and an interpolation parameter δ, which goes from 0, when the equation reduces to 28 

Green and Ampt (1911), to 1 when the equation reduces to one obtained earlier by Talsma and 29 

Parlange (1972), see also Smith and Parlange (1978).  This three parameter equation is discussed 30 

in detail by Basha (2011) and Triadis and Broadbridge (2010) following new interpretations.  A 31 

fourth parameter was introduced by Haverkamp, et al. (1990) to represent ponding on the 32 

surface. Barry, et al. (1995) used this fourth parameter, γ, as a curve fitting parameter, but 33 

simplified the equation by taking δ=1.  34 

 As in Barry, et al. (1995), we keep δ=1 even though values of δ less than one can be used 35 

to improve the agreement with numerical results for infiltration (Parlange, et al., 1985; 36 

Haverkamp, et al., 1988; Basha, 2011). As this paper concentrates on a discussion of γ, we keep 37 

δ=1. In addition, for capillary rise δ=1 (Kunze, et al., 1985), and if δ is a true physical parameter, 38 
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then the same value should hold for infiltration. However, it is quite easy to reintroduce δ in the 39 

equations if so desired. 40 

In a recent paper on time compression approximations (TCA) by Hogarth, et al. (2011), 41 

relationships between the cumulative infiltration, ,I  and the surface flux, q, were examined in 42 

details based on an expansion procedure started by Parlange et al. (1997).  For the purpose of 43 

TCA, it was sufficient to consider the cases when either the surface flux or the surface water 44 

content is constant, even though the method can be applied for arbitrary surface conditions.  In 45 

this paper, we are primarily concerned with infiltration and the profile determination following 46 

the same basic procedure (Parlange et al. 1997).  The profiles are given by Eq. (1) below, e.g. see 47 

Eq. (2) in Hogarth et al. (2011). 
 

48 

( )
2.

/

s

s

Dd z Mz
q k

θ

θ

θ
θ θ θ

= +
−∫          (1)  49 

Where θ  is the water content at vertical position, ,  z 0z = at the surface with sθ being the water 50 

content at 0z = and time, t.  ( )D θ  and ( )k θ  are the soil-water diffusivity and conductivity, 51 

respectively. When s satθ θ=  (the saturated value), M is taken as  52 

( )
0 0 0

2 / / .sat sat sat

satDd M q Dd Dd
θ θ θ

θ = θ −θ θ θ θ∫ ∫ ∫       (2) 53 

For q  constant, the - termM is negligible (Hogarth et al. 2011, see also Sivapalan and Milly, 54 

1989).  For simplicity, we assume that the initial water content, iθ , can be taken as constant.  As 55 

a result, θ  stands for the water content minus iθ .  Similarly, k  and q stand for the conductivity 56 

and flux minus the conductivity at iθ .  Taking a non-uniform initial water content introduces 57 
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complications in writing the equations but with no theoretical difficulties, following the approach 58 

of Boulier et al. (1984). 59 

 It is important to note that neglecting M for q  constant is necessarily approximate as 60 

0M = is exact only when / sq θ  is independent of time (Fleming et al. 1984).  There have been 61 

many papers exploring the accuracy of Eq. (1) with 0M =  for q constant, and possible 62 

alternatives to the use of / sqθ θ   in the integral, e.g., see Kutilek (1980); Boulier et al. (1984); Si 63 

and Kachanoski (2000); Evanselides et al. (2005). The conclusion is that in practice, the use of 64 

/ sqθ θ  is very accurate, in agreement with the suggestion originally made in Eq. (8) of Parlange 65 

(1972), as long as the initial water content is not too large (Boulier et al. 1984).   66 

 Fig. 1 summarizes the case considered by Boulier et al. (1984) and Parlange et al. (1985) 67 

for q  constant using a Grenoble sand whose properties are given in those two papers.  The 68 

numerical and analytical results are essentially undistinguishable on the figures.  This was not 69 

the case with Boulier et al. (1984) and Parlange et al. (1985) where numerical results showed 70 

dispersion near the wetting front.  Here the numerical results were obtained using COMSOL 71 

finite element numerical software.  This software eliminated the numerical dispersion and thus 72 

can be trusted to provide accurate solutions at the wetting front.  Note that using Eq. (1) with 73 

M 0= requires the knowledge of ( )s tθ which is obtained by conservation of mass, integrating 74 

Eq. (1) to obtain 75 

0
.

/
s

s

D d qt
q k

θ θ θ
=

θ θ −∫           (3) 76 
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Note also that the measured profiles differ slightly from the predicted profiles simply reflecting 77 

that the properties, obtained from many experiments, were not exactly those of the particular soil 78 

sample used for the experiment in Fig. 1.  Experimental scatter of this nature is not unexpected 79 

and is sometimes used, wrongly, to justify poor approximate analytical solutions.  Rather, 80 

analytical approximations should be as accurate as possible so that differences with observations 81 

are unambiguously linked to experimental uncertainties and not to inaccurate models.  The 82 

solution for q constant and M 0= will be used later for comparison to the solution with M 0.≠  83 

Cumulative Infiltration and Flux with Surface Saturation: 84 

 We are now using the profiles with 0M ≠ , given by Eq. (2) and s satθ = θ . The first step 85 

is to derive the equivalent to Eq. (3) to obtain ( )q t .Several expressions have been used in the 86 

past that related I and .q   Eq. (20) of Hogarth et al. (2011) gave  87 

( )
0 0

/ 2 .
/

sat sat

sat
sat

D d I Dd q
q k

θ θθ θ
= + θ −θ θ

θ θ −∫ ∫        (4) 88 

The last term is an approximation of 2

0

satM z d
θ

θ∫ for short times, such that 2 / 2Iq S , where S  89 

is the sorptivity approximated by 90 

( )2

0
.sat

satS D d
θ

θ + θ θ∫          (5) 91 

Eq. (4) is identical, with minor notation differences, with Eq. (9) of Parlange et al. (1982). If one 92 

ignored the M term− altogether, then the first term in Eq. (4) would have to be corrected for the 93 

resulting equation to hold in the short time to obtain Eq. (18) of Barry et al. (2008) 94 

( )2

0 0
/ 2 .

/
sat sat

sat
sat

D dS Dd I
q k

θ θ θ θ
θ θ =

θ θ −∫ ∫        (6) 95 
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 Finally, Eq. (6) can be modified to take into account a small negative potential strh , with 96 

the soil remaining saturated for strh h> − .  Conceptually, strh can be associated with the largest 97 

pores in the soil (Haverkamp, et al. 1990). In practice, the value of strh  cannot be measured 98 

independently and instead was obtained by curvefitting infiltration data (Barry et al. 1995).  Eq. 99 

(6) then becomes 100 

( )
2 2

0

0

/ 21
/2

sat

sat
sat satsat

S D d SI
q k q kDd

θ

θ

θ θ γ
− γ = −

θ θ − −θ θ
∫

∫
      (7) 101 

where 102 

22 / .sat str satk h Sγ = − θ           (8) 103 

Note that in Eq. (7) of Barry et al. (1995) and Eq. (16) of Haverkamp et al. (1990), the equations 104 

were further simplified by assuming 105 

( )
0

/ / / .sat

sat satD Dd d k d k
θ

θ θ = θ θ∫         (9) 106 

Since k  increases rapidly with ,  /kθ θ is hardly different from .sk θ  Making that substitution in 107 

Eq. (9) and combining it with / ,D kdh d= θ where h is the potential, leads to an exponential 108 

dependence of k on ,h i.e., the standard Gardner relation.  Thus, in our case, Eq. (9) implies a 109 

soil hardly different from a Gardner soil. It is clear that eliminating D  from the integral of Eq. 110 

(7), using Eq. (9), results in an integral, where /k θ is the variable, which can be integrated 111 

explicitly as done by Barry et al. (1995) and Haverkamp et al. (1990).  This simplification will be 112 

discussed further later on. 113 
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 In the present paper, the soil surface is taken at a zero potential.  There is no difficulty to 114 

include a ponding term 0surfh > which is simply added to strh  as done in Haverkamp et al. 115 

(1990) and Barry et al. (1995). It is not considered here as it corresponds only to changing the 116 

value of γ . 117 

 Altogether, we consider two possible relations between  and I q , Eqs. (4) and (7), which 118 

could be simplified using Eq. (9).  Eq. (6) is, of course, just Eq. (7) with γ = 0.  Obviously, for 119 

the Grenoble sand used for our illustration, strh  and  γ  are physically equal to zero.  However, 120 

Barry et al. (1995) took a non-zero, and hence non-physical, value to improve infiltration 121 

prediction keeping γ  only as a curve fitting parameter.  In the following, we first discuss the 122 

results obtained from Eq. (4).  Then we follow the same approach starting with Eq. (7) and 123 

compare the results. 124 

Since we paid special attention to short time infiltration to obtain Eq. (4), we are first 125 

considering the Taylor expansion of the equation for q large, keeping the first two terms only.  126 

Eq. (4) yields 127 

( )2 2

0
/ 2 / /sat

sat
Iq S k D d q

θ
+ θ θ θ∫ .        (10) 128 

Finally, we can simplify Eq. (4) using Eq. (9) to obtain 129 

( )0
0

1 / 2 .
sat

satsat
sat

sat sat

Dd qI n Dd q
k q k

θ

θθ θ
= − θ −θ θ

−
∫

∫       (11) 130 

 To obtain the relationships between  and ,q t we differentiate Eq. (4) with respect to time, 131 

replacing dI dt by ,q to obtain a differential equation for q which is easily integrated to obtain  132 
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( )
2 2

2 2
0 0 0

/ 1ln ( )
/ / 4

sat sat sat
sat

sat
sat sat sat sat

q kD D dt d Dd
k q k q k q

θ θ θθ θθ θ θθ θ θ θ
θ θ θ θ θ θ

 −
= + − −  − 
∫ ∫ ∫   (12) 133 

and using Eq. (9) in the two integrals so that only k θ enters as variable we obtain 134 

( )0
2 2 0

11 .
4

sat

satsat sat
sat

sat sat

Dd kqt n Dd
k q k q q

θ

θθ θ  
= − − θ −θ θ − 

∫
∫      (13) 135 

Starting now with Eq. (7), we proceed as before; the Taylor expansion for large ,q136 

keeping the first two terms only, or  137 

( ) ( ) ( )2 2 2 2

0 0
/ 2 / 2 / 1 / 2 /sat sat

satsat satIq S S Dd k D d S k q
θ θ + θ θ θ θ θ − γ + γ  ∫ ∫ .  (14) 138 

Note that for γ = 0, Eqs. (10) and (14) differ by the term 139 

( ) ( )2

0 0 0
1 / 2 / 2 ,sat sat sat

sat sat satS Dd Dd Dd
θ θ θ

− θ θ θ −θ θ θ θ∫ ∫ ∫      (15) 140 

which is small.  In all our estimates, we keep terms up to that small order and ignore terms of 141 

higher order, i.e., square terms.  142 

If we use Eq. (9) to estimate the /I q  terms in Eq. (14), then Eq. (14) reduces to Eq. (10) 143 

if we take  144 

( )0 0 0
/ 2 .sat sat

sat satDd Dd
θ θ

γ = γ = θ −θ θ θ θ∫ ∫        (16) 145 

 146 

Finally, we simplify Eq. (7) when Eq. (9) holds and obtain  147 

( ) ( )
2 2

1 1 .
2 2sat sat sat

S q SI n
k q k q k

γ
= − γ +

− −
       (17) 148 
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 We now differentiate Eq. (7) with respect to time, and integrate the resulting differential 149 

equation to obtain 150 

( )
( )

2 2 2

20 0

0

2

2

1 /1
/ /2

1 ,
2

sat sat

sat

sat

sat sat sat satsat

sat

sat sat sat

S q kD D dt n d
k q k q kDd

kS qn
k q k q k

θ θ

θ

 − γ  θ θ −θ θ θ
= θ+  θ θ θ θ θ θ − θ θ  

 γ
− − − − 

∫ ∫
∫    (18) 151 

and with Eq. (9)  152 

( ) ( ) ( )
2 2

2 1 2 1 1 .
2 2

sat

sat sat sat sat

kS q St n
k q k q k q k

  γ
= − γ − − γ + − − 

     (19) 153 

Fig. (2) compares ( )q t given by Eqs. (12, 13, 18 and 19) with γ from Eq. (16) equal to 0.05, with 154 

the numerical results. 155 

 Several results are apparent. First, Eq. (12) provides an excellent approximation for ( )q t156 

when compared to the numerical results.  The results predicted by Eq. (18) are equally good if 157 

we take 0 0.05γ = γ = as given by Eq. (16). Interestingly, Eqs. (13) and (19) are still in basic 158 

agreement with each other, with γ=0.05, but they differ significantly from the numerical results.  159 

This discrepancy simply shows that the Gardner-type relation of Eq. (9) is not exact for the 160 

Grenoble sand and, not surprisingly, this assumption affects Eqs. (18) and (18) in a similar 161 

manner. 162 

 We know (Barry, et al., 1995) that Eq. (19) can be curve fitted accurately, but only by 163 

using a γ differently from 0.γ   Of course, Eq. (19) is easy to use in practice once γ is known as it 164 

relies only on the knowledge of two additional parameters, S and satk  (besides γ), whereas Eq. 165 

(12) requires the estimations of two integrals (based on knowing D and k of θ ) for each value of 166 
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the flux .q  Furthermore, Eq. (19) can be used easily in the case of infiltration with ponding 167 

(Barry, et al., 1995). 168 

 The main inconvenience of using Eq. (19) as in Barry, et al. (1995) is that γ in that paper 169 

had to be obtained by curve fitting as the theoretical value of Eq. (16) shows poor accuracy, see 170 

Fig. (2). Instead, we are now going to estimate a constant value of γ, i.e., independent of the flux, 171 

based on soil properties.  For that purpose, we first remember that, as shown in Fig. 2, Eq. (7) is 172 

in good agreement with both the numeric and Eq. (4) for 0 0.05.γ γ= =  Then, the result for q  173 

large, i.e., Eq. (11) with ( )0 0.05 ,γ γ= =  is taken as equal to the result for 0γ γ≠ but obtained 174 

when Eq. (9) is used. This straightforward calculation gives  175 

 ( )0 00

0

2 1 2 1.sat

sat

sat

sat

kD d
k Dd

θ

θ

θ
γ = θ − γ + γ −

θθ
∫

∫        (20) 
176 

Of course, if Eq. (9) truly holds, Eq. (20) yields 0.γ = γ  For our particular example, this 177 

gives instead 0.39γ =  and, as shown in Fig. 3, this value, when used in Eq. (19), gives a very 178 

good estimate of ( )q t as expected.  179 

 To estimate the sensitivity of the results to the value of γ, a slightly different value, 180 

0.33,γ = is also considered.  This value was chosen by curve fitting Eq. (19) to the numerical 181 

results for 1000 ,t s  when 0.39γ =  is not quite as good.  However, 0.39γ =  is clearly better on 182 

the average, if we combine Eqs. (17) and (19) to predict ( )I t , then, as shown in Fig. 4, the 183 

choice of 0.39γ = is neatly superior to that of 0.33.γ = Altogether, then, Eq. (20) gives an 184 

adequate physical estimate of γ,  requiring no curve fitting to predict either ( )I t or ( )q t  with the 185 

very simple equations given in Eqs. (17) and (19). 186 
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Water Content Profiles: 187 

We are primarily interested in assessing the impact of the 2z −  term on the profile given 188 

by Eq. (1). The use of Eq. (1) means that at the difference of our results for I or ,q we do not 189 

attempt to obtain ( )zθ in terms of a few simple physical parameters.  Instead, we require to 190 

integrate the LHS of Eq. (1) for each value of ,q i.e., time.  Our estimates of I and q  were based 191 

on Eq. (1); hence it is important to check the accuracy of Eq. (1) in predicting ( ), .z tθ  In this 192 

paper, we carried out the calculation of the I and q estimates first, since applying Eq. (1) 193 

requires knowing ( ).q t  This section is more of theoretical interest like Eq. (1), whereas I and q194 

as given by Eqs. (17) and (19), using Eqs. (16) and (20) for 0γ and γ, are simple and of greater 195 

practical interest.  196 

For the illustration, we consider a flux q =50 cm/hr with either Eqs. (12) or (19) giving  197 

t =51.1 sec. Note that our illustration is for a short time, i.e., a large .q  As shown by Eq. (2), this 198 

enhances the M − value and hence the impact of the 2z term on the profile, which we try to 199 

assess. This means that without the 2z − term, we can also compare with the profile obtained at 200 

ponding with a constant flux of q =50 cm/hr, since the chosen flux is larger than .satk  201 

 Using Eq. (3) with ,s satθ = θ  gives the time at ponding, 97.56pt = sec., i.e., about twice 202 

the time, 51.1 sec., when q =50 cm/hr for s satθ = θ  for all times. This, of course, is because when 203 

,s satθ = θ q is larger than q =50 cm/hr for t <51.1 sec. and for infiltration with q =50 cm/hr, a 204 

longer time is required to accumulate a similar amount of water.  At 97.6 sec., this amount of 205 

water is I q= 1.355 ,tp cm=  whereas Eq. (4), for ,s satθ = θ gives 1.297 ,I cm= which is 4.5% less 206 
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than 1.355cm due to the last small term in Eq. (4).  The results are shown in Fig. 5a and with 207 

more details near the wetting front in Fig. 5b. On Fig. 5b, the slight differences between the 208 

analytical results and the numerics are visible (they are not on Fig. 5a). 209 

 If we now look at the profile, with the 2z − term, but for 1.355 ,I cm= then the time is 210 

obviously longer, 55.3 sec., and the flux smaller, 48.52 cm/hr.  The two profiles for 1.355 ,I cm=211 

one with 2z for ,s satθ = θ  and one without 2z for constant flux, q =50 cm/hr, are very close in 212 

shape.  Hence, the presence of the 2z − term affects the position of the profiles significantly, by 213 

4.5%, but not their shape. We note that the 2z − term reduces the estimate of ,z and the more so 214 

as z is larger making the profile more “square” as shown in the figures.  215 

 As also shown in Fig. 5a and Fig 5b, there is an excellent agreement between analytical 216 

and numerical results.  The analytical results are somewhat complex and to get some physical 217 

insight in the infiltration process, we are going to use some simplifications which make the 218 

results more transparent and are still quantitatively appropriate.  The constant flux profile is 219 

given subscript 1, the profiles for s satθ = θ are assigned 2 and * for q =50 cm/hr and for 220 

1.355 ,I cm= respectively. To be specific, we consider the front positions, denoted with subscript 221 

f, and we see on the figure that 1 ,fz 2 ,fz and * fz are close and ( )1 2f fz z−  is an order of 222 

magnitude smaller and ( )1 *f fz z− is another order of magnitude smaller. 223 

To the lowest order, as long as / sqθ θ  is not too close to k , Eq. (1) shows that the fronts 224 

locations are in the vicinity of   225 

( )
0

/ ,sat

f sz Dd q k
θ

θ −∫          (21)  226 
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which, for the present example, equals 6.2 cm, which is roughly correct. Then, 227 

1

2
2f f fz z Mz−            (22)  228 

or, from Eqs. (2) and (21),  229 

( )
( )

1 2 2 0

/ 2 1 /sat

f f sat
s

qz z Dd
q k

θ
− − θ θ θ

− ∫        (23) 230 

which is basically smaller than fz by an order of ( )0 / .073sq q kγ −  so that 
1 2 0.45 ,f fz z cm− 231 

which is roughly correct (slightly too large).  232 

The value of ( )1 * ,f fz z−  as shown in Fig. 5b, is very small.  Using order of magnitude 233 

estimates (calculations available upon request) we obtain 234 

( ) ( )1 * 1 2 2 .f f f fz z z z− − γ          (24) 235 

This shows that ( )1 *f fz z− is an order of magnitude less than ( )1 2f fz z−  as obtained 236 

numerically. For the case of Fig. 5b, Eq. (24) yields ( )1 * .045f fz z cm−  which is basically 237 

correct, only very slightly too small. 238 

Conclusion: 239 

 In practice, i.e., in the field, one is primarily interested in knowing I and q as a function 240 

of time, which is why this paper is primarily devoted to finding an appropriate γ to be used in 241 

Eqs. (17) and (19).  Originally (Barry et al., 1995), this third parameter was obtained by curve 242 

fitting to infiltration data.  Here, we derived instead a theoretical relation in Eq. (20) giving γ in 243 

terms of soil properties so that no empirical curve fitting is necessary. Analytical and numerical 244 

results were found to be in excellent agreement using a Grenoble sand for illustration.  245 
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 The method is based on Eq. (1) giving the water content, ,θ  as a two-term expansion in z  246 

and 2.z For the Grenoble sand illustration, we checked that the profiles, numerical and analytical, 247 

are in excellent agreement using ( )q t  as determined in Eq. (19). We found that the 2z − term 248 

affects primarily the position of the profile rather than its shape.  Finally, we derived some very 249 

simple expressions showing the relative positions of the wetting fronts, which provide a good 250 

physical insight in the infiltration process, either under constant flux or constant water content at 251 

the surface.  An interesting result is that the shapes remain very similar for both cases but 252 

positions have to be assessed carefully.  253 

  254 
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 333 
 334 
Fig. 1. Water profiles in a Grenoble sand for constant flux at the surface.  The solid lines 335 
represent experimental observations (Boulier et al. 1984). The numerical predictions, 336 
dotted lines, and the analytical results from Eqs. (1) and (3) with 𝑀 = 0, dashed lines, are 337 
essentially identical. 338 
 339 
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 340 
 341 
Fig. 2. Fluxes for a saturated soil surface.  Numerical results (solid line) and analytical 342 
approximations: stars with Eq. (12), squares with Eq. (13), triangles with Eq. (18) and 343 
dashed line with Eq. (19).  In both Eqs. (18) and (19), 0 0.05γ = γ = from Eq. (16).  344 
 345 
 346 

 347 
Fig. 3. Fluxes obtained numerically (solid line) and from Eq. (19): dashed line with 348 

0.39γ = from Eq. (20), stars with 0.33γ = obtained by curve fitting for long times.  349 
 350 
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 351 

 352 
 353 
Fig. 4. Infiltration I as a function of time obtained numerically (solid line) or 354 
analytically, combining Eqs. (17) and (19) for 0.33γ = (stars) and 0.39γ = (dashed line).  355 
 356 
 357 
 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
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 377 
 378 
Fig. 5. Comparison of profiles ( )z θ for saturated surface and constant flux.   379 
 380 

 381 
 382 
5a. Profiles over the whole range of ,θ showing little difference between the numerics 383 
(solid lines) and analysis (dashed lines).  384 
 385 
 386 
 387 
 388 
 389 
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 390 
 391 
5b. Details of the profiles near the fronts.  In descending order, from the top: 1. Profiles 392 
for q constant, i.e., without the 2 ,z term− when 50 /q cm hr= and 1.355I cm= at 393 

ponding; 2. Profiles when s satθ = θ at all times when 1.355 ,I cm= with the 2 ;z term− and 394 

3. Profiles when s satθ = θ at all times when 50 / ,q cm hr= with the 2 .z term−  395 

 396 
 397 


